
THE INFLUENCE OF FREQUENCY UPON THE SELF-
INDUCTANCE OF COILS

By J. G. Coffin, Clark University, Worcester, Mass.

When currents of low frequency pass through the wires of a coil,

the current distributes itself uniformly over the cross sections of the

wires. With increasing frequency, this uniform current density no

longer prevails, but, as is well known, at least for straight wires,

the current density becomes greater at the surface of the wire at the

expense of that of the interior.

The corresponding lines of magnetic force become differently

distributed, and in consequence the self-inductance suffers a change.

A short calculation will show the direction and amount of the

change for circuits in which the curvature of the wire may be

assumed negligible, and the theory derived for straight wires used.

The theory of this distribution of the current density in straight

wires, which has been thoroughly worked out by Lord Rayleigh 1

and by Stefan, 2
is not applicable without modification to the distri-

bution of current density in coils of wire.

The following argument shows that the effect of increasing fre-

quency is to diminish self-inductance.

We shall assume, according to the theory, that with very high

frequency the current flows entirely in the surface of the conductor.

In computing the mutual inductance between two parallel circuits,

we call their distance apart the logarithmic mean distance of the

area of one cross section from the other. For circular areas, and

circular lines, when completely outside one another, these distances

are the same and equal to the distance between their centers. This

1 Phil. Mag., 21, p. 381; 1886. 2 Wied. Ann., 41, p. 400; 1890.
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is also true for annular areas between any two concentric circles,

that is to say, circular rings. When computing the self-inductance

of a circle of circular cross section (solid tore), we use the value of

the logarithmic mean distance r— 0.7788 times the radius of cross

section; but in computing the self-inductance of a circular tube

(hollow tore), we must use for r the radius of the cross section.

To compute the self-inductance of n turns of wire, knowing the

mutual inductances Mrs between each pair of turns, and the self-

inductance L of each turn, we proceed by the following formula

:

Ln= nL+2(n-i)M12+z(n-2)Mls+ +2Mln (1)

The deduction of this formula is an extension of the formula of the

self-inductance of two equal coils in series

:

L2=L+2M12+L

Hence, it is evident that however the frequency of oscillation may
change, the mutual inductance between pairs of wires remains

absolutely unchanged, while any change which does occur is due to

that of the terms involving self-inductance only.

This difference is therefore n times the difference between the

mutual inductance of two circular filaments when placed at a dis-

tance apart equal to 0.7788 X radius of the cross section of the wire

used, and when placed at a distance apart equal to the radius. For

these are the factors used in computing the self-inductance of a

turn for low and high frequencies, respectively. Thus, it is easily

seen that since in the last case the self-inductance is less than in the

first the influence of rapidly oscillating currents is to diminish the

coefficient of self-inductance.

Calculations show that this difference is not negligible, so that in

accurate work it is necessary to make a correction to the value calcu-

lated for low frequencies ;
this correction being a function of the

frequency, the conductivity of the wire, the permeability of the

materials of the coil, and of its configuration.

2. Lord Rayleigh has shown 3
that for a straight conductor

traversed by sinusoidal currents, the resistance and self-inductance

3 L,oc. cit. See also Gray, Absolute Measurements in Electricity and Magnetism,

Vol. 2, part I, p. 325 ff.



coffin.] Influence ofFrequency on Self-Inductance. 277

for any frequency are given by the following expressions in infinite

series:

R>=r\i +-B* *-i?4+ 1
( 12 180

J

and (2)

where B=^-w ,K
R is the resistance for steady currents,

fx is the magnetic permeability of the conductor,

/ is the length of conductor,

&) is 27r x frequency of the current.

A is determined from the following formula for the self-induct-

ance for currents of low frequency:

L=l{A+l,x),

R— 5, the resistance for steady currents,
Trap

2 ' J '

where p is the radius of the wire and a is the specific conductivity

of the wire.

When the frequency is great, or rather when the product of p, by

the frequency is great, these expressions reduce to

R'= ŵp/coR

and L' = l(A+ (3)

For any frequency we can calculate the apparent resistance of the

wire, and also the new value of the self-inductance, thus obtaining

an estimate of the variation in self-inductance and resistance with

any required frequency.

Calculations were made of this so-called skin effect with the fol-

lowing results

:
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TABLE I.

Effect of Frequency upon Resistance of Straight Wires.

A
Frequency of current

B
Thickness of Annulus

Copper fx= i

C
Thickness of Annulus

Iron ju.=3oo

80 0.719 0.0976

120 .587 .0798

160 .509 .0691

200 .455 .0617

480 .293 .0399

800 .228 .0309

1,000 .203 .0276

1,800 .152 .0206

3,200 .114 .0154

4,000 .102 .0138

9,000 .068 .0092

16,000 .051 .0069

20,000 .045 .0062

36,000 .034 .0046

40,000 .032 .0044

64,000 .024 .0035
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I for copper, /i—I; curve IIfor iron, fi—300.
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The interpretation of Table I is as follows: As the frequency

increases so does the resistance. Take a solid wire of any radius,

and for a given frequency construct a hollow wire with the same

external diameter, which would have the same resistance for steady

currents as the apparent resistance of the solid one for alternating

currents. Columns B and C give the ratios of the thicknesses of

such hollow cylinders to the radius, for copper and iron, respectively.

Fig. 1 gives a graphical representation of these values. The
abscissas represent the frequencies. It is seen how readily the cur-

rent betakes itself to the surface of the conductor, so to speak. It

shows that when the material is magnetic, a frequency of 1,000

gives a value of the inductance not appreciably different from fre-

quencies of many times that amount. For copper this correspond-

ing point is not reached before frequencies of 4,000 to 10,000, in the

case for which these calculations were made.

3. The value of the self inductance for low frequency currents for

a length of wire / is

A/=/(4+U) (4)

and the value for very high frequencies is shown by eq. (3) to be

Z-=M = 3/(lQg*
/-l) (5)

so that the difference is y2 I ft; this difference is therefore directly

proportional to ft. The coefficient of self-inductance of a straight

conductor of circular cross section is given by

£=2/jlog--(i + log 0.7788)

where p is the radius of the cross section of the conductor ; which

reduces to

z=4ogH} (6)

In the theory of the logarithmic mean distance, it is proved

that the coefficient of self-inductance of any straight conductor of

any cross section is equal to the coefficient of mutual inductance of

two parallel straight filaments, at a distance apart equal to the
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logarithmic mean distance of the cross section of this conductor

from itself. For coils, the assumption is made that when the dimen-

sions of the conductor are small in comparison with the radius of

the coil, this law still holds.

Max Wien 4 has shown that this assumption is very close to the

truth, by the following example:

By integration of Maxwell's series for the mutual inductance

between two parallel circles, over a circular cross section, that is by

integration of

1 80/
,M—\ira log — I 1+
x x2+3v2 xz+$xy*
2a 16a2 32a3

where the radii of the two circles are a and a+x
y
and where y is the

distance between their planes, and r the shortest distance between

them, he obtains the following formula for the self-inductance of a

circular coil of circular cross section:

£=4«{(i+£) ^g ^-1.75-0.0083^} (8)

where p is the radius of the cross section of the wires and a is the

mean radius of the coil. By employing the same number of terms

of the series (7), and putting for y in the series 0.7788 times r he

obtains, without integration, the following formula:

Z= 4™{(i+^) log ^-1.75-0.0095^} (9)

Assuming, now, such dimensions that /?, the radius of the circular

cross section of the wires is equal to one-fourth the mean radius a,

the difference between the two values of Z, computed by these for-

mulas, is less than one part in a thousand. This is a severe test, as,

in the application of the theory of the logarithmic mean distance,

the dimensions of the cross section are assumed to be small in com-

parison with the mean radius. So that, in the use of this principle,

4 Ann. d. Phys. und Chem., 53, p. 928; 1894.
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we need not have the slightest fear of inaccuracy if the dimensions

satisfy the above condition.

For example, in the application of the principle to the standard

coil at Clark University, the difference between the two formulas is

given bv

47m {.00000437}

which is negligible, producing a difference only in the eighth place

of significant figures.

4. Using the first terms of Maxwell's series, i. e., neglecting

y
squares of the ratio - we obtain for the mutual inductance of two

circles of the same radius at a distance y apart, the expression

^=47m|log -^-2j

Consider all coils to be wound in the form of a circle, and let the

adjective applied refer to the form of the cross section. Then, for

a solid circular coil, using the principle of the logarithmic mean
distance

and for a circular tube

L= 47m
J

log y-1.75
J

Z= 47mjlog^-2|

Their difference is 7nz, so that the self-inductance of a single turn

of wire and approximately of any coil of wire, diminishes by an

amount numerically equal to half the length of the wire as the

freque7icy becomes infinitely great. The following computation

shows the amount of this decrease for the Clark University coil

:

Putting a — 27.09 cm

2r— .0584 cm

the difference ita in the self-inductance of one turn is 85 cm in

2,434 cm or about 3.5 per cent of the value for steady currents.

Now, in any coil the mutual inductances between turns are inde-

pendent of the distribution of the currents in the separate wires, as
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long as this distribution is symmetrical with respect to the axes of

the wires ; and that is here assumed. The total self-inductance of

the coil in question is about 0.2162 times io9 cm, and there are 716

turns. Hence, the total change for infinite frequency will be 716

times 85, or 60860 cm, which is about 0.286 per cent of the total

value. This certainly is not negligible. It is necessary, then, to

look more closely into this source of error.

Lord Rayleigh 5 and J. Stefan 6 have worked out the theory of

this effect for straight wires, and have deduced formulae showing

the increase in resistance and the decrease in self-inductance with

frequency. Later observers have assumed the effect to be the same

in coils as for straight wires. This is not legitimate, as is clearly

shown by Max Wien. 7 In his paper he shows that the tendency of

the current is to concentrate itself upon the inside surface of the

coil, and he derives two formulae for the increase of resistance and

the decrease in self-inductance in circular coils of single and also of

many layers, wound with wires of circular cross section.

These formulae, however, come out as series which converge only

for small values of the frequency. The formula for the decrease in

self-inductance has but one term derived, and the calculation of the

others seems to be very laborious. It is evident from this paper,

then, that the maximum change in self-inductance, for a coil of a

single layer, is equal to that which would be produced by decreas-

ing the radius of the coil by an amount equal to the radius of the

wire used in winding the coil.

Taking the numerical values for the mean radius and radius of

the wire used above, and multiplying the coefficient ^r— =0.00491

by afo:= 0.0602 cm, we obtain 0.0003 henry as the total possible

change in an inductance of 0.088 henry. This is about 0.34 per

5 L,oc. cit.

6 Ann. d. Phys., 14, p. 1; 1904.

7 The coefficient — was derived by direct calculation for the standard coil con-
da:

structed for Clark University, by the writer.

The self-inductance was computed for a mean radius a, and then for a mean radius

a-\-da; the difference gave of course the value of dL for a radius a; dividing by da,

the rate of change of L with respect to a was obtained. See Bulletin of the Bureau

of Standards, Vol. 2, No. 1.
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cent of the total amount and is certainly not negligible. This

number compares very favorably with 0.29 per cent derived by

an entirely different process.

The formulae derived by Wien for a coil of a single layer are as

follows:

r' =#{1+0.272 «y- 1

and

where

L'-MHf-)-w }
(10)

R' is the resistance at frequency
27T

27T

R is the resistance at frequency o,

L' is the self-inductance at frequency

c is the length of coil,

p is the radius of wire,

cr is the specific resistance,

m is the total number of terms,

r is the radius of coil,

r is a small constant,

a) is 27r X frequency,

<b equals —"—

.

crc

The first important result of this calculation is that the increase

of resistance is thirty-two times as large for coiled wire as it is for

the same length of straight wire. This shows the danger of using

without modification, for coils of wire, the results of Lord Rayleigh

for straight wires.

We should expect a corresponding difference for the change in

self-inductance, but from his results this is not possible to verify, as

he was principally interested in the change of resistance. Wien's

calculations agree very well with the experiments of Dolezalek 8 on

the change of resistance for small frequencies.

The next successful attempt to find the change of resistance with

frequency was made by A. Sommerfeld, 9 who derived an expression

8 F. Dolezalek: Ann. d. Phys., 12, p. 1142; 1903.
9 A. Sommerfeld: Ann. d. Phys., 15, p. 673; 1904.
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valid for all frequencies and which for small frequencies reduced to

that of Max Wien. He also was principally interested in the change

of resistance, so that the application of his method

to the variation in self-inductance was left untried.

In the following will be found the derivation

of a formula by a method based on that of Sommer-
feld, valid for all frequencies, showing the change

in self-inductance with the frequency. By means

of this we shall be able to calculate the correction

to be applied to any coil of a single layer.

5. Derivation of the Formula.—Consider an in-

finite circular current sheet of thickness d, inside

radius r
ly
and outside radius r

2
.

Let the symbols S
( ) and V

( )
denote the

scalar and vector products respectively. V is the Hamiltonian

operator. V V ( ) is the same as curl
( )

or rot. ( ), while S

V ( ) is the same as div.
( ).

By symmetry, the field inside the coil is axial, and a function of

r alone, at any given time, and on account of the coil being infinite

in length, the field is all inside of it.

In the dielectric, Maxwell's equations are, if we neglect the dis-

placement current,

z
1

>d

h\
H *

I h 2

h
f

*

I

—

. ! :

Fig. 2.

V\yH=o and $\?H=o. n)

From the second relation we find that H is independent of 2, and

from the first relation, that it is independent of x and y; hence it is

constant inside the coil, and for

r<r
x
assume H=H eiuit

(12)

where co is 27rX frequency, and H the maximum value of H.

Outside the coil, H must be constant, but as it vanishes at infinity

it is zero everywhere. Hence, for

r>r
2 , H- O.
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In the material of the coil, Maxwell's equations are

J TT

4tt^ = Vv//, ~j-= —V^/F Sindq= aF (13)

from which follow

Sy^=o, and Sv^= o. (14)

where

q is the current density

.Fis the electric force

a is the specific conductivity.

Eliminating q and F, by taking the curl of the first equation (13)

47rVv<7=VvVv//=vSv//-vV/

— vW,by(i 4),

and from the second and third of (13)

VW= aY\yF= — a-—-
dt

•'•4^=v^ (15)

Now assume H in the material of the coil to be given by a function

of r alone (on account of symmetry), multiplied by Hoe
i0it

, or

where U— 1 when r—r
x

U=o " r=r
z

The differential equation then which £/must satisfy becomes by

equation (15) in polar coordinates

d 2U 1 dU . , %TT . r .

l^+r^+kU=° (
l6

)

where k——i \ttgw.

The solutions of this equation are the Bessel's functions of order

zero, yo
and K^ and

H=H,{AJlkr)+BKlkr)Y>* (17)

where A and B are arbitrarv constants.
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Now, Sommerfeld 10 has shown that the expression

V
r gik(rs—r) e ik(r2—r)

r ettM-n)_ e-ik(r2-n)
^ \^°)

is a very good approximation formula for the case in which kr
x
and

kr
%
are large.

Since

TT_ TT dH
^irq — ^^jH-

dr

we obtain for the total current / per unit of length the value

'-^;r-U^-U"--"-)
\ I:

Hn

47TiV

where N is the number of turns per unit length of the coil.

6. The electrokinetic energy of a system is given by

(19)

(20)

T=-LP
2

(21)

where L is its self-inductance, and / is the current. In the case of

alternating currents, the mean square values are meant, or

Hence we may write

Z=^_/jo
Tdt

7i
\ rpdt

(22)

where r is the period.

But the mean square value of an harmonic function is one-half the

square of its amplitude, and in working with imaginary expressions

the square of the amplitude can always be obtained by multiplying

any expression by its conjugate.

Loc. cit., p. 678.
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Hence

T'=\^Pdt=\II (23)

where / denotes the conjugate to /.

Therefore

P=\I 1=

and

Z= 4
14-kN

\h7

\41rN)

JiJV^. (24)

In general 7"=
| I j H %dv if /jl= 1 everywhere, (25)

which in this case becomes, for unit length of coil,

T=^ f °IPT.irrdr

or, T=i £nH 2rdr+l C*IPrdr= T
x+ T% (26)

Jo Jn

where, in T„ H is H eiuit

and in 7^, //is given by equation (18).

We may write

I f
T

Tdt= l f rdr\ rH2
dt= ± fHHrdr.

mFor T, this becomes

To obtain the integral T
2
first put in eq. (18) h (i-\-t) for ik.

Then, calling h (rz—r)=y,

and h (r
2
— r±) =yt

we obtain for //and its conjugate //the expressions:

^/ rety
ieyl
— e-iyie-yl

°

and (28)

Y re~ l^ey
i— e^xe'^x

29572—06 9
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A conjugate expression is obtained by putting — i for i every-

where in the equation.

Their product becomes

or

r
x
cosh 2_y— cos 2yHH=H«

rcosh 2jKi— cos 2yx

Multiplying this expression by rdr and integrating from r
x
to r

% gives

(since I coshr^r=sinhr)

putting x— 2h (r
2
— r

x)
= 2hd,

_H*r
1
d'sinh x— sin x

2_
8 .r cosh x— cos

#"

We may now write

Z. W2 4
i

2 ^/3 s^nh -^— sin^\)
1

J ""^^yrcosh .r— cos .r/J ^
°/

where .r= 2d-yj2tt(D(t= (47r<3
\/cr)

V

;* where ^—2 rJrn.

Now, 47rW2r
1

2
is the self-inductance per unit length of a coil with

a mean radius r
1}

and is therefore the self-inductance for infinite

frequency. This is also shown by eq. (29) as the second term in

sinh x
parenthesis is zero when ^=00 for

—

-,—= 1 and sinh x and cosh x
cosh x

increase without limit as x increases without limit, as may be seen

by their expansions

:

(30)

sin hx-
. xs x5

.

. . . . ; sin X— X-
x3 xb

cos hx-=*+i+$+ - . . . ; cos x= 1 -
x2

X*
_

2!
+

4!

Equation (29) may then be written

L<*~K^ d
(

^sinh^r--sin x\
\=

2 *Q. (31)
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By this equation we see that the fractional change of self-inductance

in any coil may be calculated if the properties of the function

g_ 3 sinh^-sin^ ,„\
x cosh x— cos x ^ '

be known for all values of x from zero to infinity.

A formula for small frequencies may be derived by expanding the

hyperbolic and circular functions and retaining only low powers of

the variable x. Q then becomes

1 x^ xs

I X* X°
+ • • •2M 6!^io!

which, retaining only terms in x^ is

1 3^
4

6jt
4

2 '7! i+ 7-z*
,
6^4 14^* 8X* x^O— '- — —

-

—= 1 4- — _n_ — 1— — 1 —^ I X^ I-J-2.T
4

7! 7! 7! 630.

2+ 6! 6T

This equation is applicable for small frequencies only, and (31) may
be written, since 64.Tr

2= 630 very approximately,

A,-Ao _2 *^i-^ (33)

It agrees as to form and dimensions with that of Max Wien, eq. (10).

2 d ' 2dWhen (o= o. it reduces to As a verification of the term —

,

3 rv 3 ri

the approximation formula for Bessel's formula with small argument

H=HJr
i
r
^-^eM (34)

V r r*~ r
\

was taken and a calculation similar to the one above was made for

the general case. This completely verified this term, and proved

that the expression used above, eq. (31), is valid for small arguments
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2d
as well as large. This last expression— multiplied by Z

o

477-WV! 2
is

Ln-L °ir*N %r
1
d

3
(35)

and is therefore the additional self-inductance due to the field in the

wires themselves for steady values of the current, or, in other words,

this is the maximum possible change in self-inductance. Calcula-

tions by means of (35) show this expression to give, for coils of

finite length and wires with round instead of square cross sections,

the following values

:

TABLE II.

Comparison of the Theoretical with the True Change in Self-Inductance.

Coil Length True Change Value of? -
3 ri

Ratio

46.0 cm.

30.5 "

15.0 "

13.0 "

.00038 henry

.00020 "

.000067 "

.000051 "

.00028 henry

.00016 "

.000057 "

.000044 "

1.35

1.25

1.17

1.16

The values in the second column were computed by taking the

difference between the self-inductance of a coil of mean radius #,

computed by means of an exact formula, and that of the same coil,

using as a mean radius a— p, where p is the radius of the wire.

These results, considering the assumptions made in the theory, are

in good agreement with it. To make the theory fit the facts, the

second term in the parenthesis in equation (29) should be multiplied

by a constant, the average value of which is approximately 1.25,

deduced from the above table. We should expect some multiplier

to be necessary because a current sheet is the equivalent of square

wires without insulation, while, in any actual coil, the wires are

round and have insulation. We may then write

2 d/3 sinh^:— sin x\

3 r\x cosn x— cos x) (36)
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In the proposed use of this theory, however, it is not necessary to

employ this constant, whose value at best is not satisfactorily deter-

minate.

As cosh x and sinh x increase without limit as x increases, equa-

tion (36) may be written, for large values of co

Ac ° r
x
x 4 r

x
d^2 iT(D(T

K6J)

This formula agrees to within a constant factor with that of Lord

Rayleigh for large values of n
)
equation (3),

°r —7 =J—r=2
^00 V 211I d-y]Zttcoo-'

Computations were carefully made for the values of the term

3 sinh x— sin x (38)
^—x cosh x— cos x

for the different values of x
)
as well as of Qx

and Q2
where

Gi=I-S^ (39)

a=£ (40)

Table III contains the results.

It is clearly seen that as long asx< 2 formula Qx
may be used, while

if ^>7, formula Q2
is valid. Between these points the calculated

values will serve.

A plot of these three curves shows still more clearly the relations

of the three formulae for different values of x. (See Fig. 3.)

7. Manner ofUsing the Curve.—This curve is to be used in the fol-

lowing manner. We assume that in any coil of a single layer the fall-

ing off of the self-inductance takes place according to equation (32),

represented by the full line curve, and the maximum ordinate unity

is taken to be the maximum possible change of the self-inductance,

which may be calculated. For any given dimensions of the coil the
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TABLE III.

Values for the Curves Q, Qv and Q2 for Values of x from to 00

.

X cosh x sinh x COS X sin x Q Qi Q 2

0.0 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000 00

0.5 1.1276 0.5211 0.8776 0.4789 0.9999 0.9999 6.0000

1.0 1.5431 1.1752 0.5402 0.8415 0.9984 0.9984 3.0000

1.5 2.3523 2.1291 0.0706 0.9975 0.9920 0.9918 2.0000

2.0 3.7622 3.6269 —0.4163 0.9092 0.9756 0.973 1.5000

3.0 10.0677 10.0178 —0.9900 0.1409 0.8932 0.871 1.0000

4.0 27.308 27.262 —0.6534 —0.7570 0.7515 0.594 0.7500

5.0 74.204 74.197 + 0.2840 —0.9588 0.6100 Negative 0.6000

6.0 202.approx. 202.approx. 0.9603 —0.2790 0.5032 it 0.5000

7.0 573.approx. 573.approx. 0.7537 0.6574 0.4287 tt 0.4289

8.0 Very large

and the

same as

sinh x

0.3750 « 0.3750

9.0 0.3333

0.3000

<<

CI

0.3333

10.0 0.3000

00 00 00 Indeter. Indeter. — 00

values of x correspond to definite frequencies, and either a table or

a plot of corrections may be derived from the curve.

For small values of x
y
and therefore for small values of the fre-

quency, the correction varies proportionately to <^
4

,
while for very

large frequencies it is proportionate to - by equations (39) and (40).

As the first case is the more usual, it is important, in order to

avoid the necessity for any correction, to wind the coil with wires

of small diameter. The size necessary to avoid a correction under

a given frequency may easily be calculated. As an example of the

employment of this theory, the following example will be carried

out:

Consider a coil of 27 cm radius — r
x
wound with a single layer of

wire, whose diameter d is 0.063 cm - Let the conductivity of the

wire be taken as 5.9 X io-4 . Then the relation between x and n is,

from (29) where n — frequency,

«= 2630a;2
.
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In the following table, column 2, are the values of x corresponding

to the frequencies n in column 1. In column 3 are the values of

the ordinates corresponding to these values of x taken from the

curve, Fig. 3.
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TABLE IV.

Values of Frequency n, and Corresponding Values ofx and of Relative Change in Self-Inductance.

n X Ordinate

1.000

500 .44 1.000

1,000 .62 0.999

1,500 .76 0.998

3,000 1.07 0.996

4,000 1.23 0.995

5,000 1.38 0.993

6,000 1.51 0.990

10,000 1.95 0.977

15,000 2.38 0.950

20,000 2.75 0.916

30,000 3.38 0.846

40,000 3.90 0.765

50,000 4.35 0.700

60,000 4.78 0.638

70,000 5.15 0.590

80,000 5.51 0.550

90,000 5.85 0.515

100,000 6.17 0.483

120,000 6.76 0.463

150,000 7.55 0.397

170,000 8.05 0.373

200,000 8.72 0.344

The plot of the corresponding values of n as abscissas and values

of column 3 as ordinates gives a curve of corrections for the above

coil. For example, at a frequency of 50,000 the correction is 0.3

of the maximum change. The value of the correction may be

obtained by reading down from the ordinate unity.

These computations also show that equation (39)

a=i-
630
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may be employed up to frequencies of 10,000 for this particular coil,

and that equation (40)

&= x

may be used for frequencies beyond 120,000 per second. As the

maximum correction is only 0.2 per cent of the total, if frequen-

cies under 4,000 per second are used, the error will not be over

0.2 per cent X 0.005 = 0.001 per cent, which is practically negligible.
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Curve showing the fractional part of the maximum possible decrease in inductance

which takes placefor different frequencies in a coil the wire of which has a diameter of 0.063

cm, the radius of the coil being 27 cm.

If, however, other things being equal, the diameter of the wire

were four times larger than it is, the same corrections would corre-

spond to frequencies 16 times less, or an error of 0.001 per cent

is now obtained at a frequency of only 250.

This suggests that if large currents must be carried, to wind the

coil with, flat wires would diminish the effect of the frequency upon

the changes both in self-inductance and in resistance.
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Figs. 3 and 4 show how the self-inductance of a circular current

sheet falls off with the frequency. In other words, the coil is

assumed to be wound with wires of rectangular cross section. This

may cause a doubt as to the applicability of the curve in question

to the winding of round wires.

In the first place, the method of its use does away with the neces-

sity of knowing the constant multiplier of the function Q, as

explained above; and in the second place, the following two reasons

go to show the entire correctness of the deductions.

Sommerfeld finds that his results agree to within a constant with

those of Max Wien, which were deduced for circular wires, and both

formulae agree remarkably well with the experimental data at hand;

this for the increase of resistance with the frequency. We should

therefore fairly expect the results for the decrease in self-inductance

also to be correct to within a constant factor. As there are no data

available for the decrease in self-inductance, we have not been able

to verify this conclusion. To further assure ourselves, however, we
have worked out the problem of the change of self-inductance with

the frequency in an infinite straight circular ring conductor, using

the approximation formulae for the BessePs functions, as above given.

It was found that the variable part of the expression for self-induc-

tance agreed identically with that derived for a circular current

sheet. This shows that the bending of a straight wire into a circu-

lar shape and forming a coil therewith does not affect the manner

in which the self-inductance changes.

We believe, then, there is no doubt that Fig. 3 gives the law

according to which the self-inductance falls off for straight ring-

shaped conductors and probably for any simply shaped square or

polygonal straight conductors, as well as for circular coils of a single

layer, wound with wires of circular, square, or polygonal cross

sections.


