
CALCULATION OF THE CONSTANTS OF PLANCK'S
RADIATION EQUATION: AN EXTENSION OF THE
THEORY OF LEAST SQUARES

By Harry M. Roeser

During the past few years several methods have been proposed

for determining from experimental measnrements the constants

of Planck's equation for the distribution of energy in the spectrum

of a uniformly heated inclosure or black body. The equation is

as follows:

In this equation jE^ is a measmre of the energy, X the wave
length, 6 the absolute temperature, Cj is a constant depending on

the imits in which E is measured and gives the scale of ordinates,

C2 is a constant which affects the shape of the curve and is some-

times called the ''constant of spectral radiation." On accoimt of

the ease with which it may be eliminated from computations and

its minor importance in indicating the actual distribution of energy,

passing mention is usually deemed sufficient for c^. The deter-

mination of C2 has properly been the center of most concern, and

several methods of computing it from observed data on E and X

at constant temperatiure or E and 6 at constant wave length have

been offered.^ Recent discussions have been devoted to observa-

tions at constant temperature, the curve in this case being called

an ''isothermal," and the methods of solution differ mainly in the

manner of combining observations and in the use of correction

terms to the transcendental expression for Cg in terms of the other

magnitudes involved. Some variations have appeared in the

results given by these different methods. C. E. Van Orstrand

has suggested as a remedy a solution by least squares. The carry-

ing out of this suggestion is one of the purposes of this paper. A
1 A concise summary of current methods and a detailed explanation of a new one may be fotmd in this

Bulletin, 13, p. 535, 1916 (Scientific Paper No. 287), by J. H. Dellinger; see also Buckingham and Dellinger,

this Bulletin, 7, p. 393, 1911; W. W. Coblcntz. this bulletin, 10, p. 2, 1914; W. W. Coblentz. this Bulletin,

13, p. 459, 1916 (Scientific Paper No. 284). Copious references to early German methods of attack are given

in Coblentz's first paper. Phys. Rev. 28, p. 466, 1909; 82, p. 591, 1911; Ann. d. Phys., 309, p. 277, and p.

649, 1901; 311, p. 192, 1901.
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method of attack is indicated and a least-square solution for the

constants made, using some of the data that have been used in

the past to determine c^ by other methods. Theoretical reasons

why the results of some of the previous investigations dififer will

also be given.

THE METHOD OF ATTACK

The rationale of the least-square reduction employed herein is

as follows. Consider the Planck equation as stated above,

A set of n observations being given on E and X at constant tem-

perature 6, it is required to determine the most probable values

of the constants c^ and c,.

The function may be written,

E = c,\-'e?e(i-e~xe)--'

If £"1, X^; Eo, X2; * * * En, Xq are the n observations all

of equal weight, the observeation equations are

E,=c,\-''e^^e{i -e M)"^

* * *

Ci Ci

En = C,\n~"e^n9{l - ^-X„^)-l

In these equations the parentheses on the right-hand side con-

taining the exponential is relatively insensitive to a change in Cj

as long as c^ is a fairly close approximation to its proper value.

The equations may be made linear and explicit in log c^ and Cj

by substituting in the parentheses a reasonably approximate value

C2 for Co which may be determined by trial or by any method

whatever, taking the logarithms of both sides and properly weight-

ing the transformed observation equations.

Thus, after taking logarithms and transposing,

c -^^

log c,-^^ = log E, +5logX^ +log(i -e ^0, weight E,'

c -^
log q -^ = log E, +5 log Xo -f log (i -e ^=^), weight E,' (2)

c -^
log C, -^ = log En +5 log Xn -rlog (l -e ^»^)

,
WCight Ea'

\
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The logarithmic transformation employed here is by no means
new and is quite frequently used as a medium for reducing data

by least squares. However, while weighting the observation

equations so transformed is evidently necessary in order to make
a proper least-square solution, the principle is generally neglected

in texts and papers dealing with practical means of handling

observation equations to make them linear in the quantities

sought, and consequently a sort of inherent inaccuracy depending

on the scheme of reduction exists in many commonly accepted

current methods of which the above is one.

It may be well to justify the principle here. Consider any

observed value Ei. Let its probable error be yi. Let (p{Ei) be

any ftmction of E^ and Ri be the probable error of (p{Ei).

Then 2

Now the relative weights of two quantities are inversely as the

squares of their probable errors.^ That is, if Pi be the weight of

(p(Ei) and pi be the weight of Ei, then

or, (4)

P,=i

L d£i J

In the particular case above where equations i are all of unit

weight or reduced to a unit weight basis,

pi = i, and <p(Ei) =log Ei

thus Pi, which is the weight of any one of equations II becomes,

Pi=/dlogEiY^Ei'

which was to be shown.

2 Merriman, Least Squares, pp. 78-79; 1913.

8 Merriman, Least Squares, p. 60, 1913; Johnson, W. W., Theory of Errors and Method of Least Squares

p. 53, 1892.
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Equations 2 may be condensed into the following form:

log ^1 — ^1 ^2 = ^1 r
weight Ei^

log Ci - m2 C2 = M2, weight E^" (5)

*p *n 'r ^

log Ci — mn C2 = Mn, weight En^

in which all quantities except log c^ and C2 are either known or

may be determined from the observations.

The normal equations whose solution gives the most probable

values of log c^ and C2 are

log c, 2 E'-c, X E'm= X E'

M

-log c^^ E^ m +C2 2E2 w?= -1: E^ mM
Whence,

(6)

and if common logarithm.s are used

2 E^ 2 £2 ^ M -2 E^ m • S E^ M
C2 = 2.3026

1: E'-i: E'7n'-(X E'my

(7)

(8)

If C2 does not agree well with the approximate value, c'2, of

equations 2, another solution can be made using the computed

value as c'2.

APPLICATION OF THE METHOD

The application of the above process is straightforward and will

not require an excessive amount of time or trouble of one possess-

ing even a moderate amount of skill as a computer. The following

12 observations taken with a vacuum bolometer, fluorite prism,

and mirror spectrometer were furnished by Dr. W. W. Coblentz.^

TABLE 1

Observations of Energy, Measured by Galvanometer Deflection, and Wave Length

(Absolute temperature 1350" C]

E
(galvanom-
eter de-
flection)

X
(microns)

E
(galvanom-
eter de-
flection)

X
(microns)

E
(galvanom-
eter de-
flection)

X
(microns)

3.12 0. 9338 ' 23.95 1.526 12.10 4.446

6.75 1.054 ! 19.20 3.569 11.02 4.638

11.80 1. 197 ' 17.45 3.760 9.10 5.001

18.03 ,.3S,
1

15.05 4. 031 7.70 5.329

* These data have been used for other determinations of ca. See Coblentz, this Bulletin, 13, p. 474; 1916.

MWM
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?o

J^ j£^

Fig. I.

—

Planck's radiation curve y computedfrom the data of Table I.
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The author carried out the computations to seven significant

figures, using a seven-place Vega logarithm table and an eight-

place computing machine. Five significant figures will amply
suflice for practical purposes and will materially reduce the amount
of labor required. The value of c\ used in equations 2 to reduce

them to equations 5 was c'2 = 14 340. A table of computed coeffi-

cients is herewith given.

TABLE 2

Coefficients for Equations 5

1

M=logEi
+5 log Xi

+ log(l-e >^«)

E3

1

M=logEi
+5 log Xi

C'l

+log(l-e ^0)

E^

0. 0007932542 0. 3454193 9.7344 0. 0001970055 4.0911939 304. 5025

. 0007027901 . 9434885 45. 5625 . 0001837610 4. 1722971 226. 5025

. 0006188310 1. 4622922 139. 2400 . 0001666458 4. 2804091 146. 4100

. 0005458864 1.9187218 325. 0809 .0001597112 4. 3274943 121.4404

.0004854133 2. 2966665 573. 6025 .0001481185 4. 3990489 82. 8100

. 0002075485 4. 0233168 368. 6400 . 0001390018 4. 4561279 59. 2900

weight 325.0809

weight 573-6025

weight 36 8.6400

weight 304.5025

weight 226.5025

Let c, = 1 ,000 V.

Equations 5 become

log q -0.7932542 7; =0.3454193, weight 9.7344

logCi- .7027901 X' = 0.9434885, weight 45.5625

log Ci — .6188310 7; = 1.462292, weight 139.2400

logCi- .5458664 i; = i.9i8722,

logCi- .4854133 t; = 2.296666,

logCi- .2075485 7; = 4.02331 7,

logc,- .1970055 7; = 4.091 194,

logq- .1837610 7; = 4.i72297,

log
<^i
~ .1666458 7^ = 4.280409, weight 146.4100

logCj- .1597112 7; = 4.327494, weight 121.4404

log Ci - .1481185 7^ = 4.399049, weight 82.8100

logCj- .1390018 i; = 4.456128, weight 59.290c

The normal equations 6 become

2402.816 log Ci — 824.2166 77 = 7645.762

824.2166 log q -359.4441 7; = 2i44.792

whence

log c, = 5.3185650, c, = 208,240, c, = 1000 V = 14,342.1

This value of Cj agrees very closely with the assumed value,

14 340, in equations 5. Had there been a wide difference, as

much as i per cent, say, the computed value of Cj could be used

I
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for the c'2 of equations 5 and the computations repeated until a

satisfactory agreement was attained.

Should a second solution be deemed advisable, it may be accom-

plished very rapidly and with little labor. The coefficients of

the unknowns in the normal equations will not be altered by a

change in c\. The known terms will be altered slightly, due to

slight changes in the last few of equations 5 from the right-hand

side of the distribution. However, the normal equations are so

insensitive to changes in c\ that after a reasonably judicious

selection of a first A^alue a second solution will rarely be necessary.

In regard to units, c^ is expressed in micron degrees. The scale

of ordinates is affected by q, which depends upon the tmits in

which E, the emissivity, is measured. In the above observations

from which c^ is calculated, E is measured by the deflections of a

galvanometer whose sensitivity varies under different experi-

mental conditions. The value of c^ is, therefore, of an arbitrary

nattire and will hold only for data measured by this same galva-

nometer scale under similar experimental conditions.

A table of residuals follows

:

TABLE 3

List of Residuals from Observations Given in Table 1. Computed from Planck's
Equation, Using the Constants Obtained by the Least-Square Solution

E Residuals,
observed
minus

computed

(Residuals)2

Observed Computed

3.12

6.75

11.80

18.03

23.95

19.20

17.45

15.05

12.10

11.02

9.10

7.70

3.360

6.713

11. 849

18. 023

23. 863

19.311

17.461

15. 109

12. 105

10. 926

9.036

7.641

?
1

till

0. 057600

. 001369

. 002401

. 000049

.007569

. 012321

. 000121

. 003481

. 000025

. 008836

.004096

.003481

I:t;2=. 101349
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It may be of interest to note here the probable errors, R^ and

Rc2, of Ci and c^,, which are an indication of the precision of the

values as determined. The probable errors are,

R.,=c,xR log ..^o.6745y(^_,)^^3.^^^^._^^^,^). -624

(See equation 3.)

Z E'

n being the number of observations. The other coefficients are

those as found in equations 6.

The adjusted values of the constants written in the conventional

manner are then

Cj = 208,240 ±624, in arbitrary units.

Co = 14,342 ±8.0, in micron degrees.

DISCUSSION OF SOME CURRENT METHODS'

Two methods about w^hich discussion has centered will now be

briefly considered.

In the first or "equal ordinate" method, a curve is fitted by
eye to the plotted observations and a line distant E^ and parallel

to the X axis drawn, c^ in terms of the abscissas \ and X,, corre-

sponding to the points of intersection of the line with the curve

has been shown ^ to be

^ ^2 ^iF 1 ^2 C2I / X

'^.=x;3x;[5iogx;-'^-MoJ (9)

to a high degree of approximation. In this manner a number of

values of c^ are computed and the arithmetic mean taken as a

final value.

A second method, which has come to be called the **two point"

method, has been recently developed."^ A high approximation for

C2 in terms of any two observations, E^, X^: E., Xj, is

Ao
!^_[log|+5K4;-e-S] (10)

* See note i, p. 237.

* Buckingham and Dellinger, this Bulletin. 7. p. 393, 191 1; W. W. Coblentz. Phys. Rev.

^ J. H. Dellinger, this Bulletin, 13, p. 540; 1916.
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and the rigorous solution is

c-^e
^^^^

X2— Xj

_C_2

Eo . X9 < I — e ^1^

log^+5log^+log ^ (II)

The former equation is accurate enough for all cases except where

both observations are on the right side of the maximum.
A discussion follows to show why these two methods as they

have been applied necessarily give somewhat inconsistent results.

Consider the conditions. There are given n observations all of

equal weight on the quantities E and X. These observations are

operated on a pair at a time to give

C2=(Pi (£^1, E2, Xi, X2)

* * * (12)

C2==(Pi (Ei, E^, X, Xk)

Herein lies the difficulty that has previously been met. It has

been taken for granted that the values of Cg obtained from the

expressions 12 are of equal weight, and to get a final value of Cg

an arithmetic mean is taken. Since the probable error of a qaun-

tity, which is proportional to the square root of the reciprocal of

its weight,^ computed from a function of observed quantities

depends upon the nature of the function and the probable errors

of the observed quantities, this step is obviously at fault unless

the change in weight due to changes in the function is inappre-

ciable as observations are taken from place to place in the dis-

tribution.

In what follows a system of weighting the separately computed

values of c^ is indicated that will tend to m-ake the results by the

two-point method agree with the' results given by least squares.

Consider any pair of equations 5, say the i^th and the k'th, (k> i)

.

IvCt them be reduced to a unit weight basis * and solved for Cg.

Thus,

Ei log c^ —EimiC2=EiMi
Ek log Ci - Ey^m^C^ = Ey:M\^

Whence,

or,

C2(mk -mO^iEk = {M^-Mi)EiE^, (13)

Mk-Mi
, ,

^2
= (14)

8 Merriman, Least Squares, p. 69; 1913.

8 Wright and Hayford, Adjustment of Observations, p. 95; 1906.

59467"—IS (3
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which, when proper substitutions are made, is the same as equa-

tion 1 1

.

If Ei=E],, equation 14, after certain approximations,^^ becomes

identical with 9.

Thin — I

)

If there are n of equations 5, there will be possible

expressions like 13, from each of which may be obtained an expres-

sion for C2 like 14, which is a possible (but all are not equally prob-

able) expression for the true value of Co. A brief elementary con-

sideration of the error theory will show that the most probable value

fi(fi — I

)

of C2 is not the mean of the equations 14. The most

71 in — I

)

probable value is given by a least-square solution of the

equations 13, or,

i: E\E\{M^,-M-;){mv-mO

In which k>i, k takes any value between 2 and n, inclusive, and

i takes every corresponding possible value between i and n — i,

inclusive. It is evident from inspection that this solution will be

given by a reduction of the equations 14, if each is weighted

as

Ei^E],^{m],-miy (16)

It will now be shown that if equations 5 be reduced by the

two-point method, giving each expression for Co the weight indi-

cated by 16, and if every possible combination of the observations

a pair at a time be made, the resulting value of C2 will be identical

with that given by the method of least squares. ^^

For the sake of brevity in notation and manipulation, let four

observation equations similar in type to equations 5 be con-

sidered, viz,

a + bxi=yi, weight p^

a + bx2 = y2, weight p^

a + hxz = yzy weight /)
3

a + hx^=y^, weight /><

1" See note i, p. 237, Buckingham and Dellinger.

** Wright, Adjustment of Observations, p. 141; 1884.

(17)

IF"
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In which the b of these equations corresponds to the C2 of equa-

tions 5.

Equations 1 7 may be reduced to an equal-weight basis by mul-

tiplying each through by the square root of its weight. Thus,

^fp~^a+^Jp,bx, = y/p,y^

^ff^a + v^^2^ = V?Iy2

^[pl(^+4Fz^J^^4F^y^

Let the ^''th and the ^'th {k>i) equations be solved simul-

taneously for h. Then

^/pi^JM^^-^i)^ = ^/¥l^ff2iy^-yi) (18)

or,

^= ^^IZly weight p.p.ix^-XiY (19)

The number of equations of type 19 (i. e., the number of possible

solutions for b from the fotir observation equations) will be the

same as the number of combinations of four things two at a

time, or ^-—^ • If all these solutions be made, there will be at
1X2 '

hand six expressions for b,

X4 A^i

^=Z~:~' weight /? 2^4(^4 -^2)'
Jl-4 X2

X4 X3

^=?ZV ' ^^ig'^t p,p,(x, -x,r

^=?-^ ' weight p,ps{x, -x,y

* =5^37" ' weight /.,/>,fe -x,)^

(20)
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If all these values be considered as possible, and hence probable,

values for the proper value of 6, then the most probable value

can be assiuned to be the weighted mean of them all, i. e.,

6 =
tp,p^,{xv-x,y

(21)

and it is to be shown that this is identical with the least-square

solution,

i:pi:pxy-i:pxipy

Upl^px-" - i^ZpxY
b = (22)

The denominator of 21 becomes, when expanded,

2/>i/>k(xk -Xiy=xpip^Xk^ +i:pip^Xi' - 2i:pip,XiXy,

Now k>i and can take any value between 2 and 4, inclusive.

i can take any value between i and 3, inclusive.

Suppose k = 4.

The equation a-rbx^ = y^ can be combined with the remaining

three equations to obtain a separate solution for b. If ^ = 3, there

will be two equations that can be combined with + 6x3 = ^^3 to

obtain a separate solution for b; and if ^ = 2, there will be left one

equation that can be combined with a +bx2 = y2 to obtain a sepa-

rate solution for 6.

x^ will, therefore, appear as Xk in the summations of 21 three

times, X3 will appear as a;k twice, and Xo will appear as Xk once.

Similar reasoning will show that x^ will appear as Xi three times,

X2 will appear as Xi twice, and x^ will appear as Xi once.

.-. ^pip^.x^^ +2 p,p^x^-2i:p,py,x,x^

+p2piX,'

+p3piX,^

+P.Pzx;-

+P2P3X3''

L +pip 2X2-

J

PiPiX,-

+P2P4X2'

+p3piXs^

+Plp3^l'

^p2p3X2

+Pip2Xl'J

2<

plp,XlX4^

-^p2p,X^A

+P3PAX3X,

+Pip3^1^3

+ P2P3X2X3

+P1P2X1X2J

P.x,'[p, +P2 +p, ] +p,p,x,' -p,p,x,'

+P^3^[Pl +P2 +P^ +P3p^3 -P3P:P^Z

+P2^2[PX +P3 +Pi] +P2P^2-P2P^^2'

-^Pi^A +p2 +P3 +P4] +PrP.X^-p,P,X,'

PlXil +p2^2 +P3^3 +PaX,]
^

+p2^2[PlXi +P3^3 +P4X4]

+pjxlpiX, +P2X2 +p,x^

. -^PaXJlPiX, +P2X2 +P^3 ].
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=p,x^zp +p,xs'^p +p^,'^p +P^x^i:p
— [pixjl^px +p2X2^px +pzXo2px -{-p^xjlpx]

= i:p[p,x:^ -\-p,xi +p,x^ +p,x^]

-i:px[p^x^ +P2X2 +p3^3 ^pi^i]

= i:pxpx^-zpxxpx

=xpi^px^-(2pxy

which is identical with the denominator of 22.

of 21 becomes, v/hen expanded,

The numerator

'^pipkX^yi, +^pipi,Xiyi -i:pip]siX],yi - l^pip^^Xiy)^

= i

A

pipA^^y^

+p2p^^4y4

+p3p4^sy,

^Pips^sys

+p2p/^-3ys

^ +Pip2^2y2^
^ p,p,x,y,

+p2pi^4y2

+p3pi^4y3

+Pip3^3yi

+P2p3^3y2

L +Pip2X2yi

> +

Pip^pciyi ^

+P2p4^2y2

+p3pA^3y3

-\-pip3^iyi

+P2p3^3y3

L +pip2^2y2J

Pip4^iyi

p^PiX^y^

Pspi^-sy^

Pip3^iy3

P2p3^2y3

Pip2^iy2 ^

p^^iy^ipi +p2 -^p3 ) +Pipi^4y4-p4p4^4y4

+p3^3y3(Pl +P2 +P4) +P3p3^3y3-p3p3^3y3

+p2^2y2(Pl +p3 +P4) +P2p2^2y2 -p2p2^2y2

. -^Pi^iyA -^p2 +p3 +P4) +pipi^iyi -pipi^iyi

p4^4{piyi +p2y2 +p3y3 )

"

+p3^3(Piyi +p2y2 +p4y4)

+p2^2(piyi +p3y3 +p4y4)

+pi^i( +p2y2 +p3y3 +p4y4)

^p^x^y^Xp +p3Xsy3^p +p2^2y2^P +P-i^iyi^P
-[p^x^py +p^x.^py +p2X2^py ^p^xjlpy

= i:p[p^X,y, +p^Xsy3 +/>2^272 +Pi^iyi]

-^Py[p4^4 +P3^3 +p2^2 +P1X1]

^Xpl^pxy-Xpylipx

which is identical with the numerator of 22„
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The above analysis, though Hmited to four observations, will

apply equally well to any number of observations, odd or even.

Equations 21 and 22 are, therefore, identities, and hence the- two-

point method may be made to give results identical with the least-

square method by making all possible separate solutions for Cj

furnished by the data and assigning weights to them according to

16 before taking the mean.

Substitute in 16,

there results

j^ for m,,^ form.

E,E,„.-m.,y^^(^J^P

and since relative weights are all that are required the constant 6

may be dropped,

The p in equation 23 approaches zero when Xk is near to Xi, as

may be the case when both points are near or on the same side of

the maximum ordinate, and when Ei and £k are small.

It will be noted that in making the individual computations for

c, from equations 10 and 11 that an assumed approximate value

of C2 is necessary^ in the exponential term. If, after applying the

above system of weights, the mean does not agree with the assumed

value, another solution will be necessar}^ in which the computed

value may be used as the approximate value in the exponential

term. In no case should more than two of these processes be

necessary.

A numerical illustration of the above theory is briefly repre-

sented in the accompanying Table 4. Six pairs of observations,

Ei, Xi, £^k, Xk, were selected at different parts of the distribution

and values of C2 computed from them according to equations 10

and II.

Table 4 is prepared to show (i) there is considerable variation in

the weights of the values of Cj
; (2) that values of Cj differing widely

from the mean are likely to be of small weight
; (3) that the simple

arithmetic mean of a limited nmnber of computations is likely to

differ considerably from the weighted mean (the variation shown
in the computations of Table 4 is probably an extreme one.

Any other arrangement may show a better agreement with the
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value given by least squares)
; (4) that for a limited number of

computations the weighted mean approximates better the most

probable value, i. e., the value given by a least-square solution.

TABLE 4

List of Values of Cj Given by the "Two-Point" Method. Computed From One
Arrangement of the Observations of Table 1 Using Each Observation Once

Xi Xk Ei Ek C2 P pxC2

0.9338 5.001 3.12 9.10 14 478 6.117 88 555. 7

1.526 3.569 23.95 19.20 14 308 297.556 4 257 437. 3

1.054 4.638 6.75 11.02 14 358 29. 740 427 007.

1

3.760 5.329 17.45 7.70 14 487 1.107 16 036.

3

1.197 4.446 11.80 12.10 14 360 75.963 1 090 829.

7

1.357 4.031 18.03 15.05 14 337 175.958 2 522 709.8

Sp= 586.440 8 402 575.9=SpC2

f=H 388±21
2pC2

Sp
= 14 328±10

The above table is computed from an arrangement of the obser-

vations using them all once. There are 1 1 different arrangements

of the observations two at a time in each of which every obser-

vation appears only once. Thus there are 66 possible solutions

for C2 from the data of Table i by the two-point method. If any

part of the remainder of these solutions be made and the results

added to those in the table before taking the mean, the final

value of C2 will, no doubt, be altered to some extent. In case the

experimenter considers the mean of a limited number of computa-

tions satisfactory for his purpose, they should be arranged so that

each observation enters the computations the same number of

times, and thus prevent any one point from unduly affecting the

results. That is, for 2k observations, ^, or 2k, or 3^, etc., to

(n'-i)k computations will be necessary. The same number of

computations will be necessary for 2^4-1 observations, and in

each set of k computations one of the observations can not

appear. This does not mean that as a method of approximation

the two-point method is a failiure in this case, for the experi-

menter may use his discretion and drop in order from each set

that observation that can be combined with others of the group

to give relatively small weights to the value of c^.

The above system of weighting is only theoretically correct when
applied to all possible solutions for Cg from the data. However,

the system applied to a limited number tends to make the mean
stable and approach the value given by least squares. By a judi-
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cious selection of combinations it is possible to give a compara-

tively large weight to a mean value of c, with one or two sets of

weighted computations. The pairs of obser\'ations should be

selected so as to keep the difference of the X's large and at the

same time keep the products of the £'s large. Any set of k com-

putations in which each observation is used once need not give

the same result as any other set, nor need the weights of the

results of the two sets be the same. Thus it is seen that the

value of a result obtained from a limited number of computations

depends, first, upon the arrangement of the obser\'ations and,

second, upon the number of separate computations for c^.

To a skilled computer the labor involved in a least-square com-

putation is by no means prohibitive of its application, and w^hether

it is to be preferred to the two-point method to make a solution

for the most probable value of the constants depends to some

extent upon the factor of personal skill. In using the two-point

method for n observations there will be necessar}' —^ indi-

vidual computations for Cn and the same number of computations

for the weights. Thus the method will become impractical for a

large number of obser\-ations. In fitting a ciu^-e to a few obser\'a-

tions, say six or seven, the complete solution can perhaps be most

readily accomplished with the two-point method by anyone. For

a larger nimiber of observations the advantages of the two-point

method are less. The fact that the least-square computation

gives both constants may or may not be of practical value. If

Ci is desired, another extended computation to determine c^ will

be necessar}^ after determining C2 by the two-point method.

The possibilities of the equal-ordinate method depend upon the

computer's skill as a draftsman, for in fixing the curve he tacitly

predetermines a value of Co. In a high-grade set of data one skillful

with a pen may be able to fit a cur\'e so closely by eye to the least-

square position that the results of the individual calculations for

Cj will not differ appreciably among themselves, and any system

of weights will therefore have no appreciable effect. An appre-

ciable difference among individual solutions by this method sig-

nifies that the cur\'e is not properly located. If for a given posi-

tion of the cur\'e an appreciable variation is not obtained in a

reasonable number of solutions selected from place to place on

the distribution, the cur\'e can be considered properly located and

the imweighted mean of the solutions should approximate well

the least-square solution.
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In the data used in this paper the gain in precision of the least-

square method over the weighted two-point method using a

limited nimiber of computations is slight for the particular arrange-

ment of the observations in Table 4. However, the element of

chance enters to a considerable degree in the worth of the results

of Table 4. It must be remembered that there are 10 other

arrangements of the observations using them^ all once. Had any-

one of these happened to be selected for the illustration, the

results might or might not have agreed so well both in the value

of the constant and the probable error. In the same way the

element of chance is a large factor in the disagreement of the

simple mean with the least-square value. Individual computa-

tions for C2 by the two-point method can be arranged to present

a practical significance to a physicist which the least-square

method does not directly possess, but consideration of these is

outside the scope of this paper. ^^

SUMMARY

A least-square reduction of a set of observations of the Planck

radiation-equation type has been effected by taking logarithms of

both sides and assigning proper weights to the transformed equa-

tions. The method of assigning these weights has been given in

a general form that can be adapted to any scheme of transforma-

tion.

Hovv^ to combine and weight separate computations for ^2 by
the two-point method so as to yield a value that agrees with the

least-square value has been shown. A numerical demonstration

is given that the proposed system of weights applied to an arbi-

trarily selected set of two-point calculations leads to a result which

approximates the least-square value better than the simple mean
of the set.

The author wishes to thank Dr. J. H. Bellinger for valuable

assistance and suggestions in the revision of the paper.
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12 J. H. Dellinger, this Bulletin, 13, p. 541, et seq.; 1916.


