
WINDAGE RESISTANCE OF STEAM-TURBINE WHEELS

A CRITICAL STUDY OF THE EXPERIMENTAL DATA WHICH HAVE BEEN
PUBLISHED AND OF EQUATIONS FOR REPRESENTING THEM

By E. Buckingham

I. General Considerations.—The power dissipated in driving a

given wheel against the resistance of the surrounding medium,

depends on the speed of rotation and the mechanical properties

of the medium.

If the medium is an homogeneous fluid such as water, air, or

dry steam, its mechanical behavior is determined by its density,

viscosity, and compressibility. If the linear speeds involved are

all small compared with the speed of sound in the medium, the

energy of the acoustic waves generated is insignificant, the drag

on the wheel due to the generation of these waves is negligible,

and the medium acts sensibly as if they did not exist, i. e., as if

it were incompressible. Except possibly in extreme cases, it

can hardly be doubted that treating the medium as incompres-

sible is allowable to the degree of approximation needed in steam-

turbine calculations or justified by the accuracy of pubHshed

determinations of windage losses. The density and viscosity of

the medium in which the wheel rotates are therefore the only

ones of its physical properties which we need to take into accotmt,

so long as the medium is homogeneous.

If instead of confining our attention to a particular wheel and

casing we extend it to other wheels of various sizes wliich are,

together with their casings, geometrically similar to the wheel

and casing first considered, we see that the power dissipated may,

further, depend on the diameter of the wheel, this single magni-

tude sufiicing for the complete geometrical specification of the

system when the shape is once given. The shape itself may be
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specified by the values of the ratios of a number of lengths to

some one length, such as the diameter of the wheel. It is to be

understood, in what follows, that when we speak of wheels of the

same shape, or "geometrically similar wheels," the similarity is

to extend to the casings as well as to the wheels proper.

Let P be the power dissipated in driving a wheel of given

shape and of diameter Z>, at a speed of n revolutions per unit

time in an homogeneous medium of density p and viscosity /Lt.

Then since the power can depend only on the size of the wheel,

its speed of rotation, and the properties of the medium we have

P = f{p,n,D,ti)

This physical equation must consist of terms which are all of the

same dimensions, and this can be true only if the equation is of

the general form

P = l,Np''n^D'fi^ (i)

in which the N's are ptu-e numbers and the a, /8, 7, 8, of each

term have a set of values which give that term the same dimen-

sions as P. There may be any number of terms, but for each

of them a dimensional equation,

[P] = [p»n^Dy] (2)

must be satisfied.

It is most convenient to use the ordinary m, I, t system of

fundamental units. If we do so and derive our other units from

them, we have the following dimensional equations for the quan-

tities which appear in equation (i) :

[P] = [mlH-^]

[p] = [ml-^]

[n] = [t-^]

The exponents of each term in equation (i) must therefore be

such as to satisfy a dimensional equation

[ml^ir^] =[mH-^''1rH^mH-^t-^]
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The units of m, I, and t being independent, this equation must be

homogeneous in each of them, so that we have

I = a + S 1 a=i-8
2 = -Sa+y-B whence /3= 3-a
3 = /3 +B \ 7 = 5-28

as the relations which must exist between the exponents of each

term of equation (i).

If we substitute the foregoing values of a, /9, and 7, in equation

(i) and take out the common factor {pn^D^), we have

'-'^^K^y ^'^

The number of terms, the coefficient A^ of each term, and the

exponent h with which the single variable (—^ j appears in that

term, all remain indeterminate, i. e., they may have any values

whatever without violating the dimensional requirements. We
may also write equation (3) in the simpler form

P-pn>D^<^-^) (4)

where ^ is an unknown function of ( —^ y

For wheels of any given shape, the form of the fimction tp is

fixed, but for any othershape the form of cp will or may be different.

It depends on the values of a number of ratios of lengths sufficient

to fix the shape of the wheel and casing, including the closeness

of the casing to the wheel as part of the "shape." These ratios

determine the values of the A^'s and S's of equation (3). The

variable ( V>, ) has no dimensions, so that its numerical value in

any absolute units is fixed by the physical magnitudes of /x, />, n,

and D, and is independent of the magnitudes of the fundamental

imits.
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2. Remarks on the Function cp.—Equations (3) and (4) contain

all the information obtainable from the principle of dimensional

homogeneity, and further information must be sought elsewhere.

The resistance offered by a fluid to a solid body in steady motion
through it may be looked upon as a retarding drag due to trans-

verse communication of momentum between currents or layers

of the fluid which are moving over each other with different average

velocities and are maintained by the motion of the solid body.

In quiet stream-Hne motion, this transfer of momentum takes

place by intermixing on a molecular scale, i. e., by interdiffusion of

the different streams of fluid; and the coefficient of viscosity,

/I, is a measure of the activity of this molecular intermixing.

But whenever, by reason of high speed or of roughness or irregu-

larity of the sohd, the motion of the fluid becomes very turbulent,

the lateral transfer of momentum between different streams occurs

mainly by motions of relatively large masses of fluid in all sorts

of irregular cross-currents and eddies. For any given geometrical

arrangement of such a state of tiurbulent motion, this molar trans-

fer of momentum is evidently proportional to the masses involved,

or in other words, to the density of the fluid.

We must therefore expect that when the motion of the fluid

about the solid body is perfectly quiet and regular, which will

usually mean that all the motions are slow, the resistance encoun-

tered by the solid will be directly proportional to the viscosity

of the fluid. But if, on the other hand, the circumstances are

such that the motion of the fluid is very tiurbulent, it is to be

expected that density will play the determining part in the phe-

nomena of resistance, viscosity being of relatively small or even

vanishing importance. The substantial correctness of this general

qualitative reasoning is estabHshed by well-known facts relating

to skin friction, aeroplane and ship resistance, and the flow of

liquids and gases tlurough pipes. Let us now see what it leads

to in connection with equation (3)

.

If we have to deal with a smooth disk at a low speed of rotation,

we must expect the retarding torque and therefore the power ab-

sorbed at any given speed to be directly proportional to the viscosity

of the medium about the disk. This requires that the second

member of equation (3) shall consist of only a single term and
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that its exponent shall be S = i . The equation for the power thus

reduces to the very simple form

P = Nn^D'/JL (5)

and the retarding torque is therefore independent of the density

and proportional to the speed of rotation, the viscosity of the

medium, and the cube of the diameter of the disk.

If the speed of rotation is increased, the stream-Hne motion

will become unstable and will break up, at or near a certain definite

critical speed, into a quite different, turbulent motion. At all

events, this is what we should expect from our knowledge of the

flow of fluids through pipes, and otir expectation is confirmed

by experiments on disks. After this abrupt change in the char-

acter of the fluid motion, the density of the fluid must appear

in any equation which is to describe the facts, and if the vis-

cosity fi appears at all it must be, in each term, with a smaller

exponent than that of p in the same term. In the Hmiting case,

the viscosity might be of altogether vanishing importance and

then equation (3) would necessarily have the form

P = Npn'D' (6)

the retarding torque being proportional, for a given disk, to the

density and the square of the speed, while for disks of different

diameters but geometrically similar—^in regard to roughness as

well as general shape—the torque would be proportional to the

fifth power instead of the cube of the linear dimensions. In

practice we should expect, rather, that the relation would not

reach this very simple limiting form and that fi would still appear,

though only in terms with small exponents.

If it is found that the dependence of P on p, n, D^ or fjL can be

represented with a degree of approximation sufficient for the

experimental accuracy by giving the independent variable a single

fixed exponent, it follows that the second member of equation

(3) may be represented by a single term, the others being negli-

gible. Equation (3) then reduces to

p = Np'-^n^-^D'-^^/x' (7)



/

1 96 Bulletin of the Bureau of Standards [Voi. 10

It appears that such an equation is adequate to the representa-

tion of the experimental data which are available—^the experi-

mental accuracy not having been high. Equations (5) and (6)

correspond to the limiting values B=i and S = o.

The value of A^ depends on the form of the wheel and casing.

For a bladeless disk running in the open, it depends on the pro-

file and the roughness. For a thin flat disk it depends on the

roughness alone; but the roughness is to be measured in terms of

the diameter, so that for a surface with granulations or irregulari-

ties of a certain general absolute size, a large disk is "smoother"
than a small one, in the present sense of the term smooth.

For smooth plane disks of small thickness, the critical speed, at

wliich stream line motion breaks up into turbulent motion and
the exponent B drops suddenly from nearly unity to a much
smaller value, is fairly definite and the change in the law of resist-

ance is sharp. For ordinary tm-bine wheels, consisting of a disk

and blades, the change is less abrupt and there is no definite

critical speed; for the motion about the blades must always be

turbulent at any speeds which are high enough to be of practical

interest. The smaller the ratio, y^, of blade length to disk diam-

eter, the more nearly the behavior of the wheel approaches that of

a simple disk, while with long blades, the additional resistance

due to the blades is so much greater than that which would be

encountered by the disk alone, that although the law of resist-

ance is different at high and at low speeds the change is gradual.

In an experimental study of the form of the function (p we have

first to work with wheels of some one shape, preferably a simple

one, to start with. If we then find, as in fact we do for consider-

able ranges of the variables, that the dissipation P is proportional

to a fixed power of p, or of t^, or of Z^, or of fi, we know that equa-

tion (7) is adequate for this shape of wheel and our experiments

give us the value of the coefficient N for this shape as well as the

value of 8, no matter which of the four variables we may have

selected for independent variation during the experiments. There

are thus, in principle, four different modes of attacking the prob-

lem which must lead to the same result and may be used for

checking one another. In practice we can not always conven-
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iently vary the density and viscosity of the medium independ-

ently, so that there are often only three modes of attack which

are practicable.

The general procedure is obvious; keeping any three of the

variables at fixed values, we vary the fourth and observe the

corresponding values of P. If the phenomena can be described

by equation (7), the values of log P when plotted against the

logarithm of the independent variable will give points which lie

on a straight line, within the experimental errors. The slope of

this line is the exponent with which the independent variable

appears in equation (7) ; it determines the value of S. The posi-

tion of the line, taken in connection with the fixed values of the

other three variables, determines the value of N. We may now
proceed to examine the experimental data which illustrate the

foregoing statements. Readers who are interested only in the

jSnal result of this somewhat laborious examination may proceed

at once to section 6, page 214.

3. The Relation of Power Dissipated to Speed of Rotation.—

•

A. Disks Without Blades: As the simplest sort of wheel we may
take a flat bladeless disk rotating in the open air. We have

data on such disks from Stodola's ^ experiments on a smooth

but unmachined disk of thin boiler plate and from Odell's ^ experi-

ments on paper disks.

Stodola's disk had a diameter of 537 mm or 21.1 inches, and
he gives points on a plot of log P against log n only for 1 500, 1 800

and 2000 r. p. m. These three observations very nearly satisfy

the relation Pozn^-^^, The retarding torque was thus propor-

tional to the 1.92 power of the speed n, which is about what
might have been expected from the work of Reynolds,^ Froude,*

Zahm,^ and others.

Odell's experiments covered a wider range of speed and he

used foiu: disks with diameters of 15.0, 21.8, 26.8, and 47.1 inches,

recording the torque needed to drive each disk at measured

speeds. When log torqiie is plotted against log n it is found

that for any given disk, the points for all the higher speeds lie

close to a straight line. Upon decreasing the speed, a critical

speed, Wc, is reached and the law of resistance changes abruptly.
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The results, so far as they concern us at present are collected in

Table i.

TABLE 1

Odell's Experiments on Paper Disks Rotating in Air

A B C D

Diameter in inches, D= 15.0 21.8 26.8 47.1

Range of speeds, (r. p. m.) j
113

12100

200

900

100

525

250

740

Critical speed, wc= 918 376 243 (100)

Value of p for n>no 3.32 3.55 3.54 3.08

10-5?le£>2 2.07 1.79 1.75

The values oi Uc and of the speed exponent yS = 3 — 3 were

fotmd by replotting Odell's observations; they do not differ

much from Odell's values. The value of ^ is, of cotu-se, obtained

by adding unity to the slope of the line on the plot of log torque

against log n.

Upon inspection of the logarithmic plot there is no doubt that

above the critical speed, /3 is very nearly constant, and there is

also no doubt that the values of P are distinctly different for the

different disks, the uncertainty in finding /3 from the published

observations being not over o.i. If the disks had all been

geometrically similar, the form of ^ in equation (4) would have

been the same for all and the exponent ^ would therefore have

had the same value. Since the values of ^ are not the same,

we are sure that the disks were sensibly dissimilar. They were,

in fact, made of four different kinds of paper and it could not be

expected that they should be either similarly rough or similarly

stiff.

When thin paper disks are driven at high speeds they become
covered with fluttering waves which must have an important

effect in increasing the resistance, so that it is not safe to draw
conclusions regarding rigid disks from results obtained with

flexible ones. Disk D made of "canvas-backed diagram paper"
was no doubt much the stiffest, the others being of two kinds

of drawing paper and of cartridge paper. It gave the value

)S = 3.i which is not far from the value 2.92 for Stodola's disk.
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Disks B and C gave nearly the same value of /S at the high speeds

and seem to have behaved as if geometrically similar; the wave
systems in them had similar effects on the resistance.

When two geometrically similar wheels or disks are compared,

any singular point on the curv^e P =/ (n) , such as the critical speed,

must by equation (4) occur at the same value of —7^ for both.

In Odell's and Stodola's experiments the meditun (air) was always

approximately unchanged, so that the value of ncD^ should be

the same for geometrically similar disks. The values in the last

line of Table i show that this was nearly true for Odell's disks

B and C, which gave the same value of yS at speeds above the critical.

The value of nc given in the table for disk D was computed

from that observed for A which was most nearly like D ; it is

only a rough approximation, and being far below the lowest

speed used with this disk, it was not observed. The critical speed

for Stodola's disk, computed in the same way, would be in the

vicinity of 500 r. p. m., which is also below the lowest speed

recorded.

Disk C, of cartridge paper, shows the interesting phenomenon
of two critical speeds, the lower, not mentioned in Table i, being

at about 150 r. p. m. Below this, the torque is proportional to

n^-^ or, within the experimental errors, directly to n. We have

thus the limiting case described by equation (5) or by equation

(7) with 8 = 1. At the first critical speed it appears that the

stream-line motion of the air broke up into turbulent motion,

the torque became proportional to n^-'' and the power dissipated

to n^-"^. For the range between the two critical speeds we there-

fore have /8 = 3 — 3 = 2.7, ^=0-3- At the second critical speed

of about 243 r. p. m. the disk suddenly began to flutter * and the

law of resistance changed to Poc^^ -^ a new element being intro-

duced by the presence of waves on the disk. The middle range,

between the two critical speeds corresponds to Stodola's observa-

tions on his rigid disk. The value = 2.7 which is somewhat
lower than Stodola's /6 = 2.92 indicates that the cartridge paper,

as long as it stayed plane, was smoother than the boiler plate,

which is not smprising.

* This is the writer's inference; Odell is not responsible for it.



200 Bulletin of the Bureau of Standards ivoi. lo

Disk B shows only the upper critical speed, the observations

below this point being very few and the lowest coming about

where the lower critical speed would probably have been foimd.

Since the upper critical speed and the phenomena at still higher

speeds depend on the stiffness of the disk, which has not appeared

at all in otu* equations, the close agreement of /3 and of nj)^,

for disks B and C, must be regarded as in some degree accidental.

It happened that the disks were similarly stiff or, at all events,

developed wave systems which had similar effects on the resistance.

The few observations on disk B below the upper critical speed

give Pccfi^-^. We can not say that this is different from tte value

yS= 2.7 obtained for disk C, the evidence not sufficing to decide

the point. But the difference, if real, is in the direction indicated

by what we can judge of the smoothness of the two disks as

described by Odell. For B was of a smoother thinner drawing

paper than A, i. e., probably a rather hard smooth-surfaced

paper, while the "cartridge paper" of disk C probably had a

somewhat fuzzy surface.

If we compute the critical speeds of the rigid disk D and of

Stodola's steel disk from the lower critical speed of disk C, we
get 49 and 244 r. p. m., respectively, values about half those

computed from disk A and probably nearer the truth.

In the case of disk A, which was relatively stiffer and rougher

than B and C, the observations below the single critical speed

observed are too scattered for us to detect any lower critical

speed, if one occiured, or to distinguish the effects of turbulence

of the air and fluttering of the paper. The effect of the flut-

tering at the high speed was less than with B and C as is shown

by the fact that the value ^= 3.3 is nearer the values for rigid

disks, e. g., Stodola's disk {I3=2.g2), disk D {^ = 3.14) and disk

C between its critical speeds (/3=2.7). The greater stiffness is

also shown by the larger value of ncD^; the stiffer disk requires

a higher speed to make it break into a flutter.

Odell's experiments were only preliminary and his own opinion

of their accuracy is indicated by his saying that P = const X n^D^

"agrees pretty well with the experimental results." But in view

of the very good agreement which they show with the predictions

of the general theory in all cases where the range of speed is
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large enough, the present writer forms a higher estimate of the

interest and relative accuracy of these experimental results, even

though the absolute values of the power dissipated may be con-

siderably in error, and though we can evidently not safely pre-

dict the behavior of rigid disks from experiments on flexible ones.

B. Ordinary Single-Row Steam-Turbine Wheels: Besides the

bladeless disk already mentioned, Stodola experimented on five

single-row turbine wheels with various blade lengths and with

disk diameters, measured at the root of the blades, of 20 to

45 inches. The wheels were run. in air; all of them in the

open, and three of them also inclosed in casings. At all the

higher speeds the results, as Stodola shows them on a logarithmic

plot, satisfy the relation Pccn^ quite closely. For the ten series

shown, the value of 13 is from 2.82 to 2.97 with a mean of 2.89

and a mean residual of ±0.04. The wheels all acted very nearly

like the bladeless disk as regards the variation of power with speed.

Lewicki ® gives the results of a few observations on the windage

losses of a small Laval turbine at 14 000 to 20 000 r. p. m. The
wheel had a disk diameter of 180 mm or 7.09 inches, and the

blades were 20 mm or 0.79 inch long. Three observations in air

at atmospheric pressure and 30° C give P^n^"^^ nearly. Four

observations in sattu-ated steam at atmospheric pressure lie fairly

close to Pocn'^*o« while three of them give almost exactly Pocn^'O.

There is no doubt that /3 was nearly constant in each case, but

the observations are so few and the range of speeds is so small

that no great weight can be given to the numerical values of /8.

We have, finally, the results published by Holzwarth."^ Admit-

ting that for a given wheel running at a given speed in steam, the

power dissipated in windage is proportional to the density of the

steam, and admitting, fiuther, that for practical ptuposes the

density may be treated as proportional to the absolute pressure

p, Holzwarth sets P=Kp, and gives the values of K deduced

from his experiments, by means of ctuves on a three-coordinate

diagram. Each curve show^s the relation oi K to n for a given

diameter, the diameters being 10, 20, 30, 40, and 50 inches. The
lowest speed is 750 r. p. m. and the highest runs up to 4000 r. p. m.

for the small wheels. There is a separate diagram for each of

the five blade lengths 0.5, i.o, 1.5, 2.0, and 2.5 inches. The wheels
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were inclosed but had somewhat more clearance than is usual in

practice. No information is given as to how nearly geometri-

cally similar the wheels were, except the mere statement of disk

diameter and blade length. The results appear to be the most

comprehensive we have; but all details are omitted so that w^e

have no means of estimating the accuracy of the experiments,

of the reduction of the observations, or of the construction and
reproduction of the diagrams as published. Though the curves

may be quite adequate to the practical end for which their author

intended them, it is evident at a glance that they can not all be

represented by a single equation containing only n, D, and / as

independent variables, and that readings of K from them are

liable to rather large percentage errors.

With the exception of a few curves for the largest diameters

and blade lengths, each curve shows two distinct forms and may
be divided, though not sharply, into a low-speed and a high-speed

part. The relation K=f(n) is different for the two regions and

the transition corresponds to the definite critical speed in the case

of a bladeless disk. The lo-inch curves fall almost entirely in

the low-speed range which is in general of little practical interest.

The results for this diameter are therefore omitted from further

consideration. For each of the other four diameters the writer

made readings of the value of the coefficient i^* for each of the

five blade lengths and at the various speeds shown on the dia-

grams. The value of log K was then plotted against that of log

n, and 20 series of points were thus obtained, each referring to

a fixed diameter and blade length but varying speed.

For the higher speeds, the points of each series lie fairly close

to straight fines, sometimes quite close. These lines were drawn

in by inspection and their slopes, which represent )8in the equation

P = const Xn^ were read off. For the small wheels with short

blades there is a fairly definite critical speed at which the rela-

tion P = f{n) changes; but the points for the "low" speeds are

not exact or numerous enough to show what the relation is at

these speeds. For larger wheels or longer blades the transition

from "high" to "low" speeds when shown at all is gradual and

*Holzwarth used the symbol m for this coefficient.
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not sharp, the lowest points on the logarithmic plot being above

the straight lines drawn to represent the high-speed points.

The values obtained for the speed exponent /3, are from 2.3 to

3.6; the mean is 3.0 and the mean residual is ±0.3. The uncer-

tainty of each value, due to doubt as to just where the straight

line should be drav^m, is generally about ±0.1 but may be ±0.2.

For most of the series there is no doubt that Pocn^ is an approxi-

mate representation of Holzwarth's published ciuves for the higher

speeds. There is also no doubt that the values of /3, are distinctly

different in different cases, but there is no evident systematic

variation of the values with either diameter or blade length.

To smn up the conclusions which may legitimately be drawn
from the data discussed in the foregoing section, we may say

that both for flat bladeless disks and for single-row tiu-bine wheels

of ordinary forms, running either inclosed or in the open and

in either air or steam, the power dissipated in windage by a

given wheel is very nearly proportional to a fixed power of the

speed of rotation throughout the range of speeds actually used

with the diameters in question, except possibly at the lowest

speeds, where the windage losses are economically insignificant.

It follows that only a single term need be used in the second mem-
ber of equation (3) , so that an equation of the form (7) or

p = Np'-^^n^-^D'-^^fi' (7)

is adequate to representing the facts, over the range mentioned,

as closely as we know what the facts are.

The observed values of 3 — 8 = /3 are grouped about a general

mean yS = 3 and as a first -approximation we have

P=Npn^D^ (8)

the coefficient N having a value determined by the shape of the

wheel, and the viscosity not appearing at all. In individual cases

the observed values of /3 vary from 2.5 to 3.5 without oiu* being

able to decide, from the rather meagre accoimts published,

whether the variations are genuine, i. e., not due to errors of

measurement, and if they are genuine, what causes them.
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The best experiments we have, Stodola's, give y3 = 2.9 very

nearly, for all of his wheels and all conditions, and this value is

quite consistent with the results by other experimenters in similar

fields. It is probable that in general the equation

obtained from (7) by setting 3—8 = 2.9 will give a better approxi-

mation than the simpler equation above, in which S = 0.

At a speed of rotation of 20 000 r. p. m. the peripheral speed of

the tips of the blades of Lewicki's wheel was 755 ft. sec. The
speed of soimd in air at 30° C. is about 11 50 ft. sec, and in satu-

rated steam at one atmosphere it is about 1350 ft. sec. The linear

speeds which occurred in Lewicki's experiments were therefore by
no means all what would commonly be thought of as "small" in

comparison with the acoustic speed. Nevertheless, an equation

developed on the assumption that compressibility is negligible

appears to hold for these high speeds as well as for lower ones. It

would have been interesting to have data on the windage of

Lewicki's wheel at even higher speeds, for it seems probable that if

the speed had been run up to 30 000 the equation P = const X n^

would have failed completely. Experiments on the resistance of

projectiles ^ indicate that the effects of compressibility begin to

be sensible at about three-fourths of the acoustic speed and increase

rapidly for some distance beyond that point, so that within a range

of from three-fourths to one and one-half times the acoustic speed,

the law of resistance is rather complicated. The speeds in

Lewicki's experiments appear to have been nearly but not quite

high enough to necessitate the consideration of compressibility in

making up the theoretical equations. We may conclude that the

simple theory as given in section i is probably always sufficiently

exact when the peripheral speeds are not over one-half the acoustic

speed in the medium in question.

4. The Relation of Power Dissipated to Diameter.—The experi-

mental results discussed in section 3 suffice to show than an equa-

tion of the form (7) describes the facts, and they give us the

value of h in some specific cases. The same information might

be got from experiments on geometrically similar wheels, by
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making D the only independent variable and comparing the dis-

sipation for wheels of various diameters run at the same speed

in the same medium; but no experimental results on exactly

similar wheels have been published, so that an investigation by
this method can not be based on any published data. Neverthe-

less, as a check on the previous work it is interesting to compare

such imperfect data as we have with equation (7) and the values of

h already found in section 3.

A. Disks Without Blades: We have to select for comparison,

disks which gave nearly the same value of /S = 3 — 3, since disks

which do not satisfy this condition can not possibly be geomet-

rically similar. Odell's paper disks B and C gave the same value

of ^ above the fluttering point, but since the rigidity of the disk

is here an essential element which has not been allowed for in otir

theory, we must not expect equation (7) to hold at all exactly.

If we compare these disks at 500 r. p. m., the observed power

ratio is 4.1 as against 3.5, computed from the diameter ratio

and the value /3 = 3.54 obtained from the experiments at varying

speed. The discrepancy of 15 per cent may be due to experi-

mental error but it seems quite as likely to be due to the fact

that the flexibility of the disks has not appeared in the equations.

We may next compare these two disks in the region just below

their upper critical speeds, where they were still behaving as if

rigid. From the writer's plot of Odell's observations he finds

for disk B P = 2 .5 1 X 10-^^.470

for disk C P = 2.28 X 10-10^2.654

The observations on B in this range are so few that the exponent

^= 2.47 is very uncertain and the equation could not safely be

used for extrapolation, but it represents the actual observations

reasonably well. At n = 200 r. p. m., which is within the range

of speeds for both disks, the power computed from these equations

is 1.21X10-* hp for B and 2.92X10-^ hp for C. Comparing
the power ratio with the diameter ratio we have

2.92
/26.8Y'

I.2I~V2I.8/
27647°—14-
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If we regard the disks as similar we have 5 — 28 = 4.26, whence

3 — S = yS = 2.63, which is sensibly identical with the value 2.65

obtained directly for disk C.

As a more severe test of the theory we may compare Odell's

stiffest disk D, of 47.1 inches diameter, with Stodola's boiler-plate

disk of 2 1. 1 inches diameter. At n = 2ooo Stodola observed

P = 0.147 hp and his speed exponent was /3 = 2.92; hence we have

for this disk

P = 3.38Xio-iin2'92

From Odell's measurements on his disk D we have approximately

P = 48. Xio-iin^'os

Odell regarded his experiments on this disk, especially at the lower

speeds, as less accurate than his other work, so that it seems only

fair to make the comparison at one of the higher speeds within

the range used by Odell. Taking n = 700, we have by the above

equations; for Stodola's disk P =0.00679 hp, and for Odell's disk

D, P =0.278 hp. Comparing the power ratio with the diameter

ratio we have

0.278

0.00679<m"'= 40.9

Regarding the disks as similar, we have 5 — 28 = 4.62, whence

3 — 8 = 2.81 as compared with /3 = 2.92, obtained directly for

Stodola's disk.

The value /8 = 2.92 or 5 — 28 = 4.84 would give a power ratio of

48.7. Hence if we use equation (7), with the values of N and 8

foimd for Stodola's disk, to compute the power for Odell's disk at

700 r. p. m. we get within 20 per cent of the observed value.

The equation given above for Odell's disk would give, at 2000

r. p. m. and on a diameter of 21.1 inches, P =0.1 12 hp while

Stodola's observed value at this speed was 0.147 ^P- ^^ view of

all the circumstances and the long extrapolation from observa-

tions which Odell himself regarded with suspicion, the agreement

must be considered quite satisfactory.
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B. Single-Row Turbine Wheels: When we look for experi-

ments on geometrically similar turbine wheels we find only a

very few cases where we can assume that the wheels were even

roughly similar.

Oiie of Stodola's wheels had a disk diameter of 504 mm, or

19.84 inches and a blade length I = 60 mm, so that the blade-

length ratio was ^=0.119. This wheel was rtm in air at atmos-

pheric pressure and temperature, in a casing which allowed an

axial clearance of 4 mm at the edge of the blades. Lewicki,* as

already mentioned, made observations on a I^aval wheel which

had a disk diameter of 180 mm or 7.089 inches and a blade-length

ratio ^=0.111. These two wheels were therefore nearly similar in

respect to the important element ^. From the small scale draw-

ing it appears that Lewicki's wheel had an axial clearance at the

blade edges of about 2 mm. For geometrical similarity, the clear-

ance on Stodola's wheel would therefore have had to be about

6 mm instead of the actual 4 mm. Lewicki's wheel thus had
relatively more clearance; and since it is known experimentally

that reducing the clearance round the blades reduces the windage,

we must expect that in making comparisons between the two
wheels, lycwicki's observed values will be somewhat larger than

values computed for the same speed and diameter from the data

obtained by Stodola.

lyCwicki's experiments on windage were only a subsidiary part

of a larger investigation and are not comprehensive enough to

furnish satisfactory values of the constants N and B. We shall

therefore deduce an equation from Stodola's observations and
compare values computed from this equation with averages from

Lewicki's observations.

The speed exponent given by Stodola for this wheel is 2.87,

but it appears from the plot that a larger value might be taken.

We can probably do no better than to set yS = 2.9 and use equation

(9). At 2100 r. p. m. the dissipation was foimd to be 0.704 hp.
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The disk diameter was 19.84 inches and the density of the air, if

we take the value given for the bladeless disk, was /o = i . 1 2 kgm/m'
or 0.070 Ib./ft.^ From these values we get AT/li^'i = 1.058 X IO-^^

whence

P = 1 .06 X lo-iy-W»D* /-^Y' (10)

in which

P = the horsepower dissipated.

/o = the density of the medium in Ib./ft.^

n = the speed of rotation in r. p. m.

Z?=the disk diameter in inches.

/io =the viscosity of the air during Stodola's experiments.

/x = the viscosity of the medium in any other case for which we
wish to compute the value of P.

Since most of Lewicki's work was done at a speed of 20 000

r. p. m. we may confine our attention to this speed. If we then

set w = 20 000 and D = 7.089, we have

P = 38.o/.««(^0' (11)

This equation would give us the power dissipated by a wheel

geometrically similar to Stodola's wheel but of the same disk

diameter as Lewicki's, when running at 20 000 r. p. m. in any

homogeneous medium of density p and viscosity /x.

To find the correction for the lack of exact similarity, we first

make the computation for air because in this case the value of

©• will certainly be sensibly equal to unity. The mean of

Lewicki's three observations in air, which do not differ enough to

make it worth while to treat them separately, was P(obs) =4.37 hp
at a mean density p = 0.0647 Ib./ft.^ Substituting in equation (i i)

4 37we have P(calc) =3.24 hp. The ratio -^^^^ = 1.35 indicates that

the combined effect of the relatively greater clearance and the

slightly smaller blade length of Lewicki's wheel, was to increase

the windage loss by about 35 per cent. We therefore modify
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equation (11) by introducing this correction factor and so obtain,

for further use, the equation

5^AP'<0-

(

To compare the values computed by equation (12) with I^ewicki's

observations in steam we must form an estimate of the value of

—
j and it is fortunate that this appears with so small an exponent

since we know almost nothing about the viscosity of steam.

According to measurements by h. Meyer and O. Schumann (see

Landolt and Bomstein's tables) the viscosity of sattirated steam

at 100° is about 0.72 times that of air at room temperature. We
may assume as a sufficient approximation, under the circum-

stances, that jji is proportional to the square root of the absolute

temperature and is independent of the density. In applying

equation (12) to steam we therefore have

where / is the temperature of the steam on the Fahrenheit scale.

Equation (12) then takes the form

p-«./<i^r ..4)

applicable to dry steam of density p Ib./ft.^ and temperature t °F.

We may first consider the 15 observations made by I^ewicki in

superheated steam, which was presumably dry and homogeneous

though at the lower temperatures this may not have been quite

true. The data which concern us are collected in Table 2, reduced

to English units.
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TABLE 2

Lewicki's Observations in Superheated Steam; n= 20 000 r. p. m.

Pressure

[lb./§i.».]

Temperature
t

[°F.]

Density

[lb./ft.3]

Power
P

[U.S.hp.]

P
P

P
pO-9

14.7 221 0.0368 3.02 82 59

14.7 253 0.0350 2.77 79 57

14.7 406 0.0286 2.33 81 57

14.7 462 0.0268 2.30 86 60

14.7 478 0.0263 2.00 76 53

14.7 531 0.0249 1.98 80 55

14.7 556 0.0243 1.87 77 53

14.7 574 0.0239 1.83 77 53

9.56 586 0.0153 1.08 70 46

5.69 462 0.0100 0.88 88 56

5.69 489 0.0097 0.81 84 52

5.68 259 0.0127 0.94 74 48

5.63 561 0.0089 0.60 69 42

5.39 295 0.0115 0.90 78 50

5.39

Means

590 0,0083 0.58 70 43

448 0.0202 78 52

Mean residuals ±5.8% ±3.5%

1

The values of the density are not very exact, partly because

for the first eight observations the pressure is merely stated to

have been atmospheric, and partly because the densities at high

superheats are not very accurately known.

In view of the unavoidable errors we can probably do no bet-

ter than to average the values and set P = 'jSp, the mean density

being p = o.o202 and the mean temperature 448° F. Under these

circumstances we therefore have P(obs) = 1.58 hp. Equation (14)

with these values of p and t gives us P(calc) = i.5i hp. The
agreement of the observed and calculated values to within 5 per

cent must be regarded as very satisfactory.

We may also represent the observations fairly well by setting

P(obs) =52 X/^*^•^ while equation (14) gives us P(calc) =50.5 X/'^
The agreement is a trifle closer but there is no great difference.

The result of the comparison of Stodola's and I^ewicki's wheels

is to show that as nearly as we can tell, equation (9) represents

the facts and that dry steam is entirely comparable with air when
the proper physical constants are used.
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We may now consider Ivevvicki's five observations in saturated

steam, the results of which are shown in Table 3.

TABLE 3

Lewicki's Observations in Saturated Steam; n= 20 000 r. p. m.

Pressure

[lb../m.21

Density

[lb./ft.s]

Power

[U. S. hp.]

P
P

P

14.7 0.03732 3.22 86.2 62.0

10.50 0.02727 2.69 98.3 68.9

8.56 0.02253 2.05 91.1 63.7

6.44 0.01726 1.66 96.0 64.0

5.69

Mean

0.01538 1.49 96.8 63.7

0.02395 93.7 64.5

Mean residuals ±4.3% ±2.8%

As for superheated steam, we can represent the results approxi-

mately by Poc/o or Pocp^'^, the second being in this case distinctly

the better, as is shown by the fact that the mean residual is only

2.8 per cent as compared with 4.3 per cent.

Not knowing how the viscosity varies with temperature when
the steam is kept saturated, we ignore the last factor of equa-

tion (14) which is certainly nearly unity, and we then have

P(calc) =49.7/0^'^ as compared with P(obs) = 64.5/3°*^ The observed

value is thus 1.30 times the calculated. Making the computa-

tion by the mean density we have P = 93.7/5, /9 = 0.02395

P(obs)=2.23 hp while equation (14) gives us P(calc) = 1.73,

the ratio being now 1.29 in place of 1.30.

The cause of the discrepancy of 30 per cent is clear. To obtain

dry saturated steam is a difficult matter, requiring elaborate pre-

cautions, though this was not so well known at the date of Lewicki's

experiments. The increase of 30 per cent in the resistance in

passing from air or dry steam to saturated steam, was due to the

wetness of the steam. Not knowing how wet the steam may have

been, we have, perforce, used the density of the steam alone and
not the mean density of the mixture. The mean density would

have been larger and so would, if used in the computations,

have reduced the discrepancy between the observed and calcu-



212 Bulletin of the Bureau of Standards [Vol. lo

lated values. But it is most unlikely that the steam was so wet

that the whole 30 per cent could be accounted for in this way,

even supposing that the water remained completely suspended.

And under such conditions only a very small amount of water

remains in suspension as fog; most of it is deposited and that is

imdoubtedly what happened here. Just how wet the steam was
and why the deposition of water on the wheel should have

increased the resistance 30 per cent it is of course impossible to

say. But it is clear that the steam did not act like an homogene-

ous medium, so that equations developed for homogeneous media,

which, as we have seen, describe the facts satisfactorily for both

air and dry steam, are not strictly apphcable. All we can say

at present is that the resistance to the rotation of a wheel in steam

increases considerably if the steam changes from dry to wet; but

how the amount of the increase depends on the wetness or other

circumstances can only be decided by further experiments.

It remains to examine Holzwarth's results for wheels which

had the same ratio of blade height to disk diameter and so had at

least this one element of geometrical similarity. We have the

figiu-es given in Table 4, for -^ = 0.05.

TABLE 4

Holzwarth's Results on Wheels with the same Blade Length Ratio

Disk diameter
D (ins.)

Blade
length
/ (ins.)

20

30

40

50

1.0

1.5

2.0

2.5

3.6

3.0

2.9

3.1

2.5

3.5

2.5

2.3

The values of y3, taken from the straight lines drawTi on the plot

of log K against log n vary considerably and are rather uncertain

so that the round values yS= 3 and 7 = 5 have been adopted. The
values in the last column were got by averaging over all the

points which lay distinctly above any indication of a rapid change

in the exponent of n, omitting a few doubtful readings. If these
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wheels were, together with their casings, all geometrically similar,

and if we had 8= 0, the values of —ttW should all be the same;

it is seen that they are nearly so. The high value for the 30-inch

wheel is consistent with other readings which make it appear that

the 30-inch disks were much rougher than those of the other

diameters.

We have also the following figures for ^^ =0.025

TABLE 5

D 1 P
10i«K

n'Ds

20

40

0.5

1.0

3.6

2.5

1.31

1.29

If the readings of K from the published curves really represent

the facts as Holzwarth observed them, the great difference in the

two values of ^ proves that these two wheels were far from geo-

metrically similar. The agreement of the values in the last

column is therefore little better than accidental, though it shows

that the facts may be represented, at least roughly, by the equation

P = Npn^D\
5. The Effect of the Density of the Medium.—All writers on the

subject appear to agree that when a given wheel runs at a given

speed, the power dissipated is directly proportional to the density

of the medium. Holzwarth says that this relation holds for

steam "within limits acctirate enough for practical pturposes,"

and I^asche, in an equation quoted by Stodola,* sets Pocpn^.

Stodola experimented on a multi-disk impulse turbine driven

in stagnant steam of densities of o.i to 1.7 kgm/m^, which

correspond, if the steam was dry satiu-ated, to pressm-es of 2.5 to

45 Ib/in^ absolute. His observations as plotted on a small scale

diagram indicate the existence of a linear relation between P
and p, and he sets Pocp and uses tliis relation without further

question. Lewicki's observations as given in Tables 2 and 3

also indicate that the resistance is approximately proportional

to the density. We may therefore say that within the range
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and the accuracy of the published experimental data on this

point, the windage of turbine wheels in a given medium is pro-

portional to the density of the medium, but the evidence is not

at all sufficient to show how nearly exact the relation is. We can,

in fact, only regard this evidence as roughly conformatory of that

presented in section 3, which shows that when the medium is

homogeneous the exponent of p in equation (7) can not differ

much from imity.

6. Remarks on the Comparison of Dissimilar Wheels.—^The

considerations already set forth having shown that an equation

of the form (7) describes the behavior of wheels of any one shape,

it remains for us to find out if possible how the coefficient N
depends on the shape of the wheel and its casing.

Since N depends on shape and not on absolute size, any correct

expression for N must contain as variables only ratios of lengths.

An equation for P which can not be reduced to the form (3), or

practically to the form (7), with the N's satisfying the above

condition, is not a rational equation and can not have any general

validity, even approximate, though it may be satisfactory as an

empirical working formula over limited ranges of the variables.

In attacking the problem of finding a satisfactory expression

for N we are met at the outset by the obvious fact that the shape

of a turbine wheel and its casing, even if confined to general

conformity with commercial practice, may vary in a great many
ways. Thus N must be regarded as a function of a large number
of variables which are, at least within certain limits, all inde-

pendent. But while a complete solution of the problem of pre-

dicting the value of N from geometrical measiurements is thus

out of the question, we may nevertheless make some progress

if it is found that in practice one or a very few variables are of

so much importance that the effects of changing the others are

small or negligible.

It is evident, both a priori and from experiment, that two
very important geometrical elements to be considered are the

blade length and the closeness with which the casing surrounds

the blades, both measured in terms of the disk diameter. Other

important elements are the roughness of the disk; the width,

pitch, and angles of the blades; the number of rows of blades,
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and whether they are shrouded or not. Of these most evidently

important data, the blade length ratio, j^, and the number of rows

of blades are often the only ones given in pubhshed accounts of

experiments, the others either not being given at all or having

been varied so unsystematically that they can not be used. To
start with, we shall of necessity confine our attention to wheels

with one row of blades, together with their Umiting form, bladeless

disks. As regards pitch, width, and angles of the blades, we
can only say that in practice different single-row steam-turbine

wheels are usually somewhere near similar in respect to these

points, as they are also, though perhaps less nearly, in respect

to roughness and profile of the disk.

Stodola's experiments ^ showed that the amount of clearance

between wheel and casing has a large influence on the windage

resistance, and he made a few measurements relating to this

piont. But since his results are not numerous and we have no

other satisfactory data on the effect of altering the casing which

incloses a given wheel, we are reduced to the expedient of elimi-

nating the effect of the casing by removing it altogether; in other

words, we must, at least in starting, use only data obtained from

wheels running in the open without any casing. We may then

hope to get an approximate expression forN in terms of the blade-

length ratio, the hope being founded on the expectation that this

will prove to be much more important in specifying the shape

of the wheel itself than all the other variable elements combined,

so long as these others remain within the Hmits which obtain in

practice.

We then have available for study, Odell's results on disks and

Stodola's results on one disk and five wheels. Tentatively, we
shall also use Holzwarth's results on inclosed wheels in steam,

the assumption being that the casings were similar. Since the

nature of these data does not warrant the use of any refinements

in analyzing them, we shall accept the equation

P^Npn^D^ (15)

as a sufficiently approximate description of the facts for wheels

of any given shape.
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7. Expressions for N in terms of Roughness and Blade Length.—
If we assume that the differences of resistance of different single-

row wheels of the same disk diameter, when driven at the same

speed in the same medium, are expressible in terms of the rough-

ness of the disk and the blade length /, the coefficient A^ must have

the form

Af = >l+/(^) (16)

in which / is some function which vanishes with its argument, and

A is the constant limiting value of N when the blades are shortened

indefinitely. For simple flat wheels the "disk coefficient" A
will depend mainly on the superficial roughness of the metal of

the disk; but it will also, in general, depend on the profile of

the wheel and the nature of the shrouding over the ends of the

blades. For brevity we may include all these factors in the

single term ''roughness" since we have no data which would

enable us to separate them.

If, further, we admit that equation (7) is correct in having

only a single term in the second member, it follows that any gen-

eral equation for P which contains no other elements of shape than

roughness and blade length must necessarily have the form

p=p'-v-"d-v[a+/(^)] (17)

or approximately

P =imW^\A+f(^ (18)

The three equations which the writer has seen given for com-

puting the power dissipated in windage, do not satisfy this require-

ment and so are not general, i. e., they can not safely be used

for extrapolation to values of the variables outside the limits of

the experiments from which the equations were deduced. These

tliree equations are the following:

Lasche is quoted by Stodola ^ as having deduced, from experi-

ments on wheels with i, 2, 3, and 4 rows of blades, equations

which may, for comparison with (18) be written in the form

'4<5K]pn^D^\B[-j.]D (19)
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This equation does not profess to be valid except within rather

narrow limits, hence there is no occasion for criticising the fact that

it leads to an absurdity for bladeless disks or that it violates the

dimensional requirements.

Jude,® after an examination of the experimental results of

Odell, Lewicki, Stodola, and Holzwarth, gives an equation which

may be written

P =fmm^A +b(^D~'^~'A (20)

The second or blade term of this equation violates the dimensional

conditions completely.

Stodola ^ gives an equation which may be written

P =fm^D'W +^(^y^^] (2 1)

This, too, violates the dimensional requirements but to a less

extent than equation (20) ; it could therefore be used over a wider

range of diameters before involving excessive errors. Equation

(20) can apply only over a limited range of speed as well as of

diameter, while equation (21) involves time correctly to the same
degree of approximation as equation (15).

It has seemed to the writer worth while to attempt to repre-

sent the same data as were used by Stodola and Jude, or such of

them as it appeared might legitimately be used, by an equation

which should be free from the defects just noticed. The very

simple form

P = pn'D'\A+B(^^'\ (22)

was therefore tested, to see if it was possible to find satisfactory

values of the constants A, B, an4 x. The disk coefficient. A,

must evidently depend on the roughness of the disk and we can

not expect all disks to give the same value. The "blade coeffi-

cient," B, should doubtless involve the width, pitch, angles, pro-

file, and form of shrouding of the blades, but it will, tentatively,

be treated as a constant, as will the exponent x. The question

is whether such an equation can be made to describe the observed

facts with reasonable accuracy and completeness.
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8. The Form of the CoefficientN for Stodola's Unenclosed Wheels.—
We may first examine Stodola's data on his ^yq. wheels nmning
in the open air. He gives his observed value of the power absorbed

by each wheel, only for one speed, namely the highest used with

that wheel. The data which concern us here are collected in

Table 6.

TABLE 6

Stodola's Observations on Unenclosed Wheels in Air

I n m IV V VI vn vm

D
Disk

diameter
D

(ins)

Mali-
mum
speed
n

(r. p. m.)

Power
absorbed
P

(Up.)

lOiW p
(calc)

P (obs)
-P (calc)

in per
cent

D 0.0311 34.84 1600 2.306 1.569 2.315 - 0.4

c 0.0364 26.50 2200 1.778 1.786 1.736 + 2.4

A 0. 0396 19.88 2200 0.536 2.319 0.446 +18.

£ 0. 0476 45.47 980 2.895 2.264 3.000 - 3.5

B 0. 1190 19.84 2100 1.850 9.306 1.833 + 0.9

N is defined by P=Npn^D^ and the density of the air is assumed to have been

/)=o.o699 i^lf^

P (calc)= io-^>wj^i+ 593(^-^y]

If the observed values of P. are expressible by equation (22),

i. e., by setting N = A + B(-j^) , we have

log (N-A)=logB+x\og-j^ (23)

and the values of A, B, and x may be found by trial. We assume

a value of A , and plot log {N — A) against log y^. If we can find a

value of A such that the points all lie on a straight line within the

observational errors, equation (22) is satisfied, the slope of the line

is the value of x, and the position of the Hne gives the value of B.

By this method it was foimd that the observations on foiu* of

the five wheels are satisfactorily represented by writing equation

(22) in the particular form

P= lor^^prvz>{i+ 593(5)] (24)
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and that no other values oi A,B, and x are sensibly better. Values

computed by equation (24) are given in column VII of Table 6

and the agreement of the results mth the observed values in column

V is shown by column VIII to be good except for wheel A. The
value for this wheel can evidently not be brought into accord

with those observed for the others by any simple expression for N
as a function of y^. It is possible that the discrepancy may be due

to an experimental error, but this seems very unlikely. Unless it

is merely a typographical error, it probably arises from some geo-

metrical peculiarity of this wheel which is not evident from the

description given. The writer has assumed that the blades of all

the wheels were shrouded, because that is the usual construction;

but if the blades of wheel A were open-ended, the relatively

greater windage would be easily understood.

However, there is no advantage to be gained from splitting

hairs in analysing so small a number of data by means of confess-

edly only roughly approximate assumptions, and we may be

content to say that equation (24) represents the results of Stodola's

experiments on single-row wheels of ordinary forms running in

the open air, quite as well as could be demanded of any equation

deduced from so inadequate data.

9. Deduction of an Expression for N from Holzwarth's Data.—
Holzwarth's results and the manner in which they were treated

for finding the relation of P to n, have been described in section 3.

The values foimd for y3 = 3 — 8 are given in Table 7 as they were

read from the straight lines drawn on the plot of log K against

log n and they are imcertain by from o.i to 0.2, because the lines

were drawn merely by inspection.

TABLE 7

Values of K from Holzwarth's Diagrams

Blade length
(inches)

D=20
inches

Z?=30
inches

I>=40
inches

D=50
inches

0.5 3.61 3.39 2.51 3.24

1.0 3.62 3.00 2.51 3.30

1.5 2.28 S.OO 2.58 2.58

2.0 2. 83 £.98 2.90 2.89

2.5 2.69 3.39 S.09 S.I4
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From the great variations in yS it appears either that the values

of Holzwarth's coefficient K read from his diagrams are erroneous

or that the wheels, even for the same blade-length ratio, were far

from geometrically similar. It would be a waste of time to attempt

to reconcile all the readings ofK with an equation of the form (22)

in which /3 = 3, and I have therefore arbitrarily selected the eight

series which gave values of /3 {italicized in Table 7) between 2.8

and 3.2, i. e. values which we can not be sure are different from

3.0, and I shall confine my analysis to these series.

For each of the selected eight series, the mean value of —tt^^t

was found by averaging over all the values of K for the higher

speeds, omitting a few points where the readings from the dia-

grams were obviously liable to exceptionally large errors. We
thus get eight separate values.

In the units we have been using we have, approximately,

P=o.s^pK (25)

Since Holzwarth's diagrams are drawn for a constant value of

the density we may treat K as we have previously treated P,

which is proportional to it when p is constant. If we proceed in

this way, we find that by selecting an appropriate disk coefficient

A' for each diameter and plotting log I 3^^ ~^) ^g^-iiist log -^,

seven of the eight points may be made to fall very close to a single

straight line of which the slope is 2. The exception is the one

rather doubtful point for the 20-inch diameter. We thus find that

those of Holzwarth's results which are comparable with Stodola's

in giving y8 = 3, approximately, may be represented by an equation

very like (24) which describes Stodola's results. The exponent of

( ^ j is the same and the disk and blade coefficients are not very

different, though somewhat smaller for Holzwarth's wheels, in

accordance with the fact that the wheels were inclosed instead of

run in the open.

If we write

P =pn'D^A +Bf-Jl (26)

we have the values of A and B given in Table 8.
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TABLE 8

Values of the Coefficients of Equation (26)

Blade
coeffi-

cient
BXIOI8

Disk
diam-
eter!?
(inclies)

Disk
coeffi-

cient
AX10i»

19.8-45.5 1.0

20 (0.54)

30 0.86

40 0.32

50 0.22

21.1 0.63

47.1 a5

0.44

593

(243)

414

414

414

Stodola's observations on wheels B, C, D, E, in open air

Holzwarth's observations. Wheels inclosed in steam —

Stodola's bladeless disk run in open air

Odell's disk D in open air

Jttde; from observations by Lewicki, Odell, Stodola, and Holzwarth, for

wheels run in open air

The difference between the coefficients deduced from Stodola's

and from Holzwarth's observations would probably have been

greater if Holzwarth's values had all been obtained from experi-

ments in air. His results were obtained "from occasional experi-

ments carried on for some years—partly in air, partly in steam of

different density." Since he says nothing to the contrary, the

steam was doubtless saturated and probably by no means dry, so

,

that we may infer from Lewicki 's observations, described in

section 4, that the value of A^ or of the coefficients A and B would

have been smaller if the experiments had all been made in air or

perfectly dry steam.

On account of the varying density in Holzwarth's experiments,

some sort of reduction to a standard density must have been

made in order to get the values of K for drawing the diagrams.

Holzwarth sets P<^p and we must assume that he used this rela-

tion in the reduction. But if in equation (7) the value of yS is

very different from 3, the exponent of p must differ by the same
amount from unity and a reduction of this sort is not permissible.

Although no detailed criticism is possible, it is evident that we
have here an additional ground for omitting from consideration

those series of Holzwarth's results which do not conform approxi-

mately to the equation P = const X n^.

The degree of approximation to which equation (26) with the

coefficients given in Table 8 reproduces the readings from Holz-

27647°—14 5
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warth's diagrams, may be seen from Table 9 in which are given

the values K(ohs) read from the diagrams, and the values X(calc)

computed from equations equivalent to (26) with the coefficients

in Table 8. The readings may be in error by one tmit at the low

values and several imits at the higher.

TABLE 9

Comparison of Observed and Computed Values of Holzwarth's

Coefficient K

speed in r. p. m. n= 1000 1250 1500 1750 ^r] 2500 3000 3500

D
(in.)

I

(in.)

5 6 8.5

5.9

20

20.1

28.5

28.8

40

41

85

86.9

123

124

161

172

236

244

10

9.4

31.5

31.9

44

45.8

70

65.2

150

138

211

197

288

272

446

388

14.5

14.1

45

47.7

62.5

68.3

109.5

97.3

224

206

334

294

24.5

27.5

94

93.1

131

133

205

190

375

402

560

574

45.5

47.5

160

161

238

231

344

328

527

695

(120)

75.5

293

256

20

30

40

50

2.0

1.0

1.5

2.0

2.0

2.5

2.0

2.5 11
11
11
11
11
11
11
1

1

10.5

6

12.5

8.5

13

12.2

26

25.7

34

36.8

50

50.8

65

72.3

13.5

11.6

19

16.7

20

23.8

46

50.3

63

71.8

86.5

99.2

118

141

For the smaller wheels the observed resistance at the lower

speeds is considerably larger than the calculated, and the law of

resistance is evidently not the same as at the high speeds. At

750 r. p. m. the observed K is larger than the calculated in every

instance. But if we omit the low speeds, where agreement is not

to be expected, and the highest speeds, where slight errors in the

drawing of the diagrams cause large errors in the values of K read

from them, the agreement of observed and calculated values is

fair—certainly as good as would be demanded of any formula by
one who has studied the diagrams.



Buckingham] Windage Losses of Steam Turbines 223

10. Further Values of the Disk Coefficient.—We have now
exhausted the few published data which are available for inves-

tigating the dependence of the coefficient N of equations (7),

(8), (9), etc., on the blade-length ratio, and there remain for

consideration only experiments on bladeless disks which will give

values of the disk coefficient for comparison v^th the values

obtained from experiments on wheels with blades.

Stodola's boiler-plate disk of 21.1-inch diameter absorbed 0.147

hp when running 2000 r. p. m. in air of density p = o.o'j lb. per

cu. ft^. From these values we find A =0.63 X io~^*. The only

remaining experiments on a rigid disk, which gave ^8= 3 nearly,

are those of Odell on his largest disk. From data already given in

section 4 we find for this disk ^4 =0.5 X 10-*® approximately. Both
these values are included in Table 8. The difference between the

values of A deduced from Stodola's observations on wheels and on

the disk need not cause any surprise, for we do not know anything

about the relative roughness in the two cases. The shrouding over

the blades and the difference of profile between wheels and disk

may accoimt for the difference, which appears to be genuine.

One more value of A is included in Table 8, namely,

A =0.44 X io~*®, deduced by Jude from a general examination of

all the experiments already mentioned in this paper. It is appli-

cable according to its author to flattish disks in open air.

11. The Influence of Axial Clearance.—For information on this

point we have only Stodola's comparative runs of three of his

wheels in the open air and in casings. The results are given in

Table 10, some of the data being repeated from Table 6.

TABLE 10

Stodola's Experiments on Varying Clearance

I n m TV V VI

I

D
D

inch

Axial
clearance 1016JV Ratio

00 2.32

A 0.0396 19.88 0.0079 1.28

2.26'

0.55

E 0.0476 45.47 0.0056

00

0.57

9.31

0.25

B 0.1190 19.84 0.0079 3.53 0.38
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In column V of the table are given the values of A'' in the equa-

tion P = Npn^D^ for the axial clearances given in column IV, the

clearance oo meaning that the wheel was run in the open air. In

column VI there is given for each wheel the ratio in which the

dissipation was reduced by the presence of the casing.

It appears from this table that the effect of a close casing is

much greater on the blades than on the disk. By comparing

wheels A and B we find that the presence of a casing, which left

at the blade edges an axial clearance of about 0.008 times the

disk diameter, reduced the resistance considerably more in the

case of B, which had blades three times as long as those of A, the

ratio of reduction being 0.38 for the long blades as against 0.55

for the short ones. If we compare wheels A and E, which did

not differ very widely as to blade-length ratio, we find that reduc-

ing the clearance from 0.0079 ^ ^o 0.0056 D, i. e., to two-thirds,

decreased the resistance, expressed as a fraction of the open-air

resistance, by about one-half, or from 0.55 to 0.25. We have

also already found in section 4, when comparing wheel B with

Lewicki's wheel of about the same blade-length ratio, that increas-

ing the axial clearance by about one-half, or from 0.008 D to

0.012 jD, increased the resistance some 35 per cent.

These few isolated data are evidently not a sufficient ground for

any general quantitative statement about the effect of clearance

on windage, but they may be valuable as a basis for guesswork

in cases which happen to be nearly similar to the ones mentioned.

In this connection we may also note the results obtained by
Stodola ^ in comparing wheels run in the normal or forward direc-

tion with the same v/heels run backward. In open air the resist-

ance backward was in one example as much as 5.4 times the

resistance forward, though in other examples the ratio was not

so large. But inclosing the blades reduced the difference very

much, and the longer the blades and the greater the part of the

resistance due to the blades the greater is this effect of the casing,

so that with very small clearances the resistance when the wheel

is run backward is very little greater than when it is run forward.

With wheel B for which y^ --=0.1 19, when the axial clearance was

0.008 D, the resistance backward was only 13 per cent more than

the resistance forward.
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12. Remarks on Further Experimental Results.—In the foregoing

discussion the symbol P has everywhere denoted the power

required to drive a wheel against the resistance of the otherwise

stagnant medium surrounding it, and the experiments noted

have referred to this state of affairs. But the conditions of ordi-

nary practice are different, and it remains a question whether,

in designing a steam turbine, a windage correction based on even

completely satisfactory data of the kind considered could be

considered reliable. The only answer that can be made to this

question is that we do not know; and the best, because the only,

thing we can do at present is to compute windage corrections for

designing purposes as if the turbine were to be driven independ-

ently from without, acting merely as a brake, a condition which

occurs only in the case of marine turbines with reversing stages

or with cruising stages which are by-passed at full power.

Another pertinent question is : How much ought the computed
windage loss to be reduced when a part or all of the blades are

working in the ordinary manner, with steam from the nozzles

passing through them? The experiments of Lasche, quoted by
Stodola,^ and of Jasinsky ^^ are not sufficiently comprehensive to

tell us more than that the windage decreases as the admission

arc increases and fewer blades are idle. With rectangular nozzles

and a continuous steam belt, it will probably be not far wrong to

multiply the blade term of the computed resistance by the frac-

tion of the whole circumference which is not occupied by open

nozzles, i. e. by the fraction of the whole number of blades which

is idle at each instant.

The experiments we have considered having referred only to

disks or single-row wheels, one further question remains: How
does the windage, i. e. the value of N in our equations, depend

on the number of rows of blades ? Here again we have only the

most meager information. Experiments by Lasche, quoted by
Stodola,^ gave for wheels with from i to 4 rows but otherwise,

presumably, similar, resistances which stood in the following

relation

:

Number of rows of blades 1234
Relative resistance i 1.2 1.6 2.4
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But the experiments were on wheels which were not closely

encased so that they do not give us much practical assistance.

The increase of resistance with number of rows of blades would

probably be very much less rapid if the wheels were run in cas-

ings with fine clearances.

13. Dynamically Similar Wheels.—The one fact which emerges

clearly from the foregoing discussion is that the task of provid-

ing data for the development of a satisfactory general formula

for computing the windage losses of high-speed steam turbines,

has hardly been begun. Suggestions as to futtire lines of experi-

ment are therefore in place here.

Up to peripheral speeds of at least one-half the speed of sound,

or about 700 feet per second for steam, we are justified in treat-

ing the medium as incompressible and the resistance phenomena
may be described by an equation of the general form (4) . If we

in

introduce the "kinematic viscosity" v = -, the equation may be

written

P=/m'i?^9^^) (27)

q) being a function of which the form, though imknown, is fixed

by the shape of the wheel and casing.

Let us compare two geometrically similar wheels of diameters

D and Do running in media of densities p and Po and kinematic

viscosities v and v^ at speeds of rotation which stand in the ratio

no v^D/

Speeds thus related are " corresponding speeds."

At corresponding speeds

nD"" noDo^

and since the form of cp depends only on the shape, which is the

same for the two wheels, we have

n^j^K'd?)
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no matter what the shape of the wheels and the form of the func-

tion (p may be. The ratio of the dissipation by the two wheels

at corresponding speeds is therefore, by equation (27)

P pn^D'^

Po~Pono'Do'

or by equation (28) which defines corresponding speeds,

Any two geometrically similar wheels running at corresponding

speeds constitute a pair of ** dynamically similar" systems, and

the power dissipated by either may be determined from an experi-

ment on the other by means of equation (29) , if the diameters of

the wheels are measured and the densities and kinematic vis-

cosities of the media are known.

If the experiments are all made in the same medium so that

p= Po and V= Vq, corresponding speeds are inversely as the squares

of the diameters and the powers dissipated at corresponding

speeds are inversely as the diameters.

If T and Tq are the torques required to drive the wheels at

corresponding speeds, since PccnT we have by (28) and (29)

Tr-^.©1
At corresponding speeds in a given medium the torque is directly

as the diameter.

The shearing stress in the metal of the shaft, so long as the

shaft is not sensibly distorted, is proportional to the torque

divided by the cube of the shaft diameter, or with similar wheels

T
to yp. Hence the ratio of the shearing stresses, 5 and So, in. the

shafts of two dynamically similar wheels is

At corresponding speeds in a given medium the shearing stresses

are inversely as the squares of the diameters.
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The centrifugal stresses C and Co in the metal of the two wheels,

if they are of the same density, will stand approximately in the

ratio.

r.-(rJ(&J

At corresponding speeds in a given medium, the centrifugal

stresses are inversely proportional to the squares of the diameters

if the wheels are of the same density.

14. The Use of Model Wheels in Studying Windage.—^To avoid

the difficulties of working with large wheels, it may be desirable

to utilize the results of model experiments as is done in determin-

ing ship resistance.

If we limit ourselves to tne use of a single medium, the prac-

ticable range of scale reduction is not great, unless the full-sized

original runs very slowly, and this case is not interesting because

we know that at low speeds the windage losses are too insignificant

to demand much attention. For dynamical similarity in a given

medium, a quarter-scale model must, by equation (28) run at 16

times as many revolutions per minute as the full-sized original;

and by equation (32), the centrifugal stresses in the wheel will

then be 16 times as great in the model as in the original; an

increase which would usually not be permissible. Furthermore,

the peripheral speed of the model will be 4 times that of the original

and may approach the acoustic speed so closely as to invalidate our

fundamental assumption that the medium behaves sensibly as if it

were incompressible. There is evidently not much information

to be got from small scale models unless they can be nm in a med-

ium of much less kinematic viscosity than steam, so that the speed

of the model may be reduced, in accordance with equation (28)

.

Water is such a medium. Using values from I^andolt and Bom-
stein's tables, and comparing water with air which is known to

act like dry steam, we have at 20° C and i atmosphere pressure.

Air Water

p=0. 001205

^=0.0001898

v=0. 1575

p= 0.9982

;^ 0.01012

y= 0.01014
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Let it be desired to find the power dissipated by a wheel of diam-

eter Do running no revolutions per minute in air, by means of

experiments on a model of diameter D = —^ running in water,

the temperatiu-e being 20° C in each case and the air being at

normal pressure. We then have to substitute in equations (6)

to (10)

p V— =828 — = 0.0644

the uncertainty of — being about ± 3 per cent.

For any given scale ratio r, the ratio of corresponding speeds,

n for the model and no for the original will be, by equation (28)

,

n— = o.o644r2 ± 3 per cent (33)
/fro

The ratio of the powers dissipated at corresponding speeds will

be, by equation (29)

,

p
p- =0.222 r ±6 per cent (34)

from which Po can be foimd if P has been measured in an experi-

ment on the model.

We must next consider whether the stresses in the wheel and

shaft of the model will rise too high when we make a convenient

reduction of diameter. Taking first the centrifugal stresses in

the wheel, we have by substitution in equation (32)

^ = 0.00415 r^ (35)

Setting C = Co and solving for r, we find that the stress of any
point in the model will not exceed that at the corresponding point

in the original until r>i5.7. As a 10 to i reduction will usually

be ample, there will be no difficulty regarding the bursting strength

of the model if it is made of the same material as the full-sized

wheel.
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For the ratio of the shearing stresses in the shaft, equation (31)

gives us

5
So
= 3.43^^ (36)

A scale reduction r = 10 would thus give us 343 times as great a

stress in the shaft of the model as in the original shaft. This, at

first sight, looks quite impracticable. But in fact turbine shafts

are generally made much stronger, for the sake of stiffness, than is

required by torsional strength; and, furthermore, the torque due

to windage when the wheel is driven light is only a few per cent

of the torque of the wheel running at full load. Hence the ratio 343
would probably not always be excessive. However, doubling the

diameter of the shaft of the model would have hardly any effect on

its windage resistance, and by such a small sacrifice of exact geo-

metrical similarity the use of a model in water might always be

made practicable, so far as the strength of the shaft is concerned.

To make the matter more concrete we may carry out the com-

putations for a few typical cases of wheels run in air in comparison

with models of 12 inches diameter run in water. We have the

values given in Table 1 1

.

TABLE 11

FuU-sized
diameter

Do
(inches)

Wheel
. speed

no
(r. p. m.)

Diam-
eter

ratio for

12-inch
model

Do

Speed of

model

n
(r. p. m.)

Power
ratio

P
Po

Stress
ratio in
shafts

S
So

36

60

84

120

3600

1800

900

450

3

5

7

10

2090

2900

2840

2900

0.67

1.11

1.55

2.22

31

86

168

343

It therefore appears that the investigation of such cases as are

commonly met with, by means of 12-inch models run in water,

would be quite practicable so far as the points already treated

are concerned, and only one further point remains to be considered.

This is the question of cavitation.
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If cavitation occurs in the water the similarity of the model

and the original will cease to exist, and equation (29) will not give

correct results. To avoid cavitation, the water surrounding the

model must be under pressure and the casing must be constructed

accordingly. At atmospheric pressure and high speeds cavita-

tion will certainly occur. If the pressure on the water is increased

the cavitation will decrease and the torque at a fixed speed will

change until the presstue has been increased so much that cavita-

tion has been eliminated. By observing the variation of torque

or power with the pressure at any given speed we have thus a

means for finding what pressure is needed in order to eliminate

cavitation and make sure that the model in water is comparable

with its original in air or steam. It remains to be seen whether

the pressures required would be impracticably high, but it appears

that the method of model experiments is worth trying.

15. Summary.—I. The power P required to drive a turbine

wheel of diameter D 2it n revolutions per unit time against the

resistance of a homogeneous medium of density p and viscosity /x,

when the peripheral speed does not exceed one-half that of soimd,

may be represented by an equation of the general form

in which the form of the unknown function cp depends solely on

the shape of the wheel and its casing.

II. Throughout the practical range of the experimental data,

equation (I) has the simpler form

p^Np'-^n^D^^li^ (II)

the abstract numerical constant N having a value which is deter-

mined solely by the shape of the wheel and casing. All the

reliable data which we have agree with equation (II) or with direct

deductions from it.

III. At low speeds the value of 3 is nearly unity and the resist-

ance is directly proportional to the viscosity of the medium. At
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the speeds at which stationary turbines are usually run, 8 is a

small quantity and we have approximately

P = Nfm'D' (III)

A closer approximation is obtained by setting 8 = o.i whence

IV. For wheels of ordinary shapes, running either in the open

or in casings with fairly large clearances, the "shape coefficient"

A^ may be expressed approximately by the equation

JV=A+b(^J (IV)

in which l/D is the ratio of the blade length to the disk diameter.

The disk coefficient A increases with roughness of the disk; the

blade coefficient B decreases when the clearance round the blades

is decreased, but no more definite statements are warranted.

V. (a) For designing purposes we may first compute the windage

loss by the following equation deduced from Stodola's results

:

P = io-^ >^D^[i+59o(0] (V)

In this equation

P = the horsepower dissipated

p = the density of the medium, in pounds per cubic foot

w=the speed, in revolutions per minute

D = the diameter, in inches, at the root of the blades

/ = the length of the blades, in inches

The equation is applicable to wheels of ordinary shapes with one

row of shrouded blades, running in the open or in casings which

leave large clearances, in a homogeneous medium such as air or

dry steam.

(b) Reducing the clearances, especially round the blades, reduces

the windage. In some cases the amount of this reduction may be

estimated from Table lo but no general quantitative statement

is possible. The reduction affects mainly the blade term.

(c) Open-ended blades have more resistance than shrouded

blades, to which equation (V) refers, but there are no data to
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show how much. When the radial clearance over the blade tips is

small, the presence or absence of shrouding will have Uttle effect.

(d) A wheel run backward experiences a greater resistance

than the same wheel run forward, i. e., in the normal direction.

When nmning in the open the difference may be considerable,

but if the clearances round the blades are small, the resistance

backward is not much greater than the resistance forward.

(e) Each additional row of blades increases the resistance.

When run in the open, a fotu--row wheel may have two and one-half

times the resistance of a one-row wheel, but there are no adequate

data published. With short blades and fine clearances the effect

of increasing the number of rows will be much less than that

indicated.

(/) A wheel run in wet steam experiences more resistance

than in dry steam or air of the same density. In Lewicki's experi-

ments the increase was 30 per cent; we have no other informa-

tion on this point.

(g) Equation (V) gives the power absorbed when the wheel is

driven from without. If the wheel is working in the usual manner
we may reduce the blade term in the ratio of the number of idle

blades to the whole number.

(h) The values given by equation (V) may be too large, espe-

cially for smooth wheels with short blades ; for the disk coefficient

used, viz.: A = 10-^^, is larger than the values deduced from

other experiments.

VI. The necessary indefiniteness of many of the statements

made under V is due to lack of experimental data. No formula

based only on our present knowledge can be trusted to give accurate

results, and no formula which has not the general form (II) should

be used for extrapolation beyond the limits of the experiments

from which it was deduced. Equation (V) , if used as indicated,

probably gives safe maximum values.

VII. The method of model experiments is applicable to the

study of the windage losses of steam turbines and might prove very

useful- by decreasing some of the difficulties encountered in making
systematic experiments on a large number of full-sized wheels.

Washington, July 25, 191 3.



234 Bulletin of the Bureau of Standards vvoi. to

REFERENCES

1. Stodola, Die Dampfturbinen, 4th ed., 1910, pp. 120.

2. Odell, Engineering, 77, p. 30; Jan. i, 1904.

3. Osborne Reynolds, Scientific Papers, 2, p. 51; or Phil. Trans.; March 15, 1883.

4. W. Froude, B. A. Report; 1874.

5. Zahm, Phil. Mag. (6), 8, p. 58; 1904 II.

6. E. Lewicki, Zs. d. Ver. Deutsch, Ingen., 47, p. 492; Apr. 4, 1903.

7. Holzwarth, Power, 27, p. 50; Jan. 1907.

8. See Kranz, Lehrb. der Ballistik 1, p. 49, also Mallock, Proc. Roy. Soc. London,

(A) 79, p. 262; March, 1907.

9. Jude, The Theory of the Steam Turbine, 2nd ed. 1910, p. 221.

10. Jasinsky, Zs. d. Ver. Deutsch. Ingen., 63, pp. 492, 538; 1909 I.









''m'm
.' '. ,'-1 i,c\-.^^/(i

J.. V, 'J

•^^/<;^

'J •/*


