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I. INTRODUCTION

In a theoretically perfect current transformer the currents

would have a ratio equal to the inverse ratio of turns, and the

secondary current would be exactly opposite in phase to the

primary current. This ideal condition is shown in Fig. 1, where

n is the ratio of turns, and 7
X
and I2 are the primary and sec-

ondary currents, respectively.

Fig. 1.— Vector diagram of an ideal current transformer.

In the actual transformer neither of these conditions is realized,

since an appreciable part of the primary current is required to

excite the core. Hence, the ratio of the primary to the secondary

current is greater than the inverse ratio of turns, and the two

currents are not quite in phase but differ by a small angle. (For
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the case of a leading current in the secondary circuit the ratio

may be less than the ratio of turns, but this is a condition which is

never met in practice.) A further complication is introduced by

the fact that the flux density, and therefore the core loss and

magnetizing current are functions of the current, so that in gen-

eral, both ratio and phase angle are different for different values

of the current load. Moreover, the impedance of the instruments

connected with the secondary determine, in part, the value of the

flux, so that the whole ratio-current curve may be changed by an

increase or decrease in the impedance connected with the sec-

ondary.

Another possible disturbing factor is wave distortion in the

transformer, but it will be shown later that this is entirely inap-

preciable under practical conditions.
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Typical ratio curves.

Fig. 2 shows some typical forms of the ratio-current curves of

current transformers, the ordinates being the ratios (primary to

secondary) expressed in per cent of nominal values. Fig. 3

shows a few typical phase angle curves, the ordinates being the

angles by which the reversed secondary current leads the primary.

These curves as well as those for the ratios are plotted from

actually determined values. 1

It will be seen that both the ratio and the phase angle curves

tend to become horizontal straight lines near full load, and that

they rise more rapidly toward the low current end of the curve.

1 For a considerable number of such curves, giving numerical values, connected

load, etc., see:

This Bulletin, 6, p, 298, 1909, Reprint No. 130.

L. T. Robinson: Trans. Am. Inst. E. E., 28, p. 1005; 1909.
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It is an interesting fact that both types of curves should be so

very similar in their general shape.

Although during a considerable experience in the testing of

transformers it had been noticed that many transformers showed

a tendency to turn down instead of up at the extreme low current

end of the ratio curve, these cases had been passed over with the

idea that they were probably due to inaccuracies of measure-

ment, since the difficulties in making measurements of high

accuracy at currents below about 20 per cent of full load are very

great. However, Fig. 4 shows the 25 and 60 cycle ratio curves

of a transformer exhibiting unusual and remarkable character-

istics. It will be seen that at 60 cycles with the small impedance
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Typicalphase angle curves.

load used, the ratio increases with increasing current throughout

the entire range from 5 per cent of rated load to full load. At
25 cycles the ratio increases with increasing current from the

value at low current load to a maximum at approximately half

load and then gradually decreases to full load.

In the 60 cycle curve the total change in the ratio from 10

per cent to full load is 0.23 per cent, a quantity about 10 times

as great as the sensibility of the method used, if averaged over

the whole range. The experimental evidence that the 25 cycle

curve passed through a maximum was equally good. The direct

determinations are indicated by circles all lying on the curves

in Fig. 4. The points indicated by crosses are computed values

which will be discussed later.
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Since these measurements were made Edgcumbe has described

a transformer showing a maximum in its ratio curve, but other-

wise such an anomalous behavior did not seem to have been

observed, and it is generally considered by engineers that the

ratio always decreases with increasing current. Edgcumbe gave
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Ratio curves of Transformer F.

no theoretical explanation of the anomaly. 2 It therefore seemed

important to determine if possible whether there might be theo-

retical errors in the method of measurement used, or, if not,

whether some light might not be thrown upon the nature of the

iron losses at such low flux densities as are used in current trans-
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Phase angle curves of transformer F.

formers, and upon their possible effect on the ratio and phase

angle of the instruments.

Many other questions in regard to the behavior of the current

transformer are involved, such as: the agreement between theory

and practice; possible distortion introduced by the transformer

8 Klec. Rev. Lond., 67, p. 163; 1910.
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itself; the bearing of this upon the definitions of ratio and phase

angle involved in different methods of measurement; and the

effect of wave form upon ratio. These were necessarily consid-

ered in connection with this investigation, as well as with other

transformers.

2. METHODS FOR DETERMINING RATIO AND PHASE ANGLE

The most accurate methods for the measurement of ratio and

phase angle are null methods depending upon the potentiometer

principle. The electromotive forces at the terminals of two non-

inductive shunts placed in the primary and secondary, respec-

tively, are opposed; and the resistance of the secondary shunt is

Fig. 6.— Vector relations in method of measuring ratio and phase angle,

adjusted until the in-phase component of the resulting electro-

motive force is zero. The current relations are shown in Fig. 6.

where I t R x
and I 2 R 2 are the electromotive forces, 6 the phase

angle, and Q the quadrature component of the resultant electro-

motive force. The method in use at the Bureau of Standards is
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Connections for measuring ratio and phase angle

,

to place the series coil of an electrodynamometer in series with the

primary shunt, and use the moving coil as a detector for setting

the in-phase component of the resultant at zero. The complete

arrangement is shown in Fig. 7. The switch is thrown to the

right and R 2 adjusted for balance; then the switch is thrown to



428 Bulletin of the Bureau of Standards [Vol. 7, No. 3

the left, and the deflection due to Q is read. A resistance shunted

by a condenser is placed in the moving coil circuit of the series

dynamometer so as to make the effective self-inductance of the

circuit zero. This avoids a small correction which would other-

wise enter. 3 From the values of R lt R 2 and Q the ratio and phase

angle may be readily determined. Unless the inductance of the

shunts is negligible, corrections must be made to the phase angle.

Since the method was described a special adjustable noninduc-

tive shunt has been designed for use in the secondary. A series

of bifilar manganin strips T (Fig. 8) , which are silver soldered to

the lugs D D, are adjusted to the values 0.025, 0.035, °-°45> etc.,

ohm. The lugs D D have horizontal amalgamated surfaces which

may be clamped by screws to corresponding amalgamated sur-

Fig. 8.

—

Adjustable noninductive resistance.

faces on the copper blocks C C. Between the blocks B B and C C
are two strips of manganin separated by thin mica. The upper

one has a resistance of 0.0 1 ohm, divided into steps of 0.00 1 ohm,
and is connected to the numbered studs. The lower strip has a

resistance of 0.001 ohm, divided into 10 divisions, so that by esti-

mating to tenths of a division the resistance may be read to

0.0000 1 ohm. Copper strips connect the blocks B B to the cur-

rent terminals A A. The potential terminals are the levers

Lj and L 2 , L t
making contact with the studs, and the end of L 2

sliding on the edge of the thicker manganin strip, which is raised

half a millimeter higher than the one to which the studs are con-

nected. The capacity is 10 amperes. At 60 cycles the phase

angle is less than one minute.

3 For a complete description of this method together with a derivation of the equa-

tions, see Agnew and Fitch, this Bulletin, 6, p. 292, 1909, Reprint 130.



Agnew.) Current Transformer 429

It has been found that the error introduced by the variation in

the resistance of the amalgamated contacts is entirely inappre-

ciable for the accuracy required, which may be taken as one part

in ten thousand.

Orlich 4 has described a similar method in which a sensitive

electrometer is used as the detector instead of the electrodyna-

mometer.

Robinson 5 has developed a rotating commutator with which he

uses a direct current galvanometer as a detector in place of an

electrometer or an electrodynamometer. This commutator is

driven by a synchronous motor and rectifies the quadrature com-
ponent Q so that it may be measured by means of a direct-current

galvanometer with all the requisite sensibility. The form factor

enters into the reduction of the results.

This rotating commutator method has been further developed

by Sharp and Crawford, 6 who have also used a mutual inductance

in the secondary to reduce the measurement of the quadrature

component Q to a null method. They have also suggested a

method of using a mutual inductance instead of the shunts in

primary and secondary circuits.

Laws 7 has introduced a modification of the two-dynamometer
arrangement in order to increase the sensibility at light load,

which decreases with the square of the current. He substitutes

for the series dynamometer one carrying a constant current which

is kept in phase with the primary by an auxiliary device. This

difficulty has been overcome in the work at the Bureau of Stand-

ards by the use of double-range instruments.

The point has been raised as to whether the two-dynamometer
method gives the correct value of the ratio if the possibility of

the introduction of distortion by the transformer be taken into

account. For example, if we assume that the primary wave is

sinusoidal and that the transformer introduces 10 per cent of

the third harmonic, then, since this harmonic component of the

unbalanced emf Q would give no torque in the dynamometer
having a sinusoidal current in its field coil, the ratio of the effect-

ive values of the currents would differ from the ratio of the pri-

4 Electrotechnische ZS., 30, p. 46S: 1909.
5 Trans. Amer. Inst. Elec. Eng., 28, p. 1005; 1909.
6 Proc. Amer. Inst. Elec. Eng., 29, p. 1207, 1910.
7 Elec. World, 55, p. 223; 1910.
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mary and secondary resistances by one-half the square of o.i, or

0.5 per cent. A similar statement would apply to the measured

value of the phase angle.

But it is to be noticed that the rotating commutator method

gives results which are open to the same theoretical objection,

for the null setting gives the condition of equality of mean values

rather than the equality of mean effective values. Fortunately

the distortion introduced by the transformer is too small to be

of any practical significance whatever. Yet it may be well to

point out, even though it is of theoretical interest only, that the

two-dynamometer method defines the proper ratio to be used in

wattmeter measurements, that is the ratio of the primary to the

undistorted part of the secondary. This follows from the principle

that a harmonic present in the current coil of a wattmeter but not

present in the emf wave adds nothing to the torque. This would

of course not give the theoretically correct definition for an

ammeter, but the accuracy required in alternating current meas-

urements is not as great as that required in the measurement of

power. Of course the same considerations hold for the electro-

meter method since they necessarily define the quantities in pre-

cisely the same way.

The phase angle does not suffer the same ambiguity in defini-

tion as does the ratio since it is used only in wattmeter or watt-

hour meter measurements. Here the dynamometer and the elec-

trometer methods give the theoretically correct definitions, not

taking account of any harmonics that may be introduced by the

transformer itself. While the rotating commutator method does

include any harmonics introduced by the transformer, and while

the percentage error thus introduced into the determination of

the phase angle is much larger than in the case of the ratio, this

error is still too small to be of practical significance, as will be
shown later.

Another objection that has been urged against the rotating

commutator method is that the form factor of the current wave
used should theoretically be known, but here again the good wave
forms given by modern alternators and the specification of prac-

tically a sinusoidal wave required in accurate measurements reduce

the errors from this source to the limit of experimental error, and
they need not therefore be considered.
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3. CALCULATION OF RATIO AND PHASE ANGLE

Fig. 9 is a vector diagram of the current transformer. If we let

<£ = flux,

I
x
= primary current,

12
= secondary current,

E2
= secondary electromotive force,

n — ratio of turns of secondary to turns of primary,

9> = phase angle of secondary circuit,

= phase angle of transformer,

M = magnetizing current,

F = core loss component of exciting current,

R = ratio of currents,

then we may consider that the flux <l> induces the emf. E2 in

the secondary giving rise to I2 in the secondary and requiring a

component in the primary opposite in phase and equal to n I2 in

magnitude.

Fig. 9.— Vector diagram of current transformer on inductive load

But in order to maintain the flux the primary also has to fur-

nish a magnetizing current M in phase with the flux, and a core

loss current F opposite in phase to E2 . Hence, the total primary

current is made up of n I2 , M, and F, taken in proper phase

relations.

Projecting the vectors on the line of n I2 , we have

I
x cos = n I2 +M sin cp+F cos cp (1)

Projecting the vectors perpendicularly to the line of n I2 gives

I
t
sin 6 =M cos cp—F sin cp (2)
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Squaring (i) and (2) and adding, neglecting the terms containing

squares or products of F and M,

J^=n2 12
2 + 2 n I2 (M sin cp +F cos cp)

I V 2n ~Y2
/.R=-± = \n2 + j-{M sin <p+F cos cp)

/ M sin cp +F cos <zA~n
{

l + ^ )
approx -

M sin <z> +F cos <z> . .

=n+
J

^
(3)

To determine the phase angle divide (2) by (1)

M cos cp —F sin cp
tan 6

n I2 +M sin ^> +F cos <p

But as the exciting current is small in comparison to n JT
2 , we may

write, for the purpose of computing the phase angle where an

accuracy of only a few per cent is required

„ M cos cp —F sin cp . Ntan6 = tTt

(4>

Formulas practically equivalent to (3) and (4) have been devel-

oped by Curtis, Drysdale, and Barbagelata. It has been found

that the errors introduced by the approximations made in the

derivation may safely be neglected, unless the measurements are

carried to extremely low flux densities, but even in this case the

uncertainties introduced by the magnetic history of the iron, etc.,

introduce uncertainties such as to make the use of the exact

formula not worth while.

In case the load is noninductive,

sin cp = o and cos cp = 1

and (3) and (4) reduce to the forms

R=n+? (5)

M
tan0 =—r (6)n U
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and the vector diagram takes the simple form shown in Fig. 10

from which it is seen that the magnetizing current M will deter-

mine the phase angle, but has very little effect upon the ratio,

Fig. 10.— Vector diagram of current transformer on noninductive load.

while the core loss will determine the ratio, having practically no

effect upon the phase angle.

The magnetizing and core loss components of the exciting cur-

rent were measured directly by a method similar to that described

TRANS.

Fig. 11.

—

Connections for direct measurement of the magnetizing and core loss components

of the exciting current,

by Sharp and Crawford 8 and shown in Fig. 1 1 . The secondary

was adjusted by means of a sensitive reflecting voltmeter which
could be calibrated on direct current by throwing the switch S x .

8 Proc. Amer. Inst. Elec. Eng., 29, p. 1207; 1910.



434 Bulletin of the Bureau of Standards [Voi.?,No.3

The primary exciting current passed through a shunt R, the emf

at the terminals of which could be applied to the moving coil of a
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Components of exciting current at 25 cycles. Transformer F.

dynamometer by closing 52 to the left, and S3 up. The field of

this dynamometer was excited from a phase shifting transformer.
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The procedure was to throw S2 to the right, thus applying the

primary voltage to the moving coil, and then to adjust the phase

transformer until the dynamometer showed no deflection, which
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Components of exciting current at 60 cycles* Transformer F.

indicated that its field was in quadrature with the primary volt-

age of the transformer, and therefore in phase with the magnetiz-

ing current. S2 was then thrown left and the magnetizing current
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read. The phase transformer was then turned through 90 ° and

the dynamometer again read, giving the core loss component.

The dynamometer could be calibrated on alternating current by

applying the voltage of a shunt r to the moving coil of the

dynamometer.

The core loss current, the magnetizing current and the total

exciting current at 25 cycles for transformer F are shown in Fig.

12, and the same quantities for a frequency of 60 cycles in Fig. 13.

The ratio and phase angle were computed from this data and

the results are indicated by the crosses in Figs. 4 and 5. The
core losses at both 25 and 60 cycles are plotted in Fig. 14. The
following are the constants of the transformer.

CONSTANTS OF TRANSFORMER F

Number primary turns 25.

Number secondary turns 196.

Rated currents 40 and 5 amperes.

Secondary resistance 0.51 ohm.

Resistance of connected load 0.17 ohm.

Inductance of connected load 0.08 mh.

Maximum flux at 60 cycles, 290.

Maximum flux at 25 cycles, 700.

It will be seen that the agreement between measured and com-

puted values is very good, especially in the case of the 60-cycle

curve where the conditions are more favorable. The greatest

discrepancy in the range from tenth to full load is but one part in

three thousand. Of course, the possibility of the same error

entering into both measurements is to be considered, as for

example, errors due to wave distortion.

A check measurement of the ratio by an entirely different

method was made, using the Northrup hot wire comparator. 9

The makers of the instrument have devised a method for deter-

mining the ratio of current transformers, making use of a single

potentiometer and a deflection instrument, for holding a direct

current through one wire constant while the other wire was thrown

from direct to alternating current. But as it was desired to get

more sensitive readings than could be obtained by this method,

9 Trans. Amer. Inst. Elec. Eng., 24, 741; 1905.
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an entirely different arrangement was adopted. The comparator

was used as a transfer instrument by which the ratio of the two

alternating currents was referred to the ratio of the readings of two

potentiometers on direct current. The two hot wires of the instru-

ment, which are indicated by the broken lines in Fig. 15, carry

a concave mirror for observation with eyepiece and scale so that
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Core loss of Transformer F.

80 100

any difference in the expansion of the two wires gives a deflec-

tion of the scale. These were connected in parallel with two

shunts R and r which could be introduced either in the primary

and secondary, respectively, or in two separate battery circuits

adjusted to give the same current. The switches were arranged

so that the comparator wires could be quickly and simultaneously
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thrown from alternating to direct current or vice versa. The

direct currents were then adjusted so that the comparator showed

no change when the switches were thrown in either direction.

The direct currents must then be in the same ratio as the alter-

nating currents; and they could be measured by the two poten-

tiometers connected to the resistances R x and R 2 . Two am-

meters A x
and A 2

were included in the circuits to make it possi-

ble to hold the direct current at the same value as the alternating,

RHEO.J
° /VW\ d.c.

Ri
°—AAA

POTENT.

Fig. 15.

—

Arrangement for ratio determination by means ofthe Northrup hot wire comparator.

in order that the hot wires should be at the same temperature in

both cases; but it is to be noted that the final ratio obtained does

not depend upon the ammeter readings but upon those of the

potentiometers. A further precaution was taken in adjusting a
low resistance in the lead to one of the hot wires so that the two
wires would expand and contract together when the current was
thrown on or off.

The average of io measurements gave the same ratio to the last

figure (one part in eight thousand), at the full load current as was
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found by the two-dynamometer null method. (See Fig. 6.)

Unfortunately this comparator method did not give great enough

a sensibility to allow an adequate check of the values for the ratio

at the lower current values. It is very difficult to see how the

same error could enter into two such radically different methods

of measurement, and as it will be shown that the distortion is

negligible, it must be concluded that the forms of ratio curves

found for transformer F are correct.

But so close an agreement between observed and computed

values indicates that there must be some simple theoretical

connection between the nature of the iron losses and the slope

of the ratio curve.

4. CONDITIONS FOR LINEAR RATIO AND PHASE ANGLE CURVES

Such a relation may easily be shown to exist if we assume that

the total iron losses may be expressed in the Steinmetz form

W =KBC
(7)

where

W = total iron loss in watts

B =maximum flux density

c, K = constants for a given transformer at a given frequency.

If c be assumed to be rigorously constant, it can be shown that the

ratio will increase with increasing secondary current when c is

greater than 2, and it will decrease with increasing current when
c is less than 2, provided the secondary circuit is noninductive.

For by (5) the ratio

FR = n +
I

where F is the core loss component of the exciting current and the

F
term y represents the departure from the ratio of turns. Both

the current and the voltage may be taken as proportional to the

maximum flux. If E 2 is the secondary voltage then since F is

measured in the primary and E 2 in the secondary we have

^ nW

83226 — II
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and
I2 =B X Const. =BK 1

F nW nW
' ' I2 K X

BE K,BK2B

nW
K,K2B 2

Hence from (7) and (8)

F nKB ° =K3B~>

(8)

/2 K,K,B>

:.R=n^Kfi^ (9)

But again, since I2 is proportional to B,

^ = KAc-2)B<-* (10)
al 2

This will be positive if c is greater than 2, and negative if it is

less than 2. Hence, if the exponent c for the total iron losses is

equal to 2, the ratio curve becomes a horizontal straight line.

If we assume the eddy-current loss to vary as B 2
, then the same

conclusions will apply to the hysteretic exponent alone. Formula

(9) could readily be put in a form for quantitative determination

of the ratio from the core loss by taking the actual value of K4 ,

but this is not necessary for our present purpose.

Some interesting relations connecting the shape of the ratio

curve with the exponent, if the latter be treated as a constant,

may be brought out by a development of equation (10). Since

the flux may be taken as proportional to the current this may be

written

-~=K (c-2) I c'*

dl2

b{ V 2

To get the curvature we should, strictly, differentiate this with

respect to the length of the curve, but since the curve is nearly

horizontal we may, for approximate values, differentiate in respect

to I2 instead.

^=tf5 (c-2)(c-3)/2

<-«
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Ratio =n +K I2
C-2

Slope =K (c-2) V"3

Curvature =K (c-2) (c-3) /2
C_4

From the last of these equations it may be seen that the ratio

curve will be a straight line (zero curvature) only when

c = 2 or c = 3.

The matter is summarized in the following table.

Exponent Slope Curvature Ratio Curve

c<2 — + Slopes down; concave up

c=2 • Horizontal straight line

2<c<3 + — Slopes up; concave down

c=3 + Straight line, sloping up

c>3 + + Slopes up; concave up

The first case is the usual one, well illustrated by the typical

curves of Fig. 2. While the straight line of the second case has
never been completely realized, it is approached very nearly in some
high-grade transformers with low impedance load, (compare the

lower curve of Fig. 2) . The third case of an upward sloping curve,

concave downward is illustrated by the 60-cycle curve for trans-

former F, (Fig. 4) . Neither of the last two cases have ever been
observed.

The simple theory as here outlined for a constant exponent is

unable to account for a case in which the ratio passes through a

maximum, as is the case with the 2 5-cycle curve for transformer

F, (Fig. 4). The slope of this curve will be computed from the

results of a more general treatment which will be given later.

It is seen from the factor 72
c~4

> which enters the expression for

the curvature, that the curvature will in general decrease with

increasing current. The typical ratio curve (see Fig. 2) slopes

down, is concave up, and the curvature decreases with increasing

current, all of which are predicted by theory for the case of an
exponent less than 2.

While the case of an assumed constant exponent thus agrees

qualitatively with the experimental facts, it is quantitatively insuf-

ficient for precise measurements. Moreover, a more serious difii-
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culty lies in the determination of the exponent when the latter is

not a constant, and the variation is greater at the low flux densi-

ties used in the current transformer.

From the expressions for ratio and phase angle

„ ,

Msin a>+Fcos(p / \ wR=n + *-y *- (3) bis
-'2

A M cos cp —F sin <p , x «.
tan 6 = z-j -

(4) bis
ni 2

it may be seen that if the permeability were constant and the iron

loss exponent were exactly 2, then both the ratio and the phase

angle curves would be horizontal straight lines. But this result

would be expected since the transformer would then be equiva-

lent to a circuit without iron, which should of course, give a con-

stant ratio and phase angle.

5. EXPONENTS AND THE RATIO OF VARIATION IN IRON LOSSES

It has been assumed in what has gone before that the exponent

c is a true constant ; otherwise, in differentiating (9) another term

containing the derivative of c with respect to B would enter. It

has long been known that an equation of the form

W =KBC

will not accurately represent either the hysteresis loss or the total

iron losses, and so it has become customary to speak of the expo-

nent as varying slightly so as to force the equation to fit the

experimental values. Numerous determinations have been pub-

lished to show that the value of the exponent originally given by
Steinmetz of 1.6 is only a sufficiently good mean for use over the

limited range of inductions used in the design of power trans-

formers, and that not only different kinds of iron give different

values, but that for the same sample of iron the exponent varies

with the induction.

Unfortunately, however, the methods that have been univer-

sally used to determine the exponent have depended upon the

implicit assumption that the exponent is a true constant, and hence

the values obtained are not actually exponents, but are, in most
cases, the logarithmic derivative of W with respect to B, and this

becomes the exponent only in the case where it is a constant. In
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order to make the matter clear it will be well to consider first the

methods that have been used to obtain the exponent from the

experimental values.

The method most generally used at present is to plotW againstB
on logarithmic paper and measure the slope of the resulting curve at

various values of B. Still considering c a constant, if we differen-

tiate the equation W=KBC
, first taking logarithms of both sides,

log W = \og K+c log B
d (log W)=c d (log B)

c =
d(logW)
d(logB)

{I1)

which shows that c is the slope of the logarithmic curve. An
equally accurate but less convenient method may be used with

ordinary cross section paper. Equation (11) may be written in

the form
dW

= W_ B dW
f

. .
C dB~w' dB U2;

B

from which the value of c at any point of the curve is seen to

depend upon the values of W, B, and the slope of the curve at the

point. These three quantities must be expressed in consistent

units, as the slope -7^- is no longer a simple geometrical ratio as in

equation (11), but has the dimensions of ^-. Another method

which is often used is to solve for c from the values at two points

of the curve. Thus if

W^KBA
and Wi=KBf\ K 6 '

then J^jy,„ log IT, -log FT,

j
B, log B, - log B%

(14)

B2

Common logarithms may be used in either (11) or (14).

None of these methods is correct if we are dealing with a variable

exponent for then in differentiating to get (11) and (12) we should
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have had to take account of the variation of c with respect to B,

and evidently (14) could not have been deduced at all since we

should have had different values of c in (13). This will appear

more clearly in an examination of the general case in which

W =KBZ
(15)

where the exponent z is now a variable. It may first be said that

suggestions have been made that K should be considered to vary

so as to fit the observations to some sort of a curve, and some

writers have even treated both the coefficient and the exponent as

variables, which is manifestly absurd. To consider that we have

an exponent which varies slightly about a mean introduces com-

plications, as will be shown, which greatly limits its usefulness,

while any attempt to treat such a formula containing a variable

coefficient can accomplish nothing since in its very simplest form

the exponent would reduce to unity which merely brings us back

to the measured values of B and W.
To determine, then, the relations which follow by treating the

coefficient as constant and the exponent as a variable, write (15)

in the logarithmic form,

Differentiating,

log W = log K + z log B

dW
1 u a ^ dBw =\ogBdz + z —

dW

^= z + BlogB^ (16)

B

The left-hand member of this equation is the logarithmic deriva-

tive of W with regard to B, or the slope of the curve obtained

by plotting W against B on logarithmic coordinate paper. If z

is a constant the last term becomes zero, the curve becomes a

straight line, and the slope of the logarithmic curve is the ex-

ponent. But if z is not zero the value of the exponent from
equation (16) is

dW

^JB-BX°Z B % (I7)
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This shows that the logarithmic derivative is not the same as

the exponent, as is tacitly assumed in the methods in common
use in the determination of the exponent where the latter varies.

The last term in (17) is entirely neglected in the methods which

make use of either logarithmic or ordinary coordinate paper, as

what is measured in these cases is merely the logarithmic deriva-

tive. Similarly the method of solving for the exponent by using

values at two points of the curve will not give even the average

value of the exponent over the range taken, as it is generally

believed to do, for by equation (14) the quantity thus given is

logw2

log -5-

Now, if we take B2 very near B x we may replace Wlf W2y B l} B2 ,

by W + dW, W, B + dB, and B.

- Wx - W + dW
log

ir2 _
log -Tr-

, B x . B + dB
log -g- log B

_
lozy + w)
log(i+f)

/ dW\ dW
and we may replace log li+ -7^- j by -^-, which is the first term

in its expansion, and similarly for B. This gives

dW
W

B

which is the logarithmic derivative. Hence, this method gives

a result which approaches that given by the other methods,

namely, the slope of the logarithmic curve instead of the ex-

ponent.
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The slope of the logarithmic curve is, however, of much more

practical importance than the true exponent, for the greatest use

of such empirical relations is as interpolation formulas. And
the logarithmic derivative is an exceedingly convenient form

for interpolation, since for small variations it is the ratio of the

percentage change in the dependent variable to the percentage

change in the independent variable. The same confusion of it with

a true exponent has developed in many similar experimental rela-

tions, such as, for example, the variation of the candlepower of

lamps with voltage or with current or with the power supplied,

and the variation of the resistance of fluids to objects moving

through them. Such a confusion of terms is very unfortunate

since it may lead to wrong conceptions. For example, in the

case of incandescent lamps some of these logarithmic derivatives

have numerical values very near the exponents in some of the

theoretical radiation formulas, and it is misleading to express the

relationship in exponents or powers of the dependent variable

when the approximate agreement in numerical values may be

entirely accidental.

It seems, therefore, advisable to have some simple expression

which will of itself convey the meaning and be free from the

objections that have prevented the common use of the term

"logarithmic derivative", and I shall hereafter refer to this

quantity as the "ratio of variation". For the suggestion of this

term I am indebted to Mr. C. E. van Orstrand.
In order to bring out graphically the differences that may

exist between the exponent and the ratio of variation in geo-

metrical curves of the general parabolic form and whose exponents

are of the order of magnitude of those met with in iron losses,

in Fig. 16 the curve y = x2+x together with the exponent and
the ratio of variation have been plotted. This curve was chosen

as the values of the exponent and the ratio of variation are around

2 and both decrease with increasing values of x, for it is to be

remembered that by equation (10) the ratio curve of the current

transformer has its slope determined by the exponent of the

total iron losses, provided that exponent is constant. It will be

shown later that the same statement will hold when the exponent
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is not constant if we use the ratio of variation instead of the

exponent. In Fig. 17 the curve y = x 1+0Ax together with

the exponent and the ratio of variation are plotted. It will

be seen that when the exponent is 2 the ratio of variation is

4.3. It happens that the curve for the ratio of variation for

this purely mathematical curve is very much like one recently

published for the hysteretic exponent for silicon steel at high

inductions in which values as high as 3.6 were given, 10 but as the

method used in determining the "exponent" was to take the
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Showing the difference between the exponent and the ratio of variation in the

curve y=x2+i

slope of the loss curve plotted on logarithmic coordinate paper,

evidently the quantity actually determined was the one here

designated as the ratio of variation. Very probably the exponent

as determined by methods to be explained presently would not

have been greater than 2. The data given were insufficient to

determine this point.

Since the last term in equation (16) is positive it follows that the

ratio of variation will be greater than the exponent when the latter

°W. J. Woolridge, Proc. Amer. Inst. Elec. Eng., 30, p. 139, 1911.
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is increasing, and less when the exponent is decreasing. Conse-

quently the exponent curve lies above in Fig. 16 and below in

Fig. 17.

If in the case of a curve whose exponent is changing slowly we

choose two points of reference and solve for the exponent as if it

were constant, one might expect to get a value somewhere near the

mean of the actual values at the given points, but such is not the
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Showing the difference between the exponent and the ratio of variation in the

curve yz=x^+0.lx

case. It may be either greater or less than the actual value at

either limit, according to circumstances. A more surprising result

of the variation of the exponent is the effect that such a method

has in making large changes in the coefficient. For example, if

we consider the curve of Fig. 17 as an experimental curve and
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attempt to determine the coefficient and exponent by this method,

which is the one that has been most frequently used in discussing

changes in the Steinmetz exponent, we get the following results.

The computed exponents are nearly identical with the ratio of

variation

:

Limits used Actual curve at midpoint of range Computed equation

x=6 to x=8

x=8 to £=10

y=x 1,7

y=x l ' s

?/=0.075 X3 ' 05

y=0.0U7 x3 ' 86

The matter is not, however, so serious as these results indicate

at first sight, for while the exponents have increased the coefficient

has changed from unity to the small fractions, and either of the

computed curves will give fair approximations throughout the

small range for which it is computed. Yet it does emphasize the

desirability of abandoning the use of the word " exponent" as

applied to the results of such processes.

There are special cases in which the exponent may be determined

with a fair degree of accuracy. If the ratio of variation is found

to be constant over a range large enough to make sure of its con-

stancy, it is in this region also the true exponent, and the coefficient

may be calculated; and its value may be used in calculating the

exponent at any other point of the curve. Also if the ratio of

variation passes through either a maximum or a minimum its value

at this point is the exponent, for a maximum or minimum in the

ratio of variation means a point of inflection on the logarithmic

curve, the condition for which is

= o

= c

d2 (log y)

d (log %y

d (log y)

d (log x)

d (\ogy)=cd (logs)

log y = c log X + log K
= log K x°

y=Kx°
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Now if we consider the exoonent at the point (x y ) to be deter-

mined, then

y Kxz

From which

and

z =

y Kx Zo

log y +Z log B - log yQ

logB

K =
XZo

(18)

(19)

By this method the exponent has been computed for the 25-cycle

core loss curve of transformer F (Fig. 18). The exponent is very
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Fig. 18.

—

Exponent and the ratio of variation for transformer F.

much more nearly constant than the ratio of variation. In order

to get an idea of the change of the exponent and of the ratio of

variation over a wide range of flux densities the core loss data,

determined by Mr. C. J. Huber on 2 special transformers, are

platted on logarithmic paper in Fig. 19. The cores were of ring

stampings of ordinary transformer steel, and the determinations

were made by the wattmeter method at both 30 and 60 cycles.

The core was first carefully demagnetized and the measurements
made in the order of increasing flux.

The core of transformer Si was ordinary transformer steel, while

that of S 3 was a silicon steel. The observed values of the total

iron losses are given in Table I. The ratio of variation of the core

loss of these transformers at 30 and at 60 cycles is plotted in
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Figs. 20, 21, 22, and 23. Taking the ratio of variation as constant

at 4000 lines, the exponents have been calculated by formula (18)

2000 4000 6000 8000 10000 12000

0000^
30- 1200 LINES

i

—-T J
XXXX-X-!

100 200 800 1000400 600
FLUX DENSITY

Fig. 20.—Exponent and ratio of variation for core loss of transformer Sx
{ordinary steel)

60 cycles.
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Fig. 21.

—

Exponent and ratio of variation for core loss of transformer 5:
(ordinary steel)

30 cycles.

and the results plotted in the same figures. It is evident from the

curves at high flux densities the ratio of variation reaches very
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high values for both the silicon and the ordinary steel, while the

change in the exponent above 2000 lines is extremely slight. The
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Fig. 22 —Exponent and ratio of variation for core loss of transformer S3 (Silicon steel)

60 cycles.

exponent is more nearly constant than the ratio of variation, and

after assuming a value at some given point may be determined
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Exponent and ratio of variation for core loss of transformer S3 (silicon steel)

30 cycles.

with a much greater relative accuracy. To bring this last fact

out more clearly the computed values are given in Table II.
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TABLE I

Total iron losses (Watts per Kg)

453

Flux

Transformer Si , ordinary steel Transformer £>3, silicon steel

30— 60~ 30~ 60~

30 0.000080 0.000040

40 .000145 .000050

50 .000235 .000092

60 0.000158 .000353 0.00006 .000135

80 .000294 .000632 .00011 .000256

100 .000458 .000971 .00018 .000390

120 .000666 .00139 .00027 .000570

160 .00116 .00242 .00052 .00103

200 .00179 .00375 .00079 .00167

250 .00272 .00585 .00126 .00270

300 .00385 .00807 .00185 .00385

400 .00653 .0140 .00330 .00694

500 .00985 .0214 .00518 .0109

600 .0140 .0298 .00762 .0154

800 .0233 .0505 .0131 .0271

1000 .0344 .0751 .0199 ! .0418

1200 .0468 .104 .0282 .0590

1600 .0757 .171 .0465 .0993

2000 .108 .248 .0680 .147

2500 .154 .358 .0988 .214

3000 .207 .484 .133 .290

4000 .324 .776 .210 .464

5000 .466 1.14 .302 .676

6000 .630 1.55 .406 .914

8000 1.15 2.56 .671 1.48

10000 1.73 3.92 .980 2.20

12000 2.56 6.14 1.39 3.11

14000 4.12 9.42 2.05 4.73

16000 5.02 3.01 6.83
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TABLE II

Exponents

Silicon steel (S3) Ordinary steel (Si)

Flux density

30- 60~ 30- 60~

30 1.36 1.49

40 1.32 1.48

50 1.40 1.51

60 1.45 1.43 1.49 1.55

80 1.50 1.49 1.49 1.58

100 1.53 1.50 1.51 1.60

120 1.55 1.53 1.53 1.61

160 1.60 1.56 1.56 1.63

200 1.61 1.58 1.57 1.64

250 1.63 1.60 1.58 1.65

300 1.64 1.62 1.59 1.66

400 1.66 1.64 1.60 1.67

500 1.67 1.65 1.61 1.68

600 1.68 1.66 1.62 1.68

800 1.70 1.67 1.63 1.69

1000 1.70 1.68 1.63 1.69

1200 1.70 1.68 1.63 1.69

1600 1.71 1.69 1.64 1.70

2000 1.71 1.70 1.63 1.69

2500 1.70 1.69 1.63 1.69

3000 1.70 1.69 1.63 1.69

4000 1.70 1.69 1.64 1.69

5000 1.70 1.69 1.63 1.69

6000 1.70 1.69 1.63 1.69

8000 1.70 1.69 1.65 1.70

10000 1.70 1.69 1.65 1.70

12000 1.70 1.69 1.66 1.71

14000 1.71 1.71 1.68

The ratio of variation is, of course, independent of the units in

which W and B are expressed, but the exponent is dependent
upon the units used for B although it does not depend upon the
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units in which W is expressed. For, if instead of B we write

a Bu where a is a constant, the equation

W=KB*
becomes

W =K {aB
ty

=K^B, Z

In this form the coefficient contains the variable factor a z
, which

is not to be allowed, for the coefficient must be kept constant if

such an equation is to have any useful meaning, as we have seen,

and hence in order to keep the coefficient constant the exponent

must take a new value. This may be seen more easily from equa-

tion (18) which is arranged in a form convenient for computing

the exponent from experimental data. B appears in the only

term in the denominator while two of the terms of the numerator

are independent of it, and hence to multiply B by a constant will

change the computed values of z. This difficulty disappears when
the exponent is constant. It is sometimes a convenience to be

able to change the unit in which B is expressed, for example in

shifting the decimal, or to use voltage or current instead of the

flux, since they are usually proportional, and this is equivalent

to a change of unit.

Another difficulty in computing the exponent from equation

(18) for values of B approaching unity, is that small errors in

the experimentally determined quantities introduce very large

errors in the computed exponent. For points very near unity

the equation fails entirely, as unity is an essential singular point

of the function representing z, the denominator becoming zero.

For all ordinary work this difficulty does not enter as only large

values of B are used. In Figs. 20 and 21 the lowest value of B
reached was 40. For the experimental determination at lower

values recourse would have to be had to a null method such as

that of Campbell n who has used a mutual inductance and vibra-

tion galvanometer.

On the whole, the determination of the actual exponent is of

little practical importance. It is much more difficult to deter-

11 Proc. Phys. Soc. London, 22, p. 207; 1910.

83226 —11 10
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mine than the ratio of variation, it depends upon the unit in

which the independent variable is expressed, and after it is once

determined its use, as in interpolation, requires logarithms even

for small intervals. The ratio of variation, that is, the slope of

the logarithmic curve, is much more convenient to use in interpo-

lating over small intervals. The fact that a constant exponent

is the same as the ratio of variation has led to a failure to distin-

guish between them when the exponent is not constant, and this

has introduced considerable confusion, not only in the literature

of iron losses, but in the other fields in which the same ideas are

made use of. Many attempts have been made to measure the

variation of the exponent by methods which assume a constant

exponent.

Recently Richter 12 has proposed a two-constant formula to

supplant the classical form, using only the first power and the

square of B so as to avoid fractional exponents. It is of the form

W = aB+cB 2

where a and c are constants. Jouaust 13 has commented favor-

ably on it. It is easily seen that the ratio of variation for iron

whose losses follow such a law can not be greater than 2. For

differentiating and dividing by the original equation

dW adB + 2cBdB a + 2cB dB
W ~ aB+cB2 ~ a + cB ' B

dW
W a + 2cB
dB ~~~

a + cB
B

(20)

and from its form the right member of this equation can not be

less than 1, which it approaches for very small values of B, and it

can not exceed 2, which it approaches for large values of B. It

may also be seen from (20) that if we plot the ratio of variation

against B the resulting curve slopes upward throughout and hence

has neither maxima nor minimum, or more rigorously, since the

12 Electrotechnische ZS., Dec. 8, 1910.

Lumiere Electrique, 13, p. 241, 191 1.
18
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left member is the ratio of variation we may get its slope by
differentiating in regard to B.

fdW\
d I W \ 2c(a + cB) — c(a + 2cB) _ ac

dB\jB_}
= ~

(a + cBy~ "
=
(a+cB) 2

Which shows the slope to be always positive as stated.

Although Richter's formula may be very useful when applied to

the relatively narrow limits of flux density used in commercial

transformer design, it will evidently not meet the requirements

over such wide ranges as shown for transformers 5 X
and S 3 in

Figs. 20 to 23, or for such special cases as shown for transformer F

z 2
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Fig. 24.

—

Ratio of variation for transformer F at 60 cycles.

in Figs. 18 and 24, where the ratio of variation passes through

maxima and minima, has negative slopes, values greater than 2,

etc. Moreover, as our present interest is chiefly in exponents and
ratios of variation attaining values of 2 or greater, the formula

will not suffice.

6. THE SLOPE OF THE RATIO CURVE DETERMINED BY THE RATIO OF
VARIATION

To return to the question of the ratio curve of the current

transformer on noninductive load we had found, by means of

equation (10) that if the Steinmetz exponent for the total iron

losses could be taken as constant then the ratio would increase

with increasing current for exponents greater than 2, and would

decrease with increasing current for exponents less than 2, the
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latter being the type of curve almost universally met with. We
were unable to compare this theory with experimental results as

experiment showed that the exponent was not constant. This

led to the foregoing investigation of the relation between the

exponent and the ratio of variation, and of the methods used in

their determination, and we may now find a more general condi-

tion which determines the slope of the transformer ratio curve.

The previous statement of the dependence of the slope of the

ratio curve upon the value of a constant exponent holds in exactly

the same way for the general case of a variable exponent if the

ratio of variation be substituted for the exponent. In fact the

development may be made without assuming any empirical

relation between the flux and the total loss. By equation (5) the

ratio

F
R =n+T1 2

where n is the number of turns and F the core loss component of

the exciting current. If W is the core loss, E lt E 2 the primary

and secondary voltages, and r
2
the secondary resistance then

and the ratio becomes

W =nW^nW
L-'l *~'2 Y 2*- 2

nWR=n+7T»
' 2L 2

Differentiating,

dR n /.
dW
dl 2

2W nWl
(dW
W

dl r 2 I23 ~rjA dl,

Replacing F from (21)

(dW
\

\ h

dR
dl -si

W
dl 2

\T7

-

— 2

(22)

The fraction within the parentheses is the ratio of variation of the
core loss with respect to the current, but since the current is
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proportional to the flux, this is the same as the ratio of variation

with respect to the flux. Hence we may also write

(23)

Either (22) or (23) shows that the ratio of a current transformer

will rise with increasing current when the ratio of variation is

greater than 2, and that it decreases with increasing current when
the ratio of variation is less than 2. This latter is, as already

stated, almost universally the case.

That the experimental results obtained from the measure-

ments of transformer F verify this conclusion may be seen from

a comparison of the ratio curves of Fig. 4, with the curves of the

ratio of variation of Figs. 18 and 24. At 60 cycles the ratio

curve slopes upward throughout its length and in agreement

with this the ratio of variation is greater than 2 over the whole

range. In the curve at 25 cycles the ratio increases to half load

and then slowly decreases to full load while in agreement with

this the ratio of variation is greater than 2 for low currents and
less than 2 for the larger currents, passing through the value 2

at approximately half load.

To test equation (22) quantitatively Table III has been com-
puted for this transformer from the quantities plotted in the

figures referred to.

TABLE III

Slope of Ratio Curve in Percentage Change of Ratio per Ampere

Secondary
60 cycles 25 cycles

current
Calculated Observed Calculated Observed

1 +0.09 h0.09 +0.27 +0.09

2 + .06 + .04 + .04 + .04

2.5 .00 .00

3 + .05 + .03 - .02 - .02

4 + .02 + .02 - .07 - .05

5 + .01 + .01 - .09 - .07
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With the exception of the 1 ampere point at 25 cycles the

agreement is extremely satisfactory, the difference in the calcu-

lated and observed values of the ratio curve not exceeding 0.02

per cent for the ratio change per ampere. The discrepancy at

the one point is due to the great difficulty in obtaining suffi-

ciently accurate determinations of both the ratio and the core

loss at the low loads. In fact the agreement at the 1 ampere 60

cycle point must be regarded as accidental. For currents less

than an ampere the accuracy is not great enough to allow any

comparison to be made, as is shown by plotted points in Fig. 4.

This is not surprising when the magnitude of some of the quan-

tities is considered. For example, at one ampere, 60 cycles, the

core loss was but 0.003 watt and for many of the lower points

the corrections for the energy taken by the measuring instru-

ments was more than half the total quantity measured.

In Fig. 25 the loss and the ratio of variation for the core of a

power transformer designated as transformer G, are plotted for

low flux densities, the maximum value reached being 235 gausses.

The ratio of variation decreases from slightly over 2 at low

voltage to slightly less than 2 at the highest voltage shown. When
tested as a current transformer it gave a very flat curve as would

be predicted from theory, and actually passed through a maximum

;

but the change in ratio was only a very few hundredths of a

per cent.

A few other cases have been found in which the ratio of varia-

tion was slightly greater than 2 at low flux densities, as, for

example, with transformer S2 , discussed in connection with Fig.

19, but no other case has been found in which the phenomenon
of the ratio of transformation increasing with the current was
anywhere nearly as pronounced as with transformer F. Refer-

ence has already been made to the fact that occasionally a trans-

former had been found whose ratio curve showed a tendency to

turn down instead of up at the extreme low current end of the

curves, and although passed over at the time as possibly due to

errors of measurement, it seems entirely probable that these

transformers would have shown core loss curves whose ratios of

variation reached values of 2 or more.
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It might be supposed that all transformer iron might show

high values of the ratio of variation if the measurements were

pushed to low enough values of flux density. To determine this

point recourse would have to be had to either very large masses

of iron or to more sensitive methods, such as Campbell's, to

which reference has already been made, for with some trans-

formers the ratio of variation was well under 2 at the lowest

flux densities that could be reached with the electrodynamom-

eters used in these measurements. The large changes that

magnetic history may introduce into the measured values of the

permeability and the core loss at low densities where the effect

is much greater is another disturbing factor in such measurements.

It has been shown 14 that considerable errors may be introduced

into ratio and phase angle measurements by the variations in

the magnetic constants due to the magnetic history of the core.

In the case of transformer H in which the ratio could be varied

by series-parallel grouping of the primary windings the determina-

tion of the ratio and phase angle was carried to extremely low

values of the current, and yet the ratio curve showed no tendency

to turn down, (Fig. 26) ; on the contrary, the upward curvature

steadily increases, indicating that the ratio of variation is still

below 2. By special manipulation the sensibility did not fall below

1/1500 even at 2.5 per cent of load. Incidentally these curves

show how nearly the same form the ratio and phase angle curves

may take. By changing the scale of one they would be nearly

coincident.

Although there is need for a systematic study of iron losses at

moderate and low flux densities, the data available being neither

comprehensive nor systematic, at least nine other observers 15 have
reported values of the Steinmetz exponent as great as or greater

than 2. As in nearly every case increasing or decreasing values

of the " exponent " are reported, the values may be interpreted as

the ratio of variation.

14 For a detailed discussion, see Agnew and Fitch, this Bulletin, 6, p. 297, 1909.
Reprint 130.

15 Rayleigh: Phil. Mag., 23, p. 225; 1887. Ewing and Klassen: Phil. Trans, p. 985,

1893. Maurach: Ann. d. Phys., 311, p. 580; 1901. Wild: Electrician, 56, 705;
1906. vSumpner: Electrician, 56, 768; 1906. Wilson, Winston, and O'Dell: Proc.
Roy. Soc, 80, p. 548; 1908. Lloyd and Fisher: Bull. Bur. Standards, 5, p. 453;
1909. Reprint 109. Reed: Elec. Journal, 7, p. 361; 1910. Wooldridge: Proc. Am.
Inst. Elec. Eng., 30, p. 139, Jan. 191 1.
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This dependence of the slope of the ratio curve upon the ratio of

variation raises an interesting point in regard to methods some-

times used in the ratio determination. This method is to measure

both primary and secondary currents separately by sensitive

dynamometers, but as this requires the extra impedance of the

dynamometer to be placed in the secondary circuit, the perform-

ance of the transformer is modified by this measuring instrument.

Attempts have been made to correct for this by adding double the

impedance so as to get a correction to apply in reducing the values

to what would be obtained if the impedance of the instrument were

not in circuit, or to reach the same end by determining the error

thus introduced on a few transformers and thus to get a " blanket
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Ratio and phase angle curves of transformer H.

correction" to apply to all measurements. It is evident that this

procedure may introduce considerable errors if the core should

happen to have its ratio of variation pass through the value 2 , and

hence the ratio of transformation have a maximum. Accordingly,

such a plan should not be used for the most accurate work, as it

assumes precisely similar ratio of variation curves in all cases.

7. BEARING ON DESIGN

While the relation between the slope of the ratio curve and the

ratio of variation has been established only for the case of nonin-

ductive load, it may be said that a transformer showing a good

performance on noninductive load will usually give good ratio

curves on inductive loads, and vice versa, so that while quantita-

tively the relation will not hold, it will do so in a general qualitative
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way. Evidently for a given total loss it would be better to select

a grade of steel having a relatively high eddy current and low

hysteresis loss, since the former would probably vary almost

exactly as the square of the flux at the low densities used. Of

course in this region the eddy current loss is usually less than the

hysteresis loss, but experiments on different kinds of steel might

result in finding one whose ratio of variation for the total iron

losses would be nearly constant and have a value of approximately 2

.

It would, of course, be desirable to have such a property coupled

with a high permeability so as to keep the phase angle small.

It would also seem to follow that for a given frequency and a

given secondary impedance load, the ratio performance might be

better in a transformer using relatively thicker sheets, so as to

increase the eddy currents, or even by the use of an auxiliary

winding to be closed through a resistance. But for general work,

where different frequencies and reactance loads are to be used it

would not be advantageous, since the amount of the departure

from the ratio of turns would be increased, and hence the change

in the ratio resulting from a change in frequency or in impedance

load would also be increased, although the curve would be flatter

for any given frequency and impedance load.

8. DISTORTION OF WAVE FORM

There has been a considerable amount of discussion as to whether

wave distortion in a current transformer can introduce appreciable

errors in measurements in which the ratio or phase angle of the

transformer enters. Of course in a circuit containing iron there

must theoretically be some distortion, however small, and a greatly

exaggerated importance has often been assigned to it. Robinson
has shown by means of the oscillograph that even in the case of a

complicated wave form the distortion can not be important, 16 but
no numerical determinations of the actual magnitude of the dis-

tortion have been published. A really satisfactory answer to

such a question must depend upon quantitative data. Since, if

distortion is allowed for, there are two possible definitions of the

ratio of transformation and of the phase angle, and as there seemed
to be a possibility of the same error entering into both the direct

16 Trans. Araer. Inst. Elec. Eng., 28, p. 1005; 1909.
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determinations of the constants of the transformer and in the deter-

mination of the exciting current components, it was thought

advisable to attempt some quantitative determinations of the

magnitude of the distortion. The question of the effect of possible

distortion on ratio and phase angle has already been discussed.

Two cases are to be distinguished, that of a sinusoidal primary

current, and the much more complicated one in which the primary

current is nonsinusoidal. In neither case, however, can the

oscillograph or even the curve-tracer be made to give any but

negative results, by merely analyzing the primary and secondary

current waves separately. The amount of distortion is so minute

that some indirect method must be employed.

The following method was used in the case of a sinusoidal

primary current, taken from a star connected generator whose

individual phases have very good waves. Two shunts R
t
and R2

Fig. 27.— Wave form of the quadrature component in the secondary current of transformer F,

as determined by the Rosa curve tracer. 25 cycles, full load.

were placed in the primary and secondary, respectively, and the

value of R2 adjusted to give the same in-phase drop as I1R1 as in

the method of getting ratio. (See Fig. 6.) All the distortions

present in I2R2 will appear in Q. Hence, if we in some way deter-

mine the amount of distortion in Q, it will immediately give us

the distortion in the secondary current. The advantage of this

procedure is that the harmonics present will form a very much
larger part of Q than of I2R2 > and hence it is much like measuring

a small difference directly rather than as the difference between the

measurements of two large quantities. Small amounts of impuri-

ties in the primary wave will not appreciably affect the results.

In Fig. 27 is reproduced an example of the wave form of the

complex emf Q, as determined by the Rosa curve-tracer. It was

taken on transformer F at 25 cycles, 5 amperes secondary current.

From an analysis of this wave by Thomson's method, the following

data are computed for comparison with some of the data derived
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from the direct measurements of ratio, and of core loss and

magnetizing current:

Effective value of 25 cycle component from curve 0.00496 volt

Effective value 0/25 cycle component by dynamometer 0.00487 volt

Magnetizing current computed from curve 0.51 1 amp
Magnetizing current observed 0.500 amp
Percentage of third harmonic in curve 16.00 per cent

Percentage of fifth harmonic in curve 3.00 per cent

Percentage of third harmonic in secondary current 0.13 per cent

Percentage of fifth harmonic in secondary current 0.03 per cent

Distortion due to third harmonic in terms of effective values 1 part in 1 000 000

Distortion due to fifth harmonic in terms of effective values 1 part in 20000000

The accuracy of the experimental data was not great enough to

allow more than two harmonics to be computed, as the difficulties

of tracing a wave of so small an emf are considerable. In fact,

the close agreement shown must be in part accidental. In order

to trace a wave the emf of which was only 5 millivolts, it was neces-

sary to use a high sensibility galvanometer, to place extra wide

contact pieces on the rotating contact maker, and to use various

other precautions.

A direct analysis of the emf Q was carried out by des Coudres'

direct dynamometer method, 17 in which the emf to be analyzed

is applied to the moving coil of a dynamometer while a current

from a machine giving any desired harmonic is passed through

the fixed coil. The resulting deflection is due entirely to this

particular harmonic. In order to obviate the difficulty of phase

relations, the machines were run just out of synchronism, giving

a continuous phase shift. The dynamometer would then deflect

back and forth, following the continuously changing phase rela-

tion, the maximum travel either side of the zero giving a measure

of the emf of the harmonic that was being determined. For
the third harmonic the dynameter made three complete swings

for one cycle of the synchronizing lamp, for the fifth, five, and
so on. Only two harmonics could be determined in this way, on
account of experimental difficulties, the chief of which was due
to the inertia of the moving coil of the dynamometer, causing it

to have an appreciable period of its own. For this reason the

machines had to be run almost exactly in synchronism so that

the changes in deflection would be slow. The deflections which
it was possible to obtain were only a few millimeters.

17 des Coudres, Electrotechnische ZS., 21; pp. 752 and 770; 1900.
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The distortion found for a modern, high grade current trans-

former under various conditions of frequency, impedance load,

and current is given in Table IV.

TABLE IV

Distortion Introduced by Transformer /. Primary Current Sinusoidal

Frequency Impedance in sec. Sec. current
Per cent third
harmonic

Per cent fifth

harmonic

25 1 ammeter 1 ••0.11 0.03

25 1 ammeter 2 .08 .03

25 1 ammeter 3 .08 .03

25 1 ammeter 4 .08 .03

25 1 ammeter 5 .08 .03

25 1.6-^ 1 .31 .09

25 1.6-~- 2 .33 .06

25 1.6 -~- 3 .34 .07

25 1.6^ 4 .34 .07

25 1.6 -^ 5 .36 .08

25 1 ^+8mh 1 .27 .01

25 1 -^--{"8 mh 2 .26 .01

25 1 -"--(-8 nih 3 .27 .02

25 1 ^__|_8mh 4 .28 .03

25 1 -"--f-8 mh 5 .28 .05

60 1 ammeter 1 .06 .02

60 1 ammeter 2 .05 .03

60 1 ammeter 3 .04 - .02

60 1 ammeter 4 .04 .02

60 1 ammeter 5 .03 .02

60 1.6-^ 1 .15 .06

60 1.6-"- 2 .16 .04

60 1.6 -^ 3 .16 .04

60 1.6 — 4 .14 .04

60 1.6 -n- 5 .14 .04

60 1 -^_f_g nm 1 .19 .03

60 1 ^+8mh 2 .20 .03

60 1 -^-+8mh 3 .22 .03

60 1 -A-+8mh 4 .22 .04

60 1 -+8mh 5 .22 .04
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The percentage of harmonic present in each case is seen to be

independent of the current, so far as the accuracy of the method

is concerned. Evidently the amount of distortion in a current

transformer is extremely small, for a sinusoidal primary wave

the highest figure obtained, and that under severe conditions,

being but 0.36 per cent of the fundamental, and this adds less

than one part in one hundred thousand to the effective value.

About the same value is obtained for the 25 cycle, low impedance

load as was obtained under similar conditions for transformer F,

which was the transformer showing the peculiar ratio curves.

In no case is the amount of fifth harmonic introduced great

enough to change the ratio of effective values by as much as one

part in a million.

In order to determine the distortion for the case of a non-

sinusoidal primary wave the method was considerably modified.

For the experiment two transformers having 5 to 5 ampere

windings were chosen in order that precisely similar shunts might

be used in primary and secondary, thus eliminating errors due

to difference in the inductances of the shunts. The most essential

modification of the method consisted in reducing the measured

value of the quadrature resultant electromotive force Q (Fig. 6)

to zero, by introducing a variable self inductance in the sec-

ondary so as to vary the phase angle of the transformer, in fact

to bring it to zero. Under this condition if there were no dis-

tortion introduced by the transformer there would be no resultant

emf whatever to be applied to the moving coil of the dynamom-
eter, and hence any resultant that is found in Q is due to dis-

tortion within the transformer. The diagram of connections is

shown in Fig. 28. For convenience a dynamometer having 2

separate field coils for 1 and 5 amperes was used but two sep-

arate instruments would have done as well. The self-inductance

of the moving coil was compensated and the coil set at the posi-

tion of zero mutual inductance. Two motor-driven 2-phase

alternators rigid on the same shaft and designed for 25 and 75
cycles were used as sources. The 5-ampere coil of the dynamom-
eter could be thrown in or out of the primary circuit by the

switch M, while the 1 -ampere coil could be connected to either

phase of the 75-cycle machine.
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The procedure was to throw M to the right, N up, and adjust

R 2 for the ratio, 5 being open. Then throw M left, N down,

and adjust the self-inductance L for no deflection or Q. To get

both adjustments it was necessary to successively approximate,

and it was found convenient also to change the frequency. The

primary current was maintained constant at full load by the

ammeter A
x

. When these adjustments were made, with M left,

N up, 5 was thrown first left and the in-phase component of the

distorted emf read on the upper dynamometer. S was then

thrown right and the quadrature component measured. S con-
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Connections for measuring the distortion in a current transformer with a

nonsinusinusoidal primary wave.

nects the moving coil to the source of the third harmonic. The
results which were obtained at a frequency of 38 cycles, are

shown in Table V.

TABLE V

Distortion emf (volts)

Transformer Wave form In phase In quadrature Total
Change in effective

value

K
(i

Si

a

20% dimple

20% peak

20% dimple

20% peak

0.00050

21

77

32

0.00017

51

28

33

0.00053

55

82

46

1 in 4000

1 in 10000

1 in 2500

1 in 6000

In computing the change in the effective value only the in-phase

component of the distortion emf was taken into account as the
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effect of the quadrature component would be entirely inappre-

ciable. The current was 5 amperes, and R
±
and R

2
approximately

0.075 ohm.

Transformer K was of an old type showing a poor ratio curve,

and Sx
was a special transformer.

We may conclude from the results of these determinations of

the magnitudes of the distortion introduced by current transform-

ers, that the distortion is so small that it is of theoretical interest

only, amounting as it does to less than one part in one hundred

thousand in effective value when the primary current is sinu-

soidal, and to but one part in two thousand five hundred in the

most unfavorable case, and that with 20 per cent of third har-

monic in the primary wave. When we consider the good wave

forms given by modern alternators, we may safely say that in no

practical case can the distortion be detected by its introducing

errors into the measurement of either emf, current or power, even

with the most accurate instruments available.

It also follows that there is no appreciable difference in the ratio

of transformation whether it be defined as the ratio of the mean
effective values of the currents, or as the ratio of the primary to

the undistorted part of the secondary; and hence there can be

no objection against any of the null methods now in use, whether

the detector be an electrodynamometer, an electrometer, or a

rotating commutator with a direct-current galvanometer.

9. EFFECT OF WAVE FORM UPON RATIO AND PHASE ANGLE

While, as we have seen, no appreciable distortion is introduced

by the transformer, the wave form may change the ratio appreci-

ably. This has been pointed out by Rosa and Lloyd, 18 who made
some measurements, the result of which showed that while small,

the effect could be detected by the methods then in use, if the

distortion was large.

In Fig. 29 are plotted the results of measurements of the ratio

of transformer /, which is a high-grade instrument, with 5 dif-

ferent wave forms, and with 2 different secondary impedance
loads. It should be noted that the vertical scale is greatly mag-

1S This Bulletin, 6, p. 30; 1909.
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nified so as to separate the curves, also that the impedance load

for the upper curves is somewhat severe. The curves are very

nearly parallel, and the ratio at the smaller impedance load even

with a wave distorted by 20 per cent of third harmonic differs

only 0.05 per cent either way from the value with a sine curve,

while with the large impedance in the secondary the correspond-

ing change is only 0.15 per cent and these are only half as great

at 10 per cent distortion. At 60 cycles the corresponding figures
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Effect of wave form upon ratio. Transformer J, 25 cycles.

would be considerably less. The relative accuracy of the measure-

ments was 0.02 per cent.

The dimpled wave raises the ratio and the peak wave lowers it,

which is in the direction that theory would predict, since a dim-

pled wave increases the iron losses and a peaked wave decreases

them for the same effective value of emf , as has been shown by
Lloyd 19 and others.

The effect of wave form on the phase angle is very small. For

example with 25 cycles, 1.1 ohm resistance in the secondary cir-

19 This Bulletin, 5, p. 381, 1909, Reprint No. 106.

83226 — 1 1 1

1
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cuit, full load current, the following values of the phase angle

were determined.

Wave form Phase angle

20% peak

sine

20% dimple

33.8/

35.07

35.6"

About the same differences persisted over the current range, as

near as could be told; that is, half a minute to a minute. The

sensibility was proportionately less at the lower currents. Again,

the direction of the change found is the same as would be pre-

dicted from theory. It is too small to be of any practical signifi-

cance. With io per cent distortion the effect was too small to

be detected with certainty.

The effect of wave form upon ratio and phase angle is very

similar to that of small changes in frequency, as might well be

expected, and with good transformers is entirely negligible for the

wave forms met in practice.

10. SUMMARY

1. While the ratio of transformation of current transformers

usually decreases with increasing current, it may increase in indi-

vidual cases, or even pass through a maximum.
2. The ratio and the phase angle performance may be accurately

computed from the magnetic data of the core.

3. In general the slope of the ratio curve may be qualitatively

predicted from the value of the Steinmetz exponent if the latter

be assumed to be constant. But the iron losses, particularly at

the low flux densities used, depart too widely from such a simple

law for accurate work.

4. The slope of the ratio curve may be accurately computed
from the slope of the curve obtained by plotting the core loss

against the flux on logarithmic coordinate paper.

5. It is proposed that this logarithmic slope, or logarithmic

derivative shall be called the ratio of variation. It is much more
useful than the actual exponent.
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6. The methods now in use for determining the "exponent"

fail to give a true exponent that will satisfy the equation W =KBZ
,

unless z is a constant The quantity actually determined by these

methods is the ratio of variation.

7. The wave form of the secondary of a current transformer may
be considered to be the same as that of the primary current for

even the most precise measurements, as the distortion within the

transformer is entirely negligible.

8

.

While the effect of variations in wave form on ratio and phase

angle may be detected by accurate measurements, it is too small

to be of practical importance, being of the same order of magnitude

as the effect of small changes in frequency.

9. The null methods used for accurate determinations of ratio

and phase angle all give the theoretically correct results, well

within the experimental error, so that the accuracy attainable is

decidedly greater than is required in practice.
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