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INTRODUCTION.

A great many formulae have been given for calculating the

mutual and self-inductance of the various cases of electrical circuits

occurring in practice. Some of these formulae have subsequently

been shown to be wrong, and of those which are correct and appli-

cable to any given case there is usually a choice, because of the

greater accuracy or greater convenience of one as compared with

the others. For the convenience of those having such calculations

to make we have brought together in this paper all the formulae

with which we are acquainted which are of value in the calculation

of mutual and self-inductance, particularly in nonmagnetic circuits

where the frequency of the current is low enough to assure sensibly

uniform distribution of current. A considerable number of formulae

which have been shown to be unreliable or w^hich have been replaced

by others that are less complicated or more accurate have been

omitted, although in most cases we have given references to such

omitted formulae. Where several formulae are applicable to the

same case we have pointed out the especial advantage of each and

indicated which one is best adapted to precision work.

In the second part of the paper we give a large number of exam-

ples to illustrate and test the formulae. Some of these examples are

taken from previous papers by the present authors, but many are

new. We have given the work in many cases in full to serve as a

guide in such calculations in order to make the formulae as useful

as possible to students and others not familiar with such calcula-

tions, and also to facilitate the work of checking up the results by

anyone going over the subject. We have been impressed with the

advantage of this in reading the work of others.

In the appendix to the paper are a number of tables that will be

found useful in numerical calculations of inductance.

In most cases we have given the name of the author of a formula

in connection with the formula. This is not merely for the sake of

historical interest, or to give proper credit to the authors, but also

because we have found it helpful to distinguish in this way the various

formulae instead of denoting each merely by a number. The formulae

of sections 8 and 9, which are taken largely from a paper by one of

the present authors,^ are, how^ever, not so designated, although the

authorship of those that are not new is indicated where known.

^Rosa, this Bulletin, 4, p. 301; 1907,
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I. FORMULAE.

1. MUTUAL INDUCTANCE OF TWO COAXIAL CIRCLES.

MAXWELL'S FORMULA IN ELLIPTIC INTEGRALS.

The first and most important of the formulae for the mutual in-

ductance of coaxial circles is the formula in elliptic integrals given

by Maxwell:^

in which A and a are the radii of the two circles,

d is the distance between their centers, and

2-^]Ai

^{A^-ay-^d'
sm 7

F and E are the complete elliptic integrals of

the first and second kind, respectively, to modu-

lus k. Their values may be obtained from the

tables of Legendre, or the values of M -- 4'Tr-y/Aa

may be obtained from Table I in the appendix of

this paper, the values of 7 being the argument.

The notation of Maxwell is slightly altered

in the above expressions in order to bring it into

comformity with the formulae to follow.

Formula (i) is an absolute one, giving the mutual inductance of

two coaxial circles of any size at any distance apart. If the two

circles have equal or nearly equal radii, and are very near each other,

the quantity k will be very nearly equal to unity and 7 will be near

to 90°. Under these circumstances it may be difficult to obtain a

sufficiently exact value of B and B from the tables, as the quantities

are varying rapidly and the tabular differences are very large. Under

such circumstances the following formula, also given by MaxwelP
(derived by means of Ivanden's transformation), is more suitable

:

[2]

Electricity and Magnetism, Vol. II, ^ 701.
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in which Fy^ and E^ are complete elliptic integrals to modulus k^^

and

, r^— Tg .

i\ + r^

fj and fg are the greatest and least distances of one circle from the

other (Fig. i); that is,

The new modulus k^ differs from unity more than k^ hence 7^ is not

so near to 90° as 7 and the values of the elliptic integrals can be

taken more easily from the tables than when using formula (i) and

the modulus k.

Another way of avoiding the difficulty when k is nearly unity is

to calculate the integrals F and E directly, and thus not use the

tables of elliptic integrals, expanding F and E in terms of the

complementary modulus k' ^ where k' —-,^\ — k^. The expressions

for F and E are very convergent when k' is small.

+^:i:-('-i-~-r4)

i'3'5'7'

^2'^^ez' V /^' 1.2 3.4 5.6 7.8^

+

^2^4 V ^k' 1.2 3.4;

^2^4^6 V k' 1.2 3.4 5.6;

+ 2^4^6^8'^ V -^'' 1-2 34 P Py*
+

[3]
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WEINSTEIN'S FORMULA.

Weinstein ^ gives an expression for the mutual inductance of two

coaxial circles, in terms of the complementary modulus k' used in

the preceding series (3). Substituting in equation (i) the values of

F and E given above we have Weinstein's equation, which is as

follows:

M^\ir^Aa^^ ^k +^^^ +2^^^ ^16384 +

V ^128 ^1536 65536 ^

This expression is rapidly convergent when k' is small, and hence

will give an accurate value of M when the circles are near each

other. Otherwise formula (i) may be more suitable.

NAGAOKA'S FORMULA.

Nagaoka* has given formulae for the calculation of the mutual

inductance of coaxial circles, without the use of tables of elliptic

integrals. These formulae make use of Jacobi's ^-series, which is

very rapidly convergent. The first is to be used when the circles are

not near each other, the second when they are near each other.

Either may be employed for a considerable range of distances between

the extremes, although the first is more convenient. The first for-

mula is as follows:

where A and a are the radii of the two circles. The correction

term e can be neglected when the circles are quite far apart.

^^'.HO'-<Ov

= Wied. Ann. 21, p. 344; 1884.

•Phil. Mag., 6, p. 19; 1903.
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d being the distance between the centers of the circles, and k' the

complementary modulus occurring in equations (3) and (4).

Nagaoka's second formula is as follows:

M^A^ir-^Aa. 2(i:z^^;)2|log^Ji4-8^^ [6]

-^-©•+-<tj
2-ylAa

^{A^af^d'

k is the modulus of equation (i), but is employed here to obtain the

value of the ^-series instead of the values

of the elliptic integrals employed in (i).

This formula is ordinarily simpler in use

than it appears, because some of the terms

in the expressions above are usually neg-

ligible.

MAXWELL'S SERIES FORMULA.

MaxwelP obtained an expression for

the mutual inductance between two coax-

ial circles in the form of a converging se-

ries which is often more convenient to use

than the elliptical integral formula, and

when the circles are nearly cf the same

radii and relatively near each other the

value given is generally sufhciently exact.

In the following formula a is the smaller

of the two radii, c is their difference, A— a^

d is the distance apart of the circles as before, and ;

mutual inductance is then

^c'-^d". The

J/=:47rdlog^|^

\ 2a

j^^_^^+3^' ^+ 3<^^.

2a i6a^ 12CC

c'-6cd'

)

i6d^ 48a' L7]

Electricity and Magnetism, Vol. II, g 705.
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When c and d are small compared with a^ we have for an approxi-

mate value of the mutual inductance the following simple expres-

M^^iTa\\oi--2\ [8]

When the two radii are equal, as is often the case in practice, the

equation (7) is somewhat simplified, as follows

:

^=4-'^jlog5(i+£)-(2+^)) [9]

The above formulae (7) and (9) are sufficiently exact for very many

cases, the terms omitted in the series being unimportant when - and

-

are small. For example, if - is o.i, the largest term neglected in

(9) is less than two parts in a million. If, however d— a^ this term

will be more than one per cent, and the formula will be quite inexact.

Coffin' has extended Maxwell's formula (9) for two equal circles

by computing three additional terms for each part of the expression.

This enables the mutual inductance to be computed with consider-

able exactness up to d—a. Formula (i) is exact, as stated above,

for all distances, and either it or (5) should be used in preference to

(10) when d is large. Coffin's formula is as follows:

Ar=47ralog-T(i+^V^-5—^-i+ -^^^6-—=^F-8+ . . .)^
[ ^^\ 16^' 8x128/2*' 128V 2x128V' /

~V+ i6^^~i6xi28«*+6xi28V-8xr28'^'"^ '
' 7^ "^

We have extended Maxwell's formula (7) for unequal circles as

follows :

^

^This is equivalent to the approximate formula given by Wiedemann,

tT/— 47rrt<^log 2.45>, where / is the circumference of the smaller circle and c is the

same as r above.

'J. G. Coffin, this Bulletin, 2, p. 113; 1906.

^This Bulletin, 2, p. 364; 1907.
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^
1 ^V 2CL i6«' 32<a;'' 1024^*

_j^l±^ld}-^^cd^ \_/ ._y_^^ c^_6^
2048^^ / \ 2^ i6<3^^ ^ 48^^

4_ 19^'+ 534^'^'- 93^'

_

379^'+ 3030^'^'- 1845^^'\] r^ n
"^

6144^* 61440^' /JL^ J

When c=o, this gives the first part of series (10). When d— o^

the case of two circles in the same plane, with radii a and <3; + c, we

have

M^Airallo^-— (iH + -7—9— 5+—~ 4— —^77—5+ • • • I^
[ ^ <; \ 2a lea"" 32^' 1024^2* 2048^^ /

3c' _^_^^_^_^9fl__^79£l^_|_
2a i6a^ 48^^ 6144a* 61440^^

.

.)!["]

These formulae (11) and (12) give the mutual inductance with

great precision when the coils are not too far apart. The degree of

convergence, of course, indicates approximately in any case the

accuracy of the result.

The necessity for accurate formulae for the mutual inductance of

coaxial circles, which arises in connection with the development

and testing of other formulae as well as in the determination of the

mutual inductance of coils by the methods of the next section, is

fully met by the preceding formulae. It is only necessary to use a

sufficient number of decimal places to get any required accuracy

when using absolute formulae like (i) and (2), and some of the series

formulae give very high accuracy in many cases. The considerable

number of formulae available in most cases makes it possible to check

important calculations by independent formulae, and in general to

choose for any particular case the formula that is on the whole best

adapted.

For illustrations and tests of the above formulae see examples

i-ii, page65.
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2. MUTUAL INDUCTANCE OF TWO COAXIAL COILS.

ROWLAND'S FORMULA.

Let there be two coaxial coils of mean radii A and «, axial breadth

of coils b^ and b^^ radial depth c^ and ^3, and distance apart of their

mean planes d. Suppose them uni-

formly wound with 7t^ and u^ turns of

wire. The mutual inductance M^ of

the two central turns of the coils (Fig.

3), will be given by formula (i) or (4)^

and the mutual inductance Afoi the two

coils of 71^ and 11.^ turns will then be, to

2,first approximation^

The following second approximation

was obtained by Rowland by means of

Taylor's theorem, following Maxwell,

§ 700:

Fig. 3.

M^M^+^kb^Kf-^

d\M d^,
^ ' da'^ ' dA'

If the two coils are of equal radii but

unequal section,

d^M d^Af
{^i\

If the two coils are of equal radii and equal section, this becomes

12 dx da
[14]

The value of Af^ is preferably calculated by formula (i), but any

one of the foregoing formulae for the mutual inductance of coaxial
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circles adapted to the particular case may be used. The correction

terms will be calculated by means of the following:

d'^M^ k

da^ a
(3_.^)^_(a-..L^)^[

dx a\ \ — k

:[i5]

The equation (14) is equivalent to Rowland's equation, where 2|

and 27] are the breadth and depth of the section of the coil, instead

of b and <f, except that there is an error in the formula as printed in

Rowland's^ paper, | and t] being interchanged. The equations (15)

are equivalent to those given by Rowland, being somewhat simpler.^"

Formula (14) gives a very exact value for the mutual inductance

of two coils, provided the cross sections are relatively small and the

distance apart d is not too small. But when <^ or ^ is large or d is

small the fourth differential coefficients which have been neglected

become appreciable and the expression may not be sufficiently

exact.

RAYLEIGH'S FORMULA.

Maxwell " gives a formula, suggested by Rayleigh, for the mutual

inductance of two coils, which has a very different form from Row-
land's, but is nearly equivalent to it when the coils are not near

each other. It has been used by Rayleigh in calculating the mutual

inductance of a I^orenz apparatus and by Glazebrook (Phil. Trans.,

1883) in calculating the mutual inductance of parallel coils of

rectangular section employed in a determination of the ohm. It

may also be employed in calculating the attraction between two

coils. ^^ It is sometimes called the formula of quadratures, and is as

follows :

^^

i^=g^J/,+ 7l/,+^3+^.+^5+^6+^7+^8-2J4^^ [16]

9 Collected Papers, p. 162. Am. Jour. Sci. [3], XV, 1878.

^^ Gray, Absolute Measurements, Vol. II, Part II, p. 322.

^^ Electricity and Magnetism, Vol. II, Appendix II, Chapter XIV.
^^ Gray, Absolute Measurements, Vol. II, Part II, p. 403.

^^This Bulletin, 2, p. 370-372; 1906.

42840—08 2

I
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where M^ is the mutual inductance of the circle O^ and a circle

through the point i of radius ^— -, and similarly for the others,

Fig. 4.

t

1

1

1

1

1

h

3

5S?
1

I.

^^^---.^5

^^^^~"

8 ^'^^S

7

02

P

6

t

1

i

1

5

< &,

^ d >

Fig. 4.

For two coils of equal radii and equal section this becomes

HhM=-(M,+jW,+M,+M,;-^i^.) [17]

Equation (16) is Rayleigh's formula, or the formula of quadratures.

Instead of computing the correction to Af^ by means of the differen-

tial coefficients (13), eight additional values are computed, corre-

sponding to the mutual inductances of the single turns at the eight

numbered points indicated in Fig. 4, each with reference to the

central turn of the other coil. These M^s may be computed by

formulae (7) and (9) or (10) and (11), and the values of the constants

for the case of two coils of equal radii are given in the following

table, the radius being a in every case.
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Using (7)

Axial distance.

d

d

d

Radial distance.

+1

+
V-^+'j

Using (9) d—dj2
d + dj2

d-b,\2

MAGNITUDE OF THE ERRORS IN ROWLAND'S AND RAYLEIGH'S FORMULA.

The error e^ in equation (17), for two coils of equal radii «, dis-

tance between centers being d^ and section Z'X^r, depends on the

dimensions of the coil in a manner shown by the following expres-

sion:^*

(3^*4-3^- aoZ'VI , _

For a square coil the correc-

tion is a negative quantity,

showing that M by equation

(17) is too large, and the error

is proportional to the fourth

power of — , the reciprocal of the

distance between the mean planes of the coils. For a rectangular coil

in which b is greater than c the correction is negative so long as b is

not more than 2.5 times c. When b is still larger with respect to c

the correction becomes plus, the value of J^by (17) being too small.

Thus, for a coil of cross section 4 sq. cm, we get the following

values of the numerator of (18) as we vary the shape of cross section,

keeping bc—A^.

Fig. 5.

^*This Bulletin, 2, p. 373; 1906.
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Dimensions of coil. Error proportional to

b—2 C—2 — 224

b—2.^ c—\£ — 183

^=3 c^-'.zz — 67.5

b — d, c^\ + 451

b^S e=o.s + 11 ,988

^ Thus we see that the value of M as given by the formula of quad-

ratures may be too large or too small according to the shape of the

section, and that the error is proportional directly to the fourth

power of the dimensions of the section and inversely to the fourth

230wer of the distance between the mean planes of the coils. When
the section is small and <^ large the error will become negligible.

The error by Rowland's formula is^*

' ^ d^\ 360 144J I
48o<^*

J

^ ^^

This is negative for a square coil, but smaller than e^. For a coil of

section such that b= c-^2^ the error is zero, and for sections such

that->^2, the error is positive. Thus, for a coil of cross section 4

sq. cm, we get the following values of the numerator of (19) which

is proportional to the error by Rowland's formula.

Dimensions of coil. Error proportional to

—

b=2 C=2 — 64

^=2.5 ^=1.6 + 45

^ = 3 ^=''^'3?> + 353

^= 4 ^=1 + 1,736

^= 8 ^=0.5 +32,448

Thus the error is smaller by Rowland's formula for coils having

square or nearly square section, but larger for coils having rectangii-

lar sections not nearly square.

LYLE'S FORMULA.

Professor Lyle^^ has recently proposed a very convenient method

for calculating the mutual inductance of coaxial coils, which gives

very accurate results for coils at some distance from each other.

^*Tliis Bulletin, 2, p. 373; 1906.

^^•Pliil. Mag., 3, p. 310; 1902. Also this Bulletin, 2, p. 374-378; 1906.
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The mutual inductance is calculated from formula (i) or any

other formula for two coaxial circles, using, however, a modified

radius r instead of the mean radius a^ r being given by the following

equation when the section is square, b being the side of the square

section:

b^

\'^^) [20]

If the coil has a rectangular section not square, it can be replaced

by two filaments, the distance apart of the filaments being called the

equivalent breadth or the equivalent depth of the coil.

^'
12

, 2 /3 is the equivalent breadth of A

12
,
2 3 is the equivalent depth of B

[21]

The equivalent radius of A is given by the same expression which

holds for a square coil, viz:

4+ a^^)

In the coil B the equivalent fila-

ments have radii r-j-S and r— 8,

respectively, where

6

4.i

1 2
c

Fig. 6.

i'+i^)
The mutual inductance of two coils may now be readily calcu-

lated. If each has a square section, it is necessary only to calculate

the mutual inductance of the two equivalent filaments. For coils

of rectangular sections, as A, B, the mutual inductance will be the

sum of the mutual inductances of the two filaments of A on the two

filaments of B, counting njz turns in each. Or, it is 71^71^ times the

mean of the four inductances J/^g, J^^^, J/gg, M^^, where Jlf^^ is the

mutual inductance of filament i on filament 3, etc.

Lyle's method is of special value in computing mutual induct-

ances because it applies to coils of unequal as well as of equal radii.
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ROSA'S FORMUL^.16

Writing the mutual inductance of two coaxial coils of equal radii

and equal section as M— M^+ JM^ where M^ is the mutual induct-

ance of the central circles of the two equal coils of sections ^ X <r,

Fig. 5, and JM is the correction for the section of the coil, the value

of JM is as follows:

~
I

96<^^ ' d \(^2a^ i2d^ i2od^

6Z»*-f-6^*+5^V 3^«-3^«+ i4<^V-i4^V
,

yc^d' /^_ Sa 163

5760/a^V ' 504^' ' io24^*\ ^ 84/

For a square section, when ^= ^, this becomes

The last two terms of equation (23) are relatively small, so that we
may write, approximately:

JM-- W«^-.-^| M^a y d ^d^

These expressions for z/J/are very exact where the coils are near

together or even where they are separated by a considerable distance,

but become less exact as d is greater. They are therefore most reli-

able where formulae (14), (17), and (20) are least reliable. As form-

ula (24) is exact enough for most purposes, it affords a very easy

method of getting the correction for equal coils of square section.

Stefan's formula for the mutual inductance of two equal coaxial

coils (originally published ^^ without demonstration) is incorrect and

is not given here. It resembles equation (22), but is seriously in

error for coils at considerable distances.

^6 This Bulletin, 4, p. 348, (38) and (39).

"Wied. Anrialen, 22, p. 107; 1884.
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THE ROSA-WEINSTEIN FORMULA.

19

Weinstein's formula ^^ for the mutual inductance of equal coaxial

coils has been revised and corrected by Rosa, and the value of z/Af,

the correction for section, expressed separately. The expression

for JM is as follows :

^^

JM^ ^Tran.n, sin 4(F—E)(a+^) + ^A [25]

where F andF are the complete elliptic integrals to modulus sin 7,

Fig. 7 (as in equation i ) and

Fig. 7.

^ =^J(«i-«3-«3+ (2a2-3a3)cos'7+8a3COsM

^^
I^V'''"^ ^ +2a3+(2a3-[-3a3)cosVH-8a3COsM

The values of a^, a^, and a^ are as follows:

b'-c'-\
30^

For square section: a^=

~ 6oa^

a^ =

6oa^

b'

2od^ ^ 2od^

Formula (25) is a very exact formula for all positions of the two

coils, except when they are very close together.

Weinstein's original formula,^^ w^hich is much less accurate than

(25) for coils relatively near together, is not here given.

^^Wied. Annalen, 21, p. 350; 1884.

^^This Bulletin, 4, p. 342, equation (20).
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USE OF FORMULA FOR SELF-INDUCTANCE IN CALCULATING MUTUAL
INDUCTANCE.

One can sometimes obtain the mutual inductance of adjacent

coils, or of coils at a distance from one another, by means of a

formula for the self-inductance of coils. Thus, suppose we have a

coil of rectangular section, which we subdivide into three equal

parts, I, 2, 3, Fig. 8. Let Z be the self-inductance of the whole coil,

Ly be the self-inductance of any one of the three equal smaller coils,

and Zg be the self-inductance of two adjacent coils taken together.

Also let 3/12 be the mutual inductance of coil i

on coil 2, or of coil 2 on coil 3, and M^^ be the

mutual inductance of coil i on coil 3. Then,

Z= 3A+ 4J/,2+2^i3
Also, ^2=2^^+ 2^/12

,-. M..

and J/,.
L-\-L^—2^

[26]

Axis

Formula (26) will thus enable us to find the

mutual inductance of two coils of equal radii

adjacent or near each other by the calculation
'^' ' of self-inductances from such formulae as those

of Weinstein (67) and Stefan (69). These latter formulae are not,

however, exact enough when the section is large to permit us to

apply them to coils at any considerable distance from one another.

GEOMETRIC MEAN DISTANCE FORMULA.

The mutual inductance of two coaxial coils adjacent or very near

can sometimes be obtained by means of the geometric mean dis-

tances. This method is accurate only when the sections are very

small relatively to the radius. It can often be used to advantage in

testing other formulae, but not often in determining the mutual

inductance of actual coils.

Formula (7) gives the mutual inductance of two very near coaxial

coils in terms of the geometric mean distance, if r be replaced by i?.
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the geometric mean distance of the two sections. Formula (7) gives

M^ if r be used, where r is the distance between centers. Thus,

JM—\irank-S)log;^ [27]

-^r-

For coils A and C^ R<Cr and JMis positive; i?= 0.99770 r
" " A " B, i?>r and ^J4^ is negative; 7?= 1.00655 r

The same formula may also be used for squares not adjacent, but

only when quite near.^"

For illustrations and tests of the above formulse see examples

12-21, pages 71-77.

The preceding formulse can be used with entire

satisfaction to calculate the mutual inductance

of coaxial coils, especially those of coils of equal

1 radii. Formulse (16), (17), (20), and (21) apply

also to coils of unequal radii, but unfortunately

they are not as

accurate as some

of the others, ex-

cept when the
coils are r e 1 a -

tively distant or

have very small

cross sections.

The difficulty can

be overcome by
Fig. 9. subdividing each

of the two coils into two, four, or more equal parts, and taking

the sum of the mutual inductances of all of the parts of one on all

the parts of the other. This is a laborious operation, but in impor-

tant cases it should be done. As the subdivision is carried further

the results will approach a final value, and hence the results them-

selves show when the subdivision has been carried far enough.

d

Fig. 9a.

2"For other values of the geometric mean distances of squares in a plane see this

Bulletin, 3, p. i; 1907.
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Thus, suppose two coils A, B of square section are subdivided into

four equal parts and by the method of Lyle, formula (20), the mutual

inductance of the whole of B is computed on each of the four parts

of A. If the sum differs appreciably from the result obtained by

taking A and B as wholes in one calculation, then the four parts of

B may be taken separately with respect to the separate parts of A.

If one is doubtful whether this is sufficiently accurate, one of the

sections of A may be subdivided further and calculated with respect

to one section of B, to see whether there is any appreciable difference

due to this further subdivision. For coils of equal radii very accu-

rate results for near coils can be obtained much more easily by using

some of the other formulae.

3. MUTUAL INDUCTANCE OF COAXIAL SOLENOIDS.

There are several formulae for the calculation of the mutual

inductance of coaxial solenoids. Although few of these formulae

are exact, the approximate formulae often permit inductances to be

calculated with very great accuracy by using a sufficient number of

terms of the series by which they are expressed.

MAXWELL'S FORMULA.21

CONCENTRIC, COAXIAL SOLENOIDS OF EQUAL LENGTH.

The mutual inductance M of two coaxial solenoids of equal

length is given by the following expression, due to Maxwell, where

A and a are the radii of the outer and inner solenoids, respectively,

/ is the common length, and 7i^ and n^ the number of turns of wire

per cm on the single layer winding of the outer and inner solenoids,

respectively:

M— /[iT^d^n^n^ [/— 2Aa\
where

l-r-\-A a^ I A\ a' /i A"" ^A''

2A

Putting

a^ ( A^\ a' /i A^ 5^\
YSZV ~ r')~6^\2'^^l^~2 r^)

a' (1 8A^ 4yf sA^\
^A\y~yr'^ r'

~
r"' /+• '

'

2048^*

[28]

21 Electricity and Magnetism, Vol. II, ^ 678.
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M^^d^-n^a^n^nJ. is the mutual inductance of an infinite outer

solenoid and the finite inner solenoid, while JM is the correction

due to the ends.

Equation (28) is Maxwell's expression, except that we have car-

ried it out further than Maxwell did. This expression for M is

rapidly convergent when a is considerably smaller than A^ Fig. 10.

Equation (28) shows that the mutual inductance is proportional to

/— 2Aa; or the length / must be reduced by ^4a on each end. When
a is small and /is large a is 1/2, approximately. That is, the length

/ is reduced by A^ the radius of the outer solenoid.

1
— >•

j
A

a

5

1

1

1

I

1

i

1

1

Fig. 10.

For the case of two coils each of more than one layer the above

formula may be used, A and a being the mean radii, and n.^ and n^

the total number of turns per cm in all the layers. The result will

be only approximate, but usually less in error than if one uses the

formula of Maxwell § 679 quoted by Mascart and Joubert.^^

When the solenoids are very long in comparison with the radii,

formula (28) may be simplified by omitting the terms in Aj/^ A^jr^^

A^jr*^ etc. The expression for a then becomes

5-^"

i6A^ 128A' 2048^' [29]

Heaviside^'^ gives an extension of formula (29), but as it neglects

A A^
y, ^, etc., the additional terms are of no importance, being smaller

than the terms already neglected in (29).

22 Electricity and Magnetism, Vol, I, p. 533.

'^There are some misprints in Heaviside, 2, p. 277. The radius of the inner sole-

noid should be C2, of the ouler c^, and p is c^^lc^.
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ROITI'S FORMULA.

{Vol. 5, No. I.

For a pair of concentric, coaxial solenoids of which, the inner

solenoid is considerably shorter than the outer, we have the follow-

ing formula:^*

* T—

//t 7
^^^^"^i

1

^ -f
h a

tl

Fig. 11.

r ^'^Y I I \ «*^Y I I \

+ 64 V^J /,/;^ 128 \^; p/y/

- 256 W~^.7+ 1024 U^'~/^.">'+ • J
[30]

in which

.r—

/

/3i = VA'+ ^' where A^^- •

/= 4— /i=: length of inner solenoid.

.;i;= length of outer solenoid and A and a the radii.

This is for many cases a very convenient and very accurate

formula.

2* For the derivation and extension of this formula see this Bulletin, 3, pp. 309-310;

1907. This formula was originally given (without proof and without the last three

terms) in this Bulletin, 2, p. 130; 1906.
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GRAY'S FORMULA.

Gray ^^ gives a general expression for the mntual kinetic energy

of two solenoidal coils which may or may not be concentric, and

their axes may be at any angle (/>. The most important case in

practice is when the two coils are concentric and coaxial. In

that case the zonal harmonic factors in each term reduce to unity,

and half the terms become zero. Putting the current in each

equal to unity, the mutual kinetic energy becomes the mutual

inductance M.

Let 2;r= the length of outer solenoid

2/= " " " inner

y4 = radius of outer "

^= " " inner "

11^— number of turns per cm on outer solenoid

?22= " " ^' " " " inner "

Gray's expression with these changes becomes

M^ir'^a^A'n^n.^K^k^-\-K^k^-^K.X-^ . . . ] [31]

where K^^ K^^ etc., are functions of x and A^ and k^^ k^^ etc., are

functions of / and a.^^ When the ratio of the length of the winding

of the outer coil to the radius is -^^3 to i, ^5= 0, and if the same

condition holds for the inner coil, k^— 0. If in addition a is consid-

erably smaller than A^ the terms of higher order become negligible

and (31) reduces to

J/= j^~^ [32]

where d is half the diagonal of the outer coil, =^x^-[-A'^ . When
the dimensions depart slightly from these theoretical ratios the small

correction terms to (32) can be calculated.
'^^

SEARLE AND AIREY'S FORMULA.

The following expression for the mutual inductance of two con-

centric, coaxial solenoidal coils has been given by Searle and Airy."

^^ Absolute Measurements, 2, Part I, p. 274, equation 53.

2^ Rosa, this Bulletin, 3, p. 221.

^"Tlie Electrician (London), 56, p. 31S; 1905.
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"" ^ L^ 2^*' 4 8^«
'

8

^^(8;t:^- 20.rM^+ 5^') (64/^- 336/V+ 280/V- 35^^)
"I

16^''
'

64 • • J
[33]

The notation of {^Z) ^iiff^rs slightly from that used by Searle

and Airev.

Fig. 12.

Equation {^Z) ^^^ been extended and put for greater convenience

in calculation into the following form :

^^

where

A'a'
1^4A A'a'

32^^ i^e^H" • • •] [34]

^.=3-4:4-.

35 35
^"

X.=^-
16 2 A' ^^A^-^A^

A= 3-4^

r 5 ^\ ^'A=— 10-^+4-1
* 2 ^ ^

A=M-¥r:+-^-416 2 <2 <2 <2

T 63 105/'
, . /* .1'

,

/«

'Rosa, this Bulletin, 3, p. 224.
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This reduces to (32) when the terms after the first are negligible,

as they are when the conditions assumed for (32) are fulfilled. The
above expressions for L^^ X^ show what these conditions are in order

to make the second and third terms zero. If l^ja^ is slightly more

or less than ^, (34) gives the value of the second term which is

neglected in (32), etc.

COHEN'S FORMULA.^9

This is an absolute formula for two coaxial, concentric solenoids

of lengths 2L and 24, Fig. 13-

M^A,irn^niy—V^

F= -{A^-ay\F{I\k', e)-E{k\ e)]-EF{k', e)\

c'-{A'-6Aa-\-a'y-2{A'-ay ^ [35]

^/(A-i-ay f ^. B-c(A'-ay
3 2

Fi is obtained from Fby replacing <; by ^j,

F and E are the complete elliptic integrals of the first and second

kind to modulus k^ where Ji" — ^ —
-^

F{k' ^ 0) andF(k\ 6) are the incomplete elliptic integrals of modulus

k' and amplitude ^,

2U

k'^-i k'^.i ,
4^^^

,

I

1

t

2U

{A-af+c"
1 1

1 1

1 1

1 1

1 t

1 1

!< c -'

1 \A

\a 1

1 j

1 j

{A^-aJ+<^{A+aY

1

1

1

Fig. 13.

2* This Bulletin, 3, p. 301; 1907.
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RUSSELL'S FORMULAE .=^0

[ Vol. 5, No. I.

Russell's formula for coaxial solenoids in the notation of this

paper is

M—\iT^a^n^n. R^\^-^-q,k,^-lJ-q,k,^-^-^l^
2.4.6

2.4.6.8.10^*^^

q,k^

2.4.6.

rIj. ^g/l'/—-. -^3/1^2*— terms with above coefs. [36][224 JJ

where

4y4<^

qn
4.Aa

I I
^

3.5....2;g-3 ^
/^

* 2 '

4 . 6 .... 27/— 2 a

^ _{A±af
2 ' 2

' a

(A-^af 1 1.3 ^
^' 4^^^ ^' 3' 2.4' ^

etc.

^ and a are the radii of the outer and inner cylinders respectively,

2/1 and 2/2 their lengths, Fig. 13, and ;2j, 7t^ the number of turns of

wire per cm in the two windings. This formula applies only when
the inner coil is shorter than the outer. For two coils of equal length

the second part of the above formula is not convergent, and hence it

must be replaced by an expression in elliptic integrals. The formula

thus becomes (equation 42 in Russell's paper)

AI= 47r'd^n^n^ R^ h 2. ^k^ = ... as above

-^^^:^.iHn,\(A-^+a^){F-E)- 2 AaF^ [37]

^''Alexander Russell, Phil. Mag,, Apr. 1907, p. 420.
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This formula gives an accurate result for equal solenoids of con-

siderable length, but jMaxwell's formula (28) is just as accurate and

much more convenient.

For short coils neither (36) nor {^2)1^ will apply, but for that case

as well as other cases Russell's general formula may be used. As
the latter is equivalent to (35) it is not here given.

ROSA'S FORMULA FOR SINGLE LAYER COILS OF EQUAL RADII AND EQUAL
BREADTH.

The mutual inductance of two coaxial single layer coils of equal

radii and equal breadth is given by the following expression

:

where M^ is the mutual inductance of the two parallel circles at the

centers of the coils and JM is given by the following expression: ^^

ooooQonon 0000(^)0000

Fig. 14.

JMr=^ 47r7i'a\ --jg-f A log -T-^ )-^ A log -y - f^ )
li2d^ S2a\ ^ d 6/ io24«'\ "^ d 60/

2(i28)VV ^ d 35/ (i28)VV ^ d 25207
L3»J

d' b'

()6oa^d^ 6od* io2^a\ ^ d 60 /60 j"^ 168^ '

360^'

J

1

This expression wall give a very accurate A'alue of JM for two coils

not nearer together than their breadth if a is considerably greater

than b^ the breadth of the coil.

OTHER FORMULA.

Himstedt has given several formulae for different cases of coaxial

solenoids. The first
^"^

is for the case of a short secondars^ on the

^^Rosa, this Bulletin, 2, p. 351.

42840—08 3

^nvied. Annalen, 26, p. 551; 1S85.
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outside of a long primary. The forrnula is very complicated and

the calculation tedious. B}^ putting the shorter coil inside, the for-

mula of Roiti or of Searle and Airey may be used to much better

advantage.

Himstedt's second expression is for the case of two coaxial solen-

oids not concentric, the distance between their mean planes having

any value; the radius of one is supposed to be considerably smaller

than the other. This also is a very complicated formula, involving

second and fourth derivatives of expressions containing the elliptic

integrals F and E, Gray's general equation is much simpler to

calculate. This is not, however, an important case in practice, and

we do not therefore give Himstedt's equation. Himstedt's third

equation is general and applies to two coaxial solenoids of nearly

equal or very different radii, which may or may not be concentric.

This expression of Himstedt's consists of four terms, each of which

is a somewhat complicated expression involving both complete and

incomplete elliptic integrals. A less inconvenient general expres-

sion for M in elliptic integrals is given above (35).

For illustrations and tests of the above formulse see examples

22-24, page yy.

4. THE MUTUAL INDUCTANCE OF A CIRCLE AND A COAXIAL
SINGLE LAYER COIL.

LORENZ'S FORMULA.

The problem of finding the mutual inductance of a circle and a

coaxial single layer winding was first solved by Ivorenz.^^ Assuming

that the current was uniformly distributed over the surface of the

cylinder, forming a current sheet, he integrated over the length of

the cylinder the expression for the mutual inductance of a circular

element and the given circle. This expression is an elliptic inte-

gral. Ivorenz reduced the integrated form to a series and gave the

following formula for the mutual inductance of the disk and solenoid

of what is now called the lyorenz apparatus. He called it, however,

the constant of the apparatus instead of mutual inductance, and

33Wied. Annalen, 25, p. i; 1885.

Ouvres Scientifiques, 2, p. 162.
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denoted it by C. It is of course the whole number of lines of

magnetic force passing through the disk due to unit current in the

surrounding solenoid.

M= irqf^

[G(«.)+ew]

ew=W"^hi?^+r6!:e-«)

+ 35 ?Y33 9„ ,

„A
,

1

[39]

/)= radius of the disk, Fig. i.

r== radius of the solenoid.

2^= length of winding of solenoid.

^= yo/r= ratio of the two radii.

d=— = distance between centers of successive turns of wire.
n

If the disk be not exactly in the

mean plane of the solenoid, and

x^ be the distance from the plane

of the disk to one end of the

solenoid and x.^ to the other. i L

Fig. 15.

Then Q{a^ is found by substi-

tuting the values of a^ in equa-

tion (39) above, and Q{a^ by

using the value of a.^ for a in the same equation. The sum of these two

quantities multiplied by—^ gives the constant of the instrument;

that is, the mutual inductance sought.

As Lorenz gave the expression for the general term of (39), his

equation can be extended. The following is the general term:

1.3 . . . . 2;;2—

I

I d^la—\\^^h
e(a) = 27r^^2m+i^

2m 1.2 ... . (t/^+i) do!X-^)



32 Bulletiit of the Bureau ofStandards. iVoi.s.No. /.

JONES'S FORMULiE.

Two solutions of the above problem were given by Jones,^* both

in terms of elliptic integrals. The current was considered to flow

not in a current sheet, but along a spiral winding or helix. The

first solution was in the form of a series, convergent only when

OjA, Fig. 1 6, is less than the difference in the radii of inner and

outer coils; that is, when O^A is less than A— a. As this is a
* . -X ^ serious limitation, and the formula is a

1 laborious one to use, it is not here given.

I
The second solution is exact and gen-

^ eral, and is in terms of elliptic integrals

of all three kinds. The second formula

is as follows:

^-^ ^^ M,= e{A+ a) cl^^jf+~{F- n)[ [40]

J/^ 3= mutual inductance of helix O^A,

Fig. 16, with respect to the disk S
in the plane of one end.

— 2iT7i^ i/?2= pitch of winding, %—
^^'

' whole angle of winding.

F^ E^ and 11 are the complete elliptic integrals to modulus k^

where

4^^
sinV,.^=z4^. .-=i-.l

'~{A-\-aJ-Yx''' '' ~{AAraf
n, the complete elliptic integral of the third kind, can be expressed

in terms of incomplete integrals of the first and second kinds, and

the value of Mq can then be calculated by the help of IvCgendre's

tables; see example 27. The calculation is, however, extremely

tedious, especially when the value is to be determined with high

precision.

Campbell has given Jones's formula (40) a slightly different form,^^

somewhat more convenient in calculation, as follows:

3*
J. V. Jones, Proc. Roy. Soc, 63, p. 198; 1898. Also, Trans. Roy. Soc, 182, A;

189 1. Jones's first formula was given in Phil. Mag., 27, p. 61; 1889.

^^A. Campbell, Proc. Roy. Soc, A, 79, p. 428; 1907. There is a misprint in the

formula as given in Campbell's paper. It was, however, used correctly in the

numerical calculations given in the paper.
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M-- 2iTn,nlA-\-aj^^^{F-E)-^'^f [41]

where 7i^ is the same as n above, the number of turns per cm on the

solenoid, n., is the number of turns in the secondary coil (in the

above case it was taken as one), A is the greater and a the less of

the two radii (in the above case A was the radius of the solenoid

and a of the circle within' ancl.

where F{k) and Fif) are the

complete elliptic integrals to

modulus k, and F[k\(3) and F
(/^',/3) are the incomplete elliptic

integrals to modulus k' and am-

plitude yS; ^' = cos7, P^djk';
k, c^ and c' are given above. If

Axis

Fie. 1'

a secondarv circle or coil has a

radius greater than that of the solenoid, the same formula can be

used if A is taken for the radius of the larger secondary and a is the

radius of the solenoid.

ROSA'S FORMULA."^

The following formula gives the mutual inductance of a single

layer coil of length x and a coaxial circle of radius a in the plane

of one end of the coil, as shown in Fig. 16. It is the same quan-

tity represented by J/ of equations (39) and (41 ) and Mq of (40).

2^'-a\\T
, 3

d* '64 rf" "^^^512 ^'^'^'"^1024^''^OA— 7 J-

231 ^"-^"v^ 429 ""'-i'\.
,

+4096 d''
'^*+ 16384 d''

^'"+ [42]

-^2= 3-4^2

^• = 2-^°J-

^'This Bulletin, 3, p. 209; 1907.
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_35 T^^x^ .r* x^

_23i 1155 :r^ Ii55;t:* x^ x^ x^^

/3;= radius of disk or circle S, Fig. 2.

^ = radius of the solenoid.

;t:= length OjA of one end of the solenoid.

d='yJx^-\-A'^ = \idi\i the diagonal of the solenoid.

iVis the whole number of turns of wire in the length x.

This formula is ver}^ easy to use in numerical calculation,

notwithstanding it looks somewhat elaborate. The logarithm

a^A^
of —TT", multiplied by 2, 3, 4, etc., gives the logarithm of the corre-

sponding factor in each of the other terms. Similarly, the various

x^
terms X^^ X^ etc., contain only powers of ^2 besides the numerical

coefficients. It is hence a far simpler matter to compute M with

high precision by this formula than by Jones's formula, the latter

containing as it does elliptic integrals of all three kinds and involv-

ing the tedius interpolations for incomplete elliptic integrals.

If the secondary circle has a larger radius than the solenoid, A
will be the radius of the circle and a the radius of solenoid. In

every case A is the greater and a the less of the two radii, and d is

^A'-Vx\
Equation (42) may be written

where n^ is the number of turns of wire per cm, x is the length of

the coil, Fig. 16, and 6' is the value of the quantity in brackets in

(42), which is always somewhat greater than unity. This may also

be put as follows:

M= a''ny~£\s=^ a'n.RS

or, [43]
M=a'n,K
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The quantity R depends on x\d;

solenoid. 6" depends upon x\A^

a\A^ and A\d; that is, upon the

relative sizes of the inner circle

and the solenoid and the shape

of the solenoid. If we have the

value of RS^ or K of equation

(43) for a given solenoid and

circle, we can get M by multi-

plying by a^n^^ and for any other

system of similar shape but dif-

ferent size by multiplying the

same value of K by a^n^. The
values of the constant K for

that is, only upon the shape of the

i^

21 /
/

^.1

i

la

i /

'/d

1

,

Fig. 18.

various values of a\A and x\A are given in Table III, page 113.

If the disk or circle be in the center of a solenoid of length 2x

(Fig. 18), the value of M is of course double that given by using x.

If it be not quite in the center, the value ofM must be calculated

for each end separately.

For illustrations and tests of the above formulae see examples 25,

26, and 27, page 83.

5. THE SELF-INDUCTANCE OF A CIRCULAR RING OF CIRCULAR
SECTION.

KIRCHHOFF'S FORMULA.

The formula for the self-inductance of a circle was first given by

KirchhofE^^ in the following form:

L—2l\ log 1.508 [44]

where / is the circumference of the circular conductor and p is the

radius of its cross section. This is equivalent to the following:

^=4H logy -1-75 [45]

37pogg Annalen, 121, p. 551; 1864.
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a being the radius of the circle, Fig. 19. These formulae are

approximate, being more nearly correct as the ratio pja is smaller.

MAXWELL'S FORMULA.

A more accurate expression, obtained by means of Maxwell's

principle of the geometrical mean distance, is the following:

Substituting in this equation the value of the geom-

etrical mean distance for a circular area, R=:/3^~^ =
.7788/5, we obtain ^^

Z= 47rdr i+o.ii37^J log ^-
[47]

p'

•0095^-1.75

Fig. 19.

This is a very accurate formula for circles in which

the radius of section p is very small in comparison

with the radius a of the circle. The geometrical

mean distance R has, however, been computed on

the supposition of a linear conductor, and can only

be applied to circles of relatively small value of pja^ and the square

of the geometrical mean distance is used for the arithmetical mean
square distance in the second order terms. We must therefore

expect an appreciable error in formula (47) when the ratio pja is not

very small. Formulae (44), (45), and (47) have been deduced on the

supposition of a uniform distribution of the current over the cross

section of the ring.

If the ring is a hollow circular thin tube, or if the current in the

ring is alternating and of extremely high frequency, so that it can

be regarded as flowing on the surface of the ring, the geometrical

mean distance for the section would be the radius /?, and we should

have instead of (47) the following by substituting R— p^

2^ Wied. Annalen, 53, p. 928; 1894.
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In the case of solid rings carrying alternating currents of moder-

ate frequency the value of L would be somewhere between the val-

ues given by (47) and (48).

WIEN'S FORMULAE.

Max Wien^^ has given the most accurate formula for the self-

inductance of a circle, as follows:

Z= 4^«{(i +
| J,)

log ^-.0083^-1.75} [49]

It will be noticed that the formula differs very slightly from (47).

Neglecting the terms in p^\a^ we obtain from either (47) or (49)

Kirchhoff's approximate formula.

If the current be not distributed uniformly over the section of the

wire, but the current density at any point is proportional to the

distance from the axis of the ring, Wien's formula for the self-

inductance is

Z=4T«j(i + i^')log^-.092^[-i.75[ [50]

which differs very slightly from (49).

This would apply to the case of a ring revolving about a diameter

in a uniform magnetic field.

As would be expected, (50) gives a greater value than (49).

RAYLEIGH AND NIVEN'S FORMULA.

Rayleigh and Niven gave^^ the following formula for a circular

coil of n turns and of circular section :*^

Z= 4-.^.j(i +|,jlog^+^-i.75[ [51]

When ;^=i, this will be the self-inductance of a single circular

ring. It agrees with Wien's, except as to one term, which is

2 2

^— instead of —0.0083-^.
24^^ '^^'

^^Wied. Annalen, 53, p. 928; 1894.

^^Rayleigh's Collected Papers, Vol. II, p. 15.

**^ Neglecting the correction for effect of insulation and shape of section of the

separate wires.
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If used for a coil of more than one turn, the expression for L
(whether obtained from (51) or from one of the preceding more

accurate expressions) must be corrected for the space occupied by

the insulation between the wires and for the shape of the section.*^

J. J. THOMSON'S FORMULA FOR RING OF ELLIPTICAL SECTION.

If the circular ring has an elliptical section the approximate

formula for its self-inductance (corresponding to (45) for a circular

section) is''^

where a and /3 are the semi-axes of the ellipse, and a is the mean
radius of the circular ring.

The formulae of Minchin,*^ Hicks,** and Blathy *^ we have else-

where *^ shown to be incorrect, and hence they are not here given.

6. THE SELF-INDUCTANCE OF A SINGLE LAYER COIL OR
SOLENOID.

The following approximate formula for the self-inductance of a

long solenoid is often given

:

Z= 47rV</ [53]

where a is the mean radius, n^ is the number of turns of wire per

cm, and / is the length, supposed great in comparison with a.

There is a considerable error in this formula, due to the end effect,

but the variations in L due to changes in / are almost exactly pro-

portional to the changes in /, and hence this formula may be used

for calculating the corresponding variations in Z.

RAYLEIGH AND NIVEN'S FORMULA.

The following formula*^ for the self-inductance of a single layer

winding on a solenoid is very accurate when the length b is small

compared with the radius a^ Fig. 20 :

*^See Rosa, this Bulletin, 3, p. i; 1907.

'*-J. J. Thomson, Phil. Mag., 23, p. 384; 1886.

«Phil. Mag., 37, p. 300; 1894.

4^ Phil. Mag., 38, p. 456; 1894.

^^ London Electrician, 24, p. 630; April 25, 1890.

"^•^This Bulletin, 4, p. 149; 1907.

*^Proc. Roy. Soc, 32, pp. 104-141; 1881. Rayleigh's Collected Papers, 2, p. 15.
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Z,= 4-^;rj log ^^-^^^ log y+ J}
[54]

^ is the whole number of turns of wire on the coil, and the radius

is measured to the center of the wire. The length b is the viea^i

over-all length including the insulation on the first and last

wires if the coil is wound closely with insulated wire. See also

page 41.

The self-inductance L^ is, however, not the actual
[^o""o"c'Jo

self-inductance of the coil, but the current sheet 1

value ; that is, it is the value of the self-inductance !

if the winding were of infinitely thin tape, so that
1

the current would cover the entire length b. To get \

the actual self-inductance L for an}- given case one
j

must correct Z., by formula (59) below. The same
j

remark applies to all the formulae in this section for

Lg. The approximate formula (53) is too rough to

make it worth while to apply such a correction.

For a coil in which the axial dimension b is zero and

the radial depth is ^, the following current sheet for-

mula of Rayleigh and Xiven gives the self-inductance:

0000000

A,= 4-««jlog^-^+^,(log^+^f)] [55] Fig. 20.

This is not an important case in practice.

Formulae (54) and (55) may be obtained from (67) by making*

first <f=o and then b= o.

COFFIN'S FORMULA.

Coffin*^ has extended formula (54) so that it is very accurate for

coils of length as great as the radius, and sufficiently accurate for

most purposes for coils considerabl}' longer than this.

L^= ,^an |log _-^+^,(log -j+~^)-j^^ ^^^ T-3)

+_2^ ^Ylog 8-_^^\ 35 q^ 8. 43i\j
^ q131072 ^'\ ^ b 120/ 4194304 a\ ^ b 420/J
"-^ -

*8This Bulletin, 2, p. 113; 1906.
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LORENZ'S FORMULA.

Lorenz first gave*^ an exact formula for the self-inductance of a

single layer solenoid. It is, like the others, a current sheet formula,

and requires correction by (59) for a winding of wire, but applies to

a solenoid of any length. Changing the notation slightly Lorenz's

formula as originally given is as follows:

where k=—^—73 and B and B are complete elliptic integrals of the

first and second kind to modulus ^, and a^ b^ and n are the radius,

<. h
^.QO.o.o.o.oojogo.oiioo^oo^

0000 00 coo 000 000 0000
Fig. 21.

length, and whole number of turns of wire, respectively. By simple

substitutions the formula may be put into the following form,

where d is the diagonal of the solenoid = J/^a^-^b^ \

B,= ^^\d{^a'-b')B-^db'B-^a' \ [58]

Coffin derived^*' an expression for B in elliptic integrals which is

equivalent to (58), and also obtained (58) from an expression " attrib-

uted to Kirchhoff.

Formula (58) may be written

^^Wied. Annal., 7, p. 161; 1879. Oeuvres Scientifiques de L. I^orenz, Tome 2, i,p. 196.

^'^This Bulletin, 2, p. 123, equation (31).
^^ This Bulletin, 2, p. 127, equation (36), The notation is slightly different.
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or L.^an^Q [58] a

where a is the radius of the solenoid, n is the whole number of

"Za
turns on the coil, and Q is the function of ^- ( = tan 7) contained in

the square brackets. We have calculated Q for various values of

tan 7 from 0.2 to 4.0 and given them in Table IV, p. 114. This

table will be found useful in calculating L^ for solenoids when tan 7
has one of the values given in the table, as all calculation of elliptic

integrals is avoided. In problems where the length and diameter

can be chosen at will, as in the designing of apparatus, this method of

calculating L will be most frequently useful. The values of the con-

stant Q given in the table have been computed with great care, so that

they give very accurate values of Z^,, for long as well as short solenoids.

In calculating the value of L^ by means of formula (54), (56), (58),

or (58(1;) one should use for the length b the over-all length including

the insulation {A B^ Fig. 22, and not a b)
___^

for a close winding of insulated wire, or i«H ^&i

n times the pitch for a uniform winding -f^^pS^O-F-^"^^^^^

of bare or covered wire, which is, of

course, the same as the length from cen- ^^^^^^^^^^^^^^^^^

ter to center of n^\ turns. The radms

a is the mean radius to the center of the wire. The same method of

taking the breadth and depth b and c applies in the formulae of

section 7. See also remarks under example 24.

ROSA'S CORRECTION FORMULA.

Rosa has shown^^ that the above formulae (54 to 58) apply accu-

rately only to a winding of infinitely thin strip which completely

covers the solenoid (the successive turns being supposed to meet at

the edges without making electrical contact) and so realizing the

uniform distribution of current over the cylindrical surface which
has been assumed in the derivation of all the formulae. A winding

of insulated wire or of bare wire in a screw thread may have a

greater or less self-inductance than that given by the current sheet

formulae above according to the ratio of the diameter of the wire to

^^This Bulletin, 2, pp. 161-187; 1906.
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the pitch of the winding. Putting L for the actual self-inductance

of a winding and L^ for the current sheet value given by one of

the above formulae,

L^L-JL
The correction JL is given by the following expression:

JL^A^iran [A-^-B] [59]

where as above a is the radius, 7i the whole number of turns of wire and

A and B are constants given in Tables VII and VIII, pp. 1 16 and 117.

The correction term A depends on the size of the (bare) wire (of

diameter d) as compared with the pitch D of the winding ; that is,

on the value of the ratio d/D. For values of djD less than 0.58, A
is negative, and in such cases when the numerical values of A are

greater than the value of /?, which is always positive, the correction

z/Z will be negative, and hence L will be greater than L^. See

examples 32 and
2,Z-

THE SUMMATION FORMULA FOR L.^^

If we have a single layer winding on a cylinder the self-inductance

is equal to the sum of the self-inductances of the separate turns plus

the sum of the mutual inductances of each wire on all the others.

Thus if there are n turns

L^nL,^2(7i-Y)M,,^2{n-2)M,,-^2{ii-i)lA^,^ .... zM^^, [60]

where L^ is the self-inductance of a single turn, M^^ is the mutual

inductance of the first and second turns
1 2 3 4 5 6 7

0009000 Qj- ^^-^y ^^Q adjacent turns, M^^ is the

I mutual inductance of the first and third

^ or of any two turns separated by one,

I

etc., and M^^^ is the mutual inductance

J ^ of the first and last turns. For a coil of

Fig. 23. four turns this becomes

L^ should be calculated by formula (49) or any formula for circles,

and JZ^g, etc., by (9) or (10). When the number of turns on the

coil is small formula (60) is very convenient, and gives very accurate

results.

^'^ Kirchhoff, Gesammelte Abhandlungen, p. 177.
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STRASSER'S FORMULA.

Strasser^* has derived a formula for the self-inductance of a single

layer coil of few turns from (60) by substituting for L^ its value as

given by formula (45) and for the various ^l/'s their values as given

by (9). Strasser's formula with slight correction and some changes

in notation is as follows :

^"^

Z= 47r^ n\\oz ^-i-75)+^<?^-i)nog ~-2\-A

where n is the whole number of turns, d is the pitch, or distance

between the centers of two adjacent turns, a is the mean radius of

the coil, p is the radius of the section of the wire, and A and B are

constants given by Table V, page 115, for values of n up to 30. For

coils of a larger number of turns (or indeed any number of turns)

the value of L can be accurately calculated by (69) and (72) or by

(58) and (59).

SELF-INDUCTANCE OF TOROIDAL COIL OF RECTANGULAR SECTION.

The first approximation to the self-inductance of a toroidal coil

(that is, a circular solenoid) of rectangular section, wound with a

single layer of ;/ turns of wire is

Ls=2nVi log ^2 [62]

where h is the axial depth of the coil, and 7\ and r^ are the inner and

outer radii of the ring. Fig. 24. Formula (62) is exact for a toroidal

core enveloped by a current sheet, or for a winding of 71 turns of

infinitely thin tape covering the core completely, the core within

the current sheet being h cm in axial height and {r^—r^ cm in

radial breadth.

^Wied. Annal., 17, p. 763; 1905.

^^ Strasser uses the formula for Z as: Z=47ra( log -+0.333 Y This is not quite

correct. It should be

Zi=47ra(^log— -i.75j==47ralogr-— i.75+loge8j=47r«Mog-4-o.32944\



44 Bulletin ofthe Bureau ofSta7tdards. [ Vol. s, No.

When the core is wound with round insulated wire, the self-

inductance is affected by those lines of force within the cross section

of the wire itself, and by those linked with each separate turn of

wire in addition to those running through the core. Rosa has

shown ^® that the total self-inductance may be more or less than the

current sheet value given by (62) according to the size of the wire

and the pitch of the winding. In every case, however, the correct

value of the self-inductance is derived from the current sheet value

U- r-j

< tr,

\

i- . 4

X
<

Fig. 24.

Lg by subtracting a correction term ^Z, which is equal to twice the

length of the wire multiplied by the sum of two quantities A and

B, Thus
L= L,-27il(A^B) [63]

where n is the whole number of turns in the winding, / is the

length of one turn, A is a. quantity, depending on the diameter of the

wire and the pitch of the winding, given in Table VII, and B is

0.332. When A is negative and greater than B^ L is greater than

Lg. This occurs when the pitch of the winding is more than 2.5

times the diameter of the (uncovered) wire.

Frohlich's formula ^^ based on the assumption that a winding of

round wires is equivalent to a thick current sheet has been shown

to be incorrect.
^^

^^ This Bulletin, 4, p. 141; 1907. ^^ Wied. Annal., 63, p. 142; 1897.

^^This Bulletin, 4, p. 141; 1907.
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7. THE SELF-INDUCTANCE OF A CIRCULAR COIL OF RECTANGU-
LAR SECTION.

MAXWELL'S APPROXIMATE FORMULA.

Maxwell first gave^^ an approximate formula for the important

case of a circular coil or conductor of rectangular section, Fig. 25,

as follows:

8aL 47ra;^^(log^^_2J [64]

where R is the geometrical mean distance of the cross section of the

coil or conductor. The current is supposed uniformly distributed

over this section.

The value of R for any given shape of rectangular section is given

by (103). Its value for several particular cases

is given in the table of page 60. It is ver}- nearly

proportional to the perimeter of the rectangle and

approximately equal to 0.2235 (a+z^) where a and

/3 are the length and breadth of the rectangle.

Formula (64) is derived from (8) by putting

R^ the geometrical mean distance of the area of

the section of the coil from itself, in place of r,

the distance between two circles. If we use (9)

instead of (8) for this purpose, we shall have a

closer approximation to the value of L. Thus,

Axis

Fig. 25.

i:= 47ra;2'<|log-^ (-£)-("+£)! [^5]

We have placed R^ in place of d^ in the second order terms, which

is of course not strictly correct, as we should use an arithmetical

mean square distance instead of a geometrical mean square distance.

(See p. 63.) Nevertheless, (65) is a much closer approximation

than (64).

PERRY'S APPROXIMATE FORMULA.

Professor Perry has given ^" the following empirical expression for

the self-inductance of a short circular coil of rectaneular section

:

59 Elect, and Mag., §706.

42840—08 4

'John Perry, Phil. Mag., 30, p. 223; 1890.
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Z= ^^!^ [66]

in which n is the whole number of turns of wire, a the mean radius,

b the axial breadth, c the radial depth. As in all the formulae of

this paper, the dimensions are in centimeters and the value of L is

in centimeters. This formula gives a good approximation to L as

long as b and c are small compared with a.

WEINSTEIN'S FORMULA.

Maxwell's more accurate expression for the self-inductance of a

circular coil of rectangular section^^ was not quite correct. The
investigation was repeated by Weinstein,^^ who gave the following

formula:

L,f— ^iran^ (X-|-/>t)

where

^= log^-f^-y-^ log i^-^^n-^ log (1+^^)

[67]

+ ^.rnog(i + l,)+ -J.r-_|jtan-x,

-i.6'7Tx'+ 2>-^x' tan-^r-^i log(i+a'^)+ -V log(i+p)J

b and c are the breadth and depth of the coil and x—-.

Weinstein's formula for the case of a square section, where b— c^

reduces to the following simpler expression

:

L,,= 47r«?n (^ +2^2Wy + .03657^,-- 1.1949141 [68]

This is a very accurate formula as long as cja is a small quantity.

The current is supposed distributed uniformly over the section of

the coil, and hence for a winding of round insulated wire correction

must be made by formula (72).

^^Phil. Trans., 1865, and collected works.

^nVied. Annal., 21, p. 329; 1884.
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STEFAN'S FORMULA.

Stefan^^ simplified Weinstein's expression (67) by collecting

together terms depending on the ratio oi b X.o c and computing two

short tables of constants y\ and y.^. His formula is as follows

:

The values of y\ and y^ are given in Table VI, page 115, as functions

of x— b\c or c\b; that is, x is the ratio of the breadth to the depth of

the section, or vice versa, being always less than unity.

For the method of taking the dimensions b and c of the cross sec-

tion see p. 99, section 6. Also example 40, p. 99.

LONG COIL OF RECTANGULAR SECTION; I. E., SOLENOID OF MORE THAN
ONE LAYER.

ROSA'S METHOD.

When the coil is so long that the formula of Stefan is no longer

accurate, the self-inductance may be accurately calculated by a

method given by Rosa.^*

In Figs. 26, 27, and 28 are shown three coils, having the same

length and mean radius. The first h

is a single winding of thin tape

and the self-inductance, calculated

by a current sheet formula, is L^.

The second is a single layer of

wire of square section (length ^,

depth c^ and b\c turns) and its self-

inductance is Z,^, the current being

supposed uniformly distributed

over the area of the square con-

ductors. The third is a winding ^^^- ^^•

of round insulated wire of length b^ depth <f, and any number of lay-

ers, and its self-inductance is L. These different self-inductances are

related as follows:

Lg is calculated by any current sheet formula as (54), (56), (57), or

«3Wied. Annal., 22, p. 113; 1884. ^^This Bulletin, 4, p. 369; 1907.
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(58). The correction z/^Z for the depth of the coil is given by the

following formula:

J^L^\iran' \A,^B^ [70]

This formula has the same form as (59), but some of the quantities

have a different meaning; a is the mean radius as before, 71^ is b\c^

the number of square conductors in the length b^ Fig. 26, and A^
and Bg are given in Tables IX and X.

t
1

000 000 000000 \ '

"

a

OOOO

Fig. 27. Fig. 28.

The correction z/gZ is calculated in precisely the same way as

for a short coil, as described below, formula (72). The above formula

for J^L gives a very accurate value of the correction to be applied

to Lg to obtain L,,^ and permits a test to be made for the error of

Stefan's formula when applied to longer coils than the latter is

intended for. Such a calculation shows that for a coil as long as

its diameter Stefan's formula (and Weinstein's also, of course) is i

per cent in error, giving too large a value.

COHEN'S APPROXIMATE FORMULA.

Cohen has given the following approximate formula ^^ for the self-

inductance of a lone coil or solenoid of several lavers:

L- ^ir^n^in
2a\ a\r '^a\

3^
87rV[(;;2-i)^? + (?;/- 2)^^ + . . .]

This Bulletin, 4, p. 389; 1907,



Rosa.
"I

Cohen. J
ForntiilcEfor Alittital and Self-Indiictance. 49

where <^o is the mean radius of the solenoid, a^, a^^ . . . a,,, are the

mean radii of the various layers, m is the number of layers and 8a

is the distance between centers for any two consecutive layers.

For long solenoids, where the length is, say, four times the diam-

eter, we can neglect the last term in equation (71).

This formula is sufficiently accurate for most purposes; it will

give results accurate to within one half of one per cent e\'en for

short solenoids, where the length is only twice the diameter.

MAXWELL'S CORRECTION FORMULA.'^

GIVING THE VAI.UE OF z/^I..

Maxwell has shown that when a coil of rectangular section (Fig.

28) is wound with round insulated wire and the self-inductance is

calculated by a formula in which the current is assumed to be dis-

tributed uniformly over the section, as in Weinstein's and Stefan's,

the calculated value L^^ is subject to three cor-

rections, each of which tends to increase the

calculated value of the self-inductance. Thus:

n
0.13806+^ [72]

Fig. 29.

and J^L= 47ra7i\log^

Maxwell showed that the first term takes

account of the effect of the insulation, d and D
being the diameters of the bare and covered

wire respectively. The second correction term (0.13806) reduces

from a square section to a circular section for the conductor. The
third correction term £ takes account of the differences in the

mutual inductances of the separate turns of wire on one another

when the wire has a round section from what the mutual induc-

tances would be if the wire were of square section and no space w^as

occupied by insulation. This term was stated by Maxwell to be equal

to —.01971; it was subsequently stated by Stefan to be equal to

+ .01688. Rosa has shown^^ that its value is variable, depending

on the number of turns of wire in the coil and the shape of the

cross section of the latter, and has given the values of B for a num-
ber of particular cases.

^^ Elect, and Mag., vol. 2, | 693. 6<This Bulletin, 3, p. 37.
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From the following table one can interpolate for E for any par-

ticular case not included in the table.

Summary of the values of E found for the various cases consid-

ered:

2 turns E= 006528

3 (one layer) E= .009045

4 (two layers) E= 01691

4 (one layer) E= 01035

8 (two layers) E= 01335

lO (one layer) E— 01276

20 (one layer) E= 01357

i6 (four layers) ^= 01512

lOO (ten layers) E= 01713

400 (20x20) E— 01764

1,000 (50x20) E= 01778

Infinite number of turns E— 01806

8. SELF AND MUTUAL INDUCTANCE OF LINEAR CONDUCTORS.''

SELF-INDUCTANCE OF A STRAIGHT CYLINDRICAL WIRE.

The self-inductance of a length / of straight cylindrical wire of

radius p is

Z=2[/log^^^+^-V/^+?+^+p] [73]

2/ log- approximately. [74]

Where the permeability of the wire is yu, and that of the medium
outside is unity,

-"['-7-+
4]

[75]

This formula was originally given by Neumann.

For a straight cylindrical tube of infinitesimal thickness, or for

alternating currents of great frequency, when there is no magnetic

field within the wire, the self-inductance is

^^See paper by E. B. Rosa, this Bulletin, 4, p. 301; 1907.
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Z=2/ hf-.] [76]

This is obtained by subtracting from (74) //2 or from (75) /x //2,

the magnetic flux within the conductor due to unit current.

THE MUTUAL INDUCTANCE OF TWO PARALLEL WIRES.

The mutual inductance of two parallel wires of length /, radius />,

and distance apart d is the number of lines of force due to unit cur-

rent in one which cut the other when the current disappears.

This is

< ^

^--ir--^b

M^^l log ^+V^'+^' _^/^_|_^2_|,^"j

\M-- {2/| log ^^- — approximately

[77]

[78]

when the length / is great in comparison with d.

Equation (j^^^ which is an exact expression when
the wires have no appreciable cross section, is not an

exact expression for the mutual inductance of two

parallel cylindrical wires, but is not appreciably in

error even when the section is large and d is small if /

is great compared with d.

THE SELF-INDUCTANCE OF A RETURN CIRCUIT.

If we have a return circuit of two parallel wires each

of length / (the current then flowing in opposite direc-

tion in the two wires) the self-inductance of the circuit,

neglecting the effect of the end connections shown by

dotted lines, Fig. 30, will be very approximately

d-

l_

In the usual case of /z= i this will be, when djl is small

Z= 4/[log^^+i]

If the end effect is large, as when the wires are relatively far

apart, use the expression for the self-inductance of a rectangle

below (86); or, better, add to the value of (79) the self-inductance of

AB+ CD, using equation (71) in which /= 2AB.

Fig. 30. L 4{log^+^. [79]

[80]
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[This is equivalent to the following formula in which the loga-

rithms are common:

Z= 0.741 1 logio - -(-•0805 in millihenrys per mile of conductor,

= 0.4605 logio -+ .050 in millihenrys per kilometer of conductor,

d and p being expressed in centimeters, inches, or any other unit.]

MUTUAL INDUCTANCE OF TWO LINEAR CONDUCTORS IN THE SAME
STRAIGHT LINE.

The mutual inductance of two adjacent linear conductors of

lengths / and vi in the same straight line is

Mi^— l log -^—\-m log^— , approximately. [81]

This approximation is very close indeed if the radius of the con-

ductor (which has been assumed zero) is very small.

THE SELF-INDUCTANCE OF A STRAIGHT RECTANGULAR BAR.

The self-inductance of a straight bar of rectangular section is, to

within the accuracy of the approximate formula (75), the same as

the mutual inductance of two parallel straight filaments of the same

length separated by a distance equal to the geometrical mean dis-

tance of the cross section of the bar. Thus,

Z=.2/[log|^-I+^] [82]

where R is the geometrical mean distance of the cross section of the

rod or bar. If the section is a square, ^= .447 ^, a being the side

of the square. If the section is a rectangle, the value of R is given

by Maxwell's formula (103).

This is equivalent to the following:

L^2c[,
2/ I 0.22 35(a+/S)n ro t

In the above formula L is the self-inductance of a straight bar or

wire of length / and having a rectangular section of length a and

breadth /3.
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The mutual inductance of two parallel straight, square, or rectan-

gular bars is equal to the mutual inductance of two parallel wires

or filaments of the same length and at a distance apart equal to the

geometrical mean distance of the two areas from one another. This

is very nearly equal in the case of square sections to the distance

between their centers for all distances, the g. m. d. being a very little

< a , a

.__„«..__>

a^T

Fig. 31.

greater for parallel squares, and a very little less for diagonal squares ^'

(Fig. 31). We should, therefore, use equation (78) with d equal to

the g. m. d. of the sections from one another; that is, substantially,

to the distances between the centers.

The self-inductance of a return circuit of two such parallel bars

is equal to twice the self-inductance of one minus twice their mutual

inductance. That is,

in which L^ is calculated by (83) and Mhy (78).

SELF-INDUCTANCE OF A SQUARE.

The self-inductance of a square may be derived from the expres-

sions for the self and mutual inductance of finite straight wires from

the consideration that the self-inductance of the square is the sum
of the self-inductances of the four sides minus the mutual induct-

ances. That is,

L— ^L^—^M
^Rosa, this Bulletin, 3, p. i.
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the mutual inductance of two mutually perpendicular sides being

zero. Substituting a for / and d in formulae (j-^ and (j^]^ we have,

neglecting p'la^ L = 8a(log^-|-^-.524) [84]

where a is the length of one side of the square and p is the radius

of the wire. If we put /= ^a— whole length of wire in the square,

Z=2/(log -4-^^ — 1.910)

or, Z= 2/ ( log 1-910 V approximately. [85}

Formulae (84) and (85) were first given by Kirchhoff '° in 1864.

SELF-INDUCTANCE OF A RECTANGLE.

{a) The conductor having a circtilar section.

The self-inductance of the rectangle of length a and breadth b is

where L^ and L^ are the self-inductances of the two sides of length

a and b taken alone, M^^ and M^, are the mutual inductances of the

two opposite pairs of length a and ^, respectively.

From {^^ and (j^^ we therefore have, neglecting p^\a^^ and put-

ting d for the diagonal of the square =^a^-{-b^

L=:A (a-\-b)\og— a log{a-\-d)— b log(^-|-<^)

-l(a-{-b)^2{dJrp)\ [86]

(b) The conductor having a rectangular section.

For a rectangle made up of a conductor of rectangular section

ax A
L^^S^a^b) log ^-^ log(^+^)-^ log {b-\-d)

-^+ 2^+0.447 («+/3)] [87]

^° Gesammelte Abhandlungen, p. 176. Pogg. Annal., 121, 1864.
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where as before d is the diagonal of the square. This is equivalent

to Snniec's exact formula ^^
(6<2).

For a — b^ 2. square,

Z= 8Jlog -^ +0.2235"^^+ 0.726] [88]

If a:=/3, that is, the section of the conductor is a square,

L= 8Jlog '^ + .447 "+ -033

1

[89]
[_ a a J

MUTUAL INDUCTANCE OF TWO EQUAL PARALLEL RECTANGLES.

For two equal parallel rectangles of sides a and b and distance

apart d the mutual inductance, which is the sum of the several

mutual inductances of parallel sides, is,

+Mog^^+i£±£L.>!±^)1
^\b^-^a'-\-b'-^d'' d )\

+ 8rV«M^^^+^'-V^^+^'-V^H^'+^
I

[90]

For a square, where a= b^ we have

^=.8r.iog/-±v^i.v?±?\i

+ 8U2^'+^'-2>'+ ^^+ ^| [91]

Formula (90) was first given by F. E. Neumann^^ in 1845.

SELF AND MUTUAL INDUCTANCE OF THIN TAPES.

The self-inductance of a straight thin tape of length / and breadth

b (and of negligible thickness) is equal to the mutual inductance of

two parallel lines of distance apart R^ equal to the geometrical mean

distance of the section, which is 0.22313^, or log 7?= log b—^ .

" Elektrotech. Zs., p. 11 75; 1906.

"Allgemeine Gesetze der Inducirten Strome, Abh. Berlin Akad.
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Thus we have approximately,

Z=a(log|-x]

2/

[ Vol. 5, No. I.

-hx+i] [92]

If the thickness of the tape is not negligible this formula becomes,

when a is the thickness of the tape.

(1)

L—2\ log:h>'-f+g [93]

(2)

-h—

>

(3)

? ^i

(4) (5)

Fig. 32.

A closer approximation to L is given

by (83) in which a is the thickness

and /3 is the breadth of the tape. For

two such tapes in the same plane,

coming together at their edges with-

out making electrical contact, the

mutual inductance is

J/=2/ loghi-]
2/= 2/ log -r- 0.8863

[94]

where R^ is the geometrical mean distance of one tape from the

other, which in this case is 0.89252^. For a return circuit made up

of these two tapes the self-inductance is

L=2L^-2M

= 4^nog^'W4^1og, 4

— 5-545 X length ofone tape.

[95]

Thus the self-inductance of such a circuit is independent of the

width of the tapes. If the tapes are separated by the distance b

equal to the width of the tapes, ^2=1-95653 and Z= 8.685 ^•

If the two tapes are not in the same plane but parallel.

R^
L= 2Z,— 2J/= 4/ log ^ [96]
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and when the distance apart is equal to the breadth of the tapes we

have

R. IT

and

loo- -^'=:-^ R. 2

Z= 4/|=27r/ [97]

In this case also the self-indnctance \_2it cm per unit of length] of

the pair of thin strips is independent of their width so long as the

distance apart is equal to their width. Formula (96) may be em-

ployed to calculate the self-inductance of a non-inductive shunt

made up of a sheet of thin metal doubled on itself.

CONCENTRIC CONDUCTORS.
4

The self-inductance of a thin, straight tube of length / and radius

a^^ when a^jl is very small, is given by (76),

Z.= 2/[-»!-]

The mutual inductance of such a tube on a conductor within it

is equal to its self-inductance, since all the lines of force due to

the outer tube cut through the inner when they collapse on the

cessation of current. The self-inductance of the inner conductor,

suppose a solid cylinder, is

A = 2/[<-%
If the current goes through the latter and returns through the outer

tube, the self-inductance of the circuit is

since TlZ equals Z^

.•.Z=a/[log^+i] [98]

This result can also be obtained by integrating the expression for

the force outside a^ between the limits a^ and a^^ and adding the

term for the field within a^^ there being no magnetic field outside a^.
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If the outer tube has a thickness a.^— a^ and the current is distrib-

uted uniformly over its cross section the self-inductance will be a

little greater, the geometrical mean distance from a^ to the tube,

which is more than a.^ and less than a^^ being given by the expres-

sion

\o^a ^ ^'^Qg 0^3-^2 log ^ , I
.

^3— a^ 2

Putting this value of log a in (56) in place of log a^^ we should have

the self-inductance of the return circuit.

If the current is alternating and of very high frequency, the cur-

rent would flow on the outer surface of a^ and on the inner surface

of the tube, and L for the circuit would be

/.= 2/log^ [99]
a,

MULTIPLE CONDUCTORS.

If a current be divided equally between two wires of length /,

radius p and distance d apart, the self-inductance of the divided

conductor is the sum of their separate self-inductances plus twice

their mutual inductance.

Thus, when d\l is small,

Z= a/flog^, -|1r= a/flog—^^v-.- 1I [100]

where r^, the g. m. d. of the section of the wire is 0.7788/0 for a

round section.

If there are three straight conductors in parallel and distance d
apart, the self-inductance is similarly

The expression {rgd^)l is the g. m. d. of the multiple conductor.
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9. FORMULAE FOR GEOMETRICAL AND ARITHMETICAL MEAN
DISTANCES.

GEOMETRICAL MEAN DISTANCES.

Maxwell showed liow to calculate mutual and self-inductances in

several important cases by means of what he called the geometrical

mean distances, either of one conductor from another or of a con-

ductor from itself. On account of the importance of this method

we give below some of the most useful of these formulae. The
geometrical mean distance of a point from a line is the n'^^ i^oot of
the product of the n distances from the .<^

point P to the varioics poijits in the line^

n being increased to infinity hi deter-

minhig the value of R. Or, the loga-

rithm of R is the 7nean value of log d
for all the infinite values of the distance

d. Similarly, the geometrical mean dis-

tance of a line from itself is the n^^ root

ofthe product ofthe n distances bet^veen

all the various pairs ofpoints in the line^ n being infinityJ^

Similar definitions apply to the g. m. d. of one area from another,

or of an area from itself.

The geometrical mean distance i? of a li?ie of length a from itself

is given by

log R — log a — i

P-«ti

•-^Q'^--^.

•*-..

Fig. 33.

R ae' [I02]

or R — 0.22313^

The g. m. d. of a rectaitgular area of sides a and b from itself is

given by

log R-^^o. ^a^+
,'-l 1: log ^.+ '1-1 '; log ^/i+i:

,2a , b 2 b a 2^2 a
-
J tan-

a 25
a+ 3 a^^""''!- 12

When the area is a square^ and hence a = b^

log i?= log a^\ log 2+^-^
.'. R= o.44yos a

[103]

[104]

Rosa, this Bulletin, 4, p. 326.
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For a circular area of radius a^

log 7?= log <2

R=^ ae-\

R^o.jySSa
For an ellipse of semi-axes ^ and <^,

1 z> 1 ^+ ^ ^

[105]

[106]

An approximate expression for the g. m. d. of a rectangular area

of length <^ and breadth b is

i?= o.2235(^4-Z') [107]

which is nearly true for all values of a and b ; that is, the geo-

metrical mean distance of the rectangular area from itself is approxi-

mately proportional to the perimeter of the rectangle. The following

table gives the ratio Rj{a-^b) for a series of rectangles of different

proportions, from a square to a ratio of 20 to i between length and

breadth, and finally when the breadth is infinitesimal in comparison

with the length. By interpolating for any other case between the

values given in the table one can obtain a quite accurate value

without the trouble of calculating it by formula (103).

Geometrical Mean Distances of Rectangles of Different Proportions.

[a and b are the I^ength and Breadth of the Rectangles. R is the Geometrical
Mean Distance of its Area,]

Ratio R
R

a+6

1 :l 0.44705a 0.22353

1.25:1 0.40235« 0.22353

1.5 :l 0.37258^ 0.22355

2 :1 0.33540rt 0.22360

4 :1 0.27961« 0.22369

10 :1 0.24596a 0.22360

20 :l 0.23463a 0.22346

1 :0 0.22315a 0.22315

The g. m. d. of an annular ring of radii a^ and <7jj from itself is

given by
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2 ^2
log ^= log a,- ^4^-^, log ^+ ^-^^^-L [io8]

(a^-a^J a^ 4 ^i'

The g. m. d. of a Ime of length <^ from a second line of the same

length, distant in the same straight line na^ a a

center to center, is given by the following

formula:
——--na—

—"^

Fig. 34.

log^^= ^''^^^ log(;?4-i>-^'log^^^+
^''~^^

^^g(^'~^)^~"|[i09]

This formula is equivalent to the following, which is more con-

venient for calculation for all values of n greater than one.'*

log ^« = l°g'^-[i^.+gb+i^«+3^+66^+ ]
[no]

This formula is ver\' convergent, and only two or three terms are

generally required.

The following values of the geometrical mean distances (calling

a unity) were calculated from the above formulae, all after the second

being obtained by (no):

i?o = o.223i3 ^^5= 4.98323

i?i= 0.89252 i?6 = 5-98610

^2=1.95653 i^,=:6.988o6

i?3^2.97i7i i?8= 7.98957

i?^= 3.97890 i?9= 8.99076

If the strips are parallel and at distance <f, the
^^'

g. m. d. is given by

log ^=J log
^^+^(1-J) log (*^+rf')+2^tan-|_| [III]

If d= b.

The g. m. d. from a point Og outside a circle to the circumference

of the circle, or to the entire area of the circle is the distance dfrom
O2 to the center ofthe circle.

^*Rosa, this Bulletin, 2, p. 168; 1906.

42840—08 5

d
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(i) The g. m. d. from the center O^ to the circumference is of

course the radius a. (2) The g. m. d. of any

point (as O3) within the circle from the cir-

cumference is also a. (3) The g. m. d. of any

point on the circumference (as OJ from all

^ig- 35. other points of the circumference is also a.

(4) Therefore the g. m. d. of a circular line of radius a from itself

is a ; that is,

R^a ^ [113]

for each of the four cases named above.

The g. m. d. of a point outside a circular ring from the ring is the

distance d to the center of the ring. The g. m. d. of any point Oj,

O3, etc., within the ring is given by

log.^:
log a^— a^ log a^

[114]

Fig. 36.

The same expression gives the g. m. d. of

any figure, as S^, within the ring from the

ring. The g. m. d. of an external figure,

as S2, from the annular ring is equal to the g. m. d. of the center Oi

from the figure Sg.

The g. m. d. from one circular area to another is the distance

between their centers; that is,

R= d [115]

for the area Si with respect to S2 as it is

Fig. 37. for the point O^ with respect to So.

The g. m. d. of a line of length a from

a second parallel line of length a' lo-

cated symmetrically (Fig. 38) is given by

Gray^^, equation (114). The g. m. d. of

a line from a parallel and symmetrically

—T

—

\d

^^

a
Fig. 38.

75 Absolute Measurements, Vol. II, Part I.

There are a number of misprints in equations 104, 109, iii, and 113 of Gray. The
sign of the first term of equation 104 should be -f. The signs before />^ in the coeffi-

cients of the log in the first four terms of equation 109 should be all minus; thus %
{^^-p^),~X {cc'-p'')-% \_{a-^f--p^],+ ]4 i{ci-ay-p^^. Similarly in equation

III the coefficients of the first two terms should be %, {^'^—p^) and — ^ {a'^~p^).

In equation 113 the coefficient of /3* in each of the first four terms should be %
instead of }4 and the first term should have log [iP-]-^-\-^^)^-{'^^] instead of log

[{p+d+d^y-n
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situated rectangle is given by Gray's equation (112). The g. m. d.

of two unequal rectangles from one another is given by Gray's

equation (113)/^

The g. m. d. of two adjacent rectangles and of two obliquely

situated rectangles are given by Rosa," equations (8<2) and (17). As
these expressions are somewhat lengthy and not often required they

are not repeated here. The values of the g. m. d. for two equal

squares in various relative positions to one another have been accu-

rately calculated ^^ by these formulse, and the results used in the

determination^^ of the correction term E of formula (72).

ARITHMETICAL MEAN DISTANCES.

In the determination of self and mutual inductances by the

method of geometrical mean distances it has been shown ^^ that

more accurate formulae can be obtained by the use of certain arith-

metical mean distances and arithmetical mean square distances

taken in connection with geometrical mean distances.

The arithmetical mean distance of a point from a line is the

arithmetical mean of the n distances of the point from the various

points of the line, n being infinite. Similarly, the arithmetical

mean distance of a line from itself is the arith77ietical mean ofthe

distances of the n pairs of points in the line froTU one another^ n

being infinite.

The a. m. d. of a line of length b from itself is*^

S.=
\

[116]

that is, while the g. m. d. of a line from itself is 0.22313 times its

length, the a. m. d. is one-third the length.

The arithmetical mean square distance of a line from itself is of

course larger than the square of the a. m. d. Putting S^ for the

arithmetical mean square distance (a. m. s. d.)

''^ Also by Rosa, equation (8). This Bulletin, 3, p. 6.

"This Bulletin, 3, pp. 7 and 12.

^8 This Bulletin, 3, pp. 9-19.

^9 This Bulletin, 3, p. 37.

^°Rosa, this Bulletin, 4, p. 326-32.

^^Rosa, this Bulletin 4, p. 326.
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The arithmetical mean distance of a point in the circumference

of a circle from the circle is the same as the a. m. d. of the circle

from itself ; that is, for a circle of radius a^

S^ — S.^ = ^a
IT

The arithmetical mean square distance is

5/=2^ and ^57 = ^72

[118]

[119]

(The g. m. d. for this case is R— a^ equation (113).)

The arithmetical mean distance of an external point P from the

circumference of a circle is

[120]S,^^d'-^d

which is the distance PA.

The arithmetical mean distance from P

to the entire area of the circle is

Fig- 39-

s. V'+J ["]

(The g. m. d. for each of these cases is B= d^ equation (115).)

For the proof of these and other expressions for the arithmetical

mean distances and applications of their use see the article referred

to above.
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II. EXAMPLES TO ILLUSTRATE AND TEST THE FORMULiE.

1. COAXIAL CIRCLES.

EXAMPLE 1. MAXWELL'S FORMULA (1). FOR ANY TWO COAXIAL CIRCLES.

a^%

a=25

Let a —A — 2^ cm, Fig. 40,

d= 20 cm.

50
0.9284766= 5111 7

V2500 -|- 400

7= 68° 11' 54.''88=:68?i98578.

From Legendre's tables, we obtain

Fig. 40.

log/'' ==0.3852191

log ^=0.0547850 u-'^V- 1^=0-5318500

/^a—ioo .*. il/= 167.0856 cm.

To facilitate calculations in such problems as this, we have pre-

pared Table II, which gives F and log /% E and log E^ as functions

of tan 7. In the above case tan 7='^= 2.s, and from Table II we'
^ 20 ^'

can take the values of log E and log E directly, avoiding the calcu-

lation of 7 and the interpolation for log E and log E in Legendre's

tables (or Table XIII). This is only applicable for circles of equal

radii, and is especially advantageous when tan 7 is one of the values

given in the table, when interpolation is unnecessary.

The above problem may also be calculated by means of Table I,

taken from Maxwell, as follows:

logio^ for 68?i
47r^

for 68? 2

for 68? 19857^

1.7230634

T.7258281

i.7257888 = log
^ira

.*. il/=: 167.0855 cm, agreeing almost exactly wath the above value.

The calculation of mutual inductance by the above methods is

simplest for circles not near each other, as then the values of log E^

log E^ and log =:^ are verv exact when taken bv simple inter-
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polation. When 7 is nearly 90°, however, second and third differ-

ences have to be used in interpolation.

EXAMPLE 2. MAXWELL'S SECOND EXPRESSION (2). FOR CIRCLES NEAR
EACH OTHER.

Let a =A = 2^ cm, d=i cm

In this case k= sin 7= —^== 0.9998002 7= 88° 51' 1^"
A/2501

This value of 7 is so nearly 90° that it is difficult to obtain accu-

rate values of F and E from tables of elliptic integrals, or of

from Maxwell's table.

We may therefore use formula (2) instead of (i).

ri = Y 2501 = 50.01 nearly, r^^LO

, . ^1 — ^2 49.01 ^
.-. >^, =:sin 7, = -^^ ^~=ii^— = 0.060792

^1+ ^2 51-01

71 = 73'' 54' 9-''7==73-9027

From Legendre's tables [for 7i= 73^9027, F^ = 2.7024553

or Table XIII,
J

£', = 1.0852167

F^—E^— 1.6172386

S'Tr-^Aa_ 2007r ^Sir-y/Ai

^k^ /960792 7^]
£(.,-.,) M= 1036.667 cm.

EXAMPLE 3. FORMULA (3). SERIES FOR F AND E, CIRCLES NEAR EACH
OTHER.

Suppose that, in the last example, we calculate F and E by means

of formula (3), instead of taking them from Table XIII.

A — a— 2^^ d— I.

2501 2501

.-.7^=5.298947 ^=1.000960

If these values of /^and E be substituted in formula (i), k being

0.9998002, we obtain the same value of J^as by formula (2).
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EXAMPLE 4. FORMULA (3). SECOND CASE, CIRCLES NOT NEAR.

^ = 25, a — 20^ d=io cm. (See Fig. i.)

,2_ 4x20x25 _i6 . ,,2_ I
:.=_ .'.k"'^^—

2

4

(45)'+(io)' 17 17

log-4 z=-log(i6x 17) = - log^ 272 =2.8029010

;:^(iog 4-i) = .026513a

"^Vi-^-'O =^0000014

.-. F =2.8302430

'+t(^°?F-0 =1-0677324

'-^'(^"S^i-^-^s) =^0000017

.-. j5" =1.0688878

To find the value of Afy/t now use equation (i).

(|-^)^-|^)= °-««5388

Multiplying by 47^^JAa= 47^^J^oo gives

J/= 248.7875 cm.

EXAMPLE 5. WEINSTEIN'S FORMULA (4). FOR ANY COAXIAL CIRCLES
NOT TOO FAR APART.

Take the same circles as in example 4.

^ = 25, a= 2o^ <^=5) d=io.

k^^= — , log^— 1 = 1.802901
17 k
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i+ |;^'2^i.o44ii76 i + _L|^/*= 1.0004053

^k'*"— .0017842 %I^'^~ .0000245

—'^k'^— .00008 SI 7 ^^k'*— .0000012
256 65536

5913 A/8
1.0004310= C

/ ^ k' — .0000042
16384 1-

Sum =1.0459911=^

^ ^^^ (i- ')^ 1-8858184; j^ log
^J- 1^- cj:=o.8853874

Multiplying by 47r^^oo gives J/= 248.7873 cm, agreeing almost

exactly with the value previously found, example 4.

EXAMPLE 6. NAGAOKA'S Q-SERIES FORMULA (5). FOR CIRCLES NOT
NEAR EACH OTHER.

A — a=2^^ d=20 See Fig. 40.

^F = ^cos-i == ( -T===f = 0.6094183

/ \ — -Jk' I o. ^QOs8i7-— —,—^^—= — ^/ ^ J — 0.1213425
2 2(l+V/^0 2 I.6094183

<^- .0000526

<9'= -
.0000000

\2/
O.I21395I

3?* = + .0006516

-4?'= — .0000128

+9?' = + .0000004

€= .0006392

1 + 6= 1.0006392

log(i+ e)= 0.0002773

log^§= 2.6263018

log i6'Tr-yjAa:= 3-0992099

log- = 1.7257890
TT

M= 167.0855 cm, as previously found by formula (i), example i.
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EXAMPLE 7. NAGAOKA'S SECOND FORMULA (6). FOR CIRCLES NEAR
EACH OTHER.

A — a — 2^^ d=4

k= siny—-r^^—- ', J/^= 0.99840637
V2516

i — ^k o.ooiSQ^6^. A o
/, = ~^ = ^z^_^ - = 0.000^0872 — ^,
' 1^-^k 1.9984064 2

^V /
yi

as (
—

) and higher powers can be neglected.

i= 2508.04, log,(-)= 7-827238

(1-^1+ 4^1')= 0.9996019

8^1= 0.00318976

jloge(^j[i + 8^,(i-^,+
4^,^)]-4J=

3-852195 -^

— -,— o. soo7q8s —B
2(1 — 2^1)' ^ ^^ ^

4^1Aa= 100 = C

Product AxBx C=M—6o6.o6yg cm.

There is a difficulty in using the above formula, owing to the fact

that when k is nearly unity the numerator of the expression for /^ is

small, and unless the value of k is carried out to about eight deci-

mal places the value of M may be appreciably in error. For

approximate calculations a seven-place table of logarithms is suffi-

cient, and it is not very troublesome to carry out this one number

to the necessary number of places for precision calculations. Or, k

can easily be computed to any degree of accuracy without logarithms.

The same thing applies to formula (3), where k' must be computed

with great precision when it is quite small.

Using Table II for the above problem, w^here tan 7=12.5, we
have log i^= 0.5932708 and log ^=0.0047004. Using these values

in formula (i) we obtain for the mutual inductance

M= 606.0666 cm

which differs from the value by Nagaoka's formula by 2 parts in a

million.
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EXAMPLE 8. MAXWELL'S SERIES FORMULA (7). FOR ANY TWO COAXIAL
CIRCLES NEAR EACH OTHER.

^4 = 26, <2 = 25, d— I, c— I, and r—^~2

o- /-I ^a . 200
Since r:=V2. log,— ==log,-p= 4-951 744

' y 2

c c
I -I

— 1.020000 2 A = 2.020000
2a 2a

c^^-xd X(f— d^
\y ^ = .000400 —^—^-^ = — .000200
16a loa^

—' -^„ =— .000008 —-.
32^ ^Sa^

'3

— .000008 — "

—

^^r — — .000010

1.020392=^ 2.019790= c

5-052310

C — 2.019790

^^^Sy =-- 5-052310

B log C\= 3.032520 Multiply by 4.7ra= ioott and

yl/z=: 952.6943 cm.

This formula would be less accurate for the circles of problem 4,

but is accurate for circles close together, as this problem shows.

EXAMPLE 9. MAXWELL'S FORMULA (9). FOR CIRCLES OF EQUAL RADII
NEAR EACH OTHER.

A = a — 2S^ d—\

--^=:200, log, 200=5.298317

(^+i)
2.00010

3.29980

Multiply by \'Ka — ioott

M— 1036.663 cm.

nearly agreeing with the more exact value found under problem 2.

This is a very simple and convenient formula for equal circles,

and gives approximate results for circles still farther apart than in

this problem.
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EXAMPLE 10. COFFIN'S FORMULA (10). EXTENSION OF FORMULA (9) FOR
CIRCLES OF EQUAL RADII.

A — a — 2^^ d=i6

-^=12.5, log,i2.5 =2.5257286

First series of terms= i'?^ 1.074478

Second series of terms= 6^=2.023220

B log - — C[= 0.690620

47r<^=i007r .•.J/= 216.9647 cm.

This agrees with the value given by formula (i) within i part in

200,000. As the distance apart of the circles increases the accuracy

by this formula of course gradually decreases.

EXAMPLE 11. FORMULA (11). EXTENSION OF MAXWELL'S FORMULA (7) FOR
CIRCLES OF UNEQUAL RADII.

A — 2^^ a — 20^ c—^^ d=io.
_ 8a ^ 7.2 ^^ ^

^=V^+^'=5V5, log,-^-log,^= 2.6610169

First series of terms=B log^ — = 3- 1 1 2060

Second series of terms= C ^=2.122114

0.989946

multiplying by 47r<^ = 8o7r, 71/=-- 248.8006 cm.

This result is correct to i part in 19,000 (see examples 4 and 5).

Using only the first three terms for B and C (that is, formula 8),

the result would be too large by i part in 1750.

2. MUTUAL INDUCTANCE OF COILS OF RECTANGULAR SECTIONS.

EXAMPLE 12. ROWLAND'S FORMULA (14). FOR COAXIAL COILS OF EQUAL
RADII.

A = a=2S^ (^= r=2cm, <^=:io.

The mutual inductance of the two coils is M—M^^JM.
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We find Mq by formula i, 5, or 10, and JMhy 14 and 15.

A/or= 107.488577

^= sin 7: 0.9805807
5Q

V2600
^'= 0.9615383

logio^=o.482i754

logio^-= 0.0207625

By Table II, since tan7=5, log/^= 0.482 1752 and log^=
0.0207626. These slight differences in the logarithms obtained in

the two different ways amount to scarcely one part in two million of

F and E^ respectively, and may usually be neglected. If more

accurate values are required they may be obtained by carrying the

interpolations further in I^egendre's table, provided the angle 7 is

obtained with sufficient accuracy.

Substituting these values in formula (15) we obtain

c=2

d=lO

a=25

da^

d^M

— 0.9081 IT

2 ==+1.063977
dx

Substituting these values in formula

(14) we obtain

.'. M=M^-\-JM^ (107.4885+ 0.519)77

= 337-8481 cm.

The correction JM\.\v\is amounts to about

I part in 2,000 of M. At a distance d= 20

cm, the correction is over i part in 1,000.

For a coil of section 4x4 cm at ^t'^io,

^M would be four times as large as the value above, or about i part

in 500, and at 20 cm i part in 250.

EXAMPLE 13. RAYLEIGH'S FORMULA (17). FOR COAXIAL COILS OF EQUAL
RADII.

We now find by formula (i) in accordance with formula (17) the

mutual inductance of the following pairs of circles:

Fig. 41.
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O, I when ^ = 25, ^ = 25.5, ^=10; O, 4 when ^=25,^=24.5,

<^=io; 0,2 when ^ =^ = 25 and ^=8; O, 3 when y4 = ^= 25, ^=I2

and finally O, O' when ^ = ^ = 25, d=\o. Thus:

J/^=l09.32l77r

^2=i27.39497r

J/3= 91.920677

434-065977

J/^=z 107.488577

326.577477

.*.J/= 108.859177

J/o= 107.488577

^M= 1.370677 cm.

r<—b=4— *|

. c2=iO

ia=25

Fig. 42.

EXAMPLE 14. LYLE'S FORMULA (20). FOR COILS OF SQUARE SECTION.

y4 = <^=25cm, b— c—2Q.vi\^ d—\OQ.vci.

The equivalent radius r—a[\^ 2

1

^="5(i+^)=25.oo667cm.

M is now found by using formula i, 5, or 10, employing r in

place of a as the radius.

The result is 7!/= 337.8475, agreeing very closely with the result

found under example 12.

M—M^ — JM— .05 1 777

EXAMPLE 15. LYLE'S FORMULA (21 ) . FOR COILS OF RECTANGULAR SECTION.

^ = (^ = 25, <^= 4, ^=1, d—\o

r=2Sl I + W2S.00167

b'-^ 15
1.25, 2y8 = 2.236 cm, the distance apart of the

12 12

two filaments which replace the coil. We now find by formula i,
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5, or lo the mutual inductances of two circles i, 2 on the two cir-

cles 3, 4, where ^=25.00167 and d is 7.764, 10 and 12.236 cm,

respectively. Thus:

2 J/i3= 21 5.002 287r

^u= 90-313047^

iT/23= 1 30. 1 4o6o7r

' 4-^^ =435455927^
.-. M =108.8640 TT

7^764- -2^—^

—127236-cm-

Fig. 43-
J^o =107.4885 TT

Z^J/ 1-3755 'r

^yl/ = the correction for

section of the coils whose dimensions are given above. These

values of M and ^Af agree nearly with the results obtained in

example 13 above.

EXAMPLE 16. ROSA'S FORMULA (22). FOR COILS OF EQUAL RADII.

A = a = 2Sy b — A^^ <"=!, d—\o
(same coils as examples 13, 15).

log,-^= log,2o= 2.9957

Zb^^^ 8^ _ 49 X 2.9957 _
96^

2b'

bf-^
i2d''

'

2<r*— 5/^V

60,000

1 5

1200

434
I20<3'* 1,200,000

3^^-3^^+i4^V-i4^V^ 8925
504^^ 504 X 10^

6^*+ 6^*+ 5^V_ 1622

576o^V^

7^^Yi 8^ i63>

1024A ^ ^ H/

192^^

_£5^V
i024<a;

360 X 10^

—111-:
1 20,000

Ylog8^_97V
*V 'd 60/

.0024465

.0125000

.0003617

.0000177

.0000045

.0000018

-.0014417

.0000827

.0153322

.0138078

4<2=ioo, .-. z/J/== 1.3808 TT cm.
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This is a little larger value than found by formulae (17) and (21),

and we shall see later that it is more nearly correct than either of

the other values.

EXAMPLE 17. ROSA'S FORMULAE 1 23 s AND i24i. FOR COILS OF EQUAL
RADII AND SQUARE SECTION.

A — a — 2^, b — c—2, d—io

1 = 2-9957-1 = 1-9957

= 68

24,000

2500

50,000

= .0028 1-9985

= - .0500

ia 4
^'d 3

)= 300 X 1.6624

10,000
= - .0499 - -0999

1.8986
i6^M

— ——^ .'. z/J/=. 0506^77
6^ 150

The approximate formula (24) would have given .0519 (agreeing

with formulae 14 and 20), which would be amply accurate for any

experimental purpose, ^^^len the section is larger these small terms

are, however, more important.

EXAMPLE 18. SECOND EXAMPLE BY FORMULA (23).

A — a— 2^, b— c—^^ d—\o
, 8^
log.^-i = 1-9957d
_i7^
240^^

^ .0177 2.0134

5^*
= --3125

jg(log.'^-l) =-:£49_9 -,3624

1. 6510

6a 150

.-. z/J/= 0.275277

J/g=z 107.488577 (see example 12.)

J/ = 107.763777 cm.
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This is a very simple formula for computing JM^ and within a

considerable range (i. e., d not larger than a and yet the coils not

in contact) it is very accurate.

EXAMPLE 19. ROSA-WEINSTEIN FORMULA (25) . FOR COILS OF EQUAL RADII
AND EQUAL SECTION.

A — a— 2^^ <^= 4, c—\^ d—io
. , 2SOO 2Sa,= 15.0000533 «l«T= 56o5= 26

a2= 0.0020267 cos^72
100

2600 26

a^— 0.217 -—^=.0000667
24<2

«i
— «2— «3+ (2a2— 3a3)cos'7+8a3COS*7 =14.7587120

+ 2a3+ (2a2 4- 3a3)cos^7-f-8a3COS*7= 15.4628292
2

^ = 0.0004730 Also i^ = 3.0351168

B = 0.0123901 i^' = 1.0489686

(/^-^j(^ +^,^=0.0010719

^^ = 0.0129968

Sum = 0.0140687

/[ira sin 7=:ioo7r ^1^ •*• -^^^ ^ i-3795'7^cm.
\ 26

This is not as simple to calculate as (22) and when <^is less than ajz

is less accurate than (22). But for d—a or greater it is more accu-

rate than (22), and indeed the most accurate of all the formulae.

EXAMPLE 20. FORMULA (26.) MUTUAL INDUCTANCE IN TERMS OF SELF-
INDUCTANCE. FOR COILS RELATIVELY NEAR.

Vox a=2^^ <^i=i) c—i^ we have, ;? being the number of turns

in one of the two equal coils,

L^ — ^irait^ (4. 1038 1 6)

For <^= 2, ^=1,

L.^— zs^iran^ (4X 3.698695)

For ^= 3, ^=1,

L— A^iran^ (9X3.411766)
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Then the mutual inductance of i on 3 is by fonnuhi (26)

77

M— 47ran'

4.7ra7z

b=3

2 3Q- 705894+4-103816- 29.589560I

— ^iran^X 2.610075

= 819.979 ?/^ cm.

If 71= 100,

M= 8.19979 millihenn's,

as the mutual inductance of coil i on coil 3,

Fig. 44.

C-1

a=25

Fig. 44.

EXAMPLE 21. FORMULA (27). MUTUAL INDUCTANCE BY GEOMETRICAL
MEAN DISTANCE.

-^ = 25.1

^=25.0
l?z=c= o.i cm
d=o.i cm

The geometrical mean distance of two coils, corner to corner, as

m Fig. 9, is 0.997701, and log — = 0.002302

.'. z/7l/= 100 X 0.002302 (1.002)-

= 0.2307- cm.

3. MUTUAL INDUCTANCE OF COAXIAL SOLENOIDS.

EXAMPLE 22. MAXWELL'S FORMULA (28) AND COHEN'S (35).

Two solenoids, Fig. 45, of equal length, 200 cm, each wound with

a single layer coil.

< ?=200 *-

Fig. 45-

A = 10= radius of outer.

a= 5 = radius of inner.

42840—08 6
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Substituting in (28) for a we have the following:

a=o.4875o8-^^.(o.999875)-^^(o.5ooooi)-^^e(0

= 0.487508— .015610— .000488— .000038

= 0.471372

.-. J/=47rV;/^ (200— 9.42744)

J/z= 19057. 257r^;2^

,^ 100 TT^X 19057.2 S ,

If n=\o turns per cm, M— 9^

—

-—- henry

= 0.018809 henry.

By the approximate formula of Maxwell (29)III
2a— I — TT- —

\.\ 64.16 1024.64

= 0.96773

.-. J/= 0.018784 henry.

This example by Heaviside's extension of Maxwell's formula (see

p. 23) has exactly the same value of M; that is, the added terms

do not amount to as much as a millionth of a henry in this par-

ticular case.

To show that the result by Maxwell's formula (28) is very

accurate for this case we may now calculate J/ by Cohen's absolute

formula:

M^A.ini^V-V,)

Substituting in (35) for F'we have the following terms:

^=7863.79+ 4200532.04— 4169106.25— 23561.95

= 15727.63

Fi = 1392.18— 632.16 = 760.02

.•.J/=47r;2^ (15727.63— 760.02)

J/= 0.0188088 henry.

This agrees with the result by Maxwell's formula to within i part

in 175000.
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The example by Cohen's formula illustrates the disadvantage of

that formula for numerical calculations. Aside from the fact that

it is complicated, and involves the use of both complete and incom-

plete elliptic integrals, the value of J/ depends on the difference

between very large positive and negative terms, so that in order to

get a value of J/ correct to i part in looooo it is necessary in the

above example to calculate the large terms to i part in 25000000.

As a means of testing other formulae, however, this absohite formula

is of great value.

EXAMPLE 23. ROITI'S FORMULA (30) COMPARED WITH SEARLE AND
AIREY'S (33).

We will now calculate the example. Fig. 46 (originally given by

Searle and Airey^^), by Roiti's formula, and also by the formula of

Searle and Airey.

-207=30-

Fig. 46.

2,r— 30 cm= length of outer solenoid.

2/= 5
a a " inner u

A = 5
(( = radius " outer u

a — 4
u u " inner u

^00
A^i 1=300 turns .*. //^ =-— =10 per cm

4=17-5

200

30

200
-.- ^ -4 per cm

Pl = ^/l2.5+2s --

P.^^iy.S'+2S --

•'-Pz-Pi =

= 13462912

= 18.200275

= 4737363

Electrician (London), 56, p. 319; 1905.
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W />/)

i6 V^

.012200

.000704

^-^—h^

—

^\\~i—7)=+ .000181

— -—r~\—, 9)=— -000022
256 \p.' p,y

,
losA'aW I I \

H ^^
( —Ti——r. I

= + .000002
1024 \Py Pz J

Sum= 4.749020

47r^^^;/i;/a= 25600 tt^

.-.
^^g56oojrS< 4.749020

j^^^^j.
10

or J/= 0.00 1 1 99896
"

Searle and Airey's formula [2)i) gives

71^=1,198,480 (1-I-0.0011504-0.000034)

= 1,199,900 cm
= 0.00119990 henry.

The difference is inappreciable.

The same problem by Russell's formula (36) (extended to include

six terms in each part of the formula) gives

il^zzio.ooi 19989 henry.

Thus these three formulae all agree to within less than one part

in 100,000. Searle and Airey's is the most rapidly convergent, and

therefore most convenient. In other words, it is the most accurate

for the same number of terms.

EXAMPLE 24. GRAY'S FORMULA (32) COMPARED WITH ROITI'S (30).

Let the winding be 20 turns per cm on each coil; 7t^— n^ — 20.

A = 25 cm JVj_ = n^ A^i^

a =10 cm ^.= ^^2^V3

N^N^^ 2)^,n^Aa
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d^^x'^A^:

d

M-- .0179057 henry

We have also calculated the mutual

inductance for these coils by Roiti's

formula (30).

The value is, 71/= .01 79058, which
is practically identical with the value

by Gray's formula.

When A — 2^ cm and a—\o cm, N^

20^V3== 346.4-

o-v"— /d\/5" / -1

U=25

-

<—2? = a\r3—- /
i/d 1

1

1
a=^\Q /

\
\

1

Fig. 47-

20^73 = 866.025 and N.,—

As there must be an integral number of turns, let

us suppose the winding is exactly 20 turns per cm on each coil and

the lengths therefore 43.3 cm and 17.3 cm, respectively. Then

^=V-^'+^' V'-+m'= 33.0715 cm. This does not exactly

conform to the condition imposed in deriving the simple formula

(32) of Gray used above. Hence (32) will not be as exact with these

slightly altered dimensions, and we must calculate at least one

correction term to get an accurate value of M.
27r^ioox866x 346By Gray's formula (32), M- = .0178842 henry.
33.0715x10"

The first correction term in (34) increases this value to .0178854

henry.

We will now calculate the mutual inductance of these coils by

Roiti's formula (30)

:

^ = 25

a — \o

2X:

2/ :

43-3

L

13.0 cm ^1
= 28.17800

30.3 " 9-1^ 39.28218

9r-Pi = 11.10418

2nd term = + .22030

3rd = — .01781

4th = + .01952

5th = + .00156

6th = — •00453

7th = + .00274

Sum = 11.32596
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.

4;rV;?,/g,X 11.32596M^ —, henry,

= .0178853 henry.

This differs from the result by Gray's formula by only i part in

178000.

In taking the dimensions of coils where an accurate value of the

mutual inductance is sought it should be borne in mind that the

above formulse have been derived on the supposition that the cur-

rent is uniformly distributed over the length of the coaxial solenoids;

in other words, these formulse are all current-sheet formulse. Hence,

for coils made up of many turns of wire we must meet the conditions

imposed by current-sheet formulse. In calculating self-inductances,

this requires an accurate determination of the size of the wire and

of the distance between the axes of successive wires, from which we
can calculate two correction terms to be combined with the value of

L given by the current-sheet formulse. ^^

In the case of mutual inductances, however, there are no correc-

tion terms to calculate; but we must take the dimensions of the

current sheets that are equivalent to the coils of wire; that is, the

radius of each coil will be the mean distance to the center of the

wire, and the length of each will be the over-all length, including

the insulation, when the coil is wound of insulated wire in contact,

or the length from center to center of a winding of n-\-\ turns,

where ;/ is the whole number of turns used.^* It is also very

important that the winding on both coils shall be uniform, ^^ and

that the leads shall be brought out so that there shall be no mutual

inductance due to them.

The mutual inductance will of course be different at high fre-

quencies from its value at low frequencies. We assume, however

that for all purposes for which an extremely accurate mutual induc-

tance is desired the frequency of the current would be low, say,

not more than a few hundred per second. If the value at very high

frequency is desired the coil should be wound with stranded wire,

each strand of which is separately insulated.

^^Rosa, this Bulletin, 2, p. 181; 1906.

^* Rosa, this Bulletin, 2, p. 161, 1906; and vol. 3, p. i, 1907.

^°Searle and Airey, Electrician (London), 56, p. 318; 1905.
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4 MUTUAL INDUCTANCE OF A CIRCLE AND A COAXIAL
SOLENOID.

EXAMPLE 25. ROSA'S FORMULA (42) COMPARED WITH JONES'S FORMULA (40).

Professor Jones gave the calculations by formula (40) of the con-

stant of the lyorenz apparatus made for McGill University, obtaining

the values given below, the second value being that obtained after

the plate had been reground and again measured.

A calculation*^ of the same two cases by formula (42) gives very

closely agreeing results.

1st Value. 2nd Value, disc slightly smaller.

By formula (40) M— 18,056.36 18,042.52
" " (42) J/^ 18,056.34 18,042.62

Difference .02 — .10

These differences, amounting to i part in a million in the first

case and 5 parts in a million in the second case, are wholly negli-

gible in the most refined experimental work.

EXAMPLE 26. FORMULA (42) COMPARED WITH JONES'S FIRST FORMULA.

Take as a second example the case given by Jones ^^ to illustrate

his first formula.

y4 = 10 inches (^=5 inches x—2 inches

d'

X.

104
a^A^ 2500
"^^"^10816

2.8400

^4= 2.1064

^6=: 1.5208

-^8== 1-0173

^,0= 0.5815

ist term:

2

3

4

5

6

7

1.0000000

.0866771

.0118537

.0017781

.0002670

.0000379

.0000060

Sum= 1. 1006 1 98

27r'«2—T- = 48.33972

86 This Bulletin, 3, p. 218; 1907.

^^ Phil. Mag., 27, p. 61; 1889. In this example, P^ should be 0.654870 instead of

0.54870, as printed in Jones's article.
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.-. J/= 53.25868 N^ A^ being the number of turns of wire on the

coil.

Jones gives M— 53.25879 N.

The difference between these vahies is 2 parts m a million.

EXAMPLE 27. CALCULATION OF CONSTANT OF AYRTON-JONES CURRENT
BALANCE BY FORMULAE (40) AND (42).

As a further test of the formulae let us calculate the constant of an

electro-dynamometer or current balance of the Ayrton-Jones type, of

which AB, Fig. 48, is the upper fixed coil and ED is the moving coil,

the circle S at the upper end lying in the plane through the middle

of AB and the circle R at the lower end of ED lying in the middle

plane of the lower fixed coil BC.

Kig. 48.

Assume the dimensions as follows:

16 cm = radius of fixed coil. Fig. 16.

10 cm= radius of moving coil.

8 cm = half length of AB = OiA
24 cm =1.5 times AB^OgA
10 = number of turns per cm
80 = number of turns in distance O^K^x^^ Fig. 16.

= number of turns in distance O^K — x^

a—
x\=
x^=
n,=

N^= 240

^,=:y^'+^\= 8V5n= diagonal AP^, Fig. 16.

d^ =^^^H-^\=: 8^13 = diagonal AP^
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We have to determme two mutual inductances, namely, J/g be-

tween the coil OjA of 80 turns on the circle S, and M^ between the

coil O2A of 240 turns on the circle R. In each case the circle is in

the plane passing through the lower end of the coil.

Formula (12) will be used, taking N^^ jTj, and d^ in the first case

and iVg, x^^ and d^ in the second case.

For M, For M^
A 16 cm 16 cm
a 10 10

X 8 24
A' 256 256
x' 64 576
N—nx 80 240
d' 320 832
log^^ 2.5051500 2.9201233
a^A''

d'
1.3979400 2.5679934

x^

A'
1.3979400 O.I 76091

3

X, + 2.000 — 6.00

X, + 0.250 + 0.25

X, -0-9375 + 23.5

X, -1.203 -45-7

^10 -0.562 -49.0
ist term 1.0000000 1.0000000

2d " + .0937500 + .0138683

3d " + .0097656 — .0006411

4th " + .0002670 + .0000009

5th " - .0002253 + .0000027

6th " — .0000662 — .0000002

7th
"

Sum= S
- .0000036

1.1034875

.0000000

1.0132306

log^, — 0.0427674 logs. 0.0057083
" 217' — 1.2953298

u
Ztt" 1.2953298

" a\^- 100) = 2.0000000 u
a* (=100) = 2.0000000

- NI--= 80) = 1.9030900

5.2411872

u iV.(=24o)= 2.3802112

5.6812493
" ^1 = 1-2525750

u
d. 1.46006 1

6

logJ^s = 3.9886122 logM, 4.2211877
•• ^s = 9741.19 M, = 16641.32
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THE SAME EXAMPLE BY JONES'S FORMULA.

[ Vol. 5, No. I.

We will now calculate M^ and My^ by Jones's second formula given

above, using also the following equation to find /^— 11:

^'^sin/3cos^(/^-n)
,/ M

c

A
For M^

1 6 cm
For M^

16 cm
a lO 10

X 8

i6o7r

.24

480 TT

^_2^Aa
A-^a

0.9730085 0.9730085

^'^^1-^ 0.2307692 0.2307692

. 2^Aa
0.9299812

0.3676073

O.71497OI

0.6991550

^{A^af+ x^

log sin /3|siny8=^
?) 9-7977938 9.5:86043

F{k)

E{k)
F-E

2-4373371

I-1323456

1.5088957

1.8636661

1-3449927

I.OI46546

E {k', /3)

k''' sin /3 cos /3 {F-

c

-n)

0.6852557

0.6721988

— 0.8266738

0.3394833

0.3333201

-1. 1256799

/2

-0.6851799 -0.4045298

log (@(^+ ^V^)
logil/

-n,| '^•9^^iin I.7854187

4.0728340

3.9886113

^8= 9741-17 cm

4-4357689
4.22II876

i^R= 16641.32

M^ differs from the value obtained by formula (12) by 2 parts in

a million, M^ is identical.
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M^ is the mutual inductance of the winding O^A on S. The

inductance M^ of the whole coil AB on S is twice as much, that is

J/, --=19482.34

The inductance of AB on R is M^ above, minus the inductance of

OgB on R which is the same as that of OjA on S, that is, M^.

Therefore,

M^— 16641.32— 9741.17 = 6900.15

Hence M^—M^—\2^%2.\^ cm.

The force of attraction of the one winding AB in dynes is

\f^i,i,n,{M-M^.
•2

The force due to the second winding BC is equal to this. Sup-

pose /i= 2*3=1 ampere = 0.1 c.g.s. unit of current and 71^— \o turns

per cm. Then

i^i^n^— o.\o

.\f—0.20Y. 12582.19 dynes

= 2516.438 dynes

2/= 5032.876 dynes= change of force on reversal of current

= 5.1356 gms where ^=980.

If there are two sets of coils, one on each side of the balance, as

in the ampere balance built for the National Physical Laboratory,

the force would be doubled again.

In calculating the mutual inductance of the disk and surrounding

solenoid in the Lorenz apparatus the series (12) will be more con-

vergent when the winding is long, and of course more convergent

when the disk is not of too great diameter.

EXAMPLE 28. MUTUAL INDUCTANCE OF CAMPBELL'S FORM OF STANDARD
BY FORMULAE (41) AND (42).

A cylinder 20 cm in diameter has two coils of 50 turns each

wound as shown in Fig. 49, each covering 5 cm (= AB) with an

interval of 10 cm between (= AA'). A secondary coil of 1000 turns

of finer wire is wound in a channel S, with a mean radius of 14.5

cm. The magnetic field near S, due to the double solenoid, is very
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weak, and is zero at some point ; at this place Af will be a maximum,
and variations in M due to small changes in A will be very small.

To calculate M for the solenoid AB and the coil S, we take two

cases, as in the preceding example. First, M for S and a winding

OgB of lOO turns ; second,M for S and O2A of 50 turns. The differ-

ence will be M ior S and the actual winding AB. Or, supposing

0000000 0000000
Fig. 49.

AB to have 100 turns, M will be the same as for AB of 50 and

A' B' of 50. Using formula (41) we have the following values:

<2=

x— b—

7=

7' =

For M,
10

14.5

10

1.9590874

V0.I7I7243
26°i8'36^85
24°28'52''.7i

2.3267717
1. 1 590043

1. 2612955

0.4618972

04565314
-1.0479406

ForM^
= 10

= 14-5

5-0

= 1.98366715
- 74^23^38^88
= V0.0723711
= 43''3'33''-02

= i5°36'2i^i9
= 2.7312000
= 1.0812388

= 1.6839704

= 0.7561693
= 0.7469284
= -0.7784355
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A—

a

~j-yjr= -0.4715733 = -0.7005920

~{F-B)^ ^ir= 0.7897222 = 0.9833784

7i{n.^— 200,000 = 100,000

J/i= 24,313,660 cm M^^ 15,137,960 cm
= 24.31 366 millihenrys=: 15.13796 milli-

hentys

M— M^— M.^— 9.1757 millihenrv^s.

Campbell gives^^ the value of M as 9.1762 millihenrys, but for

want of any particulars of his calculation we do not know wherein

the difference lies.

We have worked this problem out also by formula (42) with the

following results:

My^— 24.31369 millihenrys

^2= 15-1 3917 " "

M^ 9.1745 " "

The value of M^ agrees with that found by (41) to about one part

in a million. M.^ is, however, a little larger, making M smaller.

This is due to the fact that formula (42) is not as convergent for

;r=5 in this problem as for jr=:io, and hence the terms neglected

after the seventh are appreciable. Hence, for so short a coil as this,

formula (40) or (41) will give a more accurate result than (42).

5. CIRCULAR RINGS OF CIRCULAR SECTION.

EXAMPLE 29. COMPARISON OF FIVE FORMULAE FOR THE SELF INDUCTANCE
OF CIRCLES.

For a circle of radius ^^=25 cm and p— o.o^ cm we obtain from

the five formulae the following values of L:

By Kirchhoff's formula (45) Z=: 654.4049677 cm
By Maxwell's formula (47) Z= 654.4053377 cm
By Wien's formula (49) Z= 654.4053777 cm
By Rayleigh and Niven's (51) Z= 654.4054877 cm
By Wien's second formula (50) Z= 654.4061777 cm

o
Thus for so small a value of - as 1/500 any of these formulae is

sufficiently accurate, the greatest difference being less than i in a

million, except in the case of formula (50).

^^A. Campbell, Proc. Roy. Soc, 79, p. 428; 1907.
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EXAMPLE 30. SECOND COMPARISON OF FIVE FORMULAE FOR CIRCLES.

P
For a circle of radius a= 2S cm, ^= 0.5 cm, -being 1/50.

By Kirchhoff's formula (45) Z= 424. 146477 cm
By Maxwell's formula (47) Z= 424. 173477 cm
By Wien's formula (49) Z= 424. 176177 cm
By Rayleigli and Niven's formula (51) Z= 424. 178177 cm
By Wien's second formula (50) Z= 424. 23 2677 cm

EXAMPLE 31. THIRD COMPARISON OF FIVE FORMULJE FOR CIRCLES.

p
For a circle of radius a=io cm, p=i.o, - = i/io.

By Kirchhoff's formula (45) Z= 105.28177 cm
By Maxwell's formula (47)

' Z=: 105.47677 cm
By Wien's formula (49) Z= 105.49777 cm
By Rayleigh and Niven's formula (51) Z= 105.51777 cm
By Wien's second formula (50) Z= 105.90277 cm

It will be seen that for the smallest ring of radius 10 cm and diame-

ter of section 2 cm Maxwell's formula gives a result i part in 5,000

too small and Rayleigh and Niven's a value as much too large, while

the simple approximate formula of Kirchhoff is in error by i in 500.

For the larger ring the differences are much smaller.

Wien's second formula gives appreciably larger values than the

others, as it should do.

6. SINGLE LAYER SOLENOIDS.

EXAMPLE 32. RAYLEIGH AND NIVEN'S FORMULA (54) AND CORRECTION
FORMULA (59) COMPARED WITH THE SUMMATION FORMULA (60).

<2 = 25 cm, d—i cm, 7z=io turns. Suppose the bare wire is 0.8

mm diameter, the covered wire i.o mm.
By formula (54)

A=4^x 25X ioojlog,2oo-^+~i^(log,2oo+0j

= 10,00077X4.798595

= 47)985-95 TTCin
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which is the vahie of L for a current sheet.

The correction JL by formula (59) is

JL^\ooo IT {A^B)
Since D—1.0 mm and <7^=o.8 mm, '

^ «'"
:

By Table ¥11,^ = 0.3337
'' '' ¥111,^= 0.2664

^-f^= 0.6001
AXIS OF CYLINDER

^Z= 600. 1 TT cm. Fig. 50.

^=47,985-95 •7r-6oO.I IT

or, ^= 47,385.85 TTcm.

The value of L may also be calculated by the summation formula

(60), using Wien's formula (49) for L^ and Maxwell's formula (9)

for the iT/'s. The following are the values of the ten terms of (60)

and the resulting value of L:

10 L— 6767.20 TT cm.

18 J/i2= 10081.66 IT

i6M,,= 7852.5477

14 -^u= 6303.4477

12 M,,= 5057-87 TT

10 J/i6= 3991.89 IT

8^17= 3047-79^
6y]/,3= 2193.4677

4 M^g— 1408.98 77

2 ^"^110= 680.99 77

Sum=Z= 47385.82 77cm.

The difference of less than one in a million between the results

obtained by formulae (54) and (59) combined and formula (60) is a

good check on the corrections of (59), which amount in this case to

more than one per cent of the value of the self-inductance. Formula

(54) for as short a coil as this is very accurate, the next term, the

fourth term of (56), being inappreciable.

EXAMPLE 33.

As an extreme case to test the use of formulae (54) and (59) we
may calculate the self-inductance of a single turn of ware. Let us

take the particular case already calculated by Maxwell's and Wien's



92 Bulletin of the Bureau of Standards. {voi.5,no.i.

formulae, (47) and (49), example 29. The radius ^2 = 25 cm, the

diameter of the bare wire= i mm. We may now assume that the

wire is covered and that the diameter D is 2 mm. Then —- = o. S-

In using Rayleigh's current sheet formula we take the length of

the equivalent current sheet as equal to D. We thus have

^
I

^'0.2 2 20,000 \ ^' 0.2 4/1

= ioo7r 6.Q077SS — O.S+—^^^

I

^ ^^^^ '^^500,000!

= 64o.7777r cm.

From Tables VII and VIII A = —0.1363 and B= o. Thus, since

n=i^ z/Z= 47r<a;X (— 0.1363)= — 13. 637r, and being negative is

added to L^. Hence

Z = (640.777+ 13.63) TT

= 654.40777.

This is practically identical with the value (654.40577 cm) given by

the other formulae, example 29, the slight difference being due to

the fact that the correction term A is carried only to four places of

decimals.

If we had taken the bare wire of diameter o.i cm as equivalent

to a current sheet o.i cm long in the above formulae for Z^,, we should

have obtained a different value for Z,, but in that case y. would be

unity and A would be +.5568. The resulting value of L would,

however, be the same as above.

EXAMPLE 34. COFFIN'S FORMULA (56) COMPARED WITH LORENZ'S (58).

We will use for this case a single layer coil wound on an

accurately measured marble cylinder belonging to the Bureau of

Standards.

Length of winding, /= 30.5510 cm^^^* in formula (58)

Radius " " ^=27.0862 cm
Number of turns, 7i = 440.
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By (56)

Z=47r44ox 27.0862I1.4590689+ 0.0878241 — 0.0020427

+ .0001 65 1 — 0.0000204J

By (58)

= 477440 X 27.0862 X 1.5449950
= 101810000 cm= o.ioi8ioo henry.

(^^ «^
-I-

^^ = 3868.0128

4«^—Z'^= 2001.2858

r= 6o°34'43.''6i

log 7^=0.3369388
" ^=0.0811833

Then

j^_ 4*7^440
.I150050.14+ 126105.38— 158977.001

or, Z=ioi8io200 cm = o.ioi8i02 henry.

The agreement is very close indeed, and a like agreement could

be depended upon for all coils having the ratio of length to radius

as small as in this case. For longer coils the difference rapidly

increases.

EXAMPLE 35. STRASSER'S FORMULA (61) COMPARED WITH (54) AND (59)

AND WITH (60.)

Take the coil of 10 turns used in example 32.

<2=:25, d— o.io /o =0.04, n—\o.
From Table V, ^ = 97.92, ^= 4187.55

Substituting in (61),

Z=ioo7r io(log,?^- 1.75)+ 9o(log,^- 2)- 97.92
|_

.04 0.1

or, Z=ioo7rr473-8329+o-0276
1

= 47386.05 ir cm.

42840—08 7
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This very close agreement with the results by the other two

methods (see example 32) is a confirmation of the accuracy of the

constants A and B of Table V. Of course, a close agreement with

(60) is to be expected, for (61) is derived directly from (60).

EXAMPLE 36. F0RMUL^(62) AND (63) FOR TOROIDAL COILS.

Professor Frolich's standard of self-inductance had the following

dimensions

:

r2= 35.05377 cm= outer mean radius.

ri = 24.97478 cm= inner mean radius.

h =20.08455 cm = height, center to center of wire.

p =0.011147 cm= radius of wire.

n = 2738 = whole number of turns.

These values substituted in (62) give

Z^,= 0.1020893 henr3\

The correction JL— —znl {A-\-B) to be substituted in (63) to give

the true value of L is found as follows

:

J. il\_ AXiX^CllA OpClX^J-AAg Wi CXAV^ VV J. XXVAi lig iO ./_>' II

n ^

The diameter of the bare wire d= 2p = .0223

.'. din
From Table VII,

= 0.324

^=-0.57
^=+o.33««

.-. A-\-B=— 0.24.

2nl— 2 X 2738 X 60.327 = 330300 cm = whole length of wire in

winding.

- 2/2/(^4+^)= + 79,300 cn^I

= 0.0000793 henry

Zg= 0.1020893 u

Z =0.1021686 "

Thus, the correction increases the value of the self-inductance.

If the insulation were thinner and the wire thicker (with the same

pitch) the correction might be of opposite sign. Thus, if p were .02

^^This Bulletin, 4, p. 141; 1907. This value applies to any toroidal coils.
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and hence d\D were 0.58, A would be +0.012 and JL would

then be —.0001130 and Z =10.1019763 henry, considerably less than

the preceding value.

7. CIRCULAR COILS OF RECTANGULAR SECTION.

EXAMPLE 37. MAXWELL'S APPROXIMATE FORMULA (64), (65) AND
PERRY'S APPROXIMATE FORMULA (66) COMPARED WITH WEINSTEIN'S
FORMULA (68).

Suppose a coil of mean radius 4 cm, with 100 turns of insulated

wire, wound in a square channel i X i cm.

Substituting in (64) <2 = 4, n—\Q^ ^^= 0.44705 (the boooroooog

C=l

a-4

g. m. d. of a square i cm on a side) we have

L—^ir 100 W.

—

2

= 1.141 millihenrys.

This is a first approximation to the self-inductance

of the coil.

Formula (65) gives a second approximation as fol-

lows: Fig. 51.

Z= 4- iooriog,^^-fi + 3X044l\_/,^ ^5^\l^
L ^'o.44705V ^ 256 / V^ 256 )\

= 1.146 millihenrys.

Perry's approximate formula, which applies only to relatively

short coils, happens to give a very close approximation for this

case. Substituting in (66), the above values, and also b— c—\.,

47r 100x16
"0.9268+ 0.44-1-0.39

= 1.144 millihenrys.

Substituting in the more accurate formula (68) of Weinstein we
shall obtain a value with which to compare the above approxima-

tions.

^=160077] ^i+ ^I^Uog, ^-f-o.o3657X ^^--1.194914
I

= 1. 147 millihenrys.
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Formula (64) gives 3.750 millihenrys

[ Vol. 5, No. I.

u
(65)

U
3.787

u

a
(66)

(( 3.661 u

u
(68)

U
3.805

u

For ^= 10, b= 1, C^\, 72 =100

Formula (64) g-ives 4.005 millihenrys
u

(65)
u

4.007
((

u
(66)

il

3.993
((

((
(68)

u 4.008 a

It will be seen that formula (66) does not give as close approxima-

tions as the others, except in the case of the first example, where it

happens to give a value very close to that given by (68). All the

values, those of (68) included, are subject to correction by (72) when
the coil is wound with round insulated wire.

EXAMPLE 38. FORMULiE (68) AND (69) COMPARED WITH CURRENT-SHEET
FORMULAE.

As a test of these formulae we may calculate the self-inductance of

a single turn of wire, using the case already calculated in example

oicm 'i^^ ^^^^ ^^' ^ circle of radius a— 2^ cm, and the diameter of

V\\ c the bare wire is i mm. Substituting these values in (68) we
have

L — lOOTT
[(^+ 1^0)1^^^2000+ '^2^2-1.194914

= 640.5995 TTCm.

Substituting in (69),

Z=ioo
r/ ,

.01 \, 200 „ „ , .01X.8162I

= 640.5995 TT cm,

Fig. 52.

agreeing with the value by (68).
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These values are for a conductor of square cross section. To reduce

to a circular section of same diameter (o.i cm) we must apply the

second correction term of (72); that is, add to the above value

JL— \iTa X o. 1 38060

Thus, Z= (640.5995+ 1
3.8o6o)7r

= 654.40557rcm,

which agrees with the value found for the self-inductance of a round

wire 0.1 cm diameter, bent into a circle of 25 cm radius, by formula

(49), example 29, and formulae (54) and (59), example 33.

EXAMPLE 39. STEFAN'S FORMULA (69) COMPARED WITH (54) BY MEANS
OF ROSA'S CORRECTION FORMULA (70).

Suppose a coil of mean radius 10 cm, wound with 100 turns in a

square channel i X i cm. Assuming- the current uniformly distribu-

ted we obtain from (69), in w^hich j^ =0.848340, y\ =0.8162,

4-03545

A,= 47rx ioo,ooo^i+-^j 4.03545-0.84834+0.00051
J

= 477x318,930 cm
= 4.00779 millihenrys.

By formula (54) we have for the self-inductance of a current sheet

for which <2=io, ^=1, ;2=i,

A= 4- X 38.83475 cm

This is larger than the value for the coil of section i x i by z/Z, the

value of the latter being given by formula (70).

By Table IX, y^ = 0.6942. More closely, it is 0.69415.^"

By Table X, B— o. In this case n' = \. Hence,

z/iZ= 47rX lox o.694i5 = 47rx 6.9415 cm
••• A = 4'7^ (38.83475-6.94i5) = 4oo.782 cm.

This is the value of the self-inductance for one turn only, the

current being uniformly distributed. For 100 turns L is 10* times

as great.

^9 This Bulletin, 4, p. 369; 1907.

log,
8a

= log
80

^i'+ c'- ^2

-.Ai^, 4
- 1 A.n ?C/l
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.'. Z;,= 4.00782 millihenrys.

This value agrees with the above vahie by Stefan's formula within

less than i part in 100,000.

For a coil of the same radius, but of length b—\o cm, c—\ cm,

wound with 10 layers of 100 turns each, we have the following

values

:

By Stefan's formula, j/i = 0.59243, j.^= 0.1325

Z,,=:47rX 10 X 1000' X 1.55536

= 195.452 millihenrys.

By (54) the current sheet value of L for 10 turns is

Zio = 47rX 10 X 100 X 1.65095

= 47rX 1650.95.

The correction for depth of section by (70) is, since by Tables IX
and X, ^ = 0.6942, ^= 0.2792, and therefore ^4-^=0.9734

J^L— \'rT\o X 10 X 0.9734

= 477x97.34
.-. Z,,=Ao- ^1^= 4-^(1650.95-97.34)

= 47rx 1553.61 cm. for 10 turns.

For n — \oQo turns the self-inductance will be 100^ times as great.

Z„= 47rX 15.5361 X 10^ cm
= 195.232 millihenrys.

This value is about i part in 900 smaller than the above value,

showing that Stefan's formula gives too large -results by that amount
for a coil of this length. If the coil were twice as long, the error

would be about ten times as great.

It is interesting to obtain by this method an estimate of the error

by Stefan's formula for coils longer than those for which it is

intended. For short coils it is seen to be very accurate, subject

always to the corrections of formula (72), and for longer coils it

gives a good approximation. The method of (70), however, applies

to coils of any length.
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EXAMPLE 40. STEFAN'S FORMULA (69) COMPARED WITH (60) AND WITH
STRASSER'S (61) FOR COILS OF FEW TURNS, USING THE CORRECTION
FORMULA (72;.

Coil of 2 turns of wire, 0.4 mm diameter, wound in a circle of

1.46 cm radius with a pitch of 2 mm. Stefan's formula assumes a

uniform distribution over a rectangular section. Suppose a section

as shown in Fig. 53, 4x2 mm, with one turn of wire in the cen-

ter of each square. For the rectangular section, with the current

uniformly distributed, the self-inductance by Stefan's formula is

with a — 1.46, c\b — 0.5, y^ — 0.7960, y^ — 0.3066, L^ — A^Tran^ X

2.4763= 47r<^;2X 4.9526, n being 2. To reduce this to the case of a

winding of 2 turns of wire as shown we must apply the corrections

given by (72) thus:

log Djd := log, 5 = 1.60944

second term — 0.13806 ^=^

third term E = 0.00653
c-2

I-7540

.*. ^L = 47ranx 1.754

L = Lu-{-JL — \'Kan x 6.7066

= 246.1 cm.

By the summation formula (60) we have in this case

a=i4.6

Z= 2^4-2^^12 Fig. 53.

= 47r^ [9. 2400+4. 1 606]

= 245.86 cm.

The value by Strasser's formula is the same as by the summation

formula to which it is equivalent. We have also used formulae (54)

and (59) for this case and have obtained 246.0.

This is one of several problems calculated by Drude "^^ by Stefan's

formula. Drude concluded that Stefan's formula was inapplicable

to such coils, as it gave results from 10 to 25 per cent too large.

His trouble was, however, due to taking the length of the coil as

the distance between the center of the first wire and the center of

the last (instead of n times the pitch) and neglecting the correction

9oWied. Annal,, 9, p. 601; 1902.
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terms of formula (72). As we have seen above, Stefan's formula

when properly used can be depended upon to give accurate results

for short coils, and results within less than i per cent for coils of

length equal to the radius of the coil.

We have calculated several other cases given by Drude and give

below the results, together with his experimental values. The
radius is the same in each case, and the numbers in the first column

are the number of turns in the several coils.

n
By Stefan's Formula

(69) and (72)

By Rayleigh's
Formula (54) and (59)

By Strasser's
Formula (61) or (60)

Drude's Observed
Values

(Values of L in
Centimeters)

2 246.1 246.0 245.9 238.5

4 711.9 711.1 710.8 697.9

6 1298.7 1297.7 1297.8 1271.4

9 2318.0 2313.0 2315.7 2300.1

It will be seen that the values by the different formulae agree

very closely, and that the experimental values agree as closely as

could be expected for such small inductances.

EXAMPLE 41. COHEN'S FORMULA (71) COMPARED WITH (70).

A solenoid of length /= 50 cm, mean radius 5 cm, depth of wind-

ing 0.4 cm, is wound with 4 layers of wire of 500 turns each. Sub-

stituting these values in (68) we have {it—\o)

Z,= 16 tt' n"- (i 144.3-f 3336.0- 10.84- 2.07)

= 70.551 millihenrys.

By the second method we first find L^ by (54), then z/^Zby (70),

and J^L by (72)
Z^= 72.648 millihenrys

-J^L =-2.167 "

z/,Z = Q.048 ''

Z =70.529
This shows a very close agreement between (68) and (67).

In calculating L^ we may use Table IV. Since d//=o.2

g= 3.6324, an^—^^ 2000^=20,000,000

Lg— 3.6324 X 20,000,000 cm
or,

Z^,= 72.648 millihenrys.



coZn^ Formulcz for Mutual and Self-htductance. loi

EXAMPLE 42. FORMULA (54) AND (59) COMPARED WITH (69) AND (72) FOR
COIL OF 20 TURNS WOUND WITH A SINGLE LAYER.

a— 2,^^ ^=2 cm, <r=o.i cm, n—20.

Diameter of bare wire o.6 mm, of covered wire i.o mm.
In the last case we obtained the self-inductance of the coil by two

distinct methods, the first being the method of summation, the second

by assuming the current uniformly distributed over the section, and

then applying the three corrections (T, F^ E. In this problem we
may first calculate L by use of the current sheet formula (54), and

then apply the corrections for section, A and B formula (59); and,

second, by Stefan's formula for uniform distribution, and apply the

three corrections (T, F^ E^ which give the value for a winding of

round insulated wires.

Rayleigh's formula for this example gives:

Z= 4-^;.^{log, ioo-o.5+^^(log, loo+i)

log, 100=^4.605170

^
( log, 100+ -)=: 0.000971

20,000V 4y r /
4.606141

— 0.500000

4. 106141

477^/^2= 4o,ooo7r, .'.^5= 164,245.6477 cm.

This is the self-inductance of a winding of 20 turns of infinitely

thin tape, each turn being i mm wide, with edges touching without

making electrical contact, which arrangement fulfills the conditions

of a current sheet. To reduce this to the case of round wires we
must apply the corrections A and B for self and mutual induction."

By Table VII, for ^/Z)= 0.6, y^z=.0460

By Table VIII, for n^20, ^=^2974
-^+^=•3434

\'TTan^=^ 2,ooo7r

JL^\'rTan{A-\-B)^ 686.87rcm

L— Lg—JL— i63,558.847rcm.

By Stefan's formula we find, substituting the above values of ^,

n^ b^ c^ and taking j/j = . 548990 and ^3=. 1269
Z;^= 1 62, 234.6077 cm.

9^ Rosa, This Bulletin, 2, p. 161; 1906.
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The correction E for a single layer coil of 20 turns is given on

page 49. The three corrections are then as follows:

^=.13806

7^=.5io82 = log,-g-

^=•01357
.66245

.-. JL= ^TT a7t(^C-\- F-[-E) — 1 324.9077 cm.

.•.Z= Z,,+ z/Z= 1 63, 559.5077 cm.

This value of L is greater than the value found by the other

method by only four parts in a million. Thus we see that the

method of calculating L^ by Stefan's or Weinstein's formula and

applying the corrections C, E^ E gives practically identical results

with the method of summation and also with the current sheet

method for short coils. When, however, the coils are longer, the

agreement is not so good, for the reason that the formula of Wein-

stein (and Stefan's, derived from it) is not as accurate when the

section of the coil is greater. Thus if the coil in the above problem

had been 5 cm long and 2.5 mm deep and wound with 20 turns of

heavier wire, the difference would have been i part in 25,000 (still

very good agreement), and if it were 10 cm long and 0.5 cm deep

(the radius being 25 cm) it would have been i part in 2,200. For

most experimental work, therefore, Stefan's formula is amply

accurate.

8. LINEAR CONDUCTORS.

EXAMPLE 43. FORMUUE (73), (74), (75), AND (76).

A straight copper wire 200 cm long and 0.2 cm diameter will

have a self-inductance by formula (74) of

Z=20onog^ ^j= 1370.18 cm.

If it were twice as long

Z=4oo jloge ^ 2W3017.62 cm.

The more exact formula {'j;^) gives practically the same result where

p is so small compared with /.
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If the wire were of iron with a permeability of 1000, we should

have in the first case for /= 100

L=2oo (loge 2000— I+ 250) = 51320 cm.

For sufficiently rapid oscillations so that the current may be con-

sidered to be confined to the surface of the wire

L~200 (logg 2000— 1)= 1320.18 cm.

If the length of the conductor were 10 meters and the diameter

0.2 cm as before the self-inductance by (74) would be

Z=2ooo (log^ 20000—^1=18307.0 cm

= 18.307 microhenrys.

EXAMPLE 44. FORMULAE (77) AND (78).

Two parallel copper wires of length 100 cm and distance apart

200 cm will have a mutual inductance of

li^ r 1 100+100J5 ,- , 1M—2\ 100 log^ ^-^—10075+ 200

= 20o|^log,l±^-V5+ 2]

= 200(logg 1.61803— 0.2361)

= 49.02 cm.

If the length of each conductor were 200 cm and the distance

apart 100 cm, then

J/=4ooriog, 2+V5^V5^l1

= 330.24 cm.

The approximate formula (78) is only applicable when the length of

the conductors is great compared with their distance apart. Suppose

two conductors 10 meters long are 10 cm apart, then by (78)

M= 2000 [log.
2000 , 10

I-f
10 I000

J

= 2000 [5.2983—0.990]
= 8616.6 cm= 8.6166 microhenrys.
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EXAMPLE 45. FORMULA (79) AND (80).

Suppose a return circuit of two parallel wires, each lo meters long

and 0.2 cm diameter, distant apart lo cm, center to center. The
self-inductance of the circuit, neglecting the ends, is by (8o)

d-io r lo , IZ= 4ooo log^— +-

= 4000x4.8452
= 19380.8 cm= 19.3808 microhenrys.

^1
000

J

I«1000

Fig. 54-

We have already calculated (example 43) the self-

inductance of one of these two wires by itself. Doubling

the value we have 36.6140 microhenrys as the self-

inductance of two wires in series. In example 44 we
calculated the mutual inductance of these two wires.

Doubling the value for M we have 17.2332 micro-

henrys. The resultant self-inductance of the circuit

(neglecting the ends) is

L—2L^- 2J/= 36.6140— 17.2332

= 19.3808 microhenrys.

as found above by formula (78).

Taking account of the ends neglected above, we should find that

2Z1 for the two ends by (74) is 18 1.9 cm and 2M by (j^) is prac-

tically zero. Hence the self-inductance of the circuit is. including

the ends,

Z= 19.5627 microhenrys.

EXAMPLE 46. FORMULA (81) FOR THE MUTUAL INDUCTANCE OF ADJACENT
CONDUCTORS IN THE SAME STRAIGHT LINE.

When the two conductors are of equal length, l—m^ and (81)

becomes

M— 2 / logg 2 = 2 /X 0.69315 cm.

If / = 1000 cm, J/= 1386.3 cm.

If ;;2= iooo /, (81) gives

M=llog^ looi+ iooo /log 1.001

= / logg looi -f- / approximately.
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If l—\ cm, we have

M—\o^^ 1001+ 1000 loge 1.001

= 6.909+ o.999— 7. 908.

The self-indiictance of the short wire AB^ suppose i cm long and

of I mm radius, is

^=-2 (log,-^-.75)=: 2 (2.9957-.75)=: 4.4915 cm,

which is a little more than one-half of the mutual inductance of AB
and BC^ ^C being 1000 times the length of AB.

In closed circuits, all the magnetic lines due to a circuit are

effective in producing self-inductance, and hence the self-inductance

is always greater than the mutual inductance of that circuit with any

other, assuming one turn in each. But with open circuits, as in

this case, we may have a mutual inductance between two single

conductors greater than the self-inductance of one of them.

EXAMPLE 47. FORMULA (83) FOR THE SELF-INDUCTANCE OF A RECTAN-
GULAR BAR.

In formula (83), substituting /= 1000, and a^^—2, for a square

bar 1000 cm long and i square cm section, we have, neglecting

the small last term,

J.
r 2000 , i"]

Z=:2000ll0g, -^ h^J

= 2000 (6.908-1-0.5)= 148 1 6 cm
= 14.816 microhenrys.

This would also be the self-inductance for any section having

a-f-yS=2 cm.

EXAMPLE 48. FORMULA (84) AND (85) FOR THE SELF-INDUCTANCE OF A
SQUARE MADE UP OF A ROUND WIRE.

If the side of the square is one meter, a— 100 cm, /o= o.i cm, we
have from (84)

L— %00 (logg 1000—0.524)

= 5107 cm = 5. 107 microhenrys.

If p= .05 cm.

L—^662 cm= 5.662 microhenrys.
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That is, the self-inductance of such a rectangle of round wire is

about 1 1 per cent greater for a wire i mm in diameter than for one

2 mm in diameter.

If Ijp is constant, L is proportional to /, that is, if the thickness

of the wire is proportional to the length of the wire in the square,

the self-inductance of the square is proportional to its linear

dimensions.

EXAMPLE 49. FORMULA (86) FOR THE SELF-INDUCTANCE OF A RECTANGLE
OF ROUND WIRE.

Suppose a rectangle 2 meters long and i meter broad.

Substituting <3;= 200 cm, ^=ioo, p= o.i, in (86) we have

Z=8oi7.i cm= 8.017 microhenrys.

We can obtain the same result from the values of self and mutual

inductances calculated in examples 43 and 44. That is, the result-

ant self-inductance of the rectangle is the sum of the self-induct-

ances of the four sides, minus twice the mutual inductances of

the two pairs of opposite sides. Thus

By example 43, A+ A3= 6035. 24

A4- A= 2740.36 8775.60

By example 44, 2M^^ — 660.48

2M,, = 98.04 758.52

.*. Z= 801 7.08 cm
= 8.01 71 microhenrys.

The agreement of this result with that obtained from formula (86)

serves as a check on the latter formula, and also illustrates how the

values of the self and mutual inductances of open circuits may be

combined to give the self-inductance of a closed circuit.

EXAMPLE 50. FORMULAE (87), (88), AND (89) FOR THE SELF-INDUCTANCE
OF A RECTANGLE OR SQUARE MADE UP OF A BAR OF RECTANGULAR
SECTION.

Let a = 200y d= 100, a=l3= i.o cm.

Substituting these values in (87) we obtain

L= 4 (2971.05- 1209.76-577.95- 150+447.21+ 0.99)

= 5926.16 cm.
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For a square 10 meters on a side, made of square bar i sq. cm cross

section we have <^=:iooo, a=i; substituting in (89)

Z= 8ooo (6.9o84--033)

= 8000x6.941 cm = 55.53 microhenrys.

For a circular section, diameter i cm, p— o.^\ substituting in (84)

Z= 8ooojlogg 2000 H 0.524)

= 8000x7.076 cm= 56.6i microhenrys,

a little more than for a square section, as would be expected.

EXAMPLE 51. FORMULA (91) FOR THE MUTUAL INDUCTANCE OF PARALLEL
SQUARES.

Suppose two parallel squares each i meter on a side, 10 centi-

meters distant from one another.

^=100, d—\o. Substituting in (91),

M^^YOoXo^j^-^^^^^rt^^^^ 10I

^ r /lo.i+jioix — .— 1
= 800[^l0g,

y i_^^3^ j
+V2.0I-2Vl.OI+O.I

J

= 1142.5 cm =1.142 5 microhenrys.

EXAMPLE 52. FORMULAE (92), (93) AND (94) FOR THE SELF AND MUTUAL
INDUCTANCE OF THIN STRAIGHT STRIPS OR TAPES.

Let the tape of thin copper be 10 meters long and i cm wide.

Substituting /= 1000 and <5= i in (92) we have

Z=2ooo nog,20oo-h-J

= 2000 X 8.1009 = 16202 cm

= 16.202 microhenrys,

as the self-inductance when the conducting strip is very thin. If

the tape is 2 mm thick we may allow for the effect of the thickness

by using (93) and we find

Z=2000X 7.9009 cm= 15.802 microhenrys,

which differs slightl}^ from the preceding value.
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Two such tapes edge to edge in one plane will have a mutual

inductance by (91) of

J/=2ooo (log^ 2000—0.8863)

= 20oox 6.7146 cm
= 13.429 microhenrys.

EXAMPLE 53. FORMULA (96) FOR THE SELF-INDUCTANCE OF A RETURN
CIRCUIT OF TWO PARALLEL SHEETS; NON-INDUCTIVE SHUNTS.

Suppose the dimensions of a thin manganin sheet which has been

doubled on itself be as follows :

/=30cm, ^=10 cm, d—i cm.

By (hi) log i?2= 1.0787

logi^i = log^ 10—^= 0.8026

Z= 4/(log^,-logi?0
= I20X 0.2761

= 33.13 cm
= .0331 microhenrys.

EXAMPLE 54. FORMULA (101), 3 CONDUCTORS IN MULTIPLE.

Suppose three cylindrical conductors, each 10 meters long and 4
mm diameter, the distance apart of their centers being i cm. Sub-

stitute in (loi) as follows:

/== 1000 cm, /)=2 mm, d=\ cm. Then

(r^«^)^= 0.538 cm and

Z=2000
V ^0.538 ;

= 2000x7.221 cm= 14.442 microhenrys.

If the whole current flowed through a single one of the three con-

ductors the self-inductance would be

Z= 2000 ( log ^ ^1=17.92 microhenrys,

or about 25 per cent more than when divided among the three.
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TABLE I.

M V~ o 2 ~l
Maxwell's Table of Values of Log r== {-z — k.\ F—tE

(For use with Formula 1.)

Log ^_
Ai Log ^^

Ai^n^Aa e^n^'Aa

60° 0' 1.499 4780 2 7868 65° 0' 1.637 6633 2 7508
6' 1.502 2648 2 7854 e 1.640 4141 2 7508

\2' 1.505 0502 2 7840 \r 1.643 1649 2 7507W 1.507 8342 2 7828 W 1.645 9156 2 7507

2V 1.510 6170 2 7816 24' 1.648 6663 2 7507
30^ 1.513 3986 2 7803 30' 1.651 4170 2 7509
36^ 1.516 1789 2 7790 36' 1.654 1679 2 7510
42^ 1.518 9579 2 7778 42' 1.656 9189 2 7512
48^ 1.521 7357 2 7765 48' 1.659 6701 2 7514
54^ 1.524 5122 2 7753 54' 1.662 4215 2 7516

61° 0^ 1.527 2875 2 7743 66° 0' 1.665 1731 2 7519
6' 1.530 0618 2 7734 6' 1.667 9250 2 7522

12^ 1.532 8352 2 7725 12' 1.670 6772 2 7524
18^ 1.535 6077 2 7715 18' 1.673 4296 2 7528
24^ 1.538 3792 2 7705 24' 1.676 1824 2 7532
30^ 1.541 1497 2 7694 30' 1.678 9356 2 7535
36^ 1.543 9191 2 7683 36' 1.681 6891 2 7539
42^ 1.546 6874 2 7672 42' 1.684 4430 2 7543
48^ 1.549 4546 2 7663 48' 1.687 1973 2 7548
5V 1.552 2209 2 7654 54' 1.689 9521 2 7553

62° 0^ 1.554 9863 2 7645 67° 0' 1.692 7074 2 7561
6' 1.557 7508 2 7637 6' 1.695 4635 2 7567W 1.560 5145 2 7629 12' 1.698 2202 2 7573w 1.563 2774 2 7622 18' 1.700 9775 2 7580
2V 1.566 0396 2 7615 24' 1.703 7355 2 7587
30^ 1.568 8011 2 7607 30' 1.706 4942 2 7595
36^ 1.571 5618 2 7598 36' 1.709 2537 2 7603
42^ 1.574 3216 2 7589 42' 1.712 0140 2 7610
48^ 1.577 0805 2 7582 48' 1.714 7750 2 7619
54^ 1.579 8387 2 7575 54' 1.717 5369 2 7628

63° 0' 1.582 5962 2 7570 68° 0' 1.720 2997 2 7637
6' 1.585 3532 2 7567 6' 1.723 0634 2 7647

12^ 1.588 1099 2 7563 12' 1.725 8281 2 7656
18^ 1.590 8662 2 7559 18' 1.728 5937 2 7667
24^ 1.593 6221 2 7555 24' 1.731 3604 2 7679
30^ 1.596 3776 2 7549 30' 1.734 1283 2 7689
36^ 1.599 1325 2 7543 36' 1.736 8972 2 7701
42^ 1.601 8868 2 7537 42' 1.739 6673 2 7713
48^ 1.604 6405 2 7533 48' 1.742 4386 2 7725

5V 1.607 3938 2 7530 54' 1.745 2111 2 7737
64° 0^ 1.610 1468 2 7527 69° 0' 1.747 9848 2 7749

6' 1.612 8995 2 7524 6' 1.750 7597 2 7763
12^ 1.615 6519 2 7521 12' 1.753 5360 2 7778
18^ 1.618 4040 2 7519 18' 1.756 3138 2 7791
24^ 1.621 1559 2 7516 24' 1.759 0929 2 7806
30^ 1.623 9075 2 7514 30' 1.761 8735 2 7821
36^ 1.626 6589 2 7513 36' 1.764 6556 2 7836
42^ 1.629 4102 2 7512 42' 1.767 4392 2 7853
48^ 1.632 1614 2 7510 48' 1.770 2245 2 7871

5V 1.634 9124 2 7509 54' 1.773 0116 2 7888
65° 0^ 1.637 6633 2 7508 70° 0' 1.775 8004 2 7904
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^""^..^Aa Ai Log -r-~
4^-^ Aa Ai

70° 0^ 1.775 8004 2 7904 75° 0' 1.918 5141 2 9472
6^ 1.778 5908 2 7920 6' 1.921 4613 2 9522

12^ 1.781 3828 2 7938 12' 1.924 4135 2 9572
18^ 1.784 1766 2 7956 18' 1.927 3707 2 9623
24^ 1.786 9722 2 7975 24' 1.930 3330 2 9676
30^ 1.789 7697 2 7995 30' 1.933 3006 2 9729
36^ 1.792 5692 2 8017 36' 1.936 2735 2 9783
42^ 1.795 3709 2 8037 42' 1.939 2518 2 9838
48^ 1.798 1746 2 8056 48' 1.942 2356 2 9895
54^ 1.800 9802 2 8078 54' 1.945 2251 2 9951

71° 0' 1.803 7880 2 8100 76° 0' 1.948 2202 3 0007
6^ 1.806 5980 2 8124 6' 1.951 2209 3 0066

12^ 1.809 4104 2 8148 12' 1.954 2275 3 0127
18^ 1.812 2252 2 8172 18' 1.957 2402 3 0188
24' 1.815 0424 2 8195 24' 1.960 2590 3 0251
30' 1.817 8619 2 8220 30' 1.963 2841 3 0316
36' 1.820 6839 2 8245 36' 1.966 3157 3 0380
42' 1.823 5084 2 8270 42' 1.969 3537 3 0446
48' 1.826 3354 2 8297 48' 1.972 3983 3 0514
54' 1.829 1651 2 8323 54' 1.975 4497 3 0583

72° 0' 1.831 9974 2 8349 77° 0' 1.978 5080 3 0652
6' 1.834 8323 2 8377 6' 1.981 5731 3 0723

12' 1.837 6700 2 8406 12' 1.984 6454 3 0795
18' 1.840 5106 2 8435 18' 1.987 7249 3 0869
24' 1.843 3541 2 8464 24' 1.990 8118 3 0944
30' 1.846 2005 2 8494 30' 1.993 9062 3 1020
36' 1.849 0499 2 8525 36' 1.997 0082 3 1099
42' 1.851 9024 2 8556 42' 0.000 1181 3 1178
48' 1.854 7580 2 8588 48' 0.003 2359 3 1259
54' 1.857 6168 2 8620 54' 0.006 3618 3 1341

73° 0' 1.860 4788 2 8653 78° 0' 0.009 4959 3 1426
6' 1.863 3441 2 8688 6' 0.012 6385 3 1511

12' 1.866 2129 2 8723 12' 0.015 7896 3 1598
18' 1.869 0852 2 8759 18' 0.018 9494 3 1687
24' 1.871 9611 2 8795 24' 0.022 1181 3 1778
30' 1.874 8406 2 8831 30' 0.025 2959 3 1871
36' 1.877 7237 2 8869 36' 0.028 4830 3 1964
42' 1.880 6106 2 8907 42' 0.031 6794 3 2061
48' 1.883 5013 2 8946 48' 0.034 8855 3 2159
54' 1.886 3959 2 8986 54' 0.038 1014 3 2258

74° 0' 1.889 2945 2 9025 79° 0' 0.041 3272 3 2360
6' 1.892 1970 2 9066 6' 0.044 5633 3 2465

12' 1.895 1036 2 9108 12' 0.047 8098 3 2570
18' 1.898 0144 2 9151 18' 0.051 0668 3 2679
24' 1.900 9295 2 9194 24' 0.054 3347 3 2789
30' 1.903 8489 2 9239 30' 0.057 6136 3 2901
36' 1.906 7728 2 9284 36' 0.060 9037 3 3016
42' 1.909 7012 2 9329 42' 0.064 2053 3 3132
48' 1.912 6341 2 9376 48' 0.067 5185 3 3252
54' 1.915 5717 2 9424 54' 0.070 8437 3 3375

75° 0' 1.918 5141 2 9472 80° 0' 0.074 1812 3 3500
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^^S^,,'^ ^°e4->'2a Ai

80° 0^ 0.074 1812 3 3500 85° 0' 0.265 4154 4 6004
6^ 0.077 5312 3 3628 6' 0.270 0156 4 6499

12^ 0.080 8940 3 3760 12' 0.274 6655 4 7015
18^ 0.084 2700 3 3892 18' 0.279 3670 4 7553
24^ 0.087 6592 3 4027 24' 0.284 1223 4 8109
30^ 0.091 0619 3 4165 30' 0.288 9332 4 8689
36^ 0.094 4784 3 4307 36' 0.293 8021 4 9293
42^ 0.097 9091 3 4452 42' 0.298 7314 4 9924
48^ 0.101 3543 3 4601 48' 0.303 7238 5 0585
54^ 0.104 8144 3 4752 54' 0.308 7823 5 1274

81° 0^ 0.108 2896 3 4906 86° 0' 0.313 9097 5 1995
6^ 0.111 7802 3 5064 6' 0.319 1092 5 2751

12^ 0.115 2866 3 5226 12' 0.324 3843 5 3544
18^ 0.118 8092 3 5392 18' 0.329 7387 5 4375
24^ 0.122 3484 3 5561 24' 0.335 1762 5 5250
30^ 0.125 9045 3 5735 30' 0.340 7012 5 6172
36^ 0.129 4780 3 5912 36' 0.346 3184 5 7143
42^ 0.133 0692 3 6094 42' 0.352 0327 5 8168
48^ 0.136 6786 3 6280 48' 0.357 8495 5 9254
54^ 0.140 3066 3 6470 54' 0.363 7749 6 0404

82° 0^ 0.143 9536 3 6667 87° 0' 0.369 8154 6 1624
6^ 0.147 6203 3 6869 6' 0.375 9777 6 2923

12^ 0.151 3072 3 7076 12' 0.382 2700 6 4306
18^ 0.155 0148 3 7287 18' 0.388 7006 6 5786
24^ 0.158 7435 3 7503 24' 0.395 2792 6 7370
30^ 0.162 4938 3 7722 30' 0.402 0162 6 9072
36^ 0.166 2660 3 7949 36' 0.408 9234 7 0904
42^ 0.170 0609 3 8183 42' 0.416 0138 7 2884
48^ 0.173 8792 3 8425 48' 0.423 3022 7 5031
54^ 0.177 7217 3 8673 54' 0.430 8053 7 7373

83° 0^ 0.181 5890 3 8926 88° 0' 0.438 5417 7 9921
6^ 0.185 4816 3 9185 6' 0.446 5341 8 2723

12^ 0.189 4001 3 9452 12' 0.454 8064 8 5816
18^ 0.193 3453 3 9728 18' 0.463 3880 8 9247
24^ 0.197 3181 4 0013 24' 0.472 3127 9 3079
30^ 0.201 3194 4 0308 30' 0.481 6206 9 7389
36^ 0.205 3502 4 0606 36' 0.491 3595 10 2275
42^ 0.209 4108 4 0915 42' 0.501 5870 10 7868
48^ 0.213 5023 4 1236 48' 0.512 3738 11 4341
54^ 0.217 6259 4 1565 54' 0.523 8079 12 1932

84° 0^ 0.221 7824 4 1904 89° 0' 0.536 0011 13 0958
6' 0.225 9728 4 2255 6' 0.549 0969 14 1917

12^ 0.230 1983 4 2617 12' 0.563 2886 15 5520
18^ 0.234 4600 4 2991 18' 0.578 8406 17 2914
24^ 0.238 7591 4 3379 24' 0.596 1320 19 6050
30^ 0.243 0970 4 3778 30' 0.615 7370 22 8537
36' 0.247 4748 4 4192 36' 0.638 5907 27 7976
42' 0.251 8940 4 4621 42' 0.666 3883 36 3882
48' 0.256 3561 4 5065 48' 0.702 7765 55 9176
54' 0.260 8626 4 5526 54' 0.758 6941

85° 0' 0.265 4154 4 6004

The above table has been recalculated and some of the values

corrected in the last place. The values given are sufficiently accu-

rate to give M within one part in a million.
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Giving the Values of Log F and Log E as Functions of ten 7. (See p. .//.)
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TABLE III.

Values of the Constant K as Functions of x A and a A

.

i'Fcr use in Formtila 43.'

xA = -50 . 75 I 1.25 1.50 I. 75 2

aA

0.50 9.39283 12.30385 14.27982 15.62795 16.56549 17.23299 17.71973

0.55 9.52044 12.40135 14.34594 15.67140 16.59411 17.25215 17.73283

0.60 9.66358 12.50816 14.41766 15.71837 16.62503 17.27286 17.74701

0.65 9.82296 12.62412 14.49474 15.76867 16.65813 17.29504 17.76221

0.70 9.99921 12.74897 14.57688 15.82212 16.69330 17.31865 17.77841

0.75 10.19272 12.88232 14.66377 15.87850 16.73039 17.34357 17.79554
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TABLE IV.

Values of the Constant Q in Formula {58a), Lg=n^aQ.

For the self-inductance of a single-layer winding on a solenoid;

n is the whole number of turns of wire in the winding and a is the

mean radius. The corrections by Tables VII and VIII must be

made to get L from Lg as usual. (See p. 42.)

In the following table 2a is the diameter, d is the length, and there-

fore 2a'd— ta.n 7. (See Fig. 21.)

2«^ = tan, Q 2| = tan, Q

0.20 3.63240 1.80 19.57938

0.30 5.23368 2.00 20.74631

0.40 6.71017 2.20 21.82049

0.50 8.07470 2.40 22.81496

0.60 9.33892 2.60 23.74013

0.70 10.51349 2.80 24.60482

0.80 11.60790 3.00 25.41613

0.90 12.63059 3.20 26.18009

1.00 13.58892 3.40 26.90177

1.20 15.33799 3.60 27.58548

1.40 16.89840 3.80 28.23494

1.60 18.30354 4.00 28.85335

For an explanation of the above formula see p. 41.
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TABLE V.

Constants A and B for Strasser's Formula {61).
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n A B n A B

1 16

17

18

354.4

415.8

482.8

35 694

2 46 757

3 1.386 8.315 60 427

4 4.970 43.296 19 555.5 76 662

5 11.33 140.82 20 634.2 96 910

6 20.90 366.95 21 718.9 119 330

7 34.06 794.73 22 809.7 146 517

8 51.11 1499.55 23 906.6 178 140

9 72.32 2590.62 24 1009.8 217 338

10 97.92 4187.55 25 1119.4 259 868

11 128.17 6572.94 26 1235.4 305 044

12 163.14 9769.47 27 1357.9 359 767

13 202.1 14042.1 28 1487.0 421 783

14 248.2 19532.2 29 1618.1 491 819

15 298.6 26740.1 30 1765.4 570 515

TABLE VL

Table of Constants for Stefan '5 Formula
( 69)

bic or c/j, yi 72 b/c or c/5 yi 72

0.00 0.50000 0.1250 0.55 0.80815 0.3437

0.05 .54899 .1269 0.60 .81823 .3839

0.10 .59243 .1325 0.65 .82648 .4274

0.15 .63102 .1418 0.70 .83311 .4739

0.20 .66520 .1548 0.75 .83831 .5234

0.25 .69532 .1714 0.80 .84225 .5760

0.30 .72172 .1916 0.85 .84509 .6317

0.35 .74469 .2152 0.90 .84697 .6902

0.40 .76454 .2423 0.95 .84801 .7518

0.45 .78154 .2728 1.00 .84834 .8162

0.50 .79600 .3066
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TABLE VII.

[ Vol. s, No. J.

Values of Correction Term A , Depending on the Ratio of the Diameters of Bare and Covered

Wire on the Single Layer Coil.

(For use in Formula 59.)

d d

D A ^1 D A ^i

1.00 0.5568
100

0.70 0.2001
144

.99 .5468
101

.69 .1857
146

.98 .5367
103

.68 .1711
148

.97 .5264
104

.67 .1563
150

.96 .5160
105

.66 .1413
152

.95 .5055
106

.65 .1261
155

.94 .4949 .64 .1106
157107

.93 .4842
108

.63 .0949
160

.92 .4734
109

.62 .0789
163

.91 .4625
110

.61 .0626
166

.90 .4515
112

.60 .0460
168

.89 .4403
113

.59 .0292
171

.88 .4290
114

.58 .0121
174

.87 .4176
116

.57 — .0053
177

.86 .4060
117

.56 — .0230
180

.85 .3943
118

.55 - .0410
184

.84 .3825
120

.54 - .0594
187

.83 .3705
121

.53 — .0781
190

.82 .3584
123

.52 — .0971
194

.81 .3461
124

.51 - .1165
198

.80 .3337

.3211
126

.50 — .1363

.79

.78 .3084
127 .50 - .1363

1053

.77 .2955
129 .45 — .2416

1178

.76 .2824
131 .40 — .3594

1335

.75 .2691
133 .35 — .4928

1542

.74 .2557
134 .30 - .6471

1823

.73 .2421
136 .25 - .8294

2232

.72 .2283
138 .20 — 1.0526

2877

.71 .2143
140 .15 — 1.3403

4054

142 .10 — 1.7457
.70 .2001
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TABLE VIII.

Values of the Correction Term B, Depending on the Number of Turns of Wire on the Single Layer

Coil.

(For use in Formula 59.)

Number of Turns B Number of Turns B

1 0.0000 50 0.3186

2 .1137 60 .3216

3 .1663 70 .3239

4 .1973 80 .3257

5 .2180 90 .3270

6 .2329 100 .3280

7 .2443 125 .3298

8 .2532 150 .3311

9 .2604 175 .3321

10 .2664 200 .3328

15 .2857 300 .3343

20 .2974 400 .3351

25 .3042 500 .3356

30 .3083 600 .3359

35 .3119 700 .3361

40 .3148 800 .3363

45 .3169 900 .3364

50 .3186 1000 .3365
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TABLE IX.

[ Vol. 5, No. I.

Value of the Constant Ag as a Function of t/a, t being the Depth of the Winding and a the Mean

Radius.

(For use in Formula 70.)

t/a A.

0. 0.6949

0.10 0.6942

0.15 0.6933

0.20 0.6922

0.25 0.6909

TABLE X.

Values of the Correction Term Bg depending on the Number of Turns of Square Conductor on

Single Layer Coil.

(For use in Formula 70.)

Number of
Turns B3

Number of
Turns B3

1 0.0000 16 0.3017

2 .1202 17 .3041

3 .1753 18 .3062

4 .2076 19 .3082

5 .2292 20 .3099

6 .2446 21 .3116

7 .2563 22 .3131

8 .2656 23 .3145

9 .2730 24 .3157

10 .2792 25 .3169

11 .2844 26 .3180

12 .2888 27 .3190

13 .2927 28 .3200

14 .2961 29 .3209

15 .2991 30 .3218
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TABLE XL
Table of Napierian Logarithms to nine decimal places for Numbers from 1 to 100.

1 0.000 000 000 51 3.931 825 633
2 0.693 147 181 52 3.951 243 719
3 1.098 612 289 53 3.970 291 914
4 1.386 294 361 54 3.988 984 047
5 1.609 437 912 55 4.007 333 185

6 1.791 759 469 56 4.025 351 691

7 1.945 910 149 57 4.043 051 268
8 2 079 441 542 58 4.060 443 Oil

9 2.197 224 577 59 4.077 537 444
10 2.302 585 093 60 4.094 344 562

11 2.397 895 273 61 4.110 873 864
12 2.484 906 650 62 4.127 134 385
13 2.564 949 357 63 4.143 134 726
14 2.639 057 330 64 4.158 883 083
15 2.708 050 201 65 4.174 387 270

16 2.772 588 722 66 4.189 654 742

17 2.833 213 344 67 4.204 692 619
18 2.890 371 758 68 4.219 507 705
19 2.944 438 979 69 4.234 106 505
20 2.995 732 274 70 4.248 495 242

21 3.044 522 438 71 4.262 679 877
22 3.091 042 453 72 4.276 666 119
23 3.135 494 216 73 4.290 459 441
24 3.178 053 830 74 4.304 065 093
25 3.218 875 825 75 4.317 488 114

26 3.258 096 538 76 4.330 733 340
27 3.295 836 866 77 4.343 805 422
28 3.332 204 510 78 4.356 708 827
29 3.367 295 830 79 4.369 447 852
30 3.401 197 382 80 4.382 026 635

31 3.433 987 204 81 4.394 339 155

32 3.465 735 903 82 4.406 719 247
33 3.496 507 561 83 4.418 840 608
34 3.526 360 525 84 4.430 816 799
35 3.555 348 061 85 4.442 651 256

36 3.583 518 938 86 4.454 347 296
37 3.610 917 913 87 4.465 908 119
38 3.637 586 160 88 4.477 336 814
39 3.663 561 646 89 4.488 636 370
40 3.688 879 454 90 4.499 809 670

41 3.713 572 067 91 4.510 859 507
42 3.737 669 618 92 4.521 788 577
43 3.761 200 116 93 4.532 599 493
44 3.784 189 634 94 4.543 294 782

45 3.806 662 490 95 4.553 876 892

46 3.828 641 396 96 4.564 348 191

47 3.850 147 602 97 4.574 710 979
48 3.871 201 Oil 98 4.584 967 479
49 3.891 820 298 99 4.595 119 850
50 3.912 023 005 100 4.605 170 186

log i525=log 25+ log 61

log 9. 8=log 98—log 10

etc.
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TABLE XII.

Values of F and E.

The following table of elliptic integrals of the first and second

kind is taken from Legendre's Traite des Fonctions Elliptiques^

Vol. 2, Table VIII

:

F Ai A2
1 E Ai A2

0° 1.570 796 120 239 0° 1.570 796 - 120 —239
1 1.570 916 359 240 1 1.570 677 - 359 —239
2 1.571 275 599 240 2 1.570 318 — 598 -239
3 1.571 874 839 241 3 1.569 720 — 836 -238
4 1.572 712 1 080 22 4 1.568 884 — 1 075 -238
5 1.573 792 1 321 243 5 1.567 809 — 1 312 -237

6 1.575 114 1 564 244 6 1.566 497 — 1 549 -236
7 1.576 678 1 808 246 7 1.564 948 — 1 785 — 235
8 1.578 486 2 054 247 8 1.563 162 —2 020 —234
9 1.580 541 2 302 249 9 1.561 142 -2 255 — 233
10 1.582 843 2 551 252 10 1.558 887 -2 487 -232

11 1.585 394 2 803 254 11 1.556 400 —2 719 -230
12 1.588 197 3 057 257 12 1.553 681 -2 949 -228
13 1.591 254 3 314 260 13 1.550 732 —3 177 -227
14 1.594 568 3 574 263 14 1.547 554 —3 404 -225
15 1.598 142 3 836 266 15 1.544 150 —3 629 —223

16 1.601 978 4 103 270 16 1.540 521 —3 852 —221
17 1.606 081 4 373 274 17 1.536 670 —4 073 —218
18 1.610 454 4 647 278 18 1.532 597 —4 291 —216
19 1.615 101 4 925 283 i 19 1.528 306 —4 507 —214
20 1.620 026 5 208 288 20 1.523 799 -4 721 —211

21 1.625 234 5 495 293 21 1.519 079 -4 932 — 208
22 1.630 729 5 788 298 22 1.514 147 -5 140 -205
23 1.636 517 6 087 304 23 1.509 007 -5 345 -202
24 1.642 604 6 391 311 24 1.503 662 — 5 547 -199
25 1.648 995 6 702 317 25 1.498 115 —5 746 -196

26 1.655 697 7 019 324 26 1.492 368 —5 942 — 192
27 1.662 716 7 343 332 27 1.486 427 — 6 134 — 189

28 1.670 059 7 675 340 28 1.480 293 —6 323 -185
29 1.677 735 8 015 349

i

29 1.473 970 —6 508 — 181

30 1.685 750 8 364 358
\

30 1.467 462 —6 689 -177

31 1.694 114 8 722 367 31 1.460 774 -6 866 -173
32 1.702 836 9 089 377

1

32 1.453 908 -7 039 -168
33 1.711 925 9 466 388 1 33 1.446 869 — 7 207 -164
34 1.721 391 9 854 400

j

34 1.439 662 —7 371 -159
35 1.731 245 10 254 412

:
35 1.432 291 — 7 531 —155

36 1.741 499 10 666 425 ! 36 1.424 760 — 7 685 -150
37 1.752 165 11 091 439

j

37 1.417 075 —7 835 -145
38 1.763 256 11 530 453 38 1.409 240 — 7 980 — 140
39 1.774 786 11 983 469

: 39 1.401 260 — 8 120 -134
40 1.786 770 12 452 486 40 1.393 140 -8 254 -129

41 1.799 222 12 938 504 41 1.384 886 -8 382 -123
42 1.812 160 13 442 523 42 1.376 504 —8 505 — 117

43 1.825 602 13 965 543 43 1.367 999 —8 622 — 111

44 1.839 567 14 508 565 I 44 1.359 377 —8 733 -105
45 1.854 075 15 073 588

!

45 1.350 644 —8 838 — 98
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F Ai A2 E Ai A2

45° 1.854 075 15 073 588 45° 1.350 644 — 8 838 -98
46 1.869 148 15 661 613 46 1.341 806 -8 936 -92
47 1.884 809 16 274 640 47 1.332 870 - 9 028 — 85

48 1.901 083 16 914 669 48 1.323 842 -9 113 — 78

49 1.917 997 17 584 700
1

49 1.314 729 —9 190 — 71

50 1.935 581 18 284 735 50

51

1.305 539

1.296 278

-9 261

-9 324

-63

51 1.953 865 19 017 770 -56
52 1.972 882 19 787 809 52 1.286 954 - 9 380 -48
53 1.992 670 20 597 852 53 1.277 574 -9 427 —40
54 2.013 266 21 449 898 54 1.268 147 —9 467 —31
55 2.034 715 22 347 949 55 1.258 680 —9 498 -22

56 2.057 062 23 296 1 004 56 1.249 182 -9 520 — 14

57 2.080 358 24 300 1 064 57 1.239 661 -9 534 — 4
58 2.104 658 25 364 1 130 58 1.230 127 — 9 538 + 5

59 2.130 021 26 494 1 203 59 1.220 589 -9 533 + 15

60 2.156 516 27 698 1 284 60 1.211 056 -9 518 -f25

61 2.184 213 28 982 1 373 61 1.201 538 -9 492 36
62 2.213 195 30 355 1 472 62 1.192 046 — 9 457 47

63 2.243 549 31 827 1 583 63 1.182 589 —9 410 58
64 2.275 376 33 410 1 708 64 1.173 180 —9 351 70
65 2.308 787 35 118 1 848 65 1.163 828 -9 281 82

66 2.343 905 36 965 2 006 66 1.154 547 — 9 199 95
67 2.380 870 38 971 2 186 67 1.145 348 -9 104 109
68 2.419 842 41 158 2 393 68 1.136 244 —8 995 123

69 2.460 999 43 551 2 631 69 1.127 250 — 8 872 138
70 2.504 550 46 181 2 907 70 1.118 378 -8 734 153

71 2.550 731 49 088 3 230 71 1.109 643 —8 581 169
72 2.599 820 52 318 3 611 72 1.101 062 — 8 412 187
73 2.652 138 55 930 4 066 73 1.092 650 -8 225 205
74 2.708 068 59 996 4 614 74 1.084 425 —8 020 224
75 2.768 063 64 609 5 283 75 1.076 405 -7 796 245

76 2.832 673 69 892 6 112 76 1.068 610 -7 550 268
77 2.902 565 76 004 7 156 77 1.061 059 —7 282 292
78 2.978 569 83 160 8 497 78 1.053 777 -6 990 318
79 3.061 729 91 657 10 261 79 1.046 786 —6 672 347
80 3.153 385 101 918 12 647 80 1.040 114 —6 325 379

81 3.255 303 114 565 15 989 81 1.033 789 — 5 946 415
82 3.369 868 130 554 20 879 82 1.027 844 -5 531 455
83 3.500 422 151 433 28 453 83 1.022 313 — 5 076 502
84 3.651 856 179 886 41 130 84 1.017 237 —4 573 558
85 3.831 742 221 016 64 880 85 1.012 664 -4 016 626

86 4.052 758 285 896 118 167 86 1.008 648 -3 389 715
87 4.338 654 404 063 288 129 87 1.005 259 -2 675 842
88 4.742 717 692 193 88 1.002 584 -1 832 1081
89 5.434 910 89 1.000 752 - 752
90 90 1.000 000
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TABLE XIII.

Values of log F and log E.

[See Note page 131.]

V LogF Ai A2 Log E Ai A.

45?0 0.2681 2722 3 4688 105 0.1305 4086 2 8279 52
45.1 0.2684 7411 3 4793 105 0.1302 5807 2 8331 52
45.2 0.2688 2204 3 4898 105 0.1299 7476 2 8383 52

45.3 0.2691 7102 3 5004 106 0.1296 9094 2 8434 52
45.4 0.2695 2106 3 5110 106 0.1294 0659 2 8486 51

45.5 0.2698 7216 3 5216 106 0.1291 2174 2 8537 51

45.6 0.2702 2431 3 5322 106 0.1288 3636 2 8589 51
45.7 0.2705 7753 3 5428 107 0.1285 5048 2 8640 51
45.8 0.2709 3181 3 5535 107 0.1282 6408 2 8691 51

45.9 0.2712 8716 3 5642 107 0.1279 7717 2 8742 51

46.0 0.2716 4358 3 5749 108 0.1276 8975 2 8793 51

46.1 0.2720 0108 3 5857 108 0.1274 0182 2 8844 51
46.2 0.2723 5965 3 5965 108 0.1271 1338 2 8894 50
46.3 0.2727 1930 3 6073 108 0.1268 2444 2 8945 50
46.4 0.2730 8003 3 6181 109 0.1265 3499 2 8995 50

46.5 0.2734 4184 3 6290 109 0.1262 4504 2 9045 50
46.6 0.2738 0474 3 6399 109 0.1259 5459 2 9095 50
46.7 0.2741 6873 3 6508 110 0.1256 6364 2 9145 50
46.8 0.2745 3381 3 6618 110 0.1253 7218 2 9195 50
46.9 0.2748 9999 3 6728 110 0.1250 8023 2 9245 50

47.0 0.2752 6727 3 6838 110 0.1247 8778 2 9295 49
47.1 0.2756 3565 3 6948 111 0.1244 9483 2 9344 49
47.2 0.2760 0513 3 7059 111 0.1242 0139 2 9393 49
47.3 0.2763 7572 3 7170 111 0.1239 0746 2 9443 49
47.4 0.2767 4741 3 7281 112 0.1236 1303 2 9492 49

47.5 0.2771 2023 3 7393 112 0.1233 1811 2 9541 49
47.6 0.2774 9415 3 7505 112 0.1230 2271 2 9589 49
47.7 0.2778 6920 3 7617 112 0.1227 2681 2 9638 49
47.8 0.2782 4537 3 7729 113 0.1224 3043 2 9687 48
47.9 0.2786 2266 3 7842 113 0.1221 3357 2 9735 48

48.0 0.2790 0109 3 7955 113 0.1218 3622 2 9783 48

48.1 0.2793 8064 3 8069 114 0.1215 3838 2 9831 48
48.2 0.2797 6133 3 8183 114 0.1212 4007 2 9879 48
48.3 0.2801 4315 3 8297 114 0.1209 4128 2 9927 48

48.4 0.2805 2612 3 8411 115 0.1206 4201 2 9975 48

48.5 0.2809 1023 3 8526 115 0.1203 4226 3 0022 47

48.6 0.2812 9548 3 8641 115 0.1200 4204 3 0070 47

48.7 0.2816 8189 3 8756 116 0.1197 4134 3 0117 47

48.8 0.2820 6945 3 8872 116 0.1194 4017 3 0164 47

48.9 0.2824 5817 3 8988 116 0.1191 3854 3 0211 47

49.0 0.2828 4805 3 9104 117 0.1188 3643 3 0258 47

49.1 0.2832 3909 3 9221 117 0.1185 3385 3 0304 46

49.2 0.2836 3130 3 9338 117 0.1182 3081 3 0351 46

49.3 0.2840 2467 3 9455 118 0.1179 2730 3 0397 46

49.4 0.2844 1923 3 9573 118 0.1176 2333 3 0443 46

49.5 0.2848 1495 3 9691 118 0.1173 1890 3 0489 46

49.6 0.2852 1186 3 9809 119 0.1170 1401 3 0535 46

49.7 0.2856 0996 3 9928 119 0.1167 0866 3 0581 46

49.8 0.2860 0924 4 0047 119 0.1164 0286 3 0626 45

49.9 0.2864 0971 4 0167 120 0.1160 9660 3 0671 45

50.0 0.2868 1137 4 0286 120 0.1157 8988 3 0717 45
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50?0 0.2868 1137 4 0286 120 0.1157 8988 3 0717 45
50.1 0.2872 1424 4 0406 121 0.1154 8271 3 0762 45
50.2 0.2876 1830 4 0527 121 0.1151 7510 3 0807 45
50.3 0.2880 2357 4 0648 121 0.1148 6703 3 0851 45
50.4 0.2884 3005 4 0769 122 0.1145 5852 3 0896 44

50.5 0.2888 3774 4 0891 122 0.1142 4956 3 0940 44
50.6 0.2892 4665 4 1013 122 0.1139 4016 3 0985 44
50.7 0.2896 5677 4 1135 123 0.1136 3032 3 1028 44
50.8 0.2900 6812 4 1258 123 0.1133 2003 3 1072 44
50.9 0.2904 8070 4 1381 123 0.1130 0931 3 1116 43

51.0 0.2908 9451 4 1504 124 0.1126 9815 3 1159 43
51.1 0.2913 0955 4 1628 124 0.1123 8656 3 1203 43
51.2 0.2917 2584 4 1753 125 0.1120 7453 3 1246 43
51.3 0.2921 4336 4 1877 125 0.1117 6207 3 1289 43
51.4 0.2925 6214 4 2002 125 0.1114 4919 3 1332 43

51.5 0.2929 8216 4 2128 126 0.1111 3587 3 1374 42
51.6 0.2934 0344 4 2254 126 0.1108 2213 3 1417 42
51.7 0.2938 2597 4 2380 127 0.1105 0796 3 1459 42

51.8 0.2942 4977 4 2506 127 0.1101 9337 3 1501 42

51.9 0.2946 7483 4 2634 127 0.1098 7836 3 1543 42

52.0 0.2951 0117 4 2761 128 0.1095 6294 3 1584 41

52.1 0.2955 2878 4 2889 128 0.1092 4709 3 1626 41

52.2 0.2959 5767 4 3017 129 0.1089 3083 3 1667 41

52.3 0.2963 8784 4 3146 129 0.1086 1416 3 1708 41

52.4 0.2968 1930 4 3275 130 0.1082 9707 3 1749 41

52.5 0.2972 5205 4 3405 130 0.1079 7958 3 1790 41

52.6 0.2976 8610 4 3535 130 0.1076 6168 3 1831 40
52.7 0.2981 2144 4 3665 131 0.1073 4338 3 1871 40
52.8 0.2985 5810 4 3796 131 0.1070 2467 3 1911 40
52.9 0.2989 9606 4 3927 132 0.1067 0556 3 1951 40

53.0 0.2994 3533 4 4059 132 0.1063 8605 3 1991 40
53.1 0.2998 7592 4 4191 133 0.1060 6614 3 2030 39
53.2 0.3003 1783 4 4324 133 0.1057 4584 3 2070 39
53.3 0.3007 6107 4 4457 134 0.1054 2514 3 2109 39
53.4 0.3012 0564 4 4591 134 0.1051 0406 3 2148 39

53.5 0.3016 5155 4 4725 134 0.1047 8258 3 2186 38
53.6 0.3020 9880 4 4859 135 0.1044 6072 3 2225 38
53.7 0.3025 4739 4 4994 135 0.1041 3847 3 2263 38
53.8 0.3029 9733 4 5130 136 0.1038 1584 3 2301 38
53.9 0.3034 4863 4 5265 136 0.1034 9283 3 2339 38

54.0 0.3039 0128 4 5402 137 0.1031 6944 3 2377 37
54.1 0.3043 5530 4 5539 137 0.1028 4567 3 2414 37
54.2 0.3048 1069 4 5676 138 0.1025 2153 3 2451 37
54.3 0.3052 6745 4 5814 138 0.1021 9702 3 2488 37
54.4 0.3057 2559 4 5952 139 0.1018 7214 3 2525 37

54.5 0.3061 8511 4 6091 139 0.1015 4689 3 2562 36
54.6 0.3066 4602 4 6230 140 0.1012 2127 3 2598 36
54.7 0.3071 0833 4 6370 140 0.1008 9529 3 2634 36
54.8 0.3075 7203 4 6511 141 0.1005 6895 3 2670 36
54.9 0.3080 3714 4 6652 141 0.1002 4226 3 2705 35
55.0 0.3085 0365 4 6793 142 0.0999 1520 3 2741 35
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55?0 0.3085 0365 4 6793 142 0.0999 1520 3 2741 35
55.1 0.3089 7158 4 6935 142 0.0995 8779 3 2776 35
55.2 0.3094 4093 4 7077 143 0.0992 6003 3 2811 35

55.3 0.3099 1170 4 7220 143 0.0989 3193 3 2846 34
55.4 0.3103 8391 4 7364 144 0.0986 0347 3 2880 34

55.5 0.3108 5754 4 7508 145 0.0982 7467 3 2914 34
55.6 0.3113 3262 4 7652 145 0.0979 4553 3 2948 34
55.7 0.3118 0915 4 7798 146 0.0976 1605 3 2982 33

55.8 0.3122 8712 4 7943 146 0.0972 8623 3 3015 33

55.9 0.3127 6655 4 8089 147 0.0969 5607 3 3049 33

56.0 0.3132 4745 4 8236 147 0.0966 2559 3 3082 33

56.1 0.3137 2981 4 8384 148 0.0962 9477 3 3114 32

56.2 0.3142 1365 4 8532 149 0.0959 6363 3 3147 32

56.3 0.3146 9896 4 8680 149 0.0956 3216 3 3179 32

56.4 0.3151 8577 4 8829 150 0.0953 0037 3 3211 32

56.5 0.3156 7406 4 8979 150 0.0949 6826 3 3243 31

56.6 0.3161 6385 4 9129 151 0.0946 3583 3 3274 31

56.7 0.3166 5514 4 9280 151 0.0943 0309 3 3305 31

56.8 0.3171 4794 4 9432 152 0.0939 7003 3 3336 31

56.9 0.3176 4226 4 9584 153 0.0936 3667 3 3367 30

57.0 0.3181 3809 4 9736 153 0.0933 0300 3 3397 30
57.1 0.3186 3545 4 9890 154 0.0929 6903 3 3428 30
57.2 0.3191 3435 5 0044 155 0.0926 3475 3 3457 30
57.3 0.3196 3479 5 0198 155 0.0923 0018 3 3487 29
57.4 0.3201 3677 5 0353 156 0.0919 6531 3 3516 29

57.5 0.3206 4030 5 0509 156 \ 0.0916 3014 3 3545 29
57.6 0.3211 4539 5 0666 157 0.0912 9469 3 3574 28
57.7 0.3216 5204 5 0823 158 0.0909 5895 3 3603 28
57.8 0.3221 6027 5 0980 158 0.0906 2292 3 3631 28
57.9 0.3226 7008 5 1139 159 0.0902 8662 3 3659 28

58.0 0.3231 8146 5 1298 160 ! 0.0899 5003 3 3686 27
58.1 0.3236 9444 5 1458 160

;

0.0896 1317 3 3714 27
58.2 0.3242 0902 5 1618 161 0.0892 7603 3 3741 27
58.3 0.3247 2520 5 1779 162

1

0.0889 3862 3 3767 26
58.4 0.3252 4299 5 1941 162 0.0886 0095 3 3794 26

58.5 0.3257 6240 5 2104 163 0.0882 6301 3 3820 26
58.6 0.3262 8344 5 2267 164 0.0879 2481 3 3846 26
58.7 0.3268 0611 5 2431 165 0.0875 8635 3 3871 25

58.8 0.3273 3041 5 2595 165 0.0872 4764 3 3897 25
58.9 0.3278 5637 5 2761 166

i

0.0869 0867 3 3922 25

59.0 0.3283 8397 5 2927 167 0.0865 6945 3 3946 24
59.1 0.3289 1324 5 3094 168

1
0.0862 2999 3 3971 24

59.2 0.3294 4418 5 3261 168
1

0.0858 9028 3 3995 24
59.3 0.3299 7679 5 3429 169 0.0855 5033 3 4018 23

59.4 0.3305 1108 5 3598 170 0.0852 1015 3 4042 23

59.5 0.3310 4707 5 3768 171 0.0848 6973 3 4065 23
59.6 0.3315 8475 5 3939 171 0.0845 2908 3 4088 22

59.7 0.3321 2414 5 4110 172 0.0841 8820 3 4110 22

59.8 0.3326 6524 5 4282 173 0.0838 4710 3 4132 22

59.9 0.3332 0806 5 4455 174 0.0835 0578 3 4154 21

60.0 0.3337 5261 5 4629 175 0.0831 6424 3 4176 21
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60?

60.1

60.2

60.3

60.4

60.5

60.6

60.7

60.8

60.9

61.0

61.1

61.2

61.3

61.4

61.5

61.6

61.7

61.8

61.9

62.0

62.1

62.2

62.3

62.4

62.5

62.6

62.7

62.8

62.9

63.0

63.1

63.2

63.3

63.4

Log F

0.3337 5261
0.3342 9890
0.3348 4694
0.3353 9673
0.3359 4827

Ai

5 4629
5 4803
5 4979
5 5155
5 5332

0.3365 0159 5 5510
0.3370 5669 5 5688
0.3376 1357 5 5868
0.3381 7225 5 6048
0.3387 3274 5 6229

0.3392 9503
0.3398 5915
0.3404 2509
0.3409 9288
0.3415 6251

5 6412
5 6595
5 6778
5 6963
5 7149

0.3421 3400
0.3427 0735
0.3432 8258
0.3438 5970
0.3444 3871

0.3450 1962
0.3456 0245
0.3461 8720
0.3467 7388
0.3473 6250

0.3479 5308
0.3485 4562
0.3491 4014
0.3497 3664
0.3503 3513

0.3509 3563
0.3515 3814
0.3521 4268
0.3527 4925
0.3533 5787

5 7336
5 7523
5 7712

5 7901
5 8091

5 8283
5 8475
5 8668
5 8863
5 9058

5 9254
5 9451
5 9650
5 9849
6 0050

6 0251
6 0454
6 0658
6 0862
6 1068

As

175
175
176
177
178

179
179
180
181

182

183
184
185

186
187

188
188

189
190
191

192

193

194
195
196

197
198
199

200
202

203
204
205
206
207

LogE

0.0831 6424
0.0828 2248
0.0824 8051
0.0821 3834
0.0817 9596

0.0814 5338
0.0811 1060
0.0807 6763
0.0804 2446
0.0800 8111

0.0797 3758
0.0793 9386
0.0790 4997
0.0787 0590
0.0783 6167

0.0780 1727
0,0776 7270
0.0773 2798
0.0769 8310
0.0766 3807

0.0762 9290
0.0759 4758
0.0756 0212
0.0752 5652
0.0749 1079

0.0745 6494
0.0742 1895
0.0738 7285
0.0735 2664
0.0731 8030

0.0728 3387
0.0724 8732
0.0721 4068
0.0717 9394
0.0714 4711

4176
4197
4217
4238
4258

3 4278
3 4297
3 4316
3 4335
3 4354

3 4372
3 4389
3 4407
3 4424
3 4440

3 4456
3 4472
3 4488
3 4503
3 4518

3 4532
3 4546
3 4560
3 4573
3 4586

3 4598
3 4610
3 4622
3 4633
3 4644

3 4654
3 4664
3 4674
3 4683
3 4692

21

21

20

20
20

63.5 0.3539 6856 6 1275 208 0.0711 0019 3 4700 8
63.6 0.3545 8131 6 1483 209 0.0707 5319 3 4708 8

63.7 0.3551 9614 6 1693 210 0.0704 0610 3 4716 7

63.8 0.3558 1307 6 1903 212 0.0700 5895 3 4723 7

63.9 0.3564 3211 6 2115 213 0.0697 1172 3 4729 6

64.0 0.3570 5325 6 2328 214 0.0693 6442 3 4736 6
64.1 0.3576 7653 6 2542 215 0.0690 1706 3 4741 5

64.2 0.3583 0195 6 2757 216 0.0686 6965 3 4747 5

64.3 0.3589 2952 6 2974 218
j

0.0683 2218 3 4752 4
64.4 0.3595 5926 6 3191 219

i
0.0679 7466 3 4756 4

64.5 0.3601 9117 6 3410 220 0.0676 2710 3 4760 4
64.6 0.3608 2527 6 3630 221

1

0.0672 7950 3 4764 3

64.7 0.3614 6158 6 3852 223 0.0669 3186 3 4767 3
64.8 0.3621 0009 6 4075 224 0.0665 8420 3 4769 2

64.9 0.3627 4084 6 4299 225 ' 0.0662 3650 3 4772 2

65.0 0.3633 8383 6 4524 227 0.0658 8879 3 4773 1

42840—08-
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65?0 0.3633 8383 6 4524 227 0.0658 8879 3 4773 1

65.1 0.3640 2907 6 4751 228 0.0655 4106 3 4774 1

65.2 0.3646 7658 6 4979 229 0.0651 9331 3 4775 -fo
65.3 0.3653 2637 6 5209 231 0.0648 4556 3 4775 -0
65.4 0.3659 7846 6 5439 232 0.0644 9781 3 4775 1

65.5 0.3666 3286 6 5672 234 0.0641 5005 3 4775 1

65.6 0.3672 8957 6 5905 235 0.0638 0231 3 4773 2

65.7 0.3679 4863 6 6141 237 0.0634 5457 3 4772 2

65.8 0.3686 1003 6 6377 238 0.0631 0686 3 4769 3

65.9 0.3692 7380 6 6615 239 0.0627 5916 3 4767 3

66.0 0.3699 3995 6 6855 241 0.0624 1150 3 4764 4
66.1 0.3706 0850 6 7096 242 0.0620 6386 3 4760 4
66.2 0.3712 7946 6 7338 244 0.0617 1626 3 4756 5

66.3 0.3719 5284 6 7582 246 0.0613 6870 3 4751 5

66.4 0.3726 2866 6 7828 247 0.0610 2119 3 4746 6

66.5 0.3733 0694 6 8075 249 0.0606 7373 3 4740 6

66.6 0.3739 8768 6 8324 250 0.0603 2633 3 4734 7

66.7 0.3746 7092 6 8574 252 0.0599 7899 3 4727 7

66.8 0.3753 5666 6 8826 254 0.0596 3172 3 4720 8

66.9 0.3760 4492 6 9080 255 0.0592 8453 3 4712 8

67.0 0.3767 3572 6 9335 257 0.0589 3741 3 4703 9

67.1 0.3774 2907 6 9592 259 0.0585 9037 3 4695 9

67.2 0.3781 2499 6 9851 260 0.0582 4343 3 4685 10

67.3 0.3788 2349 7 0111 262 0.0578 9658 3 4675 11

67.4 0.3795 2460 7 0373 264 0.0575 4983 3 4664 11

67.5 0.3802 2833 7 0637 266 0.0572 0318 3 4653 12

67.6 0.3809 3471 7 0903 268 0.0568 5665 3 4642 12

67.7 0.3816 4373 7 1170 269 0.0565 1023 3 4629 13

67.8 0.3823 5544 7 1440 271 0.0561 6394 3 4617 13

67.9 0.3830 6984 7 1711 273 0.0558 1777 3 4603 14

68.0 0.3837 8695 7 1984 275 0.0554 7174 3 4589 15

68.1 0.3845 0679 7 2259 277 0.0551 2585 3 4575 15

68.2 0.3852 2938 7 2536 279 0.0547 8011 3 4559 16

68.3 0.3859 5475 7 2815 281 0.0544 3451 3 4544 16

68.4 0.3866 8290 7 3096 283 0.0540 8908 3 4527 17

68.5 0.3874 1386 7 3379 285 0.0537 4380 3 4510 18

68.6 0.3881 4765 7 3664 287 0.0533 9870 3 4493 18

68.7 0.3888 8429 7 3951 289 0.0530 5377 3 4475 19

68.8 0.3896 2380 7 4240 291 0.0527 0903 3 4456 19

68.9 0.3903 6620 7 4531 293 0.0523 6447 3 4436 20

69.0 0.3911 1152 7 4825 296
i

0.0520 2010 3 4416 21

69.1 0.3918 5977 7 5120 298 0.0516 7594 3 4396 21

69.2 0.3926 1097 7 5418 300 0.0513 3198 3 4375 22

69.3 0.3933 6515 7 5718 302 0.0509 8824 3 4353 23

69.4 0.3941 2234 7 6020 305 0.0506 4471 3 4330 23

69.5 0.3948 8254 7 6325 307 0.0503 0141 3 4307 24
69.6 0.3956 4579 7 6632 309 0.0499 5834 3 4283 24
69.7 0.3964 1211 7 6941 312 0.0496 1551 3 4259 25
69.8 0.3971 8152 7 7253 314 0.0492 7292 3 4233 26
69.9 0.3979 5405 7 7567 317 0.0489 3059 3 4208 26
70.0 0.3987 2972 7 7883 319 0.0485 8851 3 4181 27



Rosa. 1
Cohen. J

Forinul(Efor Mutual and Self-hiductance.

TABLE XIII—Continued.

127

Y LogF Ai A. Log E Ai

70?0 0.3987 2972 7 7883 319 0.0485 8851 3 4181 27

70.1 0.3995 0855 7 8202 322 0.0482 4670 3 4154 28
70.2 0.4002 9058 7 8524 324 0.0479 0516 3 4126 29

70.3 0.4010 7582 7 8848 327 0.0475 6390 3 4098 29

70 4 0.4018 6430 7 9175 329 0.0472 2292 3 4068 30

70.5 0.4026 5605 7 9504 332 0.0468 8224 3 4039 31

70.6 0.4034 5109 7 9836 335 0.0465 4185 3 4008 31

70.7 0.4042 4945 8 0171 337 0.0462 0177 3 3977 32

70.8 0.4050 5116 8 0508 340 0.0458 6201 3 3945 33

70.9 0.4058 5625 8 0849 343 0.0455 2256 3 3912 33

71.0 0.4066 6474 8 1192 346 0.0451 8344 3 3879 34
71.1 0.4074 7666 8 1538 349 0.0448 4465 3 3844 35

71.2 0.4082 9204 8 1887 352 0.0445 0621 3 3810 36
71.3 0.4091 1090 8 2239 355 0.0441 6812 3 3774 36
71.4 0.4099 3329 8 2594 358 0.0438 3038 3 3738 3^
71.5 0.4107 5923 8 2952 361 0.0434 9300 3 3700 38

71.6 0.4115 8875 8 3313 364 0.0431 5600 3 3663 39

71.7 0.4124 2187 8 3677 367 0.0428 1937 3 3624 39
71.8 0.4132 5864 8 4044 371 0.0424 8313 3 3585 40
71.9 0.4140 9909 8 4415 374 0.0421 4729 3 3544 41

72.0 0.4149 4324 8 4789 377 0.0418 1184 3 3504 42

72.1 0.4157 9112 8 5166 381 0.0414 7681 3 3462 42

72.2 0.4166 4279 8 5547 384 0.0411 4219 3 3419 43

72.3 0.4174 9826 8 5931 388 0.0408 0799 3 3376 44
72.4 0.4183 5757 8 6319 391 0.0404 7423 3 3332 45

72.5 0.4192 2076 8 6710 395 0.0401 4091 3 3287 46
72.6 0.4200 8786 8 7105 399 0.0398 0804 3 3241 46
72.7 0.4209 5891 8 7503 402 0.0394 7563 3 3195 47
72.8 0.4218 3394 8 7906 406 0.0391 4368 3 3148 48
72.9 0.4227 1300 8 8312 410 0.0388 1220 3 3099 49

73.0 0.4235 9612 8 8722 414 0.0384 8121 3 3050 50

73.1 0.4244 8334 8 9136 418 0.0381 5070 3 3001 51

73.2 0.4253 7470 8 9554 422 0.0378 2070 3 2950 52

73.3 0.4262 7023 8 9976 426 0.0374 9120 3 2898 52

73.4 0.4271 6999 9 0402 430 0.0371 6221 3 2846 53

73.5 0.4280 7401 9 0832 435 0.0368 3375 3 2793 54
73.6 0.4289 8233 9 1267 439 0.0365 0582 3 2739 55
73.7 0.4298 9499 9 1706 443 0.0361 7843 3 2684 56
73.8 0.4308 1205 9 2149 448 0.0358 5160 3 2628 57
73.9 0.4317 3354 9 2597 452 0.0355 2532 3 2571 58

74.0 0.4326 5950 9 3049 457 0.0351 9961 3 2513 59
74.1 0.4335 9000 9 3506 462 0.0348 7448 3 2455 60
74.2 0.4345 2506 9 3968 467 0.0345 4993 3 2395 60
74.3 0.4354 6474 9 4435 472 0.0342 2598 3 2335 61

74.4 0.4364 0909 9 4906 477 0.0339 0263 3 2273 62

74.5 0.4373 5815 9 5583 482 0.0335 7989 3 2211 63

74.6 0.4383 1198 9 5865 487 0.0332 5778 3 2148 64
74.7 0.4392 7063 9 6352 492 0.0329 3630 3 2084 65
74.8 0.4402 3414 9 6844 498 0.0326 1546 3 2019 66
74.9 0.4412 0258 9 7341 503 0.0322 9528 3 1952 67
75.0 0.4421 7599 9 7844 509 0.0319 7575 3 1885 68
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75?0 0.4421 7599 9 7844 509 0.0319 7575 3 1885 68
75.1 0.4431 5444 9 8353 514 0.0316 5690 3 1817 69
75.2 0.4441 3797 9 8867 520 0.0313 3872 3 1748 70

75.3 0.4451 2664 9 9387 526 0.0310 2124 3 1678 71

75.4 0.4461 2051 9 9913 532 0.0307 0446 3 1607 72

75.5 0.4471 1965 10 0446 538 0.0303 8839 3 1535 73

75.6 0.4481 2410 10 0984 544
i

0.0300 7304 3 1462 74

75.7 0.4491 3394 10 1528 551 0.0297 5842 3 1388 75

75.8 0.4501 4922 10 2079 557
1

0.0294 4454 3 1313 76
75.9 0.4511 7001 10 2637 564 0.0291 3141 3 1237 77

76.0 0.4521 9638 10 3201 571 0.0288 1904 3 1159 78
76.1 0.4532 2839 10 3771 578 0.0285 0745 3 1081 79
76.2 0.4542 6610 10 4349 585 0.0281 9664 3 1002 80
76.3 0.4553 0959 10 4934 592 0.0278 8663 3 0921 82

76.4 0.4563 5893 10 5526 599 0.0275 7742 3 0839 83

76.5 0.4574 1419 10 6126 607 0.0272 6902 3 0757 84
76.6 0.4584 7545 10 6733 615 0.0269 6145 3 0673 85

76.7 0.4595 4278 10 7347 622 0.0266 5472 3 0588 86
76.8 0.4606 1625 10 7970 630 0.0263 4884 3 0502 87

76.9 0.4616 9594 10 8600 639 0.0260 4382 3 0415 88

77.0 0.4627 8195 10 9239 647 0.0257 3967 3 0327 89
77.1 0.4638 7433 10 9886 656 0.0254 3640 3 0237 91

77.2 0.4649 7319 11 0541 664 0.0251 3403 3 0147 92

77.3 0.4660 7860 11 1206 673 0.0248 3257 3 0055 93

77.4 0.4671 9066 11 1879 682 0.0245 3202

0.0242 3240

2 9962

2 9868

94

77.5 0.4683 0945 11 2561 692 95

77.6 0.4694 3506 11 3253 701 0.0239 3372 2 9772 97

77.7 0.4705 6760 11 3954 711 0.0236 3600 2 9676 98
77.8 0.4717 0714 11 4665 721 0.0233 3925 2 9578 99
77.9 0.4728 5379 11 5386 731 0.0230 4347 2 9479 100

78.0 0.4740 0766 11 6118 742 0.0227 4868 2 9378 102

78.1 0.4751 6884 11 6860 753 0.0224 5490 2 9277 103

78.2 0.4763 3743 11 7612 764 0.0221 6213 2 9174 104
78.3 0.4775 1355 11 8376 775 0.0218 7039 2 9070 105

78.4 0.4786 9731 11 9150 786 0.0215 7969 2 8964 107

78.5 0.4798 8881 11 9937 798 0.0212 9005 2 8858 108

78.6 0.4810 8818 12 0735 810 0.0210 0148 2 8750 109

78.7 0.4822 9553 12 1545 823 0.0207 1398 2 8640 111

78.8 0.4835 1098 12 2368 835 0.0204 2758 2 8529 112

78.9 0.4847 3466 12 3203 848 0.0201 4229 2 8417 113

79.0 0.4859 6669 12 4052 862 0.0198 5811 2 8304 115

79.1 0.4872 0721 12 4914 876 0.0195 7507 2 8189 116

79.2 0.4884 5635 12 5789 890 0.0192 9318 2 8073 118

79.3 0.4897 1424 12 6679 904 0.0190 1246 2 7955 119

79.4 0.4909 8103 12 7583 919 0.0187 3291 2 7836 120

79.5 0.4922 5687 12 8503 934 0.0184 5454 2 7716 122

79.6 0.4935 4189 12 9437 950 0.0181 7739 2 7594 123

79.7 0.4948 3626 13 0387 966 0.0179 0145 2 7470 125

79.8 0.4961 4013 13 1353 983 0.0176 2675 2 7345 126

79.9 0.4974 5367 13 2336 1000 0.0173 5330 2 7219 128

80.0 0.4987 7703 13 3336 1018 0.0170 8111 2 7091 129
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V LogF - L.-1 LogE Ai As

80?0 0.4987 7703 13 3336 1018 0.0170 8111 2 7091 129

80.1 0.5001 1040 13 4354 1036 0.0168 1020 2 6962 131

80.2 0.5014 5394 13 5390 1054 0.0165 4058 2 6831 132

80.3 0.5028 0783 13 6444 1073 0.0162 7227 2 6698 134

80.4 0.5041 7227 13 7517 1093 0.0160 0529 2 6564 136

80.5 0.5055 4744 13 8610 1113 0.0157 3965 2 6429 137

80.6 0.5069 3354 13 9724 1134 0.0154 7536 2 6291 139

80.7 0.5083 3078 14 0858 1156 0.0152 1245 2 6153 140

80.8 0.5097 3936 14 2014 1178 0.0149 5092 2 6012 142

80.9 0.5111 5949 14 3192 1201 0.0146 9080 2 5870 144

81.0 0.5125 9141 14 4393 1225 0.0144 3210 2 5726 145

81.1 0.5140 3534 14 5617 1249 0.0141 7484 2 5581 147

81.2 0.5154 9151 14 6867 1274 0.0139 1903 2 5433 149

81.3 0.5169 6018 14 8141 1300 0.0136 6470 2 5285 151

81.4 0.5184 4159 14 9441 1327 0.0134 1185

0.0131 6052

2 5134

2 4981

152

81.5 0.5199 3600 15 0769 1355 154

81.6 0.5214 4369 15 2124 1384 0.0129 1070 2 4827 156

81.7 0.5229 6493 15 3508 1414 0.0126 6243 2 4671 158

81.8 0.5245 0001 15 4922 1445 0.0124 1572 2 4513 160

81.9 0.5260 4923 15 6366 1477 0.0121 7058

0.0119 2704

2 4354

2 4192

162

82.0 0.5276 1289 15 7843 1510 163

82.1 0.5291 9132 15 9352 1544 0.0116 8512 2 4029 165

82.2 0.5307 8485 16 0896 1579 0.0114 4483 2 3863 167

82.3 0.5323 9381 16 2476 1616 0.0112 0620 2 3696 169

82.4 0.5340 1857 16 4092 1655 0.0109 6924

0.0107 3397

2 3527

2 3356

171

82.5 0.5356 5949 16 5747 1694 173

82.6 0.5373 1696 16 7441 1736 0.0105 0041 2 3183 175

82.7 0.5389 9137 16 9177 1779 0.0102 6859 2 3007 177
82.8 0.5406 8313 17 0955 1823 0.0100 3851. 2 2830 179
82.9 0.5423 9268 17 2778 1870 0.0098 1021 2 2651 181

83.0 0.5441 2047 17 4648 1918 0.0095 8371 2 2469 184
83.1 0.5458 6695 17 6566 1968 0.0093 5902 2 2285 186
83.2 0.5476 3260 17 8534 2021 0.0091 3616 2 2100 188

83.3 0.5494 1795 18 0555 2076 0.0089 1517 2 1912 190
83.4 0.5512 2350 18 2631 2133 0.0086 9605

0.0084 7884

2 1721

2 1529

193

83.5 0.5530 4980 18 4764 2193 195

83.6 0.5548 9744 18 6956 2255 0.0082 6355 2 1334 197

83.7 0.5567 6700 18 9211 2320 0.0080 5021 2 1137 199
83.8 0.5586 5912 19 1532 2389 0.0078 3884 2 0937 202
83.9 0.5605 7443 19 3921 2460 0.0076 2947

0.0074 2211

2 0735

2 0531

204

84.0 0.5625 1364 19 6381 2535 207
84.1 0.5644 7745 19 8916 2614 0.0072 1680 2 0324 209
84.2 0.5664 6661 20 1531 2697 0.0070 1356 2 0115 212
84.3 0.5684 8192 20 4228 2784 0.0068 1241 1 9903 214
84.4 0.5705 2420 20 7012 2875 0.0066 1338

0.0064 1649

1 9689

1 9472

217

84.5 0.5725 9431 20 9887 2972 220
84.6 0.5746 9318 21 2859 3073 0.0062 2177 1 9252 222
84.7 0.5768 2177 21 5932 3180 0.0060 2925 1 9029 225
84.8 0.5789 8109 21 9112 3293 0.0058 3896 1 8804 228
84.9 0.5811 7221 22 2405 3413 0.0056 5092 1 8576 231

85.0 0.5833 9626 22 5818 3539 0.0054 6516 1 8345 234
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V Log F Ai A2 LogE Ai A2

85?0 0.5833 9626 22 5818 3539 0.0054 6516 1 8345 234
85.1 0.5856 5444 22 9357 3673 0.0052 8171 1 8111 237
85.2 0.5879 4801 23 3031 3816 0.0051 0060 1 7874 240
85.3 0.5902 7832 23 6846 3967 0.0049 2185 1 7634 243

85.4 0.5926 4679 24 0813 4127 0.0047 4551 1 7391 246

85.5 0.5950 5492 24 4940 4299 0.0045 7160 1 7145 249
85.6 0.5975 0432 24 9239 4481 0.0044 0015 1 6896 253

85.7 0.5999 9671 25 3720 4676 0.0042 3119 1 6643 256
85.8 0.6025 3391 25 8396 4885 0.0040 6476 1 6387 260
85.9 0.6051 1788 26 3281 5109 0.0039 0089 1 6127 263

86.0 0.6077 5069 26 8390 5349 0.0037 3962 1 5864 267
86.1 0.6104 3459 27 3739 5607 0.0035 8097 1 5598 270
86.2 0.6131 7198 27 9346 5886

j

0.0034 2499 1 5327 274
86.3 0.6159 6543 28 5231 6186

! 0.0032 7172 1 5053 278
86.4 0.6188 1775 29 1418 6512 i 0.0031 2118 1 4775 282

86.5 0.6217 3193 29 7929 6865
!

0.0029 7343 1 4493 286
86.6 0.6247 1122 30 4794 7248

i

0.0028 2850 1 4207 290
36.7 0.6277 5916 31 2042 7667 0.0026 8642 1 3917 295
86.8 0.6308 7958 31 9709 8124 0.0025 4725 1 3622 299
86.9 0.6340 7668 32 7834 8626 0.0024 1103 1 3323 304

87.0 0.6373 5501 33 6459 9177 ! 0.0022 7779 1 3020 308
87.1 0.6407 1961 34 5636 9785 0.0021 4759 1 2712 313

87.2 0.6441 7597 35 5422 10459 0.0020 2048 1 2398 318
87.3 0.6477 3019 36 5881 11208 0.0018 9649 1 2080 324
87.4 0.6513 8900 37 7089 12043 0.0017 7569 1 1757 329

87.5 0.6551 5989 38 9132 12980 0.0016 5813 1 1428 335
87.6 0.6590 5121 40 2112 14035 0.0015 4385 1 1093 340
87.7 0.6630 7233 41 6147 15230 0.0014 3292 1 0753 347
87.8 0.6672 3380 43 1377 16590 0.0013 2540 1 0406 353

87.9 0.6715 4757 44 7967 18149 0.0012 2134 1 0053 360

88.0 0.6760 2724 46 6116 19948 0.0011 2081 9693 367
88.1 0.6806 8840 48 6064 22040 0.0010 2387 9327 374
88.2 0.6855 4904 50 8104 24492 0.0009 3060 8953 382

88.3 0.6906 3009 53 2597 27396
;

0.0008 4107 8571 390
88.4 0.6959 5605 55 9993 30870 0.0007 5536 8181 399

88.5 0.7015 5598 59 0862 35077
1

0.0006 7355 7782 408
88.6 0.7074 6460 62 5940 40245 0.0005 9573 7374 418
88.7 0.7137 2400 66 6184 46693 0.0005 2199 6956 429
88.8 0.7203 8584 71 2878 54895 0.0004 5242 6527 441

88.9 0.7275 1462 76 7773 65561 0.0003 8715 6087 453

89.0 0.7351 9234 83 3334 79812
!

0.0003 2628 5633 467
89.1 0.7435 2568 91 3146 99496 0.0002 6995 5166 483
89.2 0.7526 5714 101 2642 127847 0.0002 1829 4683 501

89.3 0.7627 8356 114 0489 170975
1

0.0001 7146 4181 522

89.4 0.7741 8844 131 1464 241655
1

0.0001 2965 3660 546

89.5 0.7873 0308 155 3119 370693
:

0.0000 9305 3114 576
89.6 0.8028 3427 192 3813 650756 0.0000 6192 2538 615
89.7 0.8220 7240 257 4569 1501510 0.0000 3654 1923 670
89.8 0.8478 1809 407 6079

j

0.0000 1731 1253 774
89.9 0.8885 7889 1 0.0000 0479 479
90.0 Inf. 0.0000 0000
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The preceding table of logarithms of the elliptic integrals of the

first and second kinds is taken from Legendre's Traite des Fonctions

Elliptiques^ Vol. 2, Table I. The values from 45° to 90° are given

for intervals of 0.1°. The values from 0° to 45°, which are com-

paratively seldom required, have been omitted. For formula and

table to be used in interpolation, see page 132.

TABLE XIV.

Binomial Coefficients for Interpolation by Differences.

Coefficients of

Ao and A3
Coefficients of

Ao and A3
Coefficients of

A2 and A3
Coefficients of

Ao and A3

k k k k

K2 K3 Ko K3 K2 K3 Ko K3

.01 —.005 + .003 .26
' —.096 + .056 .51 —.125 + .062 .76 —.091 + .038

.02 — .010 + .006 .27

:

—.099 + .057 .52 —.125 + .062 .77 —.089 + .036

.03 —.015 + .010 .28
,

—.101 + .058 .53 —.125 + .061 .78 -.086 + .035

.04 —.019 + .013 .29
j

—.103 + .059 .54 —.124 + .060 .79 -.083 + .033

.05 —.024 + .015 .30
1

—.105 + .060 .55 —.124 + .060 .80 —.080 + .032

.06 —.028 + .018 .31 —.107 + .060 .56 —.124 + .059 .81 —.077 + .031

.07 —.033 + .021 .32 —.109 + .061 .57 —.123 + .058 .82 —.074 + .029

.08 -.037 + .024 .33
j

—.111 + .062 .58 -.122 + .058 .83 -.071 + .028

.09 —.041 + .026 .34 —.112 + .062 .59 —.121 + .057 .84 —.067 + .026

.10 —.045 + .028 .35 —.114 + .063 .60 —.120 + .056 .85 — .064 -.024

.11 —.049 + .031 .36 —.115 + .063 .61 —.119 + .055 .86 — .060 + .023

.12 —.053 + .033 .37
,

—.117 + .063 .62 —.118 + .054 .87 -.057 -.021

.13 —.057 + .035 .38
i

—.118 + .064 .63 —.117 + .053 .88 —.053 4.020

.14 —.060 + .037 .39 i —.119 + .064 .64 —.115 + .052 .89 —.049 + .018

.15 —.064 + .039 .40
j

—.120 + .064 .65 —.114 + .051 .90 -.045 + .016

.16 —.067 + .041 .41 —.121 + .064 .66 —.112 + .050 .91 -.041 + .015

.17 —.071 + .043 .42 —.122 + .064 .67 —.111 + .049 .92 —.037 + .013

.18 —.074 + .045 .43 -.123 + .064 .68 —.109 + .048 .93 —.033 + .012

.19 —.077 + .046 .44 : —.123 + .064 .69 —.107 + .047 .94 —.028 + .010

.20 -.080 + .048 .45 —.124 + .064 .70 —.105 + .045 .95 —.024 + .008

.21 —.083 + .049 .46 — .124 + .064 .71 — .103 + .044 .96 —.019 + .007

.22 —.086 + .051 .47, -.125 + .064 .72 —.101 + .043 .97 -.015 + .005

.23 —.089 + .052 .48 —.125 + .063 .73 —.099 + .042 .98 —.010 + .003

.24 —.091 + .053 .49 \ —.125 + .063 .74 — .096 + .040 .99 —.005 + .002

.25 —.094 + .055 .50^ -.125 + .063 .75 —.094 + .039 1.00 —.000 + .000
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INTERPOLATION FORMULA.

or,f{a^h)=f{a)-\-k^,-\-K,^,^K,l^,+ {b)

where the constants K^^ and K^ are given in the above table as func-

tions of k and

where k is the remainder above the value of a for which the func-

tion is given in the table, and S is the increment of a in the table.

ILLUSTRATION.

To find the value of log i^for 49° 15' 36'' = 49? 260

For 49.2° log 7^=0.2836 3130=y (a)

//= .o6, 3= 0.1 >^=o.6

From Table XIV, A;= - . 1 20

a;=+.056
From Table XIII,

^= 39338
A,= 117

A3= I

Substituting these values of J^^^ A^g, a^, Ag, A3 in formula (d)

above we have as the value of log J^ for the given angle

log 7^=0.2836 3 1 30+.00023603— .0000001 4 = 0.283867 1 9.

Washington, December 17, 1907.


