
THE MUTUAL INDUCTANCE OF A CIRCLE AND A
COAXIAL SINGLE LAYER COIL—THE LORENZ APPA-
RATUS AND THE AYRTON-JONES ABSOLUTE ELEC-
TRODYNAMOMETER.

By Edward B. Rosa.

In the Lorenz experiment for determining resistance in absolute

measure a circular disk is rotated in a magnetic field produced by

an electric current in coaxial coils or in a coaxial helix, and the

electromotive force induced in the disk is balanced against the dif-

ference of potential at the terminals of the resistance to be measured.

This induced electromotive force is proportional to the speed and

to the number of lines of magnetic force passing through the disk

due to the current in the surrounding coils or helix. The latter

usually consists of a single layer winding on a carefully ground

cylindrical surface or in a very true screw thread cut in such a sur-

face. In order to know the number of lines of magnetic force pass-

ing through the disk it is necessary to calculate the mutual induct-

ance of the cylindrical winding and the circle forming the boundary

of the disk.

1. LORENZ'S FORMULA.

This problem of finding the mutual inductance of a circle and a

coaxial single layer winding was first solved by Lorenz.^ Assuming

that the current was uniformly distributed over the surface of the

cylinder forming a current sheet he integrated over the length of

the cylinder the expression for the mutual inductance of a circular

element and the given circle. This expression is an elliptic inte-

gral. Lorenz reduced the integrated form to a series and gave the

following formula for the mutual inductance of the disk and solenoid

of what is now called the Lorenz apparatus. He called it, however,

^Wied. Annalen, 25, p. i; 1885.
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the constant of the apparatus instead of mutual inductance and

denoted it by C; it is of course the whole number of lines of mag-

netic force passing through the disk due to unit current in the sur-

rounding solenoid.

C--^
irqi

,2

(I)
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I28a'^\8 2 ^ y J
(2)

1^

Fig. 1.

of the solenoid and x^ to the other,

/o = radius of the disk, Fig. i.

r= radius of the solenoid.

2;r= length of winding of sol-

enoid.

^ = ^ r— ratio of the two radii.

d—— = distance between cen-
11

ters of successive turns of wire.

.r'+ r'
"= 2

r^

If the disk be not exactly in

the mean plane of the solenoid,

and x^ be the distance from the

plane of the disk to one end

a, = tto^
^V+^

Then Q{a^ is found by substituting the values of a^ in equation (2)

above, and Q{a.^ by using the value of a.^ for a in the same equation.

irar^
The sum of these two quantities multiplied by --,- gives the con-

d
stant C, that is, the mutual inductance sought.
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As Lorenz gave the expression for the general term of (2), his

equation can be extended. The following is the general term:

,2m+iT o . 2m—

\

I d^^Ua—
0(a) -27r2^ 1:1

2.4 . . . 2f>i 1.2 .... {7n-\-\) da!

2. JONES'S FORMULA.

2a)

-A

I

s"'

Two solutions were given by Jones,^ both in terms of elliptic

intemrals. The current was consid-

ered to flow not in a current sheet,

but along a spiral winding or helix.

The first solution was in the form of a

series, convergent only when AO^, Fig.

2, is less than the difference in the

radii of inner and outer coils ; that is,

when AOi is less than A— a. As this

is a serious limitation, and the formula

is a laborious one to use, I shall not

give it. The second solution is exact

and general, and is in terms of elliptic

integrals of all three kinds. The sec-

ond formula is as follows

:

F-E

si

.Axis

a A

Fig. 2.

Mg=^S (A-i-a) ck
k'

c"
{F-Ii)

(3)

Mq = mutual inductance of helix O^A, Fig. 2, on the disk S in the

plane of one end.

@=27r;2, i/?2 = pitch of winding, ©= whole angle of winding.

F and K are complete elliptic integrals to modulus k^ where

/\.Aa /\.Aa
k'= ^= ,/2= 1-^.

[A+af^x' '^ -{A-^af
n= complete elliptic integral of the third kind, to modulus k.

The elliptic integral 11 of the third kind can be expressed in

terms of incomplete integrals of the first and second kinds, and the

value of Mq can then be calculated by the help of Legendre's tables.

The calculation is, however, extremely tedious, especially when the

value is to be determined with high precision.

Proc. Roy. Soc, G3, p. 198; 1898.
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3. DERIVATION OF A NEW FORMULA.

[ Vol. 3, No. 2.

I have derived an independent expression for the mutual induc-

tance of a circle and a coaxial single-layer coil in the form of an

algebraic series which involves no elliptic integrals, is relatively

easy to calculate, and is very accurate. It is also better adapted for

quick approximate calculations than Jones's formula. The formula
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Fig. 3.

is based on the assumption that the current in the coil AB, Fig. 3,

is a current sheet or is equivalent to a current sheet. The demon-

stration of Jones and Rayleigh that this is a legitimate assumption

applies to an ideal winding. I shall discuss below the question

whether in an actual instrument there is any appreciable error when
this equivalence of a spiral winding and current sheet is assumed.

If the outer solenoid were of infinite length the force within would

be uniform and equal to ^irn^i^^

where n^ is the number of turns

per unit of length in the solenoid

and i^ is the current in the sole-

noid. The area of the circle S,

Fig. 3, being tt^^, the number of

lines passing through S is^ir^a^^t^i^^

and therefore the mutual induct-

ance of S and the infinite solenoid is d^ir^a^^i^^ or for half the infinite

solenoid O^P it is

)iM^ — 2'w^a^7i^

If we find the part of this due to the end AP (shown dotted and

extending to infinity) and subtract it, the remainder is the part due

to OiA, which is the quantity sought.

Fig. 4.
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If OA, Fig. 4, is a disk of radius a and density n its potential

Fat P is

Vv—2iTn / 2 , oxix 1 W 1.1a 1.1. 7,a i.i.^.s<^ / X

1^ ^
J

)2r 2.4 r'^ 2.4.6 r' 2.4.6.8 r' ^^

For a point Q oif the axis we must insert in (4) the zonal harmonics

corresponding to the angle 6. Thus

j^ \a^ r^ I <2*
,

I <^^ ^ S ^^ r^ , 3 S '^^^ r^ 1 / \F,= 2.«j-P,-- -.P^+^-^P.--^. p/'e+^ ^/'a- . .

.[ (5)

/^ will be the magnetic potential at any point Q if the disk is

covered with a layer of positive magnetism of density ;?, or if it is

the end of an infinite solenoid wound with 7i turns of wire per cen-

timeter and carrying unit current. The expression is convergent

when r'>a. Differentiating V^ with respect to r we have the

magnetic force at Q in the direction of the vector r. Thus,

dr ~
^""''jar^ " 8 r*^^i6 r' ' 128 r«^^ 1280 r'' ' '

'

The values of the zonal harmonics are as follows (/Lt= cos 6):

(6)

^. = ^(35/^' -30/^'+ 3)

^6 =;^(23i^'-3i5/^*+io5A^'-5)

^8 =^3(6435/^'- i2oi2/+6930/x*-i26o/.'+35)

^10 =^(461 89/x^*'- 109395/z'+ 90090/x^- 30030/x*+ 3465/^'- 63)

^12-^^(52003 X 13/^''- 176358 X ii/x^'+ 230945 X 9/x'

- 145860 X 7/^' 4- 45045 X 5/x*- 6006 X 3/i'+ 231)
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Substituting the abo\'e values of the zonal harmonics in (6) would

give the value of the magnetic force at any point Q in terms of a^

r, and /x.

Let R, Fig. 5, be a circle coaxial with S and lying on the

spherical surface through Q wdth center O. A zone at Q on the

spherical surface of angular width dO and radius r sin 6 has an

area 27rr^ sin 6 dO and through

it pass dN lines of magnetic

force.

dN=2'Trr^ sin 6 dOi'^^'A
\dr

Since fx= Qos 6^

dyi— — sin Q dO

Fig. 5.
dN— 2irr^dix (-'^•)

(7)

The whole number of lines of magnetic force N passing through

the circle R of radius A and distance x from the magnetic disk S

[x= ^r^— A^) is found by integrating (7) with respect to yu from

XX
r -^A'-\-x'

Thus,

to /x= I

3^ /...2 .X , 5
^'

7^^.(23i/-3I5>''+ io5m'-5)+- • • W (8)

11.=—
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N= ziT^a^n y (^^+^0v
+

a'

{x'-^Ayj' '^{x'^A^%x'^Ay {x'^Ay(i

X X

215

.)

a^

<
yx'' lOjr"" 3^_5_

64{x'-\-Ay\{x'+Ay {x'-\-Ay ' {x'-i-Ay')

35 a

i28{x'-j-A'){
)-^ (9)

A^ is the number of lines of magnetic force due to the disk S (of

radius a) passing through the coaxial circle R (of radius A) Sit

distance x^ Fig. 5. It is also the number of lines due to a larger

disk of radius A^ Fig. 6, passing through a circle of radius <2 at a

/
/+ 4\

\

/

-f

+

+
A
+ \

+ -f +

+ + +

V + + -H
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Fig. 6.

distance jr; or the number of lines due to the semi-infinite solenoid AP,
Fig. 3, wound with 7i turns per cm and carrying unit current, pass-

ing through the circle S. iVis therefore the mutual inductance Mat
of the semi-infinite end AP, Fig. 3, which we are to subtract from ^Af
to give M the mutual inductance of the solenoid O^A with respect

to the circle S. Fnttmg^x^-{-A^= d^ equation (9) above reduces to

M ÂP
^22
2iT a

r X 7,a'xA' 5 a'/ 2xA'-4x'A'\ 1, ,

V-dSd-^^-^ji- d^ )- •

-J^^^)

.•.J/o,A=-^.-^AP
ZTT^a^nx

+

d

128 d

L^
+ 8 d' "^64 d' y A')
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This is the value of the mutual inductance of half the solenoid

(OjA) on the circle S sought. In order to obtain an expression for

M that will give accurate numerical values when the circle S is

relatively large it is necessary to carry out the series to a larger

number of terms than have been given above. Substituting in (6)

the values of all the zonal harmonics to P^^^ integrating and reduc-

ing as is done above for the first terms, the following expression is

obtained, which is amply accurate for the most refined experimental

work. {N— 2n^x^ the whole number of turns of wire on the solenoid

in the length OA 2X).

,, _27rViVr
, 3 «M^

,
5 «M*

, 35 a'A'
,

63 a'A'

10 /flO

+ 231 c^A
4096 d'^

X 429 a 12 A\%'A

16384 d 21 ^.+ .](I2)

X
^2=3-4^2

* 2 A'' ^A^

X

X

35 35 ^ x^ x"

i6~ 2A'^^^A'~'^A'

X

^3_
32

231

10^ x' X x^ X
A'

10

1155-^' 1155 £! ,A.£! , rr^'
I Q ^4 ^^5 >i/6 -r55_^i

10

128 32 A 8 A' 'A'

X
4:510

(13)

^ = radius of disk or circle S, Fig. 2.

^ = radius of the solenoid.

.r= length O^A of one end of the solenoid.

^=-yjx^-\-A'^= hsLU the diagonal of the solenoid.

JV is the whole number of turns of wire in the length x.

This formula is very easy to use in numerical calculation,

notwithstanding it looks somewhat elaborate. The logarithm

a^A'
of — ,4 , multiplied by 2, 3, 4, etc., gives the logarithm of the corre-
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spending factor in each of the other terms. Similary, the various

terms X^^ X^^ etc., contain only powers of -72 besides the numerical

coefficients. It is hence a far simpler matter to compute J/ with

high precision by this formula than by Jones's formula, the latter

containing as it does elliptic integrals of all three kinds and involv-

ing the tedious interpolations for incomplete elliptic integrals.

4. TESTS OF THE NEW FORMULA.

EXAMPLE 1.

As an example take the case given by Jones ^, to calculate the

mutual inductance of the disk and solenoid of the Lorenz apparatus

built for McGill University.

A— 10.513365 inches.

a= 6.509985

x= 2.51240 "

N— 201 turns.

The mutual inductance was computed by Mr. Rhodes under the

direction of Professor Ayrton by Jones's first method. The dimen-

sions in inches were used and the result then converted into centi-

meters. The value of M found was as follows

:

il/=: 2^^0=18056.36 inches= 45862. 33 cm

After rewinding the coil and regrinding the disk the dimensions

were as follows

:

A— 10.512295 inches.

a^ 6.507495 ''

x= 2.51240 "

A^= 201 turns.

The mutual inductance was calculated from these dimensions by

Professors Ayrton and Jones by the second formula of Jones given

above. The result was as follows

:

M— zMq — 18042.52 inches = 45827.18 cm

3Proc. Roy. Soc, 63, p. 196; 1898.



2l8 Bulletin ofthe Bureau ofStandards. [ Vol. J, No. 2.

We may now calculate M for these two cases by formula (12)

above.

ist Case. 2d Case.

A 10.513365 inches. 10.512295 inches.

a

X
A'

x'

N
d'^A''-\-x'

log d^

, a'A'

log;f'M'^=

X,

X,

X,

Xifi

1st term

2d "

3d "

4th "

5th -

6th "

7th "

Sum^ S =

\ogS

a' =
iV(=z:20l) =

6.509985 6.307495

2.51240 2.51240

110.53087 110.50837

6.3^215 6.31215

201. 201.

116.84302 116.82052

2.0676027 2.0675191

1-5354382 1-5351848

2.7566940 2.7567824

2.77157 2.77152

I.94I97 1.94185

1-2559 1-2557

0.6685 0.6683

0.184 0.184

1.0000000 1.0000000

.1286677 .1285926

•0254913 .0254611

.0053500 -0053526

.0010709 .0010682

.0001793 .0001787

.0000079 .0000078

1. 1 60767

1

1.1606610

0.0647451 0.0647054

1.2953298 1.2953298

1.6271600 1.6268278

2.3031961 2.3031961

5.2904310 5.2900591

1.0338013 1-0337595

4.2566297 4.2562996

log^ =
log M—

.'. M= 18,056.34 inches. 18,042.62 inches.

Value 1j)' Jones's formula 18,056.36 " 18,042.52 "

Difference —.02 +.10
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The difference in the results obtained by formula (12) from the

value obtained by Jones's formula amounts in the first case to about

one part in a million, and in the second case to about five parts in a

million. These differences are wholly negligible in the most refined

experimental work. In using formula (12) one can judge the degree

of approximation by the convergence of the terms, and so tell when
enough terms have been calculated for the particular case. In the

above example the breadth of the coil 2x is exceptionally small,

and formula (12) is not as convergent as for wider coils.

EXAMPLE 2.

Take as a second example the case given by Jones* to illustrate

his first formula.

^^=104

A — \o inches a= 5 inches x= 2 inches

a^ A^ 2500 W«^^' 1,6.87..^ d^ ~io8i6
^o§^ ^4 —^'?P2p12)Z

X^ =2.8400

X^ =2.1064

X^ =1.5208

X^ =1.0173

^^10=0.5815

1st term = 1.0000000

2 " = .0866771

3 " = .0118537

4 " = .0017781

5 " = .0002670

6 " =: .0000379

7 " r= .0000060
,

Sum= 1.1006198

2TT^a^
. - 48.38972

.*. M= 53.25868 TV, TV being the number of turns of

wire on the coil.

Jones gives J/= 53.25879 JV.

The difference between these values is 2 parts in a million.

*Phil. Mag,, 27, p. 61; 1889. In this example, P^ should be 0.654870 instead of

.54870, as printed in Jones's article.
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5. SECOND DERIVATION OF EQUATION 12.

Gra}'^ gives an expression for the mutual kinetic energy of two

solenoidal coils from which equation (12) can be derived. Gray's

expression is general; the coils may or may not be concentric and

their axes may be at any angle with one another. The most impor-

tant cases in practice is when the coils are concentric, and their axes

are either in the same straight line or at right angles. Making the

coils concentric causes half the terms in Gray's series to disappear.

Making them coaxial reduces the zonal harmonic factor of each

term to unity. When the coils have their axes at right angles the

mutual energy becomes zero, but its derivative gives the torque

between the coils, and we thus obtain the formula for the Gray abso-

lute electrodynamometer. Putting the current in each coil equal

to unity the mutual energy becomes the mutual inductance M.

Put 2;i:= length of outer coil.

Fig. 7.

2/= length of inner coil.

Fig. 7.

A — radius of outer coil.

Fig. 7.

a — radius of inner coil.

Fig. 7.

Fig. 7-

<^= diagonal CP.

«i,;22= number of turns per

cm in the outer and

inner windings respec-

tively.

W— mutual kinetic energy.

With these changes Gray's expression for the mutual energy

becomes:

W^ir'^a^A^n^n^i^l, {K,k,Z,^A\k^Z^-\-K^k^Z^^ ) (14)

A^i, A'g, etc., are functions of the length and radius of the outer

coil, /C'l, k^^ etc., are functions of the length and radius of the inner

coil, and Z^, Z^, etc., are zonal harmonic functions of the angle
<f>

between the axes. When
(f>
— o the mutual inductance is

^Absolute Measurements, 2, Parti, p. 274.
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1

M^ir^a^A^7i,n, {K,k,-\-K,L,^K^k,^K,k,^ K,k,^ . . .
) (15)

where

\x
K,=

^'- d
X

K.= ^x^-zA^X

X
4Z^7= -i^ziA^'-^ox'^A^^^A^

A;= -^l4x'-2ix'A'+^x'A'-^A'\

k^ — 2/

k^ = /(4/^-3^^)

K = /(4/*-io/V+-«*)

Substituting these values in (15), and putting N^ for 2xn^^ and iVg

for 2ln^^ N^ and iVg being the whole number of turns of wire on the

outer and inner solenoids, respectively,

,

A'a'

I

x^\/s /'
,

/*\

,

A'a' A x\' x'\(^S 35 I'
,

/* /'\

+ 32^^(2-^^Z^+4^^)(i-f?+^V^-4?)
^4V/35_35^ ^_ £^\

"^32^^'Vi6 2 ^^"^^^y^* ^^7
/63 105 l\ , I' J' l\

1 , .X

If we put /==o and iV^2=i, we have the case of the inner coil

reduced to a circle at the center of the outer solenoid. In this case

equation (16) reduces to (12) except that it is not carried out to
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as many terms. Searle*^ and Airey have given an independent

derivation of equation (i6). Since deriving equation (12) I have

found that Lorenz's equations (i) and (2) combined can be put into

the same form, the four terms of (2) giving the first four terms of

(12). I have verified the next two terms also by expanding the

general term {2a). This operation is, however, somewhat tedious

for the higher terms, as the mtk term involves the 7?it/i derivative 01

6. EFFECT OF THICKNESS OF DISK.

The disk of a Lorenz apparatus is several millimeters in thick-

ness at its edge, and it is important to know whether in any given

case the mutual inductance is appreciably less than it would be for

the ideal case of a disk of infinitesimal thickness assumed in all the

formulae. We can calculate the effect of the thickness by means of

formula (16). Still keeping M^=iy let / have a value equal to half

the thickness of the disk. This effect will be greater with short

coils than with long ones, but in any case the change would appear

mainly in the first two terms after the unity term. Suppose, for

example, that the disk of the McGill, Lorenz apparatus were 5 mm
thick. Then /would be 0.25 cm, a is about 16.5 cm and //<^= 1/66,

Pla^—il/\.^^6. Neglecting terms in l^ja^ and higher powers, equa-

tion (16) may be written, putting TVg^i)

A'aU
+ 32^

(17)

'ay P\

(-4.)(i-^)

'^32^^''\i6 2 A'^^'^A' ^A')\2,2 4"W "J

Evidently each term after the first is made a little smaller by reason

of the finite value of /. If we multiply the relative change of each

term by the value of the term given on page 218, we shall have the

change in M dwo^ to the thickness of the disk.

"The Electrician; Dec. 8, 1905.
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Thus, since Pja^ — .00022^0^

000230 X- =.000306 = relative change in second term.

000230x4 =.000920 = relative change in third term.

000230x8 =.001840 = relative change in fourth term.

000230x13^ =.003067 = relative change in fifth term.

1287 X .000306= .0000394 = change in 6^ due to second term.

0255 X .000920= .0000235 = change in 6^ due to third term.

0053 X .00 1 840= .0000097 = change ^^ -^ ^^^ ^^ fourth term.

001 1 X .003067 = .0000034 = change in 6' due to fifth term.

Total corrections =.0000760= I part in 15000 of M.

This reduction of the mean value of the mutual inductance of the

coil and disk, due to the thickness of the disk, is small but very

appreciable. If the thickness at the edge were reduced to 3 mm
the change would be only .000027, ^^ ^ ^^ 43^00, a quantity scarcely

to be neglected, however, in the most exact work. As already sug-

gested, this effect of the thickness of the disk would be reduced by

making the coil longer, which is advantageous for other reasons. A
longer coil will give a larger value of M^ that is, a stronger field,

which is very important, and also will reduce the variation in M
due to the disk not being exactly centered. Displacement of the

disk from the exact center along the axis reduces M\ displacements

of its center along the radius of the coil increases M. Obviously,

such displacement would make no change in M if the coil were

infinitely long and the field therefore uniform. But the longer the

coil the more nearly uniform is the field, and hence the less is the

error due to lack of exact centering.

The magnetic force at the center of the disk is —-^ the area of

the disk is ird^. hence —-^ is the whole number of lines of
d

force which would pass through the disk if the field were uniform

and had throughout the value it has at the center. This is

the first term in the expression for M^ equation (12). Hence the

values of the additional terms are a measure of the variation of the
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field radially. For example, in the McGill apparatus, M is i6

per cent greater than it would be if the field were uniform and had

the value it has at the center. If the coil were shorter this excess

would be greater; if it were longer it would be less, and this is of

course desirable.

7. EQUATION FOR THE GRAY ELECTRODYNAMOMETER.

When the axes of the two coils are at right angles to one another

their mutual inductance is zero ; but the moment of the force T
tending to turn either coil about the center in the plane of their

axes is a maximum and equal to dW\d<^. Gray gives the general

equation for this torque, which in the case of concentric coils

becomes

r=7rV^'«i;V>2 sin ^ {K^k^Z\^KJz^Z' ^-\-K^k^Z\^. . .) (i8)

where <^ is the angle between the axes of the coils. When (^= 90°,

Z'l, Z%, etc., have the following values:

Z' —\ Z' — —

^

7/ 3^ yi _ _|_3^5
'-

2
^-"^128

vf -_. 15 ^/ __693
^ ^""^

8
''-

256

Substituting these values in (18) as well as the values of A^j, A'g,

Xtj, /C'g given above, we obtain for the maximum value

of the torque, for (j> = go^^

_27r^N,N,z,zJ J A^a' _ 15 ^^ / 4- 35 i^^\'

r

^'"- d ["^16 d' ' 256 d' ' '^ ^-^2 d'' ' '

In this equation X
.^ , .Y^ , X ^ , X^ are functions of x and A and

have the values given above (p. 216), and A
.^

, /.
^

, A
^

, etc., are the

same functions of / and a.
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If the coils are so proportioned that the length of the winding is

to the radius of the coil as
-Y/3

is to i, for each coil, i. e., 4/^=3<2^

and 4x^= ^A^^ L^ and X^ are zero and the expression for the torque

becomes

7
But m this case, since d^= - A^,

4

A^^_/4Ya^ _ii
d''~~\y) A' *~ 4

A'a' _/4Ya' v — r - _ ^3

16

243

d'' "V?/ -^^
^6-A- j^

^8—A— +
64

-6 a2'7r^a^JVJV i i { a^ •
•*• ^'^'" ^^ ^ ^

^
1+ .0001851 ^,+ .0000307-^3+ . . . (21)

If <^= A/2, the correction terms together amount to only a few parts

in a million and may be neglected. Hence, if the relations 4x^= ^A^

and 4/^= T^^a sue exactly realized, the first term is enough to use

even in the most refined experimental work and with the largest

moving coil that it is practicable to use. If, however, this relation is

not quite realized (as it probably never would be exactly) the slight

correction to be made can be calculated from the second and third

terms of (19).

8. THE AYRTON-JONES ELECTRODYNAMOMETER.

The Ayrton-Jones absolute electrodynamometer^ consists essen-

tially of a cylinder wound with a single layer of wire suspended

from the arm of a balance inside of and coaxial with a larger fixed

cylinder, the latter being also wound with a single layer of wire,

^Journal Inst. K. E., 35, p. 11; 1904-5.

23835—07 5
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Fig. 8. The winding of the fixed cylinder is, however, divided into

two parts, the current flowing in opposite directions in the two

halves. Thus, if the effect of the current in the lower half BC is

to draw the inner cylinder ED down, the upper half of the cylinder

AB will (because the current flows in opposite direction) repel the

suspended cylinder and so urge it down, with a force equal to the

force of BC, if the inner cylinder is suspended symmetrically with

respect to ^he other two. Since the whole force is twice the force

acting between AB and BD, we may now disregard the lower cyl-

inder in finding the value of the force, simply doubling the force

calculated for AB on ED. Jones* has shown that the force

between AB and ED is proportional to the difference in the mutual

inductances M^ and A/g of the coil AB on the two circles S and R
at the ends of the inner cylinder. If the currents in the two coils are

2*1, /g) 3-i^d n^ is the number of turns of wire per cm on ED, the force

in dynes on ED is

Professor Jones gave two proofs of this formula, the second^ of

which, because of its simplicity and importance, I shall reproduce

here.

sproc. Roy. Soc, 03, p. 198; 1898.

^ This proof was suggested to Professor Jones by Prof. Andrew Gray.
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If dx is an element of the suspended coil at the end S, Fig. 10,

and M^ is the mutual inductance of a circle at S with respect to the

outer coil, the potential energy of this element is

W^ — i^i^My^n^dx^

where i^ and i^ are the currents in the two coils, respectively, 7t^ is

the number of turns of wire per cm on the suspended coil, and dx
is the length of the element. M^i^ is the energy of unit current in

one turn at S; the number of current turns is n^dxi^. If this ele-

ment be at R its potential energy is

W^= i{L^M^n^dx^

where M^ is the mutual inductance of a circle at R with respect to the

outer winding. If the element be carried from S to R, work is

done equal to

Wy— lV^= iyi^{M^— M^)n^dx.

This is, however, equivalent to moving the whole cylinder vertically

through a distance dx. Therefore, if F be the force acting on the

suspended cylinder,

Fdx= i{i^nj^My—M^dx

F— iyi^nj^M^—M^^ as stated above.or

It is hence only necessary to

calculate M^ and M^ by formula

(i), (3), or (12) in order to be able

to calculate the force due to unit

current in the balance; or, con-

versely, knowing the force Fhy
weighing, the absolute value of

the current flowing in the coils

can be calculated.

If the inner coil has the same

length as the coil AB and is sym-

metrically situated with respect

to the two coils, then the two end

r

r

£j-

oy-
f- R

Fig. 9.

circles S and R will lie in planes passing through the middle of AB
and BC, respectively.
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The mutual inductance of AB on S, Fig. 9, is twice the mutual

inductance of AO^ on S. Similarly, the mutual inductance of AB
on R is the mutual inductance of AO2 on the circle R minus that

of BO2 on R. Hence the same formula can be used in obtaining

il/g that is used for M^^ merely varying the value of x^ the distance

from the plane of the circle to the end of the winding and of the

diagonal d; that is, the three values of x will be OjA, OgA, and OgB
in the three cases, respectively, and the corresponding values of d
will be D^A, D.3A, and D^B.

9. CALCULATION OF ELECTRODYNAMOMETER CONSTANT.

As a further test of the formulae

let us calculate the constant of

an electrodynamometer of the

Ayrton-Jones type, of which

AB, Fig. 8, is the upper fixed

coil and ED is the moving coil,

the circle S at the upper end

lying in the plane through the

middle of AB and the circle R
at the lower end of ED lying in

the middle plane of tne lower

fixed coil BC.

Assume the dimensions as

Fig. 10. follows:

A =
a —

x,=
x.,=

n,=

16 cm = radius of fixed coil. Fig. 10.

10 cm = radius of moving coil.

8 cm = half length of AB^O^A
24 cm= 1.5 times AB = 02A
10 = number of turns per cm
80 = number of turns in distance O^K= x^^ Fig. 9.

A^2=240 = number of turns in distance 02A = ;t's

^1 = -J "^'+-^''1 = ^5 = diagonal AP^, Fig. 9.

</2= ^M''-|-:ir\= 87^3=1 diagonal APg

We have to determine two mutual inductances, namely, M^ between

the coil 0,A of 80 turns on the circle S, and M^^ between the coil
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O2A of 240 turns on the circle R. In each case the circle is in the

plane passing through the lower end of the coil.

Formula (12) will be used, taking A^^, x^., and d^ in the first case

and A^2 ) -^25 ^^^ ^^ i^ the second case.

For M^ For M^
A 16 cm 16 cm
a 10 10

X 8 24
A' 256

/

256

x' 64 576
N—nx 80 240

d' 320 832

logd^ 2.5051500 2.9201233

a^A^

d'
1-3979400 2-5679934

x'

A'
1-3979400 0.1760913

X, + 2.000 — 6.00

X, +0.250 + 0.25

X, -0.9375 + 23-5

Xs -1.203 -45-7

Xio -0.562 -49-0

1st term 1.0000000 1.0000000

2d " + -0937500 + -0138683

3d - + -0097656 — .0006411

4th " + .0002670 + .0000009

5th " — .0002253 -f .0000027

6th '' — .0000662 — .0000002

7th
"

icm — S
— .0000036

1-1034875

.0000000

6" 1.0132306

log 6^1 — 0.0427674 log S^ = 0.0057083
" 27r'

— 1.2953298 " 27r' = 1.2953298
" a\ = 100) = 2.0000000 " aX=ioo) = 2.0000000

" ^r{ == 80) == 1.9030900

5.2411872

" A^.( = 24o) = 2.3802112

5.6812493
" d. :=z 1-2525750 " d. 1.46006 1

6

logM, = 3.9886122 log M^ 4.2211877

.*. M, = 9741.19 M^ = 16641.32
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10. EXAMPLE 2 BY JONES'S FORMULA.

[ Vol. 3, No. 2.

We will now calculate M^ and M^ by Jones's second formula given

above, using also the following equation to find F—Yi\

/^''sinyScos/3(/^-n) TT

c -^'W^u.yfc ^t^j^j^y/cjj^yfc ,A->;
—

2

For Ms For M^
A 16 cm 1 6 cm
a 10 10

X 8 24

%—21tN 160 TT 480 TT

Z-yjAa
^~

A-\-a
0.9730085 0.9730085

C^ = ^l-C^ 0.2307692 0.2307692

2-y/Aa
0.9299812 i^^ ^T T A /~\ ^^ /"^ T

^(A+af^x'
O.7I49/OI

k'=^i-k' 0.3676073 0.6991550

logsin^/sin/3=M 97977938 9.5186043

I^{k) ^•437337^ 1.8636661

E{k) 1-1323456 1.3449927

F-E
1.5088957 1.0146546

F{k',P) 0.6852557 0-3394833

E {k', P) 0.6721988 0.3333201

k'^ S\\\ yScOS P{F-Jl)
c

-0.8266738 -1. 1256799

J(^-n) -0.6851799 — 0.4045298

log \^^{A^d)ck)

1-9157773 I.7854187

4.0728340 4-4357689
log M 3.98861 13 4.22II876

71/^= 9741.17 cm ^1/^=16641. 32

Mfi differs from the value obtained by formula (12) by 2 parts in

a million, 71/,^ is identical.
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M^ is the mutual inductance of the winding OjA on S. The
inductance M^ of the whole coil AB on S is twice as much, that is

J/, = 19482.34

The inductance of AB on R is M^ above, minus the inductance of

OgB on R which is the same as that of OjA on S, that is, M^.

Therefore.

M^— 16641.32— 9741.17 = 6900.15

Hence J/i— J^2= 12582.19 cm.

The force of attraction of the one winding AB in dynes is

\f=i,i^nlM^-M^.

The force due to the second winding BC is equal to this. Sup-

pose ^^ = ^2=:I ampere= 0.1 c.g.s. unit of current and 7i^—\o turns

per cm. Then

z'z'/2_=zo.io"l^g'^Z

.*. y=o.20X 12582.19 dynes

= 2516.438 dynes

2f =5032.876 dynes= change of force on reversal of current

= 5.1356 gms where ^=980.

If there are two sets of coils, one on each side of the balance, as

in the ampere balance built for the National Physical lyaboratory,

the force would be doubled again.

In calculating the mutual inductance of the disk and surrounding

solenoid in the Lorenz apparatus the series (12) will be more con-

vergent when the winding is long, and of course more convergent

when the disk is not of too great diameter.

11. EQUIVALENCE OF SPIRAL WINDING AND CURRENT SHEET.

The derivation of Lorenz's formula is given in his collected works. ^"

Its exact equivalence to equation (12) might have been anticipated

from the fact that both are based on the same hypothesis, namely,

that the current is uniformly distributed over the solenoid in a cur-

^° Oeuvres Scientifiques de L. Ivorenz, t. 2— i, Copenhague, 1899.
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rent sheet, as is Jones's first formula. Jones's second formula, on

the other hand, assumes the current flowing along the axis of a wire

wound spirally around the solenoid, making some integral number
of turns but having any pitch whatever. The exact equivalence of

this formula to (i) and (12) is at first surprising, but Lord Rayleigh

has shown ^^ from simple physical considerations that this must be

true when as in this case the disk is circular and coaxial with the

solenoid.

In an actual instrument, however, the current flows neither in a

current sheet nor along the axis of a spiral wire, but is distributed

Fig. 11.

throughout the entire section of the spirally wound wire. It is

therefore worth while to inquire whether the departure of an absolute

electro-dynamometer from the ideal conditions assumed in the theory

of the instrument can be the source of an appreciable error. The case

is similar to the one I have considered elsewhere ^^ in which the

winding was assumed circular. It was shown that no appreciable

error is due to the finite cross section of the wire. Let us now con-

sider a spiral of fine wire wound on a short cylinder. Let MN, Fig.

II, be the surface of the cylinder developed in a plane, and AB a

"Report Brit. Asso.
, p. 241; 1S99. This Bulletin, 2, p. 71; 1906.
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winding of n turns of uniform pitch, beginning and ending in the

two bounding planes of the cylinder. The magnetic force on the

axis at the center of the cylinder due to unit current in this wire is

independent of the particular points A, B, where the winding begins

and ends. A second winding C, D, indicated by the dotted line,

will produce exactly the same magnetic force at the center as AB,
or exactly the same number of lines of force through any circle

coaxial with the cylinder. Hence it is immaterial whether the cur-

rent flows through one of these wires or through both in parallel or

through any number of similar windings all in parallel, the total

Fig. 12.

current being of course the same in each case. Hence a winding of

flat tape, Fig. 12, of any width having the same pitch and number

of turns w411 have the same mutual inductance with respect to any

coaxial circle as a winding of very fine wire, provided the current

begins and ends in the bounding planes of the cylinder. If the dis-

tance between the separate turns of tape is reduced to zero we have

a current sheet, which is thus seen to be equivalent to a winding of

fine wire.

If the tape be wound on edge, Fig. 11, the winding may begin at

any point in the bounding plane M provided it ends at a corre-

sponding point in the other bounding plane N. By the same reason-
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ing as before a winding of n turns of thin tape on edge has the

same magnetic force at any point on the axis and the same mutual

inductance with respect to any coaxial circle as a winding of square

or rectangular wire, the depth of the latter being equal to the depth

of the tape. When the breadth of the rectangular wire is equal to

the pitch of the winding, the wire covers the entire surface and we
have a thick current sheet. It can easily be proved ^^ that for the

dimensions of wire and cylinder likely to be employed in any

absolute electrodynamometer, the effect of a thick current sheet

equivalent to the winding will not be appreciably different from

that of a thin current sheet having a radius equal to the mean
radius of the thick sheet.

12. EFFECT OF LEAD WIRES.

We have assumed in what precedes that the current enters and

leaves the winding in the bounding planes MN of the short cylinder

on which the wire is wound. Thus, if the winding consists of thin

or thick tape, the breadth of which equals half the pitch, the bound-

ing planes will cut off the conductor diagonally, leaving the wedge-

shaped terminals AC and BF (Fig. 12), and the mathematical con-

ditions would require that the current be introduced along the

entire distance CA and leave along EF, so that the magnitude of

the current at any point would be proportional to the breadth of the

tape. As CA is half the circumference of the cylinder, this evi-

dently is an impracticable method of introducing the current. Let

us therefore inquire whether it will make any appreciable differ-

ence if the conductor is cut off abruptly at BBj, DD^ by a plane

passing through the axis of the cylinder, and the current be intro-

duced at BBj and withdrawn at DDj. We have the triangular

portion of the conductor COB^ omitted and in its place the portion

AOB ; likewise EOjD replaces FOiDj. The current in COB^ aver-

ages one-fourth of the total current and the distance CO is one-

fourth of one circumference. Hence the magnetic effect of COB^ is

practically equivalent to one-sixteenth of one turn at the end, or

one-twenty-eighth of the average turn in the Gray electrodyna-

mometer, such as that discussed in the article to which reference was

"This Bulletin, 2, p. 71; 1906.



Rosa.^ Mutual Inductance of Circle and Coaxial Coil. 235

made above. That instrument had altogether 872 turns, and hence

the effect of the triangular portion of the terminal COBj is about

one-twenty-five thousandth of the total. This is practically negli-

gible, seeing that it would produce an error of only i in 50000 in

the current. But it is compensated almost exactly by the portion

ABO, which is a little further from the center of the coil than COBj.

In the dynamometer in question there were 20 turns per centimeter,

and hence BBi= one-fourtieth cm. The difference in the average

distances of the two elements from the central plane of the instru-

ment would therefore be less than one-eightieth cm, and the differ-

ence in their magnetic effects would therefore be less than one-

one thousand five hundredth of either. Hence the error produced

by introducing the total current at the end BB^ of the wire or tape

would be less than iloo>^ »> or less than i part in 37,500,000, or for

the two ends together i in 18,750,000. If the coil had a smaller

radius or coarser winding the error would be greater; but it probably

never would amount to as much as one part in a million for any

instrument designed to be used as an absolute instrument.

We can therefore be sure that the formulae derived for the Gray,

Ayrton-Jones, and other electrodynamometers having large coils, or

for the Lorenz apparatus, on the assumption that the current is dis-

tributed over the surface of the cylinder as a current sheet can be

safely employed provided the leads are properly twisted together and

the return current is brought from DD^, back to BB^ along an ele-

ment of the cylinder. The length of cylinder to be employed in the

formulae is, as already explained ^*, the over-all length of the wield-

ing including the insulation on the first and last wires^ when the

winding consists of a single layer of insulated wire wound with the

adjacent turns in contact. For a winding in a screw thread it is n

times the pitchy or the leetgth from center to center of n-\- 1 turns^ n

being the whole number of turns of wire on the cylinder.

I have here discussed these questions of the equivalence of a

winding of wire to a current sheet and of the length of the equivalent

current sheet, because I have recently received letters of inquiry

from persons engaged in absolute measurements, who were not

i^This Bulletin, 2, p. 77; 1906.
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quite satisfied that the conchision reached in my former paper

applied to a spiral winding. I hope that the above discussion

makes it clear that it does. A spiral winding approaches a cir-

cular winding as the pitch decreases, and nothing is assumed in

the preceding as to the magnitude of the pitch.

Washington, March i, 1907.


