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I. INTRODUCTION

Since the appearance of the Bureau of Standards' collection of

formulas for the calculation of mutual and self inductance * a num-
ber of papers have been published upon this subject, some of which

have given formulas for cases which had not been previously

J This Bulletin, 8, p. 1; Scientific Paper No. 169.
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treated, while others have given additional formulas for cases

which had already received attention.

The present paper has for its purpose the presentation of the

more generally useful of the new formulas with the purpose of

supplementing the previous collection. The recent rate of pro-

duction of formulas has, however, been such as to render it im-

possible to keep the subject up to date for any length of time.

The selection of the material has been necessarily restricted to

those cases in which the formulas lend themselves readily to nu-

merical calculations or to those more complicated formulas for

which auxiliary tables are available. In certain important cases

formulas have been here omitted which may be of great service

when suitable tables have been prepared for simplifying the

numerical work.

It is to be emphasized, also, that although in the case of certain

forms of circuit very complete formulas are available, yet in cer-

tain other cases which are important in practical alternating-

current work and in wireless telegraphy formulas are still lacking

or only imperfectly developed.

In general, the classification of the material here is uniform

with that of Scientific Paper No. 169. New formulas are desig-

nated by the letter A, while formulas in Scientific Paper No. 169,

to which reference is made, bear the numbers by which they are

designated in that publication. The nomenclature adopted in the

formulas is as far as possible the same in both papers.

II. MUTUAL INDUCTANCE OF PARALLEL COAXIAL CIRCLES

This case is of great practical importance, since it is the funda-

mental form from which, by integration, formulas for the induc-

tance of solenoids and of circular coils of finite cross section have

been derived.

In what follows the radii of the two circles are denoted by A
and a, A being greater than a, d is the distance between their

planes, while the auxiliary moduli k and k' are given in the equa-

tions

2^Aa
k =

V(A+a) 2 +rf2

^{A^aY + d2
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BUTTERWORTH'S FORMULAS

Butterworth 2 has recently published five series formulas for

the calculation of the mutual inductance of two parallel coaxial

circles, and has shown that these furnish all the possible essentially

different hypergeometric developments of Maxwell's elliptic inte-

gral formula (1).

His formula (A) is the same as (5).
3

His formula (B) is a much abbreviated form of Havelock's for-

mula (17) and has the further advantage over the latter that the

general term is known

M =—V^i-^M2 + -^|^M4 **'£'?'
M6 + .... (iA)

4
v

L 2 -6 2.4.6.8 2.4.62.8.io v '

where

2= k2
4Aa

M i-k2 ~~(A-a) 2 +d2 (2A)

The general expression for the coefficient of n2n is the same as

that for the coefficient of k2n in the preceding formula, except that

the terms are here alternately positive and negative. This for-

mula converges only for k2<%, that is, for circles far apart.

The formula (C) of Butterworth's paper is best suited for circles

near together, although it converges for circles at all distances.

It is written in the form

(3A)

in which

M
4.T-y/Aa

= k3

[** +^"<

0o = log,
4
k'

-2, <f>i—<f>o

<£n-i — ~~1 n :

13 2 5

2n + i n(2n + i)

and the general term is

r3.5.7... (m +ln
L2.4.6 . . . . 2n ^n

2 Phil. Mag., 81, p. 276; 1916.

3 An error appears in the expression for the general term of this equation as it appears in the earlier issues

of Scientific Paper No. 169. The general term of (5) for the series in the parentheses should read

(?w+ 1) "1 2 r-n

. an J (rc+2) (2»+2>t
3-5-7

4.6.8
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If we put for the difference of the radii c = A —a, and for k and
h' their values in terms of A , a, and d

}
and expand in powers of

c/a and d/a, the resulting expression is the Maxwell's series formula

(10) or (14) . The latter formula has been much used and has been

extended at different times by Nagaoka, Rosa, and Cohen, and
later still by Coffin (p. 541). The expression ($A) is in a much
more favorable form for numerical calculation, the advantage

being very marked for the higher order terms.

Butterworth writes his formula (D) in the form

_M

where

5* iTA' +lW+l!iW+^W+ ~| (4a)

19 1

n 271 —3 ?l(2tt — 3)

The general term is

r ,.i.3 . . (™- 3 ) -t
k ,n

L2.4.6 .... 2n. _

Like (3A) , this formula converges for circles at all distances,

but especially well for circles near together. It is not difficult to

prove that (4A) is the same as a new formula previously obtained

by Bromwich,4 but which was not known to Butterworth. This

expression, (3') in Bromwich's paper, was shown by him to be

essentially the same as that of Weinstein ((7) in Scientific Paper

No. 169). Bromwich's equation is slightly more convergent than

that of Weinstein and may be obtained from the latter simply by
multiplying by the identity

2-yjAa ^r
x

2 -r/

in which r
x
and r2 have the values given under (2) of Scientific

Paper No. 169. Bromwich's expression for the general term of

(4A) is equivalent to
f
that found by Butterworth, although

expressed in a somewhat different form.

' Quart. Jour. Pure and Applied Math., No. 176, p. 3S1; 1913.
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Butterworth's final expression, (E) , is

4?r

in which

541

(5A)

^
/, =l0ge4Ai-2 ^/'-^ "=I-.I +

<Pi '**
=-n~- 2n+i in — 3

<p2
"-<p

1
"

<Ps"-W

and fx
2 has the same value as in (2A).

The general 'term is

i-3-5 (211 + 1)'

2-4-6 . . . 2n
<Px

(2n— l) (2fl + i) jLl
2n *

If, in this formula, we substitute the value of /x, it is easy to

see that this series is the same as that given as (16), of which the

I Y2 CX.

first terms were found by Havelock. 5 Note that — =—7— = - in
ji

2 4Aa 4

(16). The general term of (16) was first found by Bromwich, in the

paper already referred to, 4 in terms of the variable p=- in his
4

nomenclature. It is advantageous to write the formula in terms

of this variable rather than a, since the coefficients are thereby

simplified.

Evidently the general term in Coffin's equation (13), which is

the form taken by (16), when the circles have equal radii, will

be the same as that given above for (5A). For this case, a=A,
r=d, and a = d2/a2

. Like (16) , this converges only when ju> 1 , or,

for equal circles, when d<2a.

COFFIN'S EXTENSION OF MAXWELL'S FORMULA (14).

Coffin 6 has shown how to obtain further terms in (14). He
bases his method on (16). Putting A=a + c and expanding (16)

in terms of the small quantities c/a and d/a he has obtained three

new terms in each part of (14). These new terms are

Phil. Mag., 15, p. 335
6 Phys. Rev. (2), 2, p. 65; 1913.
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47ra log -^{89c
6 + 45C4J2 - 345^^ + 35<*

6

T28 2a 8

1 09c7 — 6$c'd2 — $2$c?d* 4-
1 75cd*

2-I28V

892 1 c
8 — iT,6g2c6d2 — 43050^* +32900^" — 1575c/8

)

2- i283a 8

/2629c6 4- 1 2045C4J2 — 1 7445C2d4 + 1 235^"

\ 30-1 28V

27833c7 + ju6gc>d2 — 225225^*4-505750^

420- I28 :>

a 7

5204309c8 + 530485 2c6d2 -45499650c 4d'

' 4- 21 73570oc2d6 - 818475c?8

)]

(6A)

840- 128V

Now that the general term of (16) is known Coffin's method
may be extended to obtain further terms of any desired order.

The algebraic work becomes, however, very tedious for the higher

order terms, and, as has already been noted, the equivalent

formula (3A) is much easier to use for numerical calculations.

SERIES EXPANSION OF ELLIPTIC INTEGRAL FORMULA (4)

Another method of procedure, when k' is too large for (4A) to

be conveniently used, is to employ (4) , which involves the modulus

k
f

, which is smaller than k'. We may write (4) in the form

M=£JLv^(I+ fe ')'F -4£o] ( 7A)

and expressing F and E in terms of k ', by means of the general

series formulas (3) , we find

+ 9. Kn (iog A-l)-J% *.'• flogA - i2)
32 V k° 6/ 256 V ° k ' 354/

+ 21k "floe-*- 37\ 2775 t */w±_2SSY|. . .
.1

+ 128*° V
ogV 3o) 16384 ° V^ko' 2220P

where

(8A)

14-fe (1+k) 2
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The first two terms of this equation will have to be calculated

with a good deal of care, and as the series involves odd powers of

the modulus, as well as even, it will be about as easy to use (4A)

or (6) and include terms of higher order than are included in (8A)

.

RANGE OF APPLICATION OF THE SERIES FORMULAS

Since the general term is available in all the series formulas, it

is possible to calculate the mutual inductance of any two coaxial

circles whatever without having recourse to the elliptical integral

formulas. In some cases (see pp. 8 and 9 of Scientific Paper No.

169) the values calculated by the series formulas are more accu-

rate than those obtained by the exact formula, and in any case

the series are valuable for obtaining a check, not to mention their

adaptability to the carrying out of integrations.

Those cases which it is most difficult to treat by means of a

series formula are those where the moduli k and k' are nearly

equal. For such cases the elliptical integral formulas will be

easy to use, or we may obtain the result with accuracy by means
of Nagaoka's series formula (8) . Of the hypergeometric formulas

(5) and (4A) require only 20 or 30 terms to be calculated (even

in the most unfavorable case) to obtain a result correct to the

seventh decimal place, and if we previously write down the suc-

cessive factors which must be multiplied into each term to obtain

the next, the calculation is much simplified. For the higher order

terms the ratio of successive terms is nearly constant, so that these

terms may be obtained with very little labor.

Instead of using (5) or (4A) we may also use (6) , which is an

expansion of the elliptic integral formula (2), expressed in terms

1 —k' k2

of the modulus k
x
=

,

,

= . ,,, 2 ,
which is smaller than k. This

formula covers very satisfactorily those cases for which k and ¥
are nearly equal.

As already explained, (8A) gives the mutual inductance in terms

of the modulus &</, which is smaller than k'. This formula may
be used when k' is so large as to render the use of (3A) and (4A)

difficult.

The following examples are appended to give an idea of the

relative advantages of the different formulas in several rather

extreme cases:
EXAMPLES

Example 1.— k = k' = -7=. Assuming the radii ^4 = 25, a = 20,
V 2
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the distance between their planes corresponding to the above condi-

tion is d = V 1 975 = 44-44 1 • For calculating the mutual inductance

bis case the series formulas (4A), (6), and (8A) are applicable.

Also for this special case the formula (19) gives a very searching

numerical test.

The following table gives the value of MI+ir^Aa calculated by
each of these formulas, together with a record of the number of

terms which have to be calculated to obtain a result accurate to

seven places. Since, however, six-place logarithms were used in

the computation, the values obtained differ in some cases by a

little in the seventh place. These discrepancies are of the order

of magnitude to be expected in work with six-place logarithms:

Formula Nl
££fl

ol
~,

*ermS 4-^Aa

(8A> 8 C.112SSS4

(4A) 11 . c.nrSSSs

(6) 4 0.112SSS7

(19) C.112SSS542...

Example 2.— k
f =0.6 ,k =0.8. To these corresponds the modu-

lus feo/=BS—. Assuming the same radii as before, namely, .4=25,

a = 20, we find d = yi 100 = 33.1663. The results found for this

case are

Formula *»»£« of -^=
terms 4x A Aa

(8A) 7 c.20113986

(4A) 10 c.20113987

(6) 5 c.20113983

Example 3.—Assuming k~ = - and a/A=-, the distance corre-

sponding is d = a^i^. One pair of circles satisfying these con-

ditions is .4 =25, a = 12.5, d = 48.41 23.

ormula
Number of

terms

M
4- A Aa

(2A)

(iA)

(6)

14

3

O.911653

c. oi 1653

c.911652

Example 4 (examples S and 14, Scientific Paper Xo. 169).-

A =2>. (7 = 20, d = 10, — = —

r

/X" 10

Formula 7Xr
SSS°

t M—
tenDS 4T % Aa

(5A) 6 O.885387

(4A)
'

4 O.885387

(3A) 7 0.8S5387
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III. MUTUAL INDUCTANCE OF PARALLEL ECCENTRIC
CIRCLES

A knowledge of the mutual inductance of two circles whose

planes are parallel, but whose axes are not coincident, is required

in the calculation of the inductance of certain standards whose

inductance may be given a continuous variation by moving one

coil so that its plane remains constantly parallel to that of another

coil, the distance between the planes of the two coils being kept

constant. This is the construction employed in the Campbell

variable inductance.

On account of the relatively large and uncertain correction nec-

essary to apply to take into account the finite cross section of the

coils, the value of the inductance in such a case will best be

obtained by measurement rather than by calculation. Neverthe-

less, formulas allowing of the calculation of the inductance, at

least approximately, are valuable for purposes of design. In the

case of actual coils the current may be regarded as concentrated

in a circular filament at the center of the cross section.

The only formulas yet available for the mutual inductance of

eccentric circles are those recently published by Butterworth. 7

He rests his method on the theorem that any formula applicable

to this case must be a solution of Laplace's equation, and for the

special case that the circles are coaxial must reduce to one of the

formulas for coaxial circles given in the previous section.

There follow not only Butterworth 's general formulas but also

the simpler formulas which hold for the cases of circles of equal

radii and coplanar circles.

In these expressions we put

A = radius of the larger circle.

a = radius of the smaller circle.

d = the distance between their planes

p = the distance between their axes.

fj,
= cos 6 = d/r c = A —a

r2 = d2 + p
2

Pniii) =the zonal harmonic of the nth order with argument jx.

1 Phil. Mag., 31, p. 443; 1916.
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For calculating the zonal harmonics we have the well-known

expressions

P (m) = 1

P :(m)=^3m 2 -i)

^s(M)=^(5M2 -3)

^(m)=|(35M 4 "30M 2 + 3)
feA)

^5(M)=^(63M 4 -70M2a-i5)

Pc (m) = ^(23 1

M

G - 3 1 5M
4 ~ 1 05M

2 ~ 5)

P 7 (m)=y^(429M
6 -6Q3M 4 ^3I5M2 -35)

P 8 (m)
=
7^8 (6435M

8 - 1 201

2

M
6 + 693OM4 - 1 260/x2

+35)

BUTTERWORTH'S FORMULAS FOR UNEQUAL CIRCLES

For unequal circles far apart

M = 27^0
V*i/\ r

/

~ 2.4.6" 3* ""!
• 7X 3P 8 (M)^+----]

where

T , az
r . a- a*

^ ^ a 6 v _/ a?\
(ia4)

F is the hypergeometric series. (See* p. 17, Scientific Paper Xo.

169.)

This formula converges for values of r greater than (A +a).

For the limiting case that the circles are coaxial it goes over into

(17), Havelock's formula for circles far apart. The general term

of (10A) is known, but the higher-order terms become tedious to

calculate. Table A. taken from Byerleys "Fourier's Series and

Spherical Harmonics," will be found helpful in making calculations

with (10A) and the succeeding formulas.
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For unequal circles near together

M - 4W^[(X - 2) +^^{(X " j)" - *}
(1 xA)

I024 ^y(x-fo>H +-]

\ _i 16^Aa

and (jl
2 and — y

2 are the roots of the quadratic

<-<>-S)-?-°
and

p2 =|-
JP2 (M)P2 (*V)

-i{(i +M2
) ~vKi -3M2

)}

= |{(3 + 2M
2 + 3M

4
) ~ 2^2

(i +6ju3 - I5M4
)

+ ^(3-30/x2 + 35M
4
)}

x 2 =4(i - /*) { (1
-

m) -

"

2
(i + 7/0

}

4

X4 = A(i-m)(3(i -a0(7 + 2/z + 7ju
2
)

-6^2 (5+jLt-M2 + 59M
3
)

+ ^(2 1 + 241 fx - 1 1 3/x
2 - 533m

3
) }

The general solution of the quadratic is

the positive root is taken as fi
2

, while the negative root is — v
2

.

Butterworth gives the method for obtaining the general term

of (11A), but the calculation of the quantities <p and x for the

higher-order terms becomes very tedious. An idea of the impor-

tance of the terms omitted in (11 A) may be obtained from an

examination of the convergence of the formula (16) with the same
values of A, a, and d. The convergence for the eccentric circles

will be at least as good as that of (16) , which holds for the limiting

case of coaxial circles.

Similar considerations hold for (10A) and (17) if in the latter d

be taken as of the same value as r in the former.
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BUTTERWORTH'S FORMULAS FOR EQUAL ECCENTRIC CIRCLES

If the circles have the same radius a and their distance apart

is large compared with a,

T p„

~2 c 2 -2 A(

2.4
2
.6

2
.8

3
r 6+ _ , ^, ^K»—R + .

(12A)

8 "
vrv

r'

For equal circles near together

W-4xa[(X1
-2)+A5{(x

l
-i)p

> 0«)-*,j

-S^ -g)*«M
(I3A)

+ (iipS|(
x'-^>^-^)---]

in -which
1 6a a

7

Xl = l0HTiTS' M= 7

^2 = -7 (1 ~m) (i +7M)
4

^4 = r^(i-M) (21 +24i/x-ii3/x2 -533M3
)

^ 6
= -rgj (1 -m) (i85-2957M + 3728m

2 + i8oo8m3

-3247/^-18107^)

BUTTERWORTH'S FORMULAS FOR COPLANAR CIRCLES

(a) Unequal coplanar circles far apart.

(14A)

the values of the iv's being the same as in (10A).

(b) Unequal coplanar circles near together, but r>(A —a); i. e.,

the distance between their centers greater than the difference of

their radii.

8

with

M = 4, VAa[(X - 2) -i £(x - |)(x - 2
$)

45 r* L ( 8 c2 8c'\ /97 214 c; 214 c'\) 1

192 S* o'VA 3 '2
3W V>o 45 r>

+
45 Wj •

' J

(15A)

X = log 9 ~ —— . c =A-a
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This formula holds even when the circles intersect. A negative

sign in the formulas for the mutual inductance in this section

indicates that the electromotive force induced in either coil, due

to a change of current in the other, is of opposite sign to that

which would be induced, under the same circumstances, if the

coils were in the coaxial position.

(c) unequal coplanar circles for which r <(A—a)—that is,

where one circle is entirely within the other.

M = 4TV^[(^-2)+^£j(x 2 -|)(i+M2
)

(I6A)

^(i-m) 2
:

--(1 -m)
2
(7 + 2ju + 7M

2

)

.
t

16^Aa r2

X2 = lo
^c77T70'

" I ~?

]

(d) unequal coplanar circles, one touching the other internally;

that is, r = A — a = c.

8i92^ 2a2\
3 60/ '

J

45
_

2^1 2a2

V
A3

i6-\lAa

(17A)

Xo = los
c

(e) equal coplanar circles far apart.

M =-^«f2)Tn-2^ +f5«;+
§S75a!

+ .
.
1 (l8A)\r/ L 4 r 64 r 4 512 r 6

J

(/) equal coplanar circles near together.

M = 4.a[(X - 2)-
3
AS(x -|)- 1

^g(xo-g)
175 r/. 25 i\ 1

(I9A)

(512)* <H ° iW '
' J

16a

110990°—19-
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EXAMPLES

Example 5 (Formula (10A)).

—

A = 25, a = 20, ^ = 40, r = ioo.

Thence c = 5> M = o-4> A/r = -> -? = 0.8
4 ^

-^(m) —0.260000 K, - 1 .64

P 4(m)=- .113000 #2 = 3.3296

P 6
(/x)= -2926 ^3 = 7-5597

P
8
(/i) - - .2670

Thence

M = 27r
2 xo.8 X 20 x, [-0.26000 + 0.01737 + .00484 + .001 08]

64
1

H-.23671]

The corresponding coaxial case A =25, a = 20, d = ioo gives,

using (17)

M = 27T
2 XO.8 X20X 7-[l —O.I5375 +O.O2439 — .OO4O4]

=— (0.86660)

The convergence of (10A) is about as good as (17), and an esti-

mate of the neglected terms may be gained from an examina-

tion of the same terms in (17).

Example 6 (Formula (11A)).—.4=25, a = 12.5, and p = d =—7^
V 2

=8-8375-
d2

1 c
2

1

Thence c = i2.s> -==-» t_ = -
c 2 2 Aa 2

<P 2 = i-25 X 2 = -0-18735

*>4= I.0935 X 4
= - 4I549

y2= v1= X = l0g e 940754 = 2.24151
V2

Thence by (11 A)

M̂ = = 0.24151 +0.24118 —0.00636 + • • • •

47T-y/Aa

= -47633

For the coaxial case A =25, a = 12.5, - = -7= we find in (16),
a -y'2

3 1
%^Aa

a =
4'

l0ge V^T^
= 2,22453

M7= =0.22453 +O.26595 -O.OO982 +O.OOO95
^Tv-\Aa

= 0.48161
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Here, again, the importance of higher-order terms neglected in

the eccentric case may be estimated by calculating these terms

for the coaxial case. Thus, the next term in (11A) should

amount in this problem to about +0.0006.

Example 7 (Formula (13A)).—Equal circles near together

A =a = 25, r = 16, and —=0.7
r

Thence — = •— > ji =0.7, d = 11.2
a 25

P2 (u) = 0.23500 &~ -0.4425

P40)=- .41206 ^4
=- .15153

P6 (M) = - .1253 ^=~ -71742

PM = .3067 X =l0ge
I||^ = 2.68825

Accordingly

M = 0.68825 +0.07648 +0.00130 + 0.00008 =0.76611
4.wa

Formula (13) gives for the coaxial case v4=a = 25, d = i6,

M— =0.52573 +0.16838 —0.00367 +0.00020=0.69064
4-ira

IV. SELF-INDUCTANCE OF A SINGLE-LAYER COIL OR
SOLENOID

The inductance of a single-layer coil or solenoid is most easily

obtained by basing the solution of the problem on that for a

cylindrical current sheet. The latter may be regarded as being

equivalent to a single-layer helical winding of fiat tape of negli-

gible thickness, the adjacent turns being separated by insulation

of infinitesimal thickness.

Rosa 8 has shown how the difference between the inductance of

such an ideal winding and that of an actual winding of round

wire may be computed and has prepared tables for facilitating

the calculation of this correction. 9

The following formulas of this section apply only to cylindrical

current sheets, and the results obtained by their use require

correction by Rosa's method to reduce to the case of an actual

winding.

8 This Bulletin, 2, pp. 161-187; 1906. "Scientific Paper No. 169, pp. 122, 197, and 199.



55- Bulletin of the Bureau of Standards \Voi.i4

BUTTERWORTH'S FORMULAS FOR INDUCTANCE OF A CYLINDRICAL
CURRENT SHEET

In a recent article Butterworth 10 has obtained the differential

equation of which Lorenz's absolute formula (72) for the induc-

tance of a solenoid is a solution, and has developed from this the

eight possible hypergeometrical series expansions. Of these, his

formulas G, I, j, and M resemble closely those denoted by the

letters F, H, K, and L, respectively, but the latter formulas are

the more convergent, and these only will be considered here.

Formulas F and K are new, and H and L are expressed by Butter-

worth in a form especially convenient for calculation.

There is an advantage in expressing the inductance of a cylin-

drical current sheet in such a manner as to make clear the con-

nection with the well-known formula for the inductance when
the length of the current sheet is infinite; that is, L

l
=^Tr2a2n2

/b,

and each of the following formulas is so written as to indicate

this relation. The quantities k and k f have already been defined

on page 120, Scientific Paper No. 169.

Butterworth 's formula (F) gives

L ^LlV4^±y I _A*_g*._A*._-34-*_ 1 (2oA)
b L 3*- 8 64 1024 J

v J

the general term in the parentheses being

_ [1 • 3 • 5 •
• • • (2n + i)][i • 1 • 3 • 5 • • • • (2W-3)]

, 2n

22nnl(n + i)\
K

This converges for coils of all lengths, but most rapidly for long

coils (k small).

Formula (H) of Butterworth's paper is

T T 4 2a i/2aV 1 /2aV S /2a\6
,

in which the general term is

_ v
n+1[i.3o (2tt-i)][i. 1.3.5 .... (2tt-3)]/2a\ 2n

v ;
22n n ! (n+ i) ! \o J

an expression which agrees with that given by Webster and Have-

lock, formula (79), but which appears here in a somewhat simpler

form than that given by them.

19 Phil. Mag., 31, p. 276; 1916.
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The formula (21A) converges only for coils whose length b is

greater than the diameter 2a.

Butterworth's formula (K) may be written

2.4.4.6 2.4.6.4.6.8

(22A)

in which

4 ^ , , 1 1 1 1

1 ! x J
i ,

T

2 4 i 3
' 2^ — 2 2n 2n — $ 2U — 1

i ,
I I I I

ana the general term is

[i. I.3.5 •
; ;

(2^-5)] [3-5-7
; ;

• (2n-l)]

[2.4.6 .... (2W- 2)] [4.6.8 . . . (2tt)]
^

This formula converges for all values of k' , but especially well

for short solenoids (k
f
small)

.

Finally, we have Butterworth's formula (L), which gives for

the inductance the value

1 7r\2a/L
ri

2.4
r2 \2a/ 2.4.4.6\2a/ r3

LI -3- I -3-5/AJV- 1
2.4.6.4.6.8\2a/ V4

*
'

'J

L
(23A)

2

in which

i / 1
8a 1 .... 1 1 1 1

r2 ri
2 4 I I 271 — 2 2n 2^ — 5 2^ — 3

, ,_ , / = i ,1 _!__!_, = 3 [(2n-3)(2n-2)-i]
^ 3 ^ 2 4613' w(2n — 5) (2n — 3)(2w — 2)

and the general term is

[1.1.3 . . .
(2n- 5)]{i-3-5 • • •

(2tt- 3)3 ,, /AY 11 - 3

[2.4.6 . . . (2w- 2)] [4.6.8 . . . 2n]
Wn \2a)

This is Rayleigh and Niven's formula .(69), which was extended

by Coffin, formula (71), but the general term has not previously
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been given. The formula converges only for coils whose length is

less than the diameter.

The preceding four formulas cover between them the whole

range of possible solenoids, although in the case of coils in which

the length and diameter are nearly equal the number of terms

necessary to be calculated is not inconsiderable, as may be noted

from the following examples. In such cases the calculation of

the higher-order terms is materially simplified, if one obtains the

expression for the factor necessary to apply to each term in order

to obtain the term next following.

EXAMPLE

Example S.—For the case in which the length equals the diam-

eter, wre have k = k' = -/=•

V2
Using formula (20A), 14 terms gives L =0.6884229 L x

Using formula (22A), 13 terms gives L =0.6884630 L
x

where L
l
= 4ir

2a2n2
/b

For the coil of example 60 of Scientific Paper No. 169, a = 27.0862

6 = 30.551, wTe find from eight terms of (23A) the value L —

0.5546957 Lu and seven terms in (22A) give L =0.554697 Lv The
values found by Nagaoka's formulas (77) and (76) differ from the

first of these values by only one and three units, respectively, in

the last place.

DISK COILS

An extension to the Rayleigh and Niven formula (70) for a

disk coil of radial dimension c and mean radius a has been found

by Lyle. The additional terms are

, r/ 11 c
i ios c c\

,

Airn-a\ {
— H ^=== -7 J losr

L\46o8oa* 105.256-W 6
,

(7oA)

8a

c

El , 98579 c«-\

~ N a 6

J2400 a 1 (131072) (44100)

Formula (70) with the additional terms of (70A) suffices for

values of c as great as the mean radius a.

For those coils where c is large compared with a—that is,

for disk coils in which the inner radius is small compared with

the outer radius—a formula has been developed by Spielrein u

who puts

I =n* A f (a) (24^
11 Arch, fur Elektrotechnik, 3, p. 187; 191s.
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in which

and

A =The outer radius of the disk

a =the ratio of inner radius to outer radius

G =(72-^2 + ^2- • • •) =0.9159656 ....

jr p.3-5 (2n-iH 2

2 [_2 . 4 . 6 2W J

1M '8?r 1 [\ w v °° 2^n 2n a2n+1

/ (a) =— 7 r^ (2G 1) - S r-p —-r-
1 v

3 (i-a) 2

l_

v

x
(211 — 1) (2» + i)

— «3
|7T log 2 — (2G— i) — - + - log -

4 2 a

1) 2nH
>T* tJ

^^ 2^n (2W +
2W (2fl + 2

-&=&[*96957 — «3 (30.3008 log - +9.08008)

+ 1.48044 a5 +0.33045 a7

+ 0.12494 a9 +0.06038 a11 +0.0337 a13 + . . .)

Spielrein gives a second formula for values of a between- 0.5

and 1, but if we remember that — =
, it is easy to show that

2a i+a
this is equivalent to (70) and (70A), lacking the term in c

6/a6
.

In Table E is reproduced a collection of values of / (a) calcu-

lated by Spielrein for a number of values of a.

V. SELF-INDUCTANCE OF A CIRCULAR COIL OF
RECTANGULAR CROSS SECTION

For the calculation of the inductance of a circular coil of rec-

tangular cross section, whose dimensions b and c are relatively

small compared with the mean radius a, the most accurate formula

previously available has been that of Weinstein, 12 which appears

as (88) in Scientific Paper No. 169. In the next volume of Wiede-

mann's Annalen, after that containing Weinstein's article, Stefan 13

published what is the same formula, but so arranged as to facilitate

numerical calculations. (See (90) in Scientific Paper No. 1 69.) There

is nothing in Stefan's article to show that he was acquainted with

Weinstein's work.

« Wied. Ann., 21, p. 329; 1884. 13 Wied. Ann., 22, p. 113; 1884.
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The formula given by Stefan is reproduced here.

At 3&
2 +c2

\, 8a b 2
}l-4~*Ri +-W7 log w^~ yi+^ y2
\

(90)

Values of the two quantities yx
and y 2 are given by Stefan in tables

which he prepared to make his formula more generally useful.

Changing his nomenclature to agree with that of this paper, the

two equations given by him for the calculation of y x
and y 2 are

* I 1 / »\ * 1 / 1 \ 2/ 1 \
; log (1 +x2

) log ( 1 +- )--[%--
J
tan

1 2X2 ° J
12 & \ x~J 3\ x)

ir6o 221 1 1 , . ,. x 2
. / i\

6[_20 60 x- 1 ox 4 &
2

&
\ x 2

/
87rx i6x .

+— tan
5 5

(25A)

in which x = b/c, the ratio of the axial dimension of the cross section

to the radial.

Stefan's formula and tables have been reproduced in a number
of handbooks, including the Bureau of Standards' collection, with

the statement that both y x
and y 2 are unchanged, when b and c

are interchanged; that is, that y x
and y 2 are the same functions of

c/b that they are of b/c.

This statement is true of yu but does not hold for y 2 , as may be

seen from the defining equations (25A).

MODIFICATION OF STEFAN'S FORMULA FOR THE CASE (c>b)

The formula (2 5A) shows that y 2 grows rapidly larger as c is

increased relatively to b, and approaches infinity as its limit when
the ratio b/c approaches zero. In such cases interpolation of the

values of y2 becomes difficult. This difficulty may, however, be

avoided if, for the case c> 6, we write Stefan's formula in the form 14

[/ 3b2 +c2\ 8a c2
1L = 47ran^i+^^-

>
)log^pT? -y1+— ,,)

(26A)

In this equation the quantity y 3 is related to y 2 by the equation

y 3
= b2

/c
2
.y 2 , and sufficient values of y 3 are included in Appendix B

to allow of accurate interpolation. The defining equation for y3

is

ir6ox2 221 87rx3 i6x*
y3
= -\ -z— + — h tan -1*yz

6|_ 20 ^ 60 5 5

- 2̂
log(I+ ,2

) + flog(I+ l)]
(27A)

M This form of the equation, with tables for computation, was first given in the 1916 revision cf Scientific

Paper No. 169.
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LYLE'S FORMULA

The Weinstein-Stefan formula was obtained by integrating the

series expression (10), for the mutual inductance of two coaxial

circles, over the retangular cross section of the coil in question.

In this integration are included terms of second order only in c/a

and b/a. If the dimensions of the cross section are small, relatively

to the mean radius of the coil, this approximation will suffice.

In a good many cases, however, the further terms are not negligible,

and in any case it is desirable to be able to prove that they are

negligible.

To carry out the integration of (14) so as to include higher-

order terms is a difficult matter on account of the large number of

terms which must be treated. In a recent paper Lyle 15 has shown
how to simplify the work so that further terms may be obtained

in Weinstein's formula, and has published the expressions for the

terms of fourth and sixth order, together with tables for calcu-

lating the fourth-order term.

The author of the present paper has called Prof. I^yle's atten-

tion to an error in one of the coefficients of the sixth-order terms

of the extension of (14) upon which the integration was per-

formed, and he has very kindly repeated his work and supplied

the correction of the single term affected.

In addition Prof. Lyle has been so good as to communicate to

us additional tables, not heretofore published, with his permission

for their incorporation with this paper. The following is quoted

from Prof. Kyle's letter:

In a former paper I have extended Maxwell's and Weinstein's formula for the self-

inductance of a circular coil of rectangular section to the sixth, and, following Stefan,

have given tables by means of which the result, up to the fourth order,
f

may easily be

applied to the calculation of inductances. I have lately recalculated the figures

given in one of these sets of tables and extended the latter to the sixth order.

Thus, if uniform current density over the whole section of the coil be assumed, its

self-inductance may be written in the form

L=47ran2|^iH-w 1
-
2+m2

-
4+m3

-
6y)

log 7
d2 d* <£

61
(28A)

in which

a is the mean radius of the coil

n the number of turns

rf
2=62+c2

, where

6=the axial width of the coil

c=the radial depth of the coil

16 Phil. Trans., 218A, pp. 421-435; 1914-
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In AppendixC Lyle's values of m lt w,, m 3 , /„./,,/., and / 3 are given

for different values of c/b for thick coils—that is, those in which b

: cater than c—and in Appendix D are given their values for

different values of b/c for tlun coils—that is, those in which b is

less than c.

The following relations exist between Lyle's constants and the

quantities yu v : , and v 3 of formulas (90) and (26A)

:

U = )\

y,-i6/, (1+cVb2
)

y9=i6lt
(i+67c2

)

A second form was given by Lyle to his formula in his original

paper. Formula (28A) has, however, the advantage that it

differs from Stefan's formula only in that the fourth and sixth

order terms are added. Therefore, in any given case, a rough

preliminary calculation will suffice to show whether the higher-

order terms are of importance. In a great many cases it may
thus be shown that Stefan's formula is sufficient, and only in

extreme cases (coils of relatively very large cross section) will the

sixth and higher order terms be important. In the latter case no

other formula is yet available for obtaining such an accurate

value with so little labor. Lyle's formula, however, fails for the

case of coils whose length b is considerably greater than the mean
radius a.

BUTTERWORTH'S FORMULA FOR SELF-INDUCTANCE OF A LONG
MULTIPLE-LAYER COLL

Butterworth 18 has developed a series formula for the case of a

long coil whose winding depth is rather large. Its region of con-

vergence, for coils whose length is greater than four times the

outer radius and whose winding depth is greater than about one-

fifth the mean radius, covers the case of coils whose cross section

is so great that Stefan's and Lyle's formulas are not sufficiently

convergent.

Changing Butterworth's nomenclature to agree with that pre-

viously employed in this paper, his method may be summarized

as follows

:

Writing L
t
=the inductance of an infinite cylindrical current

sheet of the same mean radius as the coil, the inductance of a

finite solenoid having the same length as the given coil is L 2
=KL

X ,

17

s Proc. Phys. Soc.. London. 27. p. 371; 1915. lT Scientific Paper No. 169. p 119. formula (75).
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and we may write for the inductance of the actual coil, L =L 2 + AL,

in which

a[_ 4a 27r o\ c 12/ i6o7ra3 o\ • c^1 3

20/ 4 a&V 4& 2
4 & 4

'

'

/

__L1
3^ T _39?!. V 1

g6a3 b\ io&
2_f

"

)

(29A)

EXAMPLES

Example 9.—As an example, we may consider one of the coils

treated by Butterworth, viz, 6/a = 4, c/a = 0.2, the value of the

mean radius and the number of turns being so chosen, for sim-

plicity, that —^— = 1 000 000. This gives L t
= 16 millihenrys.

The value of K for 20/6=0.5 is 0.818136, 18 and, therefore,

L 2
= 13.09017.

32o\ 64 1024/ I92000\ 1 60/

J

=
( 1-.05-.014103+.000014-.002845-.000005

)

== -o62204

or AL = -0.99526 mh.

The only other formula available as a check is Rosa's formula

(91), which gives the result AL = —1.0207 mh, or a difference

from Butterworth's formula of 0.0255 mh, or about two parts in

a thousand of the total inductance. Lyle's formula can not be

used in this case.

Butterworth explains the above difference as being due to the

neglect of the curvature in the geometric mean-distance formulas

used in obtaining BB in Rosa's formula (91).

For the coil 6 = 10, c = 1 , a = 10, n = 1000 we find

— = 15.53984 Lyle's formula to fourth order
47T

= 15.54071 Kyle's formula to sixth order

= 15.5361 Rosa's formula (91) (see example 66 of Scientific

Paper No. 169).

Butterworth's formula is not applicable to a coil as short as

this.

18 Scientific Paper No. 169. Table XXI.
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Here, again, Rosa's formula gives a result somewhat too small,

although the difference in this ease is only 3 in 10 000.

These checks on Rosa's formula are valuable, since it is the

only formula yet available in the region where neither Lyle's

formula (28A) nor Butterworth's formula (29A) converges well.

The error due to the neglect of the curvature in applying the

geometric mean-distance formulas in obtaining a result by Rosa's

formula will not usually be regarded as important. It would

not, however, be difficult to obtain a correction for this effect,

although the formula thus obtained would not be so simple to

use as (91).

NOTE ON COHEN'S APPROXIMATE FORMULA (92)

Cohen's formula (92) is applicable to a coil of several layers.

The formula presupposes that the rectangular cross section is

divided into a number of equal axial rectangles equal to the num-
ber of layers, and the formula for the inductance involves the

radii of the layers.

Butterworth has shown that assuming a coil of given cross-

sectional dimensions the inductance as calculated by (92) comes

out quite different according to the number of layers assumed in

the cross section. He goes on to show that this may be explained

by the fact that in the derivation of (92) the approximations made
at certain points of the demonstration are not sufficient to give

the accuracy claimed by Cohen. However, for a certain choice

of the number of sections, different in each case, and not a priori

determinate, the result may lie quite close to the true result.

As an example of these points Butterworth has calculated, by
means of Cohen's formula, the inductance of the coil in the

example next preceding but one for different assumptions with

regard to the quantity m in (92).

m= 1 2 3 4 5 10 infinite.

L = 12.70 12. 11 12.07 12.06 12.09 12.14 12.19 millihenrys.

The correct value of the inductance for this case is, to four sig-

nificant figures, 12.09 millihenrys.

VI. SELF AND MUTUAL INDUCTANCE OF LINEAR
CONDUCTORS

Formulas are given in section 8 of Scientific Paper Xo. 169 for

the calculation of the self-inductance of straight wires of different

cross section and for the mutual inductance of two such conductors

when placed parallel to one another.



Grover] Additions to Inductance Formulas 561

Such cases are easily treated by the method of the geometric

mean distance. For the calculation of the self-inductance of a

straight conductor of any desired cross section we have only to

calculate the mutual inductance of two parallel straight filaments

placed at a distance apart equal to the geometric mean distance of

the cross section from itself.

Similarly the mutual inductance of two parallel straight con-

ductors is equal to the mutual inductance of two parallel straight

filaments whose distance apart is taken equal to the geometric

mean distance of the area of cross section of one conductor from

the cross section of the other.

The calculation of the self-inductance of any straight conductor

or any pair of parallel straight conductors may, therefore, be

accomplished by substituting the proper geometric mean distance

for R in the formula

log ^--i 4-

j

(30A)

which is the expression (99) of Scientific Paper No. 169 for the

mutual inductance of two filaments of length /, at a distance R
apart, which is small compared with their length. In most prac-

tical cases the last term of (30A) may safely be neglected.

To aid in making calculations by this method, the formulas for

geometric mean distance, in a number of important cases, are

presented in section 9 of Scientific Paper No. 169.

The inductance of a circuit composed of a number of linear

conductors may, in general, be found by taking the sum of the

self-inductances of the individual conductors and the mutual in-

ductances of each wire on all the others. In the case of a return

circuit—that is, a circuit consisting of two parallel wires in which

the direction of the current in one is opposed to the direction of

the current in the other—the inductance of the remainder of the

circuit being negligible in comparison, L=L
1
+L2

— 2M, in which

L
1
and L 2 are the self-inductances of the two wires and M is their

mutual inductance.

This equation, taken in connection with (30A), if the last term

in the latter be neglected, gives as a general formula for a return

circuit

L = 2l [2 log i? 12 -log R, -log R 2]
(31A)

in which R
x
and R 2 are, respectively, the geometric mean distances

of the cross sections of the two wires on themselves, and R l2 is

the geometric mean distance of the cross sections of the two wires.
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If the cross sections of the two wires are the same, this formula

becomes

L = 4Zlog^ (32A)

These formulas have been employed, in conjunction with those

of section 8 of Scientific Paper No. 169, to obtain the inductance

of a considerable number of the special circuits treated in that

section.

INDUCTANCE OF SHUNTS

In recent years the use of shunts of large carrying capacity for

measuring the current in alternating-current circuits has lent a

very practical importance to a knowledge of the inductance in

such cases.

As such shunts are constructed, it is true, the inductance is very

small (of the order of a few abhenrys) , but since the resistance is

often less than a thousandth of an ohm, the phase angle between

electromotive force and current may, even with such a small

inductance, depart widely from zero, so that the assumption that

such apparatus is noninductive may cause very serious error in

the measurement of current and power.

We will consider here shunts of two main types— (a) shunts of

flat metal strip, bent so as to form a return circuit whose parallel

elements are very close together, and (b) tubular shunts.

(a) Shunts of flat strip.—If we neglect the thickness of the strip,

in comparison with its width and the distance apart of the two

parallel conductors, we may calculate log R
t
and log R 2

from (1 23)

and log R 12 by (132). The expression resulting from the substi-

tution of these quantities in (31 A) may, however, be put in a more

serviceable form, if we expand the logarithmic and inverse trigo-

nometric functions. Putting w for the width of the strip and g
for the distance between the strips, then, if g/w is small,

L=Jm+ £. logi_i£ *£
.
1 (33A)

L.20 Vr W 2 10'" 12 W

Since g/w is not always small, we should, in the case of strips at

some distance apart, use the exact expressions for log R
x
and

log R l2 .

More often, however, we will be unable to neglect the thickness

of the strip. Silsbee 19 has recently treated this case by calculating

log i?
t
by (124), the formula for the geometric mean distance of a

19 Scientific Paper No. 2Si, pp. 375-4:1; 1916.
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rectangle from itself, and log R 12 by Gray's formula for two parallel

rectangles. 20 Expanding these quantities in series involving b/w,

and g/w, the thickness of the strip being denoted by b and the thick-

ness of the insulating space between the two strips by g, he finds

finally

L = 4{j(30 - 5) - -J2 ~^ ~ i/S
12 12 12

I252

in which

7^ (a4 log a - 2/3
4 log j8 + 7

4 log 7 - 254 log 5)

(34A)

2b+g a b+g g b
a = -> p = -> 7 = — > 5 =

—

W WW w

This expression reduces to the preceding expression (33A) if we
let 5 approach zero.

To show that, in practice, the difference between the two for-

mulas (33A) and (34A) may be large, we may consider an example

given by Silsbee:

Z = 35.62, 6=0.1064, ^ = 4.986, ^ = 0.0336.

Here, although the metal used is only about 1 mm thick, the

thickness of the insulation between the two legs of the shunt is

only about one-third of this, so that b/w is about three times as

great as g/w, instead of being negligible, as (33A) supposes.

Making the calculation by Silsbee 's formula, the terms taken in

order are as follows:

4/ (0.065867-0.001642 -7 Xio _8 -3 x io -8 -0.003282

+ 0.001288 —0.000002 +0.000292)
= 4.1 (0.062521) =8.91 X 10-9 henry

The value found by (33A) is

\l (0.021 1 71 —0.000227—0.000068) =4/ (0.020876)

which is less than one-third of the correct value. This example,

then, illustrates the fact that formula (33A) should be used only

in those cases where the quantity b/w can be shown to be negligible

in comparison with g/w. Such cases are likely to be rare, except

when the distance of the strips apart is comparable with the width

of the strip, a condition not conducive to good design. Formula
(33A) is, therefore, of limited usefulness.

Silsbee has also treated the case where the return circuit is

made up of two strips of different thickness. Suppose two strips

20 This Bulletin, 3, p. 6, 1907. formula (8).



(35A)

564 Bulletin of the Bureau of Standards [Vol. i4

of the same width w, but of different thicknesses b and c, the

thickness of the insulating space between them being g f
then if

we denote by L x
the inductance of a length / of the conductor of

thickness b, the other conductor serving as a return, and by L2

the inductance of a length / of the conductor of thickness c, with

its return through the other conductor, Silsbee shows (page 378
of his article) that L

x
= 2l (log R 12

— log R
x ), where R

t
is the

geometric mean distance of strip b from itself and R l2 is the

geometric mean distance of the cross sections of the two strips.

Calculating these geometric mean distances by the formulas

used in the previous case, and expanding the resulting expres-

sions, he finds

*.«0H+*)-<S+B+.£*5)+
——( a 4 log a — K* log k — X 4 log X + 7

4 log 7 — 2d z
rj log 5

)

where

b+c+q q . b c b +q x c+q
a =_ _2, Y=1J =

, 77 =— , K = - S X = -

w W W W IV w

The inductance L 2 is found by interchanging the letters 8 and

77, and the inductance of the complete circuit is L=L
X
+L 2 .

Equation (34A) can be derived from (3 5A) by letting b=c in

the complete expression for (L x + L 2)

.

(b) Tubular shunts.—These are generally constructed of two
concentric tubes of resistance metal, one of wThich forms a return

for the other, the two potential leads being attached at points

which differ in different designs. In case one or both of the

potential leads are so disposed that an electromotive force is

induced in the lead, this will change the effective reactance of the

shunt, which may be defined as the ratio of the quadrature com-

ponent of the voltage between those ends of the potential leads

which are attached to the measuring apparatus, to the current

in the shunt. For a full treatment of this question the reader is

referred to page 378 of Silsbee's article.

Silsbee has attacked the problem by calculating directly the

linkages of the magnetic flux with the different elements of the

shunt, and has given in series form the inductance for four prac-

tical designs of tubular shunt. In accordance wTith his sugges-

tion that these formulas more clearly illustrate the procedure

which may be adopted in deriving formulas for similar cases not

included in these examples, if their relation to the geometric
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mean distances involved be made clear, this method of treatment

will here be outlined.

The geometric mean distance of an annulus of inner radius a2

and outer radius ax is given by formula (129)

lno . -n _ lno.„
a2*

1 ^i
,

T (3^2
2
-^i

2
)logR

1
-loga

1
-

(ai2
_ a22)2

log
a2
+ -

(ai2
_ a22)

which Silsbee develops in the series form

log R^log ai -- +^ +— + • •
• (36A)

useful in the case when the ratio t = (a
1
— a2) lax

of the thickness

to the outer radius is small.

The geometric mean distance of an annulus from any area

entirely inside of it is by (135), if for the outer radius we put a 3

and for the inner radius a 4 ,

log R _ ^ 3
2 log a 3 -a*2 log a* 1

13
o 3

2 —

a

4

2 2

or

lbgi? 12
= loga 3

-~~ + g-+-.. (37A)

in terms of the quantity s = — *• This formula gives the geo-
a 3

metric mean distance of the cross sections of two concentric

rings.

For the design a of tubular shunt, treated by Silsbee (p. 400),

in which one tube forms a return circuit for the other, and the

potential leads are brought out in the same plane at a distance I

from the junction of the tubes,

L=L 1 +L2 -2M
= 2fi> log R 12

- log R, - log R 2 )

"
/1 s s

2
s

4 \
2 log fl 3 +7-+ • • •

)

\ ° 2 12 60 /

/1 i t
3

t* \- log a
x
- +— +— + I

V 3 30 40 /

-(log 03-- +— +— + • • •

)
V 3 30 40 /J

110990°—19 6

= 2/
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This may be reduced by the relations

log a 3
- log a, = log ^ + log -4

fog gi-log fo-fo-^L iog (, -s)
a, a

l0g gi-log [°«-( '-°')]= log (I -,)
a 4 a.,

to

and expanding log (i -s) and log (i —u), we obtain Silsbee's

equation

(i 2 2 ~X 2 /
3

3 3 3 5 3 15 J
(38A)

For his case b, in which the potential leads are attached to the

outer tube at points a distance I apart and are carried away at

right angles to the axis of the tube

L=L2 -M = 2l (log R l2
- log R 2 )

= 2fl ( log a 3
---— + ^-+ •••)-( log a 3

-£4.—+—
J

L\ 2 12 60 / V
&

3 30 40/

J

(,y j"
2

,?
3

6"
4 \

~3~6~i5~6o /

(39A)

Silsbee's case c is like the preceding, except that the potential

leads are attached to the inner tube and are brought perpen-

dicularly out through holes in the outer tube. For this arrange-

ment

L=L,-M = 2l [log Rn-logRJ

= 2/[(tog «,-£-^ +|)-(loga1
-l+|+

^)]

which, remembering that

log
ai =log^ + log — = log (1 -u) +log (1 -s)
a 3 a

A
a 3

gives on expansion of the logarithms

= J 2U + S + -t+U 2 + ^S2 + I (40A)

Silsbees's final case d uses potential leads attached to the inner

tube at a distance / apart, one of them being carried away inside

the inner tube parallel to its axis. It is necessary, therefore, in
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this case to take into account the electromotive force induced in

this lead, which depends upon the geometric mean distance of

the inner tube on an area inside of it.

The inductive effect of the outer tube on the inner tube is

equal and opposite to the effect of the outer tube on the potential

lead, so that we find for the inductance simply

L=L
X
-Me = 2l [log R e - log R ± ]

= 2/[(loga
1 -^-^ +^ + .-.)-(loga

1
-l +^ +£ + ---)]

L 3 6 15 60 J

(41A)

It is to be noted that in cases b and d the inductance comes out

negative; that is, that the potential between the terminals lags

behind the current in phase.

The method used in deriving formulas (38A) to (41 A), inclusive,,

may be used to derive the inductance in other cases not here

treated.

Washington, July 27, 1917.
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APPENDIX

TABLE A.—Values of Zonal Harmonics for Use with Formulas (10A) to (19A)

M Pi(m) A, A; P«(m) A, Aj A 3

0.00 -0.5000 + 38 74 0. 3750 - 93 -185 + 12

.05 - .4962 112 76 .3657 - 278 -173 16

.10 - .4850 188 74 .3379 - 451 -157 22

.15 - .4662 262 76 .2928 - 608 -135 30

.20 - .4400 338 74 .2320 - 743 -105 37

.25 - .4062 + 412 76 .1577 - 848 - 68 41

.30 - .3650 488 74 + .0729 - 916 - 27 50

.35 - .3162 562 76 - .0187 - 943 + 23 56

.40 - .2600 638 74 - .1130 - 920 + 79 63

.45 - .1962 712 76 - .2050 - 841 142 67

.50 - .1250 + 788 74 - .2891 - 699 209 77

.55 - .0462 862 76 - .3590 - 490 286 81

.60 + .0400 938 74 - .4080 - 204 367 90.

.65 .1338 1012 76 - .4284 + 163 457 94

.70 .2350 1088 74 - .4121 + 620 551 102

.75 .3438 + 1162 76 - .3501 1171 653 108

.80 .4600 1238 74 - .2330 1824 761 116

.85 .5838 1312 76 - .0506 2585 878 120

.90

.95

.7150

.8538

1388

+ 1462

74 + .2079

.5541

3462

4459

997

1.00 1.0000 + 1.0000

M P«(m) Ai A 2 A 3 A 4 M P«G0 M Pa(#0

0.00 -0.3125 + 163 + 311 - 43 - 27 0.70 -0.1253 0.90 -0.2412

.05 - .2962 474 268 - 70 - 19 .71 - .1578 .91 - .1802

.10 - .2488 742 198 - 89 - 20 .72 - .1899 .92 - .1077

.15 - .1746 940 109 -109 - 7 .73 - .2214 .93 - .0229

.20 - .0806 1049 -116 .74 - .2518 .94 + .0751

.25 + .0243 1049 -116 -116 + 11 .75 - .2808 .95 .1875

.30 .1292 933 -232 -105 + 20 .76 - .3081 .96 .3151

.35 .2225 701 -337 - 85 + 41 .77 - .3333 .97 .4590

.40 .2926 + 364 -422 - 44 47 .78 - .3559 .98 .6204

.45 .3290 - 58 -466 + 3 73 .79 - .3756 .99 .8003

.50 .3232 - 524 -463 76 85 .80 - .3918 1.00 + 1.0000

.55 .2708 - 987 -387 161 110 .81 - .4041

.60 .1721 -1374 -226 271 129 .82 - .4119

.65 + .0347 -1600 + 45 400 153 .83 - .4147

.70

.75

- .1253

- .2808

-1555

-1110

445

998

553

732

179

207

.84

.85

- .4120

- .4030

.80 - .3918 - 112 1730 939 280 .86 - .3872

.85 - .4030 + 1618 2669 1219 .87 - .3638

.90 - .2412 4287 3888 .88 - .3322

.95

1.00

+ .1875

+ 1.0000

+ 8125 .89 - .2916
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TABLE B.—Values of y2 and y3 in Formulas (90) and (26A)

[Radial Depth of Cross Section Greater than the Axial Breadth]

c y2 y3 A, A 2

00 0. 59722 136 237

0.05 239. 43 . 59858 373 191

.10 60. 231 .60231 564 153

.15 27. 020 .60795 717 124

.20 15. 378 .61512 841 100

.25 9.9765 . 62353 941 80

.30 7.0327 . 63294 1021 67

.35 5. 2502 . 64315 1088 54

.40 4. 0876 . 65403 1142 47

.45 3. 2861 . 66545 1189 41

.50 2. 7093 . 67734 1230 37

.55 2. 2798 . 68964 1267 35

.60 1.9509 .70231 1302 35

.65 1.6931 .71533 1337 33

.70 1.4871 . 72870 1370 34

.75 1.3198 . 74240 1404 36

.80 1.1819 . 75644 1440 34

.85 1. 0669 . 77084 1474 39

.90 .9698 . 78558 1513 38

.95 .8872 . 80071 1551

1.00 .8162 . 81622

TABLE C—Constants in Lyle's Formula (28A), Thick Coils, b>c

Communicated by Prof. Lyle.

c/b 100 mi 10* m2 106 m3 1 100 h 10* 12 106

1

3 c/b

0.00 3. 125000 -9. 7656 76.29 0. 5000000 0. 781250 6. 5104 -69.30 0.00

.025 3. 123699 -9. 7463 76.01 . 5252663 . 783689 6.4896 -68.94 .025

.05 3. 119805 -9. 6886 75.14 . 5489951 . 790984 6. 4274 -67.88 .05

.10 3. 104373 -9.4613 71.79 . 5924342 . 819830 6. 1838 -63.77 .10

.15 3.079157 -9. 0942 66.50 . 6310248 . 866769 5. 7944 -57.35 .15

.20 3. 044872 -8.6040 59.67 .6652018 .930230 5. 2827 -49. 20 .20

.25 3. 002451 -8.0115 51.78 . 6953236 1.008207 4. 6774 -39.99 .25

.30 2.952982 -7.3402 43.36 .7217163 1.098406 4. 0102 -30.44 .30

.35 2. 897643 -6.6144 34.88 . 7446891 1.198386 3.3128 -21.17 .35

.40 2. 837644 -5.8573 26.77 . 7645392 1.305696 2. 6145 -12.70 .40

.45 2.774168 -5.0903 19.34 .7815523 1.417987 1.9404 - 5.39 .45

.50 -2.708333 -4.3316 12.82 . 7960019 1.533097 1.3107 + .55 .50

.55 2.641155 -3.5961 7.32 .8081473 1.649113 .7400 + 5.05 .55

.60 2. 573529 -2.8951 + 2.89 .8182324 1. 764399 + .2378 8.17 .60

.65 2. 506224 -2.2366 - .51 . 8264842 1.877606 - .1912 10.03 .65

.70 2.439877 -1.6260 - 2.94 .8331124 1.987664 - .5460 10.82 .70

.75 2. 375000 -1.0656 - 4.52 . 8383088 2. 093763 - .8287 10.73 .75

.80 2.311992 - .5563 - 5.37 .8422476 2. 195318 -1.0437 9.97 .80

.85 2.251149 - .0970 - 5.61 . 8450864 2.291944 -1.1966 8.73 .85

.90 2. 192680 + .3141 - 5.37 . 8469663 2. 383.421 -1.2939 7.16 .90

.95 2.136717 + .6800 - 4.75 . 84801S4 2. 469663 -1.3425 5.42 95

1.00 2. 083333 + 1.0037 - 3.85 . 8483397 2. 550686 -1.3490 3.62 1.00

1.05 2.032551 + 1.2888 - 2.75 . 8480444 2. 626593 -1.3199 1.83 1.05

1.10

l

1.984351 + 1.5387 - 1.53 .8472152 2.697542 -1.2613 + .13 1.10
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TABLE D.—Constants in Lyle's Formula (28A), Thin Coils, c>b

Communicated l>v Prof. Lyle.

b/c 100 mi 10<m a 10»m3 lo 1001, lOMs 10«lj be

0.00 1.041667 2.3872 14.97 0.5000000 3. 732639 4. 1667 17.05 0.00

.025 1.042978 2.3913 15.01 . 5252663 3. 732506 4.1614 17.00 .025

.05 1.046862 2. 4035 15.13 . 5489951 3.731810 4.1434 16.81 .05

.10 1.062294 2. 4508 15.59 . 5924342 3.727159 4. 0584 15.88 .10

.15 1.087510 2. 5237 16.25 .6310248 3.716052 3.8971 14.13 .15

.20 1.121795 2.6140 16.96 .6652018 3. 696644 3. 6550 11.60 .20

.25 1.164216 2.7115 17.56 . 6953236 3. 667845 3. 3359 8.45 .25

.30 1.213685 2. 8057 17.91 .7217163 3. 629250 2.9510 • 4.98 .30

.35 1.269024 2. 8859 17.89 . 7446891 3.581036 2.5161 4-1.49 .35

.40 1.329023 2. 9430 17.42 . 7645392 3. 523847 2.0499 -1.73 .40

.45 1.392498 2. 9694 16.49 .7815523 3. 458662 1.5715 -4.42 .45

.50 1.458333 2.9601 15.11 . 7960019 3. 386676 1.0990 -6.44 .50

.55 1.525512 2.9119 13.36 . 8081473 3.309190 + .6479 -7.68 .55

.60 1.593137 2. 8239 11.33 .8182324 3.227522 + .2308 -8.16 .60

.65 1.660442 2.6971 9.11 . 8264842 3. 142942 - .1431 -7.93 .65

.70 1.726790 2.5337 6.83 .8331124 3.056619 - .4677 -7.09 .70

.75 1.791667 2.3372 4.58 . 8383088 2. 969599 - .7400 -5.77 .75

.80 1.854675 2.1114 +2.44 . 8422476 2. 882783 - .9592 -4.09 .80

.85 1.915518 1.8608 + .48 . 8450864 2. 796929 -1.1265 -2.21 .85

.90 1.973987 1.5898 -1.24 . 8469663 2.712655 -1.2448 - .23 .90

.95 2. 029950 1.3028 -2.69 . 8480134 2. 630449 -1.3175 + 1.74 .95

1.00 2. 083333 1.0037 -3.85 . 8483397 2. 550686 -1.3490 + 3.62 1.00

1.05 2.134116 .6963 -4.71 . 8480444 2.473638 -1.3437 + 5.34 1.05

1.10 2.182315 .3839 -5.28 .8472152 2.399492 -1.3062 + 6.86 1.10

TABLE E.—Values of f (a) in Formula (24A)

a H«) a f(«) a t(a)

6. 969573 0.35 14. 19157 0.70 28. 08799

0.05 7. 715806 .40 15. 64577 .75 31. 20646

.10 8. 555811 .45 17. 2339 .80 34. 91552

.15 9. 487594 .50 18. 9740 .85 39. 52880

.20 10. 51246 .55 20. 8897 .90 45.74241

.25 11.63398 .60 23. 01363 1.00 oo

.30 12. 85776 .65 25. 39097


