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1. INTRODUCTION.

Two principal methods of gas thermometry are in use. In the

constant-volume thermometer a mass of gas is kept at constant vol-

ume and its pressure observed at the melting point of ice, at the
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condensing point of steam 1

,
and at the temperature to be determined.

If these three pressures be denoted by/ ,/100 ,
and p, the centigrade

temperature according to the scale of this thermometer is by

definition

/'lOO ^0

The numerical value thns assigned to a given temperature depends

slightly on the initial pressure and is somewhat different for differ-

ent gases. There are thus various " constant-volume scales," all

agreeing at o° and ioo°C but differing at other points, so that the

value assigned to any given fixed temperature other than the two

standard temperatures is slightly different on different scales.

In the constant-pressure thermometer a mass of gas is kept at

constant pressure, and its volume observed at the two standard tem-

peratures and at the temperature to which a numerical value is to

be assigned. If these volumes be z/ , z>100 ,
and z/, the centigrade tem-

perature according to the scale of this thermometer is by definition

4=IOO — (2)
7) 7)

The resulting value depends somewhat on the magnitude of the

constant pressure and on the nature of the gas used, so that there

are various "constant-pressure scales."

If the thermometric gases employed be always far from condensa-

tion so that they follow Boyle's law approximately, all these scales

are nearly identical; the numerical value assigned to any given

temperature is nearly the same, no matter which scale is used. The
adoption of any particular scale is arbitrary and, except in work of

the highest precision, one is as good as another.

In exact thermometry it is customary to refer all temperatures to

the international " normal scale " of the constant-volume hydrogen

thermometer in which /> = the pressure of 1 meter of mercury. This

thermometer can be used down to very low temperatures, though

for practical reasons it is convenient to modify the scale by using a

larger initial pressure pQ . Helium also is used for very low tem-

peratures and its scale is nearly identical with the hydrogen scale.

1 In what follows it is always to be understood that in making these observations

the ice and the steam are at standard atmospheric pressure.
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At moderately high temperatures the materials which have been

used for thermometer bulbs appear to become permeable to or to

react with hydrogen, so that exact work with the hydrogen ther-

mometer becomes impossible at temperatures above 300 ° C. Helium

exhibits some of the same phenomena as hydrogen. For higher

temperatures nitrogen is found satisfactory. Air has also been used,

and for medium temperature ranges is entirely satisfactory. These

four gases are the only ones that have been in common use.

The constant-pressure method has fallen somewhat into disrepute

and has not been used much in recent years. It has, however, cer-

tain practical advantages at high temperatures where there is danger

of softening the bulb, since it obviates the necessity of applying a

variable compensating pressure to the outside of the bulb, and it has

recently 2 been recommended for high temperatures by Barns.

There are thus in practical use a number of different gas-ther-

mometer scales using different gases, different initial pressures, and

two different principles. In precision measurements, the differences

between these scales become very sensible, and it is important that

we should know the relations subsisting among them so as to be

able to reduce measurements made in terms of any one to some

standard scale.

The normal constant-volume hydrogen scale, as maintained at the

International Bureau of Weights and Measures, is the standard usually

adopted, and temperatures are stated in terms of that scale; but, as

has been said, the hydrogen thermometer can not be used at even

moderately high temperatures, so that direct comparison is possible

only for what must now be regarded as a very limited range. Nitro-

gen, on the other hand, though suitable for work at high temperatures,

will not do for very low temperatures, because its critical tempera-

ture is too high. There thus appears to be no gas known which is

satisfactory throughout the entire range of temperatures accessible to

gas thermometry. Instead, therefore, of attempting to refer all

measurements to a single gas scale (a process which it seems must

inevitably involve a considerable extrapolation at one end or the other),

it is preferable to refer all measurements to some more general scale

—

one which is valid for all temperatures.

2 Rapports Congr. Int. de Physique, Paris, 1900; 1, p. 148.
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By means of the two laws of thermodynamics any desired number of

such scales might be defined, but there is one particular one, Lord Kel-

vin's thermodynamic scale, which has a practical advantage over all

others in that it may be made to agree with all the gas scales in use as

closely as they agree with one another, so that for most purposes its

adoption does not complicate matters by adding a new scale to the num-

ber of those already in use. Lord Kelvin's scale may be defined as

follows: Let an ideal reversible thermal engine work between two

reservoirs of heat. Let the quantities of heat taken in or given out by

the engine in the parts of its cycle when it is in contact with the two

reservoirs be Qx
and Q2

. Then the ratio 6
1
62 of the temperatures of

the two reservoirs is by definition the same as the ratio of Qx
to Q2)

or

H.
This equation defines only the ratio of two temperatures and not

their numerical values. If the further condition be imposed that

the temperatures of the melting point of ice and the condensing

point of steam shall differ by ioo°, the scale is completely deter-

mined. By Carnot's theorem, the ratio Qx Q2
depends only on the

temperatures and not on the particular nature of the heat engine;

hence the thermometric scale thus defined is independent of the prop-

erties of any particular substance. When the scale of temperature

is defined in this way, the temperature of the melting point of ice,

or shortly u the ice point," is approximately 273 , and therefore that

of the "steam point" is 37 3 . If we denote by
O
the exact value of

the thermodynamic termperature of the ice point, we may define the

"centigrade thermodynamic temperature" t of any other point, by

the equation

t,=e-e,
(4 )

This amounts to saying that the centigrade thermodynamic tempera-

ture is the number of thermodynamic centigrade degrees from

the ice point to the given temperature to be numbered. It is this

centigrade thermodynamic scale which is nearly identical with the

centigrade scales of the various gas thermometers.
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The coefficient of pressure, which is always nearly , is defined

by the equation

o .r 100 ~~Po
' IOO p

If we let -
Q
— Tq and T' — T '

-\-t.n we then have the simple equation
P

T' p
~7^a 0= constant) (5)
1 Po

The quantity T f may evidently be regarded as the temperature

measured, not from the ice point but from — T
Q
'. It is called the

"absolute temperature" by the scale of the thermometer in question.

The definition contained in equation (5) is analogous to that of

the absolute thermodynamic temperature 6 given by equation (3),

and is therefore incomplete until the further condition is added that

the temperatures of the ice and steam points shall differ by ioo°.

The value of T ' is then always approximately 273.

The centigrade temperature on the constant-volume scale may now,

when convenient, be defined by the equation

lv=T'-T„' (6)

which is analogous to equation (4) and, under the condition that the

ice and steam points shall be ioo° apart, equivalent to equation (1),

the original definition of t v .

The coefficient of expansion, which is also always nearly , is

/ o

defined by the equation

„ ^100 ^0a=
IOO v

If we let —=T and T— T -\-t
p)

equation (2) gives us
a

{p— constant). (7)
^0 ^0

The quantity T may be regarded as the temperature measured on

the constant-pressure scale from — T ,
and it is known as the "abso-

23835—07 6
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lute temperature" by the constant-pressure scale. Here again, to

complete the definition we add the condition that the ice and steam

points shall be ioo° apart, and the value of T is then always approxi-

mately 273.

The centigrade temperature by the constant-pressure scale may
now be considered as defined by the equation

h=T-T% (8)

which is analogous to equations (4) and (6) and equivalent to equa-

tion (2), the original definition of tp.

Let T'', 7~, and 6 be the numerical values of a given temperature

on the three absolute scales. Then it may readily be shown by

elementary thermodynamics that if the thermometer is filled with

an ideal gas,

Tf 7^
~

~fi \9)
y J

o ^0

or that the three scales are identical. The ideal gas is defined as

one which follows Boyle's law and in which a free expansion, with

no external work, would cause no change in the temperature.

These conditions may be written in the form

(pv) — constant (10)

X= o. (11)

No real gas satisfies these conditions exactly, but all the common
thermometric gases, as they are used in gas thermometers, do satisfy

them approximately. Hence it is that the ordinary gas scales and

the thermodynamic scale are all approximately the same, and the

problem of finding the mutual relations of the various scales is

reduced to the investigation of the departures of the actual gases

from the ideal state and the computation of corrections for the

departures.

Stated in this way the problem looks simple, but two difficulties

arise at once : first, the variations of pv at constant temperature are

small and are not known with sufficient completeness; and second,

the quantity X, which may be defined as the amount of heat that

would have to be added to a unit mass of gas during a free expansion
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in which its volume increased by unity to keep the temperature

from changing, is so small that it has not even been observed, still

less measured. The difficulty of getting the experimental data

necessitates a different mode of attacking the problem.

When Joule's experiments on free expansion had failed to deter-

mine the value of \ further than to show that it was very small,

Lord Kelvin devised the well known porous-plug experiment which

he then carried out in cooperation with Joule. In this experiment

a single quantity is determined which depends on the departure of

the gas from both of the conditions of ideality at once. If these

departures could be determined separately the theory of the constant-

volume thermometer would be quite simple. As it is, it is impos-

sible to give a thoroughly satisfactory thermodynamic theory of the

constant-volume thermometer on the basis of existing data, but a

knowledge of the Joule-Thomson effect makes it possible to give

the theory of the constant-pressure thermometer.

2. THEORY OF THE POROUS-PLUG EXPERIMENT.

In the porous-plug experiment the gas is forced to flow steadily

through a porous plug. The plug is so insulated that no heat can

enter or leave it by conduction. The pressure and temperature of

the gas are observed on both sides of the plug. It was found by

Joule and Lord Kelven that hydrogen became warmer, while nitro-

gen, air, oxygen, and carbonic acid became colder in traversing the

plug.

Let ply
z/n e

±
represent the pressure, the specific volume, and the

specific internal energy of the gas on the high-pressure side of the

plug, and let p% , v2 , e
3
be the corresponding values on the low-pres-

sure side. Since the gas enters the plug uniformly at the constant

pressurepx , the work done on it by the pump is p1
v

1
per gram. The

plug having sufficient resistance, the gas issues in a steady stream

at the lower pressure p2 , and in issuing from the plug does a quan-

tity of work p%
v

%
per gram in pushing forward the gas ahead of it.

The total work done on one gram of the gas is therefore px
v\—p%v%-

If no heat enters or leaves the gas by conduction, and if the flow is

slow enough that the change in kinetic energy is negligible, the

work done on the gas must be equal to the increase of its internal

energy, so that we have
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H—*i=P&\—p%v% (12)

This equation is rigorously true under the conditions imposed, no

matter what the pressures p x
and p%

are. If the fall of pressure be

infinitesimal, equation (12) reduces to

Je= — J(pv)=—p4v—v4p (13)

In Fig. 1 let the initial state of the unit mass of gas be represented

by the point A with the coordinates p y
v, t, the temperature t being

measured on any convenient scale.

V+&V

Let the state of the gas after passing the plug be represented by

D with the coordinates p-\-Jp, t>-\-Jv, t-\-Jf; Jp and Jt are nega-

tive while Jv is positive. Let the point B, with the coordinates

p-\-4p, v-\-hV) t, represent the state the gas would have been in if,

during the same fall of pressure, its temperature had been kept

constant.

After the gas, in passing through the porous plug, has reached

the state /), let it be heated at constant pressure till it attains the

state B. Then the excess of its internal energy at B over that at A is

Se=4e+Q+W (14)

where Je is the excess of the internal energy at D over that at A,

and Q and \V are, respectively, the heat added to the gas and the

work done on it during the isopiestic change DB which brings it

back to its original temperature t.
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Let
fj,
be the limiting value of the ratio of the fall of temperature

to the fall of pressure, i. e., y—JtJp. Then we have Jt-y.Jp
and

Q=-pCp4/> (15)

where Cp is the specific heat at constant pressure, in ergs. The
work done on the gas is

W=—p(hv—4v) (16)

and furthermore, since the change of volume from v^\-Jv to v-\-hv

is caused by heating at constant pressure over an interval — Jt, we
have

hv-Jv= {-Jt)(^\

= — P

whence

bt)P

Jv=hv+ pfi£\jp (18)

Substituting in equation (14) the values given by equations (13) to

(18), we have

he— —phv— vJp— yCpJp (19)

and since the differentials in this equation now all relate to the

isothermal change AB, it may be written

(l)r ->-<»+<« (I). <
A

>

Now it is known that in any reversible change of state of a sys-

tem with only two degrees of freedom and acted on by no external

forces except a uniform normal pressure,

he— Ohrj—phv ( 2o)

where rj is the entropy and 6 the thermodynamic temperature. Equa-

tion (20) is merely a statement of the two laws of thermodynamics

for such a system. If the process is isothermal, equation (20) may
be written
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To give this a physical meaning the entropy 77 must be eliminated,

as follows: Substracting 8(0rj) from equation (20) gives

B(e— 6rj) — — i)hd—phv (22)

and since the first member is a complete differential the second is

also, so that

Using this relation and noting that if 6 is constant, t also is con-

stant, we may put equation (21) into the form

whence by comparison with equation (A) we have

«(1),= -<*+<« (I),
<B)

an equation which may serve as the starting point of the theory

of the gas thermometer when treated by the use of the Joule-

Thomson effect.

This equation (B) is rigorously true, having been deduced solely

from the two laws of thermodynamics with no further hypotheses.

The quantity \xC
v
evidently has the dimensions of a volume ; it is

therefore independent of the scale of temperature, provided that the

same scale be used for \i as for Cp
. In applying the equation to the

practical question of finding the corrections of the gas thermometer,

one further assumption must be made. The quantity \x can not be

measured directly since it is defined as the ratio of two infinitesimals.

But the experiments appear to have shown that the ratio of the

change of temperature to the difference of pressure on the two sides

of the plug is, for small pressures at all events, constant and inde-

pendent of both the fall of pressure and the absolute value of the

pressure. We assume that this constant ratio found at any given

mean temperature is the same as the true value of /x, and take the

observed values of the ratio as values of fx for use in the equations.
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3. THEORY OF THE CONSTANT-VOLUME THERMOMETER.

If inequation (B), vl ^-
J
be replaced by its equivalent ^- (pv) —p,

the equation takes the form

Inverting, multiplying by dp, and integrating at constant volume

between any two temperatures, 6 and 0, at which the pressures at

the constant volume v=<\> are p and p, gives

*p dp

H>n,-<n "-* (86)

If T' be the absolute temperature as measured by a constant-

volume thermometer filled with the gas in question,

P=A j-f (
2 7)

1

by definition, and upon eliminating p from equation (26) we have

Jtj AL^ \t> A \^)r
log

or

The integration of this equation demands not only a knowledge

of the value of fiCp set all temperatures between
O
and 0, but also

a complete knowledge of the isothermal compressibility of the gas

within the same limits.

A slightly different method of integration may be adopted. Divide

equation (25) through by 2

, rearrange, substitute

1 dp p _
_d

~e d0~~P~dd (I) ^
and integrate between and 6\ the result is

-'.r-!>[>) +'^P <
D

>
/_A_
e
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This equation may serve the same purpose as (C), but the data on

compressibility and on the values of \xCp must be given, not as be-

fore in terms of the constant-volume gas scale T r

, but in terms of the

thermodynamic scale 6 which is to be established. This point is,

however, of little importance, for since the whole second member is

obviously only a small correction term, no large error will be intro-

duced by identifying T' with 6 in computing this correction, and

at the worst, a result may be obtained by successive approximations.

The fundamental difficulty is the necessity of having the informa-

tion about the departure of the gas from Boyle's law, in addition to

the specific heat, the Joule-Thomson effect, and the coefficient of

pressure which determines T
Q
'. This difficulty is inherent in the

theory of the constant-volume thermometer, so far as based on the

Joule-Thomson effect. Various treatments of the subject have

been given3
,
differing in substance only in the different methods of

handling the terms ^—{pv) and ^-. From the imperfect experi-

mental knowledge we have of the general form of the equation of

state

/ (A », t) = o (29)

particular equations are set up which shall give, in various ways,

the values of the correction terms in equations (C) and (D) with

sufficient accuracy for the purpose in hand. The corrections to be

determined are small and the final results are doubtless nearly correct,

but all hypotheses regarding the compressibility are dispensed with

in the theory of the constant-pressure thermometer. This superior

simplicity in the theory of the constant-pressure thermometer is

not due to any superiority in the constant-pressure method itself,

but to the nature of the data available. The results of the porous-

plug experiment are, in fact, not well adapted for use in find-

ing the corrections of the constant-volume scale. If the free-

expansion experiments of Gay-Lussac and Joule could be carried

out with sufficient accuracy, they would give the values of the

quantity X, defined above as the amount of energy that would have

3 Rosc-IniK-s Phil. Matf. (5) 45, p. 227; 1898; 50, p. 251; 1900; (6) 2, p. 130; 1901

Callendar, Phil. Mag. (6) 5, p. 48; 1903.
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to be added to each gram of gas in an isothermal expansion in which

the specific volume increased by unity and the gas did no external

work. In such an expansion the internal energy of the gas would

increase simply by the amount X, and we should have the equation

Comparison of this equation with (24) gives

* = «($)-* 131)

which may easily be put into either of the two forms

e
PT dT'

l0g ^= T'A-
7̂ (32)

e en J
-p (33)

These equations correspond to equations (C) and (D), but do not,

for integration, necessitate any information regarding the departure

of the gas from Boyle's law.

If the manner in which the gas departs from Boyle's law is

known, it is a simple matter to find the relation of the constant-

volume and constant-pressure scales. Hence if the relation of either

to the thermodynamic scale is known, the relation of the other can

be found.

4. THEORY OF THE CONSTANT-PRESSURE THERMOMETER.

Returning to equation (B), namely,

let us make use of the relation

(IK^KDr" 1 (34)
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which is rigorously true, whatever be the scale in which t is meas-

ured. If t=6 and equation (B) be multiplied by f ^-\ /(§|) ,
the

result is

i^)r
v+^

.

(E)

which is the form in which the fundamental equation of the porous-

plug experiment is most frequently given. In its integral form the

equation is

1 B Cv dv
lqgrlHx, (35)

If the absolute temperature by the constant-pressure thermometer

be defined as usual by the equation

v=T (36)
^0 J

equation (35) takes the form

x^Mr+Ss., (F)

By a slightly different method of treatment, similar to one already

used in the last section, equation (E) may also be thrown into the

form

v_v
e en

jr *%* (G)

Equations (F) and (G) play the same part in the theory of the con-

stant-pressure thermometer as equations (32) and (t,^) would play in

that of the constant-volume thermometer, if we had experimental

data on \ such as we actually have for /jlCp . If they be compared

with equations (C) and (I)), it is obvious that the theory of the

constant-pressure thermometer, in so far as it is based on the Joule-

Thomson effect, is decidedly simpler than that of the constant-volume

thermometer, and especially that it does not necessitate making any

hypotheses to help out the imperfection of the experimental data on

compressibility. The theory of the constant-pressure thermometer
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has thus one less weak point than that of the constant-volume

thermometer.

It may be remarked that if the pressure of the gas were infini-

tesimal so that v
Q
became infinite, while /jlCp remained finite, the

correction term in (F) would vanish and the integration would give

0___ T

If, therefore, it is possible to find by extrapolation, the limit of the

rate of thermal expansion of a gas as its density approaches zero, the

thermodynamic scale is established directly and with no further

knowledge of the value of /jlCp than that it does not become infinite.

By means of equation (36), equation (G) may be put in the form

t_0___0 r ^cvde

Tn n 27
r^f (37)

from which we see again that if the gas is rarified so that p
approaches zero, i. e., z/ = go, while nCp remains finite, the constant-

pressure scale approaches identity with the thermodynamic scale.

Now fx has already, in accordance with the indications of experi-

ment, been assumed to be sensibly independent of the pressure, so

long as the pressure is small; and furthermore, it is known that Cp
varies only very slightly with the pressure. Hence for any given

temperature 0, the value of the correction term

6 Ce
fjiC

})
d0

z\J

is nearly proportional to— . But since the gas follows Boyle's

law approximately, — is nearly proportional to the constant

pressure ir to which the gas in the thermometer is subject, so that

for any given temperature we have

t e _
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where A is nearly constant. If we write this in the form

substitute T— T =tp and 0—6
o
=t9 ,

and note that T and are both

approximately 273, we get the equation

/,-/«= 273 Air (38)

We have therefore the important result that the difference between

the numerical values of any given temperature on the centigrade

constant-pressure scale and on the centigrade thermodynamic scale,

i. e., the thermodynamic correction of the centigrade constant-

pressure scale at the given temperature, is very nearly proportional

to the constant pressure ir at which the gas is kept.

By introducing the approximation^— RO and treating equation

(D) as equation (G) has just been treated, we may reach a similar

result for the constant-volume thermometer, namely, that the ther-

modynamic corrections of the centigrade constant-volume scale are

approximately proportional to the initial pressure fi at the ice

point.

These two propositions are very useful, for they enable us, after

finding the corrections for any gas thermometer of either type, to

compute at once and with quite sufficient exactness the corrections

for the same gas at any other pressure.

5. NUMERICAL DATA ON v , Cp, AND TQ .

The numerical data needed for finding the relations of the con-

stant-pressure scales of air, nitrogen, and hydrogen to the thermody-

namic scale will next be considered. These data, some of the latest

of which do not appear to have been used for this purpose, will then

be utilized in computing the thermodynamic temperature of the ice

point, and in computing corrections at various temperatures.

In order to make practical use of equation (F) we must know the

values of the constants v and T , and the value of fiCp as a function

of /'throughout the range of temperature T to T. The ice point

will be taken for the initial temperature T ; its numerical value on

the constant-pressure scale is the reciprocal of the mean coefficient
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of expansion between the ice and steam points. The specific volume

is to be taken at the pressure for which the coefficient of expansion

is determined. The specific heat Cp is nearly constant, and since it

occurs only in a small correction term, it is sufficient to treat it as a

constant and use its mean value for the given interval. The Joule-

Thomson effect will be considered separately and at length.

(a) The Specific Volumes.— Of the four quantities z/ , 7^, C/v , and /*,

which appear in the correction term, the specific volume and the

absolute temperature of the ice point are the most exactly known.

The temperature of the ice point, which also appears as the lower

limit of the integration, must be known with the highest attainable

exactness, but in the correction term the uncertainties of z/ and T
are of much less importance than those of Cp and especially of /x.

The best data available have, however, been used for the specific

volume z> , but it has not been thought necessary to refer to all the

original papers, the figures having been taken from an article by

D. Berthelot*, which contains a very complete and useful discussion

of the densities and compressibilities of a number of the more per-

manent gases.

The data needed are the density p at the ice point and under a

pressure of one atmosphere, and the mean value of the coefficient K
in the equation

A *.=A v
x l>+^(A-A)] (39)

within the small range of the reduction here needed. In Table I are

given for air, nitrogen, and hydrogen the values of: (1) the density

according to the experiments of Leduc, Morley, and Rayleigh; (2)

the coefficient K according to the experiments of Chappuis, Leduc

and Sacerdote, and Rayliegh (the value for air is taken from Reg-

nault); (3) the pressures it for which the specific volumes at the ice

point are to be found; (4) the specific volumes for these pressures as

computed by means of equation (39) from the values of p and K
just given. It seems highly improbable that any of these values of

z> is in error by as much as 11000, and such an error is of small

importance compared with the uncertainties in the values of Cp and

/jl. The values of K assume one atmosphere as the unit of pressure.

4 Zeitschr. Kl. Chem., 10, p. 621; 1904.
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TABLE I.

Specific Volumes.

[ Vol. 3, No. 2.

Po A' 7T vo

Air

Nitrogen

Hydrogen

0.00129278

0.00125034

0.000089846

— 0.00191

—0.000559

+0.000772

1000.8 mm
1001.9

1000.5

587.015

606.626

8461.24

(b) The Specific Heats.—A collection of data on the specific heats

ma}' be found on page 406 of the third edition of Landolt and

Bornstein's tables.

For air, the values given by Regnault, Witkowski, and Lussana

for various temperatures between — 20 and + 200 lie between

0.2370 and 0.2378 with no indication of systematic variation with

the temperature. E. Wiedemann obtained the value 0.2389, and

Holborn and Austin 5 have recently obtained, for the mean value

between 20 ° and 440 °, 0.2366 observed directly, and 0.2377 com-

puted from measurements on oxygen and nitrogen separately.

These values are all for a pressure of one atmosphere. The varia-

tion of the specific heat with pressure was investigated by Lussana6

,

who found for air

= 0.23707+ 0.001498 O-i)

where p is given in atmospheres. Lussana's value will be used.

The range of temperature in his experiments was from 94 to the

mean temperature of the calorimeter, which was 28 °. Taking for the

mechanical equivalent of heat at 28 , the valueJ— 4.1 y^ x io 7
ergs,

we get for the specific heat of air at the constant pressure of 1001 mm

= 9-9 I 3X IO° ergs -

For nitrogen, the only experimental data available are those

recently given by Holborn and Austin. 5 Their observations may
be represented by the equation

[OJ^o.2322+ 0.00002155/'

l'hvs. Rev., 21, p. 209; 1905.
6Nuovo Cimento (3), .'$(>, p. 134; 1894.
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where \_CP~\
I *s tne mean specific heat, at atmospheric pressure,

between o° and t° . Assuming that the specific heat varies with the

pressure in the same way that Lussana found for air, the value

becomes, for a pressure of 1002 mm,

[C
yJ*= 0.2327+ 0.0000216 t

The calorimeter temperature was 18
,

for which we may set

y=4.i82X io 7 and so get, finally, the formula

[<^Jo=: (9-73 I + o -ooo9o30x io 6
ergs.

For hydrogen, the values of the specific heat at a pressure of one

atmosphere and at various temperatures between — 30 and -j-200°,

as given by Regnault, K. Wiedemann, and Lussana, fall between

3.3996 and 3.410 with no indication of systematic variation with

the temperature. Lussana's 6 value will be used, namely,

Cp- 3.4025+0.0133 (p—i)

The mean temperature of the calorimeter was 28 ° to 29 °, so thaty

ma}- be given the same value as before, and the result for a pressure

of 1000 mm is

Cp= 1.4218 x io8
ergs.

(c) The Coefficients ofExpansion.—For the coefficient of expan-

sion a, of which T is the reciprocal, the most recent data by Chap-

puis 7 have been used. These values, together with the values of v^

and of \_Cp] already given, are collected in Table II.

TABLE II.

Data on the Specific Volumes, Specific Heats, and Coefficients of Expan-

sion of Air, Nitrogen, and Hydrogen.

Air Nitrogen Hydrogen

7T 1000.778 1001.855 1000.460

a 0.00367282 0.00367315 0.00366004

T 272.270 272.246 273.221

v 587.01 606.63 8461.2

p 9.913X106 10.091 X106 142.18X106

7 Trav. et Mem. Bur. Int., XIII, 1903.
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6. EXPERIMENTAL DATA ON THE JOULE-THOMSON EFFECT.

There must, finally, be considered the numerical data on the Joule-

Thomson effect upon which there are available: (1) the experiments

of Joule and Lord Kelvin8 on hydrogen, nitrogen, air, oxygen, and

carbonic acid; (2) the experiments of E. Natanson9 on carbonic acid,

which will not be used because they relate only to room tempera-

tures; (3) the experiments of Kester10 on carbonic acid. The experi-

mental results must be examined somewhat in detail.

There are, to start with, twenty-two experiments on air. The

authors group the results about the temperatures 7?i, 39^5 and

92?8, and represent them by an equation of the form /x=—

r

2
- If,

however, all the twenty-two values of /jl be plotted separately against

the temperatures, it is at once evident that the experimental errors

are so large as to make the deduction of anything but a linear equa-

tion between /jl and Tfrom these observations alone, a somewhat

visionary refinement. Taking the values of the cooling effect in

centigrade degrees for a fall of pressure at the plug of 100 inches of

mercury, as given in the tables, the best straight line that can be

drawn to represent the results has approximately the equation

/x= 0.908— 0.00434 /

where / is the centigrade temperature.

Upon nitrogen, three experiments were made, one at 7? 2, one at

91 ?4, and one at 92 , the nitrogen having been diluted with oxygen

to the extent of 7.9 per cent, 2.2 per cent, and 12.5 per cent respec-

tively, in the three cases. The method of finding the value of /jl for

pure nitrogen does not appear to be stated specifically, but it was

doubtless by means of the mixture rule. The best that can be done

with these observations, by tliemselves, is to determine a straight line

from them; its equation is

/x— 1.068— 0.00475 *

The two results at the higher temperature differ by nearly 20 per

cent.

1 Kelvin, Math, and Phys. Tapers, 1, pp. 419-424.

•Wied. Ann., 81, p. 502; iSSS.
in Phys. Rev., 21,]). 260; 1905.



Buckingham.} The Thermodynamic Scale. 257

With hydrogen, seventeen experiments were made, in some of which

the hydrogen formed only a small impurity in a mass of air. The
value of ll at o° is only about one-ninth as large for hydrogen as for

air, so that the correction needed in getting the value for pure hydro-

gen is large and therefore uncertain. It seems by all means best to

disregard entirely the results obtained when the amount of impurity

was large. There then remain nine experiments in which the

impurity in the hydrogen was less than 6. 1 per cent. Four of these,

at a mean temperature of 6?8, gave values of ll from —0.075 to

— 0.126 with a mean of —0.0991, while the remaining five, at a

mean temperature of 90? 1, gave values from —0.098 to —0.234
with a mean of —0.1483. The straight line thus determined has

the equation

ll— — 0.0951 — 0.00059 *

Upon oxygen, six experiments were carried out. In three of these

the percentages of nitrogen mixed with the oxygen were 54.6, 22.4,

and 51.0, respectively, while in the others the percentages were 5.1,

3.6, and 4.0. Throwing out the first three, for obvious reasons, we
have remaining one experiment at 8? 7, one at 89? 5, and one at

95? 5, of which the last two give values of ll differing by over one-

third of their mean.

The seventeen values obtained by Joule and Lord Kelvin in their

experiments on carbonic acid are grouped about five temperatures.

When the mean values of ll are plotted against the temperature, the

curve Li—f{f) has a distinct curvature with its convexity toward the

origin. The gas was always somewhat impure and the results for

pure carbonic acid were computed by a modification of the mixture

rule. Kester's experiments, in which the values for the pure gas

were found by graphical extrapolation from the results obtained with

varying amounts of impurity, appear more reliable and his results

will be used in what follows. They give a curve similar to that

obtained by Joule and Lord Kelvin, but the values of ll are some-

what larger and the agreement of the separate experimental values

is better.

From this brief summary of the available data on the Joule-

Thomson effect it may be seen that our quantitative knowledge of

this phenomenon is very imperfect. Of the three thermometric

23835—07 7
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gases, air, nitrogen, and Hydrogen, air, the least important, is the

only one upon which any extended series of observations at different

temperatures has been made, and even in this case the observations

leave much to be desired. Furthermore, all the observations are

confined between the limits o° and ioo°, and they are too evidently

inaccurate to give any feeling of security in using an empirical equa-

tion deduced from them for the purpose of extrapolation outside

these limits. The observations will therefore be examined from

another point of view, and an attempt made to improve the situation

with regard to the Joule-Thomson effect.

7. APPLICATION OF THE LAW OF CORRESPONDING STATES.

In its most general form, the law of corresponding states affirms

that if for each particular substance the pressure, volume, and tem-

perature be measured in the proper units and from the proper zero

points, there exists a single surface,

f(p,v,t)= o

common to all substances11
. In the more special form in which it

was first announced by van der Waals 1
'

4

, it says that if the pressures,

volumes, and absolute temperatures be measured for each substance

in terms of their values at the critical point, the equation of state is

the same for all substances and contains no quantities dependent on

the special properties of particular substances. In this more specific

form the law is not generally true, but it appears to be very approx-

imately true within particular groups of substances. It will now be

applied to the five gases for which the Joule-Thomson effect has been

measured, namely, hydrogen, nitrogen, air, oxygen, and carbonic

acid. This seems justifiable a priori for air and the three diatomic

gases. For carbonic acid we have the fact that its isothermals,

when reduced to the proper scale, are congruent with those of air,

as has been shown by Amagat 13
, though they are not represented

by van der Waals's equation as shown by Raveau 14 from Amagat's,

11 See K. Meyer, Zeitschr. Phys. Chein., 32, p. 1; 1900.
12 Uber die Continuitat des gasformigen und fliissigen Zustandes.
1:1 journ. de Phys. (3), (», p. 5; [897.
11 Journ. de Phys. (3), (>, p. 432; i<S97.
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experimental data. It will be assumed, then, that for these five

gases "corresponding" states are states in which the pressures,

volumes, and temperatures are the same fractions of the critical

pressures, volumes, and temperatures, the temperatures being counted

from — 273 °, and that the properties of the gases are expressible in

terms of these "reduced" units by a single equation of state.

It follows that if the gases be taken in corresponding states and

subjected to the porous-plug experiment, a fall of pressure at the

plug by a given fraction of the critical pressure will cause a cooling

effect which is for all the gases the same fraction of the critical tem-

perature. Now experiment has shown that for the small pressures

used in gas thermometry, the thermal effect per unit fall of pres-

sure at the plug is sensibly independent not only of the fall of pressure

but of the initial value of the pressure, and consequently of the in-

itial specific volume. Hence for present purposes, so long as the

pressures are only a few atmospheres, the gases may be considered

to be in corresponding states if only they are at the same reduced

temperature, i. e., each at the same fraction or multiple of its crit-

ical temperature measured from — 273 C. The proposition under

consideration may then be stated as follows: "At equal reduced tem-

peratures, the reduced Joule-Thomson effect is the same," meaning

by the "reduced Joule-Thomson effect" the ratio of the change in

the reduced temperature to the fall in the reduced pressure at the

plug.

But the Joule-Thomson effect changes with the temperature; the

cooling effect decreases as the mean temperature of the experiment

rises, changing finally into a heating effect, for hydrogen at all

events; and it is the nature of this change, or the form of the rela-

tion //,=/"(t)
15

, as wTell as the absolute value of ^, that is needed in

integrating the equations of the constant-pressure thermometer.

So far as the law of corresponding states is valid, this function must

be the same in general form for all the gases, and if fi and r are

expressed in reduced units by yJ and 7' there must be an equation

which is the same for all the gases, not merely in general form but

also as regards numerical values.

15 The symbol r is used here to signify 273—/?.
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To put this in practical shape let us write

M
A

where pc and tc are the critical pressure and critical temperature of

the gas in question, and fi is the cooling observed, in centigrade

degrees, when the pressures on the two sides of the porous plug

differ by ioo inches of mercury. Reduced to practical terms our

proposition then is that if all the values of /a' for all five gases be

plotted as ordinates against the reduced temperatures r' — — as abscis-

sas, the points will all lie along a single smooth curve. If it is found

that this is the case, within the apparent limits of error of the obser-

vations, we shall be justified in using this curve found from all the

experiments as a more probable representation of the actual facts

than could be obtained from the few observations available for each

particular gas. If the curve can be represented by any empirical

equation, then by changing back from reduced to ordinary units, a

separate equation

may be found for each gas, the same in general form for all but with

different values of the constants.

In Table III are given, for the five gases mentioned above: (i) the

critical temperatures measured from — 273 C; (2) the critical pres-

TABLE III.

Critical Constants.

Gas Tc A
Carbonic acid 304.4 72.9

Oxygen 154.2 50.8

Air 133 39.3

Nitrogen 128 33.6

Hydrogen 32 19.4

sures in atmospheres. These figures are taken from Landolt and

Bornstein (3d. ed., pp 182—186) and from Mathias (Le Point Critique
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des Corps Purs, Paris, 1904). The value ^.= 13 atmospheres is also

given for hydrogen, and if the equation of Clausius be assumed, it

agrees better with Chappuis' values of the compressibility of hydro-

gen than does the higher value, ^=19.4 atmospheres.

These values of the critical constants have been used in computing

the reduced values of y, namely,

, A
* =/* -

1 c

which, with the reduced temperatures, are shown in Table IV. In

this table are given: (1) the observed cooling effect in centigrade

degrees for a fall of pressure of 100 inches of mercury, according to

Kester for carbonic acid, and according to Joule and Kelvin for the

other gases; (2) the centigrade temperatures at which the values

were observed; (3) the number of separate experiments on which

each value is based; (4) the reduced temperatures of experiment,

i. e., rr— T tc ; (5) the reduced cooling effects, y' —ypc rc ; (6) the values

of y' computed by the equation

^ =
T/°l

5

o.42
- ao°8 (

T'- °-42)- 0.054 (40)

(7) the values of y!— y!^ (8) the values of y' computed by the

equation

o.

(9) the values of y' — y' v

On Plate I the separate values of y! are shown together with the

curve plotted from equation (40). The values for hydrogen were

obtained by using ^>c= 19.4 atm. The point at t' — 6.02 is the

inversion point of hydrogen found by Olszewski 16
at —80? 5 C.

Since the excess of pressure in Olszewski's experiments was over

100 atmospheres, it could hardly have been expected that this point

would fall in so well with the others17
.

16 Phil. Mag. (6), 3, p. 535; 1902; Ann. Phys., 7, p. 818, 1902.

17 See A. W. Porter, Phil. Mag. (6), 11, p. 554; 1906.
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TABLE IV.

Joule-Thomson Effect in Reduced Units,

1 2 3 4 5 6 7 8 9

Gas Cooling
ob-

served

Temp,
of Expt.

fc

Num-
ber of
Ex-
pts.

Re-
duced

temper-
ature

Re-
duced
cooling

•l fx
/-/x\ tfi a*'V2

co2
4.82 - 0.4 8 0.896 1.154 1.081 -r0.073 1.092 +0.062

11 3.92 20.4 11 0.964 0.986 0.962 +0.024 0.964 + 0.022

<< 3.47 39.5 3 1.027 0.830 0.855 — 0.025 0.867 — 0.037

<( 3.17 59.5 3 1.092 0.759 0.767 —0.008 0.784 —0.025

It 2.90 79.5 1 1.158 0.695 0.692 + 0.003 0.712 —0.017

it 2.63 96.5 2 1.214 0.629 0.639 — 0.010 0.660 — 0.031

o 2
1.07 8.7 1 1.827 0.352 0.329 +0.023 0.341 +0.011

<< 0.80 89.5 1 2.351 0.264 0.218 + 0.046 0.220 +0.044
(( 0.57 95.5 1 2.390 0.188 0.212 — 0.024 0.215 —0.027

Air 0.88 7.1 8 2.106 0.260 0.260 ±0.000 0.269 — 0.009

it 0.75 39.5 8 2.350 0.222 0.218 +0.004 0.222 ±0.000

u 0.51 92.8 6 2.750 0.151 0.165 —0.014 0.165 — 0.014

N 2
1.03 7.2 1 2.189 0.271 0.246 -r0.025 0.252 + 0.019

<< 0.58 91.4 1 2.847 0.151 0.155 — 0.004 0.154 -0.003

<< 0.69 92.0 1 2.852 0.201 0.155 +0.046 0.154 + 0.047

H, -0.099

—0.148

±0.000

6.8

90.1

— 80.5

4

5

8.74

11.34

6.02

—0.060

—0.090

±0.000

—0.040

— 0.060

-0.054

— 0.091

— 0.001

—0.006

+ 0.001

+ 0.001

**2

pc=19A
11

H., — 0.040

—0.059

-+-0.000

/?c=13
<<

1""

t

+0.001

i

-1-0.000±0.000 ±0.000

Examination of Table IV and Plate I will show that equation (40)

represents the observations, well within their apparent experimental

errors. Equation (41) represents all the observations about as well

as equation (40) except in the case of carbonic acid.

We have thus found that the points representing the reduced

observations do lie along one smooth curve as nearly as we can tell.

It therefore seems justifiable to assume that this curve, based on all

the observations, gives a better representation of the facts than can

be obtained from the few observations on each gas separately, and

this assumption will be niaGc.
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By reducing back to temperatures in centigrade degrees and

expressing /x as the fall of temperature for a fall of pressure at the

plug of one dyne per square centimeter, we may obtain an unre-

duced equation for each gas having the form

a
P — c(r—b)— d (42)

if equation (40) be used, or

a.

r-bx

A (43)

if equation (41) be used. The constants #, b, c, d, or at , b^ d
1}
will,

of course, have a different set of values for each gas. It appears at

first sight that these values will be considerably affected by errors in

the critical data. The coefficients of the reduced equation (40) or

(41) will be affected somewhat; but these errors are in the main

eliminated by using the same critical constants in reducing back to

ordinary units, and can become of importance only in the case of

a wide extrapolation beyond the limits of temperature within which

the experiments were made. The only large errors likely to occur

are in the case of hydrogen, for which the values of /jl are also small

and therefore uncertain.

The values of the constants of equations (42) and (43) are shown

in Table V. The values for hydrogen are based on ^=19.4 for

the constants of equation (42), and on pc—^Z ^or the constants of

equation (43).

TABLE V.

Values of the Constants of Equations (42) and (43).

Air Nitrogen Hydrogen

log10
a 5.86687 5.90264 6.93706

b 55.86 53.76 13.44

lOgio^ IT. 77897 IT. 84702 10.08556

log10^ 8.73212 8.78353 8.42001

lOgio^i 5.96752 4.00229 5.21057

K 42.56 40.96 10.24

lOgio^i 7.08848 7.13989 8.95023
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8. REMARKS ON THE EQUATION fi= f (
T).

The general form of the reduced equation (40) was decided on by

inspection of a smooth curve drawn so as to represent the observa-

tions as well as possible, and the constants were adjusted by trial.

This curve has its lower asymptote inclined, and the observations

can not be well reproduced by making the asymptote horizontal, if

the value ^.= 19.4 be adopted for hydrogen. On the other hand,

the omission of the term c (t—o) makes it impossible to represent

the values for carbonic acid so well, though the simplified equation

reproduces the hydrogen values a little better, on the assumption

that the critical pressure of hydrogen is 13 atmospheres instead of

19.4. The values of the constants might be changed slightly, but

no great improvement could be obtained. The values given in

Table V are those that have been used in the computations in the

remainder of the work.

Equations (42) and (43) are quite similar in form to those pro-

posed by Rose-Innes18
, namely,

and by D. Berthelot19
,
namely,

**=$-* (45)

and having four and three arbitrary constants, respectively, can

naturally be made to fit the observations somewhat better than

the simpler equations with only two constants. It is obvious,

however, that unless the observations on carbonic acid are very

erroneous, the curve is asymptotic to a line at about t' — 0.4 and

not to the vertical axis. Joule and Kelvin's observations on car-

bonic acid, which are also plotted in Plate 1, though they were not con-

sidered in making up the equations, point even more strongly in the

same direction. It will be noticed upon examination of the separate

points, that in deciding upon the equation of the curve, the obser-

vations on air, for which the experiments were most numerous, have

1 Phil. Mag. (5), 45, p. 227; 1898.

"Tray, et Mem. Bur. Int., XIII; 1903.
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been given more weight than those on oxygen and nitrogen; also,

that of the two observations on nitrogen at the higher temperature,

the one in which the gas had the least impurity (2.2 per cent) lies

much closer to the curve than the other in which the gas was more

impure (12.5 per cent). It thus seems probable that if our use of

the law of corresponding states is justifiable at all, the middle part

of the curve has about the right position. To fit either equation

(44) or equation (45) to the observations, we must either raise the

middle part of the curve, thus spoiling the agreement for air, or else

content ourselves with very rough approximation in the case of

carbonic acid.

Regarding equation (45) it should be stated that M. Berthelot

deduces the equation

AfiMCp=^--B

where M is the molecular weight, from theoretical considerations on

the form of the equation of state by the aid of the law of correspond-

ing states. If MCP is constant this reduces to equation (45). In

the case of carbonic acid, Cp decreases sensibly as the temperature

falls; hence /x would have to increase more rapidly with falling tem-

perature than is indicated by equation (45). In other words, if this

variation of specific heat were taken into account, the carbonic acid

points on Plate I would all be raised and representation of all the

observations by an equation with the vertical axis as an asymptote

would still be imperfect.

The main result of the last two sections is the establishment of

the fact that the observations on the Joule-Thomson effect may all

be represented by a single empirical equation. Equation (42) is

the one that has been used in most of the following computations,

though results have in some cases also been obtained by the use of

equation (43) for the sake of comparison. It is assumed that this

equation (42) represents the true values of the Joule-Thomson effect

from about the critical temperature to some twelve times the critical

temperature. The equation thus affords a reasonable means of

extrapolating down to the critical temperature of hydrogen and up

to twelve times the critical temperature of nitrogen or about

1200 C. Within this range, the use of the equation is in a certain
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sense only an interpolation by an empirical formula adjusted to

the observations. Outside the range t' = i to r
r = i2, the use of

the equation is in ever}' sense an extrapolation and therefore

hazardous.

9. INTEGRATION OF THE EQUATIONS OF THE CONSTANT-PRESSURE
THERMOMETER.

The first fundamental equation for the constant-pressure ther-

mometer is

i.

logrf^fe> (/=7r) (F)

Z>n

In this equation T and z/Q
are constants, and Cp varies so little that

it may safely be treated as a constant. The cooling effect
fj,
has been

shown to be capable of representation by an equation of the form

a
p=-—T-c(T-b)-d

7- (46)

The difference between t, or ^+273, and T is so small that we shall

not commit any serious error by replacing r by T in equation (46).

If this expression for /jl be substituted in equation (F) the result of

the integration is too complicated for convenient use in computation.

Now our first problem is the determination of the value, in centi-

grade degrees, of the thermodynamic temperature of the ice point,

and for this purpose no serious extrapolation outside the range of

the observations on /x is needed. Hence it is permissible, in the in-

tegration, to substitute for the general expression (46) any other

which gives a curve nearly coincident with that given by equation

(46) between o° and ioo° C. We do not in this way throw away
the work done in obtaining the more general equation, for the abso-

lute values of /jl will be based on the numerical values of the con-

stants in the general reduced equation, i. e., on all the observations

and not merely on the few for each gas. If two such simpler

expressions for /x be used, one of which represents a curve much
closer to that of the general equation than the other, and if the com-

puted values of the temperature of the ice point be sensibly the
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same, it is certain that neither of them differs sensibly from the result

that would have been obtained from the general expression itself.

The simplest equation is that of a straight line

/j,= a— bT (47)

If this be substituted in (F) the result of the integration is

BYT+ABY (8)

where

A = aTn C,

This equation has been used to compute the value of # ,
the thermo-

dynamic temperature of the ice point, by setting 6=6 -\-ioo and

T— 7" +ioo. The values of a and b in equation (47) which deter-

mine the constants A and B of equations (48) and (49) were found:

first, directly from the observations, i. e., from the straight line

equations given in § 6; and second, by computing the values they

would have for straight lines, intersecting the curves defined by

equation (46) at 20 ° C and 80 ° C. The values thus found for

will be tabulated in the next section.

A second method is to use the equation

B=v°7r.CJ «*>

a

given by Joule and Lord Kelvin. This does not represent the facts

at all for hydrogen; but for oxygen, nitrogen, and air between o°

and ioo° the reduced equation

,1^135

represents the observations within their experimental errors. From
this equation maybe obtained the values log

10
^ = 2.33047 for air,

and log
10
#:= 2.34860 for nitrogen. Using the value of fi given by

equation (50) the integral of equation (F) becomes

rT*+aTtCplv^ (51)

lT 3+aT Cplv ]
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which looks simpler than (48) but is not so easy to use in extended

computations. The values of found in this way from the data on

air and nitrogen will be given in the next section.

Rose-Innes's equation

A R

which is a much better approximation than either (47) or (50) might

also be used, but the result of integrating equation (F) on this basis

is nearly as complicated and unsuitable for computation as those

obtained from the more general equations (42) and (43).

As a check on the foregoing methods, the general expressions

have also been used in equation (G), namely,

-T-Je7^~
(G)

The values of the thermodynamic temperature 6 between the ice

and steam points are almost certainly within o?3 of t, i. e., of the

ordinary centigrade temperatures by the normal scale, plus 273?

Since the whole second member of equation (G) is merely a small

correction term, no serious error will be caused by writing

r=-£rb
- c{e- b)-d (52)

or

»=e£tr dl (53)

i. e., by identifying t with 6 in this correction term, and using the

numerical values of the constants already given in Table V. The

results of making these substitutions and integrating equation (G)

are

7 ' e
'o _ f*

e~er pre-H(M^w$3
- clo8.g I!]=* (54)
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and

Since by definition

it follows from (54) that

or from (55) that

e_ t_ e$_

6, 71 vn

6 T %

(56)

(57)

(58)

To use either of these equations for finding 6 , we set 0=0 -\- 100

and T= T -\- 100. The value of T is known; the value of 6 to be

used in finding the value of the correction term was taken to be

273?i4 in a first approximation, and in a second approximation the

value of
O
found in the first approximation was used.

10. VALUES FOUND FOR THE THERMODYNAMIC TEMPERATURE OF THE
ICE POINT.

The values found for 6
Q
by the several methods described in § 9

are collected in Table VI.

For carbonic acid we find # = 273?i3i from Chappuis' value of the

coefficient of expansion at a pressure of 1377 mm, and
o
= 273?ii2

from his value at a pressure of 998 mm. The mean specific heat

was taken from Lussana's data corrected to 50 ° by Regnault's data.

From Chappuis' value of the coefficient of expansion at a pressure

of 518 mm, the resulting value is @ = 2J2° 700. The experimental

results at this pressure were less concordant, and it has seemed

justifiable to disregard this value in taking the mean. Since the

value
o
= 273?i4 assumed in making the first approximation is so

close to the resulting value, a second approximation is unnecessary.

No computation was made by the second form of equation for yu, since

it does not fit the observations well for carbonic acid.
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In considering the values given in Table VI we may at the start

confine our attention to the values obtained from the reduced equa-

tions for /x, the other values having been computed and included in

the table merely to illustrate the magnitude of the differences caused

by the use of different methods of treating the same experimental

data. A detailed examination of the experimental data does not

TABLE VI.

Temperature of the Ice Point.

Method

ii—a—bT

a and b direct from observations

/*=#

—

bT

a and b from equation (42) at 20° and 80° C. .

a from equation (42 )

^-±-
b
-c\d-b)-d

fiirst approximation

v.=~r -c{e-b)-d

second approximation

Air

based on last value of 0„

273.246

273.269

273.275

273.263

273.266

273.276

No

273.279

273.275

273.244

273.245

273.249

Ho

273.056

273.056

273.060

273.061

273.055

COo

273.121

enable us to say whether the values for the different gases should be

assigned equal weights or not. Using the means of the last two

values for air, nitrogen, and hydrogen, the arithmetic mean is

<9
o= 273- I 92

while if the value for carbonic acid be included, the mean is

#o= 273- I 74
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Another point of view is possible, however. If the discrepancies

be assumed to be due, not to errors in the determination of the coef-

ficients of expansion, but to errors in the elements which enter into

the computation of the correction term which reduces T to # , nota-

bly to errors in /jlCp , it may be argued that the uncertainty of this

correction is proportional to its total magnitude, and a weight may
be assigned to each value proportional to the reciprocal of — T .

These differences
O
— T are, for the four gases, approximately as

6:6:1: 42. If weights be assigned in this way, the mean obtained

is = 273? 106, while if the weights are made proportional to the

square roots of these reciprocals, the weighted mean is
o
= 273?i3i.

Since Chappuis' experiments show that hydrogen does not give so

consistent results in the gas thermometer as nitrogen, it seems prob-

able that these methods of weighting give too much importance to

hydrogen.

All we can conclude from these values alone is that the value of

Q
is probably between 273? 1 and 273? 2, but it is worth while to

compare them with values obtained by other methods. The most

interesting computation of this sort is that of D. Berthelot contained

in Volume XIII of the Travaux et Memoires of the International

Bureau at Sevres.

As was stated in §1, the problem of finding the relation of any

gas scale to the thermodynamic scale—including the determination

of
O
—is essentially the problem of investigating the departures of

the gas from the ideal state and the computation of corrections for

these departures. The usual method of doing this is to use the

values of the Joule-Thomson effect. This is the method which has

been pursued in the present paper, the only innovations introduced

being in the treatment of the value of the Joule-Thomson effect

where Kester's results on carbonic acid have become available, and

in the use of Holborn and Austin's recently published results on the

specific heat of nitrogen. But an entirely different mode of attack

is possible. As was remarked in §4, the equations show that if

the gas became infinitely rare, while /jlCp remained finite, the gas

scale would become identical with the thermodynamic scale. Hence,

if it be possible to find, by extrapolation from finite to infinitesimal

pressures, the limiting values of the coefficients of expansion a, and
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of pressure /3, these values should be identical with each other and

with 7, the coefficient of expansion of the ideal gas, so that the

thermodynamic scale would become known at once in its relation

to the gas scales at ordinary pressures without any consideration of

either the Joule-Thomson effect or the specific heat. The general

application of this method presupposes a knowledge of the equation

of state of the gas for low pressures.

M. Berthelot has used this method with great success. For find-

ing the value of
O , the data needed are the values of a and ft for any

given pressure, and the compressibility at o°. These quantities

being known for nitrogen and hydrogen, from Chappuis' experi-

ments, the assumption that the departures from Boyle's law remain

uniform down to zero pressure makes it possible to compute imme-

diately the value of 7, the mean coefficient of expansion of the ideal

gas between the ice and steam points. The reciprocal of this is the

desired value of
O

.

The mean of four independent and very consistent values obtained

in this way for nitrogen is
O
= 2 73?o88. The mean of three inde-

pendent and somewhat less consistent values for hydrogen is 6 =
2 73?o6c). The mean of all seven values is

<9 = 273?o79

which M. Berthelot considers to be probably a little low but correct

within o?02.

M. Berthelot also computes the value of
O , by the use of the

Joule-Thomson effect, with the following results:

Gas 0„

I [ydrogen 273. 05

Air 273.19
Carbonic acid 273. 10

Mean 273. II

Tlic values for hydrogen and carbonic acid are nearly the same as

those here obtained, namely, 273?c>58 and 273? 121, while the value

for air is sensibly lower than the value 273? 271 obtained in the

present work. The difference is probably due to the different

assumptions regarding the value of /x. It has been pointed out(§ 8)
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that the equations used in the present work appear to represent the

actual observations on the Joule-Thomson effect somewhat better

than M. Berthelot's equation. He gives no value for nitrogen,

doubtless because at the time when his paper was published no

direct measurements on the specific heat of nitrogen were available.

The value for nitrogen based on the new data is nearly as high as

that for air, namely, 273? 25, as compared with 273? 27. Assuming

that the value for nitrogen, if computed by M. Berthelot's method,

would also be o?02 lower than that for the air, the mean for the

four gases computed by his method would be ^ = 273? 13. There

does not seem, on the whole, to be any sufficient reason for consider-

ing the value for nitrogen to be less reliable than the others.

We mav then collect the results as follows:

Method Value of O Gases Author

Extrapolation to p—o

Thermodynamic: u=——jB....-

273.079

273.13

273.174

H2 and N2

H
2 , N2 , C0 2 , Air

H
2 , N2 , C0 2 , Air

Berthelot

< <

Thermodynamic: //,=
llx —d

x
8— Oi

and u= -—c (6—b)—d
• Buckingham

The mean of these,

#o = 273?i3

is probably not far from the true value. It remains for future

experiments on the value of /jlCp to decide whether the consistently

high values obtained by the thermodynamic method of computation

for air and nitrogen are erroneous, or whether there is some as yet

undetected error in the experimental data from which M. Berthelot

has obtained his beautifully consistent but much lower results for

hydrogen and nitrogen.

23835—07 8
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11. CORRECTIONS OF THE CONSTANT-PRESSURE HYDROGEN AND NITRO-
GEN THERMOMETERS BETWEEN THE ICE AND STEAM POINTS.

By the "correction of the gas scale to the thermodynamic scale"

is meant, not the difference between the absolute temperatures by

the two scales, a quantity which would be uncertain by the whole

amount of the uncertainty in
O ,

but the difference between the

centigrade scale of the gas thermometer and the centigrade thermo-

dynamic scale as denned in §1. These corrections are small

between o° and ioo° and they may be found with an accuracy

exceeding that attainable in the use of the gas thermometer by the

simplest of the methods described in §9. From the assumption

that the Joule-Thomson effect might be treated as a linear function

of the temperature, or that

P=a-bT (59)

we obtained the equation

VT+Alm-B
[T.+A'B] V '

where

A=aTnCt

(61)&=Vq—bTQCp\

If the values of a and b be found from the general equation (40) by

making the straight line intersect the curve at 20 and 8o°, the cor-

rections may easily be computed.

The resulting values for the constant-pressure hydrogen ther-

mometer are given in Table VII, in comparison with values computed

by other writers. Column 1 gives the temperature; column 2, the

corrections computed by Rose-Innes20
; columns 3 and 4, the correc-

tions computed by Callendar21 by two methods ; column 5, the values

according to D. Berthelot22
; column 6, the values computed by the

method just described; column 7, the values given by the same method

when a and b are found directly from the equations given in § 6. The
values computed by Rose-Innes and Callendar are given in their

20 Phil. Mag. (6), 2, p. 130; 1901.

"Phil. Mag. (6), 5, p. 48; 1903-
22 Trav. etM€m. Bur. Int. XIII, 1903.
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papers for a pressure of 760 mm; they have therefore been multiplied

by I, so that as given in Table VII all the corrections refer to a

pressure of 1000 mm.
The figures in columns 2, 3, 6, and 7, obtained from the consider-

ation of the Joule-Thomson effect, are all sensibly in agreement. The
values in columns 4 and 5, obtained without using the Joule-Thom-

TABLE VII.

Corrections of the Constant-Pressure Hydrogen Scale, n— 1000 mm.

[The corrections are all to be subtracted.^

I 2 3 4 5 6 7

t°c
Rose-Innes

igoi
Callendar, I

1903

Callendar, II

1903

D. Berthelot
1903

E. B., I E. B.,II

10 0.0015 0.0015 0.0007 0.0015 0.0013

20 0.0024 0.0025 0.0013 0.0008 0.0026 0.0023

30 0.0031

0.0033

0.0032

0.0035

0.0016

0.0018

0.0033

0.0037

0.0029

40 0.0010 0.0032

50 0.0033 0.0035 0.0018 0.0039 0.0034

60 0.0031 0.0033 0.0016 0.0009 0.0037 0.0032

70 0.0025

0.0019

0.0027

0.0020

0.0014

0.0010

0.0031

0.0024

0.0028

80 0.0005 0.0022

90 0.0011 0.0011 0.0005 0.0013 0.0013

son effect, by general considerations on the equation of state, are,

respectively, about }4 and }{ of the mean of the others. The abso-

lute values are thus in doubt, but as the largest of all the values is

less than 0^004 the corrections may be considered negligible.

In Table VIII are given similar values for the constant-pressure

nitrogen scale. As before, all the corrections are given for a pressure

of 1000 mm. The figures in column 3 are for air, but the corrections

computed by the same method for nitrogen would doubtless be very

nearly the same.

The agreement among these sets of value is relatively much
closer than was the case for hydrogen, though since the values are

larger, the absolute magnitude of the divergence is also a trifle larger,

the greatest difference being about o?oo8. The mean of columns 2,
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4, 5, and 6, given in column 7, is everywhere within o?ooi of Ber-

thelot's value and may be regarded as correct within the present

limits of experimental precision in gas thermometry.

TABLE VIII.

Corrections of the Constant-Pressure Nitrogen Scale, 7t= 1000 mm.

[The corrections are all to be subtracted.]

I 2 3 4 5 6 7

re
Rose-Innes

1901

Callendar, I

1903
(Air)

Callendar, II

1903

D. Berthelot
1903

E. B.
Mean

(omitting
col. 3)

10

20

30

40

50

60

70

80

90

0.0120

0.0205

0.0261

0.0288

0.0289

0.0269

0.0228

0.0168

0.0092

0.0097

0.0163

0.0207

0.0225

0.0226

0.0207

0.0176

0.0131

0.0069

0.0109

0.0188

0.0236

0.0260

0.0260

0.0240

0.0204

0.0151

0.0081

0.010

0.017

0.022

0.024

0.024

0.022

0.019

0.014

0.007

0.0078

0.0137

0.0179

0.0203

0.0209

0.0198

0.0172

0.0129

0.0071

0.010

0.017

0.022

0.025

0.025

0.023

0.020

0.015

0.008

12. COMPUTATION OF THE CORRECTIONS FOR TEMPERATURES OUTSIDE
THE FUNDAMENTAL INTERVAL.

Since the methods of computing used in this paper involve the

use of the Joule-Thomson effect, and since, with the exception of

Olszewski's value for the inversion point of hydrogen, the data on

this quantity have been obtained from experiments at temperatures

between o° C and ioo° C, any computation of the relations of the

gas scales to the thermodynamic scale at temperatures outside this

interval must involve an extrapolation. The general reduced equa-

tion (40) or (41) affords the means of making this extrapolation with

a considerable degree of probability. It embraces observations at

temperatures all the way from a little below the critical temperature

to somewhat over eleven times the critical temperature. For the

purpose of extrapolation it will now be assumed that the correspond-

ing unreduced equation for each gas is valid, not merely between

o° and iou°, but from the critical temperature of that gas to at
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least eleven times the critical temperature. On this basis corrections

will be computed for the hydrogen thermometer down to— 240 ° C,

for the nitrogen thermometer up to 1200 C, and for the air ther-

mometer at 445? In these computations equations (54) and (57)
will be used, and these must now be considered more closely.

In the equation

li=^
h
-c(r-b)-d (62)

the temperature r is not the temperature by either the constant-

volume or the constant-pressure scale of the gas in question, but the

centigrade temperature, as stated by various observers, plus 273?
It may safely be assumed that the tabulated values for the temper-

atures of the observations on /x, as well as for the critical tempera-

tures, are given in terms of the normal constant-volume hydrogen

scale, and that this scale agrees with the centigrade thermodynamic

scale, both within the errors of the observations. In the computa-

tion by means of equations (54) and (57) this temperature r is

identified with the absolute thermodynamic temperature 6. But it

now appears that the absolute thermodynamic temperature of the ice

point is somewhat above 273 ,
and the value 273? 13 appears most

probable. Strictly speaking, therefore, a second approximation

ought now to be made. Instead of adding 273 to the observed

values in getting the reduced temperatures and cooling effects, the

computation should be revised, using 273? 13 instead of 273? The
coefficients of the reduced equation yJ =/{r') ought to be redeter-

mined, and from these, the values of the coefficients in the unre-

duced equation for each gas. But it is quite certain that the accu-

racy of the experimental data does not warrant this and that the

improvement in accuracy would be illusory.

All the corrections between o° and ioo° are so small that it is of

little importance what method is used for computing them, but when
it is a question of wide extrapolation, more caution is needed. The
one essential condition is that the corrections shall vanish at o° and

ioo°. Now, when equations (54) and (57) were used to find the value

of the ice point for nitrogen they gave ^ = 273.244. It is evident

therefore that if the same values of <?, $, c, d be adopted, but
O
be

arbitrarily set equal to 273.13 or any other value than 273.244, the
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correction will not vanish at ioo°. Hence the values of a, b, c, and d
already given for the three gases do not, when taken in conjunction

with the single value ^= 273.13, satisfy the essential condition of

making the corrections vanish at ioo°.

Two methods of procedure suggest themselves. We may take the

values of the constants already determined and use them in connec-

tion with the value of
O
found for each particular gas from the con-

dition that the correction shall vanish at ioo° as well as at o°. Or
we might adopt the value

O
= 273.13 for all the gases and adjust

the constants for each gas so as to fulfill the condition of giving no

correction at ioo°. In view of the fact that the values of /jl and

therefore of the constants a,b,c,d are somewhat in doubt, and that

there certainly is one definite true value of
O , even if it be not pre-

cisely 273? 1 3, the second method seems more logical. But since

there is no way of telling just what the errors are, and therefore no

satisfactory way of adjusting the constants, the safest method is to

keep strictly to the results of experiment and use for each gas the

separate value of found for it. This method has therefore been

pursued.

In Table IX are given the values of the coefficients of equation (54)

which were used in computing the temperature of the ice point as

described in §9. They were obtained from the values of <?, b, c, d

(see Table V) found for each gas from the reduced equation (40) as

described in §7. The corresponding values of 6 are also given, so

that the figures for each gas form a consistent system of values which

may be used in the first of the two methods of extrapolation just

considered.

TABLE IX.

Values of the Constants of Equation (54).

Air Nitrogen Hydrogen

logi»(/'
~cb+ d \ 6.13710 6.18852 7.82499

1 8.37367 8.44172 8.68026

log,, c II.77897 IT.84702 10.08556

*0 273.266 273.245 273.061
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13. CONSTANT-PRESSURE CORRECTIONS FOR HYDROGEN AND NITROGEN
OUTSIDE THE FUNDAMENTAL INTERVAL.

The computation of the corrections between o° and ioo° may be

made by very simple methods. The values tabulated in § 11 are

all small and the results from different methods agree closely.

Equations (54) and (57), together with the constants given in Table

IX, have also been used to compute the corrections of the constant-

pressure hydrogen and nitrogen thermometers for several points.

The same corrections have been computed by Callendar by two

methods, and by Berthelot. The four sets of values for hydrogen

are collected in Table X, Callendar's values for the pressure

tt=j6o mm having been multiplied by f to make them comparable

with the others. The two values given in the column headed

"B. B., II" were obtained by equations (55) and (58), which are based

on the valuepc
— 13 atmospheres for hydrogen, and were computed

for the sake of finding how much they differed from the values given

by equations (54) and (57) based on ^=19.4 atmospheres for

hydrogen.

TABLE X.

Constant-Pressure Corrections for Hydrogen, ^= 1000 mm.

t°c Callendar, I Callendar, II D. Berthelot E. B., I E. B., II

—240 + 1.368

+ 0.250

+ 0.060

+ 0.021

—0.0011

+ 0.005

+0.021

+0.833

+ 0.271

+0.111

+0.046

—0.0050

+0.024

+0.064

+0.110

—200

—150

+0.781

+0.211

+0.066

—0.0035

+ 0.017

+0.041

+0.268

+0.085

+0.029

—0.0018

+0.009

+0.022

+ 0.349

— 100

+ 50

+200

+300

+400

+450

+0.068

+0.081 +0.045

At first sight there appears to be hardly any agreement between

the various values in this table except in the respect that most if

not all of the corrections are within the experimental errors unavoid-

able in gas thermometry at the present time. A closer inspection

shows that there is a fair agreement, for the low temperatures,
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between the columns headed "Callendar, II, "D. Berthelot," and
" E. B., I," and the mean of these sets of values is probably the best

indication we have at present of the true values. At the higher

temperatures the divergence is much greater. As regards the values

computed by equations (54) and (57), it may be said that they are

based on an extrapolation in every sense, since with hydrogen, which

has the lowest critical temperature of all the gases considered, there

is no possibility of using the law of corresponding states for check-

ing the values at temperatures above ioo° by comparison with

other gases. Somewhat similar remarks are applicable to Berthe-

lot's results, although since his computations are based on an

apparently very satisfactory form of the equation of state and not on

a confessedly empirical equation for /a, they appear to deserve more

confidence than the values computed by the present writer. The
curves plotted from the various sets of figures have a general

similarity of form but do not lie close together. It is obvious that

there are inconsistencies in the experimental data on the behavior

of hydrogen, which it remains for future experiment, particularly

on the Joule-Thomson effect and on the possible influence of adsorp-

tion on the coefficients of expansion and pressure, to clear up.

The same method of computation has been pursued for nitrogen,

and the results, reduced by 1/500 so as to make them applicable to

a pressure of 1000 mm., together with those of Callendar and

Berthelot, are collected in Table XL

TABLE XL

Constant-Pressure Corrections for Nitrogen, n— 1000 mm.

t°c Callendar, II D. Berthelot E. B., I E. B., II

-100

+ 50

200

400

+0.437

-0.025

+0.135

+ 0.469

— 0.024

+0.113

+0.457

+ 0.326

— 0.0190

+ 0.105

+0.433

+ 0.348

H 0.456

450 + 0.660

600 + 0.844

+ 1.248

+ 1.654

+ 0.827

+ 1.262

+ 1.706

+2.157

800

1000

1200

2.047 + 1.721

+ 2.170
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Since the temperatures considered in this table all lie within the

limits of the curve on Plate I, i. e., with the exception of 1200
,

within the limits where the law of corresponding states affords us

the support of comparison between different gases, the results would

appear a priori to deserve more confidence than those for hydrogen.

We find accordingly that the agreement is satisfactory, especially

between Berthelot's values and those of the present paper. The
two methods here pursued give nearly the same results, although

the equations, namely (40) and (41), are based on two quite different

values of the critical pressure of hydrogen, which probably include

the true value between them. The greatest discrepancy between

M. Berthelot's results and my own is at the lowest temperature.

This was to have been expected. For the equation of state, upon

the consideration of which M. Berthelot's computations are founded,

leads to a value for /jl which differs from the ones here used more

and more as the temperature is lower and lower. Fortunately, this

divergence of opinion as to the better form of equation for //, is of

little importance, because there is little likelihood that the nitrogen

thermometer will be used for low temperatures. Callendar's results

are somewhat larger, but the difference of o?4 at 1000 is small

compared with the experimental errors at this temperature. On
Plate II the three sets of results are plotted. Curve (A) represents

Berthelot's values; curve (B), those of the present paper computed

by the first method ; and curve (C), Callendar's values. It seems

probable that the mean of the three gives the true values with a

precision not likely to be soon surpassed in experimental work.

14. THE BOILING POINT OF SULPHUR.

If the values given in Table IX be used in equations (54) and (57)

to find the correction of the constant-pressure air thermometer at

4 = 445°, the result is ^= 444? 503, hence the correction of the

constant-pressure air thermometer for which it— iooi mm is, at this

temperature,

*•— Jp=+o?497

The value of [Cp ~\
J
used in the computation was found by taking

Lussana's value for air at a pressure of 1001 mm and assuming that

the specific heat of air varies with the temperature in the same way
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as Holborn and Austin found for nitrogen. Increasing the specific

heat by 1 per cent increases the correction by o?oi. An inde-

pendent computation, based on
o
^273?26i3, gave +o?504 for the

correction, or sensibly the same.

Callendar and Griffiths
23

, using a constant-pressure air thermometer

at atmospheric pressure, found for the boiling point of sulphur the

value 444? 53. At this pressure the correction as just given becomes

^ X 0.497 = 0.37; hence, according to this determination, the boiling

point of sulphur on the centigrade thermodynamic scale is

(S. B. P.)
s
= 444?9o

Chappuis and Harker24
,
using a constant-volume nitrogen ther-

mometer with an initial pressure of 528 mm, found for the same point

the value 445? 2 7. Somewhat later, Chappuis25
, after the publication

of Holborn and Day's results on the expansion of porcelain, concludes

that this value should be lowered by about o?5, which would bring

it to 444? 77. In §17 it will be shown that the correction for this

thermometer is +o?09, which gives for the value of the boiling

point of sulphur on the centigrade thermodynamic scale, according

to the determination of Chappuis and Harker,

(S. B. P.)
e
= 444?86

The agreement of these two values, which is much better than could

have been anticipated, in view of the experimental difficulties, is

the best test at present possible of our methods of computing the

corrections in question.

15. THE RELATION OF THE CONSTANT-VOLUME AND CONSTANT-PRESSURE
SCALES.

It has already been pointed out (§3) that to treat the theory of

the constant-volume thermometer by means of the Joule-Thomson

effect we must have a complete knowledge of the compressibility of

the gas throughout the range of temperature under consideration,

although since the terms involving the compressibility are small,

a merely approximate knowledge is sufficient. But if we have this

28 Phil. Trans. 1891, A, p. 119.

M Phil. Trans. 1900, A, p. 102.

85 Phil. Mag. (6), :$, p. 246; 1902.
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knowledge of the compressibility, it is possible to find the relation

of the constant-volume and constant-pressure scales; and since we
have already, by a plausible method, found the thermodynamic cor-

rections of the constant-pressure scale, we may deduce the correc-

tions of the constant-volume scale from them by a process which is

much simpler than integrating the general equations of the constant-

volume thermometer given in §3. In either case, some hypothesis

as to the equation of state must be made, and the correctness of the

results obtained depends on how near the particular hypothesis

comes to the truth. Since the corrections of the constant-volume

thermometer have been computed by other writers by other methods,

it seems worth while to use the simple method just suggested and

compare the results with theirs. This will now be done.

If tv be the centigrade temperature by the constant-volume gas

scale, the gas being at the constant specific volume v —
<f>
and the

pressure at the ice point beingp = 71-, we have, by definition,

/ = tt(i + /34) (63)

If tp be the centigrade temperature by the constant-pressure gas

scale, the gas being under the constant pressure/ —it and the specific

volume at the ice point being z> = <£, we have, by definition,

v=4>{T. + at
v) (64)

Let the departures of the gas from Boyle's law be represented as

usual by the equation

A».=.M +^(A-A)] (65)

in which K is the average value, between p%
and 'p

1}
oi — ^—- (pv)

and is some function of the temperature. Let the gas be at the

temperature represented on the two scales by tv and tp) respectively.

Then, if we let/
2 —p and v

x
—^ we have, by substituting in equa-

tion (65) from equations (63) and (64),

tt(i+ #Q<f>= Tnfti + atp)(l +Kir$tv)

whence

P \-Kir
h—tv ~—

1 ts q. (06)1 a ~L-\-Kwptv
'
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If, therefore, we have the values of the coefficient of expansion a,

the coefficient of pressure /3, and Zas a function of tn we may
at once find the value tp on the constant-pressure scale, of any tem-

perature which on the constant-volume scale is denoted by tv. Equa-

tion (66) is entirely rigorous, being a direct consequence of the defi-

nitions of tm £pi and K contained in equations (63), (64), and (65).

To make use of it we have to make some hypothesis about the vari-

ation of K with tn since experiments on compressibility at the pres-

sures involved in gas thermometry have been made at only a very

few temperatures.

16. ASSUMPTIONS REGARDING THE VARIATION OF A'WITH TEMPERATURE.

If in equation (65) wTe let px=p and p 2
=p-\- &p we have

pv+h(pv)=pv+Kpvhp

whence

We also have

|(^)=,^ I (68)

The first step is to assume some form of equation of state as valid

throughout the small range of pressures under consideration.

Van der Waals's equation,

P= 1
2 (

DQ
)v—b v v y/

would indicate that the centigrade constant-volume scale was ident-

ical with the centigrade thermodynamic scale. Since the constant-

volume scales of different gases do not agree precisely, as shown by

Chappuis' experiments, van der Waals's equation must be consid-

ered inadequate.

The first equation of Clausius, namely,

[>+*4?}—*>=JB* (70)
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may be made to represent the properties of gases more closely than

that of van der Waals. From this we obtain

b
(
.s a(v-c){v-b)*-Re\v+cfb

bpKF } 2a(v-Bf-RdXv+cf W }

If, while 6 remains finite, the pressure approaches zero, so that v

becomes infinite, equation (71) approaches the form

|(^)=*-|^ (72)

We next assume that the value of ^— (pv) is sensibly constant for

pressures between zero and the highest pressure to be considered, which

is only about 5.5 meters of mercury. This amounts to assuming that

within this small range of pressures the isothermal curves pv=f(p)
are sensibly straight lines. Experiment shows them to be very nearly

straight for the more nearly ideal gases, such as hydrogen and nitrogen,

so far as the experiments have gone, so that this assumption is a

legitimate expression of an experimental approximation. We may
also safely assume that whatever be the real form of the equation of

state, the gas approaches the ideal state as a limit when the pressure

approaches zero. Since the absolute thermodynamic scale is identical

with the scale of an ideal gas, we may write, for^=o,

limit ^) J-iimit
{pv\ e

and if we then take as our unit of pv the limiting value ofpv at the

ice point
O , we have for any other temperature #,

\\mit(pv) =
j (73)

Since iTis itself a very small quantity,^ does not vary much along

each isothermal within the given range of pressures, and we may
use the value given by equation (73) i*1 equation (67). We then

have finally, for the value of K obtained from equations (67) and

(70),
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If we have experimental data on the values of K for two different

temperatures, of which the values 6 and are known approximately,

the constants — and b may be determined and an equation set up for

computing the value of the coefficient K at all other temperatures.

A large part of the paper of Berthelot 26
, which has so frequently

been referred to, is devoted to the establishment and verification of

an equation of state. This equation is very similar to that of Clau-

sius and leads to the same result, namely, equation (74), for the limit-

ing value of the coefficient K. M. Berthelot 's paper was not received

until after the foregoing considerations had been developed, and it

was gratifying to find that the equation employed for computation

was one that had already been used successfully.

According to the experiments of Chappuis on nitrogen we have,

per meter of mercury,

L^^^Jo"""
'000571

5

|_S^(^ )

]100

=:+aO00347

the value of (pv) at o° and 1 meter of mercury being taken equal

to unity. Since it is convenient in using equation (66) to have

w=i, and since all the other quantities involved refer, for nitrogen,

to a pressure of 1002 mm, we have merely to increase the above

values by 1 500. If we also set 6 = 273?2, we have

<9 =273.2 A" =-0.0005723

0ioo= 373- 2 ^100= +0.0002545

If these figures be substituted in equation (74), they give

a

b — 0.001410.

If these values be used in the well-known relations
27 deduced from

equation (70), to compute the critical pressure from the critical tem-

perature, they give

26 Tray, et Mem. Bur. Int. XIII; 1903.
81 See Preston's Theory of Heat, 2d ed., p. 512.
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Calculated Observed

fic (atmospheres) 28.9 33.6

In view of the small range of pressures used, the smallness of the

values of AT, and the extent of the extrapolation, the agreement of

the observed and computed values is remarkably good and bears

witness to the admirable precision of Chappuis' work.

We have, then, to make use of the equation

= 273-2 Y _ 147.95 1
(75)

273.2+4 (273-2+OJ

17. THE CORRECTIONS OF THE CONSTANT-VOLUME NITROGEN THER-
MOMETER.

Having obtained an equation for AT, it is now an easy matter by

means of equation (66) to find the relation of tp and tv . Since the

equation for A" is given in terms of 1002 mm as the unit of pressure,

equation (66) takes the form

p V a\+Kfttv

Chappuis' values of a and ft are

/3= 0.00367442

0=0.00367315
whence we have

- = 1.000346

and the equation to be used in computation is

^=1.000346^=^-^ (76)

where AT is to be found from equation (75).

The results are shown in Table XII. In column 1 are given the

values of tm the temperature by the centigrade constant-volume

scale; in column 2, the values of AT computed by equation (75); in

column 3, the corresponding values of tp computed by equation (76);

in column 4, the difference tv—tp \
in column 5, the corrections, for

a pressure 7r=ioo2 mm, to be applied to the centigrade constant-
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pressure scale; in column 6, the resulting correction to be applied

to the centigrade constant-volume scale to reduce it to the centigrade

thermodynamic scale. The value te— tv=—o°05g at — ioo° is

undoubtedly erroneous. This may be due to the failure of equation

(75) to represent the compressibility at low temperatures, or it may
be that the constant-pressure correction at this temperature as com-

puted is too small. If the mean of Berthelot's and Callendar's cor-

rections for the constant-pressure scale at this point be used, namely,

t — /p+ 0.453 instead of +0.326, we have t9
— tv= +0.068

TABLE XII.

Comparison of Constant-Volume and Constant-Pressure Scales for

Nitrogen, 7t—p =ioo2 mm.

I 2 3 4 5 6

t c
V

A' P *v tp h h> u-*%

— 100 —0.005555 — 100.385 +0.385 +0.326 —0.059

+ 50 —0.000005 + 50.0176 —0.0176 —0.0190 — 0.0014

200 +0.000433 199.919 +0.081 +0.105 +0.024

400 + 0.000440 399.704 + 0.296 +0.435 + 0.139

600 +0.000380 599.476 +0.524 +0.830 +0.306

800 +0.000326 799.250 +0.750 + 1.265 +0.515

1000 + 0.000283 999.024 + 0.976 + 1.711 +0.735

1200 +0.000249 1198.800 + 1.200 +2.163 +0.963

In Table XIII is given a comparison of different values for the

constant-volume nitrogen corrections. In column 1 are the centi-

grade temperatures; in column 2, the corrections as computed by

Callendar; in column 3, the corrections according to Berthelot; in

column 4, the values from Table XII reduced by 1/500 so as to make
them applicable for an initial pressure^ =1000 mm.
The interesting part of the table is that relating to the higher

temperatures. The values from 200 to 1200 have been plotted

and the resulting curves are shown in Plate II. Curve {A') repre-

sents Berthelot's values; curve (//'), those computed by the present

writer; curve (C), Callendar's values. The agreement of the three

curves is eminently satisfactory, and their similarity indicates that
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TABLE XIII.

Constant-Volume Corrections for Nitrogen, p o= 1000 mm.

289

I 2 3 4

t°c Callendar, II D. Berthelot E. B.

— 100

+ 50

200

400

450

600

800

1000

1200

+ 0.080

—0.0059

+0.035

+ 0.125

— 0.0086

+ 0.046

+0.194

(—0.059)

—0.0014

+0.024

+ 0.139

+0.189

+ 0.305

+0.56

+ 0.77

+ 0.514

+0.734

+0.961

+0.646

a considerable extrapolation by trie same methods would be possible

before trie divergence became of any moment. When we consider

that the experimental uncertainty of the melting point of gold at

approximately 1065 is generally estimated to be about 2°, we see

that the differences between the corrections as computed by the

three methods are altogether insignificant.

As in the case of the constant-pressure corrections, it seems

probable that we may regard the thermodynamic corrections of the

centigrade, constant-volume, nitrogen scale as known with a precision

far exceeding the precision as yet attainable in gas thermometry

at these high temperatures.

18. CORRECTIONS OF THE CONSTANT-VOLUME HYDROGEN THERMOMETER.

The application to hydrogen of the method just used for nitrogen

can not give satisfactory results because, as has been shown in §13,

the constant-pressure corrections for hydrogen appear very uncertain.

We shall merely give the differences between the constant-volume

and constant-pressure scales as computed by the methods of §16

and §17.

Chappuis found from his experiments on hydrogen

[|(^)]
o

=+o.ooo763 ; [|(^)]M
= + 0.000797

23835-
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If we set ^=273.06, the equation for the compressibility of hydro-

gen at low pressures, as derived from the equation of Clausius.

becomes

Kt

273.06 r

73.06+/ L273

When these coefficients, namely,

0.0008363—
(^73

54IQ 1
.064- ty] (77)

^=5.5410

/>= 0.0008363

are used as before to compute the value of the critical pressure from

the equation of Clausius, on the assumption that the critical tem-

perature is
(
.= 32

c
\ we have

Calculated Observed

pc (atmospheres) 13.2 13— 19.4

Chappuis' experiments therefore indicate the lower value as the

more probable, assuming the validity of the equation of Clausius.

TABLE XIV.

Difference between Constant-Volume and Constant-Pressure Scales for

Hydrogen, tv—tp ,
7r=p

o
=1000 mm.

I 2 3 4 5

t°c D. Berthelot Callendar, I Callendar, II E. B.

—240 + 1.188

-t 0.190

+ 1.176

—200

— 150

+ 0.636

4 0.158

+ 0.046

+ 0.013

— 0.0022

+ 0.009

+ 0.022

+0.237

+ 0.072

+ 0.024

+0.006

—0.0012

+0.007

+0.016

+ 0.200

4-0.063

— 100

— 50

+ C.013 + 0.014

+ 50

+200

4 300

+400

— 0.0006

40.002

0.009

— 0.0007

+ 0.003

+ 0.008

+0.011

+ 450 + 0.042 4 0.032
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By means of equations (66) and (jj), values of tv—tp have been

computed for several temperatures. The results are shown in

Table XIV. Column 1 gives the temperature; column 2, the values

of tv— tp according to Berthelot; column 3, the values according to

Callendar's first method of computing; column 4, the values accord-

ing to his second method; column 5, the values computed by the

writer.

While the discrepancies between columns 2, 4, and 5 are large,

in per cent, the absolute values are so small as to indicate that great

experimental precision would be needed to detect any difference of

run between the two scales except at the lowest temperatures. The
fairly close agreement between Berthelot's values and those in

column 5 is a necessary consequence of the approximate identity of

the two equations of state upon which the computations were based.

19. CONCLUSION AND SUMMARY.

The time seems to be approaching when, in thermometry of

precision, a mere reference of temperatures to "the gas scale" will

be insufficient. The "normal scale" serves very well for low and

moderate temperatures, but since it can not in practice be used at

all for high temperatures we must soon, to secure uniformity of

definition, adopt a different standard, and I^ord Kelvin's scale is

obviously the one indicated. This is especially true, because it is

in fact already the only one in practical use at very high tempera-

tures. For the radiation formulas which serve as a basis for all

measurements of such temperatures are derived, in so far as they

have any theoretical foundation, from the second law of thermo-

dynamics, and the "temperature" which occurs in the equations

used is therefore, by definition, the absolute thermodynamic tem-

perature.

In the foregoing pages the attempt has been made, first, to set

forth the relations of the actual gas scales to the thermodynamic

scale in such simple form as to be readily available to anyone inter-

ested in the subject; second, by new computations based on the best

available data, and by comparison with the results obtained by others,

to show what our actual knowledge of the relation of existing gas

scales to the thermodynamic scale is; and third, to point out, by the

way, the particulars in which our experimental knowledge is most
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deficient and the directions in which new experiments are most

needed.

The contents of the paper may be summarized as follows:

(1) After a short statement of the principles of gas thermometry,

with definitions of the scales used and of Lord Kelvin's thermo-

dynamic scale (§1), the theory of the constant-volume and constant-

pressure thermometers, as based on the Joule-Thomson effect, has

been developed in the usual manner, emphasis being laid on the

different nature of the experimental data most suitable for connect-

ing the two scales with the thermodynamic scale (§§ 2-4).

(2) The best available experimental data on the specific volumes,

specific heats, and coefficients of expansion have been quoted (§ 5).

(3) The numerical values of the Joule-Thomson effect have been

examined (§ 6), and it has been shown that by the use of the law of

corresponding states all the values »may be coordinated and repre-

sented by a single empirical equation, from which, by an inverse

process, values may be obtained which are more probably exact than

any that can be deduced from the observations on each gas consid-

ered separately (§ 7). This empirical equation has been compared

with the empirical equation of Rose-Innes, and with the equation of

D. Berthelot, also obtained by the aid of the law of corresponding

states (§ 8).

(4) The empirical equation for /x, as well as several simpler approx-

imations, have been utilized in integrating the equations of the con-

stant-pressure thermometer (§ 9). The thermodynamic temperature

of the melting point of ice has been computed in several ways, and

the resulting values compared with one another and with the values

obtained by an altogether independent method, by D. Berthelot

(§ 10).

(5) Values have been computed for the thermodynamic correc-.

tions of the constant-pressure hydrogen and nitrogen thermometers

between the ice and steam points, and compared with the values

computed by Rose-Innes, Callendar, and D. Berthelot (§ 11).

(6) Corrections for the same scales have been computed for larger

ranges of temperature and compared with the values obtained by

Callendar and I). Berthelot. The lack of concordance in the case

of hydrogen indicates the need of further experiments on this gas.

With nitrogen the agreement of the results of the different methods
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of computation is satisfactory (§§ 12, 13). The corrections have

been tested by means of the determinations of the boiling point of

sulphur by Callendar and Griffiths, and by Chappuis and Harker,

with satisfactory results. The centigrade thermodynamic tempera-

ture of this point appears to be close to 444? 9 (§ 14).

(7) The relation of the constant-pressure and constant-volume

scales has been discussed (§§ 15, 16). The differences of the two

scales have been computed for nitrogen, and hence the thermody-

namic corrections of the constant-volume nitrogen scale deduced

from those of the constant-pressure scale already found. Compari-

son with the results of Callendar and D. Berthelot shows a very close

agreement (§ 17). Similar computations and comparisons in the

case of hydrogen show merely that the thermodynamic corrections

of the constant-volume hydrogen thermometer are in most, if not all,

cases negligible, the corrections, while uncertain, being small (§ 18).

Washington, February 4, 1907.


