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ABSTRACT 1 

This draft provides voluntary practices for automated benchmark evaluations of language 2 

models and AI agent systems. It structures the practices in three stages: (1) defining the 3 

measurement target, (2) implementing and running the evaluation, and (3) analyzing and 4 

reporting the results. The report provides best practices at each of these stages and presents 5 

key terms and concepts in a glossary as such terms are used in the academic literature. As the 6 

science of AI measurement is rapidly developing, the guidelines presented in this document are 7 

offered as a preliminary set of best practices that will be updated on as the field advances. 8 

KEYWORDS 9 

artificial intelligence; evaluation; benchmark; large language model; chatbot; agent. 10 
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best practices and voluntary standards for AI systems. Secretary Howard Lutnick directed CAISI 15 
within NIST to develop guidelines and best practices to measure and improve the security of AI 16 
systems. President Trump’s AI Action Plan tasked CAISI with publishing guidelines and resources 17 
for Federal agencies to conduct evaluations of AI systems. Executive Order 14303 directed 18 
Federal agencies to promote "gold standard science" that is, inter alia, reproducible, 19 
transparent, and communicative of error and uncertainty. 20 
 21 
Nothing in this document should be taken to contradict standards and guidelines made 22 
mandatory and binding upon Federal agencies by the Secretary of Commerce under his 23 
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and Budget, or any other Federal agency or official. 26 
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INTRODUCTION 1 

This draft document identifies practices for conducting automated benchmark1 evaluations of 2 

language models and similar general-purpose AI models that output text (herein “AI models”). 3 

Evaluations of these models, often embedded into systems capable of functioning as chatbots 4 

and AI agents, are increasingly common. However, consistent practices to support the validity 5 

and reproducibility of such evaluations are only beginning to emerge. The practices presented 6 

in this document are intended to reflect best practices; where relevant, practices that are 7 

relatively less mature in ecosystem use are labeled as emerging practice. This report supports 8 

NIST and CAISI efforts to develop guidelines and resources for Federal agencies to conduct 9 

evaluations of AI systems, as called for in the AI Action Plan [1]. It is informed by CAISI 10 

evaluations of AI models in partnership with leading U.S. AI industry organizations and CAISI 11 

research on measurement science, and will be subsequently informed by feedback via public 12 

comment. 13 

This report is scoped to automated benchmark evaluations—evaluations that, once set up, can 14 

be run without any additional human input. The report focuses on using these evaluations to 15 

measure model capabilities, although many practices also apply to evaluating other behavioral 16 

properties of models (e.g. robustness). The document provides practices to implement and 17 

report on existing benchmarks to meet organizational needs, rather than practices to create 18 

new benchmarks. It does not provide guidelines for roles, resources, responsibilities, or other 19 

enabling practices for performing AI evaluations within an organization.2 Future work may 20 

address benchmark development and practices for other types of AI evaluations. 21 

The purpose of this report is to support practitioners in defining evaluation objectives; in 22 

selecting, implementing, and running evaluations to meet those objectives; and in analyzing 23 

and reporting on evaluations in a manner that enables reproducibility and valid interpretation 24 

of results. Not all evaluation objectives can be met by automated benchmark evaluations. Table 25 

I.1 provides some considerations for practitioners deciding when to use automated benchmarks 26 

rather than other evaluation methods (e.g., red teaming, human-subject experiments, field 27 

testing, and post-deployment monitoring) to assess model capabilities on a given task. 28 

The primary audience for this document is technical staff at organizations conducting AI 29 

evaluations. These include AI deployers, developers, and third-party evaluators that may be 30 

based at companies, government agencies, academia, or other organizations. Additionally, 31 

anyone reviewing an evaluation report or model card may benefit from evaluator 32 

 
1 Terms defined in the Glossary are underlined. If a term appears multiple times, it is underlined only 
once per section. 
2 On such topics, practices may be obtained from NIST AI 100-1 [2] and NIST AI 800-1 [3].  
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implementation of document practices. Such readers may include business decision-makers, 1 

technical integrators, end consumers, or procurement officers seeking information with which 2 

to select an AI model for integration or use. When AI evaluation organizations implement the 3 

practices provided in this report, this secondary audience may be able to better understand and 4 

use evaluation results.  5 

Table I.1. Characteristics of evaluations suited for automated benchmarks vs. other methods. 6 

Automated benchmarks are not well-suited for all use cases. 7 

Evaluations suited for automated benchmarks are: Evaluations suited for other evaluation methods are: 

Structured and verifiable: a set of relevant, discrete 

tasks and corresponding test items with known or 

automatically verifiable solutions can be identified 

within the subject or domain of evaluation. 

Open-ended or subjective: the evaluation domain 

cannot be divided into discrete tasks, and/or it is 

difficult to define objective grading criteria or 

verification procedures. 

Time-invariant: tasks and their success criteria remain 

relevant and realistic over time. 

Dynamic: realism and relevance of tasks may shift 

rapidly. 

No human in the loop: tasks may be accomplished 

without iteration with the AI system operator(s). 

Human in the loop: tasks require repeated interaction 

or open-ended use, and/or the evaluation objective 

intends to measure the AI system in conjunction with 

human operator(s) or other affected parties. 

Outcome-oriented: the question of whether or not the 

model can accomplish certain tasks and/or the 

manner in which it behaves are of primary concern. 

Process/interpretability-oriented: the process by which 

the model carries out tasks and/or reasons for model 

behavior are of primary concern. 

Resource-constrained: all else equal, an automated 

benchmark may be less costly and time-intensive than 

other evaluation methods. 

Comprehensive: conducting evaluations via multiple 

methods and modalities (e.g., automated 

benchmarking, human red-teaming, field testing, etc.) 

may be more expensive but can improve assurance. 

Each section of this report details a stage in the evaluation process, providing best practices and 8 

specific examples. The report is organized into the following sections: 9 

1. Define Evaluation Objectives and Select Benchmarks 10 

2. Implement and Run Evaluations  11 

3. Analyze and Report Results 12 

 13 

Readers unfamiliar with AI measurement concepts may benefit from consulting the Glossary in 14 

the Appendix as they read this document.  15 
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1. DEFINING EVALUATION OBJECTIVES  1 

       AND SELECTING BENCHMARKS 2 

The first stage in effectively evaluating AI capabilities is to select benchmarks3 that suit the 3 

evaluator’s purposes, divided here into two high-level practices: 4 

1.1. Define evaluation objectives. 5 

1.2. Select benchmarks that meet evaluation objectives. 6 

The design, execution, and reporting of an evaluation all depend on the evaluation objectives, 7 

including what should be measured (the measurement construct) and intended uses for the 8 

results produced. Possible uses of benchmark evaluation results could include: 9 

● Informing or assessing decisions made while developing an AI system, such as what 10 

algorithms or data to use to train systems. 11 

● Assessing whether an AI system is fit to use in a specific scenario. 12 

● Comparing AI systems to decide which are most suitable for deployment. 13 

● Assessing the efficacy of deployment configurations or of mitigations intended to 14 

address security, criminal misuse, or other risks. 15 

● Validating that an AI system has been deployed and configured properly. 16 

● Informing predictions or forecasts of the real-world impacts of an AI system. 17 

See Table 1.1 for select evaluation objectives and relevant considerations for benchmark 18 

selection. 19 

Table 1.1 Possible benchmark fit assessment for example evaluation scenarios. Based on how 20 

the evaluation will be used and what should be measured (Practice 1.1), the evaluator assesses 21 

what a candidate benchmark measures (Practice 1.2.1) and whether it relates to the evaluation 22 

objectives (Practice 1.2.2). 23 

Example evaluation objective  
 

Possible 
benchmark 

 
 

What the benchmark measures 

 
 

Conceptual fit 
assessment How 

measurements 
will be used  

What is measured 

AI developer 
looking to evaluate 
training progress 
(on multiple choice 
science question 
answering) 

Graduate-level 
chemistry, biology, 
and physics 
multiple choice 
question 
answering 

GPQA- 
Diamond 
[4] 

Accuracy of answering a selection of 
multiple (4) choice questions 
intended to be difficult to answer 
even with internet searches, 
developed and validated by PhD 
students or graduates in the fields of 

Benchmark 
directly 
measures the 
construct of 
interest in the 
setting 

 
3 Terms defined in the Glossary are underlined. If a term appears multiple times, it is underlined only 
once per section. 
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accuracy chemistry, biology, and physics 

Technical 
integrator deciding 
which model to 
use in an AI-
powered general-
purpose chatbot 

Human-preferred 
responses in 
everyday 
conversation 

Arena-Hard 
[5] 

LLM-judged human preference 
ranking estimates (Brier score) for 
LLM responses to everyday questions 
sampled topic-wise  

Predicts 
downstream 
outcomes of 
interest in the 
setting 

AI deployer 
looking to 
understand the 
security risk posed 
to users by the 
model deployed as 
an agent 

Vulnerability to 
prompt injection 
attacks during 
everyday tasks 

AgentDojo 
[6] 

Fraction of successful prompt 
injection attacks on LLM agents in a 
selection of realistic everyday tasks 
with access to typical tools and 
applications in office workspace 
populated with manual and LLM-
generated dummy data 

Conceptually 
related to the 
evaluation 
objective in 
the setting 

Third-party 
evaluator 
assessing risk 
posed by criminal 
misuse of model 
capabilities 

Extent to which a 
novice attacker’s 
ability to exploit 
web application 
vulnerabilities is 
uplifted relative to 
pre-existing tools 

CVE-Bench 
[7] 

Success rate of autonomous LLM 
agent(s) at exploiting a sample of free 
and open-source web applications 
scored as having “critical” 
vulnerabilities (Common Vulnerability 
Scoring System) in the National 
Vulnerability Database  

Conceptually 
related to the 
evaluation 
objective in 
the setting 

 1 

Practice 1.1 Define evaluation objectives. 2 

Every evaluation must be guided by clear objectives, which identify what the evaluation aims to 3 

measure in order to achieve the evaluation’s end goal (i.e., to support the intended use of 4 

evaluation results). For example, a technical integrator choosing a model for a consumer 5 

chatbot application may conduct an evaluation with the objective of determining which of 6 

several models generates the most human-preferred responses to everyday questions. 7 

Two questions are critical to development of an evaluation objective: 8 

1. How will the measurements be used? Document intended uses of evaluation results. 9 

For example, an evaluation might be used to assess performance at a specific task, 10 

compare models, or assess risks associated with model use. Common considerations 11 

include: 12 

a. Properties vs. outcomes. Sometimes, one objective of evaluation may be to 13 

measure or predict a downstream outcome (e.g., the incidence of AI-assisted 14 

exploits of web applications or user satisfaction with a chatbot). In other cases, 15 

the objective is to measure an abstract property (e.g., mathematical reasoning 16 

ability). 17 

b. Baselines. If the objective is to assess differences in behavior (e.g., increases or 18 

decreases in performance at a task), relevant baseline measures should be noted 19 
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for comparison (e.g., human performance). These guidelines do not cover the 1 

process of collecting baseline measurements. 2 

2. What should be measured? Based on the intended use cases for the AI system or threat 3 

models for risk assessment, decide and document what concept should be measured 4 

(the measurement construct). For example, an evaluation of a system intended to assist 5 

researchers might seek to assess a chatbot’s ability to answer complex science 6 

questions, while a security risk assessment might seek to assess a system’s vulnerability 7 

to prompt injection attacks. Common considerations include: 8 

a. Comparison. Many evaluations aim to compare measurements of different 9 

models (e.g., to select between models or assess change over time). 10 

b. Measuring average-, best-, or worst-case behavior. [Emerging Practice4] For 11 

example, high-stakes risk assessments may focus on best- or worst-case 12 

behavior; comparison shopping may focus on average-case behavior. 13 

 14 

Practice 1.2 Select benchmarks that meet evaluation objectives. 15 

After defining the evaluation objective, the next step is to select a benchmark or benchmarks. 16 

These guidelines focus on selection from existing benchmarks, but if existing benchmarks are 17 

not suitable, evaluators may choose to modify existing benchmarks or create new ones. 18 

Conduct a survey of existing benchmarks. Based on the considerations below, choose 19 

benchmarks of sufficient quality and conceptual fit to satisfy the evaluation objectives. Clearly 20 

document exactly what each benchmark is expected to measure and how it relates to the 21 

evaluation objectives before conducting the evaluation, similar to scientific preregistration. 22 

These details are critical for accurately interpreting and qualifying the results (Practice 3.3). 23 
 24 

1. What does the benchmark measure? [Emerging Practice] Document, in detail, precisely 25 

what each candidate benchmark measures. For example, the GPQA benchmark [4] 26 

purports to measure accuracy at answering a selection of multiple-choice questions 27 

intended to be difficult to answer even with internet searches at the time of creation, 28 

developed and validated by PhD students or graduates in the fields of chemistry, 29 

biology, and physics. Consider what the benchmark’s description claims to measure and 30 

the accuracy of this claim based on available information about its construction, 31 

validation, and usage by others, as well as knowledge of the construct nominally being 32 

measured. When possible, manually inspect examples of questions, or test items, 33 

contained in the benchmark. Relevant details often include: 34 

a. Subject matter. What topics does the benchmark cover? 35 

b. Difficulty. What is the intended difficulty of the benchmark? 36 

 
4 Practices presented in this document are intended to reflect best practice; where relevant, practices 
that are relatively less mature in ecosystem use are labeled as emerging practice. 
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c. Test item format. How are the benchmark items formatted? 1 

d. Grading. How are responses graded or assessed? 2 

2. Is what the benchmark measures relevant to the evaluation objective? Document the 3 

relationship between the benchmark and evaluation objective. A benchmark can be 4 

relevant to the evaluation objective in multiple ways:  5 

a. The benchmark directly measures the construct of interest. If the content of a 6 

benchmark already reflects the construct of interest, it can be used directly. For 7 

example, the GPQA benchmark [4] may directly test graduate-level chemistry, 8 

biology, and physics multiple-choice question answering accuracy. 9 

i. Coverage. Test items should have high coverage across the entire space 10 

of tasks that pertain to the evaluation objectives and few items should be 11 

irrelevant. It may be possible to filter an existing benchmark to use only 12 

the subset of test items that are relevant to the evaluation objectives. 13 

Make note of any subject areas or other aspects not covered in the 14 

benchmark. For example, GPQA includes questions on only biology, 15 

chemistry, and physics.  16 

ii. Test item format. Test items should reflect intended use cases. For 17 

example, the items in many benchmarks are multiple-choice questions, 18 

usually with a single best answer per question. This question format 19 

simplifies benchmark implementation but sacrifices validity for many 20 

evaluation aims, as most tasks that LLMs are used for in practice, such as 21 

a chatbot answering user questions are more akin to free-response than 22 

multiple-choice. 23 

b. The benchmark is conceptually related to the evaluation objective. Often, there 24 

may not be a benchmark that directly measures the construct of interest, 25 

especially if the goal of evaluation is to predict a downstream outcome or if the 26 

task is hazardous or sensitive (e.g., cyberattacks or deepfake generation). 27 

However, existing benchmarks may instead measure proxy tasks which are 28 

prerequisites, subparts, or close relations to the task of interest. 29 

i. Use cases and threat models. Draw on use cases and threat models of 30 

interest to assess the connection between the benchmark content and 31 

evaluation objective. For example, no automated benchmark can directly 32 

measure how much an AI system uplifts a novice’s ability to attack critical 33 

infrastructure, but an AI system that is unable to attack easy-to-exploit 34 

web applications could be inferred not to produce such uplift. 35 

ii. Subject matter expertise. Integrate theoretical analysis by subject matter 36 

experts to build evidence for or against a conceptual relationship. 37 

c. The benchmark predicts downstream outcomes of interest. [Emerging Practice] 38 

More rarely, there may be existing evidence of correlation between benchmark 39 

results and downstream outcomes or indicators of interest even if they are only 40 
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weakly conceptually related, for example, between an automated assessment of 1 

chatbot responses to user prompts and previously observed human preferences 2 

for chatbot responses. 3 

3. Is the benchmark suitable for the intended uses of evaluation results?  Different 4 

benchmarks provide different kinds of evaluation results. 5 

a. Desired level of difficulty. The ideal range of item difficulty depends on the 6 

reason(s) for evaluation. If the objective is to compare model performance 7 

during development, then a benchmark that is either too hard or too easy to the 8 

point of saturating is not useful. If the goal is to assess behavior relative to a 9 

threshold, many items should ideally be near that threshold to increase precision 10 

close to the boundary. If the goal is to assess average behavior on a specific task, 11 

the benchmark should have a realistic and representative level of difficulty. 12 

b. Validated baseline measures (e.g., human performance on the same task). 13 

Having relevant baseline or reference measures is beneficial when an evaluation 14 

seeks to compare the performance of an AI system to the performance of 15 

alternative approaches (e.g., humans only, prior non-AI automation, humans 16 

assisted by AI, or random chance). Besides capturing realistic alternatives 17 

relevant to the evaluation objectives, existing baseline(s) should also be 18 

statistically robust (e.g., sufficient number and expertise of human test-takers, 19 

for a human performance baseline). 20 

4. Is the benchmark of sufficient quality? Even if a benchmark is a good fit for the 21 

evaluation objective, flaws in its construction may make it less useful and possibly 22 

misleading. 23 

a. Diversity of test items in the evaluation. A broader diversity of items means it is 24 

less likely there is some shared idiosyncrasy of all the items in the benchmark 25 

that could affect results. This enables broader inferences to be made based on 26 

the results of the evaluation. 27 

b. Quantity of test items. In addition to coverage and item diversity, the number of 28 

items in the benchmark affects whether results (statistically) support evaluation 29 

objectives. Statistical power analysis can support this determination. 30 

c. Aspects of the benchmark, including contents or prompt formats, that may have 31 

influenced system training prior to evaluation. If systems are trained to solve 32 

specific benchmark contents or formats, evaluation results may become 33 

“contaminated” — systems may take advantage of spurious relationships in the 34 

benchmark data to score higher than they would on unseen data in practice. 35 

i. Contamination risk can be reduced by efforts to keep benchmark data 36 

hidden during training or by using benchmark data generated after the 37 

system was created. 38 
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ii. [Emerging Practice] Some benchmarks include canary strings (unique 1 

sequences intentionally inserted into benchmark data) to check for 2 

blatant instances of training on the test set. 3 

5. What other practical considerations may affect benchmark usage? 4 

a. Ease of use. Operational considerations include the amount of human labor 5 

required for setup and running, the computational cost to run the benchmark,  6 

and the benchmark’s compatibility with a wide-range of AI systems (e.g., agent 7 

architectures). 8 

b. Results reported by others. If others have reported results for the same 9 

benchmark before, the benchmark may be a good candidate for validating and 10 

contextualizing the evaluation setup by comparing against previous evaluations 11 

(also see Section 3).  12 
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2. IMPLEMENTING AND RUNNING EVALUATIONS 1 

The previous section discussed practices around defining evaluation objectives and selecting 2 

benchmarks based on those objectives. Given the selected benchmark(s), this section discusses 3 

how to implement and run fully automated benchmark evaluations. This process is divided into 4 

four high-level practices: 5 

2.1. Design the evaluation protocol. 6 

2.2. Write the evaluation code. 7 

2.3. Run the evaluation and track results. 8 

2.4. Debug the evaluation. 9 

See Table 2.1 for some examples how these practices have been applied in past CAISI 10 

benchmark evaluations. 11 

Table 2.1 Possible implementation and execution practices for example benchmarks. Select 12 

design principles inform choice of protocol settings (Practice 2.1). The protocol is implemented, 13 

provided as open source software in the examples (Practice 2.2). In the process of running the 14 

evaluation (Practice 2.3), debugging may be required (Practice 2.4). 15 

Selected 
Benchmark 

Evaluation Protocol 

Evaluation 
Code 

CAISI Debugging Log Relevant 
Design 

Principles 
Details of Protocol 

CAISI [8] used 
GPQA [4] 
among other 
science and 
knowledge 
benchmarks 
for 
comparison 
across AI 
models. 

Comparability 
 
Performance 
optimization 

Task settings 
Tools: none 
Instructions: asked model to 
output selected choice, then an 
explanation 
Submission attempts: one 
 
Model settings 
Reasoning settings: “high” for 
OpenAI models, 31,000 reasoning 
budget for Anthropic models 
 
Scoring settings 
Number of samples: all 198 
GPQA-Diamond questions 
LLM-as-a-judge: used to parse 
answer choice from response 

inspect_ev
als/gpqa  

Older models sometimes 
had trouble outputting 
the selected choice in 
the correct format, 
which was caught by 
manual transcript 
review. CAISI used an 
LLM-as-a-judge to parse 
selected choices from 
model responses.  

CAISI [8] used 
CVE-Bench [7] 
 to evaluate 
models for 

Comparability 
 
External 
validity 

Task settings 
Tools: command-line tools for 
cybersecurity functions and 
accessing the internet 

usnistgov/
caisi-
cyber-
evals  

Models were allowed to 
access the internet in 
order to download new 
tools and more 

https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/gpqa
https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/gpqa
https://github.com/usnistgov/caisi-cyber-evals
https://github.com/usnistgov/caisi-cyber-evals
https://github.com/usnistgov/caisi-cyber-evals
https://github.com/usnistgov/caisi-cyber-evals
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offensive 
cyber 
capabilities. 

 
Cost control 
 
Performance 
optimization 

Instructions: act as a skilled 
cybersecurity expert  
Submission attempts: unlimited 
 
Model settings  
Reasoning settings: “medium” for 
OpenAI models, 0 reasoning 
budget for Anthropic models 
 
Agent settings 
Agent scaffolding: CAISI-
implemented ReACT loop 
Agent budget: 500,000 
“weighted” input/output tokens 
 
Scoring settings 
Number of test items and trials 
per task: 15 items and 4 trials per 
task. 

accurately match 
realistic vulnerability 
discovery workflows. 
However, via automated 
transcript review, CAISI 
discovered that models 
sometimes used 
command line tools like 
curl to search the web 
for answers to test 
items.  
 
As a mitigation, CAISI 
changed the system 
prompt to instruct 
models not to trigger 
searches for answers.5 

 1 

Practice 2.1 Design the evaluation protocol. 2 

A given benchmark can generally be implemented in many different ways. It is up to the 3 

evaluator to design an evaluation protocol—the full set of operational procedures carried out 4 

during an evaluation—that meets the evaluator’s needs. This sub-section presents best 5 

practices for evaluation protocol design. 6 

2.1.1 Evaluation protocol design principles 7 

The most important principle of evaluation protocol design is that procedures should be 8 

designed to support the objectives of the evaluation (Practice 1.1). This principle overrides all 9 

others. 10 

That said, there are common design principles that can help guide protocol design for a broad 11 

range of evaluation objectives. These principles are particularly useful if evaluation objectives 12 

are only roughly defined. Common design principles include: 13 

1. Comparability. If the evaluation objective is to compare models or systems, the 14 

evaluation protocol should be designed such that evaluation results can be meaningfully 15 

compared. As a rule of thumb, the greater the consistency of a protocol between 16 

different models or systems, the more comparable results will be. 17 

 18 

If one wishes to compare evaluation results to existing baseline results (e.g., human 19 

 
5 In the longer run, a more robust solution would be to disable internet access while providing more tools and 

documentation up front. This would both improve reproducibility and reduce test-time contamination. 
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baselines), then evaluation protocols should also be designed with this in mind. For 1 

example, the evaluator may want to use a protocol that provides models with tools and 2 

information comparable to those used in existing baselines. 3 

2. External validity. In many cases, the objective of an evaluation is to gain information on 4 

how a model or system will behave in certain external contexts (e.g., real-world, worst-5 

case, best-case, hypothetical) different from that of the evaluation. For evaluation 6 

results to be informative in these external contexts, the evaluation protocol should be 7 

designed with external validity in mind. 8 

 9 

For example, to design for real-world validity, models can be scaffolded in ways that 10 

mirror the scaffolding that they would be used with in real-world applications. Similarly, 11 

cost-performance tradeoff settings (e.g., reasoning effort) can be chosen to mirror real-12 

world usage. 13 

3. Cost control. [Emerging Practice] There are both practical and methodological reasons 14 

to design evaluation protocols with execution cost in mind, with cost referring to 15 

resources like time, money, tokens, etc.  16 

 17 

On the practical front, all else being equal, cheaper evaluations are easier to run. 18 

Moreover, for certain types of agentic evaluations (e.g., when agents can compress their 19 

contexts and have effectively infinite context length), some form of cost-control must be 20 

implemented to prevent agents from running indefinitely. 21 

 22 

On the methodological front, the execution costs incurred by a model during an 23 

evaluation can have a big impact on the comparability and external validity of results. 24 

This is because the performance of language models and general-purpose AI systems 25 

can often be increased by running them in higher-execution-cost modes. 26 

 27 

For example, to meaningfully compare evaluation results on a one-dimensional 28 

measurement scale, execution costs should be controlled to be uniform across systems. 29 

Otherwise, if uniform cost-controls are not implemented, a downstream user may be 30 

able to obtain higher downstream utility with a cheaper but seemingly lower-31 

performing model run in a higher-execution-cost mode. Uniform cost-controls across 32 

models are not strictly necessary though—if one is willing to report both costs and 33 

performance alongside each other, then comparability is valid even if different systems 34 

incur different costs. We comment on this approach more in Section 3.3.3. 35 

 36 

Finally, as a rule of thumb, when evaluating systems for the purpose of estimating their 37 

real-world utility, costs should be controlled to be similar to costs incurred in real-world 38 
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usage. 1 

 2 

4. Performance optimization. [Emerging Practice] For certain evaluation objectives, there 3 

may be a need to optimize aspects of an evaluation protocol. Optimization here means 4 

iteratively generating results using one version of the protocol, and updating the 5 

protocol in order to change the results to be “better” along some axis (which could be 6 

exactly defined or only qualitatively specified). 7 

 8 

As an example, if the objective of an evaluation is to establish an upper or lower bound 9 

for a measured metric of a model across a large family of scaffolds, one way to 10 

accomplish this is to evaluate the model with a scaffold that has been optimized to 11 

maximize or minimize the metric. As another example, suppose a model has a tendency 12 

to refuse to engage with an evaluation task but the evaluation objective is to measure 13 

its behavior conditioned on non-refusal. One way to measure this conditional behavior 14 

is to optimize the prompt (i.e. iteratively update the prompt) fed to the model to get it 15 

to avoid refusals. 16 

 17 

When optimizing performance, one useful practice is to conduct optimization against a 18 

set of “development set” of benchmark items distinct from the “test-set” benchmark 19 

items being evaluated. If one forgoes a “dev-set” and optimizes against the test-set 20 

directly, there is an increased risk that the optimized evaluation protocol has overfit to 21 

the test-set and lost external validity, meaning the results of the evaluation can no 22 

longer be used to make meaningful inferences about the behavior of the model in other 23 

contexts. 24 

 25 

2.1.2 Common evaluation protocol settings 26 

The previous sub-section listed some high-level design principles that can help guide the design 27 

of an evaluation protocol. This sub-section lists common configurable variables (which specify 28 

execution details) shared by many different types of evaluation protocols. These variables are 29 

referred to as evaluation protocol settings, and are divided into four setting types: 30 

 31 

I. Inference settings are those that influence the process by which the model 32 

generates its outputs, e.g., temperature or reasoning effort. 33 

 34 

II. Scaffolding settings are those that configure the agentic architecture and 35 

system-level wrappers around the model, e.g., tool availability and aggregation 36 

strategies like best-of-N (running a model N times and taking the best 37 

performing output). 38 

 39 
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III. Task settings are those that determine how benchmark items are presented to 1 

models/systems and how models/systems can go about solving items.  2 

 3 

IV. Scoring settings are those that determine how test items are scored. 4 

 5 

In the table below, we organize common protocol settings by their setting type. This table also 6 

serves as an evaluation design checklist, since making an improper choice for an applicable 7 

setting can significantly reduce an evaluation's relevance to its objectives. 8 

 9 

When setting for protocol settings, sensitivity analyses, such as tool ablation experiments (in 10 

which evaluations are re-run without particular tools being available to an agent), may be 11 

valuable for gauging robustness of evaluation results or assessing the impact of evaluation 12 

protocol design on results. In some cases, such as assessing the performance impacts of a new 13 

agent scaffold or prompting method, such experiments may be the primary goal of the 14 

evaluation. 15 

 16 

Table 2.2 Common Evaluation Settings Examples of evaluation settings. Evaluation settings are 17 

organized by their setting type(s), and for each setting we provide a brief description of what it 18 

is and what it influences. 19 

Evaluation 
Protocol 
Setting 

Setting 
Type(s) 

Description 

Sampling  Inference 

Sampling influences the process by which each successive 

token is generated. Common sampling settings include 

temperature, top_p, or top_k. In some circumstances, a model 

developer may have recommended settings for sampling. 

Reasoning 

effort  
Inference 

Reasoning models can often be configured to use more or less 

“reasoning” when solving benchmark items. This is usually 

done via a “reasoning effort” setting, which can either be a 

categorical or numeric setting, and is commonly set at the API-

request level. 

 

Configuring models to use more (less) reasoning generally 

increases (decreases) their performance at the cost of causing 

them to use more (less) computational resources (in the form 

of time, money, or tokens). The tradeoff between 

performance and cost can depend on both the model and the 

domain, with certain domains like advanced mathematics 

being particularly sensitive. 
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Evaluation 
Protocol 
Setting 

Setting 
Type(s) 

Description 

 

Reasoning effort should generally be set based on the “cost 

control” design principle. 

Safeguards / 

filters 

Inference 

or 

Scaffolding 

Models can be served with intrinsic (e.g., weight-alteration 

based) or extrinsic (e.g., input/output classifier based) 

safeguards that cause certain classes of tasks to be refused. 

Evaluators can sometimes configure whether safeguards are 

enabled, and this choice can significantly impact evaluation 

results when the domain of evaluation overlaps with the 

domains of the model’s safeguards. 

Model 

Provider 

Inference 

or 

Scaffolding 

The model provider (which could be the evaluator themselves) 

is the entity responsible for running the underlying 

computations that transform model inputs into model 

outputs. 

 

The choice of model provider can impact both the logistics and 

semantics of an evaluation. In the former case, the provider 

impacts logistics via factors like inference costs, throughput, 

and data retention policies. In the latter case, the provider can 

impact semantics because different providers may serve the 

same model with different capabilities (e.g., different context 

lengths or tool call support), and providers can also have bugs 

in the models they serve (see section 2.4 for more discussion 

of such bugs) 

 

Finally, some providers offer more advanced features like tool 

calling that is built into their APIs, meaning provider choice 

should be treated as a scaffolding setting. 

Agent 

scaffolding 
Scaffolding 

Agent scaffolding defines exactly how a model is turned into 

an agent. Options for agent scaffolding include using a high-

level architectural pattern like ReAct [10], or using off-the-

shelf, pre-built agents like Claude Code, codex-cli, or gemini-

cli. 
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Evaluation 
Protocol 
Setting 

Setting 
Type(s) 

Description 

A key sub-consideration when designing agents is whether and 

how to provide them with context-compression tools, which 

allow them to operate past their normal context limits. 

Agent 

budget 
Scaffolding 

A key property of many agents is that they can be run for an 

extended (possible indefinite) period of time. Thus, unlike non-

agentic evaluations where task items have a natural stopping 

point, for agentic evaluations a stopping condition must be 

explicitly defined. 

 

A common way to do this is via agent budgets, which limit the 

amount of resources (e.g., tokens, money, time) an agent can 

use. Agents with larger budgets generally have higher 

performance, though this effect varies by model and domain. 

Agent budgets should be set based on the “cost control” 

design principle. 

Best / maj-

of-N 

aggregation 

Scaffolding 

This is a type of scaffolding where a model is queried multiple 

times, possibly in parallel, and its results are aggregated using 

a scheme like best-of-N (where the right answer is known) or 

majority-of-N (where the right answer is not known). This type 

of scaffolding is applicable to both agents and standalone 

models. 

 

For a best/majority-of-N scaffold, the choice of N allows one to 

trade off a model’s performance against the computational 

resources it consumes. In certain circumstances, this setting 

can also be adjusted post-hoc during the scoring phase of an 

evaluation. 

 

This setting should be set based on the “cost control” design 

principle. 

Prompts / 

instructions 

Scaffolding 

or Task 

When presenting a test item to a model, the evaluator defines 

the instructions given to the model that describe how the item 

should be completed. For example, for a multiple-choice 

question, the model could be prompted to “Read the question 

and pick the best answer out of the choices given.” 
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Evaluation 
Protocol 
Setting 

Setting 
Type(s) 

Description 

The instructions presented to a model can impact what is 

being measured. For example, the level of detail in instructions 

can influence whether an evaluation is or is not measuring a 

model’s skill at resolving ambiguity and inferring intentions.  

 

For agentic evaluations with a limit placed on the resources an 

agent can use to solve each test item, a key design decision for 

task instructions is whether or how to communicate this limit 

to the agent (e.g., periodically reminding the agent how many 

resources it has left versus leaving it up to the agent to 

properly keep track of its available resources). 

 

Instructions can also be used to outline constraints or rules, 

such as rules against looking up certain kinds of information on 

the internet. To ensure models cannot gain an unfair 

advantage by ignoring such rules, evaluators should ensure 

that the grading process for the task matches the rules as 

presented to the model. Ambiguous or over-broad rules can 

potentially cause models to under-perform or lead to 

performance differences between models if rules are 

interpreted differently. 

Tools 
Scaffolding 

or Task 

For many classes of benchmarks or types of benchmark tasks, 

it may be reasonable to provide a model with tools to 

complete each benchmark item. For example, for certain 

scientific, engineering, or mathematical tasks, it may be 

desirable to provide models access to a code execution tool to 

carry out complex calculations. For tasks that require esoteric 

knowledge, it may be desirable to provide models access to an 

internet search tool. 

 

Depending on the evaluation objectives, it may be more 

appropriate to treat tools as scaffolding settings rather than 

task settings as described above, i.e., it may be desirable for 

different evaluated systems to have access to different tools. 
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Evaluation 
Protocol 
Setting 

Setting 
Type(s) 

Description 

For example, this may be the case when the objective is to 

understand the utility provided by different tools. 

 

Note: Whether to provide internet search tools is a particularly 

consequential decision, as internet access may allow models 

to cheat by looking up answers online [9]. Potential 

mitigations are discussed below in Sections 2.2 and 2.4. 

Execution 

Environment 

Scaffolding 

or Task 

The execution environment is the environment in which an 

agent’s tool calls have an effect. Examples of environments 

include docker containers, virtual machines, or large-scale 

networked systems of computers. Environments can come 

pre-loaded with files relevant to the agent/task, and some 

environments may have access to the broader internet. 

 

Similar to tools, the execution environment can be treated as a 

scaffolding and/or task setting depending on one’s evaluation 

objectives. 

 

Key design principles that are relevant to choosing an 

execution environment include comparability (e.g., one may 

want environments that behave consistently across repeated 

evaluations) and external validity (e.g., one may want 

environments that are similar to real world deployment 

conditions). 

Number of 

submission 

attempts 

Task 

For many agentic benchmarks, the evaluator determines the 

number of submission attempts an agent is allowed for a test 

item, as well as the type of feedback given to the agent for 

incorrect submissions. 

Number of 

test items 
Task 

Sometimes, benchmarks come with more test items than one 

actually needs for an evaluation. In these cases the evaluation 

implementer needs to decide on how many items to use. 

Generally, this decision should be made by balancing statistical 

power and the budget the evaluator has for their evaluation 

exercise. 
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Evaluation 
Protocol 
Setting 

Setting 
Type(s) 

Description 

Number of 

trials per 

test item 

Scoring 

Models are generally sampled nondeterministically (though in 

certain cases, it may be possible to directly measure 

performance without sampling, e.g., via next-token 

probabilities). Having models attempt each item multiple 

times increases evaluation cost but can reduce uncertainty of 

evaluation results and enable an evaluator to quantify what 

portion of the uncertainty stems from model sampling. These 

multiple attempts or trials may also be referred to as 

“epochs”, as in the Inspect evaluation framework [11]. As with 

the number of test items, the choice of trials per item involves 

a tradeoff with evaluation budget. 

LLM as a 

judge 
Scoring 

Some test item formats do not have a programmatically 

gradable answer. Instead, the answer must be judged using a 

more subjective procedure (e.g., against a written rubric). In 

these cases, automated evaluations often rely on using one or 

more LLMs to grade answers. Because the results of the 

evaluations are determined solely by the LLM-judge, the 

design and quality of the judge can have a significant impact 

on the meaning of evaluation results. 

 

[Emerging Practice] Some practices that are helpful when 

designing an LLM-as-a-judge setup include ensuring sufficient 

quality and consistency of grading and interpretations of the 

rubric, which can include comparing with human grading, 

using multiple judges and computing interrater agreement, 

and carefully designing and testing judge model prompts. 

 1 

Practice 2.2 Write the evaluation code. 2 

For automated benchmark evaluations, the evaluation protocol is ultimately implemented as 3 

computer code. We call this the evaluation code. Depending on the benchmark, models, and 4 

nature of the evaluation conducted, the amount of evaluation code required can range from 5 

tens of lines to thousands of lines or more. 6 

 7 

The previous sub-section discusses practices for the macro-level design of an evaluation 8 
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protocol. Here, this sub-section describes practices for the micro-level implementation of an 1 

evaluation protocol as evaluation code: 2 

1. Evaluation frameworks. Running evaluations can often be made easier by using 3 

evaluation frameworks, which provide software libraries for querying models, agent 4 

scaffolding and tools, error handling, and logging evaluation results instead of having to 5 

write those functions from scratch. 6 

 7 

2. Parsing answers. Many evaluations require converting a model’s answer into a specific 8 

format that can be programmatically compared to the correct answer. A common way 9 

this is done is by coding a parser that extracts a formatted answer from a model. 10 

However, such parsers can be brittle, as sometimes models can output answers that are 11 

technically correct when checked by a human but which the parser is unable to handle. 12 

One way to make parsers more robust is to utilize LLMs as a part of the parsing logic.  13 

 14 

3. Benchmark versioning. [Emerging Practice] When making improvements and changes 15 

to a benchmark or its code, it is helpful to tag different versions of the benchmark with 16 

version numbers, and to track the version number associated with evaluation results. 17 

Versioning can be done using techniques like Python packaging numbers, git tags, or 18 

commit hashes. 19 

 20 

Semantic Versioning can be a helpful format to use, as it allows an evaluator to mark 21 

breaking changes (e.g., as major version increments), points at which the results of an 22 

evaluation before and after a change are no longer properly comparable. An example of 23 

a breaking change might be updating environments to install new dependencies that 24 

agents would previously have had to install themselves. An example of a non-breaking 25 

change might be fixing semantically irrelevant misspellings in some of the task item 26 

problem statements. 27 

 28 

4. Sandboxing. [Emerging Practice] When agents are able to run arbitrary code, 29 

sandboxing them in containers or virtual machines—an isolated environment that 30 

prevents them from affecting the rest of the system—reduces security risks and makes 31 

evaluations more portable. 32 

 33 

5. Modularity as a design principle. When writing evaluation code, it can be helpful to 34 

design the code to be compatible with many different types of models and agents. This 35 

makes it easy to collect data on multiple different models / agents, which helps 36 

contextualize evaluation results. 37 

Practice 2.3 Run the evaluation and track results. 38 

https://semver.org/
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Once evaluation code is written, running an evaluation can be a fairly straightforward 1 

procedure: the evaluator needs only to run a command in a terminal or press a button in a user 2 

interface. 3 

However, keeping clear records of evaluation results is important. This practice helps the 4 

evaluator avoid unnecessarily rerunning evaluations, and helps them keep track of the suitable 5 

use cases for their different evaluation results. 6 

Helpful practices for evaluation result management include: 7 

1. Saving full evaluation logs alongside summary statistics. 8 

2. Ensuring key information like the exact model/system version is present in evaluation 9 

logs. 10 

3. [Emerging Practice] Saving code or including commit hashes alongside evaluation logs. 11 

4. [Emerging Practice] Tagging evaluation logs with metadata including their purpose. 12 

5. [Emerging Practice] Grouping together evaluation logs that are meant to be compared 13 

to one another. 14 

Practice 2.4 Debug the evaluation. 15 

Automated benchmark evaluations can have bugs in their code or mistakes in their evaluation 16 

protocols. It is important to take steps to identify and fix these errors. 17 

2.4.1 Common bugs 18 

In this section, we list some common classes of bugs that one may encounter when performing 19 

automated benchmark evaluations. In the subsequent section, we discuss techniques for 20 

identifying these bugs. 21 

 22 

1. Degraded serving. Models might be served in a degraded state due to improper 23 

configuration of or bugs in inference engines, quantization procedures (which control 24 

the precision of the floating-point numbers involved in model computations), and chat 25 

templates. Degraded serving is a particular concern when an evaluator self-hosts 26 

models. However, even commercial providers may serve models in a degraded state 27 

(e.g. commercial providers often vary on what context length they serve a given model 28 

with). 29 

2. Tool calling errors. Errors in correctly calling tools or formatting tool calls can degrade 30 

agent performance and may be alleviated through better prompting or tool parsing 31 

code. 32 

3. Test item solvability. It is important to validate the solvability of test items in 33 

evaluations that involve evaluated systems interacting with complex virtual 34 

environments. It is common for these environments to have bugs (e.g., networking 35 
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issues, broken dependencies, file permissions, etc.) that make certain items unsolvable. 1 

 2 

In particular, it can be useful to check that the tools and affordances in the environment 3 

are functioning as intended. For example, is the networking and internet access (if 4 

allowed) in the environment functioning as intended? 5 

 6 

4. Refusals. Models may have safeguards that prevent them from fulfilling some types of 7 

requests, such as for assistance in cybersecurity exploitation or dual-use biology tasks. If 8 

refusal behavior during evaluation may differ from refusal behavior under realistic 9 

usage,6 evaluators should check for the presence of refusals or other safeguards 10 

interventions in evaluation transcripts to determine whether and how they may be 11 

impacting evaluation results. 12 

 13 

5. Evaluation cheating. [Emerging Practice] Evaluation cheating occurs when a model has 14 

an opportunity to solve a test item in an unintended way that undermines its 15 

measurement validity. 16 

 17 

For example, cheating can occur via “solution contamination,” in which a model is able 18 

to access solution information in an unintended way, from searching benchmark 19 

answers on the internet using coding tools to finding solution files or other artifacts 20 

unintentionally left in the testing environment. Cheating can also arise through “grader 21 

gaming,” if models can craft solutions that score highly on an evaluation’s automated 22 

scoring function by exploiting implementation loopholes rather than solving the test 23 

item as intended, such as solving a coding problem by removing the failing tests rather 24 

than fixing the bug. 25 

 26 

Cheating is more likely to occur on agentic evaluations, where models often have access 27 

to flexible coding tools that can enable potentially unwanted solution paths. 28 

 29 

6. Evaluation awareness. [Emerging Practice] Recent work has shown that for certain 30 

models, model behavior can be influenced by cues that the input is part of an evaluation 31 

exercise [12][13][14]. The sensitivity to these cues is a challenge to external validity, 32 

since such cues are unlikely to be present during real-world use. 33 

 34 

A form of evaluation awareness that is easy to detect is verbalized evaluation 35 

awareness, wherein models will output text that directly references the possibility that 36 

they are being evaluated. Unfortunately, the absence of verbalized evaluation 37 

 
6For example, a malicious user might be able to find jailbreaks that circumvent refusal. In such a case, an 

evaluation seeking to assess real-world performance may need to incorporate jailbreaks or otherwise modified 
refusals into the evaluation protocol. 
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awareness does not imply the absence of evaluation awareness. Developing more 1 

general solutions to detect and quantify the effect of evaluation awareness is an open 2 

line of research. 3 

 4 

2.4.2 Quality assurance techniques 5 

Quality assurance can diagnose issues in evaluation code and mistakes in evaluation protocols 6 

identified above. Relevant high-level quality assurance techniques include: 7 

A. Manual transcript review. A powerful technique for quality assurance of automated 8 

benchmark evaluations is to manually review evaluation transcripts to detect and 9 

diagnose bugs and mistakes. When conducting review, a useful heuristic is to look for 10 

and examine unexpected behaviors. While not all unexpected behaviors are caused by 11 

bugs or mistakes, many bugs and mistakes will cause unexpected behaviors. Dedicated 12 

software for generating and viewing transcripts can make manual review more efficient. 13 

 14 

B. Automated transcript review. [Emerging Practice] Evaluators may be able to extend and 15 

augment manual transcript review processes using automated transcript review. 16 

Automated transcript review involves using software tools, including LLMs, to analyze 17 

evaluation transcript data. 18 

 19 

For example, evaluators could programmatically check the number of tool calls that 20 

returned an error in a particular transcript. Or, evaluators could use LLM judges to score 21 

transcripts for the presence of problems like evaluation cheating. 22 

 23 

When using LLM judges for transcript review, evaluators should consider checking that 24 

these judges’ decisions match human judges’ decisions. Providing detailed rubrics, 25 

richer task context (such as solution write-ups), or using multiple LLM judges can help 26 

increase the accuracy of LLM-based transcript review systems. These practices mirror 27 

the ones detailed in Section 2.1.2’s section on LLM-as-a-judge scoring. 28 

 29 

C. Task review. In addition to reviewing transcripts, it can also be useful to review whether 30 

tasks are properly configured. 31 

 32 

For example, it can be helpful to manually review task instructions and ask: “If a human 33 

was given the same instructions, would they be confused?” Instructions can often be 34 

improved if the answer to this question is “yes”. Furthermore, it can be beneficial to 35 

include multiple individuals in this review process to ensure interpretation consistency. 36 

 37 
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For evaluations that involve complex virtual environments, it can be useful to create and 1 

run deterministic solutions against the evaluator’s in-house setup of the environment. 2 

Any test item whose deterministic solution does not successfully solve the task is likely 3 

to have some task configuration issue. 4 

 5 

D. Comparison to existing evidence. Another assurance technique is to compare results to 6 

existing evidence such as other results on the same or closely related benchmarks. 7 

Differences do not necessarily signify that results are invalid, but suggest a need for 8 

further analysis to identify the cause of the divergence and to rule out the possibility of 9 

measurement issues (e.g., an inappropriately implemented evaluation protocol or a 10 

poorly selected benchmark). Results of other evaluations also provide important context 11 

for claims (see Practice 3.3). 12 

 13 

For example, as one check of whether the serving engine for a model is configured 14 

properly, an evaluator can test the model on a benchmark that the model developer has 15 

reported numbers on and check that their results are concordant with the developer’s 16 

numbers. Differences could indicate an issue on the part of one of the evaluations. 17 

 18 

Particularly unexpected or anomalous results might be valid, but they might also 19 

indicate failure to achieve the evaluation objective. For example, one model performing 20 

anomalously well could potentially indicate a contamination issue.  21 

 22 

Comparing evaluation results to baselines can provide additional context to sense-check 23 

whether the evaluation was implemented as intended and/or whether the baselines are 24 

appropriate for comparison. 25 

 26 

E. Item pattern analysis. [Emerging Practice] If an intended interpretation depends on 27 

assumed similarities or other relationships between benchmark items, consider 28 

analyzing whether the empirical results reflect this expected structure. For example, if 29 

an evaluator is using a benchmark containing both multiple-choice and open-ended 30 

questions to assess biology knowledge, substantial differences in the rank ordering of 31 

models between the multiple-choice and open-ended sections of the benchmark may 32 

suggest that the formats are measuring distinct capabilities rather than a unified 33 

construct. 34 

  35 
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3. ANALYZING AND REPORTING RESULTS 1 

Once benchmark measurements are obtained, the next step is to process, contextualize, and 2 

analyze results. Analysis procedures should take into account the evaluation objective, the 3 

evaluation protocol, and characteristics of the selected benchmark. The aim of analysis is not 4 

only to draw conclusions, but also to determine the appropriate degree of confidence for those 5 

conclusions. Accordingly, evaluators should understand the evaluation’s sources of uncertainty 6 

and gauge the evaluation’s robustness – that is, the consistency of the conclusions under 7 

variations in measurement conditions or analysis procedures. 8 

After analysis, evaluators should report qualified conclusions and share sufficient information 9 

for others to interpret and replicate their results. 10 

This section divides the analysis and reporting process into three key practices: 11 

3.1 Conduct statistical analysis and uncertainty quantification. 12 

 3.2 Share details of evaluation and evaluation data. 13 

 3.3 Report qualified claims. 14 

See Table 3.1 for an example of these analysis and reporting practices. 15 

 16 

Table 3.1 Example of CAISI benchmark evaluation analysis and reporting. Provides a 17 

description of statistical analysis and uncertainty reported (Practice 3.1), details on how the 18 

evaluation was performed (Practice 3.2), and how claims were qualified in the final report 19 

(Practice 3.3). 20 

Evaluation Statistical analysis Reported details Qualified claims 

CAISI [8] used 

GPQA [4] to 

evaluate 

models’ 

scientific 

knowledge. 

CAISI reported 

average accuracy 

across the full 

benchmark with a 

standard error of the 

mean estimated 

using a generalized 

linear mixed model. 

These standard 

errors account for 

LLM sampling and 

finite benchmark 

size. 

CAISI reported 

detailed 

information on 

the evaluation 

protocol, 

benchmark 

version and 

selection criteria, 

and cost-

performance 

profiles. 

CAISI reported that “U.S. models and DeepSeek’s 

models achieve similar performance on question 

and answer-style science and knowledge 

benchmarks. Leading U.S. models are slightly 

more performant, but not by much.”). Based on 

the benchmark content, CAISI described the 

evaluation as “measuring performance on 

challenging scientific questions that require 

graduate-level expertise to answer reliably.” CAISI 

compared benchmark results to developers’ self-

reported scores and published this comparison. 

 21 

 22 
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Practice 3.1 Conduct statistical analysis and uncertainty quantification. 1 

Evaluators should define, conduct, and report a statistically valid analysis procedure which 2 

aligns with intended evaluation objectives, accounts for sources of variation and uncertainty, 3 

and describes underlying assumptions. It is good practice to define a statistical analysis 4 

procedure in advance of implementing and running the evaluation, in conjunction with the task 5 

setting specification practices described in Sections 1 and 2. Results of statistical analysis should 6 

be interpreted in light of broader evaluation objectives, limitations, and context. 7 

Characteristics of a robust and transparent analysis procedure include: 8 

1. Appropriate modeling assumptions are made and reported. Reasonable assumptions 9 

may greatly increase the precision of an analysis. For example, the Bradley-Terry 10 

model’s assumption that model rankings are transitive results in much smaller 11 

confidence intervals for model performance. Any assumptions used in results analysis 12 

including the application of statistical modeling should be clearly specified and reported, 13 

along with the results of any checks of these assumptions.  14 

 15 

2. Appropriate aggregate statistics are selected. This includes any aggregation functions 16 

applied at a test item level (e.g., across trials, such as pass@k) as well as across items 17 

(e.g., mean of item scores). For example, if the evaluation goal is to predict typical 18 

performance on some set of tasks, for which benchmark items are considered a 19 

representative sample (in terms of both content and difficulty), then one appropriate 20 

metric could be the expected score across items in the set. If the evaluation goal is to 21 

compare models, evaluators could consider metrics that are specifically designed for 22 

comparison, such as Bradley-Terry coefficient. If evidence suggests that the benchmark 23 

measures multiple constructs, then care should be taken that aggregate metrics do not 24 

combine these measurements in an arbitrary manner.  25 

 26 

3. Whenever possible, statistics are reported with estimated uncertainties for associated 27 

sources of variation [15]. Uncertainty quantifications could take the form of standard 28 

errors, confidence intervals, credible intervals, etc. as appropriate and should be clearly 29 

defined. Uncertainty metrics should be computed using methods aligned with the 30 

statistical assumptions of the analysis, and the description of evaluation metrics should 31 

make clear the contributions and alignment of estimated uncertainties to particular 32 

sources of variation. Ideally, different sources of variation should be decomposed and 33 

reported separately. For example, in many evaluations, two additive sources of variation 34 

in results that contribute to uncertainty of estimates are (1) variation due to 35 

nondeterministic sampling of model completions for each item and (2) variation 36 

stemming from the hypothetical sampling of test items into the benchmark from an 37 

item superpopulation. 38 

 39 
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4. Unquantified sources of variation are clearly indicated – or when possible, 1 

approximated or bounded [Emerging Practice]. For example, the analysis procedure may 2 

not statistically account for factors such as prompt format or task environmental 3 

conditions, but variations in these factors may introduce random or systematic 4 

variations in measured results.  5 

 6 
5. Comparisons are supported by appropriate statistical tests. For example, a comparison 7 

can be made between mean scores of two evaluated models using a statistical test on 8 

the paired difference with appropriate standard error. However, statistical test results 9 

should be interpreted probabilistically and considered alongside effect size.   10 

Practice 3.2 Share details of evaluation and evaluation data. 11 

Sharing evaluation details and evaluation data such as test transcripts increases reproducibility 12 

and enables others to draw their own determinations about what results imply, though 13 

transparency must be weighed against business and security concerns. 14 

1. Report key evaluation details. Such details include but are not necessarily limited to the 15 

evaluation objective (Practice 1.1); selected benchmark version(s); number and type of 16 

test items (Practice 1.2); exact model version(s); details of the evaluation protocol 17 

including information about cost controls, performance optimization practices, key 18 

evaluation protocol setting choices, and sensitivity analyses (Practice 2.1) statistical 19 

assumptions and results of statistical analysis with uncertainty estimates (Practice 3.1). 20 

Using an interoperable format or schema to share these details may improve clarity and 21 

ease of replication. 22 

2. Consider reporting both aggregate statistics and item-level results. While aggregate 23 

statistics are useful for headline comparisons, item-level results can be particularly 24 

useful for enabling comparison of results obtained by different evaluators. 25 

3. Report costs alongside performance. [Emerging Practice] When models and systems 26 

are not uniformly cost controlled, evaluation results should report both the 27 

performance of models and the costs-incurred to achieve such performance levels (see 28 

Section 2.1.1). One possible way to present this data is to plot cost and performance of 29 

different systems on a two-dimensional graph (see Figure 3.2, for example). 30 

 31 

Some evaluations may also provide evidence about the performance of a system for a 32 

wide range of different costs. For example, the trajectory of an AI agent can be 33 

truncated at different points, or a fixed set of responses can be used to compute the 34 

accuracy of majority-of-N for many different values of N. In these cases, reporting 35 

performance across multiple (or all) settings can provide additional information. An 36 

example of this type of reporting is shown in the figure below. 37 
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 1 
Figure 3.2 A plot from CAISI’s report [8] which shows the percentage of CVE-Bench [7] 2 

items solved as a function of the number of weighted-tokens used. This plot was 3 

generated by truncating agent transcripts at all possible different points. 4 

 5 

4. Consider releasing transcripts. [Emerging Practice] Publishing full or representative 6 

transcripts can make it easier for other parties to interpret and reproduce the results of 7 

evaluations. Being able to review transcript-level data enables other researchers to 8 

more easily spot methodological decisions (or potential issues) that could impact their 9 

interpretation of the results, reducing the risks of drawing flawed conclusions and 10 

making it easier for the evaluation science community to collaborate on studying and 11 

resolving evaluation science issues. 12 

a. When using public benchmarks, consider releasing full transcripts. If using non-13 

public benchmarks where there are contamination concerns, consider releasing 14 

a random or representative (e.g., stratified) sample of transcripts. Redact 15 

sensitive information from transcripts if necessary (e.g., detailed jailbreaks, 16 

proprietary prompt scaffolding, etc.).  17 

b. Consider using an evaluation framework that automatically generates easily 18 

navigable and filterable transcripts. Anti-scraping measures, training data opt-19 

out notices, and similar measures can help reduce contamination risks when 20 

releasing transcripts. 21 

5. Publish evaluation code. [Emerging Practice] Publishing code used to run and analyze 22 

evaluations makes it easier for other evaluators to reproduce and extend evaluation 23 

results. In addition to the evaluation code itself, consider publishing agent sandbox 24 

container images (e.g., by uploading images to a public library like Docker Hub). 25 

 26 

Practice 3.3 Report qualified claims. 27 
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Ensuring that claims made on the basis of evaluation results accurately reflect an evaluation’s 1 

scope and context assists evaluation consumers in accurately interpreting evaluation results. 2 

The following practices can help appropriately qualify claims and interpretations. 3 

1. Distinguish claims about evaluation results from other claims. Differentiate 4 

observations, inferences, predictions, and normative statements.  5 

 6 
2. Report assumptions or evidence for the relationship between performance on the 7 

evaluated benchmark and the intended measurement construct (see Practice 1.2). This 8 

reporting includes conceptual or predictive evidence for how the benchmark and 9 

evaluation protocol relate to other use cases, domains, or real-world behavior (e.g., a 10 

case for why benchmark test items resemble real-world tasks of interest). 11 

a. If the benchmark is intended to be representative of real-world tasks, report the 12 

degree to which evaluation conditions resemble deployment conditions (see 13 

Practice 2.1). 14 

b. State assumptions or cite evidence supporting any usage of evaluation results to 15 

predict future measurements. 16 

 17 

3. When comparing model behavior to baselines, provide context about baseline measure 18 

conditions (e.g., characteristics of baseline subjects, available tools, incentives, etc.) 19 

(Practice 1.2). 20 

 21 

4. Use caution when making claims that generalize evaluation results beyond the scope 22 

of the intended measurements as established in Practice 1.2. Such claims could include 23 

statements about constructs that lack conceptual or predictive evidence of fit to the 24 

measured benchmark. Consider adding relevant caveats or disclaimers when there is a 25 

significant risk that the audience may misinterpret or over-generalize evaluation results. 26 

 27 

[Emerging Practice] In particular, if models show signs of evaluation awareness, it can be 28 

helpful to report metrics like measured rates of verbalized evaluation awareness, and to 29 

discuss the potential for such awareness to reduce the external validity of results. 30 

 31 

5. Clearly state other assumptions and limitations of the evaluation, such as sensitivity of 32 

results to measurement conditions (Practice 2.1) and statistical assumptions (Practice 33 

3.1). 34 

 35 
6. Discuss the degree to which evaluation results agree or disagree with similar 36 

evaluations or other relevant evidence and existing knowledge. 37 

  38 
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APPENDIX A: GLOSSARY 1 

Common Terms and Definitions 2 

Appendix A provides definitions for terminology used in the draft report. Sources for terms 3 

used in this publication are cited as applicable. Where no citation is noted, the report is the 4 

source of the definition. Terms with glossary definitions are underlined in text. 5 

 6 

Baseline 
 

Comparable reference measure of the behavior of a non-AI 
system, potentially including human individuals or teams, 
systems based on simple heuristics or rules, or systems 
based on random chance. 
 

Behavior 
 

An AI system’s outputs in response to inputs and operating 
conditions. 
 

Benchmark 
(adapted from [16]) 
 
 
 
 
 
 
Capability  
(adapted from [21]) 

A particular combination of a dataset and a metric, 
conceptualized as representing one or more specific tasks 
or sets of abilities. A benchmark is used by a community of 
researchers as a shared framework for the comparison of 
methods. In practice, a single benchmark may combine 
multiple datasets (at least test data and sometimes also 
pre-specified training and validation data). 
 
The range of tasks or functions that an AI system can 
perform and how effectively it performs them. 
 

Content validity 
(adapted from [17]) 

The extent to which the measurement criteria reflect the 
most salient aspects of the measurement construct. In an 
operational context, content validity refers to the extent to 
which the measurement instruments align with the 
substance and structure of the measurement criteria. 
 

Evaluation objective(s) 
 

The goal(s) of an evaluation, including what should be 

measured (the measurement construct) and how the 

measurements will be used (e.g., to make decisions about 

system design or deployment).  

Evaluation protocol 
 

The full set of operational procedures carried out during an 
evaluation. 
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Evaluation protocol settings The configurable variables that specify the execution 
details of an evaluation protocol. 
 

External validity 
 

The extent to which measurements can also describe, or 
generalize to, conditions different from evaluation context. 
 

Metric  
(adapted from [16]) 
 

A way to summarize system performance over some set of 
test items into a single number or score. 

Measurement construct  
[18] 

An abstract concept not directly measurable (e.g., 
“mathematical reasoning”). Sometimes referred to as a 
“background concept” [17]: the “broad constellation of 
meanings and understandings associated with [the] 
concept [of interest]” [19]. In benchmark evaluations, 
often expressed in terms of “ability” or “capability” (e.g., 
mathematical reasoning). 
 

Measurement criterion  
[18] 

A directly measurable or observable concept (e.g., 
“textbook linear algebra question answering accuracy”). 
Sometimes referred to as a “systematized concept” [17]: 
the “specific formulation of the concept[, which] 
commonly involves an explicit definition” [19]. 
 

Measurement instrument 
[18] 

A tool used to gather observations or assign values (e.g., a 
benchmark, user study, or survey). 
 

Measurement validity  
[20] 

The degree to which accumulated evidence and theory 
support a specific interpretation of test scores for a given 
use of a test. If multiple interpretations of a test score for 
different uses are intended, validity evidence for each 
interpretation is needed. 
 

Proxy task A task which does not entirely specify a problem of 
interest, but instead specifies a conceptually related or 
empirically correlated problem or subproblem. 
 

Robustness  
(adapted from [22]; see also 
[2]) 

The “ability of a system to maintain its level of 
performance under a variety of circumstances,” such as 
input perturbations or distribution shifts. 
 

Scaffolding 
 

The agentic architecture and system-level wrappers that 
can be attached to a model. 
 



NIST AI 800-2 ipd 
January 2026 

 

34 

 

Task  
(adapted from [16]) 
 

Particular specification of a problem, including desired 
solution(s), solution settings, or grading/verification 
procedures. Each task assessed in a benchmark may be 
represented by one or more test items. 
 

Test item An individual question or problem in a benchmark, 
sometimes referred to as a sample or example. For 
example, LLM benchmark tasks are often represented by a 
set of multiple-choice questions with one or more correct 
answers. 
 

Trial A single attempt at solving a test item. Evaluations often 
involve multiple attempts at each test item per AI system 
tested. 
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