

NIST AI 800-2 1

Initial Public Draft 2

 3

Practices for Automated 4

Benchmark Evaluations 5

of Language Models 6

 7

Center for AI Standards and Innovation 8

https://doi.org/10.6028/NIST.AI.800-2.ipd 9

January 2026 10

http://crossmark.crossref.org/dialog/?doi=10.6028/NIST.AI.800-2.ipd

NIST AI 800-2 1

Initial Public Draft 2

 3

Practices for Automated 4

Benchmark Evaluations 5

of Language Models 6

 7

Center for AI Standards and Innovation 8

https://doi.org/10.6028/NIST.AI.800-2.ipd 9

January 2026 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

U.S. Department of Commerce 20
Howard W. Lutnick, Secretary 21

National Institute of Standards and Technology 22
Craig Burkhardt, Acting NIST Director and Under Secretary of Commerce for Standards and Technology23

NIST AI 800-2 ipd
January 2026

i

The Center for AI Standards and Innovation (CAISI) at NIST is releasing this document for

public comment.

Comments on NIST AI 800-2 ipd may be sent electronically to ai800-2@nist.gov with “NIST AI

800-2 ipd” in the subject line. Electronic submissions may be sent as an attachment in any of

the following unlocked formats: HTML; ASCII; Word; RTF; or PDF.

All comments are subject to release under the Freedom of Information Act (FOIA)

 1

mailto:ai800-2@nist.gov

NIST AI 800-2 ipd
January 2026

ii

ABSTRACT 1

This draft provides voluntary practices for automated benchmark evaluations of language 2

models and AI agent systems. It structures the practices in three stages: (1) defining the 3

measurement target, (2) implementing and running the evaluation, and (3) analyzing and 4

reporting the results. The report provides best practices at each of these stages and presents 5

key terms and concepts in a glossary as such terms are used in the academic literature. As the 6

science of AI measurement is rapidly developing, the guidelines presented in this document are 7

offered as a preliminary set of best practices that will be updated on as the field advances. 8

KEYWORDS 9

artificial intelligence; evaluation; benchmark; large language model; chatbot; agent. 10

AUTHORITY 11

This publication has been developed by the Center for AI Standards and Innovation (CAISI) to 12
further NIST’s statutory responsibilities under the National AI Initiatives Act as codified in 15 13
U.S.C. § 278h-1. NIST is responsible for supporting measurement research and development of 14
best practices and voluntary standards for AI systems. Secretary Howard Lutnick directed CAISI 15
within NIST to develop guidelines and best practices to measure and improve the security of AI 16
systems. President Trump’s AI Action Plan tasked CAISI with publishing guidelines and resources 17
for Federal agencies to conduct evaluations of AI systems. Executive Order 14303 directed 18
Federal agencies to promote "gold standard science" that is, inter alia, reproducible, 19
transparent, and communicative of error and uncertainty. 20
 21
Nothing in this document should be taken to contradict standards and guidelines made 22
mandatory and binding upon Federal agencies by the Secretary of Commerce under his 23
statutory authority. Nor should these guidelines be interpreted as altering or superseding the 24
existing authorities of the Secretary of Commerce, the Director of the Office of Management 25
and Budget, or any other Federal agency or official. 26

ACKNOWLEDGEMENTS 27

This draft publication was developed by Drew Keller, Ryan Steed, Tony Wang, Stevie Bergman, 28

and Peter Cihon. It was informed by feedback from CAISI and NIST Information Technology 29

Laboratory staff, including Paul Christiano, Jesse Dunietz, Craig Greenberg, Jonathan Phillips, 30

Julia Sharp, Benjamin Edelman, Maia Hamin, Jason Liang, Lukas Berglund, Andrew Fasano, 31

Samuel Curtis, Michael Majruski, and Craig Schlenoff. 32

 33

 34

NIST AI 800-2 ipd
January 2026

iii

TABLE OF CONTENTS 1

INTRODUCTION 1 2

1. DEFINING EVALUATION OBJECTIVES AND SELECTING BENCHMARKS 3 3

Practice 1.1 Define evaluation objectives. 4 4

Practice 1.2 Select benchmarks that meet evaluation objectives. 5 5

2. IMPLEMENTING AND RUNNING EVALUATIONS 9 6

Practice 2.1 Design the evaluation protocol. 10 7

Practice 2.2 Write the evaluation code. 18 8

Practice 2.3 Run the evaluation and track results. 19 9

Practice 2.4 Debug the evaluation. 20 10

3. ANALYZING AND REPORTING RESULTS 24 11

Practice 3.1 Conduct statistical analysis and uncertainty quantification. 25 12

Practice 3.2 Share details of evaluation and evaluation data. 26 13

Practice 3.3 Report qualified claims. 27 14

REFERENCES 29 15

APPENDIX A: GLOSSARY 32 16

 17

Disclaimer: Certain equipment, instruments, software, or materials, commercial or non-commercial, are 18
identified in this paper in order to specify the experimental procedure adequately. Such identification 19
does not imply recommendation or endorsement of any product or service by NIST, nor does it imply that 20
the materials or equipment identified are necessarily the best available for the purpose.21

NIST AI 800-2 ipd
January 2026

1

INTRODUCTION 1

This draft document identifies practices for conducting automated benchmark1 evaluations of 2

language models and similar general-purpose AI models that output text (herein “AI models”). 3

Evaluations of these models, often embedded into systems capable of functioning as chatbots 4

and AI agents, are increasingly common. However, consistent practices to support the validity 5

and reproducibility of such evaluations are only beginning to emerge. The practices presented 6

in this document are intended to reflect best practices; where relevant, practices that are 7

relatively less mature in ecosystem use are labeled as emerging practice. This report supports 8

NIST and CAISI efforts to develop guidelines and resources for Federal agencies to conduct 9

evaluations of AI systems, as called for in the AI Action Plan [1]. It is informed by CAISI 10

evaluations of AI models in partnership with leading U.S. AI industry organizations and CAISI 11

research on measurement science, and will be subsequently informed by feedback via public 12

comment. 13

This report is scoped to automated benchmark evaluations—evaluations that, once set up, can 14

be run without any additional human input. The report focuses on using these evaluations to 15

measure model capabilities, although many practices also apply to evaluating other behavioral 16

properties of models (e.g. robustness). The document provides practices to implement and 17

report on existing benchmarks to meet organizational needs, rather than practices to create 18

new benchmarks. It does not provide guidelines for roles, resources, responsibilities, or other 19

enabling practices for performing AI evaluations within an organization.2 Future work may 20

address benchmark development and practices for other types of AI evaluations. 21

The purpose of this report is to support practitioners in defining evaluation objectives; in 22

selecting, implementing, and running evaluations to meet those objectives; and in analyzing 23

and reporting on evaluations in a manner that enables reproducibility and valid interpretation 24

of results. Not all evaluation objectives can be met by automated benchmark evaluations. Table 25

I.1 provides some considerations for practitioners deciding when to use automated benchmarks 26

rather than other evaluation methods (e.g., red teaming, human-subject experiments, field 27

testing, and post-deployment monitoring) to assess model capabilities on a given task. 28

The primary audience for this document is technical staff at organizations conducting AI 29

evaluations. These include AI deployers, developers, and third-party evaluators that may be 30

based at companies, government agencies, academia, or other organizations. Additionally, 31

anyone reviewing an evaluation report or model card may benefit from evaluator 32

1 Terms defined in the Glossary are underlined. If a term appears multiple times, it is underlined only
once per section.
2 On such topics, practices may be obtained from NIST AI 100-1 [2] and NIST AI 800-1 [3].

NIST AI 800-2 ipd
January 2026

2

implementation of document practices. Such readers may include business decision-makers, 1

technical integrators, end consumers, or procurement officers seeking information with which 2

to select an AI model for integration or use. When AI evaluation organizations implement the 3

practices provided in this report, this secondary audience may be able to better understand and 4

use evaluation results. 5

Table I.1. Characteristics of evaluations suited for automated benchmarks vs. other methods. 6

Automated benchmarks are not well-suited for all use cases. 7

Evaluations suited for automated benchmarks are: Evaluations suited for other evaluation methods are:

Structured and verifiable: a set of relevant, discrete

tasks and corresponding test items with known or

automatically verifiable solutions can be identified

within the subject or domain of evaluation.

Open-ended or subjective: the evaluation domain

cannot be divided into discrete tasks, and/or it is

difficult to define objective grading criteria or

verification procedures.

Time-invariant: tasks and their success criteria remain

relevant and realistic over time.

Dynamic: realism and relevance of tasks may shift

rapidly.

No human in the loop: tasks may be accomplished

without iteration with the AI system operator(s).

Human in the loop: tasks require repeated interaction

or open-ended use, and/or the evaluation objective

intends to measure the AI system in conjunction with

human operator(s) or other affected parties.

Outcome-oriented: the question of whether or not the

model can accomplish certain tasks and/or the

manner in which it behaves are of primary concern.

Process/interpretability-oriented: the process by which

the model carries out tasks and/or reasons for model

behavior are of primary concern.

Resource-constrained: all else equal, an automated

benchmark may be less costly and time-intensive than

other evaluation methods.

Comprehensive: conducting evaluations via multiple

methods and modalities (e.g., automated

benchmarking, human red-teaming, field testing, etc.)

may be more expensive but can improve assurance.

Each section of this report details a stage in the evaluation process, providing best practices and 8

specific examples. The report is organized into the following sections: 9

1. Define Evaluation Objectives and Select Benchmarks 10

2. Implement and Run Evaluations 11

3. Analyze and Report Results 12

 13

Readers unfamiliar with AI measurement concepts may benefit from consulting the Glossary in 14

the Appendix as they read this document. 15

NIST AI 800-2 ipd
January 2026

3

1. DEFINING EVALUATION OBJECTIVES 1

 AND SELECTING BENCHMARKS 2

The first stage in effectively evaluating AI capabilities is to select benchmarks3 that suit the 3

evaluator’s purposes, divided here into two high-level practices: 4

1.1. Define evaluation objectives. 5

1.2. Select benchmarks that meet evaluation objectives. 6

The design, execution, and reporting of an evaluation all depend on the evaluation objectives, 7

including what should be measured (the measurement construct) and intended uses for the 8

results produced. Possible uses of benchmark evaluation results could include: 9

● Informing or assessing decisions made while developing an AI system, such as what 10

algorithms or data to use to train systems. 11

● Assessing whether an AI system is fit to use in a specific scenario. 12

● Comparing AI systems to decide which are most suitable for deployment. 13

● Assessing the efficacy of deployment configurations or of mitigations intended to 14

address security, criminal misuse, or other risks. 15

● Validating that an AI system has been deployed and configured properly. 16

● Informing predictions or forecasts of the real-world impacts of an AI system. 17

See Table 1.1 for select evaluation objectives and relevant considerations for benchmark 18

selection. 19

Table 1.1 Possible benchmark fit assessment for example evaluation scenarios. Based on how 20

the evaluation will be used and what should be measured (Practice 1.1), the evaluator assesses 21

what a candidate benchmark measures (Practice 1.2.1) and whether it relates to the evaluation 22

objectives (Practice 1.2.2). 23

Example evaluation objective

Possible
benchmark

What the benchmark measures

Conceptual fit
assessment How

measurements
will be used

What is measured

AI developer
looking to evaluate
training progress
(on multiple choice
science question
answering)

Graduate-level
chemistry, biology,
and physics
multiple choice
question
answering

GPQA-
Diamond
[4]

Accuracy of answering a selection of
multiple (4) choice questions
intended to be difficult to answer
even with internet searches,
developed and validated by PhD
students or graduates in the fields of

Benchmark
directly
measures the
construct of
interest in the
setting

3 Terms defined in the Glossary are underlined. If a term appears multiple times, it is underlined only
once per section.

NIST AI 800-2 ipd
January 2026

4

accuracy chemistry, biology, and physics

Technical
integrator deciding
which model to
use in an AI-
powered general-
purpose chatbot

Human-preferred
responses in
everyday
conversation

Arena-Hard
[5]

LLM-judged human preference
ranking estimates (Brier score) for
LLM responses to everyday questions
sampled topic-wise

Predicts
downstream
outcomes of
interest in the
setting

AI deployer
looking to
understand the
security risk posed
to users by the
model deployed as
an agent

Vulnerability to
prompt injection
attacks during
everyday tasks

AgentDojo
[6]

Fraction of successful prompt
injection attacks on LLM agents in a
selection of realistic everyday tasks
with access to typical tools and
applications in office workspace
populated with manual and LLM-
generated dummy data

Conceptually
related to the
evaluation
objective in
the setting

Third-party
evaluator
assessing risk
posed by criminal
misuse of model
capabilities

Extent to which a
novice attacker’s
ability to exploit
web application
vulnerabilities is
uplifted relative to
pre-existing tools

CVE-Bench
[7]

Success rate of autonomous LLM
agent(s) at exploiting a sample of free
and open-source web applications
scored as having “critical”
vulnerabilities (Common Vulnerability
Scoring System) in the National
Vulnerability Database

Conceptually
related to the
evaluation
objective in
the setting

 1

Practice 1.1 Define evaluation objectives. 2

Every evaluation must be guided by clear objectives, which identify what the evaluation aims to 3

measure in order to achieve the evaluation’s end goal (i.e., to support the intended use of 4

evaluation results). For example, a technical integrator choosing a model for a consumer 5

chatbot application may conduct an evaluation with the objective of determining which of 6

several models generates the most human-preferred responses to everyday questions. 7

Two questions are critical to development of an evaluation objective: 8

1. How will the measurements be used? Document intended uses of evaluation results. 9

For example, an evaluation might be used to assess performance at a specific task, 10

compare models, or assess risks associated with model use. Common considerations 11

include: 12

a. Properties vs. outcomes. Sometimes, one objective of evaluation may be to 13

measure or predict a downstream outcome (e.g., the incidence of AI-assisted 14

exploits of web applications or user satisfaction with a chatbot). In other cases, 15

the objective is to measure an abstract property (e.g., mathematical reasoning 16

ability). 17

b. Baselines. If the objective is to assess differences in behavior (e.g., increases or 18

decreases in performance at a task), relevant baseline measures should be noted 19

NIST AI 800-2 ipd
January 2026

5

for comparison (e.g., human performance). These guidelines do not cover the 1

process of collecting baseline measurements. 2

2. What should be measured? Based on the intended use cases for the AI system or threat 3

models for risk assessment, decide and document what concept should be measured 4

(the measurement construct). For example, an evaluation of a system intended to assist 5

researchers might seek to assess a chatbot’s ability to answer complex science 6

questions, while a security risk assessment might seek to assess a system’s vulnerability 7

to prompt injection attacks. Common considerations include: 8

a. Comparison. Many evaluations aim to compare measurements of different 9

models (e.g., to select between models or assess change over time). 10

b. Measuring average-, best-, or worst-case behavior. [Emerging Practice4] For 11

example, high-stakes risk assessments may focus on best- or worst-case 12

behavior; comparison shopping may focus on average-case behavior. 13

 14

Practice 1.2 Select benchmarks that meet evaluation objectives. 15

After defining the evaluation objective, the next step is to select a benchmark or benchmarks. 16

These guidelines focus on selection from existing benchmarks, but if existing benchmarks are 17

not suitable, evaluators may choose to modify existing benchmarks or create new ones. 18

Conduct a survey of existing benchmarks. Based on the considerations below, choose 19

benchmarks of sufficient quality and conceptual fit to satisfy the evaluation objectives. Clearly 20

document exactly what each benchmark is expected to measure and how it relates to the 21

evaluation objectives before conducting the evaluation, similar to scientific preregistration. 22

These details are critical for accurately interpreting and qualifying the results (Practice 3.3). 23
 24

1. What does the benchmark measure? [Emerging Practice] Document, in detail, precisely 25

what each candidate benchmark measures. For example, the GPQA benchmark [4] 26

purports to measure accuracy at answering a selection of multiple-choice questions 27

intended to be difficult to answer even with internet searches at the time of creation, 28

developed and validated by PhD students or graduates in the fields of chemistry, 29

biology, and physics. Consider what the benchmark’s description claims to measure and 30

the accuracy of this claim based on available information about its construction, 31

validation, and usage by others, as well as knowledge of the construct nominally being 32

measured. When possible, manually inspect examples of questions, or test items, 33

contained in the benchmark. Relevant details often include: 34

a. Subject matter. What topics does the benchmark cover? 35

b. Difficulty. What is the intended difficulty of the benchmark? 36

4 Practices presented in this document are intended to reflect best practice; where relevant, practices
that are relatively less mature in ecosystem use are labeled as emerging practice.

NIST AI 800-2 ipd
January 2026

6

c. Test item format. How are the benchmark items formatted? 1

d. Grading. How are responses graded or assessed? 2

2. Is what the benchmark measures relevant to the evaluation objective? Document the 3

relationship between the benchmark and evaluation objective. A benchmark can be 4

relevant to the evaluation objective in multiple ways: 5

a. The benchmark directly measures the construct of interest. If the content of a 6

benchmark already reflects the construct of interest, it can be used directly. For 7

example, the GPQA benchmark [4] may directly test graduate-level chemistry, 8

biology, and physics multiple-choice question answering accuracy. 9

i. Coverage. Test items should have high coverage across the entire space 10

of tasks that pertain to the evaluation objectives and few items should be 11

irrelevant. It may be possible to filter an existing benchmark to use only 12

the subset of test items that are relevant to the evaluation objectives. 13

Make note of any subject areas or other aspects not covered in the 14

benchmark. For example, GPQA includes questions on only biology, 15

chemistry, and physics. 16

ii. Test item format. Test items should reflect intended use cases. For 17

example, the items in many benchmarks are multiple-choice questions, 18

usually with a single best answer per question. This question format 19

simplifies benchmark implementation but sacrifices validity for many 20

evaluation aims, as most tasks that LLMs are used for in practice, such as 21

a chatbot answering user questions are more akin to free-response than 22

multiple-choice. 23

b. The benchmark is conceptually related to the evaluation objective. Often, there 24

may not be a benchmark that directly measures the construct of interest, 25

especially if the goal of evaluation is to predict a downstream outcome or if the 26

task is hazardous or sensitive (e.g., cyberattacks or deepfake generation). 27

However, existing benchmarks may instead measure proxy tasks which are 28

prerequisites, subparts, or close relations to the task of interest. 29

i. Use cases and threat models. Draw on use cases and threat models of 30

interest to assess the connection between the benchmark content and 31

evaluation objective. For example, no automated benchmark can directly 32

measure how much an AI system uplifts a novice’s ability to attack critical 33

infrastructure, but an AI system that is unable to attack easy-to-exploit 34

web applications could be inferred not to produce such uplift. 35

ii. Subject matter expertise. Integrate theoretical analysis by subject matter 36

experts to build evidence for or against a conceptual relationship. 37

c. The benchmark predicts downstream outcomes of interest. [Emerging Practice] 38

More rarely, there may be existing evidence of correlation between benchmark 39

results and downstream outcomes or indicators of interest even if they are only 40

NIST AI 800-2 ipd
January 2026

7

weakly conceptually related, for example, between an automated assessment of 1

chatbot responses to user prompts and previously observed human preferences 2

for chatbot responses. 3

3. Is the benchmark suitable for the intended uses of evaluation results? Different 4

benchmarks provide different kinds of evaluation results. 5

a. Desired level of difficulty. The ideal range of item difficulty depends on the 6

reason(s) for evaluation. If the objective is to compare model performance 7

during development, then a benchmark that is either too hard or too easy to the 8

point of saturating is not useful. If the goal is to assess behavior relative to a 9

threshold, many items should ideally be near that threshold to increase precision 10

close to the boundary. If the goal is to assess average behavior on a specific task, 11

the benchmark should have a realistic and representative level of difficulty. 12

b. Validated baseline measures (e.g., human performance on the same task). 13

Having relevant baseline or reference measures is beneficial when an evaluation 14

seeks to compare the performance of an AI system to the performance of 15

alternative approaches (e.g., humans only, prior non-AI automation, humans 16

assisted by AI, or random chance). Besides capturing realistic alternatives 17

relevant to the evaluation objectives, existing baseline(s) should also be 18

statistically robust (e.g., sufficient number and expertise of human test-takers, 19

for a human performance baseline). 20

4. Is the benchmark of sufficient quality? Even if a benchmark is a good fit for the 21

evaluation objective, flaws in its construction may make it less useful and possibly 22

misleading. 23

a. Diversity of test items in the evaluation. A broader diversity of items means it is 24

less likely there is some shared idiosyncrasy of all the items in the benchmark 25

that could affect results. This enables broader inferences to be made based on 26

the results of the evaluation. 27

b. Quantity of test items. In addition to coverage and item diversity, the number of 28

items in the benchmark affects whether results (statistically) support evaluation 29

objectives. Statistical power analysis can support this determination. 30

c. Aspects of the benchmark, including contents or prompt formats, that may have 31

influenced system training prior to evaluation. If systems are trained to solve 32

specific benchmark contents or formats, evaluation results may become 33

“contaminated” — systems may take advantage of spurious relationships in the 34

benchmark data to score higher than they would on unseen data in practice. 35

i. Contamination risk can be reduced by efforts to keep benchmark data 36

hidden during training or by using benchmark data generated after the 37

system was created. 38

NIST AI 800-2 ipd
January 2026

8

ii. [Emerging Practice] Some benchmarks include canary strings (unique 1

sequences intentionally inserted into benchmark data) to check for 2

blatant instances of training on the test set. 3

5. What other practical considerations may affect benchmark usage? 4

a. Ease of use. Operational considerations include the amount of human labor 5

required for setup and running, the computational cost to run the benchmark, 6

and the benchmark’s compatibility with a wide-range of AI systems (e.g., agent 7

architectures). 8

b. Results reported by others. If others have reported results for the same 9

benchmark before, the benchmark may be a good candidate for validating and 10

contextualizing the evaluation setup by comparing against previous evaluations 11

(also see Section 3). 12

NIST AI 800-2 ipd
January 2026

9

2. IMPLEMENTING AND RUNNING EVALUATIONS 1

The previous section discussed practices around defining evaluation objectives and selecting 2

benchmarks based on those objectives. Given the selected benchmark(s), this section discusses 3

how to implement and run fully automated benchmark evaluations. This process is divided into 4

four high-level practices: 5

2.1. Design the evaluation protocol. 6

2.2. Write the evaluation code. 7

2.3. Run the evaluation and track results. 8

2.4. Debug the evaluation. 9

See Table 2.1 for some examples how these practices have been applied in past CAISI 10

benchmark evaluations. 11

Table 2.1 Possible implementation and execution practices for example benchmarks. Select 12

design principles inform choice of protocol settings (Practice 2.1). The protocol is implemented, 13

provided as open source software in the examples (Practice 2.2). In the process of running the 14

evaluation (Practice 2.3), debugging may be required (Practice 2.4). 15

Selected
Benchmark

Evaluation Protocol

Evaluation
Code

CAISI Debugging Log Relevant
Design

Principles
Details of Protocol

CAISI [8] used
GPQA [4]
among other
science and
knowledge
benchmarks
for
comparison
across AI
models.

Comparability

Performance
optimization

Task settings
Tools: none
Instructions: asked model to
output selected choice, then an
explanation
Submission attempts: one

Model settings
Reasoning settings: “high” for
OpenAI models, 31,000 reasoning
budget for Anthropic models

Scoring settings
Number of samples: all 198
GPQA-Diamond questions
LLM-as-a-judge: used to parse
answer choice from response

inspect_ev
als/gpqa

Older models sometimes
had trouble outputting
the selected choice in
the correct format,
which was caught by
manual transcript
review. CAISI used an
LLM-as-a-judge to parse
selected choices from
model responses.

CAISI [8] used
CVE-Bench [7]
 to evaluate
models for

Comparability

External
validity

Task settings
Tools: command-line tools for
cybersecurity functions and
accessing the internet

usnistgov/
caisi-
cyber-
evals

Models were allowed to
access the internet in
order to download new
tools and more

https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/gpqa
https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/gpqa
https://github.com/usnistgov/caisi-cyber-evals
https://github.com/usnistgov/caisi-cyber-evals
https://github.com/usnistgov/caisi-cyber-evals
https://github.com/usnistgov/caisi-cyber-evals

NIST AI 800-2 ipd
January 2026

10

offensive
cyber
capabilities.

Cost control

Performance
optimization

Instructions: act as a skilled
cybersecurity expert
Submission attempts: unlimited

Model settings
Reasoning settings: “medium” for
OpenAI models, 0 reasoning
budget for Anthropic models

Agent settings
Agent scaffolding: CAISI-
implemented ReACT loop
Agent budget: 500,000
“weighted” input/output tokens

Scoring settings
Number of test items and trials
per task: 15 items and 4 trials per
task.

accurately match
realistic vulnerability
discovery workflows.
However, via automated
transcript review, CAISI
discovered that models
sometimes used
command line tools like
curl to search the web
for answers to test
items.

As a mitigation, CAISI
changed the system
prompt to instruct
models not to trigger
searches for answers.5

 1

Practice 2.1 Design the evaluation protocol. 2

A given benchmark can generally be implemented in many different ways. It is up to the 3

evaluator to design an evaluation protocol—the full set of operational procedures carried out 4

during an evaluation—that meets the evaluator’s needs. This sub-section presents best 5

practices for evaluation protocol design. 6

2.1.1 Evaluation protocol design principles 7

The most important principle of evaluation protocol design is that procedures should be 8

designed to support the objectives of the evaluation (Practice 1.1). This principle overrides all 9

others. 10

That said, there are common design principles that can help guide protocol design for a broad 11

range of evaluation objectives. These principles are particularly useful if evaluation objectives 12

are only roughly defined. Common design principles include: 13

1. Comparability. If the evaluation objective is to compare models or systems, the 14

evaluation protocol should be designed such that evaluation results can be meaningfully 15

compared. As a rule of thumb, the greater the consistency of a protocol between 16

different models or systems, the more comparable results will be. 17

 18

If one wishes to compare evaluation results to existing baseline results (e.g., human 19

5 In the longer run, a more robust solution would be to disable internet access while providing more tools and

documentation up front. This would both improve reproducibility and reduce test-time contamination.

NIST AI 800-2 ipd
January 2026

11

baselines), then evaluation protocols should also be designed with this in mind. For 1

example, the evaluator may want to use a protocol that provides models with tools and 2

information comparable to those used in existing baselines. 3

2. External validity. In many cases, the objective of an evaluation is to gain information on 4

how a model or system will behave in certain external contexts (e.g., real-world, worst-5

case, best-case, hypothetical) different from that of the evaluation. For evaluation 6

results to be informative in these external contexts, the evaluation protocol should be 7

designed with external validity in mind. 8

 9

For example, to design for real-world validity, models can be scaffolded in ways that 10

mirror the scaffolding that they would be used with in real-world applications. Similarly, 11

cost-performance tradeoff settings (e.g., reasoning effort) can be chosen to mirror real-12

world usage. 13

3. Cost control. [Emerging Practice] There are both practical and methodological reasons 14

to design evaluation protocols with execution cost in mind, with cost referring to 15

resources like time, money, tokens, etc. 16

 17

On the practical front, all else being equal, cheaper evaluations are easier to run. 18

Moreover, for certain types of agentic evaluations (e.g., when agents can compress their 19

contexts and have effectively infinite context length), some form of cost-control must be 20

implemented to prevent agents from running indefinitely. 21

 22

On the methodological front, the execution costs incurred by a model during an 23

evaluation can have a big impact on the comparability and external validity of results. 24

This is because the performance of language models and general-purpose AI systems 25

can often be increased by running them in higher-execution-cost modes. 26

 27

For example, to meaningfully compare evaluation results on a one-dimensional 28

measurement scale, execution costs should be controlled to be uniform across systems. 29

Otherwise, if uniform cost-controls are not implemented, a downstream user may be 30

able to obtain higher downstream utility with a cheaper but seemingly lower-31

performing model run in a higher-execution-cost mode. Uniform cost-controls across 32

models are not strictly necessary though—if one is willing to report both costs and 33

performance alongside each other, then comparability is valid even if different systems 34

incur different costs. We comment on this approach more in Section 3.3.3. 35

 36

Finally, as a rule of thumb, when evaluating systems for the purpose of estimating their 37

real-world utility, costs should be controlled to be similar to costs incurred in real-world 38

NIST AI 800-2 ipd
January 2026

12

usage. 1

 2

4. Performance optimization. [Emerging Practice] For certain evaluation objectives, there 3

may be a need to optimize aspects of an evaluation protocol. Optimization here means 4

iteratively generating results using one version of the protocol, and updating the 5

protocol in order to change the results to be “better” along some axis (which could be 6

exactly defined or only qualitatively specified). 7

 8

As an example, if the objective of an evaluation is to establish an upper or lower bound 9

for a measured metric of a model across a large family of scaffolds, one way to 10

accomplish this is to evaluate the model with a scaffold that has been optimized to 11

maximize or minimize the metric. As another example, suppose a model has a tendency 12

to refuse to engage with an evaluation task but the evaluation objective is to measure 13

its behavior conditioned on non-refusal. One way to measure this conditional behavior 14

is to optimize the prompt (i.e. iteratively update the prompt) fed to the model to get it 15

to avoid refusals. 16

 17

When optimizing performance, one useful practice is to conduct optimization against a 18

set of “development set” of benchmark items distinct from the “test-set” benchmark 19

items being evaluated. If one forgoes a “dev-set” and optimizes against the test-set 20

directly, there is an increased risk that the optimized evaluation protocol has overfit to 21

the test-set and lost external validity, meaning the results of the evaluation can no 22

longer be used to make meaningful inferences about the behavior of the model in other 23

contexts. 24

 25

2.1.2 Common evaluation protocol settings 26

The previous sub-section listed some high-level design principles that can help guide the design 27

of an evaluation protocol. This sub-section lists common configurable variables (which specify 28

execution details) shared by many different types of evaluation protocols. These variables are 29

referred to as evaluation protocol settings, and are divided into four setting types: 30

 31

I. Inference settings are those that influence the process by which the model 32

generates its outputs, e.g., temperature or reasoning effort. 33

 34

II. Scaffolding settings are those that configure the agentic architecture and 35

system-level wrappers around the model, e.g., tool availability and aggregation 36

strategies like best-of-N (running a model N times and taking the best 37

performing output). 38

 39

NIST AI 800-2 ipd
January 2026

13

III. Task settings are those that determine how benchmark items are presented to 1

models/systems and how models/systems can go about solving items. 2

 3

IV. Scoring settings are those that determine how test items are scored. 4

 5

In the table below, we organize common protocol settings by their setting type. This table also 6

serves as an evaluation design checklist, since making an improper choice for an applicable 7

setting can significantly reduce an evaluation's relevance to its objectives. 8

 9

When setting for protocol settings, sensitivity analyses, such as tool ablation experiments (in 10

which evaluations are re-run without particular tools being available to an agent), may be 11

valuable for gauging robustness of evaluation results or assessing the impact of evaluation 12

protocol design on results. In some cases, such as assessing the performance impacts of a new 13

agent scaffold or prompting method, such experiments may be the primary goal of the 14

evaluation. 15

 16

Table 2.2 Common Evaluation Settings Examples of evaluation settings. Evaluation settings are 17

organized by their setting type(s), and for each setting we provide a brief description of what it 18

is and what it influences. 19

Evaluation
Protocol
Setting

Setting
Type(s)

Description

Sampling Inference

Sampling influences the process by which each successive

token is generated. Common sampling settings include

temperature, top_p, or top_k. In some circumstances, a model

developer may have recommended settings for sampling.

Reasoning

effort
Inference

Reasoning models can often be configured to use more or less

“reasoning” when solving benchmark items. This is usually

done via a “reasoning effort” setting, which can either be a

categorical or numeric setting, and is commonly set at the API-

request level.

Configuring models to use more (less) reasoning generally

increases (decreases) their performance at the cost of causing

them to use more (less) computational resources (in the form

of time, money, or tokens). The tradeoff between

performance and cost can depend on both the model and the

domain, with certain domains like advanced mathematics

being particularly sensitive.

NIST AI 800-2 ipd
January 2026

14

Evaluation
Protocol
Setting

Setting
Type(s)

Description

Reasoning effort should generally be set based on the “cost

control” design principle.

Safeguards /

filters

Inference

or

Scaffolding

Models can be served with intrinsic (e.g., weight-alteration

based) or extrinsic (e.g., input/output classifier based)

safeguards that cause certain classes of tasks to be refused.

Evaluators can sometimes configure whether safeguards are

enabled, and this choice can significantly impact evaluation

results when the domain of evaluation overlaps with the

domains of the model’s safeguards.

Model

Provider

Inference

or

Scaffolding

The model provider (which could be the evaluator themselves)

is the entity responsible for running the underlying

computations that transform model inputs into model

outputs.

The choice of model provider can impact both the logistics and

semantics of an evaluation. In the former case, the provider

impacts logistics via factors like inference costs, throughput,

and data retention policies. In the latter case, the provider can

impact semantics because different providers may serve the

same model with different capabilities (e.g., different context

lengths or tool call support), and providers can also have bugs

in the models they serve (see section 2.4 for more discussion

of such bugs)

Finally, some providers offer more advanced features like tool

calling that is built into their APIs, meaning provider choice

should be treated as a scaffolding setting.

Agent

scaffolding
Scaffolding

Agent scaffolding defines exactly how a model is turned into

an agent. Options for agent scaffolding include using a high-

level architectural pattern like ReAct [10], or using off-the-

shelf, pre-built agents like Claude Code, codex-cli, or gemini-

cli.

NIST AI 800-2 ipd
January 2026

15

Evaluation
Protocol
Setting

Setting
Type(s)

Description

A key sub-consideration when designing agents is whether and

how to provide them with context-compression tools, which

allow them to operate past their normal context limits.

Agent

budget
Scaffolding

A key property of many agents is that they can be run for an

extended (possible indefinite) period of time. Thus, unlike non-

agentic evaluations where task items have a natural stopping

point, for agentic evaluations a stopping condition must be

explicitly defined.

A common way to do this is via agent budgets, which limit the

amount of resources (e.g., tokens, money, time) an agent can

use. Agents with larger budgets generally have higher

performance, though this effect varies by model and domain.

Agent budgets should be set based on the “cost control”

design principle.

Best / maj-

of-N

aggregation

Scaffolding

This is a type of scaffolding where a model is queried multiple

times, possibly in parallel, and its results are aggregated using

a scheme like best-of-N (where the right answer is known) or

majority-of-N (where the right answer is not known). This type

of scaffolding is applicable to both agents and standalone

models.

For a best/majority-of-N scaffold, the choice of N allows one to

trade off a model’s performance against the computational

resources it consumes. In certain circumstances, this setting

can also be adjusted post-hoc during the scoring phase of an

evaluation.

This setting should be set based on the “cost control” design

principle.

Prompts /

instructions

Scaffolding

or Task

When presenting a test item to a model, the evaluator defines

the instructions given to the model that describe how the item

should be completed. For example, for a multiple-choice

question, the model could be prompted to “Read the question

and pick the best answer out of the choices given.”

NIST AI 800-2 ipd
January 2026

16

Evaluation
Protocol
Setting

Setting
Type(s)

Description

The instructions presented to a model can impact what is

being measured. For example, the level of detail in instructions

can influence whether an evaluation is or is not measuring a

model’s skill at resolving ambiguity and inferring intentions.

For agentic evaluations with a limit placed on the resources an

agent can use to solve each test item, a key design decision for

task instructions is whether or how to communicate this limit

to the agent (e.g., periodically reminding the agent how many

resources it has left versus leaving it up to the agent to

properly keep track of its available resources).

Instructions can also be used to outline constraints or rules,

such as rules against looking up certain kinds of information on

the internet. To ensure models cannot gain an unfair

advantage by ignoring such rules, evaluators should ensure

that the grading process for the task matches the rules as

presented to the model. Ambiguous or over-broad rules can

potentially cause models to under-perform or lead to

performance differences between models if rules are

interpreted differently.

Tools
Scaffolding

or Task

For many classes of benchmarks or types of benchmark tasks,

it may be reasonable to provide a model with tools to

complete each benchmark item. For example, for certain

scientific, engineering, or mathematical tasks, it may be

desirable to provide models access to a code execution tool to

carry out complex calculations. For tasks that require esoteric

knowledge, it may be desirable to provide models access to an

internet search tool.

Depending on the evaluation objectives, it may be more

appropriate to treat tools as scaffolding settings rather than

task settings as described above, i.e., it may be desirable for

different evaluated systems to have access to different tools.

NIST AI 800-2 ipd
January 2026

17

Evaluation
Protocol
Setting

Setting
Type(s)

Description

For example, this may be the case when the objective is to

understand the utility provided by different tools.

Note: Whether to provide internet search tools is a particularly

consequential decision, as internet access may allow models

to cheat by looking up answers online [9]. Potential

mitigations are discussed below in Sections 2.2 and 2.4.

Execution

Environment

Scaffolding

or Task

The execution environment is the environment in which an

agent’s tool calls have an effect. Examples of environments

include docker containers, virtual machines, or large-scale

networked systems of computers. Environments can come

pre-loaded with files relevant to the agent/task, and some

environments may have access to the broader internet.

Similar to tools, the execution environment can be treated as a

scaffolding and/or task setting depending on one’s evaluation

objectives.

Key design principles that are relevant to choosing an

execution environment include comparability (e.g., one may

want environments that behave consistently across repeated

evaluations) and external validity (e.g., one may want

environments that are similar to real world deployment

conditions).

Number of

submission

attempts

Task

For many agentic benchmarks, the evaluator determines the

number of submission attempts an agent is allowed for a test

item, as well as the type of feedback given to the agent for

incorrect submissions.

Number of

test items
Task

Sometimes, benchmarks come with more test items than one

actually needs for an evaluation. In these cases the evaluation

implementer needs to decide on how many items to use.

Generally, this decision should be made by balancing statistical

power and the budget the evaluator has for their evaluation

exercise.

NIST AI 800-2 ipd
January 2026

18

Evaluation
Protocol
Setting

Setting
Type(s)

Description

Number of

trials per

test item

Scoring

Models are generally sampled nondeterministically (though in

certain cases, it may be possible to directly measure

performance without sampling, e.g., via next-token

probabilities). Having models attempt each item multiple

times increases evaluation cost but can reduce uncertainty of

evaluation results and enable an evaluator to quantify what

portion of the uncertainty stems from model sampling. These

multiple attempts or trials may also be referred to as

“epochs”, as in the Inspect evaluation framework [11]. As with

the number of test items, the choice of trials per item involves

a tradeoff with evaluation budget.

LLM as a

judge
Scoring

Some test item formats do not have a programmatically

gradable answer. Instead, the answer must be judged using a

more subjective procedure (e.g., against a written rubric). In

these cases, automated evaluations often rely on using one or

more LLMs to grade answers. Because the results of the

evaluations are determined solely by the LLM-judge, the

design and quality of the judge can have a significant impact

on the meaning of evaluation results.

[Emerging Practice] Some practices that are helpful when

designing an LLM-as-a-judge setup include ensuring sufficient

quality and consistency of grading and interpretations of the

rubric, which can include comparing with human grading,

using multiple judges and computing interrater agreement,

and carefully designing and testing judge model prompts.

 1

Practice 2.2 Write the evaluation code. 2

For automated benchmark evaluations, the evaluation protocol is ultimately implemented as 3

computer code. We call this the evaluation code. Depending on the benchmark, models, and 4

nature of the evaluation conducted, the amount of evaluation code required can range from 5

tens of lines to thousands of lines or more. 6

 7

The previous sub-section discusses practices for the macro-level design of an evaluation 8

NIST AI 800-2 ipd
January 2026

19

protocol. Here, this sub-section describes practices for the micro-level implementation of an 1

evaluation protocol as evaluation code: 2

1. Evaluation frameworks. Running evaluations can often be made easier by using 3

evaluation frameworks, which provide software libraries for querying models, agent 4

scaffolding and tools, error handling, and logging evaluation results instead of having to 5

write those functions from scratch. 6

 7

2. Parsing answers. Many evaluations require converting a model’s answer into a specific 8

format that can be programmatically compared to the correct answer. A common way 9

this is done is by coding a parser that extracts a formatted answer from a model. 10

However, such parsers can be brittle, as sometimes models can output answers that are 11

technically correct when checked by a human but which the parser is unable to handle. 12

One way to make parsers more robust is to utilize LLMs as a part of the parsing logic. 13

 14

3. Benchmark versioning. [Emerging Practice] When making improvements and changes 15

to a benchmark or its code, it is helpful to tag different versions of the benchmark with 16

version numbers, and to track the version number associated with evaluation results. 17

Versioning can be done using techniques like Python packaging numbers, git tags, or 18

commit hashes. 19

 20

Semantic Versioning can be a helpful format to use, as it allows an evaluator to mark 21

breaking changes (e.g., as major version increments), points at which the results of an 22

evaluation before and after a change are no longer properly comparable. An example of 23

a breaking change might be updating environments to install new dependencies that 24

agents would previously have had to install themselves. An example of a non-breaking 25

change might be fixing semantically irrelevant misspellings in some of the task item 26

problem statements. 27

 28

4. Sandboxing. [Emerging Practice] When agents are able to run arbitrary code, 29

sandboxing them in containers or virtual machines—an isolated environment that 30

prevents them from affecting the rest of the system—reduces security risks and makes 31

evaluations more portable. 32

 33

5. Modularity as a design principle. When writing evaluation code, it can be helpful to 34

design the code to be compatible with many different types of models and agents. This 35

makes it easy to collect data on multiple different models / agents, which helps 36

contextualize evaluation results. 37

Practice 2.3 Run the evaluation and track results. 38

https://semver.org/

NIST AI 800-2 ipd
January 2026

20

Once evaluation code is written, running an evaluation can be a fairly straightforward 1

procedure: the evaluator needs only to run a command in a terminal or press a button in a user 2

interface. 3

However, keeping clear records of evaluation results is important. This practice helps the 4

evaluator avoid unnecessarily rerunning evaluations, and helps them keep track of the suitable 5

use cases for their different evaluation results. 6

Helpful practices for evaluation result management include: 7

1. Saving full evaluation logs alongside summary statistics. 8

2. Ensuring key information like the exact model/system version is present in evaluation 9

logs. 10

3. [Emerging Practice] Saving code or including commit hashes alongside evaluation logs. 11

4. [Emerging Practice] Tagging evaluation logs with metadata including their purpose. 12

5. [Emerging Practice] Grouping together evaluation logs that are meant to be compared 13

to one another. 14

Practice 2.4 Debug the evaluation. 15

Automated benchmark evaluations can have bugs in their code or mistakes in their evaluation 16

protocols. It is important to take steps to identify and fix these errors. 17

2.4.1 Common bugs 18

In this section, we list some common classes of bugs that one may encounter when performing 19

automated benchmark evaluations. In the subsequent section, we discuss techniques for 20

identifying these bugs. 21

 22

1. Degraded serving. Models might be served in a degraded state due to improper 23

configuration of or bugs in inference engines, quantization procedures (which control 24

the precision of the floating-point numbers involved in model computations), and chat 25

templates. Degraded serving is a particular concern when an evaluator self-hosts 26

models. However, even commercial providers may serve models in a degraded state 27

(e.g. commercial providers often vary on what context length they serve a given model 28

with). 29

2. Tool calling errors. Errors in correctly calling tools or formatting tool calls can degrade 30

agent performance and may be alleviated through better prompting or tool parsing 31

code. 32

3. Test item solvability. It is important to validate the solvability of test items in 33

evaluations that involve evaluated systems interacting with complex virtual 34

environments. It is common for these environments to have bugs (e.g., networking 35

NIST AI 800-2 ipd
January 2026

21

issues, broken dependencies, file permissions, etc.) that make certain items unsolvable. 1

 2

In particular, it can be useful to check that the tools and affordances in the environment 3

are functioning as intended. For example, is the networking and internet access (if 4

allowed) in the environment functioning as intended? 5

 6

4. Refusals. Models may have safeguards that prevent them from fulfilling some types of 7

requests, such as for assistance in cybersecurity exploitation or dual-use biology tasks. If 8

refusal behavior during evaluation may differ from refusal behavior under realistic 9

usage,6 evaluators should check for the presence of refusals or other safeguards 10

interventions in evaluation transcripts to determine whether and how they may be 11

impacting evaluation results. 12

 13

5. Evaluation cheating. [Emerging Practice] Evaluation cheating occurs when a model has 14

an opportunity to solve a test item in an unintended way that undermines its 15

measurement validity. 16

 17

For example, cheating can occur via “solution contamination,” in which a model is able 18

to access solution information in an unintended way, from searching benchmark 19

answers on the internet using coding tools to finding solution files or other artifacts 20

unintentionally left in the testing environment. Cheating can also arise through “grader 21

gaming,” if models can craft solutions that score highly on an evaluation’s automated 22

scoring function by exploiting implementation loopholes rather than solving the test 23

item as intended, such as solving a coding problem by removing the failing tests rather 24

than fixing the bug. 25

 26

Cheating is more likely to occur on agentic evaluations, where models often have access 27

to flexible coding tools that can enable potentially unwanted solution paths. 28

 29

6. Evaluation awareness. [Emerging Practice] Recent work has shown that for certain 30

models, model behavior can be influenced by cues that the input is part of an evaluation 31

exercise [12][13][14]. The sensitivity to these cues is a challenge to external validity, 32

since such cues are unlikely to be present during real-world use. 33

 34

A form of evaluation awareness that is easy to detect is verbalized evaluation 35

awareness, wherein models will output text that directly references the possibility that 36

they are being evaluated. Unfortunately, the absence of verbalized evaluation 37

6For example, a malicious user might be able to find jailbreaks that circumvent refusal. In such a case, an

evaluation seeking to assess real-world performance may need to incorporate jailbreaks or otherwise modified
refusals into the evaluation protocol.

NIST AI 800-2 ipd
January 2026

22

awareness does not imply the absence of evaluation awareness. Developing more 1

general solutions to detect and quantify the effect of evaluation awareness is an open 2

line of research. 3

 4

2.4.2 Quality assurance techniques 5

Quality assurance can diagnose issues in evaluation code and mistakes in evaluation protocols 6

identified above. Relevant high-level quality assurance techniques include: 7

A. Manual transcript review. A powerful technique for quality assurance of automated 8

benchmark evaluations is to manually review evaluation transcripts to detect and 9

diagnose bugs and mistakes. When conducting review, a useful heuristic is to look for 10

and examine unexpected behaviors. While not all unexpected behaviors are caused by 11

bugs or mistakes, many bugs and mistakes will cause unexpected behaviors. Dedicated 12

software for generating and viewing transcripts can make manual review more efficient. 13

 14

B. Automated transcript review. [Emerging Practice] Evaluators may be able to extend and 15

augment manual transcript review processes using automated transcript review. 16

Automated transcript review involves using software tools, including LLMs, to analyze 17

evaluation transcript data. 18

 19

For example, evaluators could programmatically check the number of tool calls that 20

returned an error in a particular transcript. Or, evaluators could use LLM judges to score 21

transcripts for the presence of problems like evaluation cheating. 22

 23

When using LLM judges for transcript review, evaluators should consider checking that 24

these judges’ decisions match human judges’ decisions. Providing detailed rubrics, 25

richer task context (such as solution write-ups), or using multiple LLM judges can help 26

increase the accuracy of LLM-based transcript review systems. These practices mirror 27

the ones detailed in Section 2.1.2’s section on LLM-as-a-judge scoring. 28

 29

C. Task review. In addition to reviewing transcripts, it can also be useful to review whether 30

tasks are properly configured. 31

 32

For example, it can be helpful to manually review task instructions and ask: “If a human 33

was given the same instructions, would they be confused?” Instructions can often be 34

improved if the answer to this question is “yes”. Furthermore, it can be beneficial to 35

include multiple individuals in this review process to ensure interpretation consistency. 36

 37

NIST AI 800-2 ipd
January 2026

23

For evaluations that involve complex virtual environments, it can be useful to create and 1

run deterministic solutions against the evaluator’s in-house setup of the environment. 2

Any test item whose deterministic solution does not successfully solve the task is likely 3

to have some task configuration issue. 4

 5

D. Comparison to existing evidence. Another assurance technique is to compare results to 6

existing evidence such as other results on the same or closely related benchmarks. 7

Differences do not necessarily signify that results are invalid, but suggest a need for 8

further analysis to identify the cause of the divergence and to rule out the possibility of 9

measurement issues (e.g., an inappropriately implemented evaluation protocol or a 10

poorly selected benchmark). Results of other evaluations also provide important context 11

for claims (see Practice 3.3). 12

 13

For example, as one check of whether the serving engine for a model is configured 14

properly, an evaluator can test the model on a benchmark that the model developer has 15

reported numbers on and check that their results are concordant with the developer’s 16

numbers. Differences could indicate an issue on the part of one of the evaluations. 17

 18

Particularly unexpected or anomalous results might be valid, but they might also 19

indicate failure to achieve the evaluation objective. For example, one model performing 20

anomalously well could potentially indicate a contamination issue. 21

 22

Comparing evaluation results to baselines can provide additional context to sense-check 23

whether the evaluation was implemented as intended and/or whether the baselines are 24

appropriate for comparison. 25

 26

E. Item pattern analysis. [Emerging Practice] If an intended interpretation depends on 27

assumed similarities or other relationships between benchmark items, consider 28

analyzing whether the empirical results reflect this expected structure. For example, if 29

an evaluator is using a benchmark containing both multiple-choice and open-ended 30

questions to assess biology knowledge, substantial differences in the rank ordering of 31

models between the multiple-choice and open-ended sections of the benchmark may 32

suggest that the formats are measuring distinct capabilities rather than a unified 33

construct. 34

 35

NIST AI 800-2 ipd
January 2026

24

3. ANALYZING AND REPORTING RESULTS 1

Once benchmark measurements are obtained, the next step is to process, contextualize, and 2

analyze results. Analysis procedures should take into account the evaluation objective, the 3

evaluation protocol, and characteristics of the selected benchmark. The aim of analysis is not 4

only to draw conclusions, but also to determine the appropriate degree of confidence for those 5

conclusions. Accordingly, evaluators should understand the evaluation’s sources of uncertainty 6

and gauge the evaluation’s robustness – that is, the consistency of the conclusions under 7

variations in measurement conditions or analysis procedures. 8

After analysis, evaluators should report qualified conclusions and share sufficient information 9

for others to interpret and replicate their results. 10

This section divides the analysis and reporting process into three key practices: 11

3.1 Conduct statistical analysis and uncertainty quantification. 12

 3.2 Share details of evaluation and evaluation data. 13

 3.3 Report qualified claims. 14

See Table 3.1 for an example of these analysis and reporting practices. 15

 16

Table 3.1 Example of CAISI benchmark evaluation analysis and reporting. Provides a 17

description of statistical analysis and uncertainty reported (Practice 3.1), details on how the 18

evaluation was performed (Practice 3.2), and how claims were qualified in the final report 19

(Practice 3.3). 20

Evaluation Statistical analysis Reported details Qualified claims

CAISI [8] used

GPQA [4] to

evaluate

models’

scientific

knowledge.

CAISI reported

average accuracy

across the full

benchmark with a

standard error of the

mean estimated

using a generalized

linear mixed model.

These standard

errors account for

LLM sampling and

finite benchmark

size.

CAISI reported

detailed

information on

the evaluation

protocol,

benchmark

version and

selection criteria,

and cost-

performance

profiles.

CAISI reported that “U.S. models and DeepSeek’s

models achieve similar performance on question

and answer-style science and knowledge

benchmarks. Leading U.S. models are slightly

more performant, but not by much.”). Based on

the benchmark content, CAISI described the

evaluation as “measuring performance on

challenging scientific questions that require

graduate-level expertise to answer reliably.” CAISI

compared benchmark results to developers’ self-

reported scores and published this comparison.

 21

 22

NIST AI 800-2 ipd
January 2026

25

Practice 3.1 Conduct statistical analysis and uncertainty quantification. 1

Evaluators should define, conduct, and report a statistically valid analysis procedure which 2

aligns with intended evaluation objectives, accounts for sources of variation and uncertainty, 3

and describes underlying assumptions. It is good practice to define a statistical analysis 4

procedure in advance of implementing and running the evaluation, in conjunction with the task 5

setting specification practices described in Sections 1 and 2. Results of statistical analysis should 6

be interpreted in light of broader evaluation objectives, limitations, and context. 7

Characteristics of a robust and transparent analysis procedure include: 8

1. Appropriate modeling assumptions are made and reported. Reasonable assumptions 9

may greatly increase the precision of an analysis. For example, the Bradley-Terry 10

model’s assumption that model rankings are transitive results in much smaller 11

confidence intervals for model performance. Any assumptions used in results analysis 12

including the application of statistical modeling should be clearly specified and reported, 13

along with the results of any checks of these assumptions. 14

 15

2. Appropriate aggregate statistics are selected. This includes any aggregation functions 16

applied at a test item level (e.g., across trials, such as pass@k) as well as across items 17

(e.g., mean of item scores). For example, if the evaluation goal is to predict typical 18

performance on some set of tasks, for which benchmark items are considered a 19

representative sample (in terms of both content and difficulty), then one appropriate 20

metric could be the expected score across items in the set. If the evaluation goal is to 21

compare models, evaluators could consider metrics that are specifically designed for 22

comparison, such as Bradley-Terry coefficient. If evidence suggests that the benchmark 23

measures multiple constructs, then care should be taken that aggregate metrics do not 24

combine these measurements in an arbitrary manner. 25

 26

3. Whenever possible, statistics are reported with estimated uncertainties for associated 27

sources of variation [15]. Uncertainty quantifications could take the form of standard 28

errors, confidence intervals, credible intervals, etc. as appropriate and should be clearly 29

defined. Uncertainty metrics should be computed using methods aligned with the 30

statistical assumptions of the analysis, and the description of evaluation metrics should 31

make clear the contributions and alignment of estimated uncertainties to particular 32

sources of variation. Ideally, different sources of variation should be decomposed and 33

reported separately. For example, in many evaluations, two additive sources of variation 34

in results that contribute to uncertainty of estimates are (1) variation due to 35

nondeterministic sampling of model completions for each item and (2) variation 36

stemming from the hypothetical sampling of test items into the benchmark from an 37

item superpopulation. 38

 39

NIST AI 800-2 ipd
January 2026

26

4. Unquantified sources of variation are clearly indicated – or when possible, 1

approximated or bounded [Emerging Practice]. For example, the analysis procedure may 2

not statistically account for factors such as prompt format or task environmental 3

conditions, but variations in these factors may introduce random or systematic 4

variations in measured results. 5

 6
5. Comparisons are supported by appropriate statistical tests. For example, a comparison 7

can be made between mean scores of two evaluated models using a statistical test on 8

the paired difference with appropriate standard error. However, statistical test results 9

should be interpreted probabilistically and considered alongside effect size. 10

Practice 3.2 Share details of evaluation and evaluation data. 11

Sharing evaluation details and evaluation data such as test transcripts increases reproducibility 12

and enables others to draw their own determinations about what results imply, though 13

transparency must be weighed against business and security concerns. 14

1. Report key evaluation details. Such details include but are not necessarily limited to the 15

evaluation objective (Practice 1.1); selected benchmark version(s); number and type of 16

test items (Practice 1.2); exact model version(s); details of the evaluation protocol 17

including information about cost controls, performance optimization practices, key 18

evaluation protocol setting choices, and sensitivity analyses (Practice 2.1) statistical 19

assumptions and results of statistical analysis with uncertainty estimates (Practice 3.1). 20

Using an interoperable format or schema to share these details may improve clarity and 21

ease of replication. 22

2. Consider reporting both aggregate statistics and item-level results. While aggregate 23

statistics are useful for headline comparisons, item-level results can be particularly 24

useful for enabling comparison of results obtained by different evaluators. 25

3. Report costs alongside performance. [Emerging Practice] When models and systems 26

are not uniformly cost controlled, evaluation results should report both the 27

performance of models and the costs-incurred to achieve such performance levels (see 28

Section 2.1.1). One possible way to present this data is to plot cost and performance of 29

different systems on a two-dimensional graph (see Figure 3.2, for example). 30

 31

Some evaluations may also provide evidence about the performance of a system for a 32

wide range of different costs. For example, the trajectory of an AI agent can be 33

truncated at different points, or a fixed set of responses can be used to compute the 34

accuracy of majority-of-N for many different values of N. In these cases, reporting 35

performance across multiple (or all) settings can provide additional information. An 36

example of this type of reporting is shown in the figure below. 37

NIST AI 800-2 ipd
January 2026

27

 1
Figure 3.2 A plot from CAISI’s report [8] which shows the percentage of CVE-Bench [7] 2

items solved as a function of the number of weighted-tokens used. This plot was 3

generated by truncating agent transcripts at all possible different points. 4

 5

4. Consider releasing transcripts. [Emerging Practice] Publishing full or representative 6

transcripts can make it easier for other parties to interpret and reproduce the results of 7

evaluations. Being able to review transcript-level data enables other researchers to 8

more easily spot methodological decisions (or potential issues) that could impact their 9

interpretation of the results, reducing the risks of drawing flawed conclusions and 10

making it easier for the evaluation science community to collaborate on studying and 11

resolving evaluation science issues. 12

a. When using public benchmarks, consider releasing full transcripts. If using non-13

public benchmarks where there are contamination concerns, consider releasing 14

a random or representative (e.g., stratified) sample of transcripts. Redact 15

sensitive information from transcripts if necessary (e.g., detailed jailbreaks, 16

proprietary prompt scaffolding, etc.). 17

b. Consider using an evaluation framework that automatically generates easily 18

navigable and filterable transcripts. Anti-scraping measures, training data opt-19

out notices, and similar measures can help reduce contamination risks when 20

releasing transcripts. 21

5. Publish evaluation code. [Emerging Practice] Publishing code used to run and analyze 22

evaluations makes it easier for other evaluators to reproduce and extend evaluation 23

results. In addition to the evaluation code itself, consider publishing agent sandbox 24

container images (e.g., by uploading images to a public library like Docker Hub). 25

 26

Practice 3.3 Report qualified claims. 27

NIST AI 800-2 ipd
January 2026

28

Ensuring that claims made on the basis of evaluation results accurately reflect an evaluation’s 1

scope and context assists evaluation consumers in accurately interpreting evaluation results. 2

The following practices can help appropriately qualify claims and interpretations. 3

1. Distinguish claims about evaluation results from other claims. Differentiate 4

observations, inferences, predictions, and normative statements. 5

 6
2. Report assumptions or evidence for the relationship between performance on the 7

evaluated benchmark and the intended measurement construct (see Practice 1.2). This 8

reporting includes conceptual or predictive evidence for how the benchmark and 9

evaluation protocol relate to other use cases, domains, or real-world behavior (e.g., a 10

case for why benchmark test items resemble real-world tasks of interest). 11

a. If the benchmark is intended to be representative of real-world tasks, report the 12

degree to which evaluation conditions resemble deployment conditions (see 13

Practice 2.1). 14

b. State assumptions or cite evidence supporting any usage of evaluation results to 15

predict future measurements. 16

 17

3. When comparing model behavior to baselines, provide context about baseline measure 18

conditions (e.g., characteristics of baseline subjects, available tools, incentives, etc.) 19

(Practice 1.2). 20

 21

4. Use caution when making claims that generalize evaluation results beyond the scope 22

of the intended measurements as established in Practice 1.2. Such claims could include 23

statements about constructs that lack conceptual or predictive evidence of fit to the 24

measured benchmark. Consider adding relevant caveats or disclaimers when there is a 25

significant risk that the audience may misinterpret or over-generalize evaluation results. 26

 27

[Emerging Practice] In particular, if models show signs of evaluation awareness, it can be 28

helpful to report metrics like measured rates of verbalized evaluation awareness, and to 29

discuss the potential for such awareness to reduce the external validity of results. 30

 31

5. Clearly state other assumptions and limitations of the evaluation, such as sensitivity of 32

results to measurement conditions (Practice 2.1) and statistical assumptions (Practice 33

3.1). 34

 35
6. Discuss the degree to which evaluation results agree or disagree with similar 36

evaluations or other relevant evidence and existing knowledge. 37

 38

NIST AI 800-2 ipd
January 2026

29

REFERENCES 1

[1] The White House (2025) America's AI Action Plan. Available at 2

https://www.whitehouse.gov/wp-content/uploads/2025/07/Americas-AI-Action-Plan.pdf. 3

[2] NIST (2023) Artificial Intelligence Risk Management Framework (AI RMF 1.0). (U.S. 4

Department of Commerce, Washington, D.C.), NIST AI 100-1. 5

https://doi.org/10.6028/NIST.AI.100-1. 6

[3] CAISI (2025) Managing Misuse Risk for Dual-Use Foundation Models. (U.S. Department of 7

Commerce, Washington, D.C.), NIST AI 800-1, Second Public Draft. 8

https://doi.org/10.6028/NIST.AI.800-1.2pd. 9

[4] Rein D, Hou BL, Stickland AC, Petty J, Pang RY, Dirani J, Michael J, Bowman SR (2023) GPQA: 10

A Graduate-Level Google-Proof Q&A Benchmark. Available at http://arxiv.org/abs/2311.12022. 11

[5] Li T, Chiang WL, Frick E, Dunlap L, Wu T, Zhu B, Gonzalez JE, Stoica I (2024) From 12

Crowdsourced Data to High-Quality Benchmarks: Arena-Hard and BenchBuilder Pipeline. 13

Available at https://arxiv.org/pdf/2406.11939. 14

[6] Debenedetti E, Zhang J, Balunović M, Beurer-Kellner L, Fischer M, Tramèr F (2024) 15

AgentDojo: A Dynamic Environment to Evaluate Attacks and Defenses for LLM Agents. Available 16

at https://arxiv.org/abs/2406.13352. 17

[7] Zhu Y, Kellermann A, Bowman D, Li P, Gupta A, Danda A, Fang R, Jensen C, Ihli E, Benn J, 18

Geronimo J, Dhir A, Rao S, Yu K, Stone T, Kang D (2025) CVE-Bench: A Benchmark for AI Agents' 19

Ability to Exploit Real-World Web Application Vulnerabilities. Available at 20

https://arxiv.org/abs/2503.17332. 21

[8] CAISI (2025) Evaluation of DeepSeek AI Models. (U.S. Department of Commerce, 22

Washington, D.C.), Center for AI Standards and Innovation (CAISI) Report. Available at 23

https://www.nist.gov/system/files/documents/2025/09/30/CAISI_Evaluation_of_DeepSeek_AI24

_Models.pdf. 25

[9] Han Z, Mankikar M, Michael J, Wang Z (2025) Search-Time Data Contamination. Available at 26

https://scale.com/research/stc. 27

[10] Yao S, Zhao J, Yu D, Du N, Shafran I, Narasimhan K, Cao Y (2023) ReAct: Synergizing 28

Reasoning and Acting in Language Models. Available at https://arxiv.org/abs/2210.03629. 29

 30

https://www.whitehouse.gov/wp-content/uploads/2025/07/Americas-AI-Action-Plan.pdf
https://www.whitehouse.gov/wp-content/uploads/2025/07/Americas-AI-Action-Plan.pdf
https://www.whitehouse.gov/wp-content/uploads/2025/07/Americas-AI-Action-Plan.pdf
https://doi.org/10.6028/NIST.AI.100-1
https://doi.org/10.6028/NIST.AI.100-1
https://doi.org/10.6028/NIST.AI.100-1
https://doi.org/10.6028/NIST.AI.800-1.2pd
https://doi.org/10.6028/NIST.AI.800-1.2pd
https://doi.org/10.6028/NIST.AI.800-1.2pd
http://arxiv.org/abs/2311.12022
http://arxiv.org/abs/2311.12022
https://arxiv.org/pdf/2406.11939
https://arxiv.org/pdf/2406.11939
https://arxiv.org/abs/2406.13352
https://arxiv.org/abs/2406.13352
https://arxiv.org/abs/2503.17332
https://arxiv.org/abs/2503.17332
https://arxiv.org/abs/2503.17332
https://www.nist.gov/system/files/documents/2025/09/30/CAISI_Evaluation_of_DeepSeek_AI_Models.pdf
https://www.nist.gov/system/files/documents/2025/09/30/CAISI_Evaluation_of_DeepSeek_AI_Models.pdf
https://scale.com/research/stc
https://scale.com/research/stc
https://scale.com/research/stc
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

NIST AI 800-2 ipd
January 2026

30

[11] UK AI Security Institute (2024) Inspect AI: Framework for Large Language Model 1

Evaluations. https://github.com/UKGovernmentBEIS/inspect_ai. 2

[12] Needham J, Edkins G, Pimpale G, Bartsch H, Hobbhahn M (2025) Large Language Models 3

Often Know When They Are Being Evaluated. Available at https://arxiv.org/abs/2505.23836. 4

[13] Anthropic (2025) System Card: Claude Sonnet 4.5. Available at 5

https://assets.anthropic.com/m/12f214efcc2f457a/original/Claude-Sonnet-4-5-System-6

Card.pdf. 7

[14] OpenAI (2025) Findings from a pilot Anthropic–OpenAI alignment evaluation exercise: 8

OpenAI Safety Tests. Available at https://openai.com/index/openai-anthropic-safety-9

evaluation/. 10

[15] Possolo, A (2015) Simple Guide for Evaluating and Expressing the Uncertainty of NIST 11

Measurement Results. (U.S. Department of Commerce, Washington, D.C.), NIST Technical Note 12

1900. http://dx.doi.org/10.6028/NIST.TN.1900. 13

[16] Raji ID, Bender EM, Paullada A, Denton E, Hanna A (2021) AI and the Everything in the 14

Whole Wide World Benchmark. Available at http://arxiv.org/abs/2111.15366. 15

[17] Wallach H, Desai M, Cooper AF, Wang A, Atalla C, Barocas S, Blodgett SL, Chouldechova A, 16

Corvi E, Dow PA, Garcia-Gathright J, Olteanu A, Pangakis N, Reed S, Sheng E, Vann D, Vaughan 17

JW, Vogel M, Washington H, Jacobs AZ (2025) Position: Evaluating Generative AI Systems Is a 18

Social Science Measurement Challenge. Available at http://arxiv.org/abs/2502.00561. 19

[18] Salaudeen O, Reuel A, Ahmed A, Bedi S, Robertson Z, Sundar S, Domingue B, Wang A, 20

Koyejo S (2025) Measurement to Meaning: A Validity-Centered Framework for AI Evaluation. 21

Available at http://arxiv.org/abs/2505.10573. 22

[19] Adcock R and Collier D (2001) Measurement Validity: A Shared Standard for Qualitative and 23

Quantitative Research. American Political Science Review 95(3):529–546. 24

[20] American Educational Research Association, American Psychological Association, National 25

Council on Measurement in Education (2014) Standards for Educational and Psychological 26

Testing (American Educational Research Association, Washington, D.C.). Available at 27

https://www.apa.org/science/programs/testing/standards. 28

[21] Bengio Y, Mindermann S, Privitera D, Besiroglu T, Bommasani R, Casper S, Choi Y, Fox P, 29

Garfinkel B, Goldfarb D, Heidari H, Ho A, Kapoor S, Khalatbari L, Longpre S, Manning S, 30

Mavroudis V, Mazeika M, Michael J, … Zeng Y (2025) International AI Safety Report. Available at 31

http://arxiv.org/abs/2501.17805. 32

https://github.com/UKGovernmentBEIS/inspect_ai
https://arxiv.org/abs/2505.23836
https://arxiv.org/abs/2505.23836
https://assets.anthropic.com/m/12f214efcc2f457a/original/Claude-Sonnet-4-5-System-Card.pdf
https://assets.anthropic.com/m/12f214efcc2f457a/original/Claude-Sonnet-4-5-System-Card.pdf
https://openai.com/index/openai-anthropic-safety-evaluation/
https://openai.com/index/openai-anthropic-safety-evaluation/
https://openai.com/index/openai-anthropic-safety-evaluation/
http://dx.doi.org/10.6028/NIST.TN.1900
http://arxiv.org/abs/2111.15366
http://arxiv.org/abs/2111.15366
http://arxiv.org/abs/2502.00561
http://arxiv.org/abs/2502.00561
http://arxiv.org/abs/2505.10573
http://arxiv.org/abs/2505.10573
https://www.apa.org/science/programs/testing/standards
http://arxiv.org/abs/2501.17805
http://arxiv.org/abs/2501.17805

NIST AI 800-2 ipd
January 2026

31

[22] ISO/IEC (2022) ISO/IEC TS 5723:2022 Trustworthiness — Vocabulary. Available at 1

https://www.iso.org/standard/81608.html. 2

https://www.iso.org/standard/81608.html

NIST AI 800-2 ipd
January 2026

32

APPENDIX A: GLOSSARY 1

Common Terms and Definitions 2

Appendix A provides definitions for terminology used in the draft report. Sources for terms 3

used in this publication are cited as applicable. Where no citation is noted, the report is the 4

source of the definition. Terms with glossary definitions are underlined in text. 5

 6

Baseline

Comparable reference measure of the behavior of a non-AI
system, potentially including human individuals or teams,
systems based on simple heuristics or rules, or systems
based on random chance.

Behavior

An AI system’s outputs in response to inputs and operating
conditions.

Benchmark
(adapted from [16])

Capability
(adapted from [21])

A particular combination of a dataset and a metric,
conceptualized as representing one or more specific tasks
or sets of abilities. A benchmark is used by a community of
researchers as a shared framework for the comparison of
methods. In practice, a single benchmark may combine
multiple datasets (at least test data and sometimes also
pre-specified training and validation data).

The range of tasks or functions that an AI system can
perform and how effectively it performs them.

Content validity
(adapted from [17])

The extent to which the measurement criteria reflect the
most salient aspects of the measurement construct. In an
operational context, content validity refers to the extent to
which the measurement instruments align with the
substance and structure of the measurement criteria.

Evaluation objective(s)

The goal(s) of an evaluation, including what should be

measured (the measurement construct) and how the

measurements will be used (e.g., to make decisions about

system design or deployment).

Evaluation protocol

The full set of operational procedures carried out during an
evaluation.

NIST AI 800-2 ipd
January 2026

33

Evaluation protocol settings The configurable variables that specify the execution
details of an evaluation protocol.

External validity

The extent to which measurements can also describe, or
generalize to, conditions different from evaluation context.

Metric
(adapted from [16])

A way to summarize system performance over some set of
test items into a single number or score.

Measurement construct
[18]

An abstract concept not directly measurable (e.g.,
“mathematical reasoning”). Sometimes referred to as a
“background concept” [17]: the “broad constellation of
meanings and understandings associated with [the]
concept [of interest]” [19]. In benchmark evaluations,
often expressed in terms of “ability” or “capability” (e.g.,
mathematical reasoning).

Measurement criterion
[18]

A directly measurable or observable concept (e.g.,
“textbook linear algebra question answering accuracy”).
Sometimes referred to as a “systematized concept” [17]:
the “specific formulation of the concept[, which]
commonly involves an explicit definition” [19].

Measurement instrument
[18]

A tool used to gather observations or assign values (e.g., a
benchmark, user study, or survey).

Measurement validity
[20]

The degree to which accumulated evidence and theory
support a specific interpretation of test scores for a given
use of a test. If multiple interpretations of a test score for
different uses are intended, validity evidence for each
interpretation is needed.

Proxy task A task which does not entirely specify a problem of
interest, but instead specifies a conceptually related or
empirically correlated problem or subproblem.

Robustness
(adapted from [22]; see also
[2])

The “ability of a system to maintain its level of
performance under a variety of circumstances,” such as
input perturbations or distribution shifts.

Scaffolding

The agentic architecture and system-level wrappers that
can be attached to a model.

NIST AI 800-2 ipd
January 2026

34

Task
(adapted from [16])

Particular specification of a problem, including desired
solution(s), solution settings, or grading/verification
procedures. Each task assessed in a benchmark may be
represented by one or more test items.

Test item An individual question or problem in a benchmark,
sometimes referred to as a sample or example. For
example, LLM benchmark tasks are often represented by a
set of multiple-choice questions with one or more correct
answers.

Trial A single attempt at solving a test item. Evaluations often
involve multiple attempts at each test item per AI system
tested.

 1

