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. 1. INTRODUCTION

Planck's equation for the intensity of radiation /, of wave length

\ from a black body at the absolute temperature 6, namely

or

_5/ _£2 _2« \ _Ci , V

J = c,\ \i+e ^^ + e ^^ + etc.Je ^9 ^2)

appears to represent the results of all known observations, nearly

or quite within the limits of experimental error. As X6 decreases,

the factor in the parenthesis in equation (2) approaches unity,

and the equation tends toward the simpler equation of Wien, or

j=c^X % ^^ (3)

If X is expressed in microns and in centigrade degrees of the

standard gas scale, the value of the constant Cg is in the vicinity of

14400, being apparently between 14600 and 14200. If A. = 0.75/1,

which is about the limit of the visible red, the value of the factor

in the parenthesis in equation (2) is about i .00007 ^^ the melting

point of platinum; about 1.006 at the temperature of the arc;

and about 1.04 at the apparent temperature of the sun. For

decreasing wave lengths, these values approach unity rapidly.

For any value of \0 less than 3000, the value of the factor in the
96203°—II 393
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parenthesis is less than i.oi. For visual observations on bodies

at temperatures up to that of the arc, the use of Wien's equation

as a sufficient approximation to Planck's equation is therefore

entirely permissible, and our optical pyrometers are in fact

designed on the assumption of the validity of equation (3)

.

If /i and J2 are the intensities observed, either visually or

otherwise, at wave lengths X^ and X2, when sighting on black

bodies at the absolute temperatures 0^ and d^y equation (3) gives us

l°g7; +5log^=c{j^-^] (4)

If the observations are made at a fixed wave length X, as through

monochromatic absorption glasses or with a spectrophotometer,

equation (4) may be reduced to the form

by which an unknown temperature O2 may be determined from

a known temperature 6^ by observations of /i and J2, if X and Cg

are known. An instrument for making these observations con-

veniently at a known wave length in the visible spectrum consti-

tutes an optical pyrometer.

If Wien's equation, together with a certain value of C2, be

assumed, an optical scale of temperature is thereby defined, when
a numerical value has been assigned to some fixed reference tem-

perature ^1. Naturally, however, we desire to adopt such a value

of C2 as shall make this scale agree with the standard gas scale

within their common range of about 650° C to 1650° C. The use of

the optical scale above the limits of accurate work with the gas

thermometer is frequently spoken of as an extrapolation of the gas

scale, but it conduces to clearness to regard the optical scale as an

independent one which can be and, for convenience, is adjusted to

agreement with the gas scale where the two overlap. The accu-

racy of this adjustment depends on the value assigned to the con-

stant C2, which is therefore of importance for optical pyrometry
in addition to its purely scientific interest.
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From equation (4) it is evident that any two observations of the

intensity /, at known temperatures and wave lengths, determine

the value which c^ must have in order that equation (3) shall be

satisfied. If the observations are made at a fixed wave length

and if \0 is small enough that equations (3) and (2) are sensibly

identical, equation (5) or any equivalent equation may be used to

find the value of Cg, and the most exact determinations of c^ have

been made in this way, by observations of the so-called isochro-

matic curves of intensity as a function of temperature with X

constant.

The other most obvious method of determining c^ is to make the

observations at various wave lengths on a body kept at a fixed

temperatiure, i. e., to observe an isothermal or "energy curve" as

it is usually called. Virtually all our methods of analyzing the

numerical results of observations on black-body radiation are due

to Paschen. One valuable method of determining the value of Cg

from an observed energy curve, devised by Paschen^ before the

publication of either Wien's or Planck's equations, was in sub-

stance based on the supposition that the equation

-a _f?

/ = cA e '' (6)

of which Wien's equation is a special case, was generally valid.

Since the method involves the use of wave lengths so large that

Wien's equation is sensibly in error, it does not give constant values

of C2 when used on an accurately observed energ}^ cin^e, as has

been noted by Coblentz ;
^ but the method may be so modified as

to be applicable to a curve represented by Planck's equation, as

will be shown in this paper.

2. THE RELATION BETWEEN THE VALUES OF C^ AND X^d

From equation (3) we get

log/=-log Ci-5 log^-^ (7)

and

1 Ann. d. Phys. 58, 455; 1896. Ann. d. Phys. 60, 662; 1897.

^ Phys. Rev. 31, p. 317, Sept., 1910.
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d\ \ X'e

If \jn is the wave length at which J is a maximum, we therefore

have

^2 =5^ (8)

If Wien's equation were exact and if the value of X^n could be pre-

cisely determined, for the given temperature, equation (8) would

determine the value of Cg. This method, however, can not give

accurate results if X^ has to be determined merely by inspection

of the energy curve, because the abscissa of the highest point of

the rounded top of the curve can not be determined with any great

precision.

Now let a horizontal secant be drawn across the energy curve

somewhere below the maximum, and let \ and X2 be the wave

lengths of the two points of intersection. These values may be

read off quite exactly if the secant is drawn at an appropriate

height. Equation (7) applied to two equal values of / then gives us

^*> « •*. ^2

whence

C2 = 5 ^v-^ ^^^^ ^2 - log \) . (9)
Ag — Ai

The application of equation (9) to an observed energy curve con-

stitutes Paschen's method referred to above. If the observed

curve were really represented by Wien's equation, equation (9)

would give the value of ^3 and, by equation (8) , of X^* much more
accurately than mere inspection of the curve. We have to find

how the process must be modified to allow for the fact, shown by
equations (2) and (3), that for given values of Ci and C2 Planck's

curve is everywhere higher than Wien's curve, and that this

difference of ordinates increases with the wave length at which

the curves are compared.

Let us first find the relation which is satisfied at the maximum
ordinate of Planck's curve. By differentiating equation (i) we
get

dj _ c,\~^
^2_^f| 5cA~^

d\ { 'A V\^0 ^l(e^^-i)'
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and the condition that / shall be a maximum enables us to reduce

this to the form

^2 = 5 Xm<^[i-r^] (10)

The exponential term is small and we may proceed by suc-

cessive approximations. Disregarding the correction and setting

' =5 we have e =0.00674, whence as a second approxima-
Xm^

mation, -^ = 4.9663. A third approximation gives 4.9651, and

a fourth does not change these figures. We therefore have for a

curve which can be represented by Planck's equation

C2 = 4.965 X^^ (11)

If Planck's equation is a correct representation of the observed

energy curve, we can therefore find Cg from equation (11) by
inspection of the curve; but this method is open to the same
objection as in the case of Wien's equation, and it is not possible

to derive from Planck's equation any exact relation as simple as

Paschen's equation (9), by which we may make use of the wave
lengths for any pair of equal ordinates. Nevertheless, the impor-

tance of the value of the constant C2 makes it desirable to utilize

energy curves as well as isochromatics in determining this value,

and to use a more accurate method than that of determining X^

by inspection.

In the following sections two methods are given for finding the

value of C2 by the method of equal ordinates from an observed

energy curve, when the portions of the curve used are represent-

able by Planck's equation. The first of these methods, which is

only approximate, is indirect and consists in the substitution in

equation (9) of corrected values of the wave lengths read from

the energy curve, the point of the method being in the determi-

nation of these corrections. It occurred to one of the writers in

consequence of a conversation with Dr. W. W. Coblentz, who has

already alluded to it.^

The second method is based directly upon Planck's equation,

and gives a relation similar to equation (9) but with certain cor-

rection terms added. These may be computed exactly, but the

^Coblentz, loc. cit. See also Jalirb. der Radioaktivitat und Elektronik 8, p. i; 1911.
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work may be shortened by an approximation which will be shown

to be permissible. This method, which is due to the second of the

writers, is simpler in application; at least as exact, even in its

approximate form; and altogether preferable to the first method,

which retains a value only for checking purposes. Each of the

methods presupposes a knowledge of the approximate value of c^,

so that in some cases successive approximations might be necessary.

3. COMPUTATION OF WIEN'S CURVE FROM AN OBSERVED CURVE

We now assume, as is justified by the experimental confirma-

tions of the vaHdity of Planck's equation, that if the results of

accurate observations on / = /(^) at 6 constant are plotted, the

X \' Vo \2

resulting curve may be represented by Planck's equation with

appropriate values of c^ and c^. The value of c^ influences the

vertical scale but not the form of the ciu-ve, and need not occupy

our attention.

Let PP in the figure be the observed curve, and let WW be

a curve plotted from Wien's equation with the same values of

Ci and C2 that must be used to make Planck's equation represent

the observed curve. Let the horizontal secant ABDE cut the

curves at the wave lengths X \' and \\ \. Let / be the ordinate

of A and /' the ordinate of a point C on the Wien curve directly

below A.

The curves are not far apart and if the secant is not too close

to the maxinmm of the inner curve VF, the lines BC and DF
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may be treated as straight. Considering the triangle ABC, we
now have

CA_dJ'_J~J'
AB dX y- X

V--X =j-r
dr

whence

dX

From equations (i) and (3) we have

—5 —^/ £? \—

1

J-J'=c^X e ^\e^»-i)

From equation (3) we get

(12)

df -6 -«r
dx

^'^""^""{§-5]

Substituting these values in equation (12), we have

A — A == ~y ;-

whence

xe
x'=x 1 +

^^'-'\c.^5^0)J
(13)

If C2 and 6 axe given, and X is the wave length of an observed

point A, equation (13) permits us to find the wave length X' of

the adjacent point B at the same height on Wien's curve. The
same formula holds for the points D and E on the long wave
length side of the maximum, the sign of the correction term

changing when 5^^ passes through the value C2. This correction

tenn is small and an approximate value of Cg is sufficient for

computing its value unless €2 — 5X6 is small, or X very large, and

in either case the whole reasoning is invalidated because BC and

DF are then no longer sensibly straight.

We have now, in equation (13), an approximate rule by which,

from the wave lengths X^ and X2 at which equal intensities / were

observed, the values X\ and X'2 may be found for two points at
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the same height on a curve drawn from Wien's equation with the

values of c^ and Cj, which would make Planck's equation fit the

observed curve.

For example: Letc2=i46oo; ^ = i46o°abs. =ii87X; j=^o.

The maximum of the Wien curve lies at ^^=^2/5^ =2, so that

values of X in the immediate vicinity of 2 must not be used. By-

equation (13) we get

For\= I 3 5 8

\'
— =1.0000 0-9773 0.9478 0.8921

In general, the value of X'/X on the short wave length side of

the maximum will be so close to unity that no correction is needed

and only the other point need be considered. For a given tem-

perature, the value of \'jX may be computed once for all, as is

done above for 1187° C, and plotted against X, so that the cor-

rection factor may be read off from this correction curve without

a special computation for each point. A series of such curves

constructed for different temperatures could be used by interpo-

lation for intermediate temperatures.

Accordingly, if we read from an observed energy curve the wave
lengths \ and X2 at which the curve is intersected by a horizontal

secant, equation (13) permits us to find the wave lengths X/ and

X'a which would satisfy Wien's equation with the same values of

Cj and C2 as make Planck's equation fit the observed curve.

Substitution of these values in Paschen's equation (9) will then

give us the value of c^, though X^ for the observed curve is larger

than \'m for the Wien curve, in the ratio 5:4.965.

4. METHOD OF COMPUTATION INDEPENDENT OF WIEN'S CURVE

If Planck's equation be written in the form

we have

log / =log c,-5 log X-^^-log (i -e~'^^ (15)
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and if, as before, a horizontal secant at the height /intersects the

observed energy curve at the wave lengths \ and \y equation

(15) gives us

^^^^A^Pd^g ^2 - log X,) +\ log (i -e"^)

- i log (i -e"^)
(16)^

(18)

Upon comparison with equation (9) it will be seen that the pres-

ent equation differs from the former by two correction terms of

opposite sign. By means of the formula ^

log VI -e ^») = -e ^«— e ^^— e ^^-....etc. (17)
2 3

equation (16) may also be put into the form

c, =5^c^raog X.-log XJ - l(e-5_e-A^)

( e ^20 -e M ] + . . . . etc.
10^ ^

J

If in (18) all the correction terms after the first are neglected, as

will be shown to be permissible, equation (18) enables us to com-

pute C2 from a preliminary approximate value much more con-

veniently than was possible by the method described in section 3.

We have now to investigate the error caused by neglecting all

the correction terms after the first in equation (18). The error is

evidently of the order of the first correction term neglected,

inasmuch as the series in equation (17) is convergent for all pos-

sible values of \ and 0\ the fractional error is therefore of the

-—\e ^^^ — e ^^^

)

order of 10^ "^
. This expression may be simplified,

(log \ - log XJ

* An equivalent of this form of the complete solution for Cg has been worked out

and used by W. W. Coblentz. In rather complicated form, the solution was given

in the Physical Review 29, 553; 1909. Slight errors which appear in the formula as

there printed are corrected in a paper by Dr. Coblentz, to appear in the Physical

Review 32, June-July, 1911,

^ Peirce's "Short Table of Integrals," formula 768.
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since \ is less than X2> ^.nd in practical cases the second term of

the numerator is accordingly small relative to the first, and since,

furthermore, it is sufficiently accurate for this purpose to set

^ = 5\„. Hence we may state the fractional error to be of the
6

order of

-10^
^=

X (19)
10 log -^

The complete investigation of this expression for the error would

require differentiation with regard to X^ or \, and this leads to

complicated expressions, but it will be sufficient to compute the

magnitude of J for a few values of r-^. The values computed are
m

as follows

:

For^= 1.25 1.5 2. 3. 4.
m

J =0.00008 0.00017 0.00055 0.0019 0.0036

The values of X^ used in the computations were read from a curve

representing Planck's equation. It should be noted that the

expression for the error, in (19), does not contain the tempera-

ture Q, but is determined entirely by r-^ and ^. Accordingly the

error is not different for the curves of different temperatures if w^e

take A-j at "corresponding points"^ of the curves in the sense of

Wien's displacement law, i. e., keep the ratio r-^ constant. This

does not require that the same X2 be taken in computing c^ from

observed energy curves of different temperatures, which would be

impracticable on account of the absorption bands not falling at

"corresponding points." This discussion relates only to the

equality of the errors at " corresponding points."

From a consideration of the errors involved we find that for

most practical cases equation (18) may be simplified to the form:

^;^Z^r5 (log X^ - log X,) - e ^A (20)

' See the note at the end of this paper.
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which is only sHghtly more compUcated than Paschen's equation

itself. The error in this equation is of the same order as that

given in (19), viz, less than 3 parts in 1000 for values of Xj ^P to

about 3.5 times \. For \>3.S^m the curve becomes so flat that

no accurate readings could be made and the increase of the error

beyond this point is of no importance. The best part of the

curve to use is that for which X2 lies between 1.2 X^ and 2.5 X,„, if

the temperature is such that no absorption bands affect the

experimental determination of this part of the curve.

If the experimental accuracy makes it desirable, the second

correction term in equation (18) may be used or the exact equa-

tion (16) may be used, but it is doubtful if this will ever be neces-

sary with the present experimental accuracy. In the same way
as mentioned above in the discussion of equation (13) the correc-

tion to Paschen's equation can be calculated once for all from

equation (16) and plotted for future reference. This is, however,

hardly necessary, for it would be scarcely any less labor to read

the correction from the correction curve than to calculate the

exponential term in equation (20) by a slide rule and a short table

of exponentials.

5. APPLICATION OF THE FOREGOING RESULTS

The application of the methods developed in this paper may be

illustrated by a table of results obtained by readings from an

energy ctuve drawn to represent Planck's equation with the

values ^ = 1442° abs. and C2 = 14500, and having its maximum
ordinate at X^ = 2 /x. This curve, which was drawn several years

ago, is on a rather small scale, viz, i/i = 20 mm and /^ = 243 mm, so

that the errors of reading from the curve are larger than they

would usually be in practice. The readings were made in the

vicinity of some of the 14 computed points (X = o.5 fi to X = 7.8 fi)

from which the cvuve was constructed. They should give the

exact values of X^ and Xg corresponding to the assumed data,

^2 = 14500 and = 14.4.2° abs., within about 0.02 /x, except for the

last value of X2 which may be more in error. On the whole, the

accidental errors in the values of X^ and Xg as read are not unlike

what might be expected in the case of an observed energy curve.

In order not to give the computations an unfair advantage, the
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value 02 = 14600 was used as an approximation in equations (13)

and (20).

The first and second columns of the table give the pairs of values

of \i and \. The third column gives the values of c^ computed

by the Paschen equation (9) ; the fourth gives the values computed

by the method of section 3, using equations (13) and (9) ; and the

fifth those computed by equation (20) . The last column gives the

values of (X2 - ^'2) as found by equation (13) and shows the increas-

ing horizontal separation of the Wien and Planck curves with

increasing wave length.

1 2 3 4 5 6

Ai A2
Co

equ. (9)

C2

equs. (13)

&(9)

C2

equ. (20)
A2

—

\'i

1.54 2.74 14610 14510 14480 0.053

1.30 3.45 14650 14500 14520 0.102

1.17 4.03 14700 14490 14500 0.143

1.03 4.95 14720 14440 14480 0.249

0.85 7.22 14860 14390 14520 0.655

The progressive increase of the values in column 3 shows clearly

that Paschen 's equation is not applicable to the present curve,

drawn from Planck's equation. The values in column 4 are con-

stant within the errors of \ and X2 ^P to about 4.5 /x, or, to :^ =2.25.

Beyond this point they decrease, showing that the assumptions

on which the method of section 3 is based are no longer sufficiently

exact. The values in column 5 are constant within the errors of

\ and X2, and give the mean value 14500, showing incidentally

that C2 = 14600 was a sufficiently accurate value for use in the

computations and that no further approximation is needed unless

the values of \ and \ are much more accurate.

6. NOTE ON "CORRESPONDING POINTS"

Wien's displacement law states that if the curve of energy dis-

tribution in the spectrum of the radiation from a black body at the
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absolute temperature be plotted with the intensity / as ordinate

against the wave length X as abscissa, the curve for any other

temperature 6^ may be obtained from the first by: (a) multiplying

the wave length of each point by ^, and (b) changing the ordinate

of each point in a ratio which is the same for all points but is not

specified by this law.

Each point on the first curve is therefore represented by a
n

"corresponding" point on the second. Since X' =^^/ or ^'^' =\0,

we may also define corresponding points on the energy curves for

different temperatures, as points at which the value of XO is the

same. If X^, X2, and X^ are the abscissas of any three points on the

curve for the temperature 0, and X\, X\, and X'^ are the abscissas of

X' X
the corresponding points on that for 0\ we evidently have -r-^ ^^'>

X
J Xj

X' X X' X.^ =-^; and ^^ =r^ [see equation (19)]. If X^ is the abscissa of
A 2 Xg X 1 Xi

some point, such as a maximum of /, defined by some analytical

condition, corresponding points may also be defined as points of

which the wave lengths bear the same ratio to the wave length X^

on the two curves.

Wien's displacement law makes no reference to the form of the

function / =/(X) ; it raerely says that any two energy curves for

black body radiation may be made identical by plotting wave
lengths in units which are proportional to the absolute temperature

of the black body emitting the radiation, and then changing the

scale of the ordinate /. The change of vertical scale is given by

XoojdXy

of the curve is proportional to 6^. This requires that the ordinates

of corresponding points on two energy curves shall be in the ratio

/ ^'

Perhaps the clearest representation of the substance of these

two laws is by a surface with X, /*, and as its x, y, and z coordi-

nates. As this surface is swept out by the energy curve, in the
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form /*=<^(X), with changing 6, any point on the energy curve

describes a curve which Hes in a plane containing the X axis. All

the points on this curve "correspond" to one another. The pro-

jection of this curve on the \ plane is an equilateral hyperbola

since \B remains constant.

Washington, April 26, 191 1.




