
COUPLED CIRCUITS IN WHICH THE SECONDARY HAS
DISTRIBUTED INDUCTANCE AND CAPACITY

By Louis Cohen.

In a previous communication 1 I have discussed the problem of

coupled circuits on the assumption that the inductance and capac-

ity of the two circuits are localized ; this is equivalent to a system

of two degrees of freedom, and such a system oscillates with two

distinct frequencies, which were completely determined. It was

also shown that such a system has two damping factors. The
assumption, however, that the inductance and capacity of the

secondary as well as the primary are localized does not give

the conditions which correspond to those of wireless telegraphy.

In a wireless telegraph system it is the antenna, which has a dis-

tributed inductance and capacity, which is the secondary, and

this will represent a system of an infinite number of degrees

of freedom, and consequently the system will oscillate with an

infinite number of frequencies. In this communication it is pro-

posed to investigate such a system, in order to see whether the two

fundamental frequencies, as obtained in the previous paper, will

be in any way modified by the assumption that the secondary

has distributed inductance and capacity, and also whether the

other frequencies besides the two fundamental ones will in any

way influence the results as previously obtained.

It was shown in my previous paper that the resistance does not

influence materially the frequency constants, and since in this

problem we are concerned with frequency constants only we will,

in order to simplify the mathematical treatment of the problem,

neglect the resistance entirely.

1 This Bulletin, 5, p. 511 ; 1909.

247



248 Bulletin of the Bureau of Standards. [Vol. 6, No. 2.

Iyet us denote by Llf C t
the inductance and capacity of the pri-

mary circuit, L and C the inductance and capacity per unit length

of the antenna, and L 2 and C 2 the total inductance and total

capacity of the antenna. If I is the length of the antenna, then

Ll=L 2
and Cl=C 2 . We shall also designate by L the lumped

inductance at the end of the antenna, which is inductively con-

nected with the primary, and by M the mutual inductance.

If, now, Vlf I
x
and VZf I

z
are the potentials and currents of the

primary and secondary, respectively, at any instant of time, then

we shall have for the primary circuit the following equations:

L,C

Ll
dt

'

(1)

From which we obtain,

Fig.

d2 T d2 TL£*g +I1 .+MC*£-o (2)

For the antenna we have the following relations

dl9 dV.L— =^ dt

dt

ds

di_,

ds

(3)

From these two equations we derive the equation of propagation,

which is as follows:

a% =d%
dt2 ds 2

The solution of equation (4) is

I 2
= {A cos fMs+B sin ps}ext

where

\2 =
LC

(4)

(5)

(6)
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From (5) and the second equation of (3) we can get the expression

for V 2 , which is,

F 2 =-^JA sin /jls—B cos fxs\e
u

(7)
XC[

J

We shall also assume that,

I
x
=Dek

(8)

The constants, A, B, D, must be determined so as to satisfy equa-

tion (2) , and also the boundary conditions, which are as follows:

When

(9)

In introducing the value of J2
in (2) and (9) we must bear in

mind it is the value of I2 as given by (5) when we put in that

equation s =0—that is, I
2 =Aek

. Using this value inequations

(2) and (9) we get the following:

(L.C.X2 + i)D +MC,X2A =0

-~B+L XA +MXD=o

D
Eliminating-r—from these two equations we get,

do)

M2Ct
X3

"U LAX' + i

LJL^X2 +L -M2C±V X
L,C,X2 + 1

From the first equation of condition, (9) we have

A cos fMl'+B sin /jlI=o

and

B
A

— COt fJil

en)

(12)
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Eliminating -j from (n) and (12) we obtain the following:

" >k cot "* = r+ZAv

Replacing X2 by its value as given by equation (6) we get

COtfl! =
7

LQ L -
L C C

L
X
C

X ,

I C M'2C

I L C
L,C,

li-l-

(13)

Let us assume that L
1
C

l
=L 2C 2

. This will be close to the condition

of resonance if L is small, and let us also put for brevity pl=x,

then we get:

, a
A/ 2

.,

L., 1 — x"
(14)

L 1 /
"-

If we designate -=-° by k\ and , , by k,, equation (14) can be writ-

ten in the following: form:

cot x = &!*
I - X* + -7-X'

K
I —x~

(15)

This being a transcendental equation it has an infinite number of

roots. If we know the numerical values of k\ and k 2 we can

determine the roots graphically by plotting the two curves

y, =cot x and r2
=/W-v

k )
9 .

/v 2 9

1 — X" +yx

1 — X"
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The points of intersection of these curves will give the roots of the

equation. In plotting these curves the coefficient of coupling is

assumed to be one-tenth, and therefore k2 , which is the square of

the coefficient of coupling, is 0.01. For k
x
two different values,

0.25 and o. 1, have been taken. The full-line curve in the graph

corresponds to the value k
x
=0.25 and the dotted curve corre-

sponds to the value k
x
=0.1.

In examining the graphs we see that for &
x
=0.25 the roots have

the values,

58 ,
68°, 216

, 380 , 556

For k
x
=0.1 the roots have the values,

58 , 82
,
290

,
420

, 590

From equation (6) we see that the frequencies are proportional

to 11 that is to the numbers given above. The first two roots

represent the two fundamental frequencies, and the other roots

represent the harmonics. From these values we see that in one

case the frequency of the first harmonic is about three and a half

times the fundamental, and in the other case the frequency of the

first harmonic is about four times the frequency of the fundamental.

In either case, however, if the system is arranged to be in resonance

with the fundamental frequency, the upper harmonics will not

have any influence in the working of the system.

It remains yet to see whether the ratio of the two fundamental

frequencies obtained here are in agreement with the results that

are obtained on the assumption that the inductance and capacity

are localized in both circuits. It can be easily shown that on the

assumption that the inductance and capacity are localized in both

circuits, the frequency constants are given by the following

expression. 2

_ !.£, +L2Cz±t/4M°C1C2 + (L,C
t -L%C%Y

2(L
lCl

L,C3 -M'ClC2 )

(Ib)

and

V, L.Q +L8C2
- V4M aC.C2 + (LA -L,Q ;

(i7)

See Fleming Principles of Wave Telegraphy, p. 210.
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where L2 and C2 are the total inductance and capacity of the

secondary. In the notation of this paper we have to replace

L 2 by L 2 +L and then make L 2C2 =LiC1 . We then get:

\\ L
X
C

X +L 2C 2 +L C 2
-V^QC, +WC

V LA +L 2C2 +L C2 +^M*CX
C2 +L*C

(18)

LC\ 4-^5- / -Ml 4-^LV = ' 1 £2 ArLJV L2»f = 2+^-^,4-^V /rLxL», /,
M* L 2

l

"

2 +*i +V4&* +*i
1 1

(

2+
L

2

+V 4^ 3

+
L-

1

2
(19)

For the case of k
x
=0.25 and using for k2 the above value 0.01,

we get:

\,
2 2.25 —J.04. +0.062 sr~ = V~ -=^ = °-75 I

A-2 2.25 +^.04+0.0625

and

£ =0.86
\

2

The ratio of these two values as obtained from the curves are

X
3

= 68~°'85

For the case k
x
=0.1 we get:

\r-O-9
A,,

and the ratio of these two values as taken from the curves are

A
2 SO

From these results it would seem that the greater the ratio of

the localized inductance, which is in series with the antenna, is to

the inductance of the antenna, the more closely will the ratios of

the two frequencies as given by (17) approach the actual conditions

which take place in a wireless station.



Cohen.] Coupled Circuits. 253

It is self evident, of course, that by substituting the values of

the first two roots, as determined graphically, in equation (6), the

values of the frequency constants thus obtained will be approxi-

mately the same as those calculated by equation (16).

Now from equation (6) we have,

V 2 2

The first two roots which give the values of i±l are 58 ° and 68°

or 1.01 2 and 1.186 radians.

Therefore, we get

1.012
i , 1. 186

\ =
.
——

-

and /
2
= .

V 2^2 V 2^-2

From equation (16) we get:

_
2 _ 2L 2C2 +L C2 ±V4M2CtC2 +L 2C2

2

2{L 2

2C2^L,C1
L 2C2 -M 2C,C2 }

L / M 2 L 2

L M 2
\

2L 2C2 {i+k1
-k

2 }

I
-^2 ^1^2]

Using the corresponding values of k
x
=0.25 and k2

=0.01 we get:

O.88 - . I.02 , V

\ = and X
2
= (20)

V 2^-2 V 2^2

It is seen from (19) and (20) that the values of the frequencies

as computed by the two different methods differ by thirteen and

eighteen per cent respectively. Increasing the ratio of j
1 will

^2

bring the values of the frequencies as computed by the two
methods more closely together.

Washington, July 29, 1909.


