
ON THE THEORY OF THE MATTHEWS AND THE RUSSELL-
LEONARD PHOTOMETERS FOR THE MEASUREMENT
OF MEAN SPHERICAL AND MEAN HEMISPHERICAL
INTENSITIES.

By Edward P. Hyde.

I. Introduction.

Much attention has been given in the last few years to the develop-

ment of photometers designed for the measurement of mean spherical

and mean hemispherical intensities of light sources. Among other

instruments of this type that have appeared may be mentioned par-

ticularly the two instruments ^ designed by Matthews, and the more
recent instrument* of Leonard, based on theory first given by Russell/

In each of these photometers mirrors are employed in order to pro-

ject upon the photometer screen light emitted by the source at various

inclinations to the vertical axis, but in each instrument a different

method is used for weighting the light from each mirror, so that in

the summation the light from each mirror shall be diminished in pro-

portion to the area of the zone in which the mirror lies and for which

it is supposed to give the mean value.

In the Matthews integrating photometer for incandescent lamps the

light from each mirror falls upon the screen at an angle of incidence,

90°—^,^ which is the same as the angle between the horizontal direc-

tion and the line joining the mirror in question with the light source.

The area of a zone of latitude 90°—^ is proportional to sin 6^ and the

intensity of illumination produced by light incident at angle 90°—^ is

«Tmns. Amer. Inst, of Elec. Eng., 18, p. 677, 1901; 20, p. 1465, 1902.

^ L'lfeclairage Electrique, 40, p. 128, 1904.

c Jour. Inst, of Elec. Eng., 32, p. 631, 1903.

c^In order to make the use of "6" in this connection consistent with its subsequent

use in the paper, it is necessary to denote the angle of incidence by "90°—6" instead

of by ''6."
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cut down in the ratio of l:sin ^; therefore, the light from each mirror

produces an illumination of the screen proportional to the area of the

zone in which the mirror lies, and hence receives its proper weight in

the summation. In the integrating photometer for arc lamps, how-

ever, the light from each mirror is incident upon the screen at the

same angle, but between the screen and the circle of mirrors is inter-

posed a circular glass disk divided into as many sectors as there are

mirrors, and having each sector so smoked that its coefficient of trans-

mission is proportional to the cosine of the angle, 90°— ^, between the

horizontal direction in the plane of the mirrors and the line joining

the light-source with the mirror to which the sector in question corre-

sponds. In this way the light from each mirror is cut down in the ratio

of 1 : sin ^, and therefore receives its proper weight in the summation

for the mean spherical intensity.

It is to be especially noted that in the theory of each of the above

instruments the surface of the unit sphere is divided into an integral

number of zones, not of equal area, but of equal arc, so that the area

of each zone is proportional to sin ^, and to each zone a mirror is

assigned. Suppose, now, that instead of dividing the surface of the

sphere into zones of equal arc we divide it into zones of equal area,

and in each zone place a mirror in such a position that it gives the

mean value of the intensity for the zone in which it lies. Under these

circumstances the light from each mirror, since it stands in every case

for a zone of the same area, is to be given the same weight in the

summation for mean spherical intensity, and consequently no further

weighting is necessary.

This principle is made use of in the instrument of Leonard, though

it was Russell who first suggested that in the determination of mean
spherical and mean hemispherical candle-power by a number of read-

ings at intervals in the vertical plane, the readings be made, not at

equal angular intervals, as is ordinarily done, but at intervals corre-

sponding to the middle points of successive zones of equal area, so

that the unweighted arithmetical mean of the various readings may be

taken as the mean spherical intensity of the source.

It was the original intention of this paper to present a more com-

plete theoretical discussion of the Matthews integrating photometers,

particularly of the instrument intended for incandescent lamps and

sources of like intensity, as it was in connection with the design of

such an instrument for the Bureau of Standards that this investigation

was undertaken. Since, however, the Russell-Leonard instrument

ma}^ be treated in an entirely similar manner, we shall conclude the

paper with a brief theoretical discussion of this new type of photo-
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meter, as applied both to arc lamps and to incandescent lamps and

sources of like intensity.

In the theoretical discussion of the Matthews integrating photom-

eter for incandescent lamps, as given by Professor Matthews before

the American Institute of Electrical Engineers, the assumption is

implicitly made that eleven pairs of mirrors placed every 15° (the two

end pairs at 0° and 180° being omitted) will yield a value of mean
spherical candle-power which will agree with the true integral solution

to within a negligibly small error. Earlier, in describing his integrat-

ing photometer for arc lamps. Professor Matthews makes a definite

statement to this effect, and adduces as evidence values computed

from the hypothetical intensity curve

Iq—Io sin B

Thus, starting with the two equations for the mean spherical candle-

power, the exact integral equation

1 T"
Im.,—-7:. I I9 sin d.=ljh si

and the approximate equation

he computes first the true mean spherical candle-power for the dis-

tribution Ie=Io sin ^ hy integration, as follows:

Z. ,=^ fie sin d 0=^ Tsin 'Ode

= .785 7^=78.5 when 7^=100.

He then computes the approximate value from the expression

/^-^^^:/.sin^=g<sin^^

for n=U and 6=0'', 15°, 30°, .... 180°, obtaining as before

7^=. 785 7,-78.5.

As a result of this agreement between the integral and the summa-
tional values, the conclusion is drawn that a mirror every 15° is

entirely sufficient to give an approximate value which will differ from
the true value by a negligibly small error. Now, although it is per-

fectly allowable to apply results obtained from a hypothetical intensity
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curve to actual intensity curves agreeing more or less closely with it,

it can not be assumed that because the integral and summational values

agree quite closely for one form of intensity curve that the same agree-

ment can be expected in the cases of intensity curves of different

forms. In fact, as will be shown later, there is an error of over 2 per

cent entering when we apply the above sunomational expression to the

intensity curve

l0=I^ cos 6.

In the second place it is interesting to note that the hypothetical

intensity curve which happened to be chosen in order to show that

eleven mirrors are sufficient to give a summation very close to the

integral value, will show equally well that any number of mirrors

whatever, arranged at equal angular intervals beginning at 6=0^ and

ending at d—n will give absolutel}^ the true result. This follows

from the equation

m=l

which can be proved as follows:

In order to get rid of the square, put

-, 2mTT1— cos . . ^

sm" — =-—-cos
n 2 2 2^-

Then the sum

^rV=2-2^r"^m=l m=l

For convenience, put ^=— so that
n

cos = cos 7nq>
n

We shall now evaluate
TO=n

2 COS m<l>

771= 1

Introducing the complex expression

COS ni(/>-\-i sin m^=6^^*
we have

X COS m(/> = real part of v^*"^*

m—

1

m=l
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Now the sum of the geometric series

= (cos ^-^i sin ^)

the real part of which reduces to

1— cos n(j)—l sin rn^

1— cos (f)—i sin ^

cos ^+cos 71^— cos (^+1) ^—1
2 (l-cos (t>)

If, now, we put for # its value, , we obtain

real part of :2e^rn<i,—;2 ^^^ =0

Therefore,

^^ .
^mn n 1 ^^ ^mn_n2 sm'^ — o~9 -^ cos —— -o

From this it follows that

Hence we see that if we should divide the sphere into but two zones,

placing a single mirror-pair at ^=90°, we would still obtain exactly the

true integral value for an intensity curve of the form Iq—Iq sin ^, so

that no definite information with regard to the necessary number of

mirrors can be obtained from the consideration of this intensity curve

alone.

II. General Theory.

We shall now pass on to a more complete discussion of the problem

of the number of mirrors and their positions on the arc, with par-

ticular reference rather to the integrating photometer for incandescent

lamps than to the instrument intended especially for arc lamps, since,

as stated above, it was in connection with the design of an instrument

of the former type for the Bureau of Standards that these computa-

tions were made.

Returning to the two equations for the integral and the approximate

summational values of the mean spherical intensity,

—

(1) 4,. = ^/,.in^rf^
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(2) 1^=^^^ lesmd,
2n

to which may be added the corresponding expressions for mean
hemispherical intensity,

—

(^) ^mhs — ILr7>. = I 2 I^sinddO

W 7^;^ = ^:^ '7, sin ^

we note that the underlying assumption in passing from the integral

to the summational expression is that for each zone, -,

(5) Iq sin ^= constant

or, what amounts to the same thing, that 6^ has been so chosen for

each zone that le^ sin 6^ gives the mean value of le sin 6 for that zone.

Suppose, then, that from a previous decision with regard to the gen-

eral dimensions of the instrument to be constructed the number of mir-

rors is determined, the problem consists in so arranging the mirrors

that each mirror produces an illumination of the screen that in a way

gives the mean for the respective zone, — , in which it lies. Thus we

divide the semicircumference into n equal arcs, — , and to each arc
n

we assign a mirror. This mirror should be placed in its arc in such a

position that, so far as possible, it will produce on the screen the mean
illumination of the arc. Of course the arrangement of the mirrors

would in general be different for each different intensity curve, but

we seek to determine which arrangement of mirrors will most nearly

satisfy all the more ordinary forms of intensity curves with which we
have to deal in the photometry of incandescent lamps and sources of

like intensity, such as the Nernst lamp. Obviously, in general it

would be undesirable to place the mirrors at the divisions between

successive zones. This, however, is what the arrangement in the

Matthews instrument as ordinarily constructed would amount to if we
attempted to use it for the determination of mean hemispherical inten-

sities, as the horizontal mirrors would be giving the illumination of

the zone ^=90° to ^=90*^— —. When used for mean spherical deter-
n
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minations it would seem that the same objection could be ur^ed, because

of the two end mirrors at 6=0^ and 6=^7t; but in this case we can

assume that each mirror gives the mean value of the zone of which it

lies in the center, in which case the illumination produced b}^ each end

mirror would have to be divided by 2, since it represents only a half-

zone. But since at this incidence (90°) there is no illumination at all

produced by these end mirrors in the hypothetical case of a point

source, no error is introduced by the incorrect weighting of the end

mirrors, for in all cases the effect is zero. (In fact these end mirrors

are left out entirely.)

Let us now take several simple, hypothetical curves which are more

or less t3^pical of the actual intensity curves of the more ordinarj^

sources, and let us determine for each the distribution of mirrors

which will give the true mean spherical value for that case, supposing

the semicircumference divided into 20 zones, as that is the number
of mirror-pairs determined upon for the instrument under construction

at the Bureau of Standards. Let us then apply the true distribution

for each individual curve to the other hypothetical intensity curves

under consideration, to see how closel}^ it satisfies them; and, finally,

let us see how nearl}^ an equal distribution of mirrors satisfies each

case, taking both of the equal distributions (for 20 mirror-pairs) 0°, 9°,

18° ... . 180°, and 4i°, 13i°, 22^° .... I75i°.

It may be well to call attention here to the advantages gained by
dividing the semicircumference into an even number of arcs, and by
avoiding such a use of fractions of an arc as is made in the Matthews
instrument unless we assume the mirrors of that instrument to be at

the divisions between the consecutive arcs, as was pointed out above.

If we divide the semicircumference into an even number of arcs and

begin counting whole arcs at 6—0^ we shall then have a whole number
of arcs between ^=0° and (9=90°. The advantage of this is that mean
hemispherical as well as mean spherical candle-power readings can be

made, if in each arc a mirror is so placed as to give the mean value for

that arc. Hence, since we have divided the semicircumference into

20 whole arcs, and have assigned a mirror to each arc, every distribu-

tion of mirrors which we shall find in the following investigation will

be equall}^ applicable to both mean spherical and mean hemispherical

determinations. The equal distribution 4^°, 13^° .... 175i° also

will be applicable to either mean spherical or mean hemispherical

measurements, but the equal distribution 0°, 9° . . . . 180°, having

one mirror at ^=90°, will only be applicable to mean spherical

measurements for the reasons given above.

It may be urged as a practical objection to omitting the mirror at
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^=90^ that the adaptability of the instrument to horizontal measure-

ments is thus destroyed. There seems, however, to be no reason why
an extra mirror-pair could not be placed in the horizontal position,

keeping it covered during mean spherical determinations. In fact, this

would seem preferable to the constant removal and use of the hori-

zontal mirror-pair of the spherical system.

To return to the consideration of the different intensity curves, if

the limited number of mirrors is to give the true integral value for

any intensity curve, we must assume that each mirror gives the mean
value of le sin 6 for the arc in which it is placed. We must, there-

fore, in order to get the true distribution of mirrors, divide the

semicircumference into n equal arcs and then find the mean value

of le sin for each arc. If the equation of the intensity curve is

(6) Ie=f{ff)

then the mean value of le sin 6 for an arc, - , is
n

flesinSd 6 ff{6)smede
mean [I^ sin ff]— ^

J n

(7) =^ f(e)smeds

where m indicates the order of the zone beginning at ^=0°.

If now we were to take the average of all of these means we should

get the same result as the true total integral mean, which is

(8) mean [/, sin ^=^L_ =1 / f{6) sin d 6

I d 6
""^0

Jo

In order, now, to find the angular positions of the mirrors corre-

sponding to the solution, we must evaluate the integral of equation

(7) for each zone and then solve for 6„^ in the equation

(9) Ie„, sin e^=f(6J sin 6^=1 / f (0) sin 6 d 6

(m-D-

If we placed the mirrors at the angles found, then for that particu-

lar intensity curve we would get the true mean spherical intensit3^
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Let us now consider several typical cases:

CASE I.

(10) h— constant= 1

This curve corresponds approximately to the intensity curve of a

"flattened oval" or of a "spiral" filament. The integral solution is

[eq. (8)]

mean

(11)

^_1 fsin e dS

4 [- ^1=1=0-6366

Fig. 1.

For 20 mirrors the angular distribution would be [eq. (9)]

h^ sin ^^=sin /?^=^ / f {0) sin BdO:
20

sinOdO
{m-D'L (w-1)

(TO-1)20

(12)

from which

(13)

=20 rcos^i

(w-l)20

^.=-- '4 [cos.]^^

The solution to this case is given in column III of Table I, which is

self-explanatory. In columns I and II are given the two equiangular
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distributions. In columns III, V, and VII are given the angular dis-

tributions of mirrors satisfying cases I, II, and III, and in columns

IV, VI, and VIII are given the angles through which the mirrors

must be shifted from the middle points of the arcs in order to give the

true results for cases I, II, and III, respectively. Values of angles

in the quadrant 6^=90° to ^=180° are merely the supplements of

those given in the table, and are hence omitted.

(14)

CASE II.

Iq—^ a sin ^=sin 6

This curve corresponds approximately to the intensity curve of a

"hairpin" or "horseshoe" filament. The integral solution [eq. (8)] is

mean [/asin e\-=^ {/{d) sin B d 8=^ fsin'O d 6

=^r^-sin 6 cos ^T=^X ^=0.5000

For 20 mirrors the angular distribution would be [eq. (9)]

(15)/,^sin^^=sin^^^-^ / sin^^ ^ ^^-f^-sm ^ cos ^1
''

(m-l)
20

which

e„=sin- — ^— sin 6 cos 6
7t\_

20

Fig. 2.
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The solution to this case is given in column V of Table I.

CASE III.

(17) L =2^ COS ^=cos e

This curve corresponds approximately to the intensity curve of a

Nernst or of a "meridian" lamp.

The integral solution [eq. (8)] is

IT TT TT

(18) mean[7,sin^]==ip'(^)sin6'(:?6'z:.i rco8 6'sin^^^=^rsin^^~|
'

= - = 0.3183
n

For 20 mirrors the angular distribution would be [eq. (9)]

cos Q d d
1 20

(19) I,^ sin <9^=sin B^^ cos ^^=^ sin 2 ^.«=— / sin d c

/(».-i)fo

(?nr-l)2Q

from which

(20)
. 1 . _, 2or . , rr^^

1_ -J(m—

1

(m-l)2o

The solution to this case is given in column VIl of Table I.

Having determined the actual distributions of mirrors for cases I,

II, and III, the distribution for each case was tried in the other two

cases, and the two equal distributions were also tried in each of the

three cases.
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Table I.— Various distributions of mirrors.

Equiangular
distributions.

Distribu-
tion satisfy-

ing case I.

Column
III minus
column II.

Distribu-
tion satisfy-

ing case II.

(J0=sin 6)

Column y
minus

column II.

Distribu-
tion satisfy-

ing case III.

(/0=cos 6)

Column
VII minus
column II.

0° 4^ 4° 30^ - 0^ 5° 10^ +40' 4° 29' - 1'

9° 13^ 13° 29^ - V 13° 44^ +14' 13° 26' - 4'

18° 22^° 22° 29^ - V 22° 37^ + 7' 22° 23' - 7'

27° 31^ 31° 28^ - 2' 31° 33^ + 3' 31° 16' -14'

36° 40i° 40° 27^ - 3^ 40° 31^ + y 39° 49' -41'

45° 49^ 49° 26^ - 4^ 49° 29^ — V 50° 12' +42'

54° m° 58° 24^ - 6^ 58° 26^ — 4' 58° 44' +14'

63° 67^° 67° 21'' - 9' 67° 23^ - 7' 67° 37' + 7'

72° 76r 76° 16^ -W 76° 16^ —14'* 76° 34' + 4'

81° 85r 84° 48^ -W 84° 50' —40' 85° 31' + y
90°

Table II.—Results obtained by applying the various distributions of mirrors to each of the

three ca^es.

-

Intensity curves
considered.

In-

solu-

tions.

Equiangular
distribu-

tions of mir-
rors.

Solu-
tion

of case
I.

Solu-
tion

of case
II.

Solu-
tion

of case
III.

Appli-
cation
of equi-
angu-
lar dis-

tribu-

tion 0°,

15°,

30°, etc.

(Mat-
thews'

8

0°, 9°,

90°.'

4F,
13J°

85r".
case).

Case I.... J^=constant=l .6366 .6353 .6373 .6366 .6388 .6368 .6330

A=13 A=7 A=0 A=22 A=2 A=36

Case II... 7^=2 a sin 6=sin 9.

.

.5000 .5000 .5000 .4990 .5000 .5000 .5000

A=0 A=0 A=10 A=0 A=0 A=0

Casein.. Iff=2 a cos 9=cos 6.

.

.3183 .3157 .3196 .3213 .3230 .3183 .3110

A=26A=13 A=30A=47 A=0 A=73

In Table II are given the results of applying the ^ve different dis-

tributions to each of the three intensity curves considered. Column
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II contains the equations of the intensity curves of the different cases;

column III contains the true integral values; columns IV and V give

the results of applying the two equal distributions to each of the three

cases; columns VI, VII, and VIII give the results of applying the dis-

tributions of cases I, II, and III to each of the three cases; and, finally,

column IX gives the results of applying the equiangular arrangement

of eleven mirrors to each of the three cases, in order to see how accu-

rately the Matthews photometer, as ordinarily constructed, gives the

mean spherical value. In each column the differences, A, between the

values found and the true integral values are given.

From a consideration of Table II it seems clear that the distribution

of mirrors corresponding to case III satisfies all the cases most com-

pletely, the greatest error being well under 0.1 per cent. The equal

distribution 4^°, 13i^, .... lT5i^, however, is very satisfactory,

the greatest error being about i per cent. The equal distribution of

eleven mirrors every 15° (0°, 15°, 30°, .... 180°), may give errors

amounting to over 2 per cent.

It is impossible, of course, to take into consideration all the actual

forms of intensity curves existing, but it would seem that a distribu-

tion of mirrors which will satisfy the three typical curves considered

would also satisfy any of the ordinary forms of curves with which we
are familiar in the photometry of such sources as incandescent lamps.

For example, the empirical curve of the "downward light" lamp
coincides with the ellipse

so closely that it is scarcely possible to detect any difference between

the two curves platted to the scale of a— 4: cm. Now the true integral

value for the above ellipse is 1.Y22, whereas the value obtained by
applying the distribution of case III comes out 1.723.

Thus we see that twenty mirror-pairs properly distributed are

entirely sufficient theoretically to give mean spherical, and at the same
time mean hemispherical candle-power values to within an error well

under that which could be detected in making a setting under the most

favorable conditions.

III. General Theory of the Russell-Leonard Photometer.

As before, let

(21) !>=/(&)

be the equation of the intensity curve in any vertical plane through

the source, assuming the surface of distribution of intensity to be one

5834—No.
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of revolution around the vertical axis, which is taken as the axis of

the lamp in every case.

Then the flux across any zone, d ^, of the unit sphere is,

(22) Z^=2 n I^ QmSdO

the total flux is,

(23) Z,= p TT I, sine d6

and hence the mean spherical intensity is,

(24) In.=^=l£le^inede

Similarly, the mean hemispherical intensity is,

rr

1 r^
^mht — 2^j^27r Iq sin d 6

IT

(26) =jj, sine d6

or, in general, the mean intensity for any zone ^^_i to ^^ is,

27r le sin 6 d / le sin 6 d 6
In

T ty "m-x —

-

C/ ^m-\

27t8m 6 d 6 cos 6

W =
cos 6>,_:-cos ^, /

^^«i°^«^

If, now, we divide the surface of the sphere into n zones of equal area,

the mean spherical intensity is given by the equation

-| m=n In 1 / w
(27) I^= - ^Iraz=n \ cos ^^_i-cos d^ j

I^ sin Bde

in which m indicates the order of the zone, counting from ^=0'', and

the limits of integration for the several partial integrals are the angles

corresponding to the circles of division between the successive zones.
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Suppose, now, that we place a mirror in each of the n zones and

let the light from these mirrors fall directly upon the photometer

screen. It is evident that the illumination produced on the screen is

n times that which would be produced by a source having an intensity

in the direction of the screen equal to the mean spherical intensity of

the lamp under test, assuming that the summational value differs from

the true integral value of the mean spherical intensity by a negligibly

small error. This error, however, depends greatly of course, as we
saw above, upon the form of the intensity curve, but just as in the

theory of the Matthews's instrument, for any one simple form of curve

assumed, it is not difficult to determine the position of each mirror in

its respective zone, so that the intensity given by the mirror is exactly

equal to the mean intensity of the zone in which it lies.

Thus, if we know the intensity curve

we determine 6^ for each zone, so that

(28) ^.=/(^:)= ,,, gj_,,, e^ fm sin ^ ^ ^

Then the intensity at each angle, ^^, will be the mean intensity for

the respective zone.

If, now, we place a mirror at each angle, ^^, as determined from

the previous equation, assuming the form of intensity curve, then the

mean value of the several intensities as given by the various mirrors

will exactly equal the mean spherical intensity of the source, provided,

of course, that the source has the same form of intensity curve as was

assumed in the calculation of ohe various angles, 0^.

IV. Application of the Russell-Leonard Photometer to Arc
Lamps.

As the Russell-Leonard photometer is of the same general form as

the Matthews arc lamp instrument, with the important point of differ-

ence that in the former instrument the objectionable smoked disk of

the Matthews photometer is eliminated, we shall briefly consider first

the distribution of mirrors which must be made in the Russell-Leonard

photometer, in order that in the photometry of arc lamps it may yield

a summational result agreeing as nearly as possible with the true integral

value.

We must first decide upon the dimensions of the instrument to be

designed, the size and number of the mirrors, etc., which will depend

to a great extent upon the accuracy that we desire to obtain. We then
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divide the sphere into the number of zones decided upon, determine

the limiting angles between the successive zones, and with the use of

eq. (28) calculate the angle, ^J^, for each zone corresponding to the

mean value of the intensity for that zone, upon the assumption of the

polar equation of the intensity curve of the arc. Though this equation

is not the same for different kinds of arc lamps, or even for different

vertical planes of the same arc at any one time, yet we can assume a

hypothetical curve which will correspond more or less closely with the

different curves met with, since all the curves for arc lamps are of the

same general type, with a maximum at about ^=45^ or 50° and falling

off rapidly toward ^=0° and ^=90*^. If the arc is surrounded by a

globe that scatters the light, the curve approaches more nearly to a

circle with the source at the center, and since any arrangement of

mirrors within the arcs of equal area will necessarily give absolutely

the true result for a source having the same intensity in all directions,

a distribution of mirrors which will satisfy any definite intensity curve

will not yield very large errors if that curve is made to approach a

circle with the source at the center. Hence, if we were to take the

typical curve for a direct-current open arc, and determine the mirror

arrangement satisfying this case, the errors that would arise on using

the instrument for the inclosed arc would be relatively small; and,

moreover, since the instrument is symmetrical with respect to the

horizontal direction, it would be equally applicable to the alternating-

current arc, whose intensity curve is approximately the same as that

of the direct-current lamp, except that the distribution in the lower

hemisphere is repeated in the upper one.

Let us then, as a first approximation, assume that the intensity

curve is an ellipse with the major axis inclined at 45° to the vertical,

and with one end of the major axis coincident with the source (fig. 4).

Fig. 4.

The equation, expressed in rectangular coordinates, is
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Now the mean intensity for any zone, ^m-i~^m) is given by eq. (26),

1 r\
-i-cos^^ / ''

^-=
cos^. '

^'^'"''^^

If we make i^ equal to the radius vector of the ellipse given by
eq. (29), we get, on transforming to the variable, go,

/oQ\ T ab^^2 / cos ^cej— sin go cos go ^^^ ^m.
cos(45«-ft?;,,_i)-cos (45«—c»J / J^ cos ^c^+^^sin '^g?

^"^

which on integration becomes

t/ GO

(31) 2mz-[a'-I>'] [cos (45«-G^,,,^,)-cos (45«- goJ]\_ I
^^"

I
*^^ ^

I
log] («^-J^) sin^ ci?+2>4 1^-2

If, now, we determine upon eight zones, the limiting values of 6 are

obtained by evaluation of the equations

^^:=COS-^ 1=0°
6',=cos-^ f==41° 25'

(B2) ^2=cos-^ i=60o
^3=cos-^ i=75° 31'

^^=cos-^ = 90°

from which the limiting values of go can be calculated from the equation

(33) G?=45°-^

Moreover for eight zones

(34) cos^„,_i-cos <9^=cos(45°— G^^-i)— cos(45°— c»J= -

If , now, W£ take the seminiajor axis equal to unity, and the semi-

minor axis equal to one-third,—a ratio quite closely in accord with

observation—we obtain

(35) 43=^r3 tan-^ 3 tan Gi-Go-^\og ijs sin^ g^+i|"|

If we evaluate this expression for each of the eight zones, or, since

there is perfect symmetry with respect to the horizontal axis, for each
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of four zones, and then substitute successively the values obtained in

the equation

(36) ^,,,,=45°-cos-^^(^v/72/L4-l-l)

mzwhich is easily deduced from the equation of the ellipse, putting TJ.

for the radius vector, we get as the angles to which the mean radii

vectores of the several zones of equal area correspond

^/= 28<^ 51'

(37) ^/= 520 33'

^3' = 67° 23'

^,'= 82° 20'

If, now, we were to place a mirror at each of these angles, both above

and below the horizontal axis, but only on one side of the vertical

diameter, then for a source having an intensity curve identical with

the assumed ellipse, the mean value of the intensity from the eight

mirrors, obtained by dividing the sum of the intensities from the mir-

rors by eight, would exactly equal the mean spherical intensity of

the source, provided, of course, that the surface of distribution of

intensity is a figure of revolution around the vertical axis. This is

never the case, and since, in general, when the maximum curve is on

one side of the arc the minimum curve is on the other side, by placing

eight other mirrors on the other side of the vertical diameter at the

same angles as those already located, the mean intensity in the com-

plete vertical plane is obtained, which will be more nearly equal to

the mean spherical value than the value obtained from mirrors on one

side of the vertical diameter only. In order to obtain mean spherical

values of any considerable accuracy the mean of a great number of

determinations of the mean vertical intensit}^ must be taken.

In a similar manner mean hemispherical determinations can be made
if the surface of the sphere is divided into an even number of zones,

as was pointed out above in the discussion of the Matthews instrument.

The typical curve of the open arc does not correspond exactly with

such an ellipse as assumed in the preceding discussion, but the errors

in arc-light photometry are in other respects necessarily so large that

the difference between the true mean value for a vertical plane and

that given by the mirrors arranged to satisfy the ellipse distribution

will in general be much smaller than the other errors incident to

the measurement. If a closer agreement between the integral and

summational values of the arc is desired without increasing the number
of mirrors, it would be necessary to investigate in detail the typical curve
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of the arc, and from this curve to compute the angles corresponding

to the true distribution of mirrors.

In order to determine the magnitude of the error that would arise

if the form of intensity curve differed to any extent from an ellipse,

the distribution of mirrors satisfying the ellipse was applied to the

two curves,

(38) 7^== sin 6

and

(39) /,=co8 d

The true integral means of these are, respectively, [eq. (24)]

IT

(40) 1^=^ fie sin d 0= fkn' d d ^=.7864

IT

(41) ^rr^'=^\ f^e si^ Ode= fsin 6 cos 6 d ^=.5000

whereas the values given by one-fourth of the summations of the

sines and cosines, respectively, of the angles of eq. (37) are

/„=.7976
/^=.5005

which are in error by 1.6 per cent and 0.1 per cent, respectively.

V. Application of the Russell-Leonard Photometer to

Incandescent Lamps.

In the application of the Russell-Leonard photometer to incandes-

cent lamps the problem is just the same as in the application to arc

lamps, except that here we seek the distribution of mirrors that will

satisfy the three intensity curves

Case I Iff = constant

Case II Iff =sin 6

Case III Iq =cos

Any distribution of mirrors which will satisfy these three cases will

yield very small errors when applied to any actual curves. Moreover,
since any distribution of mirrors in zones of equal area will satisfy

case I, we simply have to determine the distribution most nearly satis-

fying cases II and III.
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The true integfral values for cases II and III, respectively, are [eqs.

(40) and (41)]

7^=.7854
7^=.5000

If we divide the surface of the sphere into twelve zones instead of

eight, the distribution of mirrors satisfying case II, as determined by
evaluation of eq. (28) for each of the twelve zones, after putting forf(6)

its value sin (9, gives an error of 1.0 per cent when applied to case III.

Similarly the true distribution for case III gives an error of 0.7 per

cent when applied to case II. If, however, we take a distribution of

mirrors intermediate between the two true distributions, i. e. , if we
take

^1= 22° 47'

e,=4:i'' 14'

(^3= 54° 15'

(42) 6',= 65° 14'

^5=75° 20'

^e= 85° 8'

the error is divided between the two cases, so that the summational

values for cases II and III are, respectively,

7^=.5025

the corresponding percentage errors being 0.4 percent and 0.5 percent.

We have divided the surface of the sphere into 12 zones in this case,

as compared with 8 in dealing with arc lamps, because in the first

place a higher accuracy is obtainable in the photometry of incandes-

cent lamps, and, secondly, if the incandescent lamp is rotated, 12

zones demand only 12 mirrors which can be arranged around the

whole circle, whereas 8 zones demand 16 mirrors in the arc-light photom-

eter,—8 mirrors on each side of the vertical diameter. Thus, for incan-

descent lamp work, 12 mirrors, each 6 inches broad, can be arranged

in a circle of 3 feet diameter, and yield a result accurate to within

about 0. 5 per cent for lamps of various intensity curves, whereas the

Matthews instrument, as at present constructed, gives an error of

over 2 per cent (Tabe II) when applied to the lamp having the

intensity curve I^ = cos 0.

It has not been the intention, in this discussion of the Russell-

Leonard photometer, to make the treatment exhaustive, but rather to

suggest the method which can be applied to locate the mirrors in the

zones after the uses to which the instrument is to be put and the con-

sequent general dimensions of the instrument have been determined.
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