

NISTIR 7942

Metrics and Test Methods for
Industrial Kit Building

Stephen Balakirsky
Thomas Kramer
Zeid Kootbally

Anthony Pietromartire

karenw
Typewritten Text
http://dx.doi.org/10.6028/NIST.IR.7942

karenw
Typewritten Text

karenw
Typewritten Text

karenw
Typewritten Text

NISTIR 7942

Metrics and Test Methods for
Industrial Kit Building

Stephen Balakirsky
Thomas Kramer
Zeid Kootbally

Anthony Pietromartire
Intelligent Systems Division

Engineering Laboratory

May 2013

U.S. Department of Commerce
Rebecca Blank, Acting Secretary

National Institute of Standards and Technology
Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director

karenw
Typewritten Text

karenw
Typewritten Text
http://dx.doi.org/10.6028/NIST.IR.7942

karenw
Typewritten Text

Metrics and Test Methods for Industrial Kit Building

Stephen Balakirsky, Thomas Kramer, Zeid Kootbally, and Anthony Pietromartire

Abstract— The IEEE Robotics and Automation Society’s
(RAS) Ontologies for Robotics and Automation Working Group
is dedicated to developing a methodology for knowledge repre
sentation and reasoning in robotics and automation. As part of
this working group, the Industrial Robots sub-group is tasked
with studying industrial applications of the knowledge represen
tation. One of the first areas of interest for this subgroup is the
area of kit building or kitting. It is anticipated that utilization
of the knowledge representation will allow for the development
of higher performing kitting systems. However, the definition of
“higher performing” has yet to be defined. This paper addresses
this issue by providing the basis for performance methods and
metrics that are designed to determine the performance of a
kitting system.

I. INTROD U CTION

Material feeding systems are an integral part of today’s
assembly line operations. These systems assure that parts
are available where and when they are needed during the
assembly operations by providing either a continuous supply
of parts at the station, or a set of parts (known as a kit)
that contains the required parts for one or more assembly
operations. In continuous supply, a quantity of each part that
may be necessary for the assembly operation is stored at
the assembly station. If multiple versions of a product are
being assembled (mixed-model assembly), a larger variety
of parts than are used for an individual assembly may need
to be stored. With this material feeding scheme, parts storage
and delivery systems must be duplicated at each assembly
station.

An alternative approach to continuous supply is known
as kitting. In kitting, parts are delivered to the assembly
station in kits that contain the exact parts necessary for the
completion of one assembly object. According to Bozer and
McGinnis [1] “A kit is a specific collection of components
and/or subassemblies that together (i.e., in the same con
tainer) support one or more assembly operations for a given
product or shop order”. In the case of mixed-model assembly,
the contents of a kit may vary from product to product. The
use of kitting allows a single delivery system to feed multiple
assembly stations. The individual operations of the station
that builds the kits may be viewed as a specialization of the
general bin-picking problem [2].

In industrial assembly of manufactured products, kitting
is often performed prior to final assembly. Manufacturers
utilize kitting due to its ability to provide cost savings
[3] including saving manufacturing or assembly space [4],
reducing assembly workers walking and searching times [5],
and increasing line flexibility [1] and balance [6].

Several different techniques are used to create kits. A
kitting operation where a kit box is stationary until filled
at a single kitting workstation is referred to as batch kitting.
In zone kitting, the kit moves while being filled and will pass
through one or more zones before it is completed. This paper
focuses on batch kitting processes.

In batch kitting, the kit’s component parts may be staged
in containers positioned in the workstation or may arrive on
a conveyor. Component parts may be fixtured, for example
placed in compartments on trays, or may be in random
orientations, for example placed in a large bin. In addition to
the kit’s component parts, the workstation usually contains a
storage area for empty kit boxes as well as completed kits.

Kitting has not yet been automated in many industries
where automation may be feasible. Consequently, the cost of
building kits is higher than it could be. We are addressing this
problem by proposing performance methods and metrics that
will allow for the unbiased comparison of various approaches
to building kits in an agile manufacturing environment.
The performance methods that we propose must be simple
enough to be repeatable at a variety of testing locations, but
must also capture the complexity inherent in variants of kit
building. The test methods must address concerns such as
measuring performance against variations in kit contents,
kit layout, and component supply. For our test methods,
we assume that a robot performs a series of pick-and-place
operations in order to construct the kit. These operations
include:

1) Pick up an empty kit and place it on the work table.
2) Pick up multiple component parts and place them in a

kit.
3) Pick up the completed kit and place it in the full kit

storage area.

Each of these may be a compound action that includes other
actions such as end-of-arm tool changes, path planning, and
obstacle avoidance.

S. Balakirsky and A. Pietromartire are with the Intelligent Systems
Division, National Institute of Standards and Technology, Gaithersburg, MD,
USA (e-mail:stephen.balakirsky@nist.gov, anthony.pietromartire@nist.gov)

Z. Kootbally is with the Department of Mechanical Engineering, Univer
sity of Maryland, College Park, MD, USA (email: zeid.kootbally@nist.gov)

T. Kramer is with the Department of Mechanical Engineer
ing, Catholic University of America, Washington, DC, USA (email:
thomas.kramer@nist.gov)

It should be noted that multiple kits may be built simul
taneously. Finished kits are moved to the assembly floor
where components are picked from the kit for use in the
assembly procedure. The kits are normally designed to facil
itate component picking in the correct sequence for assembly.
Component orientation may be constrained by the kit design

mailto:thomas.kramer@nist.gov
mailto:zeid.kootbally@nist.gov
mailto:anthony.pietromartire@nist.gov
mailto:e-mail:stephen.balakirsky@nist.gov

in order to ease the pick-to-assembly process. Empty kits are
returned to the kit building area for reuse.

II. PR E R E QU I S I T E S

A. Overview

Planning for different kits is a major problem area in
building a flexible kitting workstation. Therefore, one area
of focus for the authors is metrics and test methods for
planning for kitting. A test method is being developed that
will be suitable for comparing the performance of different
kitting planning systems. To build such a test method, certain
system prerequisites are necessary for the planning system
under test as well as for the hardware that will be utilized in
the implementation of the test method. In order to provide
for a consistent test metric, the system under test needs a
standardized representation for three sets of data:

•	 A representation for the initial conditions in the kit
ting workstation from which planning starts (the initial
state).

•	 A representation for the desired final conditions in the
kitting workstation after the plan has been executed (the
goal state).

•	 A representation for a plan to get from the initial state
to the goal state.

The first two representations are of the same nature: a
description primarily of objects and their locations. Hence,
the same representation may be used for both. Details are
presented in Section II-B.

The representation of a plan is of a different nature. A plan
is primarily a description of actions that change one kitting
workstation state to another. Since the only active element
in our model of a kitting workstation is a one-armed robot,
the plan model is a sequential list of actions for a robot to
perform.

B. Kitting Workstation Data Representation

Conceptually, the kitting workstation model is an object
model as found in several object oriented programming
languages (C++, for example [7]). That is:

•	 the model consists primarily of class definitions,
•	 a class defines a type of thing,
•	 classes have attributes (“elements” in XML schema

language),
•	 the class definition gives the class (or data type for

individual variables) of each attribute,
•	 some attributes may occur optionally or multiple times,
•	 some classes are derived from others; thus, there is a

derivation hierarchy,
•	 a derived class has all the attributes of its parent plus,

possibly, some of its own,
•	 if class B is derived from class A, then if the type of

an attribute is class A, an instance of class B may be
used as the value of the attribute,

•	 the model does not use multiple inheritance,
•	 the model also uses primitive data types such as num

bers and strings, and provides for defining specialized
data types by putting constraints on primitive data types.

A complete hierarchical list of the classes used in the
kitting workstation model is shown in Figure 1. In the list,
there are two top-level classes, SolidObject and DataThing.
All other classes are derived. Each class that is indented in
the list is derived from the first less indented class above it.
For example, WorkTable is derived from BoxyObject, and
BoxyObject is derived from SolidObject. The figure does
not show any attributes.

SolidObject
BoxyObject

WorkTable
EndEffector

GripperEffector
VacuumEffector

VacuumEffectorMultiCup
VacuumEffectorSingleCup

EndEffectorHolder
Kit
KitTray
KittingWorkstation
LargeBoxWithEmptyKitTrays
LargeBoxWithKits
LargeContainer
Part
PartsBin
PartsTray
PartsTrayWithParts
Robot

DataThing
BoxVolume
KitDesign
PartRefAndPose
PhysicalLocation

PoseLocation
PoseLocationIn
PoseLocationOn
PoseOnlyLocation

RelativeLocation
RelativeLocationIn
RelativeLocationOn

Point
ShapeDesign

BoxyShape
StockKeepingUnit
Vector

Fig. 1. Kitting Workstation Model Class Hierarchy

The structure of the kitting workstation class (or type)
is shown in Figure 2. The figure shows the names of the
attributes of a kitting workstation. The first three attributes
(Name, PrimaryLocation, and SecondaryLocation) are inher
ited from the SolidObject class. The rest of the attributes
are specific to the kitting workstation class. The AngleUnit,
LengthUnit, and WeightUnit apply to all quantities in a data
file that are in terms of those unit types. No other unit types

2

are used in the model.
In Figure 2 and similar figures (which were generated by

XMLSpy 1 from XML schemas), a dotted line around a box
means the attribute is optional (may occur zero times), while
a ..∞ underneath a box means it may occur more than once,
with no upper limit on the number of occurrences.

The types (i.e., classes or datatypes) of the attributes of a
kitting workstation are not shown in Figure 2. The structures
of several of the attributes are shown in the following figures:

•	 ChangingStation – EndEffectorChangingStationType:
Figure 3

•	 KitDesign – KitDesignType: Figure 4
•	 Object – LargeBoxWithEmptyKitTraysType: Figure 5,

LargeBoxWithKitsType: Figure 6, and PartsTrayWith-
PartsType: Figure 7

•	 Robot – RobotType: Figure 8
•	 Sku – StockKeepingUnitType: Figure 9
• WorkTable – WorkTableType: Figure 10.
The type of the Object elements in a kitting workstation

is SolidObject. That is an abstract class not intended to be
instantiated. Hence, Figures 3 through 10 show the structures
of derived classes of SolidObject that are intended to be used
for instances of the Object attribute.

The robot model is simple and does not currently have
any kinematics or even any shape for the robot. It is likely
that additional attributes will be added in the future.

The kitting workstation model has been fully defined in
each of two languages: XML schema language [8], [9], [10],
and Web Ontology Language (OWL sic) [11], [12], [13].
Further information on the implementations may be found
in Section III.

C. Robot Requirements

As mentioned earlier, the plan format being used is a
sequential list of actions for a robot to perform. The authors
devised a canonical robot command language (CRCL) in
which such lists can be written. The purpose of the canonical
robot command language is to provide generic commands
that implement the functionality of typical industrial robots
without being specific either to the language of the planning
system that makes a plan or to the language used by a robot
controller that executes a plan.

It was anticipated that planning systems would plan in
some language used by automated planners and that plans
made by such systems would be translated into the canonical
robot command language. It was anticipated also that plans
would be executed by a variety of robot controllers using
robot-specific languages for input programs. The authors
themselves are using a Planning Domain Definition Lan
guage (PDDL) planner [14] to generate plans in PDDL
output language and are using a ROS controller [15] to
control a robot. Those two systems are connected using

1Certain commercial/open source software and tools are identified in this
paper in order to explain our research. Such identification does not imply
recommendation or endorsement by the authors or NIST, nor does it imply
that the software tools identified are necessarily the best available for the
purpose.

Fig. 2. Kitting Workstation Model

files of robot commands in CRCL. After a plan has been
generated by the PDDL planner, the plan is translated into
a CRCL file. When the plan is being executed, the CRCL
commands are translated into ROS commands.

In order to support this mode of operation, the basic robot
and robotic workcell must meet certain requirements. These
include:

3

Fig. 3. Changing Station Model

Fig. 4. Kit Design Model

Fig. 5. Large Box With Empty Kit Trays Model

•	 A robot suitable for use with CRCL commands has one
arm and can position and orient the end of the arm any
where in some work volume within some tolerance. At
each point in the work volume, the range of orientations
that can be attained may be limited.

•	 The speed and acceleration of the end of the arm may

Fig. 6. Large Box With Kits Model

Fig. 7. Parts Tray With Parts Model

be controlled.
•	 A robot can attach one end effector at a time to the

end of the arm at an end effector changing station and
can detach the end effector at the changing station.
The changing station itself is passive. Attaching an
end effector is done by (1) moving the robot arm
(with no end effector attached) to an attachment po
sition with respect to an end effector and (2) giving a
CloseToolChanger command. Detaching an end effector
is done by (1) moving the robot arm (with an end
effector attached) to a detachment position and (2)
giving an OpenToolChanger command. The attachment
and detachment positions are normally at an end effector

4

Fig. 8. Robot Model

Fig. 9. Stock Keeping Unit Model

changer in the end effector changing station.
•	 All end effectors available to the robot are stored in the

end effector changing station.
•	 All end effectors are assumed to be grippers.
•	 All grippers have two states, open and closed. A gripper

can hold an object in the closed state and cannot hold
an object in the open state. [Additional states may be
added later, such as open a certain distance or closed
with a certain force.]

•	 Opening or closing any gripper mounted at the end of
a robot arm is exercised by giving a command to the
robot.

•	 The robot cannot simultaneously move and open or

Fig. 10. Work Table Model

close the gripper.
•	 There is always a controlled point. When no end effector

is on the arm, the controlled point is at the end of the
arm. When an end effector is mounted on the end of
the arm, the controlled point is the tool center point.

•	 The robot can move the controlled point smoothly
through a series of poses from a start pose at which
it is not moving to an end pose at which it is not
moving, provided that all poses are given before motion
starts. The acceleration and steady state speed of the
controlled point may be specified. The robot will do its
best to maintain the requested steady state speed but
may reduce (but not increase) speed or acceleration as
necessary to allow for the dynamics of arm motion.

•	 A tolerance for the intermediate points of a smooth
motion may be set. The controlled point must pass the
intermediate points within the given tolerance (without
coming back to a point after missing it by more than
the tolerance).

The CRCL includes commands for a robot controller. In
normal system operation, CRCL commands will be trans
lated into the robot controller’s native language by the
robot’s plan interpreter as it works its way through a CRCL
plan. One CRCL command may be interpreted into several
native language commands. One or more canonical robot
commands may be placed on a queue and executed (in order)
when desired. Several additional assumptions are made about
the execution behavior of the robot controller. These include:

•	 If the robot controller is unable to execute a particular
instance of a canonical robot command, subsequent
behavior is up to the robot controller.

•	 The pose at the end of a command is called the current

5

pose.
•	 While a plan is being executed, the robot should not

move except as directed by a canonical robot command.
•	 Status of command execution is not returned by the

robot controller to the plan interpreter (or any other
command generator).

•	 The default coordinate system for poses used in the
canonical robot commands is the workstation coordinate
system. This may be changed through the use of a
CRCL command to be either the workstation coordinate
system, the robot base coordinate system, or the tool-tip
coordinate system.

The exact syntax of the CRCL commands is provided in
Section IV.

III. IM P L E M E N TAT I O N

In order to maintain compatibility with the IEEE working
group, the ontology has been fully defined in OWL. However,
due to several difficulties defined below, the ontology was
also fully defined in the XML schema language. Although
the two models are conceptually identical, there are some
systematic differences between the models (in addition to
differences inherent in using two different languages).

•	 The complexType names (i.e., class names) in XML
schema have the suffix “Type” added which is not used
in OWL. This is so that the same names without the
suffix can be used in XML schema language as element
names without confusion.

•	 All of the XML schema complexTypes have a “Name”
element that is not present in OWL. It is not needed in
OWL because names are assigned as a matter of course
when instances of classes are created.

•	 As shown in Figure 2, the XML schema model has a list
of “Object” elements. This collects all of the movable
objects. The OWL model does not have a corresponding
list. In an OWL data file, the movable objects may
appear anywhere.

•	 Attribute names in OWL have a prefix, as described
below. The prefixes are not used in XML schema.

A. OWL Specifics

The kitting workstation model was defined first in OWL
because the IEEE RAS Ontologies for Robotics and Automa
tion Working Group has decided to use OWL, and the authors
are participating in the activities of that working group. OWL
allows the use of several different syntaxes. The functional-
style syntax (which is the most compact one) has been used
to write the OWL version of the kitting workstation model.

In addition to having the model defined in OWL, OWL
data files describing specific initial states and goal states
were defined in OWL, also using the functional-style syntax.
Software tools were built in C++ and Java to work with the
OWL model and data files conforming to the model.

The initial intent has been to use OWL files for presenting
the initial and goal conditions for planning problems, and the
authors have implemented a planning system that uses OWL
files.

The primary tool used by the OWL community for build
ing and checking OWL models and data files is named
Proteg´ é eg´ was used for checking the kitting [16]. Prot´ e
model and data files as they were built. Prot ́ e continues eg´
to be used for checking the model and data files whenever
they are changed. The layout of the hierarchy in Figure 1 is
identical to what may be seen in Protég ́e’s class hierarchy
window when the kitting model is loaded.

Defining a model in OWL is quite different from
defining the same model in other information modeling
languages with which the authors are intimately familiar:
C++, EXPRESS [17], and XML schema. Three of the
major differences involve (1) the assignment of attributes in
classes, (2) OWL’s “open world” assumption, and (3) the
distinction between model files and data files.

1) Class Attributes: In other languages, assigning a typed
attribute to a class requires a single line of code. For example,
the X attribute may be put into a cartesian point class in XML
schema language with
<xs:element name=“X” type=“xs:decimal”/>
or in C++ with
double X;
or in EXPRESS with
X : REAL;
In these other languages, the name of the attribute is local to
the class. Hence, an attribute with a given name can appear
in more than one class, and there will be no confusion.

In OWL, there is no simple method of declaring a class
attribute. Instead, a property must be declared along with
properties of the property. The following lines are used in
the OWL model to say that all points and only points have
an X attribute which is a decimal number.

Declaration(DataProperty(hasPoint X))
DataPropertyDomain(:hasPoint X :Point)
DataPropertyRange(:hasPoint X xsd:decimal)
EquivalentClasses(:Point ObjectIntersectionOf(

DataSomeValuesFrom(:hasPoint X xsd:decimal)
DataAllValuesFrom(:hasPoint X xsd:decimal)))

The hasPoint prefix used in the property name is not an
OWL requirement. It is one of several naming conventions
for OWL being used by the authors. The prefix is both for
the benefit of a human reader (to make it obvious that this
is a property of a Point) and to differentiate this X attribute
from an X attribute of some other class (call it Foo) which
would have the prefix hasFoo .

As described above, with OWL it is necessary to make
many statements in order to build a class in a typical
object-oriented style. OWL does not assume a typical object-
oriented style. It assumes the world might be more complex
than that. Hence, many OWL statements are required to
produce effects made in a few statements in other object-
oriented languages. Having to write a lot of statements is
tedious but not a roadblock. A more serious problem is that
if a statement necessary to produce an object-oriented effect

6

is omitted, that is not an OWL error. Prot ́ e does not have eg´
an object-oriented mode in which it will warn the user if
a required statement is missing. There are no OWL tools
that will help with finding missing statements. This is a
debugging problem.

OWL was built so that it would support automated
reasoning about the relationships among properties, classes,
and individuals. Prot ́egé allows the use of several alternate
automatic reasoners. In a typical object-oriented style, there
is no use for reasoning of that sort. Everything useful to
know about the relationships among properties, classes, and
individuals is already known. Hence having an automated
reasoning capability of the sort for which OWL was built is
not useful for the kitting model.

2) Open World Assumption: OWL makes an “open
world” assumption. In an open world, anything might
be true that is not explicitly declared false and is not
inconsistent with what has been declared true. This makes
it easy for errors to go unrecognized as such by Prot´ eeg´
(or any other OWL tool). For example, suppose the
line DataPropertyDomain(:hasPoint X :Point) given
above is mistyped as DataPropertyDomain(:hasPoint x
:Point). When Prot ́eg ́e loads the file and the reasoner is
started, no errors are eg´ assumes that the detected. Prot´ e
DataPropertyDomain for hasPoint X is unknown (that is
not an error in OWL and Prot´ e) and that there is a new eg´
property named hasPoint x about which the only thing
known is its DataPropertyDomain (also not an error in OWL
and Prot´ e, even though there is no explicit DataProperty eg´
declaration for the new property). The error can be detected
by a human by studying the list provided by selecting
the DataProperties tab in Prot´ e. Similar errors, such as eg´
mistyping the name of an individual, are similarly accepted
without error in OWL and Prot ́egé, with similar effects.
The difficulties caused by the open world assumption would
not occur if Prot ́egé had a closed world mode, but it has none.

3) Model Files vs. Data Files: While other languages
have different file formats for models and data conforming
to the models, OWL does not distinguish between model
files and data files. Protég ́e does not provide any method
of specifying that a file is a model file or a data file. The
conceptual difference is simple. Model files describe classes
and data types (and, possibly, constraints). Data files give
information about individuals (instances of one or more
classes – often called objects). The authors have made it a
practice to distinguish OWL model files from OWL data
files. An OWL data file can inadvertently change an OWL
model, a bug that is very hard to find. That cannot happen
with EXPRESS or XML schema.

4) Bugs in Files: Since humans are error-prone, and the
kitting OWL files were built by humans, the OWL files had
errors of the sort mentioned above. Some of these errors
were discovered when the OWL files were processed by
the tools developed for processing them and strange results

were observed. Other errors were found when a method of
generating OWL data files automatically from XML data
files was developed, as described next.

B. XML Specifics

To better explore the pros and cons of various
representations, the authors are using XML schema and
XML data files in parallel with the corresponding OWL files.

1) XML Tools: Two automated tools developed by the
authors are being used: an xml schema parser (xmlSchema-
Parser) and a code generator (GenXMiller).

The xmlSchemaParser reads an XML schema file, stores
it in terms of instances of C++ classes, and reprints the
schema. When the xmlSchemaParser runs, it performs many
checks on the validity of the schema that is input to it. The
xmlSchemaParser handles almost all portions of the XML
schema syntax. A few of the rarely-used elements of syntax
are not implemented.

The GenXMiller reads an XML schema and writes code
for reading and writing XML data files corresponding to that
schema. The code that is generated includes C++ classes
(.hh and .cc files), a parser (YACC and Lex files), and
a stand-alone parser file in C++ that uses the other files.
The executable utility produced by compiling a stand-alone
parser reads and echoes any XML data file corresponding
to the schema. The GenXMiller is still under development
and currently handles only a subset of the XML schema
language. The GenXMiller is not a new type of system. Sev
eral other code generators that use an XML schema as input
have been developed [18], [19]. Even more XML schema
parsers are available. However, having the knowledge about
XML schema and XML data files gained by developing that
software and having an intimate knowledge of the source
code for it has proved very valuable in converting XML
representations to OWL representations.

The xmlSchemaParser and the GenXMiller use the same
underlying parser, which is built in YACC and Lex [20].

In addition to using the xmlSchemaParser and the
GenXMiller, a commercial XML tool named XMLSpy [21]
has been used to check all XML schemas and XML data
files.

2) Handling Kitting Data Files: There is only one con
ceptual kitting model, but there are several kitting data files
corresponding to it. If the kitting model is used to represent
various starting and goal configurations, there will be many
more data files. Hence, the problem of generating bug-free
data files was tackled first.

An XML schema, kitting.xsd, was written by hand mod
eling the same information as the OWL kitting workstation
model, kittingClasses.owl. The GenXMiller was then used
to generate C++ classes and a parser for XML kitting data
files corresponding to kitting.xsd. The C++ classes that were
generated included code for printing XML kitting data files.
That code was rewritten by hand so that it prints OWL data
files rather than XML data files. The utility produced by

7

compiling the code is called the owlPrinter. To produce an
OWL kitting data file, one writes an XML kitting data file
and runs it through the owlPrinter.

To determine that the owlPrinter works properly, it seems
sufficient to demonstrate that OWL data files generated auto
matically by the owlPrinter from XML data files conforming
to kitting.xsd contain exactly the same OWL statements as
are contained in manually prepared OWL data files intended
to contain the same information and conforming to kitting
Classes.owl. This demonstration was achieved as follows.

(i)	 Three XML data files were written manually contain
ing the same information as three OWL data files.
Each of the OWL files was at least 1,100 lines (20
pages) long. Among the three there were statements
of almost all of the types possible under the kit-
tingClasses.owl model. It was decided, therefore, that
successful performance for these three files would be
an adequate test.

(ii)	 The three XML data files were run through the
owlPrinter to produce three OWL files.

(iii)	 Since the owlPrinter has a different approach to
ordering OWL statements than was taken in preparing
OWL files manually, and a slightly different method
of formatting statements, two small utilities were
written to enable file comparison. The first utility,
compactOwl, reads an OWL file and writes an OWL
file containing the same statements but with blank
lines and comments removed, and with each state
ment on a single line. For each pair of matching OWL
files (manually written and automatically generated),
compactOwl was used to generate a corresponding
pair of compacted OWL files. The second utility,
compareOwl, reads each of a pair of OWL files,
alphabetizes the statements from each of them on
two saved lists, and then goes through the two lists
checking that the nth line of one list is identical to the
nth line of the other list. CompareOwl was used to
compare each of the three sets of pairs of compacted
files.

(iv)	 While the tests just described were being made,
changes were made to correct errors in the manually
written XML and OWL data files being tested and in
the code for the owlPrinter. The tests revealed errors
in all three types of files.

After the testing just described was complete, using the
owlPrinter another OWL data file was prepared from a man
ually written XML data file for which there was no manually
written OWL counterpart. The automatically generated OWL
data file was checked in Prot ́egé and no errors were reported.

OWL data files may now be prepared with much less
likelihood of human error for the following reasons.

•	 Property names and names of individuals will not be
misspelled.

•	 Statements will not be accidentally omitted.
•	 Validity checks made in the kittingParser and XMLSpy

will do a better job of detecting errors in XML data

files. For example, required attributes that are missing
will be detected.

3) Handling the Kitting Model: As described above,
the equivalent model files kitting.xsd and kittingClasses.owl
were both prepared manually. If changes to the kitting model
are made, it will be necessary to change both of those files
and the code for the owlPrinter. It would be good to have
kitting.xsd as the primary source file for the model and
to generate kittingClasses.owl automatically from it. The
authors believe this is possible and have started working
on it. The work is not yet complete, but no roadblocks are
anticipated. The approach being using is to modify the printer
code in the xmlSchemaParser so that it prints an OWL class
file rather than an XML schema file.

It would also be desirable to be able to modify the
owlPrinter automatically if the kitting model is changed.
Doing that is a substantially more difficult task than the
other two automatic conversions, and the authors are not
planning to attempt it. The approach would be to modify
the GenXMiller so that the code it generates automatically
would read XML data files and automatically generate OWL
data files.

IV. CA N O N I C A L RO B OT CO N T RO L LA N G UAG E

It is desirable that numerous commercial robot systems be
able to immediately execute the plan for the series of actions
required to transition from the initial state to the goal state of
the kitting problem. However, there is currently no accepted
standard robot programming language. For this reason, the
authors have developed a canonical robot control language
that attempts to be a lowest common denominator of robot
programing languages. It is anticipated that kitting plans can
be translated into CRCL command sets which may then
be evaluated by standardized metric software. The CRCL
command sets may then be translated into a specific robot
platform’s language.

The syntax of commands is given below using C++ syntax.
The command name is given followed by the command
arguments (if any) in parentheses, including the types of the
arguments. Note that the robot cannot be commanded by
canonical robot commands in terms of its joint angles (or
distances).

Three of the CRCL commands use the Pose structure.
The Pose structure gives the location and orientation of the
coordinate system of the controlled object in the units of the
current operating coordinate system. The controlled object
is the gripper if the robot has one attached or the outermost
component of the robot arm if not. The location is specified
by the point in current operating coordinates at which the
origin of the coordinate system of the controlled object lies.
The point is described by giving its X, Y, and Z values. The
orientation of the controlled object is specified by giving the
I, J, and K components in current operating coordinates of
the Z and X axes of the coordinate system of the controlled
object.

The complete list of CRCL commands follows.

8

•	 CloseGripper() – close the gripper.

•	 CloseToolChanger() – close the tool changer on the
robot so that it attaches to a tool. The robot must be in
an appropriate position with respect to the tool for the
changer mechanism on the robot to attach to the tool.

•	 Dwell (double time) – stay motionless for the given
amount of time in seconds.

•	 EndCanon(int reason) – do whatever is necessary
to stop executing canonical robot commands. No
specific action is required. The robot controller should
not execute any canonical robot command except
InitCanon after executing EndCanon and should
signal an error if it is given one. This command
will normally be given when execution of a plan is
complete. It may also be given if the plan interpreter
detects an error in the plan or is unable to proceed for
any other reason. A value of 0 for reason indicates
that execution of a plan has completed successfully. A
positive value of reason indicates not.

•	 InitCanon() – do whatever is necessary to get ready
to move. Length units, angle units, and operating
coordinate system are set to the default units. This
command will normally be given when the plan
interpreter opens a plan to be executed.

•	 Message (string message) – display the given
message on the operator console.

•	 MoveStraightTo(Pose * pose) – move the controlled
point in a straight line from the current pose to the
given pose, and stop there.

•	 MoveThroughTo(Pose ** poses, int numPoses) –
move the controlled point along a trajectory passing
near all but the last of the given poses, and stop at
the last of the given poses. The numPoses gives the
number of poses.

•	 MoveTo(Pose * pose) – move the controlled point
along any convenient trajectory from the current pose
to the given pose, and stop there.

•	 OpenGripper() – open the gripper.

•	 OpenToolChanger() – open the tool changer on
the robot so that it releases the end effector. This is
normally done after the end effector attached to the
robot has been moved into an end effector changer.

•	 SetAbsoluteAcceleration(double acceleration) – set
the acceleration for the controlled point to the given
value in length units per second per second.

•	 SetAbsoluteSpeed(double speed) – set the speed
for the controlled point to the given value in length
units per second.

•	 SetAngleUnits(string UnitName) – set angle units
to the unit named by the UnitName. The UnitName
must be one of “degree” or “radian”. All commands
that use angle units (for orientation or orientation
tolerance) are in terms of those angle units. Existing
values for orientation are converted automatically to
the equivalent value in new angle units. The default
angle unit is “degree”.

•	 SetCoordinateFrame(string CoordSystem) – set the
operating coordinate system to the system referred to
by CoordSystem. The CoordSystem must be one of
“Workstation”, “RobotBase”, or “ToolTip”.

•	 SetEndAngleTolerance(double tolerance) – set the
tolerance for the orientation of the end of the arm
(whenever there is no gripper there) or of the gripper
(whenever a gripper is on the end of the arm) to the
given value in current angle units. This applies to the
X-axis direction and the Z-axis direction.

•	 SetEndPointTolerance(double tolerance) – set the
tolerance for the position of the end of the arm
(whenever there is no gripper there) or of the tool
centre point (whenever a gripper is on the end of the
arm) to the given value in current length units.

•	 SetIntermediatePointTolerance(double tolerance) –
set the tolerance for smooth motion near intermediate
points to the given value in current length units.

•	 SetLengthUnits(string UnitName) – set length units
to the unit named by the UnitName. The UnitName
must be one of “inch”, “mm” or “meter”. All commands
that use length units (for location, tolerance, speed,
and acceleration) are in terms of those length units.
Existing values for speed, position, acceleration, etc.
are converted automatically to the equivalent value in
new length units. The default length unit is millimeters,
“mm”.

•	 SetRelativeAcceleration(double percent) – set the
acceleration for the controlled point to the given
percentage of the robot’s maximum acceleration.

•	 SetRelativeSpeed(double percent) – set the speed
for the controlled point to the given percentage of the
robot’s maximum speed.

•	 StopMotion(integer isEmergency) – stop the robot
motion. If isEmergency is not 0, then stop as soon
as possible regardless of damage to the system. If
isEmergency is 0 then come to a graceful stop.

9

the plan file are originally defined in the PDDL domain
file. The initial and goal states are defined in the PDDL
problem file.

InitCanon() 2) The interpreter takes the plan file as input and builds the
SetLengthUnits(”meter”) corresponding CRCL file. Real time information on the
CloseGripper() environment is required in order to fill in information
CloseToolChanger() required by the CRCL on object locations. Since both
Dwell(1.7) the OWL and XML implementations of the knowledge
Message(”This message is false”) representation are file based, real time information
SetRelativeSpeed(50.0) proved to be problematic. In order to solve this problem,
SetAbsoluteSpeed(3.8) an automatically generated MySQL database [23] has
MoveThroughTo({{{5,0,2}, {0,0,1}, {1,0,0}}, been introduced as part of the knowledge representation. {{5,8,2}, {0,0,1}, {1,0,0}}, More details on this database are provided in Section {{7,8,2}, {0,0,1}, {1,0,0}}}, 3) V. Table I shows an example of CRCL commands gen
MoveStraightTo({{4,8,2}, {0,0,1}, {1,0,0}}) erated for the PDDL action take-part(part b 1). Please
MoveTo({{9,8,2}, {0,0,1}, {1,0,0}}) note that the PDDL action take-part developed for the
OpenGripper() current kitting domain has more than one parameter. Not
OpenToolChanger() all the parameters are relevant for the example depicted
SetAbsoluteAcceleration(0.95) in Table I and the number of parameters has been
SetAngleUnits(”degree”) reduced for simplicity. In this example, the locations of
SetEndAngleTolerance(1.3) the “MoveTo” commands would come from the MySQL
SetEndPointTolerance(0.4) database.
SetIntermediatePointTolerance(10.734)
SetLengthUnits(”mm”) take-part(part b 1)
SetRelativeAcceleration(0.8)
SetRelativeSpeed(0.75)
SetRelativeAcceleration(-110)
MoveStraightTo(87)
EndCanon(2)

Fig. 11. Kitting Plan for Testing

A file format for representing CRCL commands has been
devised. Figure 11 shows an example of a file prepared using
this format. A C++ class model of CRCL commands has
been built, and a parser has been built in C++ for reading
CRCL files and populating CRCL class instances.

A. Plan Model

The kitting system presented in this document relies on
a direct model of execution where the executor directly
performs the activities specified in the plan. Figure 12
depicts the executor process for the kitting domain where
ellipses represent files, regular rectangles are used to define
processes, and rounded rectangles illustrate tools. The red
dashed box contains the processes part of the executor. The
components in Figure 12 are described below:

1) PDDL domain and problem files are currently gen
erated by hand from the IEEE RAS Ontologies for
Robotics and Automation Working Group’s OWL-based
knowledge representation and are used by an open
source planner from Coles et al. [22] to automatically
generate a plan file. In the near future, these files will
be automatically generated. The plan file contains a
sequence of actions that can be executed from the initial
state and that lead to a goal state. The actions present in

Message (‘‘take part part b 1")

MoveTo({{-0.03, 1.62, -0.25}, {0, 0, 1}, {1, 0, 0}})

Dwell (0.05)

MoveTo({{-0.03, 1.62, 0.1325}, {0, 0, 1}, {1, 0, 0}})

CloseGripper ()

MoveTo({{-0.03, 1.62, -0.25}, {0, 0, 1}, {1, 0, 0}})

Dwell (0.05)

TABLE I

AN E X A M P L E O F CRC L C O M M A N D S F O R A PD D L AC T I O N

3) The CRCL file is used by the controller to create ROS
commands.

4) The ROS commands are used by the ROS software
controller for a robotic arm to initiate actual execution
of actions.

V. MYSQL DATA BA S E F O R KI T T I N G

While the knowledge representation presented in this pa
per provides the “slots” necessary for representing dynamic
information, the static file structure makes the utilization of
these slots awkward. It is desirable to be able to represent
the dynamic information in a dynamic database. For this
reason, the authors have developed a technique for automat
ically generating tables for storing, and access functions for
obtaining, the data from the ontology in a MySQL database.

Reading data from and to the MySQL database instead of
the ontology file offers the community easy access to a live
data structure. Furthermore, it is more practical to modify
the information stored in a database than if it was stored
in an ontology, which in some cases, requires the deletion
and re-creation of the whole file. A literature review reveals
many efforts and methodologies that have been designed to
produce SQL databases from ontologies. Our effort builds
upon the work of Astrova et al.[24].

10

http:MoveTo({{-0.03
http:MoveTo({{-0.03
http:MoveTo({{-0.03
http:SetRelativeSpeed(0.75
http:SetAbsoluteAcceleration(0.95

Fig. 12. The executor process

In addition to generating and filling the database tables,
the authors have created tools that automatically generate
a set of C++ classes for reading and writing information
to the kitting MySQL database. The choice of C++ was a
team preference and we believe that other object-oriented
languages could have been used in this project.

The Generator tool is a graphical user interface developed
in Java, allowing the user to store data from OWL files into
a MySQL database. This tool also permits the user to query
the database using the C++ function calls. The tool Generator
is composed of the following functionalities:

1) Convert OWL documents into SQL syntax (OWL to
SQL).

2) Translate SQL syntax to OWL language in order to
modify an OWL document (SQL to OWL).

3) Convert the OWL language into C++ classes (OWL to
C++).

To date, only steps 1. and 3. have been implemented and
will be covered in this document. In order to generate the
SQL database and C++ classes, the OWL object model must
be mapped to the C++ object model and the relational SQL
model. To quote the OWL 2 Web Ontology website [13],
“Entities are the fundamental building blocks of OWL 2 on
tologies, and they define the vocabulary –the named terms–
of an ontology. In logic, the set of entities is usually said
to constitute the signature of an ontology”. Therefore, the
notions of single-valued and multi-valued properties as well
as the inheritance must be mapped from the ontology to the
SQL database and C++ classes. The mapping from OWL
proceeds as follows:

•	 Data properties: In an ontology, data properties link an
individual to a data value. Single-valued data properties
are mapped into a SQL table entry or C++ class variable

with the corresponding type of the original property.
For example, in the ontology a robot has a single-
valued data property hasRobot Description, rep
resented in the SQL database as a varchar and in
the corresponding C++ class as std:string. Multi
valued data properties are mapped from the ontology
into the SQL database as a table and into the C++
class as a std:vector with the corresponding type
of the original property. For example, in the ontology
a stock keeping unit has a multi-valued data prop
erty hasSku EndEffectorRefs. This maps to a
SQL table containing varchar entries and the C++
std::vector<std::string> in the correspond
ing C++ class.

•	 Object property: In an ontology, object properties
link one individual to another individual. The single-
valued object properties are mapped to a SQL
table entry or C++ class variable. Their type is a
pointer to the range of the object properties. For
example, in the ontology a solid object has the
object property hasRobot Description linking
it to a physical location. In the SQL database, we
use a foreign key to link the two entries. In the
C++ classes, this is represented by a reference
to a physical location: PhysicalLocation*
hasSolidObject PrimaryLocation. Multi
valued object properties are mapped from the ontology
into the SQL database as a table and into the C++ class
as a std:vector of pointers referencing objects of
the range of the property. For example, a solid object
also has a list of secondary locations corresponding
to a multi-valued object property in the ontology:
std::vector

<PhysicalLocation*>hasSolidObject SecondaryLocation.

A. MySQL Database Generation

This section provides basic information on the Generator
Java tool. Specific information on the tool’s usage is included
in the tool’s manual. Converting an OWL ontology to SQL
script files is easily performed using the Owl to SQL tab
(see Figure 13). The required fields are:

•	 Ontology Path: The OWL file to be converted. Note that
all Import statements in this file must use absolute
paths.

•	 Saves Path: The directory where you want to save the
SQL files.

Clicking on the “Generate SQL” will generate the SQL
script files. Two files will be created by the tool:

•	 The file used to create tables in the database:
<inputfile>.owlCreateTable.sql

•	 The file used to populate the database tables:
<inputfile>.owlInsertInto.sql.

These files may then be used with the SQL command line
interface to create and populate the database.

11

Fig. 13. Owl to SQL tab.

B. C++ Class Generation and Usage

As previously mentioned, the C++ classes are automati
cally generated by the Generator tool. In addition to the class
structure, Data Access Objects (DAO) that are needed to
interact with the MySQL database are generated. To map the
MySQL database and indirectly the ontology to C++ classes,
both the C++ classes and the DAO must be generated.

The C++ class files (.cpp) and header files (.h) are
generated in a two step process. The first step does not
depend on the content of the ontology, it only initializes the
specific objects related to the MySQL connector driver (see
Figure 14).

The second step generates all the C++ headers and class
files relative to our ontology. All of the include statements
are made directly in the C++ class files, and only forward
declarations are performed in the headers. This resolves prob
lems associated with circular includes or multiple includes.
All of the classes include the following methods:

•	 get<private field> - Method for getting a pri
vate field.

•	 set<private field> - Method for setting a pri
vate field.

•	 explode - Method that splits a string into a vector
around matches of a given regular expression.

•	 copy - Method that takes a C++ map as input and
copies the values from the map into the instance.

•	 get - Method that reads data from the MySQL
database.

• set - Method that writes data to the MySQL database.
The actual data access is provided through the use of a

data access object (DAO). DAOs provide an abstract interface
to some type of database or other persistence mechanism.
DAOs map application calls to the database or persistence
mechanism, thus providing some specific data operations

#ifndef PARTSBIN_H_

#define PARTSBIN_H_

#include <cstdlib>

#include <iostream>

#include <map>

#include <string>

#include <vector>

#include <sstream>

#include "BoxyObject.h"

class DAO;

class PartsBin: public BoxyObject {

private:

std::string hasBin_PartQuantity;

std::string hasBin_PartSkuRef;

int PartsBinID;

DAO* dao;

public:
PartsBin(std::string name);
˜PartsBin();
void get(int id);
void get(std::string name);
void set(int id, PartsBin* obj);
void set(std::string name);
std::string gethasBin_PartQuantity();
void sethasBin_PartQuantity(

std::string _hasBin_PartQuantity);
std::string gethasBin_PartSkuRef();
void sethasBin_PartSkuRef(

std::string _hasBin_PartSkuRef);
int getPartsBinID();
DAO* getdao();
void setdao(DAO* _dao);
void copy(std::map<std::string,

std::string> object);
std::vector<std::string> Explode(

const std::string & str, char separator);
};
#endif /* PARTSBIN_H_ */

Fig. 14. Header of a generated class.

without exposing details of the database. The use of the DAO
separates the data accesses that the application needs from
how these needs can be satisfied with a specific Database
Management System (DBMS), database schema, etc. The
different methods of the DAO are the same for any ontology.
The concern here is not about the data, but only about the
way to retrieve or store it. Only the four vectors filled by
the private fillGetSqlQueries method differ from one
auto-generated C++ file to another.

When the DAO is generated, four vectors are built as
follows (shown in Figure 15):

•	 line 17 : A structure with the SQL query to select the
characteristics of an entity. The table relative to the
entity itself and the ones relative to its super classes
are queried.

•	 line 18 : A structure with the SQL query to select multi
valued attributes (multi-valued data) for a given entity.

•	 line 19 : A structure with the names of the tables linked
to this entity in the ontology.

•	 line 20 : A structure with the names of the association
tables linked to an object.

With these four structures, one is able to read (get
method) and write (set method) data from and to the
MySQL database. The get method fills a C++ map and
gets the object itself while the copy method handles the
data. The set method is called with a C++ map containing
the values of the different attributes as input and writes these
values into the MySQL database.

12

1. #ifndef DAO_H_
2. #define DAO_H_
3. #include <cstdlib>
4. #include <iostream>
5. #include <map>
6. #include <vector>
7. #include <sstream>
8.
9. #include "Connection.h"
10. class DAO {
11. private:
12. std::vector<std::string> className;
13. Connection* connection;
14. std::vector<std::string> nameDone;
15. std::map<std::string, std::string> map;
16. std::string path; std::string pathmulti;
17. static std::map<std::string, std::string>
18. getSqlQueriesDataSingle;
19. static std::map<std::string,
20.	 std::vector<std::string>>
21.	 getSqlQueriesDataMulti;
22. static std::map<std::string,
23.	 std::vector<std::string>>
24.	 getSqlQueriesObjectSingle;
25. static std::map<std::string,
26.	 std::vector<std::string>>
27.	 getSqlQueriesObjectMulti;
28. static std::map<std::string,
29.	 std::vector<std::string>>
30.	 setSqlQueries;
31. static std::map<std::string,
32.	 std::vector<std::string>>
33.	 updateSqlQueries;
34. void fillGetSqlQueries();
35. public:
36. DAO(std::string name); ˜DAO();
37. std::vector<std::string> getclassName();
38. void setclassName(
39. std::vector<std::string> _className);
40. Connection* getconnection();
41. void setconnection(Connection* _connection);
42. std::map<std::string,std::string>
43. get(std::string name);
44. void set(std::map<std::string, std::string> data);
45. std::vector<std::string> Explode(
46. const std::string & str,
47. char separator);
48. };
49. #endif /* DAO_H_ */

Fig. 15. Header of the DAO class.

C. Using the C++ Classes to Access Data from the MySQL
Database

Figure 16 depicts an example using the generated classes
to retrieve the location of the kit tray kit tray name from
the MySQL database. The different sections of the example
are described below:

•	 lines 1–4: Include the different headers necessary to
query MySQL tables. Here, the tables Point, PoseLo
cation, Vector, and KitTray are required.

•	 line 9: Initialize an object from the class KitTray by
passing its name.

•	 line 10: Allow access to any data from the table KitTray.
•	 lines 12–13: Initialize an object of type
PoseLocation and allow access to any data
from the table PoseLocation.

•	 lines 18–19: Retrieve X, Y, and Z coordinates from the
table Point for the kit tray kit tray name.

•	 lines 22–23: Retrieve the X axis vector (Xi, Xj , Xk)
from the table Vector for the kit tray kit tray name.

•	 lines 26–27: Retrieve the Y axis vector (Yi, Yj , Yk) from
the table Vector for the kit tray kit tray name.

1. #include "Point.h"
2. #include "PoseLocation.h"
3. #include "Vector.h"
4. #include "KitTray.h"
5.
6. void CanonicalRobotCommand::
7. getKitTrayLocation(string kit_tray_name){
8.
9. KitTray* kit_tray = new KitTray(kit_tray_name);

10. kit_tray->get(kit_tray_name);
11.
12. PoseLocation* kit_tray_pose = new PoseLocation(
13. kit_tray->gethasSolidObject_PrimaryLocation()->
14.	 getname());
15. kit_tray_pose->get(kit_tray_pose->getname());
16.
17. //--Retrieve hasPoseLocation_Point
18. Point * kit_tray_point =
19. kit_tray_pose->gethasPoseLocation_Point();
20.
21. //--Retrieve hasPoseLocation_XAxis
22. Vector * kit_tray_x_axis =
23. kit_tray_pose->gethasPoseLocation_XAxis();
24.
25. //--Retrieve hasPoseLocation_ZAxis
26. Vector * kit_tray_z_axis =
27. kit_tray_pose->gethasPoseLocation_ZAxis();
28. }

Fig. 16. Example using the generated C++ classes.

VI . TE S T ME T H O D S

According to the ASTM International [25, p. vii], a test
method is a definitive procedure that produces a test result.
It is the authors’ desire to develop repeatable test methods
that will lead to a better understanding of what it means to
have an “agile” and “flexible” planning system and metrics
that will allow for the measurement of a system’s agility
and flexibility. We have chosen to begin our study with
the domain of kit building since it is a greatly simplified,
but still practically useful manufacturing/assembly domain.
However, even in the domain of kit building, a large amount
of variance must be accounted for. For example, will parts
be rigid or flexible? Will a vacuum effector, or a parallel jaw
mechanism, or a fingered gripper be utilized for part picking?
Will parts be picked from a tray or a bin? What aspects of
the process will be stressed to demonstrate flexibility and
agility?

In keeping with the ideas of reduced complexity and
repeatability, we will strive to come up with test methods
that stress the system’s agility and not the system’s robotic
configuration or abilities. As such, we make the following
assumptions:

•	 All of the contents of the kit will be rigid objects.
•	 All of the rigid objects are of simple shape (rectilinear)

and have a flat surface for a top.
•	 A vacuum effector is utilized for handling the parts.
•	 All of the parts will be located in a well-defined parts

tray. This will allow for repeatable experiments in terms
of part placement.

•	 All of the part’s initial and final positions will be within
the reach of the robot.

•	 There are no obstacles located within the robot’s reach
able volume.

13

A. Test Requirements

The test methods themselves are designed as a series of
tests that have increasing complexity. It is assumed that the
tests will be performed in order, and that a system that is
not capable of performing test n will fail all subsequent
tests as well. For all of the tests, the initial condition of
the world and the goal kit configurations are provided as
XML and/or OWL files conforming with the IEEE RAS
Ontologies for Robotics and Automation Working Group’s
kitting knowledge representation. The planning system is
required to produce an output that will construct the required
kit(s) from the initial condition. All of the commands must
be in the form of CRCL, and the system is allowed to submit
new plans that respond to environmental changes.

The parts supply consists of one or more trays of raw
materials and the kit tray is a flat container with separators
between locations for individual parts. The part supply trays
may be auto-filling (e.g., a single location that is continu
ously fed with a part) or limited quantity trays. Test methods
may be configured to require end-of-tool changes for the
picking of various parts.

B. Basic Kit

The first test method is the construction of a single basic
kit. The kit will contain two or more different types of parts.
The design of the kit and parts supply will be known before
the test begins. The actual location of the kit tray and parts
supplies will not be known before runtime. The locations and
orientations (yaw) of the kit and parts supplies will be varied
during consecutive runs of the test method. The planning
system is required to submit a single CRCL formatted plan
that will construct the given kit. It is assumed that all actions
are successful and that there are no execution errors. Each
kit construction will be evaluated by our standard metrics as
described in Section VII. This test method will evaluate the
following aspects of agility and flexibility:

•	 Ability to correctly build a specific predefined kit.
•	 Agility in terms of part tray and kit placement. This

will show that exact fixturing is not necessary for the
construction of a kit.

It should be noted that if the robot is capable of supporting
tool changing, different end-of-arm tooling may be required
for grasping the various parts required for this test.

C. New Variety of Basic Kit

This test provides the system with a never before seen kit
variation. The variation will be delivered in the previously
mentioned IEEE RAS OWL/XML format. In addition to the
standard kit construction metrics, the time from the receipt
of the new kit configuration to the start of first construction
will be recorded. The amount of down-time for the cell will
also be noted. This test will measure the agility of the robot
cell in coping with new kit varieties.

D. Basic Kit, Multiple Varieties

This test builds on the previous test by requiring the
construction of two or more kit varieties in a pseudo-random

ordering. The kit configurations will be known before the
start of the test. This test method will evaluate the following
additional aspects of agility and flexibility:

•	 Ability to correctly build several kits with varying
part placements without manual intervention. This will
demonstrate agility in terms of kit layout and contents.

•	 Ability to manipulate items of varying size and weight.
This test method will require the workcell to move
empty kit trays from storage to a construction location
and then to move finished kits to a bin of finished kits.

•	 If the robot is capable of supporting tool changing,
different end-of-arm tooling may be required for kit
manipulation.

E. Construction Errors

This test will evaluate the system’s ability to recover from
predictable error conditions. These conditions will include
dropped parts and parts with detected defects. It is expected
that the planning systems will interrupt the execution of the
kit build in order to provide updated plans to cope with the
unexpected events.

VII. ME T R I C S

As described in the previous section, test methods are
being developed that will be suitable for comparing the per
formance of different kitting planning systems. The methods
look at plans that are an ordered sequence of actions for a
robot to perform. The actions are specified in terms of the
CRCL.

A sample plan file is shown in Figure 11. The file is
designed for exercising the kittingViewer which is described
in Section VIII and is not intended to make sense as a plan.
It includes a few intentional errors.

Metrics are being developed that will test both the static
performance of the planning system (i.e., end-to-end perfor
mance of a single plan without feedback or changes) as well
as the execution performance of the system (i.e., the system
is allowed to replan due to changes in the environment or
action failures). The current metrics were developed with
kitting specifically in mind. However, it is envisioned that we
will eventually have a taxonomy of metrics where high-level
metrics build upon lower level metrics and branches of the
taxonomy may be applicable across multiple domains. For
many applications, it will be useful to have a single numeric
score that represents a system’s performance with respect
to the individual metrics. This may be accomplished by
having a user specify whether each weight is multiplicative
or accumulative and specifying weights for each of the
accumulative metrics. The metric scores are then multiplied
by these weights and combined to form a single score that
may be used for comparison.

A. Static Kitting Viewer Metrics

The current metric taxonomy is shown in Figure 17 and
is described below. The metrics are designed to be evaluated
at the end of each CRCL command with cumulative values.

14

Fig. 17. Kitting static metric taxonomy with abbreviations defined below

•	 Action Commands Executed (ACE) – the number of
action commands that have been executed so far. An
action command is any command that takes time to
execute.

•	 Command Sequence Errors (CSE) – the number
of commands that are out of sequence. An InitCanon
command is out of sequence if it is not the first
command in the file. An EndCanon command is out of
sequence if it is not the last command in the file. Other
commands are out of sequence if they occur before
InitCanon or after EndCanon.

•	 Constraint Violations (CV) – the total of IG, JOR,
WV and OWV.

•	 Current Command Execution Time (CCET) – the
time that the current command took to execute.

•	 Incorrect Gripper (IG) – the wrong gripper was used
to pick up an object.

•	 Joint Out of Range (JOR) – a joint of the robot was
commanded to move to an out-of-limit position.

•	 Number of Objects Moved Correctly (NOMC) – the
number of objects that were moved correctly from the
parts supply to the kit.

•	 Number of Objects Moved Incorrectly (NOMI) – the
number of objects that were moved to an incorrect
position in the kit.

•	 Number of Total Objects Moved (NTOM) – the sum
of NOMC and NOMI.

•	 Other Commands Executed (OCE) – the number of
commands that are not action commands that have been
executed so far – mostly setting commands. Executing
these commands is assumed to take a negligible amount
of time.

•	 Outside Work Volume (OWV) – the robot was asked
to move outside its work volume.

•	 Parse Errors (PE) – the number of lines in the CRCL
command file that cause an error in the command file
parser.

•	 Range Errors (RE) – the number of times a command
tries to set a a parameter to a value that is out of the
allowed range of the parameter.

•	 Total Commands Executed (TCE) – the sum of ACE
and OCE.

•	 Total Distance Moved (TDM) – the total distance that
the tool tip has moved. This is calculated as the total of
the distances between points in the move commands,
taken in order (and starting at the place where the
controlled point is located initially). The value is
updated as each point is reached, not continuously.

•	 Total Execution Time (TET) – the total time taken
so far by executing action commands. This does not
include any time that may elapse between when one
command finishes execution and when the user tells
the system to execute another command. The total
execution time is meant to be very close to the actual
amount of time that would be taken by the system
without user intervention.

•	 Total Errors (TE) – the sum of the range errors, parse
errors, and command sequence errors.

•	 Useless Command Executed (UCE) – the number
of commands that do not change the state of the
workstation. Such commands have no effect, so they are
useless. The CloseGripper() and CloseToolChanger()
commands in Figure 11 are useless because the gripper
and tool changer are closed in the initial conditions.

•	 Weight Violation (WV) – the robot was asked to move
some object that violates its load capacity.

B. Execution Metrics for Kit Building

During execution, automated kitting fails to reach its
full potential when the supply chain fails and parts and
components are not available for kit construction, or when
a kit is not properly filled. Part availability failures can be
triggered by inaccurate information about the location of the
part or part shortage due to delays in internal logistics. Kit
construction errors may be due to problems such as im
proper equipment setup, improper equipment maintenance,
part damage, wrong type of part, or part dropped by the
robot.

Models for detecting and recovering from plan execution
failures mostly deal with precondition failures, action fail
ures, and unattributable failures [26]. Precondition failures
appear when all the preconditions for an action are not
met during the execution of the action. Action failures
are encountered when the execution of an action does
not attain its intended effects. Unattributable failures occur
when unexpected events caused by external agents change
the environment, thus causing the current plan to become
obsolete. NIST’s Knowledge Driven Planning and Modeling

15

project has not yet addressed the creation of a taxonomy of failure.
execution errors. However, some preliminary metrics have
been developed and are described below.

VIII. KI T T I N G VI E W E R

•	 Manipulation robustness – quantitative and qualitative
functionality metrics that describe how well a robot
can handle complex objects in complex environments
without failing or requiring additional operator
interventions. Failures can occur during object
detection (lightning variation, shadows), object
approach (partially buried), and object manipulation
(fragile) operations. It is envisioned that a taxonomy
of robustness will be developed that decomposes
robustness into areas such as situational awareness,
robot accuracy, and grasping dexterity.

•	 Transporting components – qualitative metrics that
describe how well a robotic arm can grasp objects and
move these objects from an initial position to a goal
position without dropping them.

•	 Plan generation – as mentioned previously, failures
are possible in kitting during the execution of CRCL
commands, causing the current plan to become
obsolete. In some cases, the current state of the
environment is brought back to the state prior to the
failure and the robot starts from a “stable” state. In
other cases, a completely new plan must be generated
by the planning system where the robot starts all over.
This metric will measure the planning system’s ability
to adapt to failures.

•	 Contact errors – quantitative metrics that keep track
of the number of collisions between the robotic arm
and objects in the environment. The performance of
the robotic arm during kit building is affected by
the positions of joints and the end-effector in the
environment. The position of the end-effector can
reduce the time to complete tasks but can also increase
the number of collisions due to joint contact with other
objects in a confined space.

•	 Failures during kit building– quantitative metrics that
report the total number of failures encountered during
kit building. When a failure occurs during the building
of a kit, the number of failures is increased by one.
The system may generate a new plan to recover from
the failure. If a failure occurs during the execution of
the new plan, the number of failures in increased by
one again.

•	 Failure modes recovery – quantitative metrics
that represent the number of failure modes the
system recovers from through the use of contingency
plans. When a failure is detected in the execution
process, failure monitors encode appropriate responses
(contingency plans) to failure modes for this particular

A software tool named the “kittingViewer” is being devel
oped that will read files describing the initial state, the goal
state, and the plan for getting from the initial state to the
goal state. The kittingViewer will simulate execution of the
plan, display a view of the plan being executed, and produce
and display metrics about the plan. All of the metrics will
be numbers. All but one of the metrics will be objective
and require no human judgement. The final metric will be
a subjective combination of the other metrics in which the
other metrics will be weighted and combined as desired by
the user.

The kittingViewer is partially built. It is able to read in
the three input files and simulate execution of the plan file.
Plan metrics are calculated, and robot motion is animated at
speeds specified in the plan.

Figure 18 shows the kittingViewer display in its current
state of development. The display uses three windows,
labeled Metrics & Settings, Kitting Viewer, and Kitting
Command. The windows may be moved and resized indepen
dently, like other windows in a typical windowing system.

The Kitting Viewer window shows a view of the kitting
workstation. The floor of the workstation is covered with
a grid. The spacing of the grid is the last entry in the
Metrics & Settings window. The robot in the workstation
is represented by a gantry robot spanning the entire width
of the workstation. The gantry robot moves when any of the
CRCL motion commands is executed. The speed at which
the picture of the robot is animated matches the actual
commanded speed of the robot. When development of the
kittingViewer is complete, objects in the workstation will
also be shown (in color) and will move if the robot moves
them.

The Kitting Command window shows the currently exe
cuting command or the most recently executed command, if
no command is currently executing.

The Metrics & Settings window shows 9 metrics at the
top and 14 settings below that. All but three of the settings
correspond to items that may be set using CRCL commands.
The extra three are the grid spacing and the robot’s maximum
speed and maximum acceleration (which may not be reset).
As commands are executed, metrics and settings are updated
in the window. When the kittingViewer is completed, there
will be more metrics.

A. Errors

In order to fully evaluate an input file, many planning
errors are noted, but ignored. If a range error occurs, an error
message is printed in the terminal window from which the
kittingViewer was started. The SetRelativeAcceleration(
110) command in Figure 11 causes two range errors, one
because it is negative, and one because its absolute value is
greater than 100.

16

Fig. 18. Kitting Viewer Display

When the parser encounters a line that it cannot parse,
it adds an UnreadableMsg to the list of commands it has
parsed. The UnreadableMsg includes the text of the line on
which the parse error occurred. When the UnreadableMsg
is executed, the value of parse errors is increased by one and
the UnreadableMsg is displayed in the Kitting Command
window so the user can see the line that caused the problem.
The MoveStraightTo(87) command in Figure 11 causes a
parse error.

B. Controlling The Kitting Viewer

Controlling the kittingViewer is accomplished by using
the mouse and single keys on the keyboard. When the
kittingViewer starts up, a set of one-line instructions is
printed in the terminal window from which the kittingViewer
was started. Those instructions have the same meaning as
the longer explanations given below.

•	 ‘r’ key – the ‘r’ key toggles the behavior of the left
mouse button between translating and rotating the
picture. This functionality is included because some
mice do not have a middle button. Press R once and
the left mouse button controls rotation. Press R again
and the left mouse button controls translation (the
original setting).

•	 Left mouse button – by default, the left mouse button
is used to translate the picture. Position the cursor
anywhere in the Kitting Viewer window, hold down
the left mouse button and move the cursor by moving
the mouse. The picture will move as though it is glued
to the cursor. If the R key has switched the left mouse
button to rotation, it behaves like the middle mouse
button, as described in the next paragraph.

•	 Middle mouse button – the middle mouse button is
used to rotate the picture. This is a little trickier than
the other two mouse buttons. To rotate the picture,
position the cursor inside the window near an edge
of the window, hold down the middle mouse button,
and move the cursor in a straight line towards the
opposite edge. The picture rotates around an axis that is
perpendicular to the line of mouse motion. In order to
allow for fine positioning, the amount of rotation that
occurs for a given amount of mouse motion decreases
as the picture is zoomed in. Hence, if you want to turn
the picture completely over, it is best to zoom out,
rotate, and zoom back in again.

•	 Right mouse button – the right mouse button is used
to zoom in or out. To zoom out, position the cursor
near the bottom of the picture, hold down the right
mouse button and push the mouse away from you
(moving the cursor up); that appears to push the picture
away from you. To zoom in, position the cursor near
the top of the picture, hold down the right mouse
button and pull the mouse toward you (moving the
cursor down); that appears to pull the picture toward
you. Moving the mouse side to side while holding
down the right mouse button does nothing. There are
limits to how far in or out you can zoom. At the
highest magnification, it is easy to see a separation
of half a millimeter. This is zooming, not moving the
point of view, so the eye never goes through the picture.

•	 ‘h’ key – if the ‘h’ key is pressed, the view in the
Kitting Viewer window returns to its original position.

•	 ‘g’ key – if the ‘g’ key is pressed when the plan is
not completely executed and no action command is
executing, the next command in the plan is executed
and the Metrics & Settings window is updated. If the
g key is pressed when the plan is completely executed
or when an action command is in progress, nothing
happens.

•	 ‘t’ key – if the ‘t’ key is pressed, a combined image of
all the windows will be saved in a file. The name of the
file will be anaglyph N.ppm, where N starts at 0000
and increases by 1 each time the t key is pressed. The
ppm (portable pixmap) format is a common graphics
format that many graphics utilities can handle.

•	 ‘z’ or ‘q’ key – if the ‘z’ or ‘q’ key is pressed,
the kittingViewer program exits, and the windows
disappear.

IX . CO NCLUSIONS A ND FUTURE WORK

The Knowledge Driven Planning and Modeling project is
scheduled to continue for an additional two years. During this
time, we hope to improve on all aspects of the knowledge

17

representation and standardization effort. These improve
ments include increased outreach to industry, improvement of
test methods and metrics, and improvements of our ontology
and knowledge representation that will be fed to the IEEE
working group.

A. Kitting Viewer Development Plans

As mentioned earlier, the kittingViewer is far from com
plete. We plan to add the following capabilities.

•	 Add drawing the kitting workstation in its current state.
The initial state of the workstation is already available
as soon as the XML data file that describes it is read
in.

•	 Add updating the positions of objects as the robot
executes commands. It will be necessary to compare the
position of the robot with the positions of objects when
OpenGripper and CloseGripper commands are executed
in order to determine if the robot is grasping them.

•	 Add metrics related to the positions of objects. This
might include (1) the number of objects that should have
been moved, (2) the number of objects that were moved,
(3) the number of objects that were moved to the correct
place, (4) the number of objects that were moved to the
wrong place.

•	 Add metrics related to constraint violations. These
might include (1) the number of instances of picking
up an object that weighs more than the robot’s load
capacity, (2) the number of instances of asking the robot
to move outside of its work volume, (3) the number of
instances of using a gripper to move an object when the
gripper is not qualified to move the object. It will also
be necessary to decide what the simulation should do
in these cases and implement that.

•	 Add a total score metric and implement finding the total
score using a configuration file in which the user assigns
weights to the other metrics.

B. Knowledge Representation Development Plans

We have created a knowledge driven system that is capable
of building kits in a flexible and agile manner assuming
perfect actions. For this system to be practical, this restriction
must be removed. To enable this, our current work on the
development of a taxonomy of predicates for the situational
awareness necessary for kit building will be continued and
expanded. The system will also be augmented to allow for
the checking of necessary preconditions before actions are
executed, and the verification of results after an action has
occurred.

To date, we have developed a knowledge representation
that supports kitting operations. In cooperation with the
IEEE Working Group, this representation will be expanded
to support general assembly operations. In addition, we will
work with the IEEE Working Group, academia, and industry
to standardize the knowledge representations, test methods,
and metrics.

RE F E R E N C E S

[1] Bozer, Y. A., and McGinnis, L. F., 1992. “Kitting versus line stocking:
A conceptual framework and descriptive model”. International Journal
of Production Economics, 28, pp. 1–19.

[2] Schyja, A., Hypki, A., and Kuhlenkotter, B., 2012.	 “A modular and
extensible framework for real and virtual bin-picking environments”.
In Robotics and Automation (ICRA), 2012 IEEE International Con
ference on, pp. 5246 –5251.

[3] Carlsson, O., and Hensvold, B., 2008.	 “Kitting in a High Variation
Assembly Line”. Master’s thesis, Lule ̊a University of Technology.

[4] Medbo, L., 2003.	 “Assembly Work Execution and Materials Kit
Functionality in Parallel Flow Assembly Systems”. International
Journal of Production Economics Journal of Industrial Ergonomics,
31, pp. 263–281.

[5] Schwind, G., 1992.	 “How Storage Systems Keep Kits Moving”.
Material Handling Engineering, 47(12), pp. 43–45.

[6] Jiao, J., Tseng, M. M., Ma, Q., and Zou, Y., 2000. “Generic Bill-of
Materials-and-Operations for High-Variety Production Management”.
Concurrent Engineering: Research and Applications, 8(4), December,
pp. 297–321.

[7] Stroustrup, B., 2000.	 The C++ Programming Language. Addison
Wesley, New York, NY, USA.

[8] Walmsley, P., 2002.	 Definitive XML Schema. Prentice Hall, Upper
Saddle River, NJ, USA.

[9] W3C, 2004.	 “XML Schema Part 0: Primer Second Edition”. In
http://www.w3.org/TR/xmlschema-0/.

[10] W3C, 2004.	 “XML Schema Part 1: Structures Second Edition”. In
http://www.w3.org/TR/xmlschema-1/.

[11] W3C, 2012. “OWL 2 Web Ontology Language Document Overview”.
In http://www.w3.org/TR/owl-overview/.

[12] W3C,	 2009. “OWL 2 Web Ontology Language Primer”. In
http://www.w3.org/TR/owl2-primer/.

[13] W3C, 2009. “OWL 2 Web Ontology Language Structural Specification
and Functional Syntax”. In http://www.w3.org/TR/owl2-syntax/.

[14] Ghallab, M., Howe, A., Knoblock, C., McDermott,	 D., Ram, A.,
Veloso, M., Weld, D., and Wilkins, D., 1998. PDDL–The Planning
Domain Definition Language. Tech. Rep. CVC TR98-003/DCS TR
1165, Yale.

[15] Garage,	 W., 2012. “Robot Operating System (ROS)”. In
http://www.willowgarage.com/pages/software/ros-platform.

[16] Horridge, M., 2011.	 A Practical Guide To Building OWL Ontologies
Using Protege 4 and CO-ODE Tools, Edition 1.3. University of
Manchester, Manchester, England.

[17] ISO, 2003.	 Industrial automation systems and integration – Product
data representation and exchange – Part 11: Description method: The
EXPRESS language reference manual. ISO, Geneva, Switzerland.

[18] Briganti, D., 2012. utilities-online.info, 11.
[19] Apache.org, 2012. Xml schema, 11.
[20] Levine, J. R., Mason, T., and Brown, D., 1995. lex & yacc. O’Reilly,

Cambridge, MA, USA.
[21] GMBH, A., 2010.	 Altova XMLSpy 2010 User & Reference Manual.

Altova GMBH, Vienna, Austria.

18

http:Apache.org
http://www.willowgarage.com/pages/software/ros-platform
http://www.w3.org/TR/owl2-syntax
http://www.w3.org/TR/owl2-primer
http://www.w3.org/TR/owl-overview
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-0

[22] Coles, A. J., Coles, A., Fox, M., and Long, D., 2010.	 “Forward-
Chaining Partial-Order Planning”. In 20th International Conference
on Automated Planning and Scheduling, ICAPS 2010, AAAI 2010,
pp. 42–49.

[23] Corporation, O., 2012. Mysql, November.
[24] Astrova, I., Korda, N., and Kalja, A., 2007. “Storing owl ontologies

in sql relational databases”. World Academy of Science, Engineering
and Technology, 29, pp. 167–172.

[25] ASTM, 2012. Form and style for astm standards. Web, March.
[26] Myers, K. L., 1998. “Towards a Framework for Continuous Planning

and Execution”. In Proceedings of the AAAI 1998 Fall Symposium
on Distributed, AAAI Press.

19

	coverNISTIR_7942
	kittingNISTIR_7942

