
THE MUTUAL INDUCTANCE OF TWO PARALLEL COAX-
IAL CIRCLES IN TERMS OF HYPERGEOMETRICAL
SERIES

By Frederick W. Grover

In the Journal de Physique for 1901 (vol. 10, p. 33) there

appeared a paper by E. Mathy entitled "Application des signes de

Weierstrass a I'etude de I'energie potentielle de deux courants

circulaires paralleles d'intensite un," in which the author, by the

introduction of the Weierstrassian notation, obtains the mutual

induction of two parallel, coaxial circles in terms of hypergeo-

metrical series, instead of the usual forms involving elliptic

integrals.

His formula is
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where

A =1.311 028 777 . .

B =0.599 070 117 . .
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and the Gaussian notation for the hypergeometrical series has

been adopted, viz

—

1.7 1.2.7 (7+1)

I . 2 . 3 . 7 (7 + j) (7 + 2)

No numerical results were given by which one may judge of

the degree of convergence of the series in a practical case, nor

was, apparently, any comparison of the formula made with other

expressions for the mutual inductance of two circles.

In order to obtain light on these questions, the numerical

values of the mutual inductances of several pairs of circles were

calculated by the above formula and compared with the results

obtained by the use of the formulae of Maxwell ^ and Nagaoka.^

(See also This Bulletin, vol. 5, pp. 6, 8, 1908.) It was found,

/-I
that only in the case where

—

J~^^ does Mathy's formula give

correct results, and in that case M comes out with the negative

sign. In the more general case where ——- is not equal to zero,

the formula of Mathy gives values in error by as much as 5 to

10 per cent.

I have therefore checked the derivation of the formula, with

the result that a corrected expression was found which, if used

within those limits in which it is rapidly convergent, agrees

closely with the formulae of Maxwell and Nagaoka; in other

words, gives very accurate results. The derivation is given below,

the notation being that of Mathy. Since the original derivation

is very brief, and rather difficult to follow, the work will be given

here somewhat in detail.

Let r and r^ be the radii of the two parallel circles (Fig. i),

h the distance between their planes, and ds and ds' , respectively,

elements of their circumferences. To get the mutual inductance

of the two circles we have then to find

,^ _ , . *ds ds' cos

/p R
^ Elect, and Mag. Vol. II, § 701. "^VhiX. Mag., 6, p. 19; 1903.
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where e is the angle between the radii vectores to ds and ds\

and R is the distance between them, the integration being ex-

tended around both circumferences.

6 I

i y—

Fig. 1. Fig. 2.

If we use polar coordinates (r, <^) and (r^, ^J, and, taking

<j>i
= o, integrate around the circle of radius r, we find

dM = r^ d(f)i
r d(f) • cos ^

V&^ + >'^ + Ti — 2rr^ cos ^

Since the amoimt added to the mutual inductance by each element

ds' = r^dcf)^ is the same, we will have

M = 27rrri
cos <^ d<^

y/b^ + r^ + r{^ — 2rr^ cos4>

Thus far. Maxwell's method has been used, but whereas he

expressed the above elliptic integral in terms of the complete

elliptic integrals F and E of the first and second kinds, Mathy next

introduces the Weirstrassian function p in order to obtain a series

development of the integral.

Taking rectangular coordinates as shown in Fig. 2

, X dx
cos<^ = -, #= —T=r=2

48848°—10
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and we find

M = 47rri

V (r^ - x^) {h^ + r^ + r^^ - 2r,x)

The polynomial under the radical is

2r^{x-r){x + r)\x —
\

= 2f 1 x^ — x^{ —-

—

-
)
— rH-\ ^

L \ 2ri / 2^1 J

To reduce this to the canonical Weierstrassian form

4 iy - ^1) (y - ^2) (y - ^3) =4/ - ^2:)^ - ^3

where g^ + ^2 + ^s =o,we must make the coefficient of y^ equal to zero.

We put, therefore,

^^^+
6r,

and find

^1 =?=

e, = -

3^1

6fi

6^ + r^ + ^1^ + 6rri .

e^= ^ where ^i>e2>^3

-^ 2

We may accordingly write

M = 27^^J2r

4'^V2rJ I ^ + -2
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where

Now

V
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Y = V4/ -^2^ -^3 and y=-pv

dy
1= = {2(x> \- (d') — {(O -\- (O') = (D

0) and ft)' being respectively the real and imaginary semi-periods

of ^v.

Consequently

ydy

and

M = 47r-y/2ri -ft) — T)) (i)

This differs from the expression found by Mathy only in the alge-

braic sign of M. A similar expression was found by Nagaoka,

who developed it in terms of the rapidly convergent q series of

Jacobi. Mathy, on the other hand, referring to Halphen's

"Traite des fonctions elliptiques," part i, p. 313 (Gauthier-

Villars, Paris, 1886), expands ft) and rj in terms of hypergeometric

series involving the absolute invariant /. The hypergeometrical

differential equations for ft) and rj are deduced by Halphen (p. 313)

and the final result for ft) is given in equation (21), p. 343. The
next two equations in Halphen in which the hypergeometrical

series written in the [q^, q2, q^; x] notation are expressed in the

equivalent F (a, l3, 8, x) notation are incorrect, and their use

by Mathy is responsible for part of the error in his formula for M.
These equations should read

j-
J J ^(12- 12' 2' / )

2 /-I
,

2^ 5i3-i7/7-i\1+5- +

7-1
12' / 12' 3

/ J '^Vl2'l2'2' / }

I+J2.7-II
J +J2. 3^5 V / /

+

(2)

where the — replaces — , and the — replaces — in Halphen.
12 ^ 12' 12 ^ 12 ^
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The relations connecting the absolute invariant / with the

discriminant J and the invariants ^2 and g^ of the Weierstrassian

function pi; are

J=g.'-2Tg,\ /=f, J-i-^ (3)

Halphen puts

X = eo^^
, y = 7jJ~^ (4)

From page 307 he finds

dx I

(5)

and, introducing the auxiliary quantity,

y=-^(J-i)-'J-y (6)
2V3

he derives immediately two differential equations for x and y as

functions of /.

The first of these (equation 54) is

7(i-7)|f.+-J(4-7/)|-^^=o (7)

The equation (55) for y is incorrectly given by Halphen. It

should read

the - replacing ^ and the —- replacing ^.
3 6 144 48

Both these equations are in the Gaussian form

and particular solutions may readily be written down from any
treatise which gives the various forms assumed by the hyper-
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geometrical series. Since g^ and ^ are positive, we see from (3)

that (/ — i) is positive, and therefore
j

<i. The hypergeo-

metrical series in
j

will therefore converge.

Considering, first, equation (7) we find

2 I ^ I

' 3 12 12

Particular solutions are, therefore (see Weber, ' * Die Partiellen

Differential-Gleichungen, " II, p. 19, equations V)

*'
-' ^Vl2' 12' 2' / J

*^ -' V / ^Ii2'i2'2' /

;

and the complete solution is

-^ \I2 12 2 / / \ J \I2 12 2 / /

where a and b are arbitrary constants and i = ^| — 1.

Accordingly, from (3) and (4)

,>-./*=.f(,-L.f,, I, ti).,*^ZEI^_i, II,
J,

Z^),„

The constants are to be evaluated from the following consid-

erations (Halphen, p. 342-343)

:

lim / \ "^

.*. 10= p.

4«V3
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The expression (9) becomes, therefore,

where A and B are Sterhng 's constants

dx
^^
= 1.311 028 777 ... .

V I -r

5=-^ =0.599 070 117 ... .

Correcting Halphen's result for cd by means of equations (2) it

agrees with (10).

The derivation of the value of 77 is similar.

I ^ JO c

In equation (8) ^ =—
,

/3 =—, 7 = -. Accordingly

and from (6)

(II)

or

vg2~^ =

(12)

To determine the constants we have

lim / X lim / 1 _i n tt

y_j (®^) =y_j (g3*®.^2 "^^ =4

lim
/=',(fV7^)=.V3=^'?, (.)
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from which c = ^ , ,
— id =

36V2' 2V6

Therefore, finally

The value of rj was found by Mathy from the equations (4) and

(5) without the employment of the auxiliary quantity y.

The differential equation for y^ is, as was also found by Mathy
(in Mathy's notation y^ is y)

Here
^<-^)f-G-i^)l'-£- <-'

^' ^ ^\ 12' 12' 2' / J

^' ^ \ J \I2'I2'2' / )

Evaluating the constants as before we find from (4) and remem-
bering that

F{a, A 7, ^) = ^(/3, ^> 7, ^)
exactly the same value for rj g^ as in (13). In Mathy's expression

I . . 7 s • 13
appears in place of— , and ^^ in place of -^.

12 ^^ ^ 12 12 ^ 12

Substituting from (10) and (13) in (i) the corrected expression for

the mutual inductance becomes

g£2B Ij-i (j_ II 3 /-i\l \g,iB / i ^ i J-i\
^eM J •'^Vi2'i2'5' / J\ IVi'^V 12' 12- 2' / ;

+ 6V6V / %2'12'2' J )\j
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Putting :x:^ = 6^ + r^ + r^^ we find

x^ x^ — 6rr, x^ + Srr^

[Vol. 6. No. 4-

_ _ x^ — 6rri _
J ^3

6^1

g^i = 2 {e^ + e^ + e}) =x^^\ 2r'^r^

93 = 4^1^2^3

/-I _27^3^__

I+I2 -^(5)']

The final expression for M becomes, therefore,

47r |_(«* + I2J-V/)i|3' \I2' 12' 2' / /

r^ IIEI p(Z 11 3 7-i \

..3*V J •^Vi2'i2'2' / ;

1
3- V 12' 12 2 / /

^A IjjLL f{Jl 13 3 /-i\l

where
^2 =, 52 _|_ ^2 _|_ ^^2

A = 1.311 028 777

^=0599 070 117

V¥
I -36(5)"

[-<?)"]
and

(15)

(16)

(17)

1.7 1.2.7(7 + 1)

^

^(^ + l)(^ + 2).yg(^+l)(;g + 2) ^3

I. 2. 3. 7(7 + 1) (7 + 2)

The formula for M is by no means so formidable to use as might
be expected from its appearance, since the constants which enter
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and the coefficients in the hypergeometrical series may be calcu-

lated once for all. Using seven-place logarithms, the values come
out

A A
log -1=9.759 7712 log g-^ =8. 981 6199

log-i=9.658 1974 log ^j =8. 880 0461

and the coefficients a^, a^, a^ of z, z^, and z^ in the series are given in

the following table

:

Series ai 32 as

j^/1 5 1 J~l\
^W 12' 2' J ) 0. 069 4444 0. 035 5260 0. 023 8485

^/ 1 7 1 J-l\
-^(,-12' 12' 2' / )

-0. 097 2222 -0. 047 0358 -0.031 0523

„/5 13 3 J-l\
^1,12' 12' r J J

0.300 9259 0. 177 6300 0. 126 0562

„/7 11 3 J-l\
^W 12' 2' J )

0. 356 4814 0. 216 3645 0. 155 2615

From the magnitudes of these coefficients it is evident that the

practical use of the formula (16) will be restricted to those cases

for which z =
j

is not much greater than about 0.2, and for the

most precise work it should be still smaller. It is, therefore, more

special than the formulae of Maxwell and Nagaoka.

For the case z = o, each of the four series becomes equal to imity,

and we have

MA x" B
2 2V

^7r~y {'x' + i 2r''Y^f
^[x ^\2yy^Y

which, remembering that in this case jc^ = 36rVi^ reduces to the

remarkably simple form

M = 47rV^ri(A — 25) =47r(o.ii2 888 543) -y/^^i = i-4i8 599V^^i (i^)

If we introduce the distances
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into equation (15) we find that the condition 2: =0 is equivalent to

R,'^2R^ (19)

That is, in all cases where the greatest distance between the cir-

cumferences of the two circles is ^2 times the shortest distance

between them, the mutual inductance is given by (18).

The following pairs of circles satisfying equation (19) are

tabulated to aid in interpreting this equation:

fi b

r r

I
o. 1 7 1

6

I
=3 — 2-^/2 o Circles in the same plane.

0.2 ' 0.4000

0.3 0.8426

0.4 11135

0.5 1-3229

0.6 14967
0.7 1.6462

0.8 1-7776

0.9 1.8947

i.o 2.0000 Equal circles.

Numerical results

Example I. Formula (18): ^1 = 25, ^ = 25, ^ = 50

Therefore z='^—j- =0 (see table) -yjrr^ = 25

M— = 25X0.112 888 543 •• •

= 2.822 2136 . . .

MBy Nagaoka's formula — =2.822 213
477"

M
By Maxwell's formula — = 2.822 200

47r

The values by the latter two formulae are those foimd using

seven place logarithms. The value from (18) may be carried out

without difficulty to as many places of decimals as desired.
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Example 2. Formula (16).

ri = 25 r = 2o 6=40

501

^^2 = 2625 _2

rrj^±
x"^ 21

x^ -\-i2r^r^ =g 890 625

log (x* + i2rVi2) =1. 748 8059

log
X'

1 = 1. 670 3234

— o. 306 1225

{x^ + 1 2rVi2)

(rr,V
^ )

=1- 435 3742

9. 250 4476^^W¥
\I2 12 2' /

1.000 0000

0.002 2006

0.000 0357

0.000 0008

log 2: = 8. 500 8952

\I2 I2'2' / \ 12* 12' 2 /

1.000 0000 1.000 0000

o.oii 2962 —0.003 0808

0.000 2173 —0.000 0473

0.000 0049 —0.000 0010

\I2 12 2 /

1.000 0000

0.009 5357
0.000 1784

0.000 0040

1.002 2371 1.01 1 5184 0.996 8709 1.009 7181

log F = 0.000 9704 0.004 9738 9.998 6389 0.004 2002

log const. = 9.759 7712 8.880 0461 9.658 1974 8.981 6199

log^-^T^ 9.250 4476W 9.250 4476n

1.748 8059

^ J
log {x^ -\- \2r^r^)^

Incr —

1.748 8059

= 1.670 3234 1.670 3234^°^ (^+i2rV)i

1.43 1 0650 9.805 7909W 1.405 6422 9.985 0736W

• 26.981 438 -—0.639 427 25.447 327 — 0.966 215

-0.639 427 -0.966 215

27.620 865 24.481 112
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M
• =27.620 865-24.481 112 = 3.139 753 cm

471

M
By Nagaoka's formula — =3- 139 749

M
By Maxwell's formula — =3.139 766

For the more unfavorable case,

r^ = io, r = 5, 6 = 15, .-. log 2f = 8.562 0935

the values found were

M
By formula (16) — =0.62398 cm

4'7r

By Nagaoka's formula =0.62399

By Maxwell's formula =0.62400

These examples will suffice to show that in those cases where

the convergence is rapid the formula (16) gives the mutual induct-

ance with precision. Before applying it in a given case, a pre-

liminary rough calculation of z should be made to see if the con-

vergence will be satisfactory. Because of the rather special

applicability of the formula (16) it can not be regarded as in any

way superseding the elliptic integral formulae of Maxwell or the

q series formulae of Nagaoka.

The formula (18) gives, however, an exceedingly rapid and

simple means for checking new formulae, and should find extensive

application in cases where the choice of the dimensions of the

circles and their distance apart may be made to conform to

equation (19).

Washington, February i, 1910.


