
THE MUTUAL INDUCTANCE OF TWO CIRCULAR
COAXIAL COILS OF RECTANGULAR SECTION.

By Edward B. Rosa and Louis Cohen.

Various formulae have been proposed from time to time for

calculating the mutual inductance of coaxial coils. All of them

are approximate formulae and in most cases the approximation is

closer if the coils are not near each other. The degree of approxi-

mation is not, however, shown by the formulae themselves, and it

is therefore highly important to critically examine and compare all

the formulae available, and to ascertain which are most accurate

and what the magnitude of the residual error is likely to be in any

given case. A practical question, for example, is to determine what

limitations as to size of section, radius, and distance apart must be

placed on two coils in order that their mutual inductances may be

computed to one part in 50,000. If such coils are to be used in the

absolute measurement of resistance, the formulae employed for

computing the mutual inductance must be justified beyond question.

We propose in this paper to examine these formulae and to compare

them by numerous numerical calculations. We shall show which

are the more accurate formulae, point out where some of them fail,

and shall derive some new expressions more convenient to use than

some of those which have heretofore been employed. We shall also

give a number of examples to illustrate and test the formulae, and

curves to show the relative accuracy of various formulae for par-

ticular coils at varying distances.
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MUTUAL INDUCTANCE OF TWO COAXIAL CIRCLES.

MAXWELL'S FORMULAE IN ELLIPTIC INTEGRALS.

Some of the formulae available give the mutual inductance of

two coaxial coils directly in terms of the dimensions of the coils,

while others derive it from the mutual inductance of two coaxial

circles, either by giving the correction to be applied to the latter, or

by employing in the formula for the latter a modified radius, or by

combining several values for circles in such a way as to give (approx-

imately) the value for coils of appreciable cross section. It is there-

fore desirable to consider first the formulae for the calculation of

the mutual inductance of two coaxial circles. The first and most

important is the formula in elliptic integrals given by Maxwell: 1

M— 477VH(i-*)*-¥ (I)

in which A and a are the radii of the two circles,

d is the distance between their centers, and

. 2^/Aa

T/(A+ay+d l

= sin 7

.Fand E are the complete elliptic integrals of

the first and second kind, respectively, to modu-

lus k. Their values may be obtained from the

tables of Legendre, or the values of M-1-4.1r.JAa

may be obtained from the table in Appendix I

at the end of Chapter XIV (Vol. II) of Maxwell,

the values of 7 being the argument.

The notation of Maxwell is slightly altered

in the above expressions in order to bring it

into conformity with the formulae to follow.

Formula (1) is an absolute one, giving the mutual inductance of

two coaxial circles of any size at any distance apart. If the two

circles have equal or nearly equal radii, and are very near each other,

the quantity k will be very nearly equal to unity and 7 will be neai

Fig

1 Electricity and Magnetism, Vol. II, £ 701.
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to 90 . Under these circumstances it may be difficult to obtain a

sufficiently exact value of F aud E from the tables, as the quantities

are varying rapidly and it is necessary to employ an interpolation

formula to get values between those given in the tables. Under

such circumstances the following formula, also given by Maxwell

(derived by means of Uanden's transformation), is more suitable:

m=i*^^L\f
x
—e\

(
2

)

V K l J

in which F
x
and E

x
are complete elliptic integrals to modulus ku

and

?
i+ ^2

7\ and r
3
are the greatest and least distances of one circle from the

other (Fig. 1); that is,

r^^A+df+f
r

2
=J(A—af+d*

The new modulus k
x
differs from unit)' more than £, hence yx

is not

so near to 90 ° as 7 and the values of the elliptic integrals can be

taken more easily from the tables than when using formula (1) and

the modulus k.

Another way of avoiding the difficulty when k is nearly unity is

to calculate the integrals F and E directly, and thus not use the

tables of elliptic integrals, expanding F and E in terms of the

complementary modulus k! , where k' = ^/i — k'\ The expressions for

F and E are very convergent when k' is small. For convenience

of reference they are here given. An example will be given later

to illustrate the use of these formulae.

+i! 3_Wiog 4_J___2\
^V 4

2

V k' 1.2 3.4/

,

i
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3
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V # x - 2 3-4 5- 6 7- 8/

+ - (3)
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^2 2

4 \ * k' 1.2 3.4/

+
2

2

4
2 62

8 V # 1-2 3-4 5-6 7.8,/

+ (4)

WEINSTEIW'S FORMULA.

Weinstein 2
gives an expression for the mutual inductance of

two coaxial circles, in terms of the complementary modulus k'

used in the preceding series (3) and (4). That is, substituting the

values of .Fand E given above in equation (1) we have Weinstein's

equation, which is as follows:

V
T

i28 ^1536 ^ 65536
T

)\
^

Evidently this expression is rapidly convergent when k' is small,

and hence will give an accurate value of M when the circles are

near each other. Otherwise formula (i) may be more accurate.

An example will be given later to test the correctness of this formula.

NAGAOKA'S FORMULAE.

Nagaoka3 has given formulae for the calculation of the mutual

inductance of coaxial circles, without the use of tables of elliptic

integrals. These formulae make use of Jacobi's ^-series, which is

very rapidly convergent. The first is to be used when the circles are

not near each other, the second when they are near each other.

Either may be employed for a considerable range of distances between

the extremes, although the first is more convenient. The first for-

mula is as follows:

2 Wied. Ann. 21, p. 344; 1884. 3 Phil. Mag., 6, p. 19; 1903.
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= 4^lAa{4^K 1+ «)} (
6
)

where ^4 and a are the radii of the two circles, e is a correction

term which can be neglected when the circles are quite far apart.

-HM£+ •

^ being the distance between the centers of the circles, and k' the

complementary modulus occurring in equations (3), (4), and (5).

Nagaoka's second formula is as follows:

M=4^Aa.
a(i _ 2y)

,
|log -[i + 8y1

(i-y,+ 4g 1

,

)]- 4
|

4
+v^ V(^+«)

8+^ s

£ is the modulus of equation (1), but is employed here to obtain the

value of the ^-series instead of the values of the elliptic integrals

employed in (1). This formula is ordinarily simpler in use than it

appears, because some of the terms in the expressions above are

usually negligibly small.

Examples will be given later illustrating the use of these formulae.

MAXWELL'S SERIES FORMULA.

Maxwell 4 obtained an expression for the mutual inductance

between two coaxial circles in the form of a converging series which

is often more convenient to use than the elliptical integral formula,

and when the circles are nearly of the same radii and relatively

near each other the value given is generally sufficiently exact. In

the following formula a is the smaller of the two radii, c is their

4 Electricity and Magnetism, Vol. II, § 705.
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difference, A— a, d is the distance apart of the circles as before,

and r— -^c'
z
-\-d

%
. The mutual inductance is then

-(2+
2,-w-+-w— •

• •)!
(8)

When the two radii are equal, as is often the case in practice, the

equation is considerably simplified, as follows

:

^H^(i+£)-(2+ i£--)l <»

The above formulae (8) and (9) are sufficiently exact for very many

cases, the terms omitted in the series being unimportant when - and -

are small. For example, if — is 0.1, the largest term neglected in

(9) is less than two parts in a million. If, however d=a, this term

will be more than one per cent, and the formula will be quite inexact.

Coffin
5 has extended Maxwell's formula (9) for two equal circles

by computing three additional terms for each part of the expression.

This enables the mutual inductance to be computed with consider-

able exactness up to d—a. Formula (1) is exact, as stated above,

for all distances, and either it or (6) should be used in preference to

(to) when d is large. Coffin's formula is as follows

:

(1 80/ 3d2 15^
, 35^ 1575^ , \

_(W— 3_1^+ H7^_T195^ + \\ (lo)
\^i6a* i6.i28fl*^6.£i§V 8.128^^ *

' ')\
[ }

We have extended Maxwell's formula (8) for unequal circles by ex-

panding the terms of formula (1) in series and substituting these

series in (1). The series (3) and (4) involve k\ where kn —\— k%
.

Hence i+ k'*= 2-k2
.

Also

r=^+f
, a

\Aa
(A+af+x2

Bulletin of Bureau of Standards, 2, p. 113; 1906.
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x*+f
{za+yy+x*

^Aa _i
£ 2

Equation (1) is therefore equal to

V(2^+J)
2+^2

^V
i+

-

if=4-^i+J+^{(i+^-^}

4<2
2

w

tt
2/

!

Fig. 2

Substituting the values of i7 and E from (3) and (4) we get

-U K— o.-X-

4 64h kn
)

= log|,{ I+^V 2+T-^8+ ---
(
'
)

= CI°g|7+Asay

log£=log(^J(i+i>+4=log^+logJi+^+^fe £' s
\ r \\ ^ 2a) ^ *> r ^ s \ 2tf^ 4a2

& r 2V 4« / 4\« 4«" /

6\« \a %
)

16360—07 4
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5.r
4j-io.r2/+/ (V)

"*"

i6o«5

= log-^+^>say

4^
2

\ # 4«2

/

—fii/_ ^!y+J
/3_ -r'— 2.r

2y— 3jk
4 ify—jf (d)

4a2 4a3
i6a* ~~^ 8a*

'"
'

*

Substituting this value of £/2 above we have

C=I ,

x +y x ly+y A
15^ -34^T-49y

16a2 i6« 3 1024a*

1 5^r*_y— 2^y— 1 jy
l

S 1^
n= 2

,

*'+y yr+y 33^-62^-95/
16a 2 16a3 2048a4

. 33-r>+ 2.ry- 3i/
I024« 5

(')

(/)

/T 1 j ,
^+y\x _ T ,

^
,

•** _ *?y
,

4*y-**
V

~r «~t~ 4a 2

) ~ ~r 2a~t 8a 2 i6a
3_+~ 128a4

H 6"^-—
• • • =A say (£)

512a y

Equation (a) is now

JZ= 47m ^| C log ^+^C+d\ {h)

in which ^4, B, C, and Z> are the series (^, <r, £,/") given above.

Substituting in (ft) and omitting terms of higher than the fifth

degree we get

j/=4^iog
8^/i+-+ 3-^- 3^^3

- I5^~42xyr I7/
b r \ 2a 16a 32a 1024a

+- '- " " JQ :,
—^+ • .

- 24H2048a 5

) \" ' 2a ' 16a 2 48a3

534^y-i9/ 1845^-3030^
6144a4 61440a 5

93^-534^y~i9y
!

i845*>-3Q3a*y--379y
^

^

\J
.
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When y = o, this gives the first part of series (10). When x= o
y

the case of two circles in the same plane, with radii a and a -\-y
)
we

have

a
\
l°sjy- 2a 16a 2 32a3 1024a* 2048a*

(

y __ 3/ . f ,
19/ 379/

2/^ 16a 48a s 6144a* 61440^

In the above formulae .r and j are interchanged from Maxwell's

notation and correspond to d and <r of (8). That is, x is the distance

between the centers of the circles, and y is the excess of one radius

over a, the radius of the other; y may be -f or —

.

These formulae give the mutual inductance with great precision

when the coils are not too far apart. The degree of convergence, of

course, indicates in any case about what the limit of accuracy is.

We have derived equation (11) also by the method given by Max-
well,

6
to check the coefficients.

MUTUAL INDUCTANCE OF TWO COAXIAL COILS.

ROWLAND'S FORMULA.

Let there be two coaxial coils of mean radii A and «, axial breadth

of coils b
x
and £

2 , radial depth c
x
and cn and distance apart of their

mean planes d. Suppose them uniformly wound with n
x
and n

2

turns of wire. The mutual inductance M
Q
of the two central turns,

Oj and
2
(Fig. 3), will be given by formula (1) or (5), and the

mutual inductance M of the two coils of n
x
and n

%
turns will then

be, to a first approximation,

M=n
1
n9M

A second approximation was obtained by Rowland by means of

Taylor's theorem, following Maxwell, § 700. The mutual induct-

ance of the two central turns O
x
and

2
being M01

the mutual

inductance of O
x
on any turn at P of coordinates x, y in coil B is

given by Taylor's theorem, as follows:

6 Electricity and Magnetism, Vol. II, \ 705.
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dM dM x2 d 2M y
2 d 2M d2M

-hr dy 2 dx l
2 dy f

xy
dxdy

+ • • • • (0

If we integrate this expression over the area of the coil B to find

the equivalent value M' for the whole area, where

M'xy = Mdxdy

mg. 3

we have (since the second and third terms become zero)

x2 d 2M f d"MMf=M +
24 dx2

24 dy2

. d*Ma d'MQ , d'M,
a 1 . - .,

neglecting terms in -^, -^^ and^ and hlgher orders -
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Substituting b
2
and c

2
for x and y, and da for dy, we have

b
2 d 2M r

2 d 2MM'=M+^ ^-f7 + ^L V~7 (£)

n
2
M' is the mutual inductance of a single turn at

l
and the coil

B. Repeating the process, integrating over A, we get M
)
n

x
n^M

being the mutual inductance of one coil on the other. Thus,

1 [ d 2M d2M d 2M

If the two coils are of equal radii but unequal section,

M=M%+±{W+V) ^+fc'+0^} (13)

If the two coils are of equal radii and equal section, this becomes

is nsr 1

J \i^M ,
*
d%M

\ r \M=M*+ T2\
b
-*r+*-s?

I

(I4)

The value of M should be calculated by formula (1). The correc-

tion terms will be calculated by means of the following:

d*M, £3|„ I -2k*
(15)

The equation (14) is equivalent to Rowland's equation, where 2f

and 27] are the breadth and depth of the section of the coil, instead

of b and c, except that there is an error in the formula as printed in

Rowland's 7 paper, f and 77 being interchanged. The equations (15)

are equivalent to those given by Rowland, being somewhat simpler. 8

Formula (12) gives a very exact value for the mutual inductance

of two coils, provided the cross sections are relatively small and the

distance apart d is not too small. But when b or c is large or d is

small the fourth differential coefficients which have been neglected

become appreciable and the expression may not be sufficiently

exact.

7 Collected Papers, p. 162.

8 Gray, Absolute Measurements, Vol. II, Part II, p. 322.
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RAYLEIGH'S FORMULA.

Maxwell 9 gives a formula, suggested by Rayleigh, for the mutual
inductance of two coils, which has a very different form from Row-
land's, but is nearly equivalent to it when the coils are not near

each other. It has been used by Glazebrook and Rayleigh, and

may also be employed in calculating the attraction between two

coils.
10

It is sometimes called the formula of quadratures. It is

derived as follows:

\ 5X
1 s
1

1

1

1

1

\

k\°'

1

<-—
6,

^^O
8 ^S

7

°2

P

6

t

1

f
2

.
+

5

< \ >

Fig. 4

Referring to Fig. 4, let M^ M
z
be the mutual inductances of the

central wire
2
and the wires at points 1 and 3, respectively, of coil A.

c c
For these points x—o, and y is— — and+—, respectively. Substi-

tuting these values of x and y in equation (?) we have,

w=w c
x dM% \c**M% c*d*M c? d*M _
2 da

~^~
8 da* 48 da 3 ^384 da*

M^M^-1
dM

°
\

C * d%M
: 1

C * d"M̂
1

C * d*M
» '

2 da '8 rtfo
2 48 ato

3 384 afo
4

9 Electricity and Magnetism, Vol. II, Appendix II, Chapter XIV.
]0 Gray, Absolute Measurements, Vol. II, Part II, p. 403.
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\, n* n* C? ^Af
,

C* d'M
nwhence, M

1
+M3

—2M = -±- -j-^+— t-4
°+ . .

'
1 3 ° 4 da 1

192 da*
~

Similarly, M%
+M±— 2M = - 1

b
2 d 2Mn . b* d*Mn

4 dx2
192 dx

— 4-
1 . . .

w

In a similar manner, if M
b , M^M7)

M
%
are the coefficients of induct-

ance of the single turn n on single turns at points 5, 6, 7, 8 of coil

B, we get

c
2 d2M r * d*M

i2 ~r

Ar6+ 8̂
-2^ =-^

4 <£4
2

192 dk4*

£
2 d2Mn . £ * aWn

4 dx2
192 afr:*

Adding equations (I) and (m) we have

=Ma

24
(V+V)

<*WA

dx"
Vci
d2M«
da

d*M,
2 dA 2

d*Mn .d*Mn
^\w+*f>zr+*-

*

.d*Mn
dA 1r + -

(m)

(*)

The mutual inductance of two coils of unequal radii and unequal

section is, neglecting sixth and higher differentials,
11

1 f d 2M
, %
d*Mn

1 da2 I

6
2 ^

^{w+K^+^+^
b

2
b,

576

1

<***

d^M
i_ 2 2

"• iK/
o

1-12 ^V^ !

576
(b 2

\ b
2\\c

2a *M
«

\
dl + d%

}{
Cl

(h*da*
f^2

,

d'M
dx2dA 2 (16)

11 Rosa, this Bulletin, p. 337.
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For two equal coils this is

360

Equation (n) agrees with (16) only when thefourth differentials are

negligible. In that case we can write

M^^(m
i
^M^M^M,+M^M^M1+M- 2m\ (18)

For two coils of equal radii and equal section this becomes

M= U^Mx
+M

%
+Mz

+M-m\ (19)

Equation (18) is Rayleigh's formula, or the formula of quadratures.

Instead of computing the correction to Af by means of the differen-

tial coefficients (13), eight additional values are computed, corre-

sponding to the mutual inductances of the single turns at the eight

points indicated in Fig. 4, each with reference to the central turn of

the other coil. These Ms may be computed by formulae (8) and (9)

or (10) and (11), and the values of the constants for the case of two

coils of equal radii are given in the following table, the radius

being a in every case.

Using (8) d -f -\T
+

4

d2+^~

Using (9)

ial distance. Radial distance.

d
2

d +t

d
2

d ^2

d--bj2

d+bj2

d+bjz

d--bj2
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MAGNITUDE OF THE ERRORS IN ROWLAND'S AND RAYLEIGH'S FORMULA.

The error in equation (18) is the difference between the values of

M'as given by (11) and (16). Calling this correction e
1?
and taking

the difference for simplicity for the case of two equal coils,

1 \ d*M .<?Af ] b*c* d*M
1_
"96o| dx*

~*~
da* ^144 dx2da 2 K)

The values of the differential coefficients of (17) are as follows:
12

d*Mn d*Mn 6
47T«X

dx* da* d*

d*M 6

Substituting these values in (p) we have

^HTo? }
^

For a square coil the correction is a negative quantity, showing

that Mhy equation (19) is too large, and the error is proportional

to the fourth power of - , the reciprocal of the distance between the

mean planes of the coils. For a rectangular coil in which b is greater

than c the correction is negative so long as b is not more than 2.5

times c. When b is still larger with respect to c the correction

becomes plus, the value of Mhx (19) being too small.

Thus, for a coil of cross section 4 sq. cm, we get the following

values of the numerator of (20) as we vary the shape of cross section,

keeping be— 4.

Dimensions of coil. Error proportional to

—

b= 2 c—2 — 224
£=2.5 c=i.6 — 183

^= 3 '=i-33 - 67-5
b=4 c=i + 451
£=8 ^=0.5 + 11

:

Thus we see that the value of M as given by the formula of quad-

ratures may be too large or too small according to the shape of the

12 Rosa, this Bulletin, p. 346.
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section, and that the error is proportional to the fourth power of the

dimensions of the section divided by the distance between the mean
planes of the coils. When the section is small and d large the

error will become negligible.

The error by Rowland's formula is found by taking the difference

between (14) and (17). Thus the error e
3
is

6\bl+ c' £V) 8^-f8^-2o£V , x
e2= 47r

^|^6c7-i44r 4^- 480^
(2I)

This is negative for a square coil, but smaller than er For a coil of

section such that b= cj~%, this error is zero, and for sections such that

that ->^2, the error is positive. Thus, for a coil of cross section 4

sq. cm, we get the following values of the numerator of (21) which

is proportional to the error by Rowland's formula.

Dimensions of coil. Error proportional to

—

b=2 f=2 — 64

£=2.5 c=i.6 + 45

^= 3 c=*-33 + 353
= 4. c=i + 1,736

£= 8 ^=0.5 +32,448

Thus the error is smaller by Rowland's formula for coils having

square or nearly square section, but larger for coils having rectangu-

lar sections not nearly square.

These conclusions are verified by numerical calculations with the

formulae of Rowland and Rayleigh later in this paper.

LYLE'S FORMULA.

Professor L/yle
13 has recently proposed a very convenient method

for calculating the mutual inductance of coaxial coils, which gives

very accurate results for coils at some distance from each other.

I/yle begins his demonstration with Maxwell's 14 expression for the

magnetic potential of a coil at any point in its axis, namely,

i-j+-m?+ -8jr-**\ {p)

13 Phil. Mag., 3, p. 310; 1902. M Electricity and Magnetism, Vol. II, §700.
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assuming the dimensions of the cross section small in comparison

with the radius of the coil, and the winding uniform.

In the above equation,

« = mean radius of the coil,

b— axial breadth,

c— radial depth,

x= distance on axis from center of coil.

C is the current, and n is the number of turns in the coil. This

K c

a

x \.

Fig. 5

notation differs from Lyle's only in using, as elsewhere in this

article, b and c for the breadth and depth of coil, instead of f and 77.

Expanding the above equation in ascending powers of — , Lyle

obtains,

V—2irnC\ 1— -(

3*

3*
24a*)+£(

3*7- 5(7^-6Q\, 3-5*7, 7(9^~8Q\ 1
(a)

4« 6V 24«
a ^2.4.6^ 24^ / 'J

w

3(5^
8-4^
24«

8

y(9*
8

')
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The potential V of a circular filament of radius r and carrying cur-

rent nC at a point P distant x from the center of the circle is

Figr. 6

Vf = 2irnCh-

which expanded in ascending powers of - gives

(r)

V' = 2irnC\i [

iS*
,

i-3-5^
(s)

r 2r3
2.4-r

5
2.4-6r

7

The two potentials V in if) and V in if) will be identical, provided

if 3^-2^
«

1

24<2
8

i

r

i _ i

r3 ~~
ar

i i

an 24a"

If the section is square, and hence £= c, these equations become

24a2

J

5(7^-60

(<>

r3 a\ 24a 2

/

r> a\ 2\a%

)

(*)
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Cubing the first of these equations we have

^l
1

3**
, _3^1

24a 24V 24
:

4
SW

Hence, if we neglect the terms in —
i
and higher powers of (

-
J
we

see that all the equations of condition (t) are satisfied by making
o= c. The same result follows if the expansions are in ascending

- a
powers 01 -.

The first of equations (11) gives

r=a[ iH A
\ 24a 2

/
(22)

Axis

again neglecting fourth and higher powers of -. Hence, we see that

if a coil of radius a, cross section $
2

, wound with n turns of wire

and carrying a current C, be replaced

by a single filament lying in the mean r

plane of the coil, of radius r and car-

rying a current nC, the magnetic L

potential will be identical at all points

on the axis, and hence, by Legendre's

theorem, identical at all points of space

without the coil. Thus, this filament

is seen to be equivalent to the coil and

can replace it so far as its externalfield

is concerned. If there were 11 turns in

the filament O, through which current

C flows, the flux due to O through coil

B would be the same as that due to

current C through the n turns of A.

But since the mutual inductance is the same whichever coil is

the primary, the flux through O due to current C in B must be the

same as it is through the n turns of A, and therefore the filament

O can replace the coil A, not only so far as its own external field is

concerned, but also so far as the effect of external fields on it is

concerned.

Fig. 7
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In the proof of equation (p), however, differential coefficients of

the fourth and higher orders have been neglected, and hence when
we apply Legendre's theorem and pass to space off the axis we must

keep away from the immediate region of the coil itself, where the

fourth and higher differentials of the magnetic potential can not be

neglected. Obviously a single filament can not replace a coil of rec-

tangular section just outside the coil, and we shall see later that it

does so to a high order of approximation only at some distance

from it.

Lyle then goes on to show that a coil of rectangular section not

square can be replaced by two filaments, the distance apart of the

filaments being called the equivalent breadth or the equivalent depth

of the coil.

7 2 2
fjT £

£P——

—

-
, 2 fi is the equivalent breadth of A

r—d'2

S
2= — , 2 & is the equivalent depth of B

(23)

The equivalent radius of A is given by the same expression which

holds for a square coil, viz:

*t/e-+

b

3,
f
1

1

L* 1

(
i+
4?)

Fig. 8

r=al i-f

In the coil B the equivalent fila-

ments have radii r-f-3 and r— 8,

respectively, where

i l+^)
The mutual inductance of two coils may now be readily calcu-

lated. If each has a square section, it is necessary only to calculate

the mutual inductance of the two equivalent filaments. For coils

of rectangular sections, as A, B, the mutual inductance will be the

sum of the mutual inductances of the two filaments of A on the two

filaments of B, counting n/z turns in each. Or, it is n
x
n.

2
times the

mean of the four inductances M13) Mliy M23} M2l)
where M13 is the

mutual inductance of filament i on filament 3, etc.
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Similarly the attractions of coils when carrying currents may be
calculated.

In a uniform magnetic field the equivalent radius of a coil is easily

found as follows. The mutual inductance of two coils is propor-

tional to the whole number of lines of force due to A linked with
the various turns of coil B. For a uniform field this is proportional

to the sum of the areas of the various turns of the coil. We can
therefore find the equivalent radius r for a coil of rectangular

section by integration, r
x
and r

2
being the inner and outer radii of

the coil. Thus

—

2 1
r'~3('••+-+'W)H(Ky

If a is the mean radius of the coil and c is the radial depth

~ ri+ r%

or rn =

neglecting terms in the fourth and higher powers of (-). This

value of the equivalent radius which applies to any coil of rectan-

gular section in a uniform field is exactly the value found above for

a coil of square section in a non-uniform field, where fourth and

higher differentials are negligible.

Lyle states that in his method of obtaining the mutual inductance

no quantities are neglected of order lower than the fourth in I -
J.

It

is to be observed, however, that that statement only applies when the

coils are a considerable distance apart, as the term neglected depend-
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ing on the fourth differentials is proportional to I —
) , and this may

be much larger than (
-

) •

Lyle's method is of special value in computing mutual induct-

ances because it applies to coils of unequal as well as of equal radii.

Examples and tests of the method will be given later.

We will now deduce an expression for JM based on Lyle's value

of the equivalent radius (22). Thus, putting a
x
for the equivalent

radius where a is the mean radius, we have as before

/ b
2

\a
1
— ali-\— 2

24a 2

/

We may use this value of the radius in any formula for the

mutual inductance of two coaxial circles, as 1, 2, 5, or 9. Substi-

tuting in (9) we have forM and Af
,

--«h$H^")-('+£.--)l

*-H*3(-+&S-'-)-('+i£r-)l
The correction JM is found by taking the difference between

MandM,. Thus,

JM^^-a){log^(i+^ ^-(2+^)}
fi

ai(
. 3 A 1 W3^<-^\ d2 a 2-a 2

\

( bl

Y(. 8a \
, 3 d\ 8a d% "1

b
2

b
2
d'

2 $b2d 2

v
8a b

"d "

1+ 24?
+ l28^4 192^

°g ^+ 192^}

Since -J =
5 by assumption,

« 24<r

a 2—

a

2— — , approximately,
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and log —= 2, approximately.

Combining terms in (v)

or
7T Oa '-5—m^-f)) m

Comparing this equation with (27) we see that it differs only in

the absence of the two terms——-and +

—

'——=. These terms de-
5<tf

4 240^

pend on the fourth differentials, which, as stated above, were ignored

in deriving equation (p). Thus we see that, if in deriving equa-

tion (27) we had ignored fourth differentials, we should have come

to the same result that Lyle has, although the process is very different

and the form of the result is very different. Since Rowland's for-

mula depends on second differentials only, we should expect it to

agree closely with Lyle's, and we shall see presently that for coils

of square section it does.

In a similar manner we may obtain an expression forJM for two

coils of unequal radii. Substituting au the equivalent radius in (8),

and putting y and y x
for c, we have:

^Kh^-W-'-W- )
d W y ,

/+3^2 /+3r^2

M = /Lira log— ( i+— +^—Pi 3^ & r \ 2a 16a 2

2>
2a

J* 4- y 2>f-d\f-6yd\
V
^ 2a 16a 2 ^ 48a 3

/

Putting as before the difference between these two expressions

equal to JM, we have:

*M_ b*\L 8a afV
J

,
}'

, f+ 3** f+ jyd \

16360—07-

( Equation continued next page.)
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"*"
8a" 96a3 zAa \ S r )

(A+ a)f
8Aa

ZJA+aV

This applies to coils of equal square sections, of radii a and A, dis-

tance between centers being d; y =A— a.

This formula is easier to use than it might appear to be. There is

only one natural logarithm to get, and when one is calculating JM
directly it is not necessary to work to so high precision as when
calculating M. If, however, one wishes only M and not 4M it

would be better to calculate it directly by Lyle's method.

STEFAN'S FORMULA.

Stefan's
15 formula for the mutual inductance of two equal coaxial

coils is as follows:

M= ^iran l

\
log—_ 2+d 1 2d* i2od* 504^

*\ ** d ) \ 96a2 1024a*/ 192a 2
2048a*]

(25)

This formula 16 may be writtenM=MQ
-\-4JlfwhereM is the mutual

inductance of the central circles of the two coils and JM is the

correction for the section of the coil, but the value of JM in

formula (25) is incorrect. The corrected expression for JM is as

follows

:

16

JM \%b
2+c2

. 8a iib2-^2
b
2-c2

2tf+2c"-$b2
c
2

)oa
2

* d 192a 1 2d 120a
7

(. 8a i63\6£*+6^+5^V
,

3^-3^+14^-14^ y^d
5j6oad' 504" 1024a

1024a 4
-/log ^-f)l (26)
?\

5 d 60/J

Wied. Annalen, 22, p. 107; 1884. 16 Rosa, this Bulletin, p. 348, (38) and (39).
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For a square section, when b— c, this becomes

JM b
2

\,
Sa

t
a 2

b
2

3d
2
/. Sa 4\ ,

17^ 1 , ,

The last two terms of equation (27) are relatively small, so that we
may write, approximately:

JM b
2

\, 8a a 2
b

2

}
, Q ,

inr 6rt| d 5^
J

v J

These expressions for 4M are very exact where the coils are near

together or where they are separated for a considerable distance, but

become less exact as d is greater. They are therefore most reliable

where formulae (14), (19), and (22) are least reliable. As formula

(28) is exact enough for most purposes, it affords a very easy method

of getting the correction for equal coils of square section.

We give later examples to illustrate and test the accuracy of the

above formulae.

WEINSTEIN'S FORMULA.

Weinstein17 gives a formula for the mutual inductance of equal

coaxial coils, as follows:

M= C\ (K— E) e+—---gY^—

«

2
— <?

3 +(2# 2— 3^3) cos*\+8tf
3
cos

4Xj

""^ I —Y^(^+^+ 2^ 3+( 2^ 2+ 3 rt'3) cos*\+8tf
3
cos*\j (29)

where C= 2ird nji %
sin X, d is the mean diameter of the coil, and

K and E are elliptic integrals. The above expression also is of the

form M=M -\-JM, and can be used better in the second form,

where Af can be calculated by any one of several reliable formulae

and 4M can be computed separately. The expression for JM
derived from (29) is as follows:

18

—f = 4« sin y\ (F-e(a+ 1-\+Eb\ (30)

17 \Vied. Annalen, 21, p. 35c; 1SS4. ^Rosa, this Bulletin, p. 342, (20}
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where F and E are the complete elliptic integrals to modulus sin 7,

(as in equation 1) and

cos2
7/ \^ =7^r4«i- a

2
-«3-+-(2a

a
-3a

3
)cos

27+8a
3
cosM

^= -^^(«i+^ + 2a3+ (2a.,+ 3a3)cos'-7+8a
3
COS4

7J

The values of a
x ,
a

2 ,
and a

3
are as follows:

*+ c
l

30a'

60a2

For square section: a
x
—

5b*c
M

3oa

b*

60a 2

b"

2od'' 2od'

This formula (30) is a very exact formula for all positions of the

two coils, except when they are quite close together. We give later

illustrations and tests of the formula and a comparison of its results

with the results of other formulae.

USE OF FORMULAE FOR SELF-INDUCTANCE IN CALCULATING MUTUAL
INDUCTANCE.

One can obtain the mutual inductance of adjacent coils, or of coils

at a distance from one another, by means of a formula for the self-

inductance of coils. Thus, suppose we have a coil of rectangular

section, which we subdivide into three equal

parts, 1, 2, 3, Fig. 9. Let L be the self-induc-

tance of the whole coil, L
x
be the self-inductance

of any one of the three equal smaller coils, and

El
be the self-inductance of two adjacent coils

taken together. Also let M12 be the mutual

inductance of coil 1 on coil 2, or of coil 2 on

coil 3, and M1S be the mutual inductance of

coil 1 on coil 3. Then,

Also, L9
= 2L

1+2Mli

A.xia Mu

Fig. 9 M13=

A- 2A
2

L-\-L
x
— 2L^

(3i)
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Formula (31) will thus enable us to find the mutual inductance of

two coils of equal radii adjacent or near each other by the calcula-

tion of self-inductances from such formulae as those of Weinstein

and Stefan. These latter formulae are not, however, exact enough

when the section is large to permit us to apply it to coils at any

considerable distance from one another.

GEOMETRIC MEAN DISTANCE FORMULA.

JM
7T71

4a log i(I+ £r)
(32:

For coils A and C, R-

A B, R.

r and 4M is positive.

r and JM is negative.

The mutual inductance of two coaxial coils adjacent or very near

can sometimes be obtained by means of the geo-

metric mean distances. This method is accurate

only when the sections are very small relatively

to the radius. It can often be used to advantage

in testing other formulae, but not often in de-

termining the mutual inductance of actual coils-

Formula (8) gives the mutual inductance of

two very near coaxial coils in terms of the

geometric mean distance, if r be replaced by

R, the geometric mean distance of the two sec-

tions. Formula (8) gives M if r be used, where

r is the distance between centers. Thus,

Fig-. 10

FORMULA AND EXAMPLES.

FORMULA FOR CIRCLES.

1. Maxwell.

2. Maxwell.

Absolute, in elliptic integrals, for all cases.

Absolute (derived from 1 by Landen's trans-

formation), especially for circles near to-

gether.

Series for F, complete elliptic integral of

first kind.



5- Weinstein

6.

7-

8.

9-

IO.

Nagaoka.

Nagaoka.

Maxwell.

Maxwell.

Coffin.

ii.

12.
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4. Series for E, complete elliptic integral of

second kind.

These formulae are especially convenient for

circles close together.

Series for M, using complementary modu-

lus k' ; d small.

Using ^-series and k'\ d large.

Using ^-series and k\ Ismail.

Algebraic series, d small, radii unequal.

Algebraic series, d small, radii equal.

Extension of (9), radii equal.

Extension of (8), radii unequal.

For coplanar coaxial circles.

FORMULAE FOR COILS OF RECTANGULAR SECTION.

Coils of equal radii but unequal section.

Coils of equal radii and equal section.

Expressions tor . / and —=-=-.
dor da

Differential equation for mutual inductance

of two coaxial coils.

17. Differential equation for mutual inductance

of two coaxial coils of equal section and

equal radii.

18. Rayleigh. Formula of quadratures. M as mean of 9

values. (Radii may be unequal, but dis-

tance must not be small.)

19. Rayleigh. Same for coils of equal radii and equal sec-

tion.

20. Expression for error of Rayleigh's formula.

21. Expression for error of Rowland's formula.

22. Eyle. Using an equivalent radius, square section.

(Radii may be unequal, but distance must

not be too small.)

23. Lyle. Same for coils of sections not square.

24. Expression for 4M based on Lyle's theorem,

radii equal ; sections square and equal.

J 3- Rowland.

14. Rowland.

15.

16.
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2\a. Expression forJM based on Lyle's theorem,

radii unequal ; sections square and equal.

25. Stefan. Algebraic series for M, radii equal. (Error

in formula.)

26. Rosa. Formula for JM, radii equal, rectangular

section.

27. Rosa. Formula for JM, radii equal, square section.

28. Rosa. Formula for JM, radii equal, simple approx-

imate formula, square section.

29. Weinstein. Formula for M, using elliptic integrals.

(Small error in formula.)

30. Rosa-Weinstein. Revised formula, expression for JM.
31. Formula for M \n terms of self-inductances.

32. Formula for M by geometric mean distance.

ILLUSTRATION AND TESTS OF THE FORMULA.

COAXIAL CIRCLES.

Formula 1.—MaxwelVs. For any two coaxial circles.

Example 1 : Let a —A — 25 cm
d— 20 cm.

k= — =0.9284766 = sin 7
^2500+400

7=68° 11' 54."88=: 68? 198578.

From Eegendre's tables, we obtain

log ^=0.3852191

log .£=0.0547850

2

k
k= 1.2255892 u-r= 2.9755281

|= 2.1540658, -i* -:-2.4436781

(j--i)F-\E~ O.53185OO

4#= IOO

IT
53.1850 cn
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Using Maxwell's tables (given in Maxwell, Appendix II, Vol. II)

log10
for 68? 1 =1.7230640

47m

for 68?2 =1.7258286

for 68? 198578= 1.7257893 by simple interpolation.

M
47ra

M
IT

o.53 l85°>

:53.185c cm, as above.

The calculation of mutual inductance by the above methods is

simplest for circles not near each other, as then the values of log F,

M
log E, and log —= are very exact when taken by simple inter-

A^^jAa

polation. When 7 is nearly 90 °, however, second and third differ-

ences have to be used in interpolation.

Formula 2.—MaxwelPs second expression. For circles near each

other.

Example 2: Let« =^ = 25cm
d= 1 cm

In this case k= sin 7= ^ = = .qqq8ooo6
V2501

^
7=88° 51' 14"

This value of 7 is so nearly 90 ° that it is difficult to obtain accu-

rate values of F and E from tables of elliptic integrals, or of

from Maxwell's table.

We may therefore use formula (2) instead of (1).

r
i= V^50i = 5°-01 nearly, r

2
=i.o

, . rx
— r2 49.01 r.•i^sin 7i=— - =—— =0.960792

r,+ r
2 51.01

7i = 73° 54' 9-"7 = 73°9°27
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From Legendre's tables, for 71 = 73^9027, 7^ = 2.7024553

7^=1.0852167

F
1
—E

1
= 1.6172386

* — -7====.\ —*=—(7^—^)=— =329.9814 cm.

Formnlce 3 ^/2<7 ./.

—

Seriesfor F and E.

Suppose that, in the last example, we calculate F and E by means

of formulae 3 and 4, instead of taking them from Legendre's tables.

Example 3: A = a=2$, d=i.

First for F: k ' 2=i-k^i- 2^^—
2501 2501

l°gF
=

2
l0g^2= 2

l0ge 4ooi6= .ooo2oo+log, 200=5.298517

^log|
7
-ij = .000430

7^=5.298947

Second for E: I+Tv°gyF
—
D = I -00096°

3

^(l04-i|) =J^^
.-. E— 1.000960

If these values of F and E be substituted in formula (1), k being

0.9998002, we obtain the same value of M as by formula (2).

Example 4: ^ = 25, « = 20, d= 10 cm. (See Fig. 1.)

2 _ 4X 2QX25 _i6 .
,„__i_

^-(
45 )

2+(io)2-i 7

- "17

log A — _ log (16X17) = - loge 272 =2.8029010
/6 2, 2

£

4

64

(^^H
M"!)

= .0265132

= .OOO7962
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256 V * k' 9o)
~L22$kn

.OOOO312

16384 ('°gfu?)
= •°000° 14

.*. T7 =2.8302430

I+T(l0g
l'-^)

= I -o677324

lS(log ^~S) = - °11156

^8V°8'IF_I
' 20

)
= •0000381

^(log £-1.25) =^0000017

.*. E =1.0

To find the value of M we now use equation (1).

Hr, : 0.9701425

2-k : I.O9I4IO5

Or'Y : 3-088957

I' : 2.2O3569

Difference =|(- — k\F--w-= O.885388

Multiplying by /\^Aa— 4V5°° gives

M
= 79.19150 cm

Formula j.— Weinstein. For any coaxial circles; series more con-

vergentfor circles notfar apart.

Example 5 : ^ = 30, a— 2^ d=o.

Two coplanar circles.

£2= 4x30^25^120
(3°+25)

2
121
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£' 2= -^- # =-,£
121 II £ ;

log, 44-i = 2784190

3^
/2

, 33^ ,

io7^/6

— 1.006234
64 256

Product = 2.801546

15*" 185*"

128 ^ 1536

Difference = 1.801 538

1.000008

^.Tr-yJAa = \ira^\ . 2

M
•'• — =I 97-3485 cm

7T

Example 6 : Take the same circles as in example 4.

^ = 25, ^=20, ^=5, d=io.

kn——s loo- Z_ I== 1.802QOI
17' & £ 7

i-f-^/k'
2 =1.0441 176

4

^kn= .0017842
64

256
.0000851

V X k'
% = .0000042

16384

Sum = 1.04599 1 1 —^

i? log (±- 1W.8858184

^ log (i-i)-cj =0.8853874

M

^5
128'

185^
*536

1.0004053

.0000245

^.k'*= .0000012
65536

1.0004310= C

Multiplying by 4V500 gives — = 79.1915 cm, agreeing with-

value found by other method.
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Formula 6.—Nagaoka. Using q-series, for circles not near each

other.

Example 7: A — a— 2^ d—20

VF=^7=(^S)

¥= 0.6094183

0.1213425

d=20

1 = J ~
*J
k '

_ T o-39°58l 7 _
2~2(l+VF)~2 1.6094183"

©'-

0
••• ?

3?'

+ 9?"

.0000526

.0000000

0-1213951

.0006516

.0000128

.0000004

Fig. 11

6= .OO06392

I+ €= I.OO06392

log (i+ e)= 0.0002773

log q^— 2.6263018

log \6ir^JAa— 3.0992099

log — = 1.7257890 .'. —= 53.1850 cms, as found by for-

7T 7T

mula 1, Example 1.

Formula 7.

—

Nagaoka. Using q-series, for coaxial circles near

each other.

Example 8: A = a= 2,$, d—\
50

SIII7

:

V25 l6
7^:=.9984063 7

_i—yte_ .00159363.^^,000,9872 = ^,
/l
~

I+^- 1.9984064
"'2
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as
i
-1

J
and higher powers can be neglected.

1=2508.04, ioge(±y

(1-^+ 4^) =

7.827238

0.9996019

0.00318976

|log,^J[i+^(i- ?1+4^)]-4j= 3-852I95 =A
— r^= O.S007Q8S = B
2(1- 3ft)"

* /V
^

4^/Aa = IQO = C

Product A x B x C, —M it, = 192.9174 cm.

There is a difficulty in using the above formula owing to the fact

that when k is nearly unity the numerator of the expression for l
±
is

small, and unless the value of k is carried out to about eight decimal

places the value of M may be appreciably in error. For approxi-

mate calculations a seven-place table of logarithms is sufficient, and

it is not very troublesome to carry out this one number to the neces-

sary number of places for precision calculations. Or, k can easily

be computed to any degree of accuracy without logarithms. The
same thing applies to formulae 3 and 4, where k' must be computed

with great precision when it is quite small.

Formula 8.—Maxwell. Two circles of unequal radii. Formula

accurate only for circles very near each other.

Example 9: y4 = 26, = 25,

e . ,- , 8a - 200
Since r=A/2 , log,—= log—=.

d=i, c=is.ndr= J2

4-95!744

2a
1.020000

c*+ 3d*

16a2
.000400

c*+yd*_
2,2a*

— .000008

1.020392 = 2?

2+
2a

3c2—

d

2

16a2

c
z-6cd2

48a 3

— 2.020000

— .000200

— .000010

2.019790= C
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D1 8a
^ loR— = 5-052310

C — 2.019790

IB log C\— 3.032520 Multiply by 4«=i00 and

M- = 303-252 cm.
7T

This formula would be less accurate for trie circles of problem 4,

but is accurate for circles close together, as this problem shows.

Formula p.—Maxwell. Circles ofequal radii near each other.

Example 10: ^ = ^ = 25, d—i
Sa , _
-—=200 logg 200=5.298317

l0g ^•( I+
I

3

6^)
=I -00030°x 5-2983i7 = 5-2999(>

(
r

d %
\ 2.00010

16^/3.29980
Multiply by ^a— 100

M—= 329-98° )

IT

nearly agreeing with the more exact value found under problem 2.

This is a very simple and convenient formula for equal circles,

and gives approximate results for circles still farther apart than in

this problem.

Formula 10.— Coffin. Circles of equal radii, not farther apart

than d=a.

Example 11: A — a— 2^ d=i6

-^=12.5 log, 12.5 =2.5257286

First series of terms= i?= 1 .o744j8

Second series of terms= C— 2.023220

.'.{B log —— C\ — 0.690620
1

d
\

q.a= 100

.'. = 69.062O
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This agrees, with the value given by formula 1 within one part in

200,000. As the distance apart of the circles increases the accu-

racy by this formula of course gradual ly decreases.

Formula it.—Extension ofMaxwelC s series formula for unequal

circles.

Example 12: A— 25, ^7 = 20, c—^ d=io
- - Sa 32

r= VV
2+ d*= 5A/5 ,

log" 7 = log -7-= 2 . 66 1 o 1 69
/5

{^)- 2.125000

16?- = - -
0039°6

,
Q yd}— swV 2— 1 qc*

+- Hfc^- =- -000424

i845^- 3o3o^
8-379^ = _ OOQ

6ed"'~-c
:i — + .007487

48<^
3 C= — 2.122114

c
i-\ -f- 1. 1 25000

2#

i6«2

45<r^/
4— 2,0c*dz— 1 9<:

5

-0.050781

-0.000277
2048a:

5 '

'

^—^^=— 0.006148
32a

3 ^ +

iS^ 4— 42rW2— iyc4

0.000210
1024a 4

/?= 1. 1 69500

i? loge
— =3-ii 2060

C= 1.122114

0.989946

multiplying by 4^7 = 80, —= 79.1957 cm
7T
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This result is correct to one part in 19,000 (see examples 4 and 6).

Using only the first three terms for B and C, the result would be

too large by one part in 1750.

Formula 12.—Extension of MaxwelVs series for coplanar circles.

Example 13: .4 = 25 a — 20 c—^ d—o

c
3

2a

r
16a 2

17'
._

1024a:
4

1. 1 25000

0.003906

0.000065

+ 1.128971

B'=
B=

— 0.000497

1. 128474
. 8a
log- = 3-4657359

, 8a
3.910994

C=

ply \a=

-2.113613

1. 797381
80

M

32a'

19c5

— —0.000488

0.000009
2048a 5

B' = —0.000497

— O.OOO326
c
3

48a 1

19^
6144^*

3fl
16a

— 0.000012

-2.125338
xc%—- = 4-O.OI 1719

379^
5

1 43- 79 48
61440^

+ 0.000006
c= — 2.113613

MUTUAL INDUCTANCE OF COILS OF RECTANGULAR SECTIONS.

FormulcE 73, 74, 73.—Rowland. Coils ofequal radii not very near

each other.

Example 14: A — a — 25, b— c— 2 cm, d— 10.

The mutual inductance of the two coils is M=M
()
-{-JM.

We find Af by formula 1, 6, or 10, and ^/Afby 14 and 15.

M = 107.4885 ?r

*=sin7=v£ =a98o58°7

»= -9615383

10^0^=0.4821754
log10

£'= 0.0207625
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Substituting these values in formula (15) we obtain

1 d 2M

397

7r
' da2

1 d 2M
it dxz

— 0.9081

+ 1.0639 4-

b = s

— d=10

,

\a = 25

Fig. 12

Substituting these values in formula (14) we obtain

JM— .O5I93 7T

.-. Af=^ + z/^=(io74885+ .o5i9)7r

= 107.5404 7r cm.

The correction 4M thus amounts to about one part in 2000

of M. At a distance d=2o cm; the correction is over one part in

1000. For a coil of section 4x4 cm at d= 10, <dM would be four

times as large as the value above, or about 1 part in 500, and at

20 cm 1 part in 250.

Formulce 18 and ig.—Rayleigh. Coils of equal or unequal radii,

not very near each other.

Example \\a: A = a = 2^ £= 4, £=i, d— 10

We now find by formula (1) in accordance with formula (19) the

mutual inductance of the following pairs of circles: O, 1 when a =
25) ^ = 25.5, d=io.

16360—07 6
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r«—6 = 4

—

*

J-'

d =10-

\a = Z5

O, 4 when a — 25, ^ = 24.5, d— 10; O, 2 when a =A= 25 and a?=

8; 0,3 when A — a — 25, <^= 12, and finally O, O' when ^ = « = 25,

<^= 10, Thus:

^= 109.3217^

t M
i
= 105.428777

^=127.394977
J^3=: 9I.92067r

434-o6597T

M = 107.488577

326.577477

.*. J/= 108.859177

^ = 107.488577

= 1-3706 cm.
Fig. 13 7r

Formula 22 and 23.—Lyle. For coils of square section of equal

or unequal radii, not very near one another; also for coils oj

rectangular section not square. -

The equivalent radius r—al i-\ 5")

V 24a2

/

Example 15: ^ = ^ = 25 cm, b — c—2 cm, d= 10 cm.

r=2SI H — |=2S-Oo667 cm.
^V 15000; ^ /

Afis now found by using formula 1, 6, or 10, employing r in place

of a as the radius.

The result is M= 107.5402, agreeing very closely with the result

found under example 14.

M— Af =AM= .0517.

Example 16: A — a — 2^ ^= 4, f=i, d— 10

25
(
I+^"o) 25.00167

/3
2 = = -^ — 1.25, 2/3=2.236 cm, the distance apart of the

12 12
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two filaments which replace the coil. We now find by formula

i, 6, or 10 the mutual inductances of two circles i, 2 on the two

circles 3, 4, where a = 25.00167 and a! is 7.764, 10 and 12.236 cm,

respectively. Thus:

-—,^'-* r-rT-eu ifi-

2 M,.

Fig. 14

:2I5.002287r

Afu= 90.31304^

J/as= 130.14060^

4^=4354559^
.*.J/= IO8.864O 7T

7^=107.4885 IT

JM
TT

1-3755

JM— the correction for section of the coils

whose dimensions are given above. These values of M and JM
agree nearly with the results obtained in Example 14*2 above.

Formula 24.—For JM. Radii of coils equal, square section.

Example 17: A = a = 2$, d=io
}

b = c—2

, 8a

3^_
16a2KH)

I -9957

0.0499

1-9458

1=^
6a 150

JM
.0514 agreeing closely with the

result in Example 15.

Formula 24a.—For JM. Radii of the coils unequal, section square.

Example 18: .^ = 25, a — 20, d—6, b—2 (section 2x2 cm'

Substituting in formula 24^ we obtain

JM= .0740
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Using L,yle's method of computing M we obtain

M— 106.930

^0= 106.855

JM= .075

This difference amounts to one part in 100,000 of the value of M.
Formula (24*2) is less convenient than (22) when one wants only the

value of M. It is, however, valuable as a check when the coils are

not far apart. It is not reliable for coils at a distance.

Formula 25.—Stefan. For coils of equal radii, and rectangular

section.

This formula has been shown to be in error, but is substantially

right for coils near together. We give in Fig. 15 the results of

calculations for coils 2x2 cm section at different distances, show-

ing how much formula 25 is in error. No numerical example will

be given here as this formula should not be employed. Figure 15

shows the magnitude of the error in this formula for one particular

pair of coils.

Formula 26.—Rosa. Coils of equal radii Most accurate of all

theformulcEfor coils near together (btit not in contact), a?id less

accurate when coils arefar apart.

Example 19: ^ = # = 25, b — \, r=i, d=io
(same coils as examples 14*7, 16).

log—-= log, 20 =2. 9957

7,d
2
-{-c\ 8a 49x2.9957 r
Z» "fog ^7 = "^ T̂ ± = .0024465

<)6cr
& d 60,000 ^ °

lr—c2
is

==-=—

—

= .OI2SOOO
i2d 1200 u

2di
-\-2c

i—^d2
c
2

434 ,
- '

r4
^—= ^°^ = .0003617

i2od 1,200,000 u
'
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3^
6— 3^

6+i4^V— i4^V_ 8925
.0000177

504^ 5°4X 10

664+6^+56V_ 1622

$j6oa 2d 2
_
36oxio 6 300045

1024*2

Il£3— 3<r
2

173—£— = ——= — .0014417
I92<2 120,000 ^ '

?c
2d 2 L Sa i63\sMlog

7-8i)
= = .0000018= .0153322

J log: —7 — i~ 1= —.0000827= — .001S244
io24<z 4

\
fe ^ 60/ ^- —5—^^ x 7 .0138078

4^=100 .*. =1.38080111.
IT

This is a little larger value than found by formula 19 and 23,

and we shall see later that it is more nearly correct than either of

the other values.

Formulce 27 and 28.—Rosa. Coils of eqtial radii and square

section.

xample 20: A = a = 2§, o= c=2, d=io
, 8a
log -- 1 = 2-9957- I= I -9957

i 7?
2\od

68 = .0028
24,000

-a 2
d
2 2SOO^ = — .O^OO

50,000

— 3^2

/i &a 4\ 300x1.6624

iwC* d~y= ' 10,000
= ~ '°499 =

6a 150

JM ,-= .05063
7T

1.9985

0999
I.

The approximate formula (28) would have given .0519 (agreeing

with formulae 14 and 22), which would be amply accurate for any
experimental purpose. When the section is larger these small terms

are, however, more important.
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Example 21: A--=a = 2$, b—c=^ d=io

8
3g -

t

I?b2

,
8tf

g T_I =I -9957

240^
2 7 2— a

= .0177 = 2.0134

3^5

iS( l0^i)=- =**>=-«*<
1.6510

£
2 _ 25

6<? 150

,.^=o.275a
IT

7^=107.4885 (see example 14.)

^ = 107.7637 cm.

This is a very simple formula for computing 4M, and within a

considerable range (i. e., d not larger than a and yet the coils not in

contact) it is very accurate.

Formula 29.— Weinstein. Formula for mutual Inductance of equal

coils, in elliptic integrals.

This formula is very accurate for coils not near together, but is

much less accurate for coils relatively near. See Fig. 15. The
revised form of this formula (30) is more accurate as well as more

convenient, and hence no example will be given of (29).

Formula 30.—Rosa-Weinstein. For 4M, for tzvo coils of equal

radii and equal section.

Example 22: A — a — 2^ b-

^=15.0000533

a
2
= 0.0020267

as
= O.217

3 '
24^

'=lj d= IO

sin
2
7 =

2500 _25
2600 26

cos
2
7=

IOO I

2600 26

c*

_ A _2 .OOOO667
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a
1
-a

2
-a

3
+(2a

2
-3a

3
)cos

27+8a
3
COS

4

7 =14.7587120

«!+— -f-2a3 -f (2a2
4-3a

3
)cos

27+8a3COS
47= 1 5.4628292

A — 0.0004730 Also F— 3.0351 168

B — 0.0123901 E— 1.0489686

{f-E^A+^I= 0.0010719

EB — 0.0129968

Sum = 0.0140687

/2s 4M
4^sm 7 = IOO-i/^g •"•— = 1 -3795 cm.

This is not as simple to calculate as (26) and when d is less than a\2

is less accurate than (26). But for d = a or greater it is more

accurate than (26), and indeed the most accurate of all the formulae.

Formula 31.—Mutual inductance in terms ofself-inductance.

This is for coils relatively near. An example will be given below,

page 408.

Formula 32.—Mutual inductance by geometric mean distances.

Example 23: ^ = 25.1

# = 25.0

d= c=o.i cm
d—o.\ cm

The geometrical mean distance of two coils, corner to corner, as

r
in Fig. 10, is 0.997701, and log — =0.002302

JM ,
N.-. = 100x0.002302 (1.002)

= 0.2307.

COMPARISON OF SEVEN FORMULA FOR COILS OF SQUARE SECTION.

14, 19, 22, 25, 27, 29, 30.

We have obtained above by different formulae different values of

the correction JM. In order to show the degree of divergence

among them for a particular pair of coils as the distance between
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the coils is varied we have made a series of computations by seven

different formulae for two coils of square section, 2x2 cm, and equal

radii (^ = 25 cm), for distances varying between 3 and 20 cm. The
results are plotted in Figure 15. Formulae 27 and 30 give the

values of with great precision and agree so closely that they are

represented by the same line almost to d— 20. JM is negative for

small distances, and at about d— 3.6 cm becomes zero, increasing grad-

ually as the distance increases to 20 cm. //Af decreases after pass-

ing a maximum at about 6 cm, but M decreases faster than JM,
hence the relative value of the correction is greater at 20 cm than

at any point between that and 3 cm. This is true only for coils of

square section. As the correction for sixth differentials is zero for

a coil of square section, formulae 27 and 30 agree for small distances,

which they do not quite do for coils not of square section. The
dotted curves show how formulae 25 and 29 diverge from the true

values given by 27 and 30. Rowland's and Lyle's formulae (14)

and (22) agree almost exactly, both being based on the same assump-

tions. They are very accurate for coils not near each other.

Formula (19) departs farthest from the true values at small dis-

tances. The uncertainty of the value of M^M^JM for these

coils as given by formulae 27 and 30 is not as much as one in a

hundred thousand.

COMPARISON OF FIVE FORMULA FOR COILS NOT OF SQUARE SECTION.

14, 19, 22, 27, 30.

For coils of section not square the corrections are much larger and

the formulae are not so accurate. We have found differences in some of

the examples above for the coils of sections 4x1cm and we will now
decompose these coils into four coils each of square section, and cal-

culate JM by means of formula (27) which we have seen agrees

with (30) and is very accurate. If the two coils A and B be con-

sidered to be made up of four coils each, the mutual inductance of

A on B wTill be the sum of the mutual inductances of the four

constituents of A on the four separate coils of B. Thus, if AfAB be

the mutual inductance of A on B and JTib that of coil 4 on coil 5,

etc., we see that
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M»=Ma+2 M35+ 3 ^,5+4 ^15+3 ^16+2 ^"
17+^18

or, MAB=M7 + 2 J/g +3 J/9 +4 ^10+ 3 ^u+2 ^„+^ls (*)

where in the second expression M
1
means the mutual inductance of

two coils distant 7 cm between centers, as coils 4 and 5 are, etc.

CalculatingM
Q
and JM for each of the seven distances from 7 to

13 cm inclusive, and substituting in equation (x) above we shall

have AfAB the mutual inductance of the two coils to a very high

degree of accuracy. These values are given in the accompanying

table :

M 4M M
IT

At 7 cm 139.6579

7T

.OI5I
7T

I 39- 673°x i = 139.6730

8 !27-3947 .OI44 127.4091 x 2 = 254.8182

9 116.7852 .OI36 116.7988x3 = 350.3964

10 107.4885 .OI29 107.5014x4 = 430.0056

11 99.2607 .OI22 99.2729x3 = 297.8187

12 91.9204 .OIl6 91.9320 X 2 = 183.8640

13 85.3291 .OIII 85.3402X1 =
2(Af/V)=

S(yl/ w)-*- 16 =
J^ 7T=

85.3402

1741.9161

108.8698

107.4885

I -38l 3
Calculated above by (27), Example : 19, ^M-^-ir— 1.3808

Difference = .0005

This difference of five parts in a million of the value of 3fAB is an

extremely small discrepancy. The value calculated by the method

of decomposing the coil into several coils of square section is very

accurate if the several values of M are calculated with sufficient

accuracy, and we may be sure of the value above to less than one

part in a million, as the average value of the corrections 4M for the

separate square sections is less than a hundredth part of JM for

the whole coils A, B. The result by formula (30) differs slightly

from that by (27), being .0013 less.

This difference is mainly due to the sixth differentials, neglected

in (30), which example (19) shows to be .0018. If we add this to

the value obtained by (30) we have 1.38 13, agreeing exactly with
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the value above by the more laborious method of decomposition.

This close agreement of (27) and (30), two expressions derived by

different processes from two entirely different formulae, is very

satisfactory.

Lyle's formula (22) for this case gives a value too small by .0058,

Rayleigh's (19) too small by .0107, and Rowland's (14) too small by

.0384. The accompanying table gives these results together with

corresponding values for d—6 and d=20. Formula (27) begins to

be in error before d— 20, but for the smaller distances it is the most

accurate of all. Formulae (27) and (30) supplement each other, and

taken together they will give reliable results for all distances except

when the coils are nearly in contact. When the coils are in contact

or nearly so, formulae (31) and (32) are to be used.

COILS OF ONE LAYER. CURRENT SHEETS.

Formulae 26 and 30 apply when the depth is very small compared

with the breadth of the coil, as in a single layer coil. In such a

case the other formulae are scarcely applicable, as the error increases

rapidly with a great divergence from square section. If we make
<r=o, as in a current sheet we can get an interesting check on the

results of the formulae by using the formula for the self-inductance

of current sheets, deriving from the values of several self-inductances

the mutual inductance in question. Suppose we have two coaxial

current sheets A, B each 5 cm long and with a radius of 25 cm, their

centers being 10 cm apart. If a third current sheet C fill the gap

between them it would be 5cm long. Let LA be the self-inductance

of A, which is also that of B or C, LAB be the self-inductance of two

sections AC together (or CB together) counting AC as two turns in

series, and ZABC be the self inductance of the three together in series.

Also let MAC be the mutual inductance of A on C and MAB be the

mutual inductance of A on B. We wish to find MAB . Remember-

ing that the self-inductance of a coil of several turns is equal to the

sum of the several self-inductances plus the mutual inductances of

the several turns on one another, we see that:

AB£>a*c= 3la +\MA<,+2MA

Also LAK =2LA +MAC

.'• A*bc= 3Av + 2(LAB-2LA)+2MAB
or, MAB = ^Bc+A-g^

(33)
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If we calculate the three self-inductances Z,ABC , LAB, and ZA , for the

current sheets by an accurate formula we can obtain MAB , and thus

obtain a check on the values calculated for the same case by (27)

and (30).

These self-inductances ma}' be calculated with great precision by

the formula of Coffin 19 or of Lorentz. 19

The results are as follows, taking the

above dimensions, with 50 turns of

thin tape 1 mm wide on each coil:

ABc= 4>77446o7r

U57'U = 7

Sum = 5,572, 91777

2LAB = 5,o23,8o87T

M.AB.
IT

549,10977

274,554-5 cm

Fisy. \\
Formula (26) for the case of c=0, ex-

tended to include two terms of the sixth and eighth degree (the

fourth and fifth below) and a term depending on the differential

coefficients of the eighth order (the tenth) is as follows:
20

JM
irn"

r o
2

,

d
2

/. 8a n\ 15^'/, 8^ Q7\

2(i28)VV
10g

rf 35/ (i28)VV
l0& ^"^

>o#V 60^ •24^
4

\
s d 60/

-1
' 36c*/ 8

1

The following is the calculation of JM for the two single layer

coils above, considered as current sheets :

^ = 25, £=5, rf=io , 8«
g? ^ = 2"99573

19 Bulletin of Bureau of Standards, 2, p. 136; 1906.

20 Rosa, this Bulletin, p. 351, equation (51).
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(i) T, — —^- = .0208**3v ; i2d 1200 °°°

, N £
2 / 8^ n\ 25x1.1624

(2) aUog-r — -r) —— ~ = -00145*0v '32a\ ^ d 6 / 20000 ^°°

(a\
175^ (}a~

8a 54\
175X 250000x1.45 , nnonnQn(4)^8)¥6V

0g
^~35J

"
2(i28)2

25
6

•ooooo8°

/^ ^ 25
(6)——5-75 = —? ^2 = -0000104
v Jg6oa2d 2 960X25 Xi 00 -

/ x
& 625

(7)7—

*

= -?— — — .0010417K/J6odi 60x10,000 ^ '

/ox — ^ /1 8^ l8 7\ 1

625x0.121
(8) -Jlog—r—+M = + — = .0000002
v io24a\ ^ 60/ 1024 X6252

<$T&f = TO = •000093°

(10)—,-—= = -7 5 = .0000108
v J *6o^8 360 x 2

,+ .0234504

= — .0001293/ x
I5^Vlo£r

^_97\ _ 37,500x^379
K6) io24^ 4

\ d 60/ 1024 x 25*

(5)-ffllog^-3Z93\ =-.000000407
(i 28)VV * d 2520,/ _7^^.0001297

Sum of 10 terms = +.0233207
in

2 —2

JM
\ai?= 250,000

• = 5^3°^ cm

By formula (1) we find Af
0)
the mutual inductance of two circles

at the centers of these current sheets, for which # = 25, d— 10, to be

268,721.3 cm. We thus have

M=Mo+ JM=it{26§,72i. 3+ 5,830.2) or — = 274,551.5 cm
7T

This is less than the value found above from the self inductance

formula by 3 cm, which is about one part in 100,000. This very
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close agreement in the results of two entirely independent formulae

is very satisfactory.

We have also calculated JM for this case by formula (30) putting

c—o. The result is as follows:

4M
2— = 4<27r x .023217 = 5,804.2

IT

This is a little less than the value found by (34), as we should

expect, as (30) does not take account of the sixth and eighth differ-

entials, as does (34). We can, however, pick out these two terms

from (34) and add them to (30) and see what difference remains in

the results. From the above calculation we see that these two terms

(the ninth and tenth of 34) amount to .0001038 X 4 an*. Adding to

•the result by (30) we have

4M Q Q= 250,000 X .0233208 = 5,830.2 cm
IT

which is exactly the valuefound by {34). The remaining discrep-

ancy of one part in a hundred thousand represents the terms depend-

ing on differential coefficients of order higher than the eighth. If

the coils were farther apart or narrower, these higher terms would

be still smaller. When they are nearer or broader they are more

important. For two current sheets 10 cm wide and 5 cm between

there is a discrepancy of one part in 20,000 due to these terms of

degree higher than the eighth. Such cases (where the coils are

close together) should of course be computed by {^) rather than

(34) for the highest accuracy, but (34) is more convenient and amply

accurate for most purposes.

EFFECT OF INSULATION ON THE WIRE.

We have so far assumed in calculating 4M that the current is

uniformly distributed over the cross section of the coil. How much
is JM altered if the current flows through round wires covered by

insulation? We have found above that JM ior a pair of coils, A,

B, of section 4x1 cm and 10 cm between centers amounts to 1.38

where Mis 108.87. That is, the mutual inductance is 1.3% greater

when the current is distributed uniformly over the section than
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when it is concentrated at the centers of section O x 2
. If, however,

the current flows in four circles at the centers of the four small

squares making up the section, as in A
2
B

2 , the excess for uniform

distribution is only .013, or about a hundredth of 1 per cent. If the

current were to flow through round wires of considerable section, as

indicated in A
2
B

2 , the difference would be still smaller. Hence four

heavily insulated wires, with an exterior diameter of 1 cm, make up

a coil which is equivalent to a winding of square wires with infini-

tesimal insulation to within about one part in ten thousand in the

value of M
)
for the dimensions of this example.

[*--
A,

-It cm- ]

1

.0, / cm
! j,

A 2

is00S3

a7
-10 cm-

=====T

----- 1 cm

-----
|

B \

-1 cm-
Fig. 18

If the cross section is square, 1 cm on a side, and a is 25 cm and

d is 10 cm, 4M is, as in the last case, .013, when M
Q

is 108.87, or

about one part in 10,000; that is, the difference in M when the cur-

rent is concentrated at the center in one case and uniformly distrib-

uted over the square in the other is a little more than one in 10,000.

If, however, the section be filled with insulated wire of one milli-

meter diameter, so that there are 100 small squares, JM for the

whole coil will be proportional to the mean value of JM for

the small squares. This will be less than 1 per cent of the former

value, as the correction is proportional to o
2 and tf. Hence the

difference in M between the case of uniform distribution of current
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over the section and having it concentrated in 100 insulated wires

of 100 mm diameter is certainly less than one part in a million

of M, for the given case. We may be sure therefore that in every

practical case we are justified in employing our formulae for JM,
even though the current is not actually distributed over the entire

cross section of the wire.

In taking the dimensions of the section we must take the entire

space filled by the wire, including the insulation, on the wires form-

ing the outer layers. That is, if the width of the section is made so

that a given number of wires fills it closely, we should take b as the

total width of the channel; c will be half the difference between

the diameter before and after winding.

In order to reduce the uncertainty of the position of the wire and

increase the uniformity of the winding, enameled-covered wire,

which has a very thin and uniform covering, should be used. The
effect of a slight lack of uniformity in winding parallel to the axis

is eliminated by interchanging the coils in measuring the mutual

inductance. The effect of a lack of uniformity radially is elimi-

nated by determining the equivalent radius experimentally by com-

parison with a single layer coil.

The effect of slight errors in the values of b and c will be least

when the section is square. The section should of course be as

small as is consistent with obtaining a suitable value of M and

keeping the resistance within reasonable limits.

The close agreement of independent formulae when applied to

particular cases inspires confidence in the formulae, and it is for

this reason that we have carried out the calculations in the above

examples further than would be strictly necessary for use in experi-

mental work. We think that, by properly choosing the dimensions

of the coils, and decomposing them in the calculations into two or

more parts when the sections are relatively large, that there is no

difficulty in calculating the mutual inductances of a pair of coils of

equal radii to one part in 50,000 or 100,000. By the methods of

Bosscha, 21 Rayleigh, 22 and Lyle 23 the mean radius can be accurately

21 Bosscha: Pogg. Annalen, 93, p. 402; 1854.
22 Rayleigh, Sci. Papers, Vol. II, p. 184.

23 Lyle, Phil. Mag., 3, p. 310; 1902.

16360—07 7
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determined with reference to a standard which is capable of very

precise direct measurement. The distance apart can also be deter-

mined with very great accuracy, so that the possibilities of accuracy

in the measurements as well as in the experimental determinations

of the mutual inductance justify the use of very accurate formulae

in the calculations. Thus in absolute determinations of resistance

by the measurement of self-inductance, results may be obtained not

only by single layer coils but also by means of coaxial coils of

several layers.


