
ON THE DEFINITION OF THE IDEAL GAS.

By Edgar Bucidngham.

I . Nature and purpose of the definition.—The notion of the ideal

gas is that of a gas having particularly simple physical properties

to which the properties of the real gases may be considered as

approximations; or of a standard to which the real gases may be

referred, the properties of the ideal gas being simply defined and

the properties of the real gases being then expressible as the prop-

erties of the standard plus certain corrections which pertain to the

individual gases. The smaller these corrections the more nearly

the real gas approaches to being in the "ideal state." This con-

ception grew naturally from the fact that the earlier experiments

on gases showed that they did not differ much in their physical

properties, so that it was possible to define an ideal standard in

such a way that the corrections above referred to should in fact all

be ''small" in terms of the unavoidable errors of experiment.

Such a conception would hardly arise to-day, or if it did, would

not be so simple as that which has come down to us from earlier

times when the art of experimenting upon gases was less advanced.

It is evident that a quantitative definition of the ideal standard

gas needs to be more or less complete and precise according to

the nature of the problem under immediate consideration. If

changes of temperature and of internal energy play no part, all

that is usually needed is a standard relation between pressure and

volume. Boyle's law is universally adopted as this standard

relation, so that the equation

(/>i;) ^
= constant (i)

is always a part of the definition of the ideal gas. In problems

relating to the behavior of gases at either constant volume or
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constant pressure, the p,v relation is sometimes of no importance,

so that Boyle's law might be omitted from the definition with no

sacrifice of the utility of the standard; but in practice, Boyle's law

is always included, either directly or by implication.

Now, two gases might, conceivably, obey Boyle's law within

any desired limit of precision and yet differ sensibly in relation to

changes of temperature or of internal energy. Hence, if such

changes enter into the problem at hand, the properties of our

standard or ideal gas need further specification. For many phys-

ical purposes one further specification suffices. If, however, we
go further and enter upon the consideration of chemical reactions,

the properties of the standard may, with advantage, be still

ftirther specified.

2. Absolute temperature.—The absolute temperature by a gas

thermometer is defined, on the constant pressure scale, by the

equation

T^= const X V (2)

or, on the constant volume scale, by the equation

T^ = const X p (3)

If the gas obeys Boyle's law, these two independent scales become

identical,^ if the size of the degree is the same for both, as, for

instance, when the ice and steam points are made 100° apart on

both scales. Hence we have the equation

pv = const X T (4)

as the definition of the absolute temperature on the scale of a

thermometer filled with a gas that follows Boyle's law.

The thermodynamic temperature 6 which constantly appears

in the equations of thermodynamics is defined in quite another

way. By Carnot's theorem the efficiency, E, of any thermal

engine working periodically and reversibly by taking in heat from

a hot body and giving out heat to a cold body, is the same for all

such engines and depends only on the temperatures of the hot and

cold bodies. By the principle of the equivalence of work and

heat, the work W done by the engine during one cycle is equivalent

^ See Note I at the end of this paper.
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to the excess of the heat Q^ taken in from the hot body over the

heat Qz given out to the cold body, so that we must have

Carnot's theorem makes no reference to the numerical values

by which the temperatures of the two bodies may happen to be

designated, nor even to the possibility of numbering temperatures

at all; it does not involve the conception of temperature as a

measurable quantity. Nevertheless, Carnot's theorem furnishes

us with a convenient and simple scheme for numbering temper-

atures.

Let equation (5) be put in the form

^'=~^
(6)

ft i-E ^'"

Then, since E depends only on the two temperatures, the same is

true of QJQ2, so that for any two temperatures Carnot's theorem

determines a number—the value of this ratio QJQ^- Now, since

it is convenient in reasoning about temperatures to have the tem-

peratures numbered, for identification, in accordance with some
system, i, e., with some " thermometric scale," and since we are

at liberty to select whatever system we find convenient, let us

assign to any two temperatures such numbers 0^ and 6^ as shall

have the same ratio as Q^ and Q^, 0^ being the higher of the two

temperatures. We then have the equation

er'Q\
^'^

as one element in the definition of a scale of temperattue. The
definition may be completed and the numerical value of every

temperatiu'e fixed, by specifying that the numbers pertaining to

the ice and steam points shall differ by 100, as in the common
centigrade scales.

This system of numbering temperatures was devised by Kelvin

in 1854 and is known as Kelvin's scale or the thermodynamic

absolute scale. It may be simply defined, except as to size of the
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degree, by saying : Any two temperatures are to each other as the

quantities of heat taken in and given out at these temperatures by

a reversible thermal engine working between them, i. e., with its

source at the higher and its refrigerator at the lower.

Carnot's theorem may then be put in the convenient and familiar

form

E^Q^-Q-^J-^ (7)

the general form being

E=^^'=f{t,,Q (8)

when the scale of temperature, t, has not yet been specified.

Suppose, now, that we imagine the cylinder of the Carnot

engine to be filled with a substance of which the mechanical and

thermal properties are well known; it may be possible to find

from these properties the value of W/Q^ or E, in terms of the scale

of temperature t, in which these properties are expressed. Since

all reversible engines have the same efficiency, the value of E thus

found will give us the value of / (t^, t^ in equation (8) and so furnish

a relation between t^ and t^, on the one hand, and 0^ and 0^ on the

other, through the intermediation of equation (7). Suppose, in

particular, that the cylinder of the engine is filled with a gas that

follows Boyle's law so that we may use equation (4). When we
try to find the value of WjQ^ by using equation (4) , it turns out that

the problem can be solved if, and only if, we assume that the heat

taken in during an isothermal expansion is all converted into out-

side work, or, in other words, that the internal energy of the gas

does not change. The very simple result is, in this case,

(9)

or

n 7^

(10)

The proof of this proposition is given in all text-books of thermo-

dynamics and need not be repeated here.

w
0.

ft T,
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We see, then, that if a thermometer is filled with a gas which (a)

obeys Boyle's law, and (6) suffers no change of internal energy

during change of volume at constant temperature, the ratio

TJT2 of any two temperatures measured on this thermometer is

the same as the ratio Q^IQ^, of the quantities of heat taken in and

given out by a reversible engine working between these tempera-

tures. And since by definition 6^16^ is equal to this same ratio,

it follows that.

and the two scales are proportional and may be made identical

by proper choice of the degrees. For such a gas we therefore have

T=constx6' (12)

and equation (4) may be written in the form

pv^RO (13)

R being a constant depending on the mass of gas and the units of

P, 'V, 0.

In quantitative reasoning about gases, the absolute tempera-

tures Tp and T^ occur very frequently. But in all thermodynamic

equations, Kelvin's thermodynamic absolute temperature 6 is also

continually appearing. Our work is therefore much simplified if

these three numerical values for any given temperature are iden-

tical, so that a single symbol for temperature is enough. The two
gas-scale temperatures, Tp and T^, become identical if the gas

obeys Boyle's law; and, as has just been said, their common
value T becomes, with the proper choice of degrees, identical with

0, if in addition, the internal energy of the gas is independent of

the volume at constant temperature, i. e., if

\^v)e
= (14)
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Evidently, therefore, it is highly desirable that our ideal stand-

ard shall be so defined as to insure the validity of equation (13),

if this can be done without making the ideal gas differ too much

from the real gases. We have, then, to consider whether ( 5~ ) is

nearly zero for the real gases. If it is, equation (14) may be

made a part of the definition of the ideal gas and the properties of

the real gases still be regarded as differing from those of the ideal

standard by quantities small enough to be considered as mere

correction terms and disregarded in a first approximation.

3. The Gay-Lussac effect.—If we let a gas expand "freely," i. e.,

without doing any outside work, any change of its internal energy

must be compensated by a gain or loss of heat. And, conversely,

any gain or loss of heat involves a corresponding change of the

internal energy. Suppose that the process is made isothermal;

then unless equation (14) is satisfied there will be an absorption or

development of heat. If, on the other hand, the expansion is so

sudden as to be nearly adiabatic, the temperature of the gas will

fall, if the isothermal process required the addition of heat and

rise in the opposite case. Hence, if in a sudden free expansion the

mean temperature of the gas neither rises nor falls, there has been

no tendency to take in or give out heat, and the internal energy

has therefore not changed. Hence equation (14) is satisfied for

this gas within the limits of observational error of the method.

In 1807 Gay-Lussac published the results of experiments of this

sort on air, hydrogen, carbonic acid, and oxygen. He found that

when the gas expanded by rushing from one vessel into another

of the same size, previously exhausted, its mean temperature did

not change by an amount which he could detect with certainty,

the temperature in the first vessel falling as much as that in the

second rose. Later experiments of a somewhat similar nature by
Joule gave a like result. We may therefore conclude that for

these gases the quantity ( y" ) > ^^ the ** Gay-Lussac effect," is

small and equation (14) nearly satisfied. Hence, if we make it a

part of our definition of the ideal gas that equation (14) shall be

exactly satisfied, or that the Gay-Lussac effect shall be exactly
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zero, the gas thus defined will fulfill the requirement of repre-

senting the real gases with errors small enough to be negligible in a

first approximation. The statement that the internal energy of a

gas is independent of the volume during isothermal changes,which

has here been put more briefly in the statement that the Gay-

Lussac effect is zero, is commonly known as Joule's law.

Our results so far may then be shortly stated as follows: If a

gas obeys Boyle's law, its constant pressure and constant volume

scales agree; and if, in addition, it obeys Joule's law, its scale

agrees with Kelvin's scale. In other words, equations (i) and

(14) suffice for the validity of equation (13); and furthermore,

equations (i) and (14) are nearly enough fulfilled by the ordinary

real gases under ordinary conditions that they are suitable ele-

ments in the mathematical definition of the properties of an ideal

standard gas for which we may then consider equation (13) as

satisfied, this equation being of the highest utility in thermo-

dynamic reasoning.

Having shown that equations (i) and (14) lead to equation (13),

it is well also to show that they may be deduced from it or that

(i) and (14) taken together are in all respects equivalent to (13).

It is at once evident, if 6 is set constant, that a gas which satisfies

equation (13) must obey Boyle's law, so that we need only consider

the Gay-I/Ussac effect, for which we shall deduce a general equation.

If e represents the internal energy of any body, Q heat added

to it, and W work done on it, the first law of thermodynamics

states that in any infinitesimal change of state

he = hQ +m (15)

The second law, in one of its various forms, states that if the

change is reversible, ^QIO is a complete differential, and that we
may therefore write, for a reversible change,

hQ=eh'n (16)

where r^, known as the entropy, is the quantity, completely deter-

mined by the state of the body, of which ^QjO is the differential.

If the only outside force on the body is a uniform normal pressure

on its surface, the work done on the body may be written

hW^-phv (17)
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Hence, for any such change of state, the two laws of thermody-

namics may be summarized in the equation

B€ = eBrj-p&v (18)

If the change is isothermal, this gives us

' (l).-<S)rf

Subtracting ^{Or)) from both members of (18) we have

B(e — Ot]) = — TjBO — pSv (20)

and since changes of energy and entropy can occur only when the

state of the body changes, {e — Orj) must be treated as a function

of 6 and v only, and the second member of equation (20) is a

complete differential. It follows that

a-:).-(ia

so that (19) may be put in the more intelligible form

This perfectly general expression for the Gay-Lussac effect in any

fluid was given in sensibly this form by Kelvin" in 1851.

From equation (22) we can compute the value of the Gay-

IvUssac effect for any fluid for which we know the p,6 relation.

In particular, let the fluid be a gas which satisfies equation (13).

We have at once, by differentiation and substitution in equation

(22),

(I),-"!-'- <'^>

SO that equation (14) is necessary as well as, with (i), sufficient

for the validity of (13). It is evident, however, that (14) may be

satisfied by a substance that does not obey Boyle's law. It is

2 Math. Phys, Papers 1, p. 227, equ. (4')
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merely necessary that the constant volume scale of the given gas

agree with the thermodynamic scale or that

p =A0 (v constant) (24)

for by differentiating and substituting in (22) we have

And furthermore, setting the second member of (22) equal to zero

and integrating at constant volume leads directly to (24) . Hence,

if any gas obeys Joule's law, its constant volume scale agrees with

Kelvin's scale, and vice versa, regardless of whether Boyle's law

is satisfied. Evidently, then, for some purposes, in problems not

concerned with changes in volume, a gas that obeys Joule's law

exactly is sufiicient as a standard and might be taken, in dealing

with such problems, as the ideal gas.

4. The usual definition of the ideal gas.—The ideal gas is, then,

usually defined as follows:

(a) It obeys Boyle's law; and either

(b) Its temperature scale agrees with the thermodynamic

scale, or

(6') It obeys Joule's law, i. e., its Gay-Lussac effect is zero.

We have shown that these two definitions are equivalent in

all respects, 6' following from a and b, and b from a and b\

It may, however, be remarked that from an experimental stand-

point neither b nor 6' is altogether satisfactory. For it is

desirable to have the ideal standard defined in terms of quantities

that are easily accessible to experiment, so that any real gas may
easily be tested to find how far it comes short of being in the ideal

state. The statement of Boyle's law is perfectly satisfactory in

this regard. But since we have no thermometer which reads

directly in terms of the thermodynamic scale, we have no easy

means of finding how the scale of any given gas thermometer

deviates from that scale. The alternative specification that the

ideal gas satisfies Joule's law suffers under a like disability. The

Gay-IvUssac experiment, or Joule's modification of it, is difficult or
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impossible to carry out with the desired accuracy, as is shown by
the fact that so able an experimenter as Joule got only negative

results, although we are certain that the Gay-Lussac effect is not

generally zero for any of the real gases.

The above definition of the ideal gas is therefore practically

somewhat defective, though mathematically satisfactory, and we
may ask whether the second part of the definition, h or h' , can

not be so changed as to have a closer relation to practicable

experimental work. The answer to this question was given by
Kelvin^ in 1851, when, after the above-mentioned experiments of

Joule, he invented the famous porous-plug experiment as a substi-

tute for the free-expansion experiments.

5. The Joule-Kelvin effect.—Let the gas to be studied be forced

uniformly, and so slowly that its kinetic energy is negligible,

through a pipe which is stopped at one point by a plug of porous

material. If the plug is sufficiently fine grained, the gas issues

from it uniformly and quietly at a pressure somewhat lower than

that at which it entered the plug. During the change of state of a

given mass of gas which consists in passing through the plug from

the higher to the lower pressure, the following equation must be

fulfilled:

Heat put in = increase of energy + work given out.

The work done on i gram of gas, while it is entering the plug, by
the gas behind it, is evidently the product of its specific volume and

the constant pressure to which it is subject, or pv. As the gas issues

from the plug, the work it does on the gas ahead of it is, similarly,

the product of the new specific volume by the constant lower

pressure. The whole work given out by the gram of gas is there-

fore the difference of these or the increase in the value of the

product pv. Hence if the drop of pressure in the plug is infini-

tesimal we have

hQ = he + h{pv) (26)

^ 3 Math. Phys. Papers, 1, p. 220.
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or, if Sp is the numerical value of the drop in pressure,

Sp-Bp'^ hp ^^^^

We have as yet said nothing about possible changes of temper-

ature, and equations (26) and (27) are quite general, being merely

expressions of the first law as applied to this particular sort of

change of state.

Let us now specialize by assuming the rate of supply or with-

drawal of heat to be such as to prevent the gas from changing in

temperature as it flows through the plug; then equation (27)

reduces to

Let the heat supplied to unit mass of gas per unit fall of pressure

be denoted by p, so that ^Q=p { — ^p) or

(29)

The quantity p is known as the "Joule-Thomson or Joule-Kelvin

effect." Equation (28) may now be wTitten

which is merely a mathematical way of saying that as the gas

flows through the plug the rate of absorption of heat equals the

rate of increase of internal energy plus the rate of doing outside

work.

Returning now to our former definition of the ideal gas, we see

that if Boyle's law holds, the last term of equation (30) vanishes,

leaving

P =

But we have
(S),

<3-)

(d/>)rWA4A ^^^^
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and since ( yr ) could vanish only for an absolutely incompress-

/de \ /de\
ible substance, it follows that \^) and ( y~ 1 must vanish to-

together, if at all. Hence, for a gas that obeys Boyle's law and

therefore satisfies equation (31) it is indifferent whether we
specify that the Gay-Lussac effect shall vanish or that the Joule-

Kelvin effect shall do so, and the second specification of our former

definition may be replaced by this nev/ one, if this is otherwise

satisfactory as a part of the definition. It is satisfactory; for the

Joule-Kelvin effect may be measured more accurately than the

Gay-Lussac effect, and is therefore, from a purely physical point of

view, a better quantity than the Gay-IyUssac effect to have appear-

ing in the equations which embody the definition. Furthermore,

though measurable, it is small for the ordinary gases under ordi-

nary conditions; so that if the ideal gas satisfies the condition of

showing no Joule-Kelvin effect, it still fulfills the requirement of

not differing much from the real gases. We may then adopt the

equation

P=o (33)

as substitute for (14), when taken together with equation (i), in

specifying the definition of an ideal gas which shall satisfy equa-

tion (13).

It is sometimes implied that expansion through a porous plug

is equivalent to a free expansion.^ If the gas is one that obeys

Boyle's law, this is true for an isothermal expansion, since pv does

not change and no external work is done. But unless Boyle's

law holds this is not the case, and a gas that showed no Gay-Lussac

effect might still show a Joule-Kelvin effect. For though by

equation (32) the term ( ^ \ of equation (30) vanishes if the gas

obeys Joule's law, equation (33) ynW not be satisfied unless the

gas obeys Boyle's law. Hence, the specification that the gas shall

* See Note II at the end of this paper.
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show no Joule-Kelvin effect can not replace the specification that

it shall obey Joule's law unless it is also specified that the gas shall

obey Boyle's law.

It is well to show directly that equation (33) follows from equa-

tion (13) by deducing a general equation for the Joule-Kelvin

effect as we did in section 3 for the Gay-Lussac effect. Let us

write equation (30) in the form

/de\
By taking the value om §~ ) from equation (22), and utilizing the

the relation ^

(IKmKII),=-' (35)

equation (34) may at once be reduced to the form

P-e(%l-. (36)

Like equation (22) for the Gay-Lussac effect, this equation is gen-

eral and applies to any fluid. From it we may compute the value

of p for any substance for which the v,0 relation is known. In

particular, if the substance is a gas which satisfies equation (13),

differentiation and substitution in (36) give us

p = e--v=o
'

(37)
P

so that the Joule-Kelvin effect is zero if the gas is ideal by the

definition contained in equation (13).

Since the p,v relation is not involved in equation (36), we may
have /o = o for a gas which does not obey Boyle's. law. In fact,

if we set the second member of (36) equal to zero and integrate

at constant pressure, we get

v=B6 (/> constant) (38)

^ See Note I at the end of this paper.
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Hence, in order that the Joule-Kelvin effect shall vanish, it is

necessary and sufficient that the constant-pressure scale of the

gas in question shall agree with the thermodynamic scale and the

gas need not obey Boyle's law.

As regards insuring the validity of equation (13), we might dis-

pense with any explicit reference to Boyle's law and merely say

that the Gay-Lussac and Joule-Kelvin effects shall both be zero.

/de\ .

For if, in equation (30) , p is zero ; and if in addition ( X/, ) ^^

zero, as it is by equation (32) when the Gay-Lussac effect is zero,

d
it follows that ^ (pv) is also zero, or that Boyle's law is ful-

filled. Since, however, Boyle's law is the simplest part of the

definition of our ideal standard gas, it would, in general, be dis-

advantageous to replace it by something else that is less simple.

6. The specific heats.—For many purposes the definition of the

standard or ideal gas as already given is sufficient. Whenever in

comparing the behavior of different gases we find some property

which is nearly the same for all, it may be convenient, as a first

approximation, to treat this property as exactly the same for all,

so that reasoning about it shall apply to all the gases indifferently.

We may, in other words, assign some fixed average value of this

property to the ideal gas, to which the real gases are then approxi-

mations. The notion of the ideal gas might thus evidently be

greatly enlarged and its definition extended to include a large

number of specifications. There is no logical reason for stopping

at one point rather than another; but in practice, the definition is

usually terminated at the point already reached, the only further

extension that is at all common being a statement regarding the

specific heats.

During a change of temperature at constant volume no outside

work is done, so that any heat taken in goes to increasing the

internal energy, and we have the equation

C. =
(§|)^ (39)
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as one way of defining the specific heat at constant volume. By
differentiating with regard to v and noting that since v and 6 are

independent, the order or differentiation may be inverted, we get

Hence, if the Gay-Lussac effect
| ^ j is zero, as for the ideal gas

already defined, it follows that ( -s,
^

) =0, and the specific heat

at constant volume does not change with the volume so long as

the temperature is constant. Experiment shows that for the real

gases under ordinary conditions C^, is nearly constant. Hence, it

is frequently made a part of the definition of the ideal gas that C^

shall be exactly constant. As we have just seen, C^ must be

independent of the volume for the ideal gas already defined, but

the statement that it shall also be independent' of the temperature

can not be deduced from the former definition and constitutes a

new and independent element in the definition.

It is easily shown that for a gas that satisfies equation (13) the

specific heats at constant volume and at constant pressure differ

only by an absolute constant. Hence, from a mathematical

standpoint it is immaterial whether we make the new addition to

our definition by saying that C^ shall be constant or that Cp shall

be constant ; the former is more usual. There is, however, a differ-

ence in one respect, namely, that for the real gases the variations

of C^ with temperature are much smaller than those of Cp, thus

making the specification

(S),
= (41)

the best form in which to put the addition to our old definition, as

it is the most usual.

7. Recapitulation of the definition.—We find in common use the

following definitions of the ideal gas which we have shown to be

in all respects mutually equivalent, each being necessary and

sufficient for the others:
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(A) The ideal gas obeys Boyle's law and its temperature scale

agrees with the thermodynamic scale; i. e.

:

{pv)0=^ const; T= const X

or

pv=RO

(B) The ideal gas obeys Boyle's law and Joule's law, i. e.

:

(/.^), = const; g)^ = ^(^^^-^=o

(C) The ideal gas obeys Boyle's law and its Joule-Kelvin effect

is zero, i.e.:

(/>7;)e= const; p = 6(^) - V =0

To these there is frequently added the further independent

statement that: **

(D) The specific heat of the ideal gas at constant volume is

independent of the temperature, i. e.

:

m-
Many further additions to the definition might be, but in ordinary

practice are not, made.

The equations of thermodynamics may, by mere mathematical

transformation and without the introduction of new physical facts,

be put into such a vast array of different forms that the same

substance may often be expressed in a variety of different ways

in either words or equations. For some purposes the above defi-

nition might be expressed more conveniently in other sets of

equations or in other statements about physical properties; but

the form of definition given under (A), (B), or (C), with or with-

out the addition of (D) , contains the substance of the notion of

the ideal standard gas as that notion is most generally used, and
the equations are convenient mathematical expressions of it.

8 . The cohesion pressure of a real gas.—If a gas has any self-attrac-

tion or cohesion, expansion involves an increase of the potential



Buckingham.] Definition of the Ideal Gas. 425

energy of the attraction by an amount equal to the work done

against the attractive forces . In an isothermal expansion^ this forms

a part of the value of
( sr^ ) , but it need not form the whole.

.

From the molecular-kinetic point of view, on which the mean
kinetic energy of molecular translation is determined solely by
the temperature, an increase of internal energy during isothermal

expansion goes in part to increasing the intermolecular potential

energy, but it may also, in any but a simple monatomic gas, go in

part to increasing interatomic intramolecular potential energy if,

as is quite conceivable, the molecules change their forms or dimen-

sions with changing mean distance of separation and changing

frequency of collision. If by cohesion we mean the attraction

between the molecules, which acts to retard any molecule ap-

proaching the bounding surface of the gas and so decreases the

mean change of momentum upon reflection, and therefore the

pressure on the bounding wall, then we must admit that an absence

of cohesion does not suffice to insure that the internal energy

shall not change during an isothermal expansion. Or if by the

"cohesion pressure" we mean the extra pressure that would have

to be applied from without to preserve the same volume if the

intermolecular attractions could be annihilated without otherwise

changing the nature of the gas, then saying that the cohesion

pressure is zero is not equivalent to saying that the Gay-Lussac

effect is zero or that the gas obeys Joule's law. To put this idea

in more precise form we may proceed somewhat as follows:

Let IT represent the cohesion pressure. Then the equation of

state of any fluid may always be written in the form

{p+7r){v-b)=R0 (42)

where R is a constant. It must be supposed that in general the

intermolecular attractions will depend on both temperature and
density, i. e., tt will be a function of and v. But whatever be

the form of tt, the remaining quantity b, known as the covolume,

may always be adjusted so that the equation shall be satisfied.

In general, b also will evidently be a function of 6 and v.

13260—10 9
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From equation (42) we have

(bp\ ^R^ RO /db\ _/^\
\doX~v-b^(v-b)\dej, \de), ^44^

whence by substituting in equation (22) we have, as an expression

for the Gay-Lussac effect in terms of tt and b

/de\ ./c)7r\ R0'~ /db\
, ,

From this we see that in any isothermal expansion hv, the increase

of internal energy ( ^ j 3?; is equal to the work irhv done against

the cohesion pressure, plus two other terms which can not in

general be set equal to zero. So far as the mathematical form

of the equation is concerned, either tt or 6 may be given any

expression we please, made constant for example, and the other

may still be so adjusted that equation (42) shall represent the

behavior of the gas. But in general the last two terms of (45)

will not both vanish, nor need their sum vanish.

To illustrate, suppose that the equation of state has the simple

form given by van der Waals, namely,

{p+'^^i-^-b)=Re (46)

with a, b, and R constant. The derivatives of it and b with

regard to 6 vanish, and we do have

But if we take an equation only slightly more complicated, such

as the first equation of Clausius, or

L^ + ^(7;+c)0
(v-b)=RO (48)
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with a, b, c, and R constant, equation (45) gives us

= 27r (49)
/deX _ 2a

and only half the Gay-Lussac effect is to be attributed to work

done against forces represented by tt = ^ ,
,

xg - I^ more compli-

cated equations, with the covolume dependent on the temper-

ature, the last term of (45) may also have a finite value. The
physical interpretation of these two terms is impossible until we
have some clear physical reason for assigning a particular math-

ematical form, '7r=f{v,6), to the cohesion pressure tt. But it is

evident that we can not, offhand, say that the Gay-Lussac effect

is a measure of the cohesion; and we can not, in the definition of

the ideal gas, replace the specification that it shall obey Joule's

law by the specification that its cohesion pressure shall vanish

unless we define the cohesion pressure as in this case equal to the

Gay-IyUssac effect, and so to zero. The cohesion pressure is, in

the nature of things, not accessible to direct measurement, whereas

the Gay-IvUssac effect may, in principle at least, be determined by
simple experiment. Hence it is, in itself, altogether proper to

adopt the equation

\dv)e
-^ (50)

as a definition of the cohesion pressure.^ But if we do this we
meet another difficulty, for we find that the ir thus defined will

not fit into equation (42), which is a very useful equation. For

smce ( Y" 1 is a definite physical property of the gas, equation

(50) fixes the form which ir must have. But if (50) is to be sat-

isfied and the tt so defined is to be identical with the tt of the

equation (42) , equation (45) gives us

/d7r\ _ R6 /db\

®See Webster and RosanoflF, Phys. Rev., Sept., 1909.
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And if TT is already fixed by equation (50), equation (51) imposes

a restriction on h, which can then no longer be adjusted at pleasure,

so that, with the value of tt already fixed by (50), equation (42)

shall represent the behavior of the gas. In other words, the tt of

equation (50) can not in general be identified with the tt of equation

(42) , and the cohesion pressure defined by (50) is not the same as

what is usually meant by the cohesion pressure, the usual meaning

of the term being that of the it in equation (42)

.

Note I.

{A) Let X, y, and z be any three quantities connected by a single relation which permits us to

express any one in terms of the other two by an equation of the form

z=f {x, y)

Differentiating this we have

'-(!)/- (1)/^

Now let z be constant, i. e., Sz=o. This is an added condition, so that x and j/ can no longer change
independently, and we must have

Introducing this value together with Sz = o into equation (a) we have

Dividing by f ^ ) Sy and rearranging, we get this into the more compact form

/dx\
_
/dy\ ^ /dz\ __^

\^y/z' \i>z/x' \^x/y

a relation which must always hold between the derivatives of any three quantities of which any two
determine the third.

(B) Let the three quantities be p, v, and /. Then we have

(M)t- (Pt)p- Qp)v^-' (b>

an equation which is frequently useful in transforming thermodynamic equations relating to fluids.

Let the substance considered be a gas that obeys Boyle's law so that

(pv)^=A=f(t) (c)

Then we have

Substituting in equation (b) and changing signs, we have

V ' \dt / p' \dpjv

Dividing this by /,^^^ , ^e have finally

J. /dv\ _£/^\
v\dtjp p\dtjv ^^'>
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This equation is merely a statement that as the temperature t (measured on any scale whatever)

changes, the fractional change of volume at constant pressure is the same as the fractional change of

pressure at constant volume; or that the volume and pressure coefficients are equal.

If we define two separate and independent scales of temperature by a thermometer filled with a

gas, one of them Tp proportional to volume at constant pressure, and the other Tv proportional to

pressure at constant volume, the two scales must evidently become proportional to each other if

the volume and the presstu-e coefficients are equal, and identical if the degrees are made equal.

Hence, for a gas which obeys Boyle's law the Tp and Tv scales agree.

Note II.

In Gay-Lussac's free expansion experiments, work was done by the part of the gas that finally

remained in the original vessel on the rest of the gas, which passed over into the second vessel; but

no work was done on anything outside. Diuring the rush of gas which followed the opening of the

stopcock between the two vessels some kinetic energy was produced, but this was soon dissipated

by viscosity and the mean temperature of the gas was fovmd to be unchanged, the temperature in

the first vessel having fallen as much as that in the second vessel had risen.

In isothermal expansion through a porous plug by a gas that obeys Boyle's law. the phenomena
are simpler. As in the Gay-Lussac experiment, no external work is done by the gas since fni does

not change. But in addition to this, no one part of the gas does or has done on it more work than

another, since the flow is steady and continuous. Fiu-thermore, no sensible kinetic energy is gener-

ated, if the plug is sufficiently fine-grained, the dissipation corresponding to that of the eddy ciurents

in Gay-Lussac's experiment taking place in the plug itself and dmnng the expansion, whereas in Gay-
Lussac's experiment the dissipation was, in part at all events, subsequent to the expansion. Hence,

for a gas that obeys Boyle's law the Joule-Kelvin experiment, when performed isothermally, is

equivalent to but somewhat simpler than the Gay-Lussac experiment.

Washington, November 13, 1909.


