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I. INTRODUCTION

The subject of photometric units and nomenclature received a

notable impulse by the paper of Blondel/ presented to the Geneva

Congress of 1896. Since that time various modifications in the

proposals there made have been put forward, and the units and
nomenclature there proposed have come into use to a greater or

less degree. There has, however, been a tendency to recognize as

few separate photometric quantities as possible, and some of them
have been employed rather loosely in more than one sense. This

^ A. Blondel, Rapport sur les Unites Photometriques, L'Eclairage Electrique, Vol. 6,

pp. 148-157; 1896.

543



^44 Bulletin of the Bureau of Standards. [Voi.6,No.4.

is partly, at least, due to a lack of clearness in the perception of

the physical relation of the various photometric quantities.

The Illuminating Engineering Society appointed a committee ^

on this subject something over a year ago, and it was due to my
membership in this committee that I was led to give the matter

careful attention.

The following paper is an attempt at a systematic discussion of

the mathematical and physical relationships of the various pho-

tometric quantities. Some of the units that have been objected

to are found to be most useful and to contribute materially to clear

thinking and concise expression. Although many of the theorems

derived below are not new, they are nevertheless useful in devel-

oping the desired relations between the various photometric quan-

tities. Acknowledgment is made to Blondel, Palaz, Liebenthal,

Hering, Kennelly, Sharp, Hyde, Jones, and others, whose writings

and discussions have done much to develop the subject.

In what follows, some of the names are used in a different sense

from what has been usual, and slight changes have been made in

some of the symbols. These are in the interest of a more system-

atic arrangement and also of international uniformity.

II. GENERAL DISCUSSION AND DERIVATION OF FORMULAS

1. POINT SOURCE

We start with the idea of light as a luminous flux, radiating or

flowing away from the source and illuminating bodies as it falls

upon them. In the simple case of a point source the flux is equal

in all directions, and since the entire flux falls uniformly upon the

interior surface of any concentric sphere the quantity of the lumi-

nous flux per unit of area is inversely proportional to the square

of the distance, a law which has been verified by experiment.

The quantity of the luminous flux per unit of area or the flux

density at the surface of the illuminated body is by definition the

illumination E. If we represent the total flux by F, we have

therefore

E=^ (I)

^ The committee consists of Dr. C. H. Sharp, chairman, Prof. A. E. Kennelly, Prof.

E. L. Nichols, Prof. A. Blondel, and the writer.
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where r is the distance from the point source to the body illumi-

nated.

F
Representmg — by a single letter /, we have

47r

and

F = 47r/ (3)

/ is called the intensity of the source, and is equal to the flux per

unit of solid angle.

The illumination is equal to the intensity of the source divided

by the square of the distance (2), and the total flux is ^n times

the intensity (3)

.

The intensity / is measured in candles,^ the flux F in lumenSy

and the distance r in centimeters. In practice r is often measured

in meters or in feet. Thus from a point source of intensity /

candles there is a luminous flux of 417! lumens.

The -jiux density is the luminous flux per unit of area normal to

the flux in the case of a point source, or the total flux F over

F dF
an area divided by the area S; thus the flux density is ^, or -r^

when it is variable.

If the source is not a point but a small sphere of radius a, the

flux 47r7 passes out from a radiant surface ^ira^. Thus, the flux

density of radiation or the specific radiation, is

S 4.7ra^ a^
^

Thus, we may speak generally of the luminous radiation at any

point in space, and of the flux density of such radiation. If it

falls on a material surface the incident flux density is the illumina-

tion E; as it comes from a luminous or other radiating or diffusing

surface, the flux density is the radiation, E\ Although E and E'

are quantities of the same nature, it is convenient thus to dis-

tinguish them.

^ It is proposed to call the new value of the American candle, which is the same as

the English candle and the French bougie decimale, and which is also used by several

other countries, the international candle.
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The luminous flux density in space is analogous to electric

displacement in electrostatics. We think of an electric displace-

ment as occurring in space between two or more electric charges,

but a surface density occurs only where there is a material conduct-

ing body on which the lines of electric force terminate. In the

same way the terms luminous flux and flux density apply gen-

erally both at the surface of the luminous and the illuminated

bodies and in the space between. The radiation is the flux den-

sity at the source of the flux, and the illumination is the flux

density or flux per unit of area on the surface where the luminous

flux is received.

2. DISTINCTION BETWEEN LUMINOUS FLUX AND ENERGY

The total luminous flux F is not to be confused with the total

energy flowing from a luminous body. Luminous flux, or light as

we ordinarily say, is the physical stimulus which applied to the

retina produces the sensation of light. It is equal to the radiant

power multiplied by the stimulus coeflicient. This stimulus

coefficient is different for every different wave frequency or wave
length, and is of course zero for all frequencies outside the visible

spectrum. Hence, if Wx is the power (expressed in watts) for

unit of wave length of the spectrum, and Kx is the stimulus

coefficient or luminous efficiency whose value varies with the wave
length \, we have for the total power radiated from a body

W= {Wxd\i
the integration being carried through the whole range of wave
lengths, including of course the non-luminous radiation.

For the luminous flux

F= \KW,d\/
the integration being throughout the visible spectrum, K being

zero elsewhere.

As the values of Kx throughout the spectrum are not accurately

known, it is not possible to calculate F in general. But by
measuring W in watts and F in lumens, we can determine the

ratio of the luminous flux to the radiant power, in any particular
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case. One may properly say that luminous flux is due to and is

always associated with radiant pov/er; but luminous flux and

radiant power can not in general be converted into one another

like feet and inches; for, as stated above, the conversion factor, the

stimulus coefficient, or luminous efficiency, is not a constant like

the ratio of feet to inches, but is variable, having a different value

for every different wave length, in the visible spectrum and fall-

ing to zero outside the visible spectrum. ''Luminous energy'*

should not therefore be used as synonymous with luminous flux.

3. DEFINITION OF INTENSITY FOR UNSYMMETRICAL SOURCES

For a point source the intensity I has been defined as the total

flux F divided by 47r. If the source is not symmetrical, but sends

out a total luminous flux F unequally in different directions,

then the mean value of the intensity is called the mean spherical

intensity, and its value is

^^=S (5)
47r

We thus define the mean spherical intensity with respect to the

total flux; and similarly, the intensity / in any particular direc-

tion is the ratio of the flux through a small solid angle in that

direction to the angle. Thus

p
I = —> (a being a solid angle, ,,.

o) (6)

dF , . .

or, / = -7-' do) being an infinitesimal solid angle.

Thus the intensity I is the angular density of the flux as the

illumination E is surface density. Therefore both E and I are

flux ratios, lumens per unit area and lumens per unit solid angle

respectively. One lumen per square meter is the lux, and one

lumen per imit solid angle is a candle.

In the case of a point source or unit sphere radiating equally in all

directions, the intensity / is defined as the flux through a unit of

solid angle, or steradian. That is, I =F when ft) = i. This is an

angle subtended by— of a spherical surface, and in the case
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where the solid angle is a circular cone, its section through the

apex is a plane angle of 65° 32' 28".

4. UNIT DISK

Concerning a body charged with electricity, we have the two

ideas, (i) the electricity of density a and total quantity Q-=fo-dS

on the surface of the charged body, and (2) the flux of force

throughout the surrounding space, there being ^.ttQ lines of force

for a quantity Q of electricity. We do not believe in the fluid

theory of electricity in the same way that Franklin did, but we
nevertheless find the idea of a surface density of electricity very

useful. In the corresponding case with light we may have simi-

larly two distinct ideas, (i) a surface distribution of light over a

luminous area of brightness or specific quantity b, and total quantity

Q=-/bdS, and (2) a luminous flux filling the surrounding space

and producing an illumination E on any body equal to the flux

F
per unit of area, or E = -^.

We have so far defined illumination and intensity in terms of the

flux. lyct us now obtain their values in terms of the quantity of

light on the surface of the luminous source.

The illumination from a very small source is inversely propor-

tional to the square of the distance from the source and directly

proportional to the brightness of the source.

Hence for a luminous plane of area dS (Fig. i)

we may write

E-pi =- =Q bdS
pi (7)

where Q is the total quantity of light on the

disk, and the radiation to P^ at a distance r is

normal. For a point P at an angle e from the

normal the illumination would be

Fig. 1.

E,
bdS cos e Q cos e

(8)
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The total flux over the hemisphere illuminated by the disk is

7- r^T- o ' J ^ C27rr^ sine cose deF= I ^hF27rr^sinede = Q I

F = itQ sin ^ e \
= nvQ (9)

Thus the total luminous flux F from a small plane disk is ir times

the quantity of light Q on the disk.'^

The " average illumination over the hemisphere of radius r is

F Q . .

r= J^, whereas the maximum illumination E^ normal to the

disk is -^. Thus the mean is half the maximum. The intensity /

has been defined as the angular rate of flux in any particular direc-

tion. It is, therefore, proportional to the illumination produced

in the given direction. Thus in the case of the luminous disk we
have

/„ =maximum intensity, (normal) =g

Ih =mean hemispherical intensity = - (10)

1 . , . . Q
Is =mean spherical intensity =—

Thus F = irln = ^ttIs (i i)

That is, the intensity is numerically equal to the total quantity of

light on the small disk for all points on the normal. It decreases to

zero as we pass 90° away from the normal, having a mean value of

half the maximum for the whole hemisphere, and is on the average

only one-fourth the maximum for the whole sphere. We may,

therefore, say that the hemispherical reduction factor for the disk

is one-half, and the mean spherical reduction factor is one-fourth,

the disk being supposed luminous on one side only.

^ In electrostatics the total flux is 471 times the quantity Q. The difference is due,

first, to the fact that the luminous disk is supposed luminous on one side only and

hence there is radiation only on one side, whereas the electric flux would be on both

sides; secondly, the cosine law makes the average flux only half what it would be

if the factor cos e were omitted.
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Since the total flux F from an area is ttQ, where Q is the quantity

of Hght on the area, the flux from a unit of area is irb. This is the

radiation E\ Hence, in general

E'=irb (12)

For a small sphere of radius a, the total flux is

F =E^X surface

= 7rbX 47ra^ = ttQ

Also, F = 47r7

That is, for a unit sphere^ the intensity is one-fourth the quantity

of light on the sphere. If the distribution of light over the sphere

is not uniform, the mean spherical intensity is still one-fourth the

total quantity of light on the sphere, as it is also for a disk. In

other words, a sphere produces the same illumination at a given

point as a disk of the same diameter and same brightness placed

so that the radiation from the disk to the point is normal.

5. EXTENDED SOURCE—CIRCULAR DISK

Let dS be an element of a plane radiating surface of bright-

ness b, defined by the equation

Fig. 2.

That is, the quantity of light Q is equal to the product of b into

the surface S; b, is the value of the quantity Q when the surface

is unity, and is the quantity of light per unit of area measured in

^ By unit sphere or unit disk we mean a disk or sphere whose linear dimensions are
negligible in comparison with the distance from source to receiver.
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candles. Thus, the intensity / of such a source (or of any source)

would be measured by comparing it experimentally with a standard

light source, and it is equal to the intensity of a point source or

unit sphere which produces the same illumination on a given test

screen (of a photometer). Thus, while we define the intensity of

a light source as the luminous flux per unit solid angle, we determine

it by comparison with a concrete standard by means of the illu-

mination produced on a test screen at a convenient distance,

using a photometer and employing the law of inverse squares.

In Fig. 2 the illumination at P^ in the normal to dS is

E,=
bdS

while the illumination at P, the angles of emergence and incidence

being e and i respectively is

r^ bdS cos e cos i / n

E2- -. (14)

The cosine law is assumed to hold exactly for both surfaces.

To calculate the illumination due to a large circular disk of

brightness b and any radius a on a small plane area P^, normal to

the axis of the disk and situated on the axis at distance r from

the disk (see Fig. 3) we integrate the effect of each elementary

circular ring of the disk. Thus, in equation (14), putting dS =

27rxdx,

'"[
iirxdx' cos e cos i

(r^ + rr^)

dx~

x

Since cos e = cos i =
^/r' + x^'

2xdx'r^

(r^+x^y

TTi

f
l/^ + X^Jo [_ ^ + ^ J

(15)

or, E = irba^

r^ -\-a^

bS Q
y2 _j_ ^2 ^2 _|_ ^2 y2 _^ ^

(1 50

Fig. 3.
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where Q is the product of the surface of the disk into the bright-

ness b, and is the total quantity of Hght upon the disk measured

in candles. If the disk were very small Q would be the same as

the maximum intensity I^ of the source; but for an extended

source we must distinguish between the equivalent intensity Iq

and the surface integral of the brightness b, which is Q. The
latter we have called the quantity of light upon the disk ; it is pro-

portional to the total luminous flux F coming from the extended

source, and is equal to F/tt, equation, (9) . Q and F really measure

the same thing, except that Q is located on the source and is

measured in candles, while F is located in the surrounding space

and is measured in lumens; their ratio is constant as F = 7rQ

always.®

In the case of the disk above mentioned, the illumination E on

a small plane normal to the axis is proportional to the total

quantity of light Q on the extended source (the circular disk) and

inversely proportional to the square of the distance d from P^ to

the edge of disk. This holds true for all distances r from zero to

infinity. Thus the law of inverse squares holds generally for the

illumination along its axis due to a circular disk of any size, but

the distance is measured, not to the center of the disk, but to the

edge.

Thus we have

E =— for a point source or a unit disk,

^ The total quantity of electricity on a disk of area 5 is equal to the integral of the

surface density <t over the area. Thus

Q=fadS

=0-5 when <r is uniform.

The brightness 6 of a source corresponds to the surface density of electricity c, and

the total quantity of light over a surface is, in the same way, the surface integral of b.

Thus
Q=fbdS

==bS when b is uniform over the area S.

In the case of a sphere, the surface S=4Tra^. Therefore, for a spherical source

Q=47ra^b, whereas the intensity I=ira?b. That is, the intensity 7 of a spherical source

is one-fourth of Q, and is equal to the light on a disk of radius a and brightness b.

That is, the intensity of the sphere is equivalent to that of a disk of the same diameter

and the same brightness for points at a great distance.
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and E = ^- for an extended disk.
d^

553

(i6)

To illustrate the rate of variation of the illumination with the

distance, let a = i
,
r^ = i

,
rg = 5 (F'ig- 4) •

n=i Pi

Fig. 4.

In the first case for the point P^, E^ Q
2

In the second case for the point Po, E^=^=^
df 26

Thus in the first case the distance is 5 times less and the illu-

mination is 13 times more instead of 25 times more, as it would be

if the light Q were all concentrated at the center of the disk. If

r = o, the illumination is izh or twice as much as at P^, and not

infinite as it would be at zero distance from a point source.

This theorem is useful in measuring the radiation from walls,

as the radiating area may be quite large and the photometer

relatively near.

6. INFINITE PLANE

The radiation from an infinite plane 5 (Fig. 5)

upon a unit area of a parallel plane T is found

by integrating equation (15) to infinity. Thus

E =
{r'^-Vx^y

= 7rb
r^+x^

= 7rb (17) o

Thus the flux density or illumination at any
point P on the T plane is tt times the brightness h

on the radiating plane S and is independent of the

distance r.

From each unit of area of 5" having a brightness

h the total flux is nrh, as shown above. The ^ig. 5.

resultant flux at all points is the same as though the total

flux Tzh from each unit of area of 5 was confined to a cvlindrical
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tube of unit area perpendicular to 5, in which case the flux

density would, of course, be constant at all sections—that is,

at all distances (see Fig. 6)

.

$

7. INFINITE CYLINDER

In a similar manner we may consider the flux from

an infinite circular cylinder of uniform brightness b

and radius a.

The flux coming from unit length of the cylinder

is irb times the area. Hence F = 27r^ab, whereas the

flux falling on the inner surface of a concentric

cylinder of radius r is £ times the area, E being

the illumination. Hence for a unit of length of the

cylinder F = 27trE. Therefore,

7iab_Q
(i8)

Thus the illumination due to an infinite cylinder

varies inversely as the distance. This is interme-

Fig. 6. diate between the case of the point source, for

which E varies inversely as r^, and the infinite plane, where E is

independent of the distance—that is, proportional to r°.

The quantity Q for the luminous cylinder is b times the surface.

Therefore the quantity per unit of length is

Q^ = iirab (19)

The total luminous flux F, as stated above, is 2'jr^ab. Hence the

total flux per unit of length F^ is tt times the quantity, or

or, for any portion (or the whole) of an infinite cylinder of uni-

form brightness, the total flux is tt times the quantity; that is,

F = 7rQ

as shown above for a circular disk.

(20)
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8. UNIT LENGTH OF CYLINDER

Suppose a light source in the form of a very long cylinder of

radius a and uniform brightness b. It is desired to determine

experimentally its total luminous flux F. Suppose one has meas-

ured by means of a photometer the equivalent intensity I^ of

unit length of the cylinder (screening the photometer from all

but a short section of the cylinder) . We are to calculate the total

flux Fi from /j. The unit length of cylinder will produce the

same illumination at a distance as a rectangular plane of breadth

2a and height unity of brightness b equal to that of the surface

of the cylinder. Hence the equivalent intensity I^ is equal to

2ab and the illumination produced on a photometer screen at

distance r is

The quantity of light on the cylinder per tmit of length is b times

the surface, or 27rab, and the total flux F^ is tt times the quantity.

Thus we have

Fi = 27r^ab

7i = 2ab

.'.F,=7r% (21)

Thus, to obtain the total luminous flux F^ from the measured

value of the equivalent intensity of a unit of length of the lumi-

nous cylinder we multiply this intensity /^ by tt^ instead of multi-

plying by 47r, as in the case of a sphere.

The spherical reduction factor of a short cylinder (the convex

surface only being luminous) is therefore tt^/^tt = ir/^ = 0.785. This

would be nearly true for an incandescent lamp having one or more

straight filaments. The value for a hairpin filament would be only

slightly larger. Tantalum and tungsten lamps have reduction fac-

tors of about this value.

If the cylinder is long, we should then get the total flux F by
multiplying F^ by the length of the cylinder. This demonstration

is of course based on the assumption that the cosine law holds for

the cylinder. If the source is a long tube, like the Moore light,

the result would be subject to any modification dependent on its

departure from the cosine law.

48848°—10 9
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Thus while the total flux F is always tt times the quantity Q of

the source, it is not always 477 times the intensity. It is /[n times

the intensity / for a point source or sphere, ir^L times the equiva-

lent intensity I^ (measured at a relatively great distance) of unit

length of a long cylinder, L being the length, and irS times the

equivalent intensity /j of unit of area of a plane, 5 being the

area of the plane.

It is, however, always 471 times the mean spherical intensity of

the given source. The illumination produced by a short cylinder

is approximately inversely proportional to the square of the dis-

tance. For all distances greater than five times the length, the

departures are not greater than 0.2 per cent in a particular case

worked out by Hyde; the diameter of the cylinder in this case

was one-tenth the length. The exact expression for the illumi-

nation due to a finite cylinder is not simple, and the calculation

is tedious.

9. CASE OF LARGE SPHERE

If a surface Sy^ (supposed a portion of a spherical surface of

radius rj has a brightness h and subtends a small solid angle o),

Fig. 7.

the illumination which it produces at P (Fig. 7) is

(22)

A second surface S2 of the same brightness will produce the same
illumination at P provided it subtends thesame angle «. A third sur-

face, S3, at any angle will also produce the same illumination at P if

it has the same brightness b and subtends the same solid angle oj.

For the radiation of each element dS, is ^^ cos e =^^^ bco as
r,^ ^3

before. So also with the curved surface S4. In every case the
greater distance from P or the inclination of the angular position

is compensated by the greater area included within the given
(small) solid angle.
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^^-^xr ^
^-.^^

""7^^——-_ cy
sT"AS>\^^

~p^^^^
i ^

^l^
Fig. 8.

Let us calculate the illumination at P due to a large luminous

sphere of radius a and brightness b, r being the distance from

P (Fig. 8) to the center of the

sphere . Let the solid angle APB
subtended at P by the sphere be

subdivided into a large number
of elementary solid angles. Bach
of the latter incloses an area, as

5i, on the surface of the sphere,

and also a corresponding area

5"/, on the circular disk AB. As
we have just seen, the illumina-

tion produced at P by each spherical area S^, Sg, etc., is exactly

the same as that produced by the corresponding plane areas 5"/,

S2 , etc., of the disk, if the brightness h is the same for the disk

as for the sphere. Therefore the illumination at P due to the

entire sphere is the same as that due to the disk AB, and we can

calculate the latter by formula (15). That is,

a^

where Q is the quantity of light on the disk and d is the distance

AP from the point P to the edge of the disk. Q is equal to h

times the area of the disk, or

Q-= 7r{a cos eyh

d-= r cos e

E- Q
d'~

7ra%

y2

-4 r^

Is

y2

(23)

where Qs is the quantity of light on the sphere = /^ira^h and is con-

stant for all distances, and /^ is the intensity of the equivalent

point soiu-ce. Therefore the illumination produced by a sphere of

any size is inversely proportional to the square of the distance

measured from its center, and is equal to the intensity of a point

source (or unit sphere) having the same total amount of light
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divided by the square of the distance. In other words, the in-

verse square law holds just as rigorously for large spheres as for

points (always of course assuming the cosine

law to hold for the spherical surfaces, and the

brightness b to be uniform over the sphere)

.

When P comes very near to the surface the

area AB oi the sphere (Fig. 9) available for

illuminating P is very small, but the distance

is just enough less to counterbalance. When
P comes up to the surface, r = a, andFig. 9.

E = 7rb

the same as for an infinite plane, to which the sphere is equivalent

when the distance from the surface is reduced to zero.

The same result is reached more simply as follows

:

A luminous sphere of radius a and uniform brightness b gives

off a total flux F = ^7rd^X'Trb = /\.'Tr^a'^b. This produces an illumi-

nation on the inner surface of any concentric sphere, which by
symmetry will be everywhere the same, and F = ^irr'^E.

.\E
ira^b I

Therefore the illumination produced by a sphere of uniform bright-

ness is inversely proportional to the square of the distance from the

center for all distances from the surface of the sphere to infinity.

10. RECIPROCAL RELATIONS

From what precedes we see that

the illumination at any point P due

to the hollow hemisphere ACB
(Fig. 10) is the same as that due

to the circular disk AOB. The
latter is

E TTO^b

AP' (24) Fig. 10.

When OP is reduced to zero the illumination due to the disk is irb,

and hence the illumination at O on an elementary plane area in
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Fig 11.

the diametral plane is tt times the brightness b of the surface of

the sphere. We have already seen that the total flux from a unit

of surface of brightness b is irb. Hence the total flux through

unit area 5 at 0, due to the hemisphere, is equal to the total flux

through the hemisphere due to the luminous unit area 5, the

brightness b being the same in each case.

This is a particular case of a more general proposition, namely,

the flux due to any surface S passing through an element dS is equal

to the flux due to the latter passing through the former, the bright-

ness being the same in each case.

As shown above, the illumi-

nation E at Pi, due to S^ (Fig.

ii) is equal to bco, where b is the

brightness of S^ and co is the

(small) solid angle subtended at

Pj by 5i ; this is independent of

the shape of 5i or its distance

from Pj. The flux F passing through dS at P^ is therefore

P = jbdcodS cos 0, over the area of Si

Or,

F = bdSJdcocose (25)

Similarly, the flux due to dS
at Pi passing through S^ is

F = jbdS cos dco

= bdSJ cos 6 dco

In the integration every ele-

ment dco of the solid angle is

to be multiplied by the cosine

of the angle it makes with the

normal to the area dS.

As the sam^e theorem holds

for the elementary areas P^

and P3, etc., it holds for their

sum, and hence for a finite

surface S^ (Fig. 1 2) . Hence
w^e see generally that the lu-

minous flux due to a surface
Fig. 12.
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S^ passing through S^ is equal to the luminous flux due to S^

passing through S^, the brightness being the same in each case.

This is analogous to the theorem that the m.agnetic flux due to

a magnetic shell 5i, which passes through a second shell S^,

is equal to that part of the magnetic flux of 5*2 which passes

through Sj, the strength of the shells being supposed the same.

Or, again, the number of lines of force due to unit current in an

electric circuit 5"i passing through ^2 is equal to the number of

lines of force due to unit current in S^ passing through S^. It

follows from the above that in any closed surface of uniform

brightness the flux passing out from any portion Si is equal to

that received from the remainder of the surface S^.

11. HOLLOW SPHERE 7

Suppose a hollow sphere (Fig.

13) of uniform surface having a

coefficient of diffuse reflection m,

1 —m = absorption.

Let E = illumination at 5.

E^ = mE = radiation from S.

mE
TT

= brightness of 5.

Fig. 13. The flux falling on S^ due to 5 is

^ i-p _eSS^cos "^(p mE ^ SS^ cos ^(p

• r^ TT r^
(26)

But r = 2a cos cp

r^ — /\.a^ cos ^(p

cos ^cp

4a^

dE,
mE S
TT 4a^

and this is the same for every element of the sphere. Hence every

element illuminates all other elements equally. Therefore the

indirect illumination of the sphere must be the same everywhere,

no matter how unequal the direct illumination may be. That is,

See Liebenthal, Praktische Photometrie, p. 301.
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a light at L illuminates the sphere unequally, directly. But that

part of the total illumination due to diffuse reflection is, notwith-

standing, everywhere equal.

A light of mean spherical intensity / sends out ^irl lumens.

Of this there is reflected, ist, ^Trml lumens.

" " " " " 2d, 47rm2/ lumens.

" " " " " 3d, 47rm^/ lumens, and so on.

Therefore total amount of flux reflected is

m
4.7rlm[i -\-m + m^ + m^ -\-

. . . .] = 47r/ = F^
1 —m

Hence the secondary illumination everywhere equal on the surface

of the sphere is

E =-^ ^— . (27)
' 47ra'~{i-m)a' ^^^

Thus the indirect illumination is proportional to /, and the lamp
of intensity / may be anywhere in the sphere. It is equal to

of what the direct illumination would be if the source were
I —m
placed at the center of the sphere. For example, let a 16 candle-

power lamp be placed within a sphere having a radius of i

meter and a coefficient of diffuse reflection of 0.8.

Then / = 1

6

a = I meter

W--0.8

E^ = — = 64 meter-candles
^ 0.2 I ^

£^i =^= 16 meter-candles, if lamp is in the center

E=E^^E^ = %o

Thus the total illumination is five times what it would be if the

walls were perfectly black. We can put this in another way:

Of the total illumination of 80 meter-candles 20 per cent is absorbed

by the walls. Therefore the lamp or source must supply only

one-fifth of the total, just enough to make good the constant loss.

Thus the source is analogous to an exciter of electric waves that

must supply just enough energy to make good the resistance losses

in the circuit.
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Fig. 14.

12. LUMINOUS FLUX WITHIN AN INCLOSURE

If the inner surface of the hollow sphere has a brightness b and

a specific radiation E' = 7r6, a unit disk at the center of the sphere

will receive an illumination E^irb, page

559. The same will be true wherever the

unit disk is placed within the sphere and

whatever the orientation of the disk; that

is, the flux falling on the disk will be every-

where the same. The flux density within

the hollow sphere is therefore everywhere

uniform and equal to irb. The flux from a

point source is thought of as in straight

lines, and a disk can be placed normal to the direction of the flux.

But within the sphere the flux has a uniform value, but no result-

ant direction.

Within a cube or enclosure of any shape, of which the walls have

a uniform brightness b or imiform specific radiation E' the same

condition obtains as in the sphere—namely, the lumi-

nous flux is everywhere the same, and a small area will

have the same illumination no matter where it is placed

or how it is oriented. This is seen by dividing up the

space about any point P (Fig. 14) into elementary

solid angles. The illumination due to the surface sub-

tending an angle co is independent of the distance from

P, and hence it will be irb for the total angle 27r on

either side of the surface at P, no matter where the

surface is placed.

The same is true, therefore, for the space between

two infinite planes of brightness b. The illumination

is irb on a sm-all plane at Pj, P^, or P3 (Fig. 15), any-

where between the two radiating planes S and T no

matter how they may be placed. Evidently we can
not think of the flux as normal to the planes, as with the lines of

force due to electrostatic charges on the planes 5 and T. The
luminous flux normal to P3 is the same as normal to P^. On the

other hand, the electric force normal to P3 would be zero.

These theorems have a practical application in the lighting of

rooms.

Fig. 15.
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III. SUMMARY OF PHOTOMETRIC RELATIONS

The preceding discussion has shown the necessity for distin-

guishing several different photometric quantities which are some-

times confused. In order to fix our ideas more clearly, it will be

advantageous now to state as concisely as possible the definitions

of the several quantities and distinctions between them.

Luminous flux, or light as the term is used in photometry, is

the usual physical stimulus which excites vision. It is propagated

by means of the vibratory motion in the ether, and the frequency

of the vibrations or the combination of frequencies present in any

given case determines the color. The total quantity of flux F
flowing away from a monochromatic luminous source is propor-

tional to the total radiant energy (per second) and to a stimulus

coefficient, the latter being the luminous efficiency K^ for the par-

ticular frequency or wave length of the given radiation. Thus the

equations

F =KJV

K,=

express the luminous flux as the power W multiplied by the lumi-

nous efficiency Kk, and if flux is expressed in lumens and the power

in watts, the luminous efficiency is the number of lumens per watt

of radiation of the wave length X. For white or chromatic light K
will have a value depending on the distribution of the energy in

the spectrum. It is a maximum in the yellow-green region and

falls off rapidly in either direction, reaching zero at the limits of

the visible spectrum. The luminous efficiency of most light sources

is greatly reduced by the amount of radiation outside the visible

spectrum, chiefly of longer wave length than that of visible radia-

tion, and the total efficiency of such a source

is the quotient of the total luminous flux divided by the total

radiant power.

For the purposes of definition and of expressing the mathematical

relations involved in photometry, it is permissible to confine our-

selves to monochromatic light and to consider K a constant,
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although it does in fact vary somewhat with the magnitude of the

flux density. We also assume that all surfaces are perfectly diffus-

ing and obey the cosine law and that there is no absorption in the

atmosphere.

The intensity of a point source or imiform luminous sphere is

measured by the luminous flux flowing through a imit solid angle

whose apex is the given point or center of the given sphere. Thus

from a source of intensity / light is flowing away at a rate of /

lumens per unit solid angle or a total of 477/ lumens for the point

source or uniform sphere. If the source is not imiform and light

is flowing away at imequal rates in different directions, the inten-

sity / in any direction is equal to the flux dF in an elementary

solid angle d(t> taken in the given direction. Thus

/ do>

is a general expression applying to all point sources whether radi-

ating equally or unequally in different directions. If the unsym-

metrical source is extended—as, for example, an incandescent lamp

or a diffusing globe—the same holds true if the distance at which

the measurements are made are sufficiently great so that the dis-

tribution of light is practically the same as from an unsymmetrical

point source. For less distances than this the intensity is not a

constant in a given direction, but varies with r. In this case the

equivalent intensity at any point is equal to that of a point source

which gives the same flux density, or lumens per sq cm, at the

point that the given source does. The mean spherical intensity /^

is the average value of the intensity and is equal to the total flux F
divided by 477.

The total flux from a given extended source is therefore a con-

stant independent of distance, as is also the mean spherical inten-

sity /g. The intensity / in a particular direction, however, in the

case of extended sources other than spheres varies with the dis-

tance, but at relatively great distances the variation is inappre-

ciable. Thus the luminous flux is the fundamental quantity. But
while we define I as the flux per unit solid angle, or rate of flux

with respect to solid angle, we determine I by comparison with a

concrete standard. Thus photometric standards of intensity are

standards of light flux, their -values being expressed in candles.
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If / is the spherical reduction factor with respect to any par-

ticular direction, and / is the intensity of a source in that direction,

For a unit disk—that is, a small circular disk of uniform bright-

ness—the total flux is tt times the normal intensity I^, whereas the

mean spherical reduction factor with respect to the normal is one-

fourth. Hence, the total flux is

== 47rls, as for a sphere.

In general, for any light source, Fg = /^irlg = 477//, but for extended

sources other than spheres, the value of / as well as / varies with

the distance from the source for points relatively near the source.

The specific flux or flux density is the luminous flux per tmit of

area, or lumens per square centimeter. When the flux falls upon

a material surface, we call the specific flux the illumination, E.

When we speak of the flux coming from a surface, whether it be

a self-luminous source at high temperature or a reflecting or radi-

ating surface at low temperature, we call the specific flux the

specific radiation, or simply the radiation, E\
Thus the illumination E is

The radiation E^ is

^ S dS

Fi is the incident flux, F^ is the emitted or radiated flux. If m
is the coeflicient of diffuse reflection or transmission, {i-m) being

the absorption,

Fe = mFi
E' =mE

where the radiation consists in the diffuse reflection or transmis-

sion of a portion of the incident flux or illumination.

The radiation or illumination when large may be expressed in

lumens per sq cm; when small in milli-lumens per sq cm. The

milli-lumen per sq cm is nearly equivalent to the foot candle.

£= Fi
S

dFt

dS

rr ,
F.

:
dFe
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I lumen per sq cm =10 000 lumens per sq meter.

= 10 000 meter-candles.

.-.I milli-lumen per sq cm= 10 meter-candles = 10 lux.

= ^foot-candles.
1.0765

The brightness 6 of a source is the intensity in candles per sq

cm of area, taken normally. Thus

._I_dI_dQ
S~dS~dS

Brightness, or specific quantity, refers to the quantity of light

per unit of area of a source, and is measured in candles per sq

cm. Brightness can refer equally to luminous sources of rela-

tively high specific intensity or to reflecting and radiating sources

of low intensities. The latter may be conveniently expressed in

milli-lumens per sq cm. Thus we may say a flame has a specific

radiation of 10 lumens per sq cm or a brightness of 0.8 candles

per sq cm; and a wall has a specific radiation of 10 milli-lumens

per sq cm, or a brightness of 0.8 milli-candles per sq cm or of 8

candles per sq meter.

The quantity Q is proportional to the total amount of light

emitted by the source, and is equal to the surface integral of the

brightness b. Thus

Q=^jbdS.

The quantity for a small luminous circular disk of radius a and

uniform brightness b is

Q^rjj-a^t^I n

That is, the quantity is equal to the maximum intensity. In this

case the whole surface is equally effective in producing the illumi-

nation on the test screen by which the intensity In is measured.

But for an extended disk, the quantity and the normal intensity,

as we have seen above, are not the same. Thus, the quantity is b

times the surface, or
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z. Q
a^ + r

Q.

Fig. 16.

That is, the normal equivalent

intensity I^ of the disk (Fig. 16)

with respect to the point P on the

axis of the disk is Q times cos^^.

When the distance is equal to the

radius of the disk, the quantity Q
is twice the normal intensity /^.

The total luminous flux is irhS

or IT times the quantity, and the

mean hemispherical intensity is ^ or half the quantity.

In the case of a sphere of uniform brightness h the quantity is

{hdS = 4.7ra^b. The intensity / = ira^b. Hence the intensity is one-

fourth the quantity. In other words, the total radiation from

the sphere is four times as great as from a unit disk of the same

normal intensity. The relations between quantity and intensity

for a few simple cases are as follows:

For a unit disk In = Q-

d'
For an extended circular disk In = Q cos^ ^ = 2

For a sphere I = -Q.
4

For a unit cylinder I^ = -Q.
IT

The total luminous flux delivered in a given time—that is, the time

integral of the luminous flux—may be expressed in lumen-seconds

or lumen-hours, according to circumstances. Thus, putting L for

the total lighting in the time T

L =FT
= JFdT, if F is variable

where F is in lumens and the time is expressed in the most con-

venient unit. The flash of a firefly may be expressed in lumen-
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seconds; the total lighting per gram of an illuminant, or the total

lighting given during the life of an incandescent lamp, is better

expressed in lumen-hours.

Since flux of light may also be expressed in spherical candles

(— times the lumens ), we may also express the time integral

or total lighting in terms of spherical candles and hours. Thus

L = IsT = jIdT, if the spherical candlepower is a variable with

respect to T, the value of L being here given in candle-hours.

The photometric quantities employed in the preceding discus-

sion are shown in Table I, together with the units in which they

are expressed and the equations of definition.

TABLE I

Photometric Magnitude Symbol Unit Equation of Definition

I. Intensity of light / Candle 1=1
CO

2. Luminous flux F Lumen F=Ioj=^=ES=7zQ

3. Illumination E Lumens milli-lumens2— <^^ 2
cm^ cm-^

\E=li^L
) S r'

4. Radiation E' Lux=meter-candle E'=^^7zh=mE

5. Brightness b Candles

cm'^ S cos e

6. Quantity Q Candles Q=bS

7. Lighting L Lumen-hours L=FT

/, b, Q are expressed in candles.

F, E, E' are expressed in lumens.

L is in lumens or spherical candles.

E'^TT.b=mE.

F=7iO.

F^=incident flux.

Fg= emergent flux.

tw= coefficient of diffuse reflection or

transmission,

(i—m)= coefficient of absorption.

The symbol F has been employed for the flux (as originally pro-

posed by Hospitaller) instead of <l>, for the following reasons

:

1. ^ is the only Greek letter in the series, and it is more con-

sistent to use a Tatin letter; F is the initial letter of the word flux.

2. The letter ^ is more or less unfamiliar to many illuminating

engineers and also to many printing oflices, and it is often con-

fused with the small letter 0, which is used for an angle.
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The symbol E^ is used for radiation instead of R (as proposed

by Hospitalier) , because it is so closely related to the illumination,

and because the letter R is employed for the distance from the

source. Blondel and others proposed to employ the same letter,

E, for illumination and radiation, but that gives rise to confusion.

On the other hand, E' gives sufficient distinction and at the same
time recalls their close connection. The letter b is used for bright-

ness instead of i for specific intensity because i is used for the

angle of emission, and specific intensity is a less desirable name.

The quantity is a specific intensity strictly only for small plane

areas, not for small spheres or large sources of any form. Quan-

tity of light, Q, is here used as the surface integral of b instead of

the time integral of F. It is analogous to quantity of electricity

in electrostatics and is more properly employed in the sense here

used than with the other meaning. The term lighting for flux times

time is use in harmony with the usage in France and Germany.

IV. PROBLEMS FOR ILLUSTRATIONS

Problem i.—A lamp of 200 candlepower (supposed uniform in

all directions) is placed in the center of a spherical diffusing

globe of 40 cm diameter, the absorption of which is 30 per cent.

Required, the intensity of the globe, its brightness, its specific

radiation, the illumination on its inner surface, and the illumi-

nation it produces at a distance of 3 meters from the center of

the globe. *

/ 200
The illumination on its inner surface is £^ = ^ =— = o. S lumens

a^ 400 ^

per sq cm (formula i). The radiation E' is mE, where m is one

minus the absorption; it is here 0.7. Therefore the radiation is

E'
0.35 lumens per sq cm. The brightness b is — or 0.112 candles

per sq cm. The intensity / of the globe is 200X0.7 = 140 candles.

The illumination £? at a distance of 3 meters is

E = ——^ = .001 56 lumens per sq cm
300^ r- -1

= 1.56 milli-lumens per sq cm
= 1 .45 foot-candles

or E = -\- =15.6 meter-candles
3

= 15.6 lux.
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Problem 2.—A circular area 5, 2 meters in diameter, on the

side of a wall is uniformly illuminated, E being 4 meter-candles.

A photometer placed i meter from the wall, perpendicular to

the center of the illuminated area, measures the equivalent

intensity /q of the area 5, and finds it to be i candle. What is the

absorption coefficient of the wall?

The illumination E being 4 meter-candles, and the area 5 being

TT square meters, the flux E falling on the area 5 is 477 lumens.

The measured intensity I at a distance r=i meter is i candle.

Therefore, the quantity of light on the disk is

5 = ^72 = 1X7 = 2 candles

The total flux from the disk is tt times the quantity Q. Therefore,

the total flux coming from the area 5 is 2 tt lumens, whereas the flux

falling upon it is 477 lumens. Therefore, the coefficient of absorp-

tion is - or 50 per cent.

Problem j.—Suppose a room of 900 square meters total wall

surface is to be so lighted that the walls shall have an average

illumination of 10 lumens per square meter, the coefficient of

absorption of the walls being 40 per cent on the average. How
many lamps of 1 5 mean horizontal candlepower will be required ?

Part of the illumination will be due to light reflected from the

walls. The lamps must supply that which is absorbed. The
flux to be supplied is therefore F = 0.40 X 900 X 10 = 3600 lumens.

If each lamp has a spherical reduction factor of 80 per cent, it will

supply 47? X 0.80 X 15 = 150 lumens, approximately. Hence, 24

lamps will be required.

(Examples i and 3 are borrowed from one of Blondel's papers.)
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V. COLLECTION OF FORMULAS

1. E = ^for point source, unit sphere or sphere of any size.

I= 'ira^h, where a = radius of sphere and 6 = brightness of

surface.

2. E= —Y~ ^o^ sphere of radius a.

= 7r6 when r = a; that is, at the surface of the sphere, same

as for an infinite plane.

3. h= ^ ^
= 3^ tor disk 01 radius a, at distance r on axis.

J = distance of point on axis to edge of disk.

4. E = for infinite cylinder, 6 = brightness, a = radius.

= — , where Q^ = quantity of light per unit of length

= irh at surface. I^ = -^ = intensity per unit of length

5. E = 7rb for infinite plane, at all distances.

hd<S cos e
6. E = ^ = bdco for any small surface dS subtending a small

angle dco, at any distance.

26
'J. E=— cos e, for infinitely long, very narrow strip of b units of

light per unit of length

r

8. Q = fbdS over sphere, cylinder, disk or other surface where

b = normal intensity = quantity of light per unit of area.

48848°— 10 10
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9, Fs^irQy for sphere or other extended sotirce

10. E =i = -2 .•.^' = ^= cos2 (9, for a disk.
d^ r^ Q d^

/o= equivalent point source, g = quantity of light over disk

/ =2/4 for a sphere.

Washington, May 10, 19 10.

The letter b is used for brightness instead of e as was done in an earlier paper in

the Transactions of the Illuminating Engineering Society in accordance with the

preference of the Committee on Nomenclature, following the suggestion of Prof.

Blondel.




