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INTRODUCTION

Several precise laboratory methods are now available for the

determination of the ratio and phase angle of current transformers. 1

These, however, all require a considerable amount of special

apparatus, such as carefully calibrated noninductive shunts and
very sensitive alternating-current detectors, and are therefore not

suited for use under shop or central-station conditions.

The task of comparing the constants of one transformer with

those of a second transformer taken as a standard is much less

difficult. The standard transformer should, of course, have the

same nominal ratio, and its constants should have been deter-

mined by one of the precise laboratory methods. A method for

such a comparison of two voltage transformers has been pub-

lished by Brooks, 2 and another method applicable to either

voltage or current transformers by Agnew 3 and by Knopp. 4

The method developed in this paper is somewhat analogous to

the first of these and will be found rather more rapid than the

second.

As in the other comparison methods the detector may be much
less sensitive than in the absolute methods, and it is therefore

1 Agnew and Fitch, this Bulletin, 6, p. 281, 1909; Electrical World, 54, p. 1042, 1909; E. Orlich, E. T. Z.,

30, p. 435, 466, 1909; E. T. Robinson, Trans. Am. Inst. Elec. Eng., 28, p. 1005, 1909; F. A. Laws, Electrical

World, 55, p. 223, 1910; Sharp and Crawford, Trans. Am. Inst. Elec. Eng., 29, p. 1517, 1910; Agnew and
Silsbee, Trans. Am. Inst. Elec. Eng., 31, p. 1635, 1912; Schering and Alberti, Archiv fur Elcktroteclmik,

2, p. 263, 1914.

2 H. B. Brooks, this Bulletin, 10, p. 419, 1914 (Scientific Paper No. 217); Electrical World, 62, p. 898, 19x3.

3 P. G. Agnew, this Bulletin, 11, p. 347, 1914 (Scientific Paper No. 233).
4 O. A. Knopp, Electrical World, 67, p. 92, 1916.
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possible to use a more rugged type of instrument, such as a com-

mercial wattmeter. Multiple-range transformers are particularly

useful as standards, since they show practically proportional

ratios and identical phase angles on the various primary con-

nections. Two or three such transformers, the ratio and phase

angle of which have been accurately determined, suffice for testing

a considerable range of transformers.

GENERAL PRINCIPLES

The principle of the method is illustrated by Fig. i . 5 and X
are the standard and the unknown transformer, respectively.

The primary windings are connected in series and supplied with

current from a suitable source. The secondary windings are also

Fig. i

connected in series, with such polarity that both tend to send

current in the same direction, and any desired impedance loads

such as zs and zx complete the circuit. A suitable detector D is

then connected so as to bridge across between the transformers.

It is evident that the current AI through the detector (which

we shall assume for the present to have a negligible impedance) is

necessarily equal to the vector difference of the secondary currents

Is and /x of the transformers. Consequently, if the magnitude

and phase of AI are measured, the difference in performance of

the two transformers can be computed. This measurement of

AI may be made either directly by using as a detector one

winding of a separately excited wattmeter, as is described below

as the "Deflection method," or the measurement may be made
indirectly by using an additional compensating circuit between

.4 and B, as indicated by the dotted lines. By proper arrange-

ment of the impedances all of AI may be made to flow in this
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compensating circuit, and the current in the detector reduced to

zero. This is described below as the "Null method." There are,

of course, a great many other possible arrangements for measuring
AI, but the two here described in detail will be found the most
convenient.

The performance of a current transformer depends to a con-

siderable extent upon the impedance of the apparatus and wiring

connected in the secondary circuit. It is therefore of importance

to determine what impedance is introduced into the circuit of each

transformer by the arrangement of circuits shown in Fig. 1 . Now
transformer X is carrying a current Ix at a terminal voltage Ex,

and the equivalent impedance load is

x = 7- = f
= zx — j- (vectonally)

^x ^s ^x

In the deflection method Ed (the voltage between the terminals

of the detector) is

Ed = AIzd

And hence

and similarly

Zx = zx — zd-f— (vectorially)
* X

Zs = zs + zd~y~ (vectorially)

It is therefore evident that when the secondary currents are

nearly equal, so that -y- is very small, a detector of considerable

impedance and therefore of high-current sensitivity may be used.

On the other hand, when -j— is large, then the use of a detector of

high impedance may shift the load from the transformer of higher

ratio to that having the lower and thus make the difference in

ratio appreciably less than the correct value.

In the null method, on the other hand, Ed is zero when a balance

is reached, so that
7—9^X ^X

and the performance of each transformer is the same as if the

other transformer were replaced by a short-circuiting link across

A C. Although very evident theoretically, this fact was also

tested experimentally, and the behavior of the transformer was

found to be the same as when the detector was replaced by a

wire of negligible resistance.
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The principal limitation on the sensitivity attainable in any
method of testing current transformers is due to the condition

that the measuring circuit must not affect the performance of the

transformer. This means that the measuring apparatus must not

increase the equivalent connected secondary load by more than a

certain resistance which we may denote by r.

The gain in sensitivity of a comparison method, such as is de-

scribed in this paper over an absolute method, is seen by comparing

the power available for operating the detector in the two cases.

In the usual absolute method the secondary current / is passed

through a noninductive resistance which is preferably equal to r.

The voltage drop Ir is balanced by the drop due to the primary

current flowing through a proportionately smaller resistance.

With such an arrangement the impedance of the circuit external

to the detector is approximately r, and for the maximum sensitivity

the detector itself should also have this same impedance. If under

these conditions the secondary current should differ by a small

amount 81 from that required for an exact balance, then the un-

balanced voltage acting in the detector circuit will be only blr.

Since the resistance of the complete circuit is 2r, the current flow-

big in the detector will be — , and the voltage across the detector

—2
X T 5 T

will be — . Consequently the power available is —r.

On the other hand, in the case of the deflection method outlined

in this paper, the total difference AI between the two secondary

currents flows through the detector and produces a voltage at its

terminals equal to AIzd . Here zd is the impedance of the detector,

and is limited by the fact that this voltage AIzd must not exceed

the permissible value Ir for the largest value of A/. Conse-

quently, we have z&<iri Y and if we use a detector having this im-

pedance, the volt amperes available for a difference hi in the cur-

_2 /
rents is 5/ ~Zjr. Since the two transformers will usually differ by

only a few per cent the factor -rj is fairly large and the detector

required may be 50 or 100 times less sensitive than in the precise

laboratory methods. It is this relation which brings the method

within the range of sensitivity obtainable with commercial pivoted

instruments.
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NULL METHOD

The connections of what is probably the most satisfactory form

of null method based on the general arrangement outlined above

are given in Fig. 2. ABCD is a slide wire of about 0.2 ohm total

resistance. M is a mutual inductance of about 600 microhenrys,

the primary of which can carry 5 amperes without excessive

heating. r
± is a resistance of about 30 ohms, preferably capable

of being set at several other values down to 2 ohms. As the

value of rt
appears in the denominator in the equations below it

is convenient to have the total resistance between F and C, includ-

ing the resistance of the secondary winding of M, an exact integer

for each setting of rv M, r
t
and r2 need be calibrated only to the

per cent accuracy which is desired in the difference of the ratios;

that is, to about 1 per cent.

The detector shown in the figure is a separately excited electro-

dynamometer instrument. A commercial wattmeter of low-

current range may be adapted for this work by bringing out taps

directly from the moving coil without using any of the series

resistance. The moving coil is connected as shown and the cur-

rent coil excited by its full rated current in either of two phases,

which preferably are in quadrature, through the double-throw

switch G. Any other form of alternating-current detector sen-

sitive to 0.00005 ampere might be used. 5

As a precaution a 10-ampere ammeter should be connected in

parallel with the detector, so that the transformers will not be

damaged if they have inadvertently been connected in opposition

instead of aiding. If on closing the circuit this ammeter shows

no appreciable current the polarity of the transformers is correct,

and the ammeter should then be disconnected.

The procedure is to adjust the position of the slider C and the

value of the mutual inductance M until no deflection is obtained

on closing G in either direction. When a balance is thus obtained

all of the differential current A/ is flowing through r1} and also

the difference of potential between points B and F is zero. Con-

sequently, the voltage drops between C and F and between C and

B must be equal and in phase with one another. From this rela-

tion the differences in the ratios and phase angles of the two

transformers may be computed.

5 A new type of vibration galvanometer has been recently developed by Agnew which is very well suited

for this work. A description of this sensitive yet rugged instrument is to be published shortly in this

Bulletin.
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If Ra and Rx are the ratios of the transformers 5 and X, respec-

tively, and <xB and ax are the corresponding phase angles, then we
have 6 for the case where the slider C is to the right of B (Fig. 2)

R e 2

and tan (ax - a8) = 6 + ac

6 The equations Riven below may be deduced as follows: For the connections as drawn in Fig. a

we have A/=/»-/x (i)

and A!(.ri+juLi)+hu.\f=/ x r-: (2)

by KirchhofT 's laws, where the currents are to be regarded as vector quantities.

Hence, eliminating A/, we get

lAn+MLi+M}=U(n~r:+^Li) (3)

T% U

' V n n /

Substituting a= -"
/,
=^^ , r=-^

,
Tl T\ T\

l±=l±?±p- l+ a-bc-V...+j{-b-ac-ob....) (5)

This quotient must now be determined in terms of the current ratios and phase angles of the two trans-

formers. The ratio of a current transformer is simply the ratio of the magnitude of the primary current,

7 P . to that of the secondary. But since we are now regarding the currents as vector quantities, we must
write for the ratios

RA = ^(cos cti+j sin a s ) (6)

i?i=-p (cos ax+>sin a x ) (7)
ix

where the complex factors in the parentheses have been introduced to make the ratios themselves (#,

and Rx) simple numbers instead of vector quantities. (The complex factor in each case merely turns

the vector Ip through the angle a, into coincidence with the secondary current.) It is to be noted that this

assumes that the phase angle, a, is positive when the reversed secondary current leads the primary current.

From (6) and (7) we have
Rx (cos <zs+j sin tt s ) _/g
Ra (cos ai +> sin a x)~Ix

Of rationalizing

^»|cos(a 9-a»)+y sm(aa-«*)}=^ (9)

Equating (5) and (9) and separating the real and imaginary terms, we get

- *cos(a»—

a

x)=i+ a—be—

b

2
. . . (11)

Ra

p
and —>sina( g—

a

x)=-b—ac— ab. .. (12)
Ra

Solving these equations simultaneously, we have

^ = {(i+a-&c-62)2+(_6_ at— o6)*}
l/5

-i+ fl-^.-6c (13)

and tan(«**—<r,)=*6+a« (14)

which are the formulas desired.

The deduction for the case when the slide C is to the left of B (Fig. 2) is similar to the above with slight

differences in the second-order terms.

(8)
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For the case where C is on the same side of B as transformer X,
then

where

^ = 1 — a 4- a2 be

tan (ax --as) =^b — ac — ab

^2

^1

ajLt

and oj=27tX frequency.

fi = the total resistance between C and H through r
t
and M

(Fig. 2), in ohms.

r2 = the resistance of the slide wire between B and C, in ohms.

Lx
= the self-inductance of the secondary coil of the mutual

inductance M, in henrys.

M = the value of the mutual inductance, in henrys. (This

is to be taken as positive if ax is greater than a9 as

shown by the test described below.)

©
S

Ammeter

fhoaell L* e &h>a&el

Fig. 2
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The second-order terms are usually very small and to an accu-

racy of a tenth per cent we have in either case

R* = Ra (i ±a)

«x = a* + 3438 b

if the angles are expressed in minutes.

If the balance is obtained with the slider between B and D
(Fig. 2), then (provided the second-order terms are less than a),

the standard transformer is supplying the greater secondary

current and consequently has the smaller ratio. The question

which secondary current leads the primary current by the greater

angle can best be determined once for all by adding some resistance

to the load on transformer X. This will always make 7X lead

more than before and if the value of M required for a balance is

increased then Ix was leading originally and M and b are to be

taken as positive with this connection of the mutual inductance.

In the case when the slider C is to the right of B (Fig. 2) and the

part AB of the slide wire is omitted, then the measuring circuits

introduce no impedance whatever into the equivalent secondary

circuit of transformer X. It is therefore possible by this arrange-

ment to test a current transformer under the condition of zero

external load. The load on transformer 5 or, in case C is to the

left of B, on both transformers, is practically the same as the

impedance of the slide wire and the primary winding of M. The

slight change in this, due to the fact that r, in effect shunts r2 ,

is of the order ar2 and its effect on the performance of either

transformer is entirely negligible.

It is evident that if 5 always had a smaller ratio than X the

slider would always be on the standard side of B and the part AB
of the slide wire would be unnecessary. This arrangement is very

desirable since it does away with the necessity of allowing for the

resistance of AB in making the total impedance load on trans-

former X equal to the desired value. The ratio of the standard

transformer could be reduced by omitting a few turns from the

secondary winding in the process of manufacture. In completed

transformers of the hole type this can still be done by passing a

few secondary turns through the hole in a direction to oppose the

main secondary winding.

Since at the point of balance no current flows through the

moving coil of the detector the self-inductance of this coil has no

effect on the results. The mutual inductance between the two
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coils of the wattmeter, however, does produce an electromotive

force between the points B and F even when no current flows and

therefore affects the setting. This source of error can easily be
eliminated by shifting the position of the control springs so that

the normal zero of the instrument corresponds to the position of

zero mutual inductance. 7

If the current in Phase I of the exciting circuit is in phase with

the current in the transformers and Phase II is 90 from this,

then the slider C may be adjusted with G closed to the right,

and M with G to the left, and the two settings will be independ-

ent of each other. It is not at all necessary, however, that these

phase relations be exact and Phase II may be 6o° from Phase I,

s-fv

i5pr^

1mm
Load a

C^D

fihaseX
I

PV

I//TX QBSl

Am.

W7?.

PMsel

Fig.

as in a 3-phase system. If a polyphase supply is not available,

current for Phase I may be drawn through a lamp bank and Phase

II from the same supply through a reactance coil or transformer

winding. With this arrangement it is well not to work the iron

of the core much above its normal rating or the harmonics in the

exciting current will become excessive.

DEFLECTION METHOD

In cases where a variable mutual inductance and slide wire

are not available, but a polyphase supply is at hand, the deflec-

tion method (the connections for which are shown in Fig. 3) may

7 This position can be determined by short-circuiting the moving; coil (or better still by connecting it

to a large inductance of low resistance, such as the 220-volt winding of a transformer) and passing full rated

current through the fixed coil. Under these conditions the pointer deflects toward the position of sero

mutual inductance, and by suitably moving the control springs the desired position can soon be located.

An alternative method is to connect a telephone receiver to the moving coil and pass full-rated current

through the fixed coil. The springs can then be adjusted until no sound is heard in the telephone.

59467°—18 11
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be used. The detector W in this method must be of the dyna-

mometer type, and arranged so that one coil may be supplied

from two circuits, one giving a current in phase with the current

in the transformers and the other giving a current having a known
phase relation, preferably quadrature with the former. If Di and

Dq are the deflections in divisions, observed with the excitation

in phase, and in quadrature, respectively, we have

Rx= KDj
R* ^3

K D
tan (ax — <x3) = —

p

3
, approximately,

where K is the constant of the instrument in amperes per division.

If the wattmeter is excited by passing a current I through its cur-

rent coil,

kK =
IqRv

where k is the constant in watts per division for a given range

and RY is the resistance of the voltage circuit of the same range.

If the wrattmeter is excited by applying a voltage EQ to the voltage

circuit, then

In case the second phase available as a source of excitation is

not in quadrature with the first, but gives exciting current which

lags behind the current in the transformers by an angle 6 and pro-

duces a corresponding deflection Dd) then we have

R*_
,

KD
X

R*~
J+

h

, , ,
K fPe—Di cos 6\tan («,-«,) = J7(—-^ )

As before, the question which secondary current is the greater

and which leads the primary current by a greater angle can best

be answered by changing the load on one transformer and noting

the effect on the deflections, remembering that an increase in

secondary resistance makes the secondary current smaller and

also makes it lead the primary current more.
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The principal limitation of this method is, as mentioned above,

the effect of the impedance of the detector in shifting the load

from one transformer to the other. The change in the equivalent

impedance load on either transformer due to this is given by

y zdAI ZdK'ylDi
2 +D <l

2

AZ - j -
j

Since this varies with the deflection it is impracticable to allow

for this impedance in arranging the secondary loads on the trans-

formers and it is necessary to reduce AZ not to a comparatively

small and definite value, as in the null method, but to a value

which can be entirely neglected. If the moving coil of a commer-

cial wattmeter is used as a detector, it must therefore be shunted

by a rather low resistance and the sensitivity correspondingly

reduced. The current circuit of a 1 -ampere wattmeter has about

the desired impedance and will be found satisfactory as a detector

for this work. The use of the voltage circuit for the excitation

is also convenient, since it avoids the necessity of a separate

resistance.

The mutual inductance between the coils also introduces an

equivalent load on the transformers, but if over the part of the

scale used the coil is reasonably near the position of zero mutual

inductance, this error will be less than that due to the impedance.

As a specific example of the various factors entering into the

choice of a detector, let us consider the commercial wattmeter

used in the experiments described below, which has the following

constants

:

Nominal current 2. amperes.

Maximum current 3. amperes.

Nominal voltage 75. volts.

Maximum voltage no. volts.

Resistance of fixed coil o. 27 ohm.

Resistance of moving coil 42. ohms.

Resistance of voltage circuit 1, 178. ohms.

Watts per division .5

When this instrument is used with excitation on the voltage

circuit we have

K = : = 4.5 X io~ 3 amperes per division,

2d =o.27 ohm, approximately.
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When used with excitation on the current circuit the mov

coil must be shunted to give a resistance of about i ohm so that

K =— — : X — = 6.0 X io—

3

amperes per division,
3 X 1 178 i

r r

zd = 1 ohm, approximately.

If the two transformers differ by 1 per cent in current, then at

the 5-ampere point we have in the first case the deflection

D = 8.3 divisions

and AZ = 0.003 ohm,

in the second case

D = 1 1 . divisions

and AZ = o.oi ohm.

A further error arises if the exciting voltages are not in the

correct phase. The magnitude of this effect varies greatly with

the difference in constants of the two transformers. If this dif-

ference is 1 per cent in ratio and 30 minutes in phase angle, a

shift in phase of 7 degrees in the exciting voltage will produce an

error of about 0.1 per cent in ratio and 3 minutes in angle. An
auxiliary 5-ampere wattmeter connected as shown at Wm in

Fig. 3 is a convenient means of determining these phase relations.

EXPERIMENTAL RESULTS

Both of the methods described above have been tried experi-

mentally and the results are plotted on a large scale in Fig. 4.

Curves .4 and B give the ratio factor and phase angle, respec-

tively, of a 2 5-ampere, 40 volt-ampere portable current trans-

former at 60 cycles. The curve is drawn through values obtained

by a precise laboratory method. The crosses are points observed

by the null method using as a standard a similar transformer

carrying considerably less load. Curves C and D give the ratio

factor and phase angle of another transformer which was tested

by the deflection method. As before, the curves are drawn

through the points obtained by a precise laboratory method and
the circles show the values obtained by the method here proposed.

SUMMARY

A general method has been outlined for the determination of

the ratio and phase angle of current transformers in terms of the

constants of previously calibrated standard transformers of the
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same nominal ratio. It has been shown that such methods are

essentially more sensitive, or conversely may be used with much
less sensitive instruments, than the laboratory methods now in

use for the absolute determination of the ratio and phase angle

of a single transformer. Two of the most convenient of the many
possible modifications of the general method are described in
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detail. The experimental results obtained on two pairs of trans-

formers by these methods agree very satisfactorily with the values

obtained by absolute methods. It is hoped that the methods

will be found useful in commercial plants where delicate laboratory

equipment is not available, and where large numbers of trans-

formers must be tested rapidly and with moderate accuracy.

Washington, July 1, 191 7.


