
ANALYSIS OF ALTERNATING-CURRENT WAVES BY THE
METHOD OF FOURIER, WITH SPECIAL REFERENCE I'O

METHODS OF FACILITATING THE COMPUTATIONS

By Frederick W. Grover

CONTENTS
Page

I. Introduction 568

II. The Fourier method 572

1

.

Derivation of Fourier 's equations for a finite number of terms 572

2

.

Runge's method of grouping 577
III. Schedules for carrying out analyses 579

1

.

Arrangement of calculations 579
2

.

Checks on the accuracy of the calculations 582

3. Calculation of the amplitude and phase of the harmonics 584

4. Choice of the schedule to be used 585

IV. Examples op the use op the analysis schedules 588

Example i. Analysis of a curve by the 6-point schedule 588

Example 2. Analysis of a curve by the 12-point schedule 591

Example 3. Analysis of a curve b}'^ the i8-point schedule 593
Example 4. Choice of schedule 593

Example 5. Accuracy of results 597
Example 6. Prediction of presence of harmonics from appearance of

the curve 599
Example 7. Badly distorted curves—Influence of capacity and
inductance 601

Example 8. Resonance of a particular harmonic 606

V. Further applications 608

1. Calculation of the average and effective values of electromotive

force and current waves 608

2. Calculation of the average power in a circuit 610

3. Derivation of the equations of power curv^es 612

4. Resolution of the power curve into two components 614

5. Derivation of the equations of component power curves 618

VI. Examples illustrating the preceding section 619

Example 9. Calculation of the average values of current and electro-

motive force waves 619

Example 10. Calculation of the effective values of electromotive force

and ciurent 621

89420—13—7 567



568 Bulletin of the Bureau of Standards [Voi. p

VI. Examples ii^llustrating the preceding section—Continued

Example 1 1 . Calculation of average power, power factor, and effective

phase difference 623

Example 12. Derivation of the equation of a power curve 625

(a) First method. 625

(6) Second method. Determination of the equation of the power
curve by direct analysis 628

Example 13. Illustrating the resolution of a power curve into com-

ponents ; 629

(a) By resolution of the emf ciu"ve 630

(6) By resolution of the current 633

VII. Summary 637

Appendices 639

Appendix A 639

Table i. Multiplication table for use with the 6-point and i8-point

analysis schedules 639

Table 2. Multiplication table for use with the 12-point analysis

schedule 641

Appendix B 642

Analysis of curves containing even harmonics and a constant term .... 642

I. INTRODUCTION.

The value of curves, showing the wave form of the electromo-

tive force and the current in a circuit, has long been recognized,

not only in the study of alternating-current phenomena, but also

in precise electrical measurements, and in the design of alternating-

current machinery, and various instruments have been designed

for drawing such curves. These may naturally be divided into

two classes—curve tracers and oscillographs. Of these, the first

type is capable of giving the more precise results. The use of a

curve tracer, however, presupposes steady conditions, so that the

successive cycles of the wave are sensibly exact repetitions of

those which have preceded. For transient phenomena the oscillo-

graph is more suitable, and has in recent years become a powerful

instrument of research. For a comprehensive and up-to-date

treatment of the history and development of curve-drawing

instrtunents, the reader is referred to the valuable treatise, " Auf-

nahme und Analyse von Wechselstromkurven," by E. Orlich, F.

Vieweg und Sohn, Braunschweig, 1909.

Having obtained the desired curves, a simple inspection is in

some cases perhaps sufficient to throw light on the problem under



Grover] Aualysis of Altemating-Current Waves 569

consideration. More often, however, and especially where quan-

titative results are desired, it is necessary to make an analysis of

the curve in order to realize its full value. To make such anal-

yses, various ingenious and elaborate machines, the so-called

''harmonic analyzers," have been devised, which automatically

carry out the resolution of a given irregular curve into a number
of component sine waves, the number depending on the number
of elements included in the machine. Where a great many curves

have to be analyzed, such instruments can hardly be dispensedwith.

Usually, however, the number of curves which have to be analyzed

will hardly warrant the expense of such a machine, and one has

recourse to calculation for obtaining the component waves.

The logical procedure in this case would seem to be to make
use of the method of Fourier, who in his classic work on the theory

of heat gave the complete solution of the problem of the resolution

of a given function into a series of component sine terms. The
direct use of the Fourier equations involves, however, the necessity

of the formation of so many products, that the calculation is very

laborious, and it is to this fact that the neglect of the Fourier

method for numerical calculations is to be attributed. To avoid

the difficulty, recourse has been had in a great many cases to

graphical or approximate mathematical solutions, or the curve

has been put aside without any analysis at all.

Realizing the greater accuracy of the Fourier method, attempts

have been made from time to time to reduce the amoimt of labor

involved in the use of Fourier's equations. Thus Perry ^ and

Kintner ^ sought to simplify the calculation by the preparation

of printed blank forms, in which were indicated the products to

be taken in their proper places for making the summations.

A further step was taken by Rosa, who in 1897 worked out the

details of a scheme of calculation, in which from 15 measured

ordinates, equally spaced throughout a half wave, all odd harmonics

Up to and including the fifteenth can be obtained. From a consider-

ation of the relations between the sines and cosines of supplement-

ary and complementary angles it is easy to show that, for this case,

1 Lond. Elect. Feb. 5, 1892, and June 28, 1895.

2 Elect. World, 43, p. 1023; 1904.
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the only functions involved are the sines of 6°, 12°, 18°,

90°. To facilitate the multiplication of the ordinates by these

sines, Rosa prepared a multiplication table with 14 columns, in

which were tabulated the calculated products of the sines of the 14

angles, other than 90°, by values of ordinates up to 50 by steps

of 0.1. The calculation of the harmonics was arranged according

to a definite form, each product being indicated by the number of

that column, in the table, which must be entered with the values of

ordinate in question.

The number of required products, when this scheme of analysis

is used, is, omitting those involving sin 30° and sin 90°, 160 in

number. The products omitted in this coimt do not of course add

materially to the labor. With very little practice one can carry

through a complete analysis in about 45 minutes, and this time

could be reduced materially by the use of printed forms, to save

the time required for w riting down the numbers of the columns and

the headings. This scheme, which has never been published, has

been used with success for analyzing a large number of curves taken

with the Rosa curve tracer; a special application was its employ-

ment for determining the correction for wave form in absolute

measurements of inductance made at the Bureau of Standards.^

An extension of this principle of simplification of the calculation

by grouping terms was carried out by Runge * in 1903. This

method, which is described in detail below, consists in separating

those products which involve the same trigonometrical function.

By previously adding together the ordinates which enter into these

products, the sum of the products in question is obtained with the

necessity of making a single multiplication only. The paper of

Runge treats the problem in an entirely general manner, and with-

out reference to any specific problem, the number of harmonics

being unrestricted. He works out in detail the scheme of calcu-

lation for the cases of 18 and 36 ordinates.

The paper of Runge does not seem to have received the attention

it deserves. In 1905 S. P. Thompson ^ reviewed Runge's article,

and worked out schedules for the analysis of curves from 6 and 1

2

• Rosa and Grover, This Bulletin, 1, p. 138; 1904.

* Zs. fiir Math, und Phys., 48, p. 443; 1903.

6 Lond. Elect., 65, p. 78; May 5, 1905.
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measured ordinates, only odd harmonics being assumed present.

The author of the present paper, after reading the article of

Thompson in 1909, extended the use of the method to the case of

18 ordinates with only odd harmonics present. These three sched-

ules are given below together with the corresponding schemes of

calculation when even harmonics are present. Of the latter, that

for 1 2 points was given by Runge ; the other two have been derived

by the author. During the writing of the present paper, has

appeared an excellent though necessarily brief treatment of the

subject of wave analysis by the method of Runge in an appendix

to the ** Direct and alternating current manual" of Bedell and

Pierce, second edition, 191 1.

Nevertheless, knowledge of the work of Runge seems to be far

from general, and the Fourier analysis of alternating-current

curves seems to be a thing avoided by the majority of electrical

engineers. To such considerations this paper owes its origin. In

it the author has endeavored to include all the necessary for-

mulas, together with a detailed description of the methods of car-

rying out the calculations and checking their correctness. As a

further aid toward clearness all the formulas and schemes of cal-

culation have been illustrated by means of examples of the anal-

yses of actual curves. A useful feature will, it is believed, be

foimd in the multiplication tables, which allow all necessary

products to be found without calculation.

For the sake of completeness, the first part of the paper includes

a proof of the equations of Fourier, for the case of a finite number
of terms, and with even harmonics absent. This proof follows

closely the method of treatment given in Byerly's "Fourier's

series and spherical harmonics."

The latter part of the paper is taken up with the consideration

of some of the practical applications of ctu-ve analysis in the realm

of altemating-cturent theory. These may perhaps appeal most
strongly to the teacher, but it is hoped that they may be of use,

in any case, as illustrations of general methods of attack for

special problems.

Although alternating-current waves are the only cases treated

here, it hardly needs to be pointed out that the methods and

ii
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results here given may, with Uttle change, be applied to the

treatment of periodic cmves relating to other branches of science.

This will be especially true of the analysis schedules for curves in

which even harmonics are present.

The electromotive force and current waves reproduced here

were all taken from originals drawn by means of the Rosa curve

tracer.^ For details of this instrument the reader is referred to

the original article. Briefly, the instrument operates on a point-

by-point method, the instantaneous fall of potential over a resist-

ance, through which an alternating current is flowing being applied

by means of a rotating contact maker to a potentiometer arrange-

ment, the instantaneous emf being balanced by varying the posi-

tion of a movable contact (on the potentiometer) , which position

can be automatically registered. The curves themselves bear

witness to the faithfulness with which even insignificant irregular-

ities of the wave may be recorded.

Finally, I wish to express my indebtedness to Prof. Rosa for

the wealth of curves which he has placed at my disposal, but

especially for my first interest in the subject and the advantage

of an intimate knowledge of his work along this line.

II. THE FOURIER METHOD
1. DERIVATION OF FOURIER»S EQUATIONS FOR A FINITE NUMBER OF

TERMS

By the method of Fourier any function may, between definite

limits, be expressed as a series of sine and cosine terms in the form

y = f(x) =Ai sin x + A^ sin 2^4-^3 sin 3^
+ . . . 4-.4„sin n^+ . . . , .

* (i)
+ ^0 + -^1 COS X + B2 COS 2x + Bs cos 3^

-1-
. . . -f- J9n COS nx-{- . . .

where Ai,i42, .... An, Bq, B^, B^, .... jB„ are constants. To
obtain any coefficient Aj^, for example, Fourier multiplied both

sides of the equation (i) by sin kx dx and integrated between the

limits zero and X, where X is the interval through which it is

8 Phys. Rev., 6, p. 17; 1898.
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desired that the development shall hold. Since all the integrals

of the forms I Am sin mx sin kxdx and
| Bm cos mx sin kxdx be-

Jo Jo

come severally equal to zero, the resulting equation is simply

I
y sin kxdx =1 A^ sin^ kxdx

Jo Jo
or

*x

Ak =~ I y sin kxdx

Similarly, the general coefficient Bk of the cosine terms is foimd

by multiplying both members of (i) by cos kxdx and by integrating

between zero and X, and we find finally,

B^ =
2 fx^ I y cos kxdx
^Jo

These, which are known as the Fourier integrals, can not, in

general, be evaluated, since the relation connecting y and x is

usually unknown or too complicated.

The series (i) is an infinite series ; only when the number of terms

is infinitely great will the function be represented by the series for

every value of x in the chosen interval. If ti have a finite value,

the series (i) will be a finite series, and the series will be equal to

the function at only n points, the deviation between the function

and the series being smaller the greater n is taken. Fortunately

in the case of alternating current waves, the number of terms

required in order that the deviations between the curve and the

series may be negligible is seldom very large. Further, from the

fact that well-designed alternators give waves of which the positive

and negative loops are closely of the same form, it is only necessary

to include terms involving the sines and cosines of odd multiples

oi X.
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An alternating current wave may therefore in general be repre-

sented by the equation

>/ = ^i sin ^^+^3 sin 3/>^+^5 sin 5/)^+ . . .

+yl;k sin ^^^H- . . . +A2n-iSm {2n — i)pt . .

+BiCos pt+BsCosspt+B^ cos spt+ ...
+ Bj^ cos kpt+ . . . +B^n-i <^os (2n — i)pt

where p = 2n times the frequency.

If, therefore, ordinates of the wave be measured at 2n equally

spaced points in the half wave, a set of 2n simultaneous equations of

the form

y^ = B,-\-B,+B,+ . . . +5,+ . . . +B,,_,

y^=-A,sm l-A3sm^^+ . . . -\-Ai, sin 1- . . .
-^

^ 271 ^ 2n '^ 2n

+^,„_, sm -^ —-\-B^ cos +^3 cos— + . . .

2n ^ 2n ^ 271

+B, cos- + . . . +5_, cos
^^

. . .

. 7n7r . . 3W;r . . m^;r
-^ ^

271
^

271
'^

271

. 711(271 — 1)7: _, 7n7: ^ 3m;r , .

+A,n-i sm —^ — +Bi cos— +^3 cos -— (3)
^** ' 271

^
271

^
271

^^

„ 7nk7z _, 7n(27i — i)r.

+ . . . +J5fcCos h . . . +J52„_iCos—

^

—^ "271 '~ ' 271

, (271 — 1)7:
,

. . 3(2^ — i);r
.

y^-r=A. sm ^^ +A3 sm '^ ^ + . . .J^^-^ 1 271 2n
. k(27i — i)7: . . (271—1)^7:

+Aj, sm '
^^

' + . . . +A,^,sm '
^^

„ (271—1)7: _, Tf(27l—l)7:
+ 5iC0S^^ ^+53C0S^-^^ —-{-

. . .
^

271 271

„ k(27l — l)7: _, (271-1)^7:
+B,COS \^ ' + . . . +^.n-xCOS ^ ^^'

will be obtained, which are sufficient to determine the 271 unknown
coefficients in equation (2) , and the analysis will take into account

all the odd harmonics up to and including that of order (211 — 1).

The curve represented by the equation (2) will intersect the actual

curve at those points whose measured ordinates enter into equation

(3) and the magnitude of the deviations between the curve and
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series at the other points will give an idea as to the importance of

those harmonics not taken into account by the analysis.

To obtain the value of the general coefficient A^^oi the sine terms

kn
in (3) , multiply both sides of the equation for y^ by 2 sin — , the

2/t'

equation for y^ by 2 sin , etc., and add the resulting equations.

The first member of the sum becomes 2l.'^ZT~^ ym sin .

2n

In the second member the general coefficient A^ (where r can

have any value except k) is multiplied by the factor

vw=2n-i . i^y-^ . mk-K ^w=2«-ir m{r-k)7z m{r-{-k)7f\
22^=1 sm sm = 2Z^_j cos —^ cos—

^

—
*" ' 271 271 "^ ^

Y_
271 271 J

Making use of the lemma '

cos x-\- cos 2X+ cos 2,x+ ...

sm (2^+1)^
+ cos(^-i)rc + cossx= -i + § ? W

. X
sm -

2

and remembering that (r — k) and (r-\-k) are even integers, it is

easy to show that the factor by which ^ ^ is multiplied is equal to

zero.

The coefficient Br (where r may have any value, not excluding

k) is

22™=j sm cos = 22^=, sm —

^

'— + sm—

^

—
"*

' 2t^ 2n ""
' L 2W 271 }

and making use of the lemma ^

sin X + sin 2jc + sin 3^ + . . .

sm-sm(^ + i)-

+ sin (^ — i)rt; 4- sin^jc=i ^^^

. X
sm -

2

the factor by which B^ is multiplied is also seen to be equal to zero.

7 Byerly's Fourier's Series and Spherical Harmonics, p. 32.
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There consequently remains in the second member only one

term

2Afe^m=i sm-^^ = AJ (2n-i)-2^=, cos-^J

which by (4) reduces to 2nAji, and we have finally

27^Afc = 22^=, y^ sm —

—

or (6)

To obtain Bj, we multiply both sides of the equation for yo by

2, the equation for y^ by 2 cos — , the equation for y^ by 2 cos —-'

etc., and add these equations. The first member of the resulting

equation is 22,^=^0 ym cos .

In the second member, the coefficient of ^^ is

2 S^-! sm cos ,^-^ 2n 271

which we have already shown reduces to zero.

The general coefficient Br, where r does not have the value k,

is affected by the factor

vw=2«-i mkTz mrn
2S^=o cos cos

"" ° 2n 2n

= 2+2>W= 2»— cos—^^ ^+cos—^^ —
L 2n 2^ J

which by use of the lemma (4) can be shown to be equal to zero.

There remains therefore in the second member, one term only,

2B]X!L=T ' cos^ = 2nBT^ and the value of Bj, follows at once.
271/

It has been shown, therefore, that the alternating wave can be

represented by the finite series (2) at 271 points of the half wave,

and that the coefficients in (2) are capable of calculation from the

2n ordinates of these points, by the simple relations
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The coefficients of the sine terms in (2) are therefore foimd by

taking the averages of the measured ordinates of the cm-ve, each

ordinate having been multipUed by the sine of an appropriate

multiple of that angle which indicates the position of the ordinate

in question. Similarly, the coefficients Bj^ of the cosine terms are

found by averaging the products of the measured ordinates ym

and the cosines of the same multiples of the abscissas. For

example, if 12 ordinates are measured with abscissas equally spaced

15° apart, to find the coefficient B^ we are directed by equation (7)

to multiply yo by cos o^ y^, by cos 3 X 15°, y2 by cos 2 X3 X 15°,

etc., to add these 12 products, and to divide the sum by 6.

Simple as are the operations indicated in (7) for finding the coeffi-

cients in the Fourier's series development for an alternating cur-

rent wave, it is, however, evident that the amoimt of labor involved

in evaluating the coefficients must increase rapidly with the ntmiber

of harmonics taken into account ; that is, with the mnnber of terms

included in the series. If any considerable number of harmonics

are to be found, it will become necessary to systematize the calcu-

lation in order to avoid confusion and to guard against error.

2. RUNGE'S METHOD OF GROUPING

Of the methods which have been suggested, the one which best

serves the purpose is that of Runge; it is used in the methods of

analysis considered below.

We note, first, that it it is an advantage to use an even number
of meastu-ed ordinates per half wave, rather than an odd number.

Not only is the necessity avoided for the calculation of one of the

coefficients from an extra set of ordinates, as remarked above in

the case of A^^, but it has the fmther advantage that the grouping

of terms involving the sines of common angles can be further

extended, and the calculation of certain higher harmonics can be

made to depend in a simple manner on the calculation of the lower

harmonics.

In general, since k is an odd number

. mkn , , .kn mkiz , .ki:sm— =sm {2n — m)— , cos = —cos i2n — m)—
2n ' 2n 2n ^ ' 2n

(8)

sm h-— = ± sm (2n - k)— , cos k— = qp cos (2n -k)—2n 2n 2n ^ ^ 2n
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In those cases where the double sign appears, the upper sign holds

for odd values of m and the lower sign for even values of m.

The first two of the equations (8) show that in the fundamental

equations (7) the measured ordinates ym and y^n-m are to be

multiplied by the sine of the same angle, and, excepting for the

algebraic sign, by the same cosine. Therefore, by adding ym and

y^n-m before multiplying by the sine, and by taking the difference

of ym and y^n-m before multiplying by the cosine, the number of

products to be obtained is halved. In this method, therefore, we
obtain at the start the quantities Sm = ym-^ y2n-m and dm = ym — yzn-mi

the sums and differences of complementary ordinates.

From the last two equations of (8) it is evident that the products

entering into the calculation of the coefficients A^^ and Bj^, on which

the amplitude of the ^th harmonic depends, are also required in

the calculation of the (2n — k)th harmonic. It is not difficult to

show that if we separate those products which involve even ordi-

nates from those involving the odd ordinates, and take the

respective sums Sg and So of the sine products involving the s^^

and ^2^+1 and the sums D^ and Do of the products involving the

d^^ and d^^+^, respectively, then the coefficients Ajc, A^^.^, Bk, B^^^j,

are given by the following relations

:

Bj,=Do +D„ B,^_, =Do-D, ^^^

The coefficients may consequently be separated into two com-

plementary groups. For those harmonics whose order ^ is a

k I

factor oi 2n, the calculation becomes yet simpler. Putting — = -,

where v is an integer, we have

. mkn . mn . m+v . m + 2v
sm = sm -— = — sm ——n = sm tt,

2n V V V

mkn mn m +v m + 2v
cos = cos — = — cos 7: = cos 7:, etCc ,

2n V V V
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r^tkiT
and if, further, m is exactly divisible by v, sin = ±i,

2/t'

COS = zero, and for values of m half as great, sin = ± i

,

2n * ^ 2n

rnkTc
COS = zero. A considerable number of terms, therefore, in-

volve the factor zero or unity, or at least the sine or cosine of the

same angle.

III. SCHEDULES FOR CARRYING OUT ANALYSES

1. ARRANGEMENT OF CALCULATIONS

From these considerations are derived the following schedules

based, respectively, upon systems of 6, 12, or 18 equally spaced

measured ordinates. Blank forms can easily be prepared, to save

clerical labor, if many calculations have to be made.

TABLE 1

Six Point Schedule

Sine terms Cosine terms

Measured Sums Diffs.
1

ordinates

1st and 5th 3d
1

1st and 5th

1

3d

yo do 1

t

yi vo Si di sin 30° Si d8

y2 y< S2 d2 " 60° S2 di

y3 S3 " 90° S3 Sl—S3 do do-ds

So Se s Do De D
. So+Se
Ai=

3 3 3 3

#

A5=
3

_ Do-De
^=

3

In each of these schedules the measured ordinates are first

written down in two columns in the order indicated. In the next

two columns appear the sums Sm of the ordinates, found by adding

those in the same row, and the differences dm of the same ordinates.

In the fifth column are indicated the trigonometric functions

which enter into the calculation. The rest of the schedule indi-

cates in an abbreviated form what products are to be formed, the

convention being adopted that each quantity Sm or dm is to be

be multiplied by the sine of the angle which appears in the same
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row at the left. For example, in the 6-point schedule, we are to

take the product of s^ and sin 30° in one case, and in another the

product of ^2 and sin 30°. It is also to be noticed that each

product which is involved in the calculation of any coefficient,

stands in the left or right-hand column, according as it depends

TABLE 2

Twelve Point Schedule

Sine terms

Measured Sums Diffs.
ordinates

1st and 11th 3d and 9th 5th and 7th

yo - do

yi yu Sl di sin 15° Si S5

ya yio S2 da " 30° S2 St

ys y9 S3 d3 " 45° S3 6i -B3

y< ys Si d^ " 60° Si —S4

ys yi 85 ds " 75° So 81

y« S6 " 90° S6 6, S6

So^ Sei So Se So" Se«

tfi=si+S3—S5 5i=di—ds—d5 ^ So^+Sei
' 6

^ So+Se
^^=

6

So"+Sen
^-

6

tf2=S2—S6 5=do—d<
Soi-Sei

An= ^
So-Se

'-'-'
6

So^-Se"
A7=

6

Coshie terms

1st and 11th 3d and 9th 5th and 7th

sml5° d5 dx

" 30° d4 d4

" 45° da di -ds
•• 60° d2 -d2
M 750 di di
•« 90° do di do

Do' Del Doll Deii

Doi-Dei
^-

6
B3-^'+^'

6

„ Do"+Dell

6

Doi=Dei

6

Doli-DeH
B7=

6

Upon odd or even ordinates. For example, in the calculation of

the fifth and seventh harmonics in the 12-point schedule, we have

to form the products ^5 sin 15°, — ^3 sin 45°, and s^ sin 75° and take
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their sum obtaining the quantity S/\ Similarly, the quantity

Se^' is found as the sum of the products ^"2 sin 30°, —s^ sin 60°,

and Sq sin 90°. In the case of the 1 2-point schedule the coefficients

TABLE 3

Eighteen Point Schedule

Meas-
ured Sums Diffs.

Sine terms

ordi-
nates 1st and 17th 3d and 15th 5th and 13th 7th and 11th 9th

yo

yi yi7 Si

do

di sin 10° Si —S7 —S6

ya yi6 S2 da " 20° S3 —S4 —S8

ys yi5 S3 da " 30° S3 61 S3 —S3

y* yu S4 d^ .« 400 Si S8 sa

ys yi3 S6 d5 " 50° S5 Si S7

ye yia S6 d6 " 60° S6 tfa —S6 S6

y? yii S7 d7 " 70° S7 —Ss Si

ys yio S8 ds " 80° S8 S2 —Si

y» S9

•7

8 i"= gi—ga

S9 <r3 S9 —S9 2-

tfl=Sl+S5—

«

Sol sel

So^+Sei
A- ,

Soi-Sei
A..- ,

So" Se°
SoU+Se"

Soiii se™
Soin+Se™

Soiv se^v

So^v+Seiv
A9—

9

So«-Sen
A.= ^

A- 9

So™-Sei°

^'-
9

So^-Se^v
(fa—ri3—S9 A.- ^ ^"- 9

Cosine terms

1st and 17th 3d and 15th 5th and 13th 7th and 11th 9th

sin 10° dg -d2 d4

5o=do-d6 " 20° d7 -da di

«30» ds §2 de ds

5i= di—ds—d7
.. 40P d5 di -d7

52=d2-d4-d8 " 50° d^ ds -da
" 60° d3 Si -d3 -ds

i=*o—52 " 70° da -di -ds
" 80° di d7 d5

" 90° do So do do A

Do^ De^
Doi+De^

8- ,

Do'-De'
B„= ^

Do^i De^i

Do^+Deii
Do"i De^ii

Doin+De°i
B- 9

Do"i-Dem

Doiv+Deiv
B:= 9

Doiv-Deiv
9

DoH-Deii
Bl5- g B«- ^ Bn- 9

As, Aq, Bq, and -Pg involve several of the differences dm and the

sums Sm in each of the products. Thus, in the case of the 12-point
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schedule, the quantity o-^=s^+s^ — s^ has to be multiplied by sin 45°

as also the quantity h^=d^—d^ — d^. These schedules will be

further explained and illustrated by numerical examples below.

To aid in making the numerical calculations, there have been

tabulated (Appendix A) the products of all the sines which enter into

these schedules by all the whole numbers up to 1 00. These products

are carried out to three decimal places. Interpolation is accom-

plished by means of the same table by simply shifting the decimal

point. Thus, any product of an ordinate of four figures may be

found by entering the table twice and making a simple addition.

For example, the product of the ordinate 74.39 by sin 70° is found

by entering column 7 of the table with argument 74 and 39. The
numbers found are 69.538 and 36.648. The required product is

therefore 69.538 + .366 = 69.904. Those products which involve

sin 30° and sin 90° will of course be obtained without the aid of the

table.

In work of this kind some check on the accuracy of the

numerical work is almost indispensable. Fortunately, such a

check may be made without any considerable amount of labor.

The equations below give sufficient relations between the coeffi-

cients and the measured ordinates to establish the correctness of

the values of the coefficients derived by calculations.

2. CHECKS ON THE ACCURACY OF THE CALCULATIONS

Check on the 6-point Analysis

y, = {B,+B,)+B,

^3= (^1+^5) -^3 ,.
s, = 2{A,-A^) sin 60° ^ ^
d, = 2(B^-B,) sin 60°

Check on the 12-point Analysis

y, = (B, +B,,) + (^3 +^9) + {B,+B,)

y, = (A,-A,,)-{A,-A,) + (A,-A,)

s, = 2 sin ^s'^.KB.-BJ -(B,-B,)-(B,-B,)]
d, = 2sm4s''l(A,+A,,) + (A, + A,)~{A,+A,)] ^

d, = 2 sin 60°.[{B, +B,,) - {B, +B,)]

s, = 2 sin6o°.[(Ai-AJ -(A5-A7)]
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Of the equations (11) the first gives a check on the sums of the

complementary B coefficients, while the second gives an indication

of the accuracy of the differences of the complementary A coeffi-

cients. If the third and fourth of the equations are also satisfied

the check is complete, since when the sums and differences of the

complementary coefficients have been shown to be correct the

individual coefficients must necessarily be correct. In case of the

failure of the calculated values to satisfy any one of the equations,

it is difficult to determine from the equations wherein the trouble

lies. Herein the check for the 12-point analysis is not so con-

venient as that for the 6-point analysis. The last two equations

in (11) have accordingly been appended to aid in such a case, since

they do not contain the coefficients ^43, A^, B^, or B^.

Check on the 18-point Analysis

y, = (B, +B,,) + (B,+B,,) + (B, +BJ + (B, +BJ +B,

y, = (A, + A17) + (^ 5 +^13) +^9 - (^3 + ^15) - (^7+^11)
J3 = 2 sin 6o^[(5, -B,,) - {B,-B,,) - (B, -B,,)]

s, = 2 sin 6o°.[(A, -A,,) - (A, -AJ + {A,-A,J]

(12)

The first two of the equations (12) should first be applied. If

these are satisfied, the sums of all the complementary coefficients

are correct, which shows that the quantities So and Do have been

correctly computed. Similarly, the third equation is a check on

the acciu-acy of the calculation of the quantities D^ upon which

the differences of the complementary B coefficients depend, while

the fourth equation gives the corresponding check on the quan-

tities Se- The system of control shown in equations (10), (11),

and (12) gives not only a complete check on the calculation of the

coefficients, but in case of error serves to indicate within com-

paratively narrow limits what part of the work needs to be exam-

ined for error. The only combinations of coefficients which do not

enter into the check equations (12) are the differences of the third

and fifteenth harmonics, and the calculation of these is so simple

that it is best to take the few moments necessary to repeat the

calculation of these quantities. Since the products involved in

^3 — ^io = Se'^ and B^ — B^-^==D/' contain sin 30° and sin 90° only,

89420°—13 8
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the chances of error in taking the products is no greater than that

in applying any of the equations (12).

It is recommended that every analysis be checked. In spite

of the fact that simple arithmetical operations only enter into

the analysis, errors very easily slip in, which are readily detected

on carrying through the check, and in any case the small amount

of time necessary to apply the check is amply repaid by the added

confidence thus lent to the results of the analysis.

3. CALCULATION OF THE AMPLITUDE AND PHASE OF THE
HARMONICS

Having obtained and checked the values of the coefficients Aj^

and Bk in the Fourier equation (2), it still remains to calculate

from these coefficients the amplitudes and phase relations of the

different harmonics. For this purpose, we designate by C^ the

amplitude of the ^th harmonic and by ^^ the difference of phase

between this harmonic and the arbitrary phase of reference, which

is that of the ordinate chosen as yQ. Putting i4fc = Cfc cos ^^ and

Bu = C]c sin d.ji we have in general

Atz sin kpt + Bjc cos kpt^Cj^ sin (kpt — 6^)

= Cu sin k{pt~4)j,)
(13)

where

-1

A
„ — Jdj^ 6j(.

The quadrant of 6^ is uniquely determined from the consideration

that the algebraic signs of the numerator and denominator in

the equation for tan dj^ are respectively those of sin 6^ and cos djf..

The phase of any harmonic C^ with respect to the fundamental,

expressed in terms of the period of the latter, is given by (^1 -'^fc)>

or we may displace the origin so as to refer the whole curve to the

zero point of the fundamental by making ^1 = o, and subtracting

^1 from the value of ^Itj^ for each harmonic. The angle 0^ expresses

the difference in phase between the harmonic and the point of

reference, but in terms of the period of the harmonic itself. It is

convenient to use dj^ or ^jrji. according to circumstances.
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4. CHOICE OF THE SCHEDULE TO BE USED

Using the schedules detailed above, the analysis of a curve may
be easily and expeditiously carried out. As an indication of the

amount of labor required, the number of entries which must be

made in the multiplication table is as follows: 6-point, 2; 12-

point, 14; and for the i8-point schedule, 40. The additions and

subtractions require, in any given case, about half as much time

as the multiplications. The total length of time necessary for

calculating the coefficients may be estimated as less than 10 min-

utes for a 6-point analysis, and about three-quarters of an hour

for an 18-point analysis.

The question naturally arises as to the choice of schedule in any

given case. This depends, of course, both on the nature of the

curve and on the precision desired. For example, if the curve be

free from ripples of short period, and closely approximates in

appearance to a sine wave, it will be sufficient to take into account

nothing higher than the fifth harmonic, and the 6-point schedule

will be chosen. On the contrary, if the curve be more or less

irregular, and especially if the sinuosities are of short period

compared with the fundamental, it will be necessary to carry out

the analysis to include higher harmonics. However, it is not

always easy to judge what higher-order terms should be looked

for. It very often occurs that several harmonics may be present

to nearly an equal degree, in which case the curve will show a peak

wherever the maxima of these harmonics come nearly together,

and a trough in those regions where they reach their negative

maxima simultaneously. In such cases only a very imperfect

idea can be gained, by mere inspection, of the number and nature

of the harmonics present. In the case of slotted armatures one

can predict with a good deal of certainty that certain harmonics

should be present in the emf. wave. For example, if an armattu-e

have 13 slots per pair of poles in the field, it is probable that the

thirteenth harmonic will be present to a notable extent in the

emf. wave; if there be 12 slots per pair of poles, then the eleventh

and thirteenth harmonics are to be expected.

To be absolutely certain, in a given case, that no harmonic of

higher order than those included in the analysis is present to anappre-
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ciable extent, it is necessary to compute from the calculated coef-

ficients the values of the ordinates of the curve for points other than

those used in the analysis, and to compare the values thus obtained

with the actual measured values at these points. For this test

enough points should be included to avoid the possibility of consid-

ering only those places where the harmonics to be detected nearly

annul each other, or are near their minimum values. The matter is

somewhat complicated by the fact that with harmonics present

of higher order than those included in the analysis, the value of

the highest harmonic actually calculated comes out, not with its

true value, but of such a magnitude as to correct for the effects

of yet higher harmonics at the phases of the fundamental

ordinates.

The calculation of the ordinates of points intermediate to those

included in the analysis, using the values of the harmonics derived

by an analysis, may be simphfied by properly choosing the ordi-

nates for which the calculation is to be made. The derivation of

the schemes of calculation given in the following table is a simple

matter; the nomenclature is the same as in the preceding pages.

The phases of the ordinates which may be calculated by Table 4
are indicated by subscripts. For example, the ordinate ygo, in the

middle section of the table lies 50° away from the fundamental

ordinate y^ used in the analysis. The table indicates that the

value of j/50 which is consistent with the results of the analysis is

to be found by performing certain operations on the coefficients

which have been found by the analysis. Thus, A3 is to be multi-

plied by sin 30°, —A^hy sin 70°, etc. These products are arranged

in two groups whose sums M5 and N^ are then to be found. The
sum (Mg + A^s) gives the required value of ^50, and the difference

(M5 — A/'s), the value of its complementary ordinate y^^^^. On com-

paring these calculated values with the actual ordinates of the

curve, an idea of the adequacy of the analysis is obtained.

It will sometimes occur that more or less complete resonance of

a harmonic of high frequency will exist, and will give the wave a

rippled appearance such as to allow the order of the resonant

harmonic to be established with certainty. For example, if it is

practically certain from the frequency of the ripples that a com-

ponent emf. of a frequency 21 times that of the fundamental is
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present, the magnitude and phase of this harmonic may be

obtained by measuring 22 equidistant points per half wave, and

TABLE 4

For the Calculation of the Ordinates of Points Intermediate to Those Used
in the Analysis

SIX-POINT SCHEDULE

sin 15° Ai B5
1

i

1 Ao Bi

" 45° A3 B3 (A1+A3-A0) (Bi -B3-B5) 1 -A3 -B3
" 75° A5 B:

i

Ai B5

Sums Ml Ni Mj N2

1

M3 N3

yi5=Mi4-Ni
j

y,5==M2+N2 y;5=M3+Ns
yi6c,= Mi—Ni yi35=M2—N2 yie5=M.j-N3

TWELVE-POINT SCHEDULE

sin 10° Ai -B5 (B7+B11) -(A7+An) -Ao B,

" 20° (Bt-Bh) Ai -Ao -B5 Bi -(A7+Au)
" 30° A3 B3 -B3 A3 -A3 -B3
" 40° Bo (A7-A11) Ai Bi -(B7-B11) A,

" 50° As ,-(B7+Bii) Bi Ai (A7+A11) Bo

" 60° B3 A3 A3 -B3 -B3 -A3
" 70° (At+Au) Bi -B5 -A.5 Ai -(B7+Bn)
" 80' Bi Ao -(Ar--Au) (B7-Bu) Bo Ai
u 90O As -Be B9 As -As Bs

Sums Ml Ni Ms N2 Mi N4 Mo No M7 N7 Ms Ns

M+N yio y2o yio yso y7o ygo

M-N yi7o yi6o yi40 yi3o yno yi*»

EIGHTEEN-POINT SCHEDULE

15°

45°

75°

Ml Ni

yi6=Mi+Ni
yi«s=Mi—Ni

y45 =a+^
yi35=a—

^

bi

-bi

hi

M3 N3

y7o=M3+Na
yio5=M3—N3

where
ai=Ai+Au—Ai3
a2=A3+A9 —Ala
a3=A5+A7 —Ai7

bi=Bi—Bu—Bis
b2=B3-B9 —Bio
b3=Bo—B7 -Bi7

a=ai+a2—83
;9=bi—b2—ba

calculating the values of A^i and B^^ directly by means of equation

(7). It is well in such a case to recalculate the harmonic from
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other sets of 22 ordinates, since it is hard to be sure that other

harmonics of nearly the same frequency are not also present.

See example 3.

Evidently, in case of doubt, such tests require about as much
time as the analysis itself, so that it will generally be well to err

on the safe side, and select that schedule of analysis, which will

certainly include all those harmonics which are reasonably to be

expected. A second analysis using the same schedule, but with a

different set of ordinates will if in good agreement prove that the

neglected harmonics are negligible. Fortunately, in the great

majority of cases, harmonics of order higher than the fifteenth

are of rare occurrence, and only in the case of resonance will the

value of these upper harmonics be appreciable.

IV. EXAMPLES OF THE USE OF THE ANALYSIS SCHEDULES

EXAMPLE 1. ANALYSIS OF A CURVE BY THE SK-POINT SCHEDULE

As an example of the application of the 6-point schedule we
may take the curve A, Fig. i , which shows the current wave in

a highly inductive circuit. This curve approximates very closely

a simple sine wave in its appearance, and no appreciable har-

monics of high order are to be expected.

The fundamental ordinates used, which are the means of those

of two consecutive half waves are as follows

:

yo- - 1-3 ^0= -1.3

yi= 15-1 ^5 = 17-3 '^1 = 324 d^=-2.2

y2= 28.0 ^4 = 28.85 ^2 = 56.85 d2= -o.Ss

y3= 32.35 ^3 = 32.35

The average deviations of the pairs of measured ordinates from

their means was about 0.4 of a unit on the same scale, which

difference is mainly due to the fact that the zero line of the paper

was slightly displaced from the actual line of zero electromotive

force.

The analysis is given in full in Table 5, together with the check

given in equations (10). Italic type indicates that part of the

work which could be saved by the use of a printed form. In the

column at the extreme left are given the numbers of the rows.
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In the second part of the table is shown the calculation of the

check ordinates. The greatest deviation between any funda-

mental ordinate, and its value calculated from the coefficients

TABLE 5

Analysis of a Curve from Six Ordinates

Measured
ordinates

s. d.

Sine terms Cosine terms

ist and 5th 3d ist and 5th 3d

1

2

3

-1.3

15.1 17.3

28.0 28.85

32.35

32.4

56.85

32.35

-1.3

-2.2

-0.85

+ -

16. 200

32. 350

+ -

49. 233 32. 400

32. 350

+ -

0.425

1.300

+ -

1.905 -1.300

0.850

Sums
Se

48. 550

49. 233

49. 233

-0. 683

A 5= -0.228

0.050

A 3= 0.017

1.725

1.905

1.905

0.180

S5= 0.060

-0. 450

4i=

97. 783

32. 594

-3.630

Bi= -1.210 ^3= -0.150

CHECK

B1+B5 -1. 150 Ai+Ae 32. 366 (Ai-A,) 32.822 (Bi-B,) -1.270

Bz -0. 150 -A3 -0.017 X2 65. 644 X2 -2. 540

Sum -1.300 Sum 32. 349 56. 291 -2. 165

yo 1
-1.3 ya 32.35

2iAi-At)

.554

.003

2(Bi-Bo)

.035

.4i+>l6=32.366 56. 848 -2.200

i41-^5= 32. 822 X sin 60° X sin 60"

Bi+Bi,= -1.150 «2 56.85 dx -2.2

jBi-.B6= -1.270

CALCULATION OF THE AMPLITUDES AND PHASES

^*~V32.594'+ 1.210'
C3=V^017 +0. 150

a=Vo= 228 +0.060

= 32. 616 = 0. 151 = 0. 236

1.210 0.150
tan 63=

0.017

-0.060

32.594 -0.228

= 0.0371 = 8.8 = 0. 263

^1=2° 8' 63= 83". 5 <?5=194'.7

,^3= 27". 8 ,!>o= 38°. 9

Am and Bm is .002, a concordance which may be regarded as satis-

factory. The entire work has been carried out to a greater number



TABLE 6

Example of Analysis of Curve from Twelve Measured Ordinates

Mcttsurrj
s d

S.n.ur„,

Ill and nth 3d and vlh .MandTlh

0.3

8.5 8.7

14.3 18.4

20.6 26.0

26. 15 30. 7

0.3

32.7 -4.1

46.6 -5.4

56.85 -4.55

4^452

32.951

16.350

'

0.778

-

L. -

16. 350

-

29.8 32.9

32.35 32.25

i'c

St

60.564

32.250
! 0.450 32.250

49.233

97.967

.11=32.633

97.833

0.134

-0.022

0.778
i 0.450

0.450

1.22s
i

0.328

.4,-0.205 1 /I !f. 0.055

32.842 32.951

-0.109

-0.633

.4^0.124

48.600

-0.633

A

49.233

0.524

-0.087

=^=

32'. 7

islonJmh ,.„...* Sth„„d7lh

-^
+ - -

0.802

+ - _ + —
0.052

46.6 32.25 2.275 2.275

63.8 0.45 3.818 5.669 3.818

62.7 3.551 3.551

1.1

»! S„m>

0.300

0.193

4.850 0.300

2.994

"1 0.300 5.826 4.813 1.850 5.869 3. 851 2. 275 3.818 3.046

Do -5.526 4.850 1.576

-0.2 0.3 Dt -4.813 5.869 0.772

jL!!
-10.339 -0.713 10.719 -1.019 2.348 0.804

8.3 4.85 AmpliU,J,s B,-. -1.723 Bn- -0.119 Ba= 1.786 B^ -0.170 Bi- 0.391 B -0. 134

CM-CULATION OF THE AMPLITIDES AND PHASES.

-' '
V32^^53%1.723°=32.678

'^ '"
"V' 0. 087"+0- 134 -. 0. 160

-•"•V 0.055"+OT7"o'-- 0.179

B,+ Bn
B,+ B,

B-.+ B:

1.616

0.525

1.84-2 .1,-^,,

-(.4j-X9)

AduuUaluc

32.611

-

0.150

0.211 -(.4 ,,+-47)

.Vmi,>

32.655

0.260

B.-Bii

-(Bs-B.)

-(Si-Bv)

Sum

X sin 45'

Aaualvalue

1.956

0.257

2.141

1.842

1.842

0.361

32.25

0.361 32.952

65.944

46. 601= «
46.6

7.634

Ac

0.299

0.3

= 276.°6 tf3=92.°2

= 252. -4 ,t,-50.-5

-303."0
v.,

=43.°3
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of significant figures than the accuracy of the curve and the errors

of reading the ordinates warrant, since it was desired to illustrate

the work using the full number of places given in the multiplication

table. If a smaller number of significant figtues be retained, the

labor is correspondingly reduced.

In the last part of the table are given the values of the ampli-

tudes and phase differences calculated from equations (13). For

the calculation of the amplitudes a table of squares and square

roots will be foimd a material aid; the calculation of the phase

differences is simplified by the use of a slide rule and a table of

nattu-al tangents.

The given ctu^e is represented by the equation

7 = 32.616 sin (^^-2° 8O+0.151 sin3(/>/-2 7°.8)

+ 0.236 sin 5(i^^ — 38°.9) division

in terms of the arbitrary scale used, or since 20 divisions = 0.5

amperes.

7 = 0.8154 sin (/?/-2° 80 +0.00378 sin 3(/)^-27°.8)

+ 0.00590 sin 5 (/?/ — 38°.9) amperes.

With the origin chosen, the phase of the ordinate yo lies 2° 8' to the

left of the zero point of the fundamental. The equation referred

to the latter is accordingly

7 = 0.8154 sin ^/+ o.00378 sin 3(/^if — 25^.7)

+ 0.00590 sin 5 {pt — 36^.8) amperes.

EXAMPLE 2. ANALYSIS OF A CURVE BY THE TWELVE-POINT SCHEDULE

In Table 6 is given the complete analysis of one of the emf waves

of a small two-phase generator, curve B, Fig. 2. Although the

curve is noticeably different from a pure sine wave, no irregulari-

ties of very high period are apparent, and the 12-point schedule

was used.

The equation of the curve found is

£ = 32.678 sin (/>2^-3°20 +1.798 sin 3(/>/-92°.2)

+ o.4iosin5(/>/-50°.5) +o.i6osin7(/?^-43°.3)

+ 0.179 sin9(/?^-8°.o) +0.121 sin ii(pt — 7^.2)

divisions.
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EXAMPLE 3. ANALYSIS OF A CURVE BY THE EIGHTEEN-POINT SCHEDULE

The curve A, Fig. 3, is that of the emf. wave of a small generator

having 14 slots per pair of poles. This would lead one to expect

appreciable harmonics of the thirteenth and fifteenth orders.

That this was actually the case is evidenced by the ripples of high

frequency on the side of the curve. The ciu^e was, accordingly,

analyzed using the i8-point schedule. The complete calculation

is shown in Table 7. Although the amount of work is greater

than in the two preceding examples, nothing new presents itself.

The results of the analysis show that the amplitudes of the

thirteenth and fifteenth harmonics have values as great as several

per cent of the fundamental, and are exceeded by the amplitudes

of no other harmonics with the exception of the fifth.

The complete equation found is

E = 33.217 sin ipt-i"^ 36') +0.970 sin ^(pt-2°.i)

+ 1.702 sin s{pt-4i°^)

+ 0.218 sin 7(/>^-38°3) +0-355 sin gipt-^^'s)

+ 0.205 sin ii{pt — ig°^)

+ 1.251 sin i3(/>/-3°8)+ 1.528 sin i5(/>i^-i5°7)

+ 0.159 sin i7(/>/-3°o)

which shows that, for this cvuve, an analysis using only 6 points or

12 points would be insufficient.

EXAMPLE 4. CHOICE OF SCHEDULE

In order to illustrate what has been said with respect to the

choice of schedule to be used in any given instance, the analysis of

each of the three curves in the preceding examples has been carried

through with each of the three schedules given here, the results of

these analyses being set forth in Table 8.

From this table we see that, for the curve in Example i, the

analysis from 6 points is sufficient for all purposes, the ampli-

tudes of the higher harmonics, found by carrying out the analysis

to include more points, are of the order of magnitude of the errors

in reading the ordinates, and are not to be regarded as of practical

significance. Errors in the curve, due to slight progressive varia-

tions in the voltage generated by the machine, where not averaged
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Example of Analysis of a Curve from Eighteen Measuiid Ordinates

Sint tormj
\

0.2 11.2

3.9 18.4

2.25 24.75

6.8 26.4

9.35 32.35

3.4 28.4

B.I 30.8

J.O

0.4
,

40.753

5i.61.7 -3.0
I

61.8 5.0 58.074

149.070

149. 870

148. 957

I

iew07s

I

37.859

I

j

iS.433

47.341

10. 243

.584 58.388

-0.804

0.757

13.755

53.433

M. 100

Cosintlams

<^l««J,7lh
\

iI»<..Ki/jtt Tlk „nd nil, IMA

0.469

'
\

''
'

0.174

+ -
:

+
0.434

j

0.581

1.500 1 2.100 1.500 1.500
!

0.257
1

1.093 '

1

3.214

1.915

0.940

3.897 6.149

2.068

3.897

0.766 !

3.897

1.674 0.394 0.394 3.100

0.100 3.100 0.100 0.100
!

-4.200

Sum, 0.100 4.824 1.967 5.571 5.200 6.149 2.623 3.568 8.821 1.230 1
3.403 1.934 4.291 3.795

Do -4.724 5.200 -0.945
;
1.469

Dc -3.604 -6.149 7.591 '

0. 496

-8.326 -1.120 -0.949 11.349 6.646 -8.536 1.965 0.973 -1. 100

Pl,tu<les «- -0.925 Bi,- -0. 124 B>~ -0. 105 «,j- 1.261 /J..0.738 B„. -0.948 I B -0.218 Bu- 0.108 B, 0.122

_ ^ _ _ +
B,+B„ 1.049 Ai+A„ 33.304 Hi'Uu A,-A„ 33.104

B>+B„ 1.156 -(.•l,+^ii) 0.100 -(B.-iJ,s) 1.686 -(Ai-Au) 2.350

Bj+Bu

0.326

0.210 A,+A„

-iA,+An) 0.179

0.716 -(«7-B„) 0.110 (A,-An)

Sum

0.169

B,+Bn 2.597 35.623

B, 0.122 A. 0.333

5.194.Su.-i-i 1.482 1.381 Sums 33.816 0.616 X2 71.246

0.101 ya 33.000 X rin (So- -4.498-,/, X «" Ho" 61.700-.,

A,luatv«luc O.I Acluulvalue 33.0 Aclual value -4.5 Actual talu.

CALClLAT/0.\ OF THE AMPLITl-DE

3.21, ,»».-3|ft

S AND PHASE

'''^|3i:26i\o:,^s'-'
t,-l°36'

"'—iJ-orsM+OAOi- 0.970 ""'" 0.964
1), -6°.3

">
-VT533'+6r7M

-

1.702 ,„„„
_-o"«

'"""• -1.533
/;, -209'.8 ;

'"-V''0l05%6.218=-
0.218

.-0.218
'""''•~ -0.005

»;-268M ;

"'--
\/"l)"333'+ori22'-

0.355
0. 122

'-»"-
0.333

<.-20-.8 .

--V-Om+Oob'- 0.205
-O.IOS

»i,-211°.8 ,

-"-V^«"+o:948'" 1.251
0.948

'""*""
0.817

»,.-49'.3

""-V"0.'«M+»^»'"
1.528 ''""'''-=0rW4

0U-235-.6 ^

-"-V"oriod'+aT24'-
0.!59

0. 124
'"'"" 0.100
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TABLE 8

595

Comparison of the Results of Analyses of the Same Curves Using

Different Numbers of Ordinates

Curve of Example 1

6 points 12 points 18 points 6 points 12 points 18 points

Ci 32.616 32.641 32. 648 ^1 2°8' 1»55' 1»52'

Ca 0.151 0.103 0.096 V^3 2798 2695 3595

Cs 0.236 0.291 0.288 V^5 3899 3692 3790

Ct 0.085 0.082 4n 3098 2990

Cs 0.073 0.075 h 1298 1594

Cu 0.108 0.124 4>ii 6198 595

Cl3 0.019 tpU 695

Cl5 0. 032 1 V^15 393

Cl7 0.011 V^IT 1192

Curve of Example 2

6 points 12 points 18 points

1

6 points 12 points 18 points

Ci 32. 663 32. 678 32. 773

1

1

S-H- 3''2' 3°22'

C3 1.623 1.798 1.775 4'3 9198 9292 9391

C5 0.566 0.410 0.507 «^5 4996 5095 5198

C; 0.160 0.183 <Pl 4393 4493

C9 0.179 0.221
<P9 890 698

Cii 0.121 0.180 4>n 792 098

Cl3 0.145 <I>u 2494

Cl5 0.064 <Pl6 1694

Cn 0.113 </>n 590

Curve of Example 3

6 points 12 points 18 points 6 points 12 points 18 points

Ci 34. 240 33. 194 33. 217 ^1 2»50' 1''42' 1''36'

Cs 1.059 1. 051 0.970 4>3 8598 -098 291

Cs 1.653 1.680 1.702 <Po 4293 4092 4197

C; 0.268 0.218 4>i 3491 3893

Cg 1.619 0.355 <ps -492 292

Cu 1.279 0.205 ^n 1390 1993

Cl3 1.251 4'n 398

C.5 1.528 <^u 1597

Cl7 0.159
V^17 390

out by taking two half waves, affect all the analyses in nearly the

same way, especially since the fundamental ordinates used are in
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part common to all three analyses. Sudden fluctuations of short

duration tend to give spurious values for the higher harmonics.

Such can, however, be detected by repeating the analyses using

other sets of ordinates, as shown in example 5 below.

In the case of the curve of Example 2, the analysis from six

points gives a very satisfactory degree of accuracy for the third

and fifth harmonics, but the amplitudes of the seventh, ninth

and eleventh harmonics, found by using more points, are greater

than in some cases could be neglected.

In the case of the ctuve in Example 3, neither the 6-point nor

the i2-point analysis is sufficient. In the former the amplitude of

the fundamental and the phase of the third harmonic are consid-

erably in error; in the latter, neglecting the thirteenth and fif-

teenth harmonics, gives erroneous values for the ninth and eleventh

harmonics.

The inadequacy of the 6-point and 12-point analyses, in Example

3, may be further shown by calculating the values of the ordinates

of points not used in the analyses for comparison with the actual

values taken from the curve. Thus, from the schedules of Table 4,

the values given in the following table were calculated. The

TABLE 9

Calculated Values of Ordinates of Curve in Example 3 for Points not Used
in the Analyses

18 points 6 points 12 points

Ordinates

Differ-
ences

Ordinates

Differ-
ences

Ordinates

Differ-
ences

Phase
Ob-

served
Calcu-
lated

Phase
Ob-

served
Calcu-
lated

Phase
Ob-

served
Calcu-
lated

15" 7.55 7.49 +0.06 15° 7.55 7.02 +0.53 10° 4.6 4.75 -0.15

45° 25.85 25.83 +0.02 45° 25.85 23.99 +1.86 20° 10.2 9.61 +0.59

75« 29.95 30.64 -0.69 75° 29.95 31.54 —1.59 40° 22.25 22.43 -0.18

105" 28.0 27.68 +0.32 105° 28.0 30.45 -2.45 50° 26.8 27.08 —0.28

135° 25.35 25.10 +0.25 135° 25.35 26.50 —1.15 70° 33.4 30.91 +2.49

165° 9.1 9.08 +0.02 165° 9.1 8.57 +0.53 80° 28.1 30.86 -2.76

100° 30.8 30.80

110° 28.4 30.12 —1.72

130° 26.4 28.37 —1.97

140° 24.75 22.63 +2.12

160° 11.2 11.97 -0.77

170° 6.3 5.73 +0.57
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phases of the various points refer to the same origin as was used

in the analyses.

With the exception of one point, the calculated and actual values

of these ordinates, using the i8-point analysis, are in satisfactory

agreement; the deviations in the case of the 6-point and 12-point

analysis are, however, very appreciable, and the 12-point analysis

has very little advantage in this respect over the 6-point.

The deviations were also calculated for the curve in Example 2,

but were not greater than about 0.5 division in the case of all three

analyses, the agreement being no better when 18 points were used

than with only 6. This procedure does not, therefore, give much
information, except when the neglected harmonics are of relatively

large importance. It will generally be found that a decision re-

garding the sufficiency of any given analysis will be more rapidly

and certainly reached by carrying through another analysis, using

the same schedule, but with an independent set of ordinates.

EXAMPLE 5. ACCURACY OF RESULTS

To throw light on the question as to what precision has been

reached in the preceding examples, analyses were made using other

sets of ordinates than those on which these examples were based.

The results are given in Table 10. The different sets of ordinates

are distinguished by reference to the relative phases of y/p referred

to the zero points of the preceding analyses.

TABLE 10

Comparison of Results of Analyses of Same Curves Using Different Sets

of Ordinates

CURVE OF EXAMPLE 1

6-point analyses

0° 2» 4' 6° 8° 0" 2° 4" 6" 8-

Ci

C3

C5

32. 616

0.151

0.236

32.623

0.118

0.260

32. 607

0.186

0.218

32. 653

0.061

0.209

32. 622

0.151

0.270

2'8'

2798

38.9

2-4'

2992

36,1

2»3'

3096

36°.0

1»52'

1996

34.7

1°52'

4092

30°.3
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TABLE 10—Continued

12-point analyses

[Vol. 9

Ci

C3

Ct

Cs

Cii

32. 641

0.103

0.291

0.085

0.073

0.108

4°

32. 605

0.028

0.317

0.122

0.074

0.088

1°55'

2695

3692

30.8

12.8

5.6

2'

33.3

36.1

27.9

22.5

12.7

8"

CURVE OF EXAMPLE 2

12-point analyses 18-point analyses

0° 4' 0° 4° 0''
''

\

0" 4»

Ci 32. 678 32. 658 <pi
3°2' 2 '59' Ci 32. 733 32.690 <i>x

3'"22' 2''51'

Ca 1.798 1.839 <Pz 9292 9294 Ca 1.775 1.814 4>z 9391 91».6

Cs 0.410 0.346 ro 50.5 48.5 Cs 0.507 0.401 <h 5198 51.6

Cr 0.160 0.053 'In 43.3 39.9 Ct 0.183 0.061 <ln 44.3 44.6

C9 0.179 0.137 il>^ 8.0 1.2 C9 0.221 0.077 4'9 6.8 2.1

Cu 0.121 0.179 4>\\ 7.2 2.3 Cii 0.180 0.104 4>n 0.8 2.6

Cl3 0.145 0.006 ^13 24.4 28.2

Cl5 0.064 0.020 <l>ii 16.4 20.3

Cl7 0.113 0.047 4>n 5.0 8.0

CURVE OF EXAMPLE 3

12-point analyses 18-point analyses

0° 6" 0° 6" 0° 6" 0» -

Ci 33. 194 33. 187 ^1 r42' r28' Ci 33. 217 33. 202 <l>i
1''36' 1»36'

Ca 1.051 0.972 <l>s
-0°.8 599 C3 0.970 1.025 V^3 291 396

C5 1.680 1.765 4>f> 40.2 40.8 Co 1.702 1.692 ^5 41.7 40.4

Ct 0.268 0.339 4n 34.1 36.8 Ct 0.218 0.346 'In 38.3 37.3

Cs 1.619 1.728 4>i 35.8 9.0 Cg 0.355 0.450 h 2.2 5.0

Cu 1.279 1.801 ^11 13.0 24.6 Cu 0.205 0.126 4>n 19.3 20.5

Cl3 1.251 1.275 <Piz 3.8 3.5

Cl5 1.528 1.507 <Pl5 15.7 15.3

Cl7 0.159 0.064 4>i-! 3.0 17.8

An examination of the table shows that analyses depending on

different sets of ordinates give the amplitudes of harmonics, whose

values are as great as about 0.2 division, with a very fair degree of

accuracy, both as regards amplitude and phase. Different deter-
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minations of harmonics of amplitudes as large as one division do

not differ by more than a few per cent in amplitude nor more than

a degree or two in the value of ^/r. (The accuracy of reading of the

fimdamental ordinates is not greater than about o.i division.)

The preceding assumes, however, that a sufficient number of

harmonics have been included in the analysis. In the case of the

curve of Example 3 as analyzed by the 12-point schedule, for

instance, the effect of the thirteenth and fifteenth harmonics is dis-

tributed between the three highest harmonics included, and their

values are different, both in amplitude and phase in analyses

using different sets of ordinates.

In answer to the question as to how small harmonics in the above

examples have been proved to exist, there seems to be reason to

believe that, in some cases, the analysis has located with some
degree of accuracy, harmonics of amplitude as small as o.i division

which, considering that this is about the order of errors in reading

the ordinates, points to a very satisfactory performance of the

curve tracer.

EXAMPLE 6. PREDICTION OF PRESENCE OF HARMONICS FROM THE
APPEARANCE OF THE CURVE

It is of interest to consider, in the case of distorted waves, how
far one may predict from the appearance of the curves what impor-

tant harmonics are present. Provided only one harmonic is

present to a notable extent, its presence is manifested by a wavi-

ness of the curve, and the number of the crests and troughs per

half wave of the fundamental will be equal to the order of the har-

monic. When, however, more than one harmonic is important, it

will not, in general, be possible to locate them all by counting

the crests and troughs superposed on the fundamental.

As an example, we may take the curve of Example 3 (Curve A,

Fig. 3) . Fifteen maxima and minima (of very different amplitudes

it is true) may be counted in each half wave of the curve. However,

analysis has already shown that not only is the fifteenth har-

monic prominent, but also the thirteenth, third, and fifth, to about

an equal extent, while the amplitudes of the seventh, ninth, and
eleventh are by no means negligible. It is interesting to study

how these various harmonics combine in their effects to produce

89420°—13 9
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J

the observed distortion of the wave. In Fig. 3 is plotted in dashed

lines the fundamental wave given by the analysis. In Fig. 4
the curve A shows the

deviations of the dis-

torted wave from the

fundamental given by
the analysis, as a func-

tion of the phase, re-

ferred to the arbitrary

origin of the analysis.

This origin lies about

i°.6 to the left of the

zero of the fundamental.

The dotted ciu-ves in

Fig. 4 show graphically

the ampUtudes and
phases of the third, fifth,

thirteenth, and fifteenth

harmonics given by the

analysis. The plotting

of these waves is an easy

matter, since for those of

the higher frequencies,

little needs to be done

exceptto indicatethepo-

sition of the zero points

and maxima and min-

ima, the rest of the curve

being drawn in free

hand. The curve B de-

fined by the little circles

is the resultant of the

waves of the third, fifth,

thirteenth, and fifteenth

harmonics. The period

of the ripples lies some-

where between that of

the thirteenth and fifteenth harmonics. The small deviations of

the actual ctu-ve from this resultant curve may be shown to be
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reduced practically to zero when the remaining harmonics are taken

into consideration. These have been omitted for the sake of clear-

ness, but the ctuves of the seventh and ninth harmonics, together

with their resultant, C, are drawn in the lower part of the figure.

If the x)rdinates of curve C are added to those of curve B the

resulting cm^e agrees very closely with the actual ctuve A.

This example shows, therefore, that in many cases it is not

possible to tell from the appearance of the curve what harmonics

are present. In the present instance, from the number of ripples

the presence of the fifteenth harmonic only could be predicted

with certainty, while the almost equally important thirteenth and

the still greater fifth harmonics would not be included. Naturally,

however, the varying height of the different troughs and crests

would lead one to suspect more than one harmonic.

EXAMPLE 7. BADLY lUSTORTED CURVES—INFLUENCE OF CAPACITY
AND INDUCTANCE

In the curves considered in the previous examples, the curves,

although by no means closely approaching pure sine curves in

character, are very far from showing the irregularities in wave
form which often occur in circuits containing capacity. The
curve B of Fig. 5 shows the ciurent through a capacity of nine

microfarads. The emf impressed on the condensers (and a resist-

ance of 0.7 ohm joined in series for drawing the curve) is curve A
of the same figure.

Analysis of the current curve by means of the i8-point schedule

gives the following values of the amplitudes and phases of the

components

:

C, =22.84
<l>^

= -81.7
Values reduced

to emf.

C3 = 2. 28 ^S = + 38.3 I. 17

C, = 7- 22 ^5 = 30.5 2. 21

C, =11.48 ^, = 8.0 2.53

Cg == I. 51 ^» = 10.8 0. 26

Cu= 7-17 4'n- 27.9 I. GO

Ci3= 0.28 fc = 13.0 0.03

C,,= 0.85 ^,5
= 16.8 0.09

Ci7= 0.66 ^17
= 1-3 0.06
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On calculating the deviations of this curve from the actual, using

the scheme of calculation in Table 4 for this purpose, it was found

that the departure is on the average not greater than about one

division, an agreement which is to be regarded as satisfactory

when the extreme steepness of the curve in some parts of its course

is considered. Analysis of the emf wave gave

Ci =35- 01 ^.
= — 2. I

C, = 0.99 ^a = + 58.2

C5 = 1.90 <!>.= 38.3

C^ = 1.93 ^7 = 12. 2

Co = 0.09 0. = II. 2

Cu= 0.45 V^u
= 26.4

C,3= 0.18 ^:3
= 13-5

C,5= 0.08 ^1.= 4.0

C„= 0.03 ^n = 20.5

In a circuit containing capacity, but in which the resistance is

negligible, the harmonics in the emf. wave are magnified in the

current wave in proportion to the order of the harmonic. To
test the accuracy of this relation in the case of the curves just

given, the third column in the results of the analysis of the current

curve given above, the column designated as ''values reduced to

emf.,
'

' was obtained by multiplying each harmonic in the current

wave by the ratio of the fundamentals (
J
and dividing by the

order of the harmonic in question. The general qualitative agree-

ment of these calculated values with the harmonics of the emf
wave is perhaps as good as could be expected when it is remembered

that in addition to the 0.7 ohm the rest of the circuit was not of

negligible resistance.

The same generator when run on an inductive load gave an

emf. cxirve B, Fig. i, which yielded on analysis
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Cr =33.96 ^1 = - I.O

Q = 0. 34 03 = + 60. 6

Cs = 0. 93 05 = 35.9

Q = 0. 75 07 = 50.8

Cq = 0. 14 09 = I.

Cn= 1.50 0n = 16.5

Ci3= 0.27 013
= 4-7

Ci5 = 0. 08 015
= 20.7

Ci7= 0.09 017
= 18.0

The armature has 1 2 slots per cycle.

Not only is the shape of the curve very different from that

given on a capacity load, curve A, Fig. 5, but, whereas in the latter

case the third, fifth, and seventh harmonics were present to a

marked degree, the eleventh harmonic is most prominent on induc-

tive load. This gives a very striking illustration of the effects of

armature reactions.

The current in the inductive circuit, curve A, Fig. i, has already

been analyzed and discussed in Example i. The results show
that the effect of inductance is to smooth out the harmonics in the

emf . to an extent which is proportional to the order of the harmonic.

For a more accurate experimental verification of this principle, the

reader is referred to an article in this Bulletin.^

TABLE 11

Showing Relative Values of the Harmonics to Form the Crests and

Troughs of the Curves in Example 7

CONDENSER CURRENT

Crest or trough

Harmonics

Sum Observed

3 5 7 11

deviation

1.0

1.6

2.2

0.7

-1.3

-2.2

-2.0

-0.7

1.2

2.2

1.0

-3.6

-6.2

-6.0

6.5

1.7

-6.6

-7.1

-0.7

7:1

-1.0

-6.4

3.6

- 5.0

-10.2

11.0

-10.4

0.0

9.0

5.0

-11.3

10.4

- 4.8

-3.6

5.0

-2.2

6.9

-5.0

5.0

-3.5

2.7

-5.0

6.9

-4.8

- 2.6

- 4.6

-16.2

25.1

-15.0

- 3.8

- 3.6

6.3

- 8.0

18.5

-15.0

-2.3
b — 4.0

c —15.2

d 24.8

—14.8

f — 5.4

— 4.1

h . 6 4

j -7.3
k 15.0

1 . —15.5

This Bulletin, I, p. 140; 1904.
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TABLE 11—Continued

CONDENSER ELECTROMOTIVE FORCE

605

Crest or trough

Harmonics

Stun Observed

3 5 7

deviation

a -0.6

-0.9

-0.5

0.7

0.6

-0.7

-1.0

-1.4

-0.6

1.0

0.7

-1.4

1.7

-1.0

0.4

1.1

-1.3

1.8

-1.9

1.7

-1.9

-1.6

-0.4

-0.8

3.2

-2.7

2.7

-3.9

2 2

b 7

c. . . . 1 5

d 3 2

—2 2

i 3 4

—4 4

INDUCTIVE ELECTROMOTIVE FORCE

Crest or trough

Harmonics

3 5 7 11

-0.2 -0.5 0.5 -1.5

-0.3 -0.8 0.3 1.3

-0.4 0.2 -0.7 -1.3

0.0 > 0.9 0.6 1.4

0.2 -0.5 -0.3 -1.1

0.4 -0.9 -0.7 1.3

0.3 -0.5 0.0 -1.2

0.0 0.8 0.5 1.4

-0.3 0.3 -0.7 -1.4

-0.3 -0.7 0.0 1.4

-0.1 0.5 -0.7 -1.4

Sum Observed
deviation

a

b

c.

d

e.

f.

g

h

j-

k
1.

-1.7

0.5

-2.2

2.9

-1.7

0.1

-1.4

2.7

-2.1

0.4

-1.7

-1.8

0.0

-2.4

2.3

-2.1

0.0

-1.4

2.3

-2.4

0.0

-1.6

It is of interest, in the case of each of these curves, to see how
the shape of the curve depends on the principal harmonics present.

In each case the fundamental component, derived by the analysis,

is plotted in the figure as a dashed sine curve. Table 1 1 shows to

what harmonics each trough and crest is due. For purposes of

identification, these have been lettered. In the table are given the

values of the harmonic components at the points in question, as

derived from a plot of the results of the analysis, together with

their resultant (algebraic sum). For comparison there are

appended the actual measured deviations of the cm-ve from the

fimdamental given by the analysis (the dashed sine curve) . No
attempt was made to obtain an accurate comparison, the table

being given for purposes of orientation only.
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EXAMPLE 8. RESONANCE OF A PARTICULAR HARMONIC

It sometimes happens that the inductance and capacity are of

such values as to give resonance for some particular harmonic of

the emf. wave. The curve A, Fig. 6, is an emf. wave taken from

the same machine as in Example 3. The thirteenth and fifteenth

harmonics are appreciable, amounting to about 3.8 per cent and

4.6 per cent of the fundamental, respectively. In this particular

case it was found that on joining a Siemens dynamometer in the

circuit to measure the current through a small capacity, the current

indicated by the dynamometer was much larger than was expected

from the known approximate value of the capacity. On drawing

the current curve, the wave form was found to be that of curve B\

the higher harmonics are seen at a glance to be very prominent.

Analysis gave the following results

:

c, =1.57 ^i
= -88.1

C3 =0.51 ^3
= - 0. I

C5 =0.23 ^5
= -7.0

C7 =1.21 07 = 32.6

Q =0.48 09 = 9.8

Qi = i-75 0u = 21.7

Ci3 = i.2i 0X3
= 14. 6

Ci5=4-94 015
= 3.1

Ci7=o.63 017=- 3-3

All the harmonics included in the analysis are appreciable, the

seventh, eleventh, and thirteenth being of the same order of mag-

nitude as the fundamental, while the fifteenth harmonic has an

amplitude of more than three times that of the fimdamental, the

condition of resonance being most completely realized for this

harmonic. In fact, if the components be plotted, it is found that

the successive maxima and minima of the curve coincide almost

exactly with those of the fifteenth harmonic, although the remain-

ing component waves influence the actual values of these maxima
and minima to an extent which varies according as they act in

conjunction or opposition.
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The phases are referred to an origin taken arbitrarily at the

extreme left-hand point of the current wave. The emf wave does

not seem to have been drawn in the proper phase relation with the

current curve.

In such cases as those in which resonance renders abnormally

prominent some^ harmonic of an order higher than is included in

the foregoing schedules of analysis, it is not difficult to derive a

scheme of analysis for the single harmonic in question, according

to the principles already laid down.

V. FURTHER APPLICATIONS

1. CALCULATION OF THE AVERAGE AND EFFECTIVE VALUES OF ELEC-
TROMOTIVE FORCE AND CURRENT CURVES

It is customary to define the average value of an emf or current

wave as the average ordinate of one loop of the curve (either

positive or negative) ; since the positive and negative loops are

alike the average of the ordinates throughout a complete period

is zero. In the case of very distorted waves, as, for instance, that

of the condenser current, Fig. 5, it is difficult, if not impossible, to

state where is the beginning of a loop. The usual custom of taking

as the beginning of the loop the point where the curve passes

through zero, evidently becomes inapplicable when the curve is

constantly oscillating between positive and negative values. The
average value of an emf. or current wave is consequently a quantity

which depends on the choice of origin of phase differences, and it is

difficult to define it in such a way as to include the customary

rather special definition of this quantity. In what follows the aver-

age value of an emf. or current wave will be defined as the average

ordinate of one-half wave, counting phase differences from the zero

of the fundamental as origin. This definition does not give quite

the same value as that foimd by taking as origin the point (in the

case of only slightly distorted waves) where the curve crosses the

axis, but the difference will, in general, be found small.

With this understanding, and writing for the equation of the

wave
273* / 27r\

e=E^ sin -^t + E^ sin [3( y- 1^ - PA +

+Ensm[ni-^\t-^n\-^ . . .
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the average value e is defined by the expression

e = ^[EA^- sm^tdt-^EA~^^^T^{2>~t-^;)dt'\- . . .

-\-En\ ^ sin {n^t-^n)dt+ . . .
]

where T is the period of the fundamental.

We have, therefore, to evaluate the general integral

Jlsin(^*-A)d^

T
which is easily found to be equal to — cos /3»,, so that the final ex-

•'
^

^ irn

pression for the average value is

6 =^S^cosA (14)
TT n

where A = n (i/r„ - ^\r^

and '^n has the same meaning as in equation (13).

The root mean square or effective value is involved in no such ambi-

guity as the average value, being entirely independent of what

point is chosen as origin. Writing the equation of the curve in

the form

e=E^sm(^t-eA +E^sm\%Y^-eA^^ . . .

+ En sin ( n-7^t -6^\+ . . .

we have for the square of the instantaneous value

e^ = E,' sin^ (^^t - e,^ + E,^ sin^ (3^^ - ^3) + . . .

+ En'sm'(7l^t-en^+ . . .

+ 2EiEn sin
(
^^ -

^1 ) sin I n^t -Onji-.,.

+ 2EsEnsm(2,'^t-0Asm(n^t-6n)-{- . . .
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and the square of the effective value will be £2=— I e^dt.

The integrals of the form I sin ( m—t — 6ni\ sin ( n-^t — On \dt are

easily seen to be each separately equal to zero, so that there remain

only integrals of the general form I sinM n^^-^n W^, which,Jx sm X cos X
sin^ xdx = , are found to give

T
merely the term — so that we have the simple expression

E^=^(£:,^+£:3^+ . . . -\-En'+ . . .) (15)

2. CALCULATION OF THE AVERAGE POWER IN A CIRCUIT

The average power in a circuit is found by taking the average

of the values of the instantaneous power {ei) through an entire

period. This may, of cotirse, be calculated by measuring a suffi-

cient ninnber of ordinates of the emf and cvirrent curves, and by
forming the products of corresponding values of the ordinates of

the two waves. The average power may, however, be much more

readily and more accurately calculated from the results of an anal-

ysis of the current and emf waves. Writing as usual

= £:i sin ^y^-^J+Eg sin f
3^/-^3J+

. .

+ En sin I n-Tj^t - ^« j + . . .

-J-/„ sin f n-:jT^-3HJ+ ...
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the instantaneous power is given by

ei = EJ, sin
(
y-^ - ^i ) sin

(
y-^ - ^J

+ E,I, sin (sy^ - eA sin (3^4 -S,j+ . . ,

+EJ^ sinf-^/-<9J sin (sy^-^sJ^ • • • +

EJn sin ( ;^^ - ^1 j sin ( n~t - 3„ j + . . . .

+ EJ, sin (s^i-^s) sin (y"^-^i)

+ £3^5 sin (s^^ - OA sin (5^^ - ^5 ) + • • •

and the average power is found by performing the integration of

this expression between the limits zero and T, and by then

dividing the result by T. The integrals of the form

I
sin I mY^ — 6ni j sin f 71^^ — ^« )dt are all separately equal to

zero. The remaining integrals are of the form

I
sin { n-Tpt -^n\ sin ( ti-^/ -K \dt =

i
11 cos (On - Bn) - cos Lfl^t " (<?« + Bn)Udt

which, since I cos 2n^^t — (On + 8n) p = zero are seen to give the

final expression for the average power

P = ^[EJ, C09 (<9, - SJ + E3/3 cos (d,-B,)+ ... + Enin cos (dn - S„)
]

(16)

= -[EJ^ cos ^t + £3/3 cos (ps+ ... + EnIn cos ^„ 4- . . . ]

where (pn is the angle of phase difference between the harmonic emf

.

of n times the frequency of the fundamental and the current com-

ponent of the same frequency. This equation expresses the well-

known fact that on the average electromotive forces and currents

of different frequencies add nothing to the power of a circuit.
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The power factor of a circuit, in which the emf and current

may have any wave form whatever, is defined as the ratio of the

average power to the product of the effective emf. by the effective

current. In the case of pure sine waves it is equal to the cosine

of the phase difference between the emf. and the current; in the

case of distorted waves, the power factor may be designated as the

cosine of an angle, which we may call the effective phase difference,

an angle which has no physical existence, but which is equal to

the phase difference which would have to exist between two sine

waves having, respectively, the same effective values as the emf.

and current, and developing the same average power as the actual

emf. and current.

We thus see that if the results of the analysis of the emf. and

current curves in a circuit are at hand, it is an easy matter to calcu-

late the average and effective values of the ernf and current, the

form factor, the average power, the power factor, and the effective

phase difference between the emf. and the ciurent. Of these quan-

tities, some may be calculated from the curves, by measuring a

sufficient number of ordinates, and forming the averages of their

squares and products. The average values of emf. and current

(and therefore their form factors) can not, however, be accurately

found without having analyzed the curves (in the case of very

distorted waves an analysis is absolutely essential), and all the

above quantities may be found more accurately and more expe-

ditiously from the analysis than from the laborious method of

working from a large number of measiured ordinates. Numerical

examples of the use of formulas (14), (15), and (16) will be given

below in Examples 9, 10, and 11.

3. DERIVATION OF THE EQUATIONS OF POWER CURVES

The equation of the curve showing the instantaneous power

during the cycle follows without difficulty from the equations of

the emf. and current curves.

Writing

e^E^sin (pt-0,) +£:3sin (spt + O^) + . . .

' ^E^sin (npt-On)-h . . .

i =/i sin (pt - B,) 4-/3 sin {^pt - S3) + . . . +/« sin {npt - 3„) + ...
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we have for the power

ei = EJ^ sin (pt - OJ sin (pt - S,) +EJ^ sin (pt - 6,) sin (npt - 3„) + . .

.

EJ^ sin ispt-^s) sin (pt-h,)+ . . .

+ £:3/„ sin (3/>/-^3) sin (n/>^-3n)+ ... / v

EJ, sin (npt -On) (pt-B,)+ . . .

+£'J''it sin (npt — On) sin {npt - 3^) + . . .

Using the relation 2 sin rx: sin y = cos {x — y) -cos {x-\-y) the

equation (17) falls into the following

2ei = EJi cos (^i
— ^i) +£^3/3 cos (S3 — ^3)+ . . .

-{-EJn cos (Sn-6n) + . . .

+ terms involving the cosines of even multiples of pt.

The first line of the preceding equation gives the average power,

as has already been shown. The cosine terms are of the form

Pn cos [2npt — a^], Qn cos {2npt — a^ etc. These terms can be sim-

plified by using the relation

Ml cos (^ — ^1) +M2 cos {x— a^ +M3 COS {x — a^-\-...
==Nsm(x-y) ^^^^^

where

N^ = (Ml sin «! +M2 sin a^ +M3 sin ^3 -f- . . .y + (Mi cos a^

+M2 cos ofg+Mg cos a^+ . , .y
and

_ — (Mj cos «'i +M2 cos ^2 +M3 cos a^-j- . . .)

' ~ (Ml sin oTi +M2 sin a^ +M3 sin ^'g + . . .)

The equation for the power then reads

2ei = 2P = EJi cos (^1— ^1) +£"3/3 cos (S3 -^3)+ . . .

-}-EJnCOS{Bn-6n) + • • •

+ A^i sin (2pt-y^) +N2 sin (4/>^ -72)

+N,sm{6pt-%)+ . . .

(18)

This procedure will be illustrated by Example 12, below. In

those cases where the higher harmonics in both the current and

emf. wave are not negligible, the number of terms which must be

included in equation (17) becomes large, and the method becomes
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more laborious. In such a case it may often be easier to form the

products of the ordinates used in the analysis of the emf and cur-

rent curves, and carry through the analysis of the power cm^e using

the schedules for the analysis of curves in which even harmonics

are included. (See Appendix B.) Both methods are illustrated

in Example 12, and are seen to give essentially the same equation,

as should be the case.

4. RESOLUTION OF THE POWER CURVE C^TO TWO COMPONENTS.

It is often of interest to resolve the power ciu-ve into two

components, one representing the power lost in the circuit in

such ways as in heating a resistance, in iron losses, or in dielec-

tric losses, and a second showing the rate at which energy is

alternately stored in and recovered from the magnetic field or the

dielectric. The average value of the power dissipated is EI cos (j),

where E and / are, respectively, the e£fective values of the emf

and the ciurent, and cos </> is the power factor, the angle <^ being in

the case of sine waves the angle of phase difference between the

emf. and the current.

In the case of sine waves it is mathematically the same, as far

as the value of the average power is concerned, whether we resolve

the emf. into two components E cos
<f>
and E sin </>, respectively in

phase and in quadrature with the cturent, and take the products of

these components with the current, or whether we consider the

components of the power to be the result of taking the products

of the emf. with the two ctwrents / cos
<t>
and / sin <^, found by

resolving the current along the emf. vector and at right angles to

it, respectively.

Thus, it is customary to speak of the power and wattless compo-

nents of the current as well as of the corresponding quantities for

the emf. Logically, however, it does not seem to be correct to

speak of a wattless component of the current, since in the power
loss Pr, not only the " power " component / cos

<t>,
but also the com-

ponent / sin <^ of the cturent enters. Fiuther, it is easy to show
that of these two methods of resolution only that where the emf. is

split up into power and wattless components gives a correct picture

of the facts of the case. However, since it is very often conven-
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lent to make use of the conceptions of the "power " and " wattless
"

components of the cmrent, as defined above (as, for example, in the

usual treatment of the theory of the magnetizing current of a trans-

former), both methods will be treated below, after we have first

considered wherein the two methods of treatment differ.

Assuming the emf and current to vary according to a simple

sine law, we may put for the instantaneous values of emf and

current

e^E sin pt / o \

i=Ism(pt-<l>)
^

and the instantaneous value of the power is given by

ei = -EI [cos
<t>
- cos (2pt — <^)

]

(19)

The average value of the second term is zero; the first term

gives the usual expression for the average value of the power, i. e.,

the average value of the power dissipated.

I^et us consider the case of an inductive circuit; entirely similar

relations follow if capacity is also assumed to be present. Resolv-

ing the emf. into two components, e^ and ^2, respectively in phase

with the current, and 90° ahead of it in phase, we may write

e,=E cos
<l>

sin (pt - <^) ,

e2=E sin </> cos (pt — <^)

and thence,

e^i = -EI cos <f>[i — cos (2pt — 2<^)]

(21)

eji = -EI sin </> sin (2pt — 2<^)

The sum of these two component power curves gives the same
expression for the total power as in equation (19).

If we resolve the current into two components, i^ and i^, respec-

tively in phase with the emf and 90° behind it in phase, we find

i^ = I cos
<l>

sin pt . .

T ' I i-a (22)
^2 = — / sin 9 cos pt ^ ^

89420°—13 10
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and, accordingly

H^=-EI cos <^[i —cos 2pt'\

eiz = ~EI sin <f sin 2pt

(23)

The sum of these two components gives the same equation (19)

for the total power as before.

The power equation for an inductive circuit may be written

ei = Ri^ +iM (^4)

the first teim giving the rate at which energy is being dissipated,

the second term the rate at which the kinetic energy of the current

is being changed.

Substituting the value of i from (i8a), we find

Rv" = -PR [i - cos {2pt - 2(t>)]

I (25)
= -EI cos <^[l —cos {2pt — 2<^)]

E ,

since the equation -^ = p cos ^ exists between the maximum values

of current and emf.

The second term gives

\j(Li^)^\LpP sin {2pt-2<t>)2dt 2
(26)

= -EI sin
<f>

sin {2pt — 2^)

since LpI=E sin </>.

The two component curves of instantaneous power in equation

(21), found by resolving the emf. into an in-phase component

and a quadrature component, with respect to the ciurent, are thus

seen to represent correctly at every instant, the values of the power

expended in Joule heat and the power stored in the magnetic

field, equations (25) and (26).
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If we now substitute the relation 1 = 1^+12 in (24), the power

equation may be written

T^ / • o . . -OX r / • dh • di2 . c?Z2 . di, \ , .

e^=.R(^,' + 2^,^,+^,')+L{^.-J+^,f^+^,^^+^,-f^) (27)

and, using the values of i^ and 12 from (22), it is easy to show

that the two components of the power ei^ and ei2 in equation (23)

/ di di \
are given by the two sums of terms Rii^^+i^^) +M ^i";// +^2";77 )

and 2Ri^i2+L(ii-TJ' +i2-n) respectively, which together make

up (27).

dz dz
Remembering that the phases of -j^ and -^ are 90° ahead of i^

and 12, respectively, it appears that the first series of terms consists

of products of pairs of in-phase quantities, while the second

series consists of products of quantities in quadrature with one

another. The separation of those terms in the equation of the

power which, on the average, contribute to the average power,

from those terms whose average value taken over the cycle

is zero, is therefore correctly carried out, but this resolution of

the current must nevertheless be regarded as artificial rather

than as representing the actual physical relations.

Passing to the consideration of nonharmonic waves, let us

write, as before,

e = E, sin (pt - e,) + E, sin (3/)/ - ^3) + E, sin (5/)/ - 6,) + . . .

i ^ /i sin {pt - 5J + /g sin (3/>/ - ^3) + I^ sin {^pt - ^5) + . . . .

Remembering that the product of any harmonic of the emf
wave by any harmonic of different frequency in the ciurent wave
contributes nothing to the average value of the power taken

over the cycle, it is logical to write for the power and wattless

components of the emf the following equations of definition

ei = El cos (Si - (9i) sin {pt - B,) + E^ cos (S3 - ^3) sin (3/?/ - S3) + ...

(29)

e2 = £:i sin (Si-^i)cos(/>^-Si) +£3sin(S3-^3)cos (3/>/-S3) + . . .
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For the components of the current in phase and in quadrature

with the emf , we have the similar equations

z\=/iCos(8i-^i) sin(/>^-^i)+/3Cos(53-^3) sin(3/>/-^3)+ . . .

(30)

- i, =A sin (3, - 6,) cos {pt - 6J +1, sin (S3 - 0,) cos (spt -0,)+ . . .

If the harmonics E^, E^, . . . and /i, /g, . . . of the emf. and

current are already known from previous analysis of the curves,

it is evidently a very simple matter to write down the equations

of these component emfs and currents, and these may be used

to derive the equations of the component power ciu-ves as will

be shown below. If, however, the form of the curves given in

these equations is of interest, it is necessary to plot these equa-

tions, which is a laborious undertaking. In case the harmonics

are mostly all small, or negligible, the matter is simplified, since

the harmonic waves may be drawn acciu-ately enough without

calculation. For this the zero points and the positions of the

maxima and minima are plotted and the rest of the curves drawn

in free hand. The resultant ctuve of these harmonic waves may
then be determined graphically, and its ordinates show the devia-

tion of the actual curve from the simple sine wave of the funda-

mental. The latter may be plotted carefully, and corrected by
means of the curve of deviations, to obtain a sufficiently accu-

rate representation of the actual curve.

5. DERIVATION OF THE EQUATIONS OF COMPONENT POWER CURVES

The equations for e^i and ^gt are found by multiplying the

expressions (29) by the equation (28) for i. In the case of the

component e^i there will also be, in addition to the series of con-

stant terms which express the average power (see equation (16)),

a series of terms of the form P sin {mpt — K^ . sin (n/>^ — 3„),

which may be resolved by the relation 2 sin (mpt — 3„,) sin {npt — 8„)

= cos [{m—n)pt — (8m- S„)] - cos [(m+n)pt- (B^+ Bn)], and finally

all the terms involving each frequency are to be collected into a

single term involving the sine of the same frequency, by means of

equations given already.
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For the component e^i we have terms of the form Q sin {mpt - 3^)

cos {npt — Bn) , which may be resolved by the relation 2 sin {mpt — 5^)

cos {npt - Bn) = sin [{m + n)pt - {B^ + B^]- sin [{m — n)pt — {B^

-

3»)],

and then all the terms of the same frequency may be collected

by means of the following transformation equations

:

Ml sin {2npt - cy^) +M^ sin {2npt - a^ + M3 sin {inpt -oc^

+ . . .=N sm{2npt-i) ^^^^

where

A^2 = [Mi sin o'j+MgSin a^^M^ sin o'g + . . . p
+ [Ml cos <a'i +M2 cos n'2 +M3 cos «'3 -f- . . . P (32)

Ml sin a^ +M2 sin ^2 +M3 sin a^-{- ...
tan 7 Ml cos a^ +M2 cos a^ +M3 cos a^ +

The problem of finding the equations of the curves for ei^ and

ei^ presents nothing essentially different from the foregoing

considerations.

The details of these calculations will be clearer from a con-

sideration of Examples 13a and 136, in which are illustrated all

the steps involved in the calculation of the equations of the curves

of the power components.

The amotmt of labor necessary for the calculations rapidly

increases with the number of harmonics present in the waves

of emf and current, and if it were not for the amount of work

necessary to calculate ordinates from the curves of the emf. or

current components, it would be easier to actually carry through

the analysis of the curves from a set of calculated ordinates as

is done in Example 12 to obtain the equation of the total power

curve.

VI. EXAMPLES ILLUSTRATING THE PRECEDING SECTION

EXAMPLE 9. CALCULATION OF THE AVERAGE VALUES OF CURRENT
AND EMF. WAVES, FORMULA 14

To illustrate the formulas, we will consider the waves of emf.

and current shown in Fig. 3, curves A and B. The details of

the calculation of the average values are shown in Table 12. In

the first column is given the order of the harmonic; in the second,

the corresponding amplitudes found by analysis; in the third, the
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values of the phase angles -^ny as derived by analysis (Example 3)

.

From these are calculated the values of (-^w
—
-^J, and in column

TABLE 12

Calculation of the Average Values of Current and Electromotive Force

Waves

ELECTROMOTIVE FORCE

En 4>n i!>n->i>i /?« CoS^Jn
En
n Products

1 33.217 1°.6 1.0000 33.217 33.217

3 0.970 2.1 0°5 1°5 0.9997 0.323 0.323

5 1.702 41.7 40.1 200.5 -0.9367 0.340 - 0.319

7 0.218 38.3 36.7 256.9 -0.2267 0.031 - 0.007

9 0.355 2.2 0.6 5.4 0.9956 0.039 0.039

11 0.205 19.3 17.7 194.7 -0.9673 0.019 - 0.018

13 1.251 3.8 2.2 28.6 0.8780 0.096 0.084

15 1.528 15.7 14.1 211.5 -0.8526 0.102 - 0.087

17 0.159 3.0 1.4 23.8 0.9150 0.009 0.008

33.671

33.240x2=2r./(5

K

Average value of emf. Sum

- .431

33.240

CURRENT

In 4>n (l>n—tp\ i?» Cos/? ft

Jn
n Products

1 29.627 66"'.9 1.0000 29.627 29.627

3 3.866 27.8 -39.1 -117.3 -0.4586 1.289 - 0.592

5 0.459 26.2 -40.7 -203.5 -0.9171 0.092 - 0.084

7 0.211 15.3 -51.6 -361.2 0.9998 0.030 0.030

9 0.155 11.6 -55.3 -497.7 -0.7396 0.017 - 0.013

11 0.163 15.4 -51.5 -566.5 -0.8949 0.015 - 0.014

13 0.214 9.9 -57.0 -741.0 0.9336 0.016 0.015

15 0.188 15.3 -51.6 -774.0 0.5878 0.013 0.008

17 0.052 18.1 -48.8 -829.6 -0.3355 0.003 - 0.001

2^.91i>xt= 18.45
n

29.680

Sum

- .704

Average value o f current. 28.976

5 the values of A= n(>/r„ — -^/rj. Columns 6 and 7 give cos /3„

En E
and —^y and in the last column appear the products —^ cos /S„.
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The sum of these latter, multipUed by -, gives the average ordi-
TT

nate of the emf wave as 21.16.

The second half of the table relates to the current wave, and
the preceding explanation will make this clear. The average

ordinate of the current was found to be 18.45.

As a check on these calculations the average values were also

determined by actually measuring and summing the ordinates of

each dot (phase difference of 2°) for half a cycle, taking as the

origin the point where the curve crosses the axis. The values

found were 21.29 for the emf and 18.60 for the current. The
differences between these values and those found from the results

of analysis of the curves are probably to be explained by the

fact that only one-half of the wave was measured, while the

analyses rest upon the average ordinates of a whole wave.

Similar calculations were made for the condenser current and
emf. (curves B and A, Fig. 5) , which have already been analyzed

in Example 7. The condenser current is so irregular, crossing

the axis so often, that one has to depend on the analysis to tell

where the origin of phase should be taken to agree with our

definition oji page 608. The results of the two methods are given

below.

Calculated
Measured
ordinates

Averageemf

Averagecurrent.

21.84

13.56

The labor of measuring all these ordinates and taking their sum
is, of course, vastly greater than that of calculating the average

value from the results of the curve analysis.

EXAMPLE 10. CALCULATION OF THE EFFECTIVE VALUES OF EMF. AND
CURRENT, FORMULA 15

The same curves were treated as in the preceding example,

Details of the calculation are given in Table 13.
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TABLE 13

[Vol. 9

Calculation of the Effective Values of Current and Electromotive Force

Waves

Transformer Circuit Condenser Circuit

n En En2 In I«2 E„ E«2 In l™2

1

3

5

7

9

11

13

15

17

33.217

0.970

1.702

0.218

0.355

0.205

1.251

1.528

0.159

1,103.36

.94

2.90

.05

.13

.04

1.56

2.34

.03

29.627

3.866

0.459

0.211

0.155

0.163

0.214

0.188

0.052

877.76

14.95

0.21

0.04

0.02

0.03

0.05

0.04

0.00

35.01

0.99

1.90

1.93

0.09

0.45

0.18

0.08

0.03

1,225.70

0.98

3.61

3.72

0.01

0.20

0.03

0.01

0.00

22.84

2.28

7.22

11.48

1.51

7.17

0.28

0.85

0.66

521.67

5.20

52.13

131.79

2.28

51.41

0.08

0.72

0.44

Su
Sum-f-

Effective vali

Value found fro

measured ordinate

m 1,111.35

2= 555.68

ae 23.57

m
S 23.70

Si

Sum-r

im 893.10

2=446.55

21.13

21.25

Sum 1,234.26

Sum-^2= 617.13

24.84

24.85

Sum 765.72

Sum -f-2= 382.86

19.66

18.97

In the first column is given the order of the harmonic, in the

second the amplitudes of the various harmonics, as found by
the analysis (Examples 3 and 7), and in the third column the

squares of the amplitudes. Half the sum of the squares gives

the square of the effective value.

As a check on these calculations, the effective values were also

calculated by averaging the squares of the ordinates, already

measured for calculating the average values in the previous

example. The results thus foimd are also given in the table,

and it will be seen that the agreement is satisfactory when it is

considered that ordinates were measured for only one-half wave.

In the case of the condenser current the changes of the current

are so abrupt that the measured ordinates are apparently not

close enough together to give a very accurate value.

For completeness the form factors of these curves are appended,

as foimd both by calculation from the results of the analyses and
as obtained from the measured ordinates.
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Method

Transformer Condenser

Emf Current Emf Current

Analysis 1.114

1.113

1.145

1.1425

1.137

1.137

1.409

1.399

EXAMPLE 11. CALCULATION OF THE AVERAGE POWER, POWER FACTOR,
AND EFFECTIVE PHASE DIFFERENCE, FORMULA 16

The same curves are considered here as in the preceding exam-

ples. In the first column of Table 14 is given the order of the

harmonics. The second and third columns contain the ampli-

tudes of the harmonics of the emf, and current, respectively,

curves A and B, Fig. 3, while in the fourth and fifth appear the

corresponding phase angles On and 3„, found by analysis. In

column 6 are the calculated values of (Bn— On), and in column 7

TABLE 14

Calculation of the Average Power from the Results of the Analyses of

Current and Emf. Waves

n En In dn On dn-en COS(.dn-en) EtJb Products

1 33.217 29.627 1.6 66.9 65.3 0.4179 984.12 411.24

3 0.970 3.866 6.3 83.5 77.2 0.2215 3.75 0.83

5 1.702 0.459 208.8 131.0 - 77.8 0.2113 0.78 0.17

7 0.218 0.211 268.1 107.1 -161.0 -0.9455 0.05 - 0.04

9 0.355 0.155 20.1 104.6 84.5 0.0958 0.06 0.00

11 0.205 0.163 211.8 169.7 - 42.1 0.7420 0.03 0.02

13 1.251 0.214 49.3 129.1 79.8 0.1771 0.27 0.05

15 1.528 0.188 235.6 229.1 - 6.5 0.9936 0.29 0.29

17 0.159 0.052 51.1 308.0 256.9 -0.2250 0.01

Sum

- 0.00

412.56

Effective em{ 23.57 Average power m.28
Effective current 21.13

Power factor= 206.28-;-(22 .57X21.13)= 0414£==cost'S^S

the cosines of these angles. The eighth and ninth columns give

the products of the amplitudes and the power En In cos (Bn—On).

The stun of these latter values, divided by 2, is the average power.

The power factor is given by the quotient of this calculated value
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of the average power by the product of the effective values of

current and emf. found in the preceding example. The value

found is 0.4142, which corresponds to an effective phase differ-

ence of 65°. 5, a value not very different from the phase difference

of 65°.3 existing between the fimdamentals of current and emf.

The average power calculated directly from the measiu-ed ordi-

nates of the emf and current waves is 212.7, which gives a power

factor of 0.4223, corresponding to an effective phase difference

of65°.o.

Similar calculations were also made for the case of the con-

denser circuit considered in the preceding examples. As calcu-

lated from the equations of the curves of emf and current (see

Example 7) the average power is 89.37, indicating a power factor

of 0.1839 and an effective phase difference of 79°.4.

The scale of the emf curve, Fig. 5, was 20 divisions = 82 volts,

while for the current 20 divisions = 0.71 ampere. The calculated

values of the effective emf and current, expressed in divisions in

Table 13, were, respectively, 101.7 volts and 0.637 ampere.

The average power is therefore 89.37 X 0.0355 X 4.1 or 13.03 watts,

which corresponds to an effective resistance of .
'

.^ or 27.0

ohms. This includes the equivalent resistance which represents

the absorption of the condenser, as well as the actual resistance

in series with the condenser. The capacity was about 9 mf.

By direct calculation from the ordinates of the emf and cur-

rent curves the average power comes out as 79.57, which cor-

responds to a power factor of 0.1688 = cos 80^.3 . Reducing to

watts we have 11.58 watts, which indicates an effective resist-

ance of 25.6 ohms.

The difference between the results by the two methods of cal-

culation was explained when, on closer examination of the cmves,

it was noticed that the corresponding points of the cturent and
emf. ciuves, used in the analyses, do not have exactly the same

phase, but were given a displacement in the drawing of the curve

of about 0.4 the phase difference of successive points, or o°.8 in

phase, and in such a direction as to make the phase difference

foimd by analysis (on the asstunption that corresponding ordi-
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nates have exactly the same phase) come out too small. Apply-

ing this correction the difference between the results by the two
methods almost disappears. Attention is thus called to a source

of error which must be guarded against if the results of the analy-

ses are to be applied to the calculation of power factor.

EXAMPLE 12. DERIVATION OF THE EQUATION OF A POWER CURVE

In this example will be treated the derivation of the curve of

instantaneous power for the emf and current curves, Fig. 3,

already investigated in the previous examples. These are the

ciu^es of the magnetizing current in a transformer, at such a fre-

quency that the magnetic induction was about double the normal

value, together with the impressed emf causing this current to

flow.

The problem will here be treated by two methods, (a) calcula-

tion from the results of the analysis of the emf and current

waves, and (5) direct analysis, using as fundamental ordinates

the products of the ordinates used in the analysis of the waves

of emf and current.

(a) First Method.—^The author's experience has led to the

arrangement of the calculation exemplified in Table 15.

Columns 2 to 5 give the amplitudes and phase angles found in

the analyses (Example 3) and the remainder of the first part of

the table contains the separate products of the harmonic ampli-

tudes of the current and emf, taken two at a time; thus the

product of the ninth harmonic of the emf by the eleventh har-

monic of the current appears in the column headed £"9 and in

the row in which appears 11. It will be noticed that a good

many of these products are, relatively, negligibly small, except in

such cases as very high precision is desired. The labor of cal-

culation may, therefore, in a good many cases be materially

lessened by the omission of those terms which are of small

importance.

In the second part of the table is illustrated the calculation of

the amplitude and phase of one of the harmonics of the power

ciu^e—that harmonic which has a frequency of sixteen times

the frequency of the fundamental of the current and emf.
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In the third column are given those products -E^/^, given in the

first part of the table, for which the sum of the orders m and n
of the harmonics is equal to the order of the desired harmonic;

in this case i6. In the fourth column is given the sum of the

phase angles, h^ and 6m, of the current and emf harmonics, for

TABLE 15

Details of the Calculation of the Equation of a Power Curve from the

Results o£ the Analysis of the Emf. and Current Curves

Em In Sm dn

Products involving—

El E3 Es E; Eg Eu El3 El5 El7

1 33.217 29.627 1°6 66°9 984.12 28.74 50.43 6.46 10.51 6.07 37.06 45.27 4.71

3 0.970 3.866 6.3 83.5 128.42 3.75 6.58 0.84 1.37 0.79 4.83 5.91 0.61

5 1.702 0.459 208.8 131.0 15.25 0.45 0.78 0.10 0.16 0.09 0.58 0.70 0.07

7 0.218 0.211 268.1 107.1 7.01 0.20 0.36 0.05 0.08 0.04 0.26 0.32 0.03

9 0.355 0.155 20.1 104.6 5.15 0.15 0.26 0.03 0.06 0.03 0.19 0.24 0.02

11 0.205 0.163 211.8 169.7 5.41 0.16 0.28 0.04 0.07 0.03 0.20 0.25 0.03

13 1.251 0.214 49.3 129.1 7.11 0.21 0.36 0.05 0.08 0.04 0.27 0.33 0.03

15 1.528 0.188 235.6 229.1 6.24 0.18 0.32 0.04 0.07 0.04 0.24 0.29 0.03

17 0.159 0.052 51.1 308.0 1.73 0.05 0.09 0.01 0.02 0.01 0.06 0.08 0.01

CALCULATION OF TERM IN 16 pt.

M=E«,In

Phase Angle a

M sin a Mcosa
dn+Sm ±{Sn-em)

1 15 - 6.24 230°7 -0.7738 -0.6334 4.83 3.96

1 17 1.73 306°4 -0.8049 0.5934 - 1.40 1.03

3 13 - 0.21 135.4 0.7022 -0.7120 - 0.15 - 0.15

5 11 - 0.28 378.5 0.3173 0.9483 - 0.09 - 0.27

7 - 0.03 372.7 0.2198 0.9755 - 0.01 - 0.03

9 - 0.08 127.2 0.7965 -0.6046 - 0.06 0.05

11 - 0.09 342.8 -0.2940 0.9553 0.03 - 0.09

13 - 4.83 132.8 0.7337 -0.6794 - 3.54 3.28

15 -45.27 302.5 -0.8434 0.5373 38.18 -24.32

17 4.71 - 15.8 -0.2723 0.9622 - 1.28 4.52

Sums

N=V36.512+ 12.02

36.51 -12.02

2=38.38

tan 3

12.02

36.51

r=l8°2

those cases in which the sum of the orders of the harmonics of

emf and current is to be taken. Similarly, the fifth column con-

tains the values of the differences of the phase angles of the
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harmonics of the current and emf corresponding to those cases

where the differences of the indices m and n is equal to 16.

From the formula

2 sin {mpt — Om) sin (npt-Bn) =cos [{n — m)pt — (Bn — Ojn)]

-cos [(n + m)pt-(Br, + eJ]

we see that the products E^I^, taken from the first part of the

table, are to be given the positive or negative sign, according as

the difference of n and m has to be taken to get 16, or the sum.

Thus, in the first term (n + m) =1^ + 1 ^ and the negative sign is

given to the product £^1/15 = 6.24; in the second term (n—m)
= 17 — 1 and the product EJ^t = i.T2, is to be given the positive

sign. With regard to the phases, we take the sum {K +0^
when (w+w) = i6, and if {n—m) =16 the phase is {K — ^vd) if

(w— w) = i6, then (^m — ^J is to be taken, hence the heading of

the fifth column is given the double sign, with the understanding

that the sign is to be taken as positive or negative according as

n is greater or less than m.

In the sixth and seventh colimins are given the sines and
cosines of the phase angle, as just defined, and in the eighth and

ninth columns the product of these functions with the correspond-

ing values of EJ[n' '^^^ derivation of the resultant amplitude

of the harmonic from these quantities M sin a and M cos a is

clearly indicated in the table, and is in accordance with equation

(17a). The term in i6pt as thus found is 38.4 sin (i6/)if — 18°2).

Proceeding in this manner for each harmonic, the complete

equation, including terms in 18/)/, is

2P = 2et = 4i2.56+873.9 sin (2/>^-i57°.6) +I32.3sin (4/)/-i48°.3)

+ 38.5 sin (6/)^-2°.6) +0.9 sin (8/>^-i55°.2)

+ 13.7 sin (io/>^-i55°.o)

+ 30.1 sin {i2pt — 2ji^.g) +43.7 sin (14.pt — 141°,2)

+ 38.4 sin (i6/)/-i8°.2) +3.26 sin (i8/>^-67°.i)

The data in the Table 15 sufiices to allow the equation to be

extended to include terms in 34pt. It is evident, however, from

an inspection of the minuteness of the products Emin, which would

be used in calculating these higher terms, that all terms above

that in iSpt must be practically negligible.
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ib) Second Method—Determination of the Equation of the

Power Curve by Direct Analysis.—For this purpose, the prod-

ucts were taken of the fundamental ordinates of the emf. curve,

used in the analysis, by the corresponding ordinates which formed

the basis of the analysis of the current ciu-ve. For convenience

in plotting, these products were divided by 20 and were then

used as fundamental ordinates in an analysis according to Schedule

3 in Appendix B. This schedule is for the analysis of a curve in

which even harmonics and a constant term are included. Since

18 fundamental ordinates are required, the analysis gives, in addi-

tion to the constant term, the harmonics up to and including

the cosine term of nine times the frequency of the fundamental.

The term in the sine of nine times the frequency of the fundamental

requires that a second set of ordinates lying halfway between

those of the first set be measured, but the amplitude and phase

of this term follow then immediately without fruther calculation.

The products of the emf. and current ordinates, used in this analy-

sis, are spaced 10° apart in terms of the phase of the fundamental

frequency of the emf and current, but since the fundamental of

the power ciu-ve has twice the frequency of the fundamental of

emf. and current, these 18 ordinates extend over the complete

cycle of the power curve, and, therefore, fulfill the required con-

ditions of the above scheme of analysis.

The detailed analysis of this power curve appears in Table 16

and illustrates the use of the Schedule 3, Appendix B. The work
differs only in minor particulars from that in the case of the

analysis of emf. and current curves in the Examples 1,2, and 3.

The equation found by analysis is compared in Table 17 with

that found by the first method of calculation, the amplitudes in

this case having been divided by 20 to reduce to the same scale

as that used in the analysis. The first column gives the frequency

of the harmonic in terms of that of the fundamental of the emf.

and cmrent waves. The second and fourth columns give the

amplitudes and phases found by the first method, the third and

fifth the same quantities as given by the analysis.

The two ctuves are practically the same, as they should be,

since they depend on the same data, namely, the results of the

analysis of the emf. and current curves, or, what is the same



TABLE 16

Analysis of Power Curve from Eighteen Ordinates

10.767 6.974 I

33. 818 28. 405
|

15.461 28.657

038 28. 321 44. 585 35. 379 44. 014 4. 460 4. 267

I

—16.264 - 8.635 4.287

370
j

-24.899 -7.629 8.747 0.173

930
I
.4]-- 2.767 A,= - 0.848 !/l:-0.972 /lc=0.019

39. 187 40. 665 39.

'"""' ....,, .„„.»
1

ocndQ

-o" -- + -I+- + - + - + - + - + - 1

i-l= 28.45+31.7 =60.15 sill. I:<° 3.629 4.341 I 1.042 5.505 5.600 0.S99

S$~ 26.9 +32.25-59.15 sin 3'i° 16.600 7.525 16.600 7.525 29. 575 30. 075 16.600 7.525

S^ 15.05+18.3=33.35 sins-' 4.596 24.293^24.704 2.643

30.305 3.242 1 19.640 23.492 5.638 29. 789
1

So

93.50

sill 0" 0.150 18.300 0.150 18.300 j 33.050 33.350 0.150 18.300 92.200 93.500

.-. 8.225 47.055 10.767 46.934

-38.830 -36.167

25.746 36.390 26.448 31.017

-10.644 -4.569

33.050 29.575 30.075 33.350

3.475 -3.275

21.610 22.388 38.050 37.314]

-0.778 0.736

92.200 93.S00

A.-

-32.45+37.6= 5.15

-39. 95+44. 9 = 4. 95

-74.997 -2.663

iSi=- 8.333 B.= - 0.296

-15.213 -6.075

B,= - 1.690 Bi=- 0.675

0.200 6.750

Bs-0. 022 B.- 0.750

-0.042 -1.514

B,--O.00S B, 0.168 B

92.850 -0.650

,-I0.316B.-0.072

'

« * A lA,+At)a,uHA,-A,)

+
S„+B,= 10.244

Bi+B,-

B3+B»= 0.772

B,+B:^

8.629

0.173

B«-B, =10.388

-(B,-Bs)= 8.037

-(Bs-B,)= 0. 728

B,-B.= 0.163

(A,+A,

(Ai-A ) 21. 120

) 1.918

) 0. 264

+
(Ji+</i)- 45.85

-W.+A) 82.5

(*+</.) 26.55

A dual

0.328 22.875

-22.547

-38.971

.081

Sums

Aduiil

2.182 21.120

-18.938

-37.876

-32.043

.753

.005

Sun,s 82.5 72.40

XsinOit' 8.747

+(, 0.972-/1.

di-di 12. 35

d,-d> 1^
d,-d, 4.8$

Actual

- 0. 151

- 0. 150

19.316 1.015

,.,-18.301

Aelnal =18.300

-39. 052

-39. 05

-32.801

-32.8

Sums 12.35 12.15

0.20

X sin 6o' 0.173

+ 0.019-/1.
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thing, on the oidinates on which those analyses rest. Their good
agreement is therefore to be regarded merely as a check on the

two methods and the results of calculation.

EXAMPLE 13. ILLUSTRATING THE RESOLUTION OF A POWER CURVE
INTO COMPONENTS

In this example the power curve considered in the preceding

example (corresponding to the emf and current curves of Fig. 3)

will be resolved into two components. Both systems of resolution,

TABLE 17

Comparison of Equations of Power Curves found by Analysis and by
Calculation

Powei

Power components

eii ei2

Amplitude Phase (p AmpUtude Phase v^ AmpUtude Phase <A

C A C A C A C A C A C A

10. 314 10. 316 11.20 10. 878

2 21. 848 21. 843 78.8 78.8 (10. 142) 10. 142 46.6 46.8 (20. 185) 20. 185 91.4 91.9

4 3.307 3.242 37.1 37.1 1.730 1.524 26.3 26.3 2.448 2.422 43.8 42.4

6 0.962 0.972 0.4 - 0.2 0.715 0.885 51.2 50.1 0.824 0.966 7.6 8.4

8 0.022 0.032 19.4 21.4 0.144 0.103 31.8 30.5 0.145 0.102 10.4 33.6

10 0.353 0.340 15.1 15.0 0.272 0.144 11.5 13.1 0.216 0.218 19.5 20.0

12 0.753 0.750 22.7 22.6 0.583 0.556 26.2 26.5 0.522 0.496 18.9 19.3

14 1.091 1.084 10.1 10.1 1.125 1.058 10.2 10.3 0.065 0.077 9.6 14.9

16 0.960 0.976 1.1 1.1 0.685 0.604 20.5 20.5 0.753 0.839 3.7 3.6

18 0.082 3.7 0.007 2.4 0.075 0.012 3.9 1.6

treated on pages 614 and 615, will be employed, (a) that in which

the emf. is resolved into two components, one in phase with the

current, and the other 90° ahead of it, and (6) that in which the

cmrent is resolved into components, one along the emf vector

and the other 90° behind it. The difference in the physical sig-

nificance of these two methods has been already discussed

(pp. 615 to 617).

The methods of calculation, outlined above (pp. 618 and 619) , are

illustrated in Tables 18 to 23, and should be understood more
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clearly after an examination of the method of calculation of the

power cmr-e, given in the example above.

TABLE 18

Derivation of the Two Components of the Power Curve. Resolution of

the Emf Curve and the Current Curve

m
Order {dm- dm)

sin

{dm- dm)
COS

{dm-Sm)
E« Wm E",« Im I'm Vm

1 65.3 0. 9085 0. 4179 33. 217 13. 880 30. 178 29. 627 12. 380 -26. 916

3 77.2 .9751 .2215 0.970 0.215 0.946 3.866 0.856 - 3. 770

5 - 77.8 - .9774 .2113 1.702 .360 -1. 663 0.459 .0972 0.448

7 -161.0 - .3256 - .9455 0.218 - .206 - .0710 .211 - .200 .0688

9 84.5 .9954 .0958 0.355 .0360 .353 .155 .0149 - .154

11 - 42.1 - .6704 .7420 0.205 .154 - .137 .163 .121 .109

13 79.8 .9842 .1771 1.251 .221 1.231 .214 .0379 - .210

15 - 6.5 - . 1132 .9936 1.528 1.518 - .173 .188 .187 .0212

17 256.9 - . 9740 - .2250 0.159 - . 0358 - .155 .052 - . 0117 .0517

We have first to find the components of the current and emf.

just referred to. This is carried out in Table 18. This table con-

tains in the first column the order of the harmonics, in the second

the phase differences (S^—^w) between the corresponding har-

monics of current and emf (the phase difference is taken positive

for a lagging current) and in the third and fotuth colmnns the

sines and cosines of these angles. The next columns give the

harmonics Em of the emf wave as found by analysis, and the

components E'm and £^"w, respectively, in phase with the cur-

rent and 90° ahead of it. Similarly, in column 8 are given the

harmonic amplitudes of the current, and in columns 9 and 10

the components I'n and /"n, respectively, in phase with the emf.

and 90° behind it.

(a) By resolution of the emf curve.—^The components of emf

just fotmd are used in Tables 19 and 20 to compute the equations

of the power component ciu^es e{l and ^2^, according to the

methods sketched on pages 618 and 619. In the first section of

Table 19, which treats of the calculation of the curve e^iy the

products E'm^TO are shown. Thus, £'5/13=0.08 is found in the

column headed by /13, and in the row corresponding to harmonics

of order 5.
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TABLE 19

Calculation of Equation of Curve of Power Component ei,i

631

(Resoltition of Emf Curve)

Or-
der

In E'm on Ii I3 I. I7 Ifl In Il3 I16 Il7

1 29. 627 13. 880 6699 411. 24 53.66 6.38 2.93 2.15 2.26 2.97 2.61 0.72

3 3.866 0.215 83.5 6.37 0.83 0.10 .045 .03 .035 .046 .04 .01

5 0.459 .360 131.0 10.65 1.39 .165 .08 .056 .06 .08 .07 .02

7 .211 -.206 107.1 -6.10 -0.80 -.095 -.04 -.03 -.034 -.04 -.04 -.01

9 .155 .0360 104.6 1.06 0.14 .016 .01 .01 .01 .01 .01 .00

11 .163 .154 169.7 4.57 .595 .07 .03 .02 .025 .03 .03 .01

13 .214 .221 129.1 6.55 .85 .10 .05 .03 .035 .05 .04 .01

15 .188 1.518 229.1 45.03 5.87 .70 .32 .24 .25 .325 .285 .08

17 .052 -.0358 308.0 -1.06 -.14 -.02 -.01 -.01 -.01 -.01 -.01 .00

CALCULATION OF TERM IN 12pt

n m E'™l„ {dn+dw,) ±{dm-dn)
Ampli-
tudes M Phase

a
sin a COS a Msina Mcosa

1 11 -4.57 23696 -6.83 236.6 -. 8348 -. 5505 5.70 3.76

1 13 6.55 62.2 9.52 62.2 .8846 ,4664 8.43 4.44

3 9 -0.14 188.1 -0.17 188.1 -. 1409 -. 9900 0.02 0.17

3 15 5.87 145.6 5.91 145.6 .5650 -.8251 3.34 -4.87

5 7 0.095 238.1 0.015 238.1 -. 8490 -. 5284 -0.01 -0.01

5 17

5

3

1

-0.02

-0.08

-0.03

-2.26

238.1

188.1

236.6

177.0 0.00 177.0 .0523 -. 9985

Suins=
7

9
17.48 3.49

11 N=^-L7. 482+3.

4

32=17-^5

13 1 2.97 62.2 -3.49

15 3 0.04 145.6 '^'=
17.48

17 5 0.02 177.0 r=34S°-7

In the second part of the table is shown, in detail, the calcula-

tion of the term in i2pt. Here those products E'^In enter, for

which {m+n) =12 (in which case the product is given the negative

sign), and those for which {m—n) =12, or (n — m) =12, the sign

being positive in both the latter cases. With regard to the phase,

we have as rules, that for (m+n) =12 the phase is (^n + ^m); for

{m — n) = 12 or (n — m) =12, the phase is ± (S^ — 8J , the sign being

taken positive or negative according as m is greater or less than n.

(These rules are exactly the same as in the calculation of the

power curve.)

The rest of the calculation is, however, simpler than in the

case of the power curve, since here the terms group themselves

in pairs, for which the phase difference is the same. The ampli-

89420°—13 II
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TABLE 20

[Vol. 9

Calculation of the Equation of the Curve of the Wattless Component eji

of the Power Curve

(Resolution of the Emf Curve)

Or-
der In En." dn '^ I3 I5 I7 h 111 Il3 Il5 Il7

1 29. 627 30. 178 65°9 894. 08 116. 67 13.85 6.37 4.68 4.925 6.465 5.675 1.57

3 3.866 0.946 83.5 28.03 3.66 0.43 0.20 0.15 0.15 0.20 0.18 0.05

5 0.459 -1.663 131.0 -49.27 -6. 425 -0.76 -0.35 -0.26 -0.27 -0. 355 -0.31 -0.09

7 0.211 -0. 0710 107.1 -2.11 -0.27 -0.03 -0. 015 -0.01 -0.01 -0.01 -0.01 -0.00

9 0.155 0.353 104.6 10.46 1.36 0.16 0.07 0.055 0.06 0.075 0.07 0.02

11 0.163 -0. 137 169.7 -4.06 -0.53 -0.06 -0.03 -0.02 -0.02 -0.03 -0.03 -0.01

13 0.214 1.231 129.1 36.32 4.76 0.56 0.26 0.19 0.20 0.26 0.23 0.06

15 0.188 -0. 173 229.1 -5. 155 -0.67 -0.08 -0. 035 -0.03 -0.03 -0.04 -0.03 -0.01

17 0.052 0.155 308.0 -4. 585 -0.60 -0.07 -0.03 -0. 025 -0. 025 -0.03 -0.03 -0.01

CALCULATION OF TERM IN 12;?/

m n E™"In {dm+ dn) ±(Jm-an)
Ampli-
tudes M Phases a sin a cos a M sin a McoSa

11 1 - 4.06 23696 0.865 236.6 -0. 8348 -. 5505 - 0.72 - 0.48

1 11 4.925 " -29. 855 62.2 .8846 .4664 -26. 41 -13.92

13 1 -36. 32 6292 1.51 188.1 - .1409 -. 9900 - 0.21 - 1.49

1 13 6.465 " 0.85 145.6 .5650 -. 8251 0.48 - 0.70

9 3 1.36 188.1 - 0.38 238.1 - .8490 -. 5284 0.32 0.20

3

15

3

9 0.15 If

145.6

- 0.02 177.0 .0523 .9985 0.02

3

15

5

7

0.67

0.18

- 0.03

- 0.35

238.1

-26. 54 -16.37

7

5
N-V

—2

26.542-1-16.

6.54

i7^ 31.18

17 5 0.07 177.0 *^'--16.37

5 17 - 0.09 "
r=;?38°4

CHECK ON RESOLUTION OF POWER CURVE TERM IN 12pt

Component Amplitudes
M Phases a sin a cos a M sin a M cos a

Power=eii

Wattless=esi

17.83

31.18

34897

238.4

-0. 1959

-0. 8517

0. 9806

-0. 5240

- 3.49

-26.54

17.48

-16.37

-30.03 - 1.11

For power curve
N=30.12

r=27r9

N=V30.032-f- 1.112=30.05

-30.03
tanr

1.11

r=272''l
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tudes M thus grouped, together with their phases a, are given

in columns 6 and 7. The sines and cosines of a follow, and the

products M sin a and M cos a. The method of derivation of

the amplitude N and the phase 7 from these products is evident

from the table.

Table 20 treats of the calculation of the equation of the ciu-ve

of e^i- The first part of the table shows the calculation of the

products Em'Inj the system of arrangement being the same as

in the preceding tables. Then follows the detailed calculation of

a single term, that in i2pt. Referring to the equation

2 sin {npt - 8n) cos (mpt - BJ = sin [(m+n)pt- (8^ + K)]

+ sin [(n-m)pt-{Bn-B^)]
it is evident that those products for which (m+n) =12 enter

without change of sign, as well as those for which (n — m) =12,

while those for which (m—n) = 12 are to be taken with the reversed

sign. With regard to the phase, it is (3^ + SJ for (m+n) =12,

(K - ^m) for (n — m)=i2, and (B^

-

8J for (m-n) =12.

Here, as in the preceding case, the terms group themselves in

pairs which have the same phase. The calculation of the result-

ant amplitude N and the resultant phase 7 is given in detail in

the table.

In the last part of Table 20 is given a check on the derivation

of the term in 1 2pt for the curves e^i and ^2^*. The sum of these

two terms should equal the term in 1 2pt in the equation of total

power (Example 12). This condition is closely realized by the

values calculated in Tables 19 and 20, as is here shown, the sum
being 30.05 sin (i2pt — 272^1) while the value calculated for the

curve of total power in Example 12 is 30.12 sin {i2pt — 2'ji°g).

This check is of great value, although, in case it is not realized

in any given case, it gives no indication as to which of the curves

e^i and ggi is in error.

(b) By resolution of the Current—Curves ei^ and eig.—^The

method of calculation for this case is illustrated in Tables 21 and

22. These tables bear a close resemblance to Tables 19 and 20,

respectively, and will be clear from what has been said regard-

ing the arrangement of the latter. Here, as in the preceding

case, the calculation has been carried through for the term in
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\2pt and at the end of Table 22 is given a check on the correct-

ness of the terms found in the curves of ei^ and ei^.

TABLE 21

Calculation of the Equation of the Curve €\. Power Component Resolving

the Current

Or-
der

E^ In' em El E3 E5 E7 Es Ell El3 El5 El7

1 33. 217 12. 380 1.6 411. 23 12.01 21.07 2.70 4.40 2.54 15.49 18.92 1.97

3 0.970 0.856 6.3 28.43 0.83 1.46 0.19 0.30 0.175 1.07 1.31 0.135

5 1.702 0. 0972 208.8 3.23 0.095 0.165 0.02 0.035 0.02 0.12 0.15 0.015

7 0.218 -0. 200 268.1 -6.64 -0. 195 -0.34 -0.04 -0.07 -0.04 -0.25 -0.31 -0.03

9 0.355 0. 0149 20.1 0.50 0.01 0.025 0.00 0.01 0.00 0.02 0.02 0.00

n 0.205 0.121 211.8 4.02 0.12 0.205 0.03 0.04 0.025 0.15 0.185 0.02

13 1.251 0. 0379 49.3 1.26 0.04 0.065 0.01 0.01 0.01 0.05 0.06 0.01

15 1.528 0.187 235.6 6.215 0.18 0.32 0.04 0.07 0.04 0.23 0.29 0.03

17 0.159 -0. 0117 51.1 -0.39 -0.01 -0.02 -0.00 -0.00 -0.00 -0.015 -0.02 -0.00

CALCULATION OF TERM IN 12;?^

m n Emln' {Bm+en) ±{em-en)
Ampli-
tudes M Phases a sin a cosa Msina Mcosa

1 11 - 4.02 213.4 - 6.56 213.4 -. 5505 -. 8348 3.61 5.47

11 1 - 2.54 " °
16.75 47.7 .7396 .6730 12.39 11.27

1 13 1.26 47.7 - 0.31 26.4 .4446 .8957 - 0.14 - 0.28

13 1 15.49 II 1.49 229.3 -. 7581 -. 6521 - 1.13 - 0.97

3 9 - 0.01 26.4 0.32 476.9 .8918 -. 4524 0.29 - 0.14

9 3

15

- 0.30

0.18

"

229.3

- 0.005 -157.7 -. 3795 -. 9252

3 15.02 15.35

15

5

7

5

17

3

7

5

17

5

1.31

0.34

- 0.02

- 0.02

0.015

476.9

-157. 7

IVI=Vl5. 022+15. 352=1

-15. 35^'-
15.02

l.JS

For comparison, the equations of the foxn: curves corresponding

to the resolution of the pov^er curve according to these two
methods are presented in Table 23.

It will be noticed that the two methods lead to quite different

curves. The latter part of the table contains the checks on the

curves; that is, it gives an idea of how closely the sums of the

two components in each case approaches the value of the power
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TABLE 22

635

Calculation of the Equation of the Curve eig. Wattless Component
Resolving Current

Or-
der Em In" dm El E3 E5 E; E9 En El3 El5 El7

1 33. 217 -26. 916 1.6 -894. 08 -26. 11 -45. 81 -5.87 -9.56 -5.52 -33. 68 -41. 13 -4. 285

3 0.970 - 3.770 6.3 -125.. 23 - 3. 655 - 6.415 -0.82 -1.34 -0.77 - 4.72 - 5.77 -0.60

5 1.702 0.448 208.8 14.82 0.435 0.76 0.10 0.16 0.09 0.56 0.685 0.07

7 0.218 0. 0688 268.1 2.28 0.07 0.12 0.015 0.025 0.015 0.085 0.105 0.01

9 0.355 - 0.154 20.1 - 5.12 - 0.15 - 0.26 -0.03 -0. 055 -0.03 - 0.19 - 0.235 -0.025

11 0.205 0.109 211.8 3.62 0.105 0.185 0.02 0.04 0.02 0.14 0.17 0.02

13 1.251 - 0. 210 49.3 - 6.975 - 0.20 - 0.36 -0.05 -0. 075 -0.04 -0.26 - 0.32 -0.03

15 1.528 0. 0212 235.6 0.70 0.02 0.04 0.00 0.01 0.00 0.025 0.03 0.00

17 0.159 0. 0517 51.1 1.72 0.05 0.09 0.01 0.02 0.01 0.065 0.08 0.01

CALCULATION OF TERM IN 12pt

m n Bmln" (Sm+en) ±(em-en)
Ampli-
tudes M Phases <t sino: cos a Msina Mcosoc

1 11 3.62 213.4 - 1.90 213.4 -0. 5505 -0. 8348 1.05 1.59

11 1 - 5.52 " -26. 705 47.7 .7396 .6730 -19.75 -17.97

1 13 6.975 47.7 - 1.49 26.4 .4446 .8957 - 0.66 - 1.34

13 1 -33. 68 " - 5.79 229.3 - .7581 - . 6521 4.39 3.78

3 9 - 0.15 26.4 0.22 476.9 .8918 - . 4524 0.20 - 0.10

9 3

15

3

7

5

17

- 1.34

- 0.02

- 5.77

0.12

0.10

- 0.09

n

229.3

-157.

7

- 0.02 -157.

7

- .3795 - . 9252 0.01 0.02

3

15

476.9

-14. 76 -14.02

5

7

5

]N=Vl4. 762+14. 022= i

-14. 76
*"^ '--14.02

U3S

17 5 0.07 It
r==nep.5

CHECK ON RESOLUTION OF POWER.CURVE TERM IN 12;?^

Component Amplitudes
M Phases a sin a cos a Msina Mcosa

Power

Wattless

21.48

20.33

314.3

226.5

-0. 7157

-0. 7254

0. 6984

-0. 6884

-15.35

-14. 76

15.02

-14. 02

-30. 11 1.00

Frompower curve
r=3o. 12

r= 27199

N=V30.112+ 1. 002=50. i^

-30. 11^'-
1.00
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curve. The agreement shown in the table is to be regarded as

satisfactory, considering the number of significant figures retained

in the calculations.

It is of interest to compare these equations with those found

by analysis of the curves C and D of Fig. 3. These were deter-

mined experimentally, as described in the introduction, the power

attachment of the curve tracer having been set successively to

the ordinates of the curves i^ and 4 (determined by resolving

the analyzed current wave), while the emf of the dynamo was

balanced on the curve tracer solenoid. These curves give, there-

fore, the instantaneous values of ei^ and etg, respectively.

TABLE 23

Comparison of Equations of Components of Power Curve both Resolving

the Emf and the Current

Checks

en 621 eii ei2

eii+ezi eii+ei2

4 1 1 g

d

1 1

d

1 1

d

1 1
i

i d

1 P4

2

4

6

8

10

12

14

16

18

441.7

60.9

15.10

4.07

7.76

17.83

40.10

48.06

5.88

231.0

256.3

282.8

350.1

349.0

348.7

63.5

24.6

38.4

858.8

161.9

38.76

4.79

21.61

31.18

52.47

10.91

3.39

128.1

127.3

25.3

167.8

157.5

238.4

189.3

229.2

191.6

373. 05

63.68

26.32

5.30

10.03

21.48

41.47

25.22

0.26

93.2

105.1

307.2

254.8

115.4

314.3

143.2

328.

5

43.5

788. 23

96.56

32.19

5.64

8.42

20.33

2.54

29.41

2.93

182.8

175.4

45.4

83.1

195.4

226°5

113.4

59.2

69.4

873.4

132.4

38.43

0.75

14.08

30.05

43.57

38.45

3.24

157.6

148.3

2.8

155.4

151.6

272.1

141.0

17.8

66.7

874.0

132.5

38.52

0.82

14.17

30.12

43.70

38.49

3.16

157.6

148.4

2.9

157.8

151.2

271.9

141.5

18.3

67.3

873.9

132.3

38.46

0.88

14.13

30.12

43.66

38.38

3.26

157.6

148.3

2.6

155.2

151.4

271.9

141.2

18.2

67.1

The experimental curves were analyzed by Schedule 3, Appen-
dix B, and the results obtained will be found in Table 17 along

with the calculated values given in Table 23, the amplitudes of

the latter having been reduced by a factor so as to agree with

the scale of the curves. The calculated values are indicated by
the letter C, those found by analysis by the letter A . The phases

are all reduced to the scale of the fundamental of the emf. and
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current waves. The agreement of the curves found by the two
methods is probably as good as could be expected.

No claim is made to anything approaching completeness in the

list of applications here considered. Others will, no doubt, occur

to readers engaged in this kind of work, and modifications of

the procedure may have to be made to fit special cases. How-
ever, the author hopes that the treatment here given will not

only be of material service in lightening the labor of ordinary

routine calculations, but may be broad enough to cover the gen-

eral methods which must be followed in attacking special problems.

VII. SUMMARY

1. The equations of Fourier for the resolution of a periodic

curve into a series of component sine curves, although fiunish-

ing a complete solution of the problem, suffer under the disad-

vantage that, in making numerical calculations, a large number
of products have to be formed. Consequently, other less satis-

factory methods have been employed to shorten the calcula-

tion. By grouping similar terms, Runge has so simplified the

use of the Fourier equations as to greatly reduce the labor of

calculation. The object of this paper is to stimulate a more gen-

eral employment of Runge 's method by the systematic arrange-

ment of the calculations and the use of multiplication tables such

as to render inconsiderable the time and labor necessary for the

precise analysis of alternating current curves.

2. The derivation of Fourier's equations for the case of a finite

number of odd harmonics is sketched briefly, using the treatment

in Byerly's "Fourier's Series and Spherical Harmonics," and

this is followed by a development of the simplifications intro-

duced by Runge.

3. The arrangement of the calculation is given in detail for

three special cases, namely, for 6, 12, and 18 measured ordinates

per half cycle, together with check equations which facilitate

the location of numerical errors. The considerations which deter-

mine the choice of the proper schedule of analysis in any given

case are treated at some length.
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4. The complete calculation of the amplitude and phases of the

component waves of experimentally determined alternating cur-

rent curves is carried through, using each of the three schemes of

analysis. Further examples are given in connection with what
has been previously enunciated with respect to the choice of

schedule and to illustrate the accuracy of the results.

5. The latter part of the paper is devoted to the consideration

of a few practical applications, such as the calculation of average

and effective values, average power, and equations of power

curves, together with a full illustration of the principles involved

in numerical examples.

6. In an appendix are given multiplication tables, from which

may be taken the products which have to be formed in the use

of the three analysis schedules. Further analysis schedules are

added for curves in which even harmonics are present, which

schedules may therefore be used for the analysis of power curves.

Washington, May 15, 1913.



APPENDIXES

APPENDIX A

TABLE 1

Multiplication Table for Use with the Six-Point and Eighteen-Point

Analysis Schedules

Sin 10° Sin 20° Sin 30° sin 40° sin 50° sin 60° sin 70° sin 80°

1 0. 1736 0. 3420 0.5000 0. 6428 0. 7660 0. 8660 0. 9397 0. 9848

2 0. 3473 0. 6840 1.000 1. 2855 1.532 1.732 1.879 1.970

3 0. 5209 1.026 1.500 1.928 2.298 2.598 2.819 2.954
4 0. 6946 1.368 2.000 2.571 3.064 3.464 3.759 3.939
5 0. 8682 1.710 2.500 3.214 3.830 4.330 4. 6985 4.924

6 1.042 2.052 3.000 3.857 4.596 5.196 5.638 5 909

7 1. 2155 2.394 3.500 4. 4995 5.362 6.062 6.578 6.894
8 1.389 2 736 4.000 5.142 6.128 6.928 7.518 7.878

9 1.563 3.078 4.500 5.785 6.894 7.794 8.457 8.863

10 1. 7365 3.420 5.000 6.428 7.660 8.660 9.397 9.848

11 1.910 3.762 5.500 7. 0705 8. 4265 9.526 10. 337 10. 833
12 2.084 4.104 6.000 7.713 9. 1925 10. 392 11. 276 11.818

13 2. 2575 4.446 6.500 8.356 9. 9585 11. 258 12. 216 12.802
14 2.431 4.788 7.000 8.999 10. 7245 12. 124 13. 156 13. 787

15 2.605 5.130 7.500 9.642 11. 491 12. 990 14. 0955 14. 772

16 2.778 5.472 8.000 10. 2845 12. 257 13. 856 15. 035 15. 757

17 2.952 5.814 8.500 10. 927 13. 023 14. 722 15. 975 16. 742
18 3.126 6.156 9.000 11. 570 13. 789 15. 588 16. 915 17. 726
19 3.299 6.498 9.500 12. 213 14. 555 16. 454 17. 854 18. 711

20 3.473 6. 8405 10. 000 12. 856 15. 321 17. 320 18. 794 19. 696

21 3.647 7. 1825 10. 500 13. 498 16. 087 18. 1865 19. 734 20. 681
22 3.820 7. 5245 11.000 14. 141 16. 853 19. 0525 20. 673 21. 666
23 3.994 7. 8665 11.500 14. 784 17. 619 19. 9185 21. 613 22. 650
24 4.168 8. 2085 12. 000 15. 427 18. 385 20. 7845 22. 553 23. 635
25 4.341 8. 5505 12. 500 16. 0695 19. 151 21. 6505 23. 4925 24. 620

26 4.515 8. 8925 13. 000 16. 712 19. 917 22. 5165 24. 432 25. 605
27 4. 6885 9. 2345 13. 500 17. 355 20. 683 23. 3825 25. 372 26. 590
28 4.862 9. 5765 14. 000 17. 998 21. 449 24. 2485 26. 312 27. 574
29 5.036 9. 9185 14. 500 18. 641 22. 215 25. 1145 27. 251 28. 559
30 5. 2095 10. 027 15. 000 19. 283 22. 981 25. 981 28. 191 29. 544

31 5.383 10. 603 15. 500 19. 926 23. 757 26. 847 29. 131 30. 529
32 5.557 10. 945 16. 000 20. 569 24. 513 27. 713 30.070 31. 514
33 5. 7305 11. 287 16. 500 21. 212 25. 279 28. 579 31. 010 32. 498
34 5.904 11. 629 17. 000 21. 8545 26. 045 29. 445 31. 950 33. 483
35 6.078 11.971 17. 500 22. 497 26. 811 30. 311 32. 8895 34. 468

36 6.251 12. 313 18.000 23. 140 27. 577 31. 177 33. 829 35. 453
37 6.425 12. 655 18.500 23. 783 28. 3435 32. 043 34. 769 36. 438
38 6.599 12. 997 19. 000 24. 426 29. 1095 32. 909 35. 709 37. 422
39 6.772 13. 339 19.500 25. 068 29. 8755 33. 775 36.6^8 38. 407
40 6.946 13. 681 20.000 25. 711 30.642 34. 641 37. 588 39. 392

41 7.120 14. 023 20.500 26. 354 31. 408 35. 507 38. 528 40. 377
42 7.293 14. 365 21. 000 26. 997 32. 174 36. 373 39. 467 41. 362
43 7.467 14. 707 21. 500 27. 6395 32. 940 37. 239 40.407 42. 346
44 7.641 15. 049 22.000 28. 282 33. 706 38. 105 41. 347 43. 331
45 7.814 15. 391 22.500 28. 925 34. 472 38. 971 42. 2865 44. 316

46 7.988 15. 733 23.000 29.568 35. 238 39. 837 43. 226 45. 301
47 8. 1615 16. 075 23. 500 30. 211 36. 004 40. 703 44. 166 46.286
48 8.335 16. 417 24. 000 30. 8535 36. 770 41. 569 45. 106 47. 270
49 8.509 16. 759 24.500 31. 496 37. 536 42. 435 46. 045 48. 255
50 8. 6825 17. 101 25. 000 32. 139 38. 302 '43.301 46. 985 49. 240

639
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TABLE 1—Continued

[Vol. 9

sin 10" sin 20° sin 30° Sin 40° sin 50° sin 60° sin 70° Sin 80°

51 8.856 17. 443 25. 500 32. 782 39. 068 44. 167 47.925 50. 225
52 9.030 17. 785 26. 000 33. 4245 39. 834 45. 033 48.864 51. 210
53 9. 2035 18. 127 26. 500 34. 067 40.600 45. 899 49. 804 52. 194
54 9.377 18. 469 27. 000 34. 710 41. 366 46. 765 50. 744 53. 179
55 9.551 18. 811 27. 500 35.353 42. 132 47. 631 51. 6835 54.164

56 9.724 19. 153 28. 000 35. 996 42. 898 48. 497 52. 623 55. 149
57 9.898 19. 495 28. 500 36. 6385 43. 664 49. 363 53. 563 56. 134
58 10. 072 19. 837 29. 000 37. 281 44. 430 50.229 54. 503 57. 118

59 10. 245 20. 180 29. 500 37. 924 45. 196 51. 095 55. 442 58. 103
60 10. 419 20. 521 30. 000 38. 567 45. 962 51. 961 56. 382 59. 088

61 10. 593 20. 863 30. 500 39. 210 46. 7285 52. 827 57. 322 60. 073
62 10. 766 21. 205 31. 000 39. 852 47. 4945 53. 693 58. 261 61. 058
63 10. 940 21. 547 31. 500 40. 495 48. 2605 54. 559 59. 201 62. 042
64 11. 114 21. 889 32. 000 41. 138 49. 0265 55. 425 60. 141 63. 027

65 11. 287 22. 231 32. 500 41. 781 49. 793 56. 291 61.0805 64.012

66 11.461 22. 573 33. 000 42. 4235 50. 559 57. 157 62. 020 64.997

67 11. 6345 22. 915 33. 500 43. 066 51. 325 58. 023 62. 960 65. 982
68 11. 808 23. 257 34.000 43. 709 52. 091 58. 889 63. 900 66. 966
69 11. 982 23. 599 34. 500 44. 352 52. 857 59. 755 64. 839 67. 951

70 12. 1555 23. 9415 35. 000 44. 995 53. 623 60. 621 65. 779 68.936

71 12. 329 24. 2835 35.500 45.637 54. 389 61. 487 66.719 69. 921
72 12. 503 24. 6255 36. 000 46. 280 55. 155 62. 353 67. 658 70. 906
73 12. 676 24. 9675 36. 500 46. 923 55. 921 63. 2195 68.598 71.890
74 12. 850 25. 3095 37.000 47. 566 56. 687 64. 0855 69. 538 72. 875
75 13. 024 25. 6515 37. 500 48. 2085 57. 453 64. 9515 70. 4775 73. 860

76 13. 197 25. 9935 38.000 48. 851 58. 219 65. 8175 71. 417 74. 845
77 13.371 26. 3355 38. 500 49. 494 58. 984 66. 6835 72. 357 75. 830
78 13. 545 26. 6775 39.000 50. 137 59. 751 67. 5495 73. 297 76. 814
79 13. 718 27. 0195 39. 500 50. 780 60. 517 68. 420 74. 236 77.799
80 13. 892 27.362 40. 000 51. 422 61. 283 69. 282 75. 176 78. 784

81 14. 066 27. 704 40. 500 52.065 62.049 70. 148 76. 116 79. 769
82 14. 239 28. 046 41. 000 52. 708 62. 815 71. 014 77. 055 80. 754
83 14. 413 28. 388 41. 500 53. 351 63. 581 71. 880 77. 995 81. 738

84 14. 587 28. 730 42. 000 53. 9935 64. 347 72. 746 78. 935 82. 723

85 14. 760 29. 072 42. 500 54. 636 65. 113 73. 612 79. 8745 83. 708

86 14. 934 29. 414 43. 000 55. 279 65. 879 74. 478 80. 814 84. 693
87 15. 1075 29. 756 43. 500 55.922 66. 6455 75.344 81. 754 85. 678

88 15. 281 30. 098 44. 000 56. 565 67. 4115 76. 210 82. 694 86. 662
89 15. 455 30. 440 44.500 57. 207 68. 1775 77. 076 83. 633 87. 647

90 15. 6285 30. 782 45. 000 57. 850 68. 944 77. 942 84. 573 88. 632

91 15. 802 31. 124 45.500 58. 493 69. 710 78. 808 85. 513 89. 617
92 15.976 31. 466 46. 000 59. 136 70. 476 79. 674 86. 452 90. 602
93 16. 1495 31. 808 46.500 59. 7785 71. 242 80.540 87. 392 91.586
94 16. 323 32. 150 47.000 60. 421 72. 008 81. 406 88. 332 92. 571

95 16. 497 32. 492 47.500 61.064 72. 774 82. 272 89. 2715 93. 556

96 16. 670 32. 834 48.000 61. 707 73. 540 83. 138 90. 211 94.541
97 16. 844 33. 176 48. 500 62. 350 74. 306 84. 004 91. 151 95. 526
98 17. 018 33. 518 49. 000 62.992 75. 072 84. 870 92. 091 96. 510
99 17. 191 33. 860 49. 500 63. 635 75. 838 85. 736 93. 030 97. 495
100 17. 365 34. 202 50.000 64. 278 76. 604 86. 602 93. 970 98. 480
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TABLE 2

Multiplication Table for Use with the 12-Point Analysis Schedule
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Sinl5° sin 45° sin 75° sin 15" Sin 45* Sin 75*

1 0. 2588 0. 7071 0. 9659 51 13. 200 36. 063 49. 262

2 0. 5176 1.414 1.932 52 13. 459 36. 770 50. 228

3 0. 7765 2.121 2.898 53 13. 7175 37. 477 51. 194

4 1.035 2.828 3.864 54 13. 976 38.184 52. 160

5 1.294 3. 5355 4.830 55 14. 235 38.891 53. 126

6 1.553 4.243 5.796 56 14. 494 39. 598 54.092

7 1.812 4.950 6. 7615 57 14. 753 40.305 55. 058

8 2.071 5.657 7.727 58 15. 012 41. 012 56. 024

9 2.329 6.364 8.693 59 15. 270 41. 7195 56.990

10 2.588 7.071 9.659 60 15. 529 42.427 57. 956

11 2.847 7.778 10. 625 61 15. 788 43. 134 58.922

12 3.106 8.485 11. 591 62 16. 047 43.841 59.888

13 3.365 9.192 12. 557 63 16. 306 44.548 60. 854

14 3. 6235 9. 8995 13. 523 64 16. 5645 45. 255 61. 8195

15 3.882 10. 607 14.489 65 16. 823 45. 962 62. 785

16 4.141 11. 314 15. 455 66 17. 082 46. 669 63.751

17 4.400 12. 021 16. 421 67 17. 341 47. 336 64.717

18 4.659 12. 728 17. 387 68 17. 600 48. 0835 65.683

19 4.918 13. 435 18. 353 69 17. 859 48. 791 66.649

20 5.176 14. 142 19. 319 70 18. 117 49. 498 67. 615

21 5.435 14. 849 20. 2845 71 18. 376 50. 205 68. 581

22 5.694 15. 556 21. 2505 72 18. 635 50. 912 69. 547

23 5.953 16. 2635 22. 216 73 18.894 51. 619 70. 513

24 6.212 16. 971 23. 182 74 19. 153 52. 326 71. 479

25 6. 4705 17. 678 24. 148 75 19. 4115 53. 033 72.445

26 6.729 18. 385 25. 114 76 19. 670 53. 740 73. 411

27 6.988 19.092 26. 080 77 19.929 54. 4475 74. 377

28 7.247 19. 799 27. 046 78 20. 188 55. 155 75. 3425

29 7.506 20. 506 28. 012 79 20. 447 55. 862 76. 3085

30 7.765 21. 213 28. 978 80 20. 706 56.569 77. 274

31 8.023 21.920 29. 944 81 20.964 57. 276 78. 240

32 8.282 22. 6275 30. 910 82 21. 223 57.983 79.206

33 8.541 23. 335 31. 876 83 21. 482 58.690 80. 172

34 8.800 24. 042 32. 842 84 21. 741 59. 397 81. 138

35 9.059 24. 749 33. 8075 85 22. 000 60. 104 82.104

36 9. 3175 25. 456 34. 7735 86 22. 2585 60. 8115 83. 070

37 9.576 26. 163 35. 739 87 22. 517 61. 519 84. 036

38 9.835 26. 870 36. 705 88 22. 776 62. 226 85. 002

39 10.094 27. 577 37. 671 89 23. 035 62. 933 85. 968

40 10.353 28. 284 38. 637 90 23. 294 63.640 86.934

41 10. 612 28. 9915 39. 603 91 23. 553 64.347 87. 900

42 10. 870 29. 699 40. 569 92 23. 811 65. 054 88. 866

43 11. 129 30. 406 41. 535 .93 24. 070 65. 761 89. 8315

44 11. 388 31. 113 42. 501 94 24. 329 66. 468 90. 797

45 11. 647 31. 820 43. 467 95 24. 588 67. 175 91. 763

46 11. 906 32. 527 44. 433 96 24. 847 67. 883 92. 729

47 12. 1645 33. 234 45. 399 97 25. 1055 68. 590 93. 695

48 12. 423 33.941 46. 365 98 25. 364 69.297 94. 661

49 12. 682 34.648 47. 331 99 25. 623 70.004 95. 627

50 12.941 35. 3555 48. 2965 100 25. 882 70. 711 96. 593
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APPENDIX B

ANALYSIS OF CURVES CONTAINING EVEN HARMONICS AND A CONSTANT TERM.
(POWER CURVES)

In this section is considered the analysis of curves which are

capable of being represented by an equation of the form

y = BQ^ByQ.os pt-VB^Q-OS 2pt^B^Q,os spt-\- . . . +Bn cos npt

H-^i sin /)/ + A2 sin 2/?^+yl3 sin 3^^+ . . . +AnSm npt.

The fundamental ordinates are supposed to be 2n in number,

equally spaced over the whole cycle. (In the analysis of current

and electromotive force curves, we have constantly used fimda-

mental ordinates equally spaced over the half cycle.)

What follows has been arranged with special reference to the

analysis of power curves. These are represented by equations

like that above, the frequency of the fundamental of the power

curve being twice that of the fundamental of the emf . or current,

and one complete cycle corresponds to a half cycle of the emf. or

current. If, therefore, the analysis is being made of the emf.

and current, it is only necessary for obtaining the equation of

the power curve also, to take the products of the corresponding

fimdamental ordinates used for the analysis of the current and

emf. and perform on these the operations indicated in the analy-

sis schedules below. This does not require that the power curve

shall have been drawn.

The schemes of analysis for power curves here given have been

selected to correspond with those already given for current and

emf. curves. Thus, if these have been analyzed by means of the

1 2-point schedule, Table 2, then the power curve will be obtained

using the 12-point schedule in Table 2 below, etc. Such an analy-

sis does not give as complete an equation for the power as may
be obtained by taking the product of the equations of emf. and

current (p. 612). For example, the product of the equations of

emf. and current, obtained by the use of the i8-point schedule

will contain harmonics of 34 times the frequency of the funda-

mental, while the term of highest order given by the analysis of

the power curve, Table 3 below, has a frequency only 18 times

that of the fundamental. In all cases, however, except those
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where the higher harmonics in the current and emf. waves are

abnormally prominent, all terms beyond those included in the

analysis will be negligible.

It may be shown as was done for equation (2) that the coeffi-

cients in the above equation are given by the following equations

2n-l

TT

2«-l

^fc=^2j^™ ^^^ ^^n ^ = 1,2, . . .
(n-i)

271—1 2n—

1

o =S^- ^^ = 2l^ll(-^)^^^
B

The analysis from the 2n fundamental ordinates does not allow

of the determination of A^. This can, however, be easily found

by measuring another set of ordinates z^, situated half way
between those which are used in the analysis, and substituting

them in the equation

2«-l

The following schedules for facilitating calculations with these

equations, for the cases of 6, 12, and 18 measured ordinates, re-

spectively, follow the method of Runge, as in the preceding

analysis schedules in Tables 1,2, and 3, The same multiplica-

tion table (Appendix A) may be used as in those cases. For an

example of a numerical calculation, see example 126.
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SCHEDULE 1

[Vol. 9

Analysis of a Curve, Involving Even Harmonics and a Constant Term,

from Six Ordinates

Arrange the measured ordinates according to the following scheme and take the

sums and differences indicated

:

yo yi y2 ya

ys y4

Sums So Si S2 S3

Diffs do di d2 da
So+S2=» 2o
Sl+S3=i'l

(the sum So=do=yo> but this nomenclature is adhered to for uniformity.)

The coefficients are those given in the schedule below, the arrangement being the
same as in the previous schedules—^Table 1,2, and 3:

sine terms cosine tenns

Ai and A2 Bi and B2 Bo and B2

sin 30°

sin 60°

sin 90°
Sl S2

-Sj

So

Sl

-S3 lo II

Sums So' S/
. So'+S«'
^'-

3

. So'-Se'
A2 3

So' S«"

B^^So"+S/'

^ So"-S«"
^' 3

So'" Se'"

„ So"'+S«'"
Bo= g

„ So"'-Se'"
^'-

6

CHECKS

So= (Bo+B3)+(Bi+B2)
S2=2(Bo+B3)-(Bi+B2)

So+S2=3(Bo+B3) 2so-S2=3(Bi+B2)
Si=2(Bo-B3)+(Bi-B2
S3= (Bo-B3)-(Bi-B2)

Si+S3=3(Bo+B3) Si-2s3=3(Bi-B2)
di=2(Ai+A2) sin 60°

d2=2(Ai—A2) sin 60°

The first equation checks the sums of the B*s. If it is not fulfilled, equations may
be used in which these sums appear singly. The same procedure is to be adopted
with the differences of the B's. The sum and difference of the A's occur singly.

These checks serve as a control on the values of Sq and 5^.
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SCHEDULE 2

645

Analysis of a Curve, Involving Even Harmonics and a Constant Term,

from Twelve Ordinates

MEASURED ORDINATES

yo yi y2 ys y4 ya ye So Sl S2 S3 do di dz da

yn yio ya ya yr S6 85 S4 de ds d4

Sums So Sl S2 S3 S4 S5 S6 Sums Jo Ii li Iz ffo <n a 03 Sums
DiSs. do di da da d* dj de Diffs. Ao Ai A2 A3 $0 Sl d2 53 Diffs.

sine terms

Ai and A5 A2 and A4 A3

sin 30°

sin 60°

sin 90°

0-1

(r2

<f3

Sl S2

(<ri-(r3)

Sums So' Se'

. So'+S/
^1-

6

A So'-S«'
A5 g

So" S«"

, So"+Se"

^ So"-S«"
^*-

6

So'"

A So'"
A3 g

cosine terms

Bi and B5 B2 and B4 B3 Bo and Be

sin 30°

sin 60°

sin 90°

A2
Ai

Ao

-I2 i-i

lo -I3 (A0-A2) (I0+I2) (I1+I3)

Sums Do' D/ Do" D." Do'"

B3=T
T>o"" D/'"

Do""+D.'"'
^" 12

_ Do'"'-D«""
"" 12

CHECKS

Jo= (Bo+B6)+(Bi+B5)+(B2+B4)+B8

i'o=2[(Bo+B6)+(B2+B4)]

Ao=2[(Bi+B5)+B3]

21=4 (Bo-B6)+2(B2-B4)

Ai=4(Bi-B5)sin60°

<n=2 (Ai+A5)+4A3

5i=4(A2+A4)sin60'

<r2=4(Ai-A5)sin60"

^2=4 (A2—A4) sin 60°
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SCHEDULE 3

[Vol. 9

Analysis of a Curve Involving Even Harmonics and a Constant Term
from Eighteen Ordinates

MEASURED ORDINATES

yo yi y2 ya y* yo ys y? ys yg

yn yi6 yi5 yu yis yi2 yu yio

Sums So Sl S2 S3 S4 So Ss S? Ss Sg

Difis do di d2 ds d4 dj de d? ds dg

di—d5+d7=Ai
d2—d4+d8=A2

So+S6=i'o

S3+S9=i'3

51+ S5+ S7=i'l

52+S4+S8=2"2

Io+Ii=So

Sine terms

Ai and As A2 and At A3 and Ae A4 and A5

sin 20°

sin 40°

sin 60°

sin 80°

di ds

d? d2

ds de

d5 d4

-do d4

di — ds

ds -de

— d? dz

Ai A2

-d:

d5

-da

di

Ai=

A8=

Do D«

Do+Dg
9

Do-De

A2=

A7=

Do' D«'

Do'+D/
9

Do'-De'

Do" D/
Do"+D/

9

Do"-D«'

A4=

Do'" D«'

Do'"+De'

Cosine terms

* Bi and Bs B2 and B? Bs and Be B4 and B5 Bo and B9

sin 10° S4 — S5 S2 S7 Ss Sl

sin 30° -S6 Ss -S6 -Ss -J2 Ii -S6 -Ss

sin 50° S2 -S7 Ss Sl S4 Ss

sin 70° -Ss Sl -S4 -So -S2 -S7

sin 90° So -Ss So S9 Jo -Is So Sg So §1

Sums So Se So' Se' So" Se" So'" Se'" So"" Se'"'

„ So+S<
Bi= 9

_ So'+S,.'
B2 9 B.=«°"+='"

3^^So"'^Se'" So""+Se'"'
Bo= 18

B«=%^' B7=^^'-^«' B^^'"f'"
^^^So"'-Se'" „ So""-Se""

CHECKS

S0= (Bo+B9)+ (Bl+B8)+ (B2+B7)+ (B3+B6)+(B4+B5)

S9= (Bo-B9)-(Bl-B8)+(B2-B7)-(B3-B6)+(B4-B5)

d3=2[(Ai+As)+ (A2+A7)-(A4+A5)] sin 60°

d6=2KAi-A8)-(A2-A7)+(A4-A5)] sin 60°


