
REVISION OF THE FORMUL/E OF WEINSTEIN AND
STEFAN FOR THE MUTUAL INDUCTANCE OF
COAXIAL COILS.

By Edward B. Rosa.

The only formulae for the mutual inductance of two coaxial coils

of rectangular cross section that have been proposed which take

account of differential coefficients higher than the second are those

of Weinstein1 and Stefan. 2 The formulae of Rowland, 3 Rayleigh, 4

and Lyle 5 take account of second differentials only, and while suffi-

ciently accurate for coils of relatively small section and considerable

distance apart are not so accurate for coils of larger cross section, or

for coils of small section if they are relatively near each other. The
formulae of Weinstein and Stefan seem to have been very little

employed, and so far as I know have not been critically examined

or compared with one another. The former of these two formulae

is given on page 340, of this paper, equation (14)—the latter is (21)

of page 342.

Weinstein derived his formula by starting with Maxwell's expres-

sion in elliptic integrals for the mutual inductance of two coaxial

circles (equation 13 below) and differentiating it, as Rowland did,

carrying the operation, however, to the fourth order of differentials.

Stefan, on the other hand, took Maxwell's second expression (equa-

tion 25 below), where the mutual inductance of two coaxial circles

is expressed in a converging series, and differentiated it, or certain

terms of it, to the sixth order. Omitting the terms in the latter

depending on differentials higher than the fourth order, these two

1 Wied. Annalen, 21, p. 329; 1884.
2 Wied. Annalen, 22, p. 115; 1884.
3 American Journal of Science, 15 ; 1878.
4 Maxwell, Vol. II, Chapter XIV, Appendix II.

5 Phil. Mag., 3, p. 310; 1902.
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formulae should give the same results. They do not, however, agree

as closely as they ought, and examination shows that Weinstein's

is very nearly exact when the coils are at considerable distance from

one another, but less accurate when they are near. Stefan's, on the

other hand, is very accurate when the coils are near but less accurate

when they are far apart, the relative error increasing with the dis-

tance. The error in either case is small, and yet too large for pre-

cision work, and larger than can be explained by the terms of higher

degree omitted in deriving the formulae. In going over Weinstein's

work, and in deriving Stefan's formula anew (Stefan gives only his

result, without any indication of the process by which it was derived)

I have found errors in both formulae.

These being corrected they agree as

well as could be expected over a wide

range of distances and for coils of con-

siderable cross section. Stefan's for-

mula can be put into a form that is easy

for calculation, being much more con-

venient than the other less accurate

formulae. Stefan's and Weinstein's for-

mulae are, however, limited by the con-

dition that the two coils are of equal

radii, whereas Rayleigh's and Lyle's ap-

ply also to coils of unequal radii.

As formulae for the accurate calculation of the mutual inductance

of parallel coils are of fundamental importance, and as these for-

mulae of W^einstein and Stefan as revised and corrected are the

most accurate formulae in existence (for coils of equal radii), I shall

give somewhat fully the derivation of Stefan's and the revision of

Weinstein's, and shall put them into different forms, which are

more convenient for calculation than the forms in which they

were originally given.

a—
Fig. 1

MUTUAL INDUCTANCE OF A CIRCLE AND A COIL.

Let 2
be a circle of radius A and S x

be a coil of mean radius <?,

axial breadth b
x ,
and radial depth <q, the distance between the mean

plane of the coil and the plane of the circle being d. We wish to

find first the mutual inductance of the circle
2
and the coil S,.
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One way to proceed would be to take the expression for the mutual

inductance of the circle
2
and a second parallel circle P of cross

sectional area dx dy within the section of the coil and integrate this

over the area of the section Sr This is a difficult and complicated

operation, and has never been done. Maxwell, 6 however, shows

how to get an approximate result more easily by means of Taylor's

theorem, and this result can be made very accurate by taking a

sufficient number of terms.

\lf(x, y) — u
y
Taylor's theorem gives

/-/ ,/ , »\ , I ,du ,
_ du\

,

i / 2 c?u
, 7 j dlu „d2u\

I / 7
»dsu 797 d3u

T r9 d3u ^dht\
+ i^T3r ^ + i/tkd^fy +3/lk d^df+^df)

11 ! \ dx dy)

d \ n
(i)

Applying this to the case of the circle and the coil, h and k would

be the coordinates of the point P with O
x
as origin, u would be the

mutual inductance of the circle
3
and the circle O l7 a.ndf(x-\- h, y+k)

would be the mutual inductance of the circle
2
and the circle P.

To get the mutual inductance of the circle
2 and the coil S x

it will

be necessary to integrate this expression over the area of S x
and

divide by the area b
x
c
x

.

Using Maxwell's notation, the mean value Pol any function Pol
x and y is

P dx dy (2)
xy "

This mean value is, of course, the mean for the region within the

limits of integration, and if this operation be applied to the expres-

sion for mutual inductance of the two circles
2
and P we can ob-

tain an expression for the mutual inductance of
2
and the coil S

x

of section b
x
c
x

. Writing M for the mutual inductance of O
x
and

2 ,

6 Electricity and Magnetism, Vol. II, \ 700.

16360—07 2
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M' for the mutual inductance of P and
2 ,
and x and y in place of

h and k, we have in place of (1):

1 / sd
3M

, , d zM,
,

„rf
3Af

,

,d*M\

+
4\
X

dx*
+4* ydxsdy

+bXy
dx*df

+4Xy
dxdf+y df)

+u )

+^(*
6^+----+

d'M,
2 ,

d 6M
6\\~ dx"

'••••' ~°~ J dxidy2
^""~i

~ 15X;y
dx2

dy'

+ ....+/«=)+-• (3)

The subscript attached to M in the derivatives above indicates

that the values of x and y corresponding to the circle
X
at the

center of the section are to be inserted in the derivatives after

differentiation.

To obtain M
x
the mean value of M' over the area of the section,

which will be the mutual inductance of
2
and the coil Sj, we must

apply the operation indicated above in (2) to each term of (3). It

will be noticed that every term containing an odd power of x or y
d^M

will become zero when the limits are inserted, the derivatives
dx"

etc., being constant. Applying this operation to the five terms in (3)

which do not reduce to zero gives the following results:

2J_* J_JL

xsv x 2

x%dxdy = -JL = ~Xy
3.2

s
24 *

2 a

— x*dxdy = -r-^—
b

= xy

— I x*y*dxdy= 7 / 6
=^xy
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i

6!n r 6dxdy = 2X y
61J.2

1 120.2688^

I
x*y2dxdy

4xy c xy
6! 2

8
120.384

xy

Four other terms having even powers of x and y give similar

results, while nine terms in odd powers and those not written reduce

to zero.

d 2M
Substituting these values in equation (3) and writing

2

°
for

- etc., and b
x
and c

t
as the limits of integration in place of x

dy
and y y

respectively, we have:

d 2Mn ,
,M

1
=M -

K d 2Mn K
24 dx*

b
2
c

2 d'M,

24

H

da 1

d lM
1920 dx*

d 6Mn

c* d'M
Q

576 dx2da 2 120.2688
^0 ,

.6

4

1920 da^

d*Mn

b
2c* d'M,

S+
b'c-

dx* ' 120.2688

d"Mn

da"

(4)120.384 dx2
da* ' 120.384 dx^da 2

MUTUAL INDUCTANCE OF TWO COILS.

Equation (4) gives the mutual induct-

ance of the circle
2
and the coil of sec-

tion b
x
c
x
and mean radius a. But we

wish to obtain the mutual inductance of

two coils of rectangular section, and

hence the above operation must be

applied again.

M being the mutual inductance of

circles
X
and

2
at the centers of the

sections S x
and S 2 ,

and M
x
being the

mutual inductance of coil Sj and circle

2 ,
let M

2
be the mutual inductance

of coil S x
and coil S 2

. We can now
obtain M

2
from M

x
in the same way that we have obtained M

x
from

M . In this case the variable coordinates A and x of the circle P
2

will appear in the differential coefficients, A occurring where

—d—
Fig. 2
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a appears in (4), and M
x
replacing M^ while the limits of integra-

tion are b
2
and cv Thus we obtain

blcPM, cl d^M, J/_ #MX c£ d*M
x

1_r
24 dx2 ^24 ^^1920 ^^1920 <&4*

,

bjcj d'M^_ b
2

6 jfM c
2

« d*M
x

576 dx%dA %
' 120.2688 dx* ' 120.2688 a^ 6

£
2V a^

,

£2
V

2

2
rf

6^
120.384 dx2dA" ' 120.384 a^V^ (5)

We must now substitute the value of Af
x
given by equation (4) in

each term of (5), omitting derivatives higher than the sixth.

Thus:

2
° 24 dx2

24 tf^
2 1920 <&:* 1920 afo

4

b
2
c

2 d'M b? d6M c? d«M
+

576 dx
2da2 '^ 120.2688 ^r6 + 120.2688 afo

8

^V d«M
~*~

120.384 dx2da^

bfc* d6M
,
b

2 d2M,
,

b
x

2
b

2
VM

,

£
2
V

X

2 <*W

*A2 ^6 71/T AU2 J6S/ A 2 i 2. 2 ,76 TlyT . 2 ^72
,

120.384 dxida2
24 afrr 576 djr

4

5J.6 dxrda

a ild^*V flW
, W ^6

^o , W'i* ^^0
, tf d2M

24.ig2odx2da i
24.1920 dx* 2^.^y6dx^dd 24 <^4"

61 60

"^576 ^V^2+
576 ^t^42+ 24.1920aW^ 2

24.576 dx2da2dA 2

bfcf d6M c
2
* <?M

9 eft d*M
24.1920 dx^dA 2 1920 <aL4* 24.1920 da2dA*

b
x
%* d6M

'24.1920 dxdA
b
2

* d'M b
2'c

2 d«M b
2
b
2
* d6M

1920 dx* 24.1920 dx^da2
24.1920 ^r6

V^V *^ b
2bX 2 d«M c« d«M

"*"

24.576 dx2da2dA^ 24.576 dxtdA*^ 120.2688 a^ 6

A/ ^6J/
,

£
2
V

2

4 aW £
2
V

2

2
rf

6J/
120.2688 ^r6

' 120.384 dx2dA" 120.384 dx^dA
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The first 10 terms of equation (6) come from substituting for M
x
in

(5) its value given by (4). The last four terms are the last four

terms of (5). The remaining terms come from substituting in the

first five differential terms of (5) the value of M
x
in (4). Collecting

like terms together equation (6) may be written

M-M + ±\(b z+b*)^+c*^ aPM
Q

2 dA 2

1920
(h * 4- h *^-^° 4- r^M« 4- r

**M*

dx* da' dA*

1 i 2 2d*M d*M^
+^6Yld*^lx^+

C
i
C
*aWdA*

+
• d*Mn

dx'dd

d*M
dx*dA'

120.384IV 7 '
2

'

7 / dx*

LJC2 d*M c?d*M< . 4
>

1 20. 384 [ 7 <^«
6

7 a^4 dd2dA i+ ^i%
^ 1

^V^ 2

J

i^F+w dx dai+W+VV.

120.384
(v+wS+tv+w'

120.576
(V+W*.

dxida 2

d6Mn

dx'dA"

dx2da 2dA 2

7&

+ b
l °*\ 1 dxidd2^ "dx+dA*/

(7)

Equation (7) is very much simplified by taking the two coils of

equal radii, and equal section. Thus, let

A.= a,) b
1
= b

2
= b, c

x
= c

2
= c

We then have

M=Ma h(
0TM. M\ . U<fM,

, ,^\
da2

J 36o\ dx41

da* /dx2

144 \ dxdaj

1 20.504V <fe
6 ° rfa

6 ^ <£rW ^ dx'-da'J

(8)
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Equation (7) corresponds to the equation near the top of page 346

of Weinstein's article. I have omitted the factor n
x
ii

% ,
by which (7)

and (8) must be multiplied if there are n
x
and n

%
turns of wire in the

two coils, respectively; that is, I have so far assumed that there is

only one turn of wire in each coil. - The third line of equation

(7)> viz,

1

576
*

d^M
2/ 2

u LV±
^

V
2 ~JZAd:

f c
x
c;
d'M
da2dA

is absent altogether from Weinstein's expression, and this is the

source of the error in the equation which he derived from this ex-

pression for the mutual inductance of the two coils. Weinstein does

not use the sixth differentials, and hence he has only the first part of

equation (8). Because of the omission of the above terms the coeffi-

cient of the third term of equation (8) is in Weinstein's expression

—— instead of —?—
960 360.

We may write equations (4), (5), and (6), as

—d—
Eig. 3

M M»+J X
M

M
2
= Af

x+^ 2
M

Supposing the two coils equal, Af is

the mutual inductance of circle
±
and

circle
2 ; Mx

is the inductance of circle

Oj on coil S 2
or of

2
on S

x ;
M

%
is the

inductance of S x
on S 2

. Therefore, J
X
M

is the difference between the inductance

of Oi on S2
and that of O

x
on

2 ;
while

4
Z
M is the difference between the in-

ductance of coil Si on S 2 ,
and Ot

on S 2
. Obviously J

X
M and J

%
M

are nearly equal, and when both are very small the difference can

be neglected. Weinstein neglected this difference, and so took JM
as zd x

M. He therefore merely doubled the value of J
X
M given

by equation (4) first line, instead of substituting it in (5) as is done

above to obtain the more accurate value given in (7) and (8). This

is the source of the difference between his results and those obtained

in this paper.
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REVISION OF WEINSTEIN'S FORMULA.

In order to simplify the process of differentiation required in obtain-

d°M .

ing the various derivatives -~rj etc., Weinstein transformed equation

(7), not including the terms involving the sixth differentials, by

means of the following relations:

d2M_ d 2M 1 dM (9)

da'
2 dx 2 a da

diM_ d'M 2 d1 /dM\ idM (10)

da* dx* a dx\da / a2dx2

d'M _ _d*M 1 d2 IdM\ (11)

da 2dx2 ~ dx* a dx\ da )

Equation (9) is Eaplaces's equation for c)dindrical coordinates and

holds for any point in space for case of symmetry about an axis.

Equation (10) is obtained by differentiating (9) successively and

making some substitutions, and (11) comes from (9) by different-

iating it twice with respect to x.

Substituting these values in the first line of equation (8) we have

for the case of two coils of equal radii and equal section:

n
x
n% \i2a da 12 \ ?,oay dx"

c
2

(Sb
2-^\dzM i/b*+ c* _ b

2
c
2\d*M ..}

36a\ 20 )dx?d<i 12\ 5 2 ) dx* ]^
2)

Equation (12) corresponds to the following equation of Weinstein

(at the middle of p. 349 of his article), b and c the axial breadth and

radial depth of the coil corresponding to a and yo, and x being the

same as h.

M _,f ,

f p
3 dM

»
1

1/ , j, p
l Ym,

;V* 2 ° [i2tf da + i2\ p+ %od)dh%

_ p> Iff aWAf, I /,,'+ «' aYY'M, 1

48a\io 3}M2da~f~48\ 20 3 / d/i*
' '

"j
(-
lza

>
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(The numerator of the fraction -£—
g

is erroneously printed p
2

in

Weinstein's paper.)

It will be seen that the coefficients in parenthesis of the several

differential coefficients in equation (12) differ considerably from

Weinstein's in (12a).

Maxwell's equation for the mutual inductance of two coaxial

circles is

M=^A^ 2

j
-k)F- 2

k
E^ (13)

where

sin 7:
2^/Aa

J(A+.ay+d?

and F and E are complete elliptic integrals to modulus k\ A and a

are the radii of the circles and d is their distance apart. (In Wein-

stein's notation 7 is X, d is h, and F\s X.)

Weinstein derived the various differential coefficients of {12a) by

differentiating (13); substituting these values in {12a) he obtained

an equation for M designated (i
x )

page 350. M is the mutual

inductance of two parallel coils of equal radii and equal section.

Weinstein's formula (using his notation) is as follows:

M=C[A'—E]\ e J^
Q^S

-^(a
1
— a

2
— a

3
-{-(2a^—7

)
a

3
)cos 2XJr 8a 3

cos
i\\ I

-C^ i--^^U 1+^+2«3+(2^ 2
+3«3)cos 2X+8a

3
cos4

XJ

(14)

In the above formula C~ 2 irdn
x
ii

%
sin X, where d\s the mean diameter

of the coils (= 2#), n
x
and 7z

2
are the number of turns of wire in the

two coils respectively, and X is the same as 7 above. The mean
radius being a, and the distance between the mean planes of the

coils h,

• 2^ 4^
8

2^
^2

snrX=

—

7
, ,, , cos X—

4a
2+k 2 > \a 2+ h2

K and E are complete elliptic integrals (identical with F and E
of 13))
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a— axial breadth of the cross section of the two equal coils.

p= radial depth of the cross section of the two equal coils.

The four constants a^a^a^a^ are defined by the following expressions

:

v° 3/
/»'+,,' ay\
\ 20 3 /

(15)

3

4/2

^ d 2 ^6d"

Putting the mutual inductance of a pair of coils equal to the

mutual inductance of the two circles at their center of section plus

a correction due to the section we have

M=M+4M
M is then given by equation 1 3 (or any suitable formula), and JM
will be the correction, plus or minus, depending on the size and

shape of the section, the radius of the coils and their distance apart.

If, then, we subtract (13) from (14) we shall have an expression for

JM, which is more convenient to use in calculation than (14).

Putting

(16)

cos2X/ \A— ^1 a
l
— a

2
—a

3
-\- (2<? 2— 3#

3) cos
2X+8«

3 cos
4X I

B——p-l a
1
-\-— -j-2a

3
-\- (2^2+3^3) cos2

\-r-8<z3
cos4\ I

we have, subtracting (13) from (14),

JM=^iran
l
n

%
s\n\\{K—E\A+ -^\-\-Eb\ (17)

Instead of using the values of the quantities a
X)
a

2y
a

3)
given by (15)

we should use the values of these coefficients yielded by (12). Thus,

in the notation of this article, putting a
1?
a

2 , a
3 , in place of a

x , a 2)
a

3)

we have
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3oa 6od*

2^+2^- 5£V ,-
—75 (lo)

2od'

cos2r// \A =
12Z2 (

a
i
— a2~ a3+ (

2a
2
—

3as)cos27+ 8a
3
cos4

7 \

^=^^(«i+^+2a3+(2a3
+3a3) COS

2

7+8a3
COsM

^ (19)

We have now as the final expression for calculating JM, the cor-

rection for section,

4M
7rn

x
n^
— 4a sm7 tF~E){

A+^a)+EB ) ^

Fig. 4

In equation (20) a is as before the

mean radius of the two equal coils, and

7 and the other symbols have the same

meaning as heretofore. Illustrations

and tests of this formula will be given

later in this paper.

INVESTIGATION OF STEFAN'S FORMULA.

Stefan's formula for the mutual in-

ductance of two coaxial coils of equal

radii and equal rectangular section is as

follows :

M— /{Iran \ log—^—8a b
2-e2 2^+2^4-5^V
12dz+ I20d*

3^_ 7£V+ 7£V-3^
504^ *~\ d A 96a

* ~ 1024a'

J

7b2+ 23c*+6od2 29^

(21)

192*2 2048a:
4

The letters, a, b, c, and d indicate as before the mean radius, the

dimensions of the section and the distance apart of the mean planes

of the coils.

Equation (21) can be written as follows, omitting the factor n 2

,

3d\ 3b
2+c2

i 5# \ n
d?_ 31^
:6<2

2 ~^
2048a: 4

Af=4Wlog -^l

:

I2d 192a

i6a* 96a'

b*-c2 19^-5^ 2^
4+2^-5^V . 3^- 7 /7V

2+7^V-3^6

I20di

I024«>)-»-;

504^

(22)
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The mutual inductance of two coaxial circles of equal radii is

M =4ira log
8a> 3^ _ 15^ +->

31^
1 6a 2048a1+4(23)1024a

Subtracting (23) from (22) and putting as before JM for the

difference between the mutual inductances of the two coils and of

the two circles at their centers.

JM— 4.7ra
96a 2

+^

, 8a
,
iqc2

loo-—

+

5^
d

2?

192^

5&V
,

3*'

£
2-^2

f 12^
(24)

1 20^ 504«

This expression for ^/J^ derived from Stefan's equation does not

(as already stated) agree either with the expression (17) derived

from Weinstein's equation or with the revised expression (20).

DERIVATION OF NEW FORMULA.

To derive the formula anew we must

find the values of the differential coeffi-

cients of equation (8), by differentiating

the series formula for the mutual induct-

ance of two coaxial circles of unequal

radii. Substituting in (8) will then give

an expression for JM. Weinstein did

this as we have seen by using the expres-

sion (13) in elliptic integrals. Stefan must

have used the series formula, differentia-

ting up to the sixth order for the principal

terms. The mutual inductance of two

coaxial circles of radii a and a-\-y is

given by the following series:
7

Fig. 5

M— \wa ^t z
2a

3*
2+f zx%y+/ * sx'- \^xY- T7/

i6d< 3W 1024a

45xy-3oxy3-i 9f \_ /

2O480 6 -r • • •

y ^
2 + y x2

-?>y\ 6x 2y—y s

93-*- 534*V-

2a

2„,3

l6^

!9/
,

i845*>-303a*8
>'-379J'

6144*2 61440^
• • • )}(35)

Rosa and Cohen. This Bulletin, p. 366.
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where a is trie radius of the smaller circle, A = a-\-y^ is the radius of

the larger circle, x is the distance between the planes of the circles.

To differentiate the entire equation at once for all the coefficients

of (8) would be confusing. We may better divide it into parts and

differentiate them separately. Put

M'"=-47rar 'y log ^-y-

^
I

1024^ r 6144a:4

J

Af////, = 47r^l^—-^ ^4 ~ -log
^

I
2048a 5 ^ r

1845^-3030^/- 379/ I

61440a 5

Then J/=^ /+^ /'+J/ ///+^ ////+ J4r/ ' ///

Evidently J/' is the principal part ofM when the two circles are of

nearly equal radii and near each other. As the sections of the two

coils of which we are to determine the mutual inductance are sup-

posed to be small in comparison with their radii, and the radii are

to be equal, y will always be relatively small. When the coils are

close together x will also be small. In the latter case, M' is there-

fore nearly the whole of M, and the sixth differentials required will

depend almost entirely on M' . On the other hand, when the coils

are farther apart M' ' is important, and we may expect an impor-

tant part of the correction to depend on it, and to some extent even

on M! " and M"" , but it will not be necessary to differentiate these

latter expressions as far as the first.

To differentiate M' we may write it

M'
, x

Sa~ = {A+ a) log^A_af+x -A- 3a (26)
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M' must be differentiated succesively with respect to A, a, and x.

idM'
i

8a A 2-a2 A
27T da -^(A^ajr+J+(A-af+a*+ a

2 (2?)

_i_ d 2M' _ A-a i_ 2a 2(A+ a)(A -a) 2 A
2tt' da 2 ~(A-a) 2+x2+ a (A- a)

2+

x

2
+

~[(A- a)
2+x2

]

2 a 2

when y =A— a = o
y
and x— d^

^[-j] (28)
dnM^_

da 2

This is the value of the first differential coefficient occurring in (7)

and (8) so far as it depends on M'

.

DifferentiatingM'\M,n
', andM"" in a similarmanner, and putting

A — a and y— d, we get for the sum of the four differential coefficients

the following, omitting terms of higher power in i/a than 1 V.

d 2M \ 1 3 1 8*
,

420* , 8a 163^] , N-^^= 4^j--+^+_log-+^log^-
i-^| (29)

d^lM, [ . I II
, 3 , 8tf QOtf

72
, Sa

,

2QI^2
1 , v-4M + + 4 log--^-

i
log-7+-5-J (30)aV "

I
at 16a 2 8a 2 fe

<tf 512a 4
a* 1024a

From (27) when A — a and x= dwe have

1 oW/ f I n 8a 1 1 , x

and if we take the same derivatives from J/", andM,n
, and M"" and

add the four values we obtain the following, omitting as before terms

of higher than the fourth degree in \\a\

1 dM
f

1
1

8a 1
, d2 3d2

, 8a] , N

a aa [2a
2 d 2a 2 8a 4 32a* a

7

Equation (9) should hold in this case and give us a check on the

work of differentiation, as well as a check upon the correctness of

formula (25). If we have not differentiated enough terms of (25)

to get all the terms of degrees contained in 29, 30, and 32 equation

(9) would not be satisfied.

Equation (9) is

cFM d2M_ 1 dM
da 2 + dx2 ~a da ^



346 Bulletin of the Bureau ofStandards. Woi. 2, N0.3

The sum of the right hand members of (29) and (30) is

[ 1 , 8a 8 . 128071 , Sa

*%? l0g
48^

lo
8a

d 16a 2 1024a* 512a* ** d (34)

which is identically equal to (32), thus satisfying (9).

Proceeding now to the fourth differentials we find the following

as the principal terms:

to)

diM *M% *M
%

[4]
' 6"

d*_

da*

d*M
Q

da 2dx2

' dA' ~ dx*
- 4™

d'Ms

= dA*dx*= 4™

The expressions become complicated for these higher differentials,

but we may simplify the process by transforming the equation for

M. Thus, putting y for A— a in equation (26), remembering that

dy _

27T
--Ua+y\ log 8a-(a+^\\og Lr 2

~ry
2\-(4a+y\

Or, — = l 2a+y\ log 8a-Ua+y\-(a+}-\ log x2

= y2a-\-y\ log 8a— [\a-\-y \— I 2a+y\ log x

\
aJr

2j[x~ 2X
jJr

3 X~'"\

I dM' - . T2J 2/ . 2/

1 dW^w7 r

2l_^
2 2^4

2 6y
2

,
ioy

3*
6

27T dL4 !

d 2M

'

\i y— o and x= d,
dA"

•

•]

(36)

r
6

" "J 2[y ** ^6

""J

47772 --Jas found previously.
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Proceeding with the differentiation

27T dA 3
"

L ** **
" "

'
*

J A*1
** ** ' J

1 #M' _ f 12 120/ 1 i|~ 6oj/ 280/ "]

27T ^ ~ rt

|_ -^ ^6
'

'

J 2\_
' x*

+
-r

6

1 aW

47m +-
4 ,

as found previously.

27T ak4' -{*?- • H-S^- • ••]

1 A^_ _ [240 "I i|"i68oy "]

^ ^« -
i_ ^ •

j 2|_ *• •
• •

j

All terms in the series that have been omitted have y as a factor,

and hence when y= o they all vanish. Hence there is only one

d6
A/f

term in the entire series that does not vanish for
6

°
. Thus we

dA
have

<?Ma
dA"

[I20~]

The same method is successful in obtaining the differential coeffi-

cients with respect to a and x. The following are the values:

d6MQ

f d"M f d6M
l]

da" dA" dx

\ira
d"M f _ d"M '

dx dx da

k' r i2°i

(37)

We may safely neglect the fourth and sixth differentials of M" and

M'" , which latter are very small where the field is changing rapidly,

that is, near the primary coil.

Substituting now the values of the coefficients as given by (29),

(30), (35), and (37) in equation (8), in which the coils are assumed
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to have the same radii and section, we obtain the following expres-

sion for JM\

} 96^ </ I92<2 I2^2 I20^4

3^-3^+14^-14^ 7^ />_i63\
"r "

504^ ^ 10240^ rf 84/

The second and fifth terms of the equation (38) differ from the cor-

responding terms of (24) which was derived from Stefan's formula,

the principal difference being in the second term, and there are two

additional terms in (38). For a square section the second term is

negative in (38) and positive and larger in (24). It is the error in

this term chiefly which makes Stefan's formula give too large

values. This is especially noticeable when the coils are far apart,

when the other corrections are small. When the coils are near

together the other corrections are so much larger that this error is

obscured, and the formula appears more nearly correct.

Instead of substituting in (8) we might have substituted in (12)

the transformed equation used by Weinstein, adding the second line

of (8) to (12) to give the terms depending on the sixth differentials.

This requires the value of one other differential coefficient, viz:

1 d 3M _
J

1 3 8a

a dx2da~ [2a 2d 2 i6« 4
** d

Carrying out these substitutions we obtain the same expression (38)

with some additional very small terms, which are negligible, except

for coils of very large section, or coils very near together, in which

case one term is appreciable. This term is

—

J2
M= 4^ +

y6Jj, ) (39)

and may be used if needed by adding it to (38). It is included in (41)

below. For a square section, where b= c
}
the third and fifth terms

of (38) disappear and the formula becomes; adding (39):
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(4o)

The following approximate formula for coils of square section is

sufficiently exact for most purposes, although, varying more from

the exact expression as d is greater:

1 , Sa a %
b
%

JM=-&Y*-d -*--&] (42)

When the two coils have equal radii but unequal sections substitu-

tion must be made in (7) instead of (8). Neglecting sixth differ-

entials, which are inappreciable except for coils very near, we obtain

for coils not very far apart the following expression:

JM=ma (

3(y+*.')+*.'+*.'w 8a n(y+*.')-3fc'+ft')

I 192 a"
s d 384a2

+
24rf

8

(3^
t+io^V+3^)+(3r1'+iof1V+3^)-io(^ 2

+^)(^
3+^)l+ 960a*

(43)

In every case the value of 4M is to be multiplied by n
x
n

% where

?i
1
and n

%
are the number of turns of wire on the two coils.

COILS OF A SINGLE LAYER. CURRENT SHEETS.

By putting c=o in formula (38) we get an expression for JM for

two coaxial current sheets, which would be realized substantially by

single layer coils, so far as mutual inductance is concerned. If we
consider their radii as fixed, and therefore a constant, equations (4)

and (5) would be simplified by the disappearance of all terms in-

16360—07 3
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volving differential coefficients with respect to a. Equation (7)

would then become:

^(v+v)."

\ 1920 576/ dx*

~h \i20.2688"1~
24.1920 / dx*

I b*+ b* W+W bwyM,
\120.256.3024 24.120.2688 (1920)7 dxs

'
' ^W

When the coils have equal lengths, i. e., b
1
— b

2
=b

)

b
2 d2M tf diM b

6 d6M b
8 d8M

°~r i2dx2 ^360^ ^120.168 ^r6 "*"
864.2100 rf*

8 T""^
Taking Coffin's extension of Maxwell's equation for the mutual

inductance of two coaxial circles of equal radius we can easily ob-

tain the differential coefficients to the eighth order, to substitute in

(45). The expression for M, for the two equal circles is as follows:

-(2+— 3jg_, H7*6

_ 7,795*
8

+ . . V
( 6)

V^i6«" i6.i28^6.iT8V 8.f28V^ /
l4 ;

Because j is zero, the equation is simpler to the eighth degree than

equation (25) to the fifth degree, and the differentiation is greatly

simplified by making a constant.

The values of the differential coefficients are as follows:

t¥*- A „ji 8f* (_3_ 45^
2

1

1050^
,,
44iQQ^

dx2 "^y0g d\Sa 2
2 56^

4i"I^8V 178V (47)

#M
* ( 3 ,

6 45 A 8a 187X1

^= 4™hH (49)
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Substituting these values of the differential coefficients in (45) we
get for JM the following expression:

JM=4*a\j^+^(log
_-_J_-^__

^log
_-^J.

175^ /8a 54\ 3675W A 8* 3793\, ^
"+_

2(i28)VV g
rf 35/ (i28)V\ g

rf 2520/^960^

b*

4?(
l0g ?" 6^j

+ l68^+ 36o^)
(5I)

6o<^
4 1024a

This formula will give the mutual inductance (adding JMto M
)

with very great precision for two coaxial single layer coils of equal

radii, provided the coils are not in contact or d is not too great.

If d is equal to or greater than a we can obtain a more accurate

value by using formula (20) making c=o. In this case

A £
2
cos

2

7 / b
2 3b2

2 ,

4b 2

4 \A = 3i- (
T J2—^2 COS 7+^78 COS 7 )I2d z

\ iod 2 iod 2
' $d 2

7

D b
2
sin

2

y / <
b

2 3b 2

2 , 4£
2

4
\

z/Af=47ra sin y{{F—E) A+EB. (52)

If the coils are considerably distant from one another this expression

is very exact. If quite near we may improve the accuracy by

adding to the value of JM obtained by (52) the last two terms of

(51) which represent the part of JM depending on sixth and eighth

differentials. Examples of the use of these formulae on single layer

coils will be found in another paper in this bulletin.
8

We must now test the formulae for JM by numerical applications

to see how closely it approximates to the true value of the correc-

tion JM.

8 Rosa and Cohen, this Bulletin, p. 408.
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TESTS OF FORMULAE 38 AND 41.

[ Vol. 2, No. j.

Let there be two coaxial coils of mean radii 25 cm, and square

section 2x2 cm, and distant 4 cm between their mean planes. Thus

= 25

/?=2

c—2
d—\

log, -^= log, 50= 3.9120

b = :

Axis of coil

Fig.

Substituting these values in (41) we have

-, 8a
log -I

17^
24orf"

i6a 2
\ * d 3/

= 2.9120

= .0177

= - I-953 I

- .0124

2.9297

- 1-9655

+0.9642
b"
7- =—— ; 0.9642 x —'-= .02571
6a 150' ^ ^ 150

zfJ^

7T

0.0257I

i^

(53)

The value of— ° as given by (13) or (23) is 192.9174, assuming only
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one turn in each coil. The correction JM'xs therefore about one

part in 7,500. If there were 400 turns of wire in each coil the

mutual inductance would be

J/=4ooV(i 92.9174+.0257)
= 96,983,800 cm
= 96.9838 millihenrys.

If the coils be moved apart farther the correction JM increases,

and at <y=6cm, = .05613 more than double its value at 4 cm.
7T

This is contrary to what one would at first expect, until one remem-

1 2

< (1=6

c=2

BL

Tig. 7

bers that for coils close together the correction is negative. At

d= 3 cm it is still negative, while at some point between 3 and 4 it

is zero. At d—8 cm the correction is .05373 by formula (41).
7T

These corrections are all relatively small, and have been computed

with great accuracy, giving the mutual inductances M at these

various distances with high precision.

Let there be two coils S
x
and S2

each of rectangular section 2x4
cm, and their mean planes distant 6 cm. Each coil may be regarded

as made up of two coils of square section 2x2. The mutual indue-
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tance of the two coils S x
and S 2

upon one another is made up of the

sum of the mutual inductances of coils i and 2 upon coils 3 and 4,

coils 1 and 2 being the two halves of S r
and 3 and 4 the two halves

of S 2
. Thus,

M=M13+Mu+

^

23+M%,

M1S is of course equal to M
2i

.

We have given above the values of for each of these sepa-
7T

rate cases and we can now obtain the mutual inductance of S
t
on

IT IT

Mx% 154-0718 .05613

M
x , iV-3947 -°5373

M23
i92-9 I 74 -02571

Mu i54-o7 I 8 -05613

2 (M^tt) 628.4557 .19170

2 {JM+ir) .1917

AT

Sr Thus

7T
628.6474

We can now determine the value of M by another process.

Regarding the coils Sj and S 2
as made up of two parts of one turn

each, calculate M by (13) or (23) and JM by (38). The distance

apart of the mean planes being 6 cm, we see that M is four times

M13 , that is,

For S t
on S 2 ,

—°- = 616.2872
7T

To calculate JM, substitute in (38) the following values:

«r=25

b — A , Sa * 200 r

, = 2
l0g^=l0g,^= 3.5065

d=6
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96a
2 * d

= .003038

b
2-c2

I2d2
= .027778

2tf+Zc"-$b2
C
2

i2od i
= .001440

5°4^
6 .000057

5j6oa 2d 2
= .000015

7^ 2

/w 8" l63\
1024a4

\
s

rf 84/
= .000004= •032332

15^-3^
192a 2

= --.001367

-15WV! 8, 97\
10240* \ rf 60/

= .000040= --.OOI4O7

.030925

40;/= 400
,4M_

IT
= x 2.37o

IT

= 616.287

IT

= 628.657

By process of summation above ^V == 628.647

Difference == .010

which is about one part in 60,000. The correction by the process

of summation is so small that we may be sure it is more exact than

the second method, in which the correction is more than 2 per cent.

To give absolute agreement between the results of the two methods

the second correction should be 12.360 instead of 12.370, a difference

of less than one-tenth of one per cent of the correction. This is a

very good test of the formula (38) for this distance between the coils,

and the accuracy is very satisfactory.
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TEST OF FORMULA 20.

Let formula (20) be applied to trie same coil to which 41 has

been applied, where

a=25
b= 2

• 2
2 5°°

Sill
2

ry= ~^—-
2516

c— 2

d— 4

16
COS 7= y1

2.5l6

Substituting the above values of the constants in (18) we find the

following values of a
15
a

2 ,
a

3
:

a1= .000853

a
2
= .OOO427

a
3
=—.050000

c
2

5— .0002667
24^ '

Substituting in (19) we obtain

c
2

A-\- == .0002684
24a:

2

B= —.0005170

The complete elliptic integrals to modulus sin 7 have the following

values for this particular case:

F =3.91986
E = 1.01088

F-E =2.90898

{F-E\A+-^)= •00O78°77

EB = —.00052262

Sum = .00025815
4a sin 7 = 99.6815
JM.•.—— = .02573

7T

Formula (41) gave .02571, which is almost in absolute agree-

ment, the last figure being dropped in the final calculations. The
uncertainty in this value is probably not greater than one in a

million of the whole inductance of these two coils.
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Taking now the larger coils S
x
and Sn Fig. (7), where £= 4, and

substituting in equation (20) we get the larger correction —'- Fol-
TT

lowing the process indicated above we find for S
x
and S 2 ,

JM-—= 12.349
7T

. - r M 616.287
As before, —° = '-

IT

,\M= 628.636

Value by summation, 628.647

Difference — .011 = 1 part in 57,000.

This is nearly as good agreement as by formulae (38) and (41).

There are decided advantages in calculating the quantity JM
separately and adding it to M to obtain M, the mutual inductance

of two coils. ForM can be calculated by more than one process,

as a check on the numerical work as well as a check on the formulae,

and similarly JM can be calculated by more than one formula.

When they are put together in one formula one can not be sure to

w7hat any difference found between the results of two different form-

ulae is due. There is no trouble in computing M to any desired

degree of accuracy. Practically the whole problem is to find 4M.
Hence it is safer as well as more convenient when practicable to

have separate formulae for JM.
The above tests of these formulae show that for coils of this size

and distance apart very accurate values of the mutual inductance

can be obtained, as accurate as will be required in the most exact

experimental work. Of course, if the cross sections are greater the

accuracy will be less, but in work of precision large cross sections

should not be used; the depth would probably seldom be greater than

2 cm. Formulae (38) and (41) give values for JMa. little less exact

as the distance apart of the coils increases, since the terms neglected

in the series (25) becomes appreciable when d is large. For such

cases formula (20) is more exact. Further tests and discussion of

these formulae are given in another paper 9
in this Bulletin.

9 Rosa and Cohen, this Bulletin, p. 359.








