®

Check for
updates

2
3

4

NIST Al 800-2
Initial Public Draft

Practices for Automated
Benchmark Evaluations
of Language Models

Center for Al Standards and Innovation

https://doi.org/10.6028/NIST.AI.800-2.ipd

January 2026

http://crossmark.crossref.org/dialog/?doi=10.6028/NIST.AI.800-2.ipd

10
11
12
13
14
15
16
17

18

19

20
21

22
23

NIST Al 800-2
Initial Public Draft

Practices for Automated
Benchmark Evaluations
of Language Models

Center for Al Standards and Innovation

https://doi.org/10.6028/NIST.AI.800-2.ipd

January 2026

U.S. Department of Commerce
Howard W. Lutnick, Secretary

National Institute of Standards and Technology
Craig Burkhardt, Acting NIST Director and Under Secretary of Commerce for Standards and Technology

NIST Al 800-2 ipd
January 2026

The Center for Al Standards and Innovation (CAISI) at NIST is releasing this document for
public comment.

Comments on NIST Al 800-2 ipd may be sent electronically to ai800-2@nist.gov with “NIST Al
800-2 ipd” in the subject line. Electronic submissions may be sent as an attachment in any of
the following unlocked formats: HTML; ASCII; Word; RTF; or PDF.

All comments are subject to release under the Freedom of Information Act (FOIA)

mailto:ai800-2@nist.gov

0O NO U~ WN B

10

11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

28
29
30
31
32

33

34

NIST Al 800-2 ipd
January 2026

ABSTRACT

This draft provides voluntary practices for automated benchmark evaluations of language
models and Al agent systems. It structures the practices in three stages: (1) defining the
measurement target, (2) implementing and running the evaluation, and (3) analyzing and
reporting the results. The report provides best practices at each of these stages and presents
key terms and concepts in a glossary as such terms are used in the academic literature. As the
science of Al measurement is rapidly developing, the guidelines presented in this document are
offered as a preliminary set of best practices that will be updated on as the field advances.

KEYWORDS

artificial intelligence; evaluation; benchmark; large language model; chatbot; agent.

AUTHORITY

This publication has been developed by the Center for Al Standards and Innovation (CAISI) to
further NIST’s statutory responsibilities under the National Al Initiatives Act as codified in 15
U.S.C. § 278h-1. NIST is responsible for supporting measurement research and development of
best practices and voluntary standards for Al systems. Secretary Howard Lutnick directed CAISI
within NIST to develop guidelines and best practices to measure and improve the security of Al
systems. President Trump’s Al Action Plan tasked CAISI with publishing guidelines and resources
for Federal agencies to conduct evaluations of Al systems. Executive Order 14303 directed
Federal agencies to promote "gold standard science" that is, inter alia, reproducible,
transparent, and communicative of error and uncertainty.

Nothing in this document should be taken to contradict standards and guidelines made
mandatory and binding upon Federal agencies by the Secretary of Commerce under his
statutory authority. Nor should these guidelines be interpreted as altering or superseding the
existing authorities of the Secretary of Commerce, the Director of the Office of Management
and Budget, or any other Federal agency or official.

ACKNOWLEDGEMENTS

This draft publication was developed by Drew Keller, Ryan Steed, Tony Wang, Stevie Bergman,
and Peter Cihon. It was informed by feedback from CAISI and NIST Information Technology
Laboratory staff, including Paul Christiano, Jesse Dunietz, Craig Greenberg, Jonathan Phillips,
Julia Sharp, Benjamin Edelman, Maia Hamin, Jason Liang, Lukas Berglund, Andrew Fasano,
Samuel Curtis, Michael Majruski, and Craig Schlenoff.

=

O 00 N OO 1 A W N

e e S N e O
o Ul h WN KL O

[EEN
~N

18
19
20
21

NIST Al 800-2 ipd

January 2026

TABLE OF CONTENTS
INTRODUCTION 1
1. DEFINING EVALUATION OBIJECTIVES AND SELECTING BENCHMARKS 3
Practice 1.1 Define evaluation objectives. 4
Practice 1.2 Select benchmarks that meet evaluation objectives. 5
2. IMPLEMENTING AND RUNNING EVALUATIONS 9
Practice 2.1 Design the evaluation protocol. 10
Practice 2.2 Write the evaluation code. 18
Practice 2.3 Run the evaluation and track results. 19
Practice 2.4 Debug the evaluation. 20
3. ANALYZING AND REPORTING RESULTS 24
Practice 3.1 Conduct statistical analysis and uncertainty quantification. 25
Practice 3.2 Share details of evaluation and evaluation data. 26
Practice 3.3 Report qualified claims. 27
REFERENCES 29
APPENDIX A: GLOSSARY 32

Disclaimer: Certain equipment, instruments, software, or materials, commercial or non-commercial, are
identified in this paper in order to specify the experimental procedure adequately. Such identification
does not imply recommendation or endorsement of any product or service by NIST, nor does it imply that
the materials or equipment identified are necessarily the best available for the purpose.

O 00 N O U1 A W N B

N S =
w N B O

14
15
16
17
18
19
20
21

22
23
24
25
26
27
28

29
30
31
32

NIST Al 800-2 ipd
January 2026

INTRODUCTION

This draft document identifies practices for conducting automated benchmark?! evaluations of
language models and similar general-purpose Al models that output text (herein “Al models”).
Evaluations of these models, often embedded into systems capable of functioning as chatbots
and Al agents, are increasingly common. However, consistent practices to support the validity
and reproducibility of such evaluations are only beginning to emerge. The practices presented
in this document are intended to reflect best practices; where relevant, practices that are
relatively less mature in ecosystem use are labeled as emerging practice. This report supports
NIST and CAISI efforts to develop guidelines and resources for Federal agencies to conduct
evaluations of Al systems, as called for in the Al Action Plan [1]. It is informed by CAISI
evaluations of Al models in partnership with leading U.S. Al industry organizations and CAISI
research on measurement science, and will be subsequently informed by feedback via public
comment.

This report is scoped to automated benchmark evaluations—evaluations that, once set up, can
be run without any additional human input. The report focuses on using these evaluations to
measure model capabilities, although many practices also apply to evaluating other behavioral
properties of models (e.g. robustness). The document provides practices to implement and
report on existing benchmarks to meet organizational needs, rather than practices to create
new benchmarks. It does not provide guidelines for roles, resources, responsibilities, or other
enabling practices for performing Al evaluations within an organization.? Future work may
address benchmark development and practices for other types of Al evaluations.

The purpose of this report is to support practitioners in defining evaluation objectives; in

selecting, implementing, and running evaluations to meet those objectives; and in analyzing
and reporting on evaluations in a manner that enables reproducibility and valid interpretation
of results. Not all evaluation objectives can be met by automated benchmark evaluations. Table
I.1 provides some considerations for practitioners deciding when to use automated benchmarks
rather than other evaluation methods (e.g., red teaming, human-subject experiments, field
testing, and post-deployment monitoring) to assess model capabilities on a given task.

The primary audience for this document is technical staff at organizations conducting Al
evaluations. These include Al deployers, developers, and third-party evaluators that may be
based at companies, government agencies, academia, or other organizations. Additionally,
anyone reviewing an evaluation report or model card may benefit from evaluator

! Terms defined in the Glossary are underlined. If a term appears multiple times, it is underlined only
once per section.
2 On such topics, practices may be obtained from NIST Al 100-1 [2] and NIST Al 800-1 [3].

1

g A W N -

N O

10
11
12
13
14
15

NIST Al 800-2 ipd
January 2026

implementation of document practices. Such readers may include business decision-makers,

technical integrators, end consumers, or procurement officers seeking information with which

to select an Al model for integration or use. When Al evaluation organizations implement the

practices provided in this report, this secondary audience may be able to better understand and

use evaluation results.

Table I.1. Characteristics of evaluations suited for automated benchmarks vs. other methods.

Automated benchmarks are not well-suited for all use cases.

Evaluations suited for automated benchmarks are:

Evaluations suited for other evaluation methods are:

Structured and verifiable: a set of relevant, discrete
tasks and corresponding test items with known or
automatically verifiable solutions can be identified
within the subject or domain of evaluation.

Open-ended or subjective: the evaluation domain
cannot be divided into discrete tasks, and/or it is
difficult to define objective grading criteria or
verification procedures.

Time-invariant: tasks and their success criteria remain
relevant and realistic over time.

Dynamic: realism and relevance of tasks may shift
rapidly.

No human in the loop: tasks may be accomplished
without iteration with the Al system operator(s).

Human in the loop: tasks require repeated interaction
or open-ended use, and/or the evaluation objective
intends to measure the Al system in conjunction with
human operator(s) or other affected parties.

Outcome-oriented: the question of whether or not the
model can accomplish certain tasks and/or the
manner in which it behaves are of primary concern.

Process/interpretability-oriented: the process by which
the model carries out tasks and/or reasons for model
behavior are of primary concern.

Resource-constrained: all else equal, an automated
benchmark may be less costly and time-intensive than
other evaluation methods.

Comprehensive: conducting evaluations via multiple
methods and modalities (e.g., automated
benchmarking, human red-teaming, field testing, etc.)
may be more expensive but can improve assurance.

Each section of this report details a stage in the evaluation process, providing best practices and

specific examples. The report is organized into the following sections:

1. Define Evaluation Objectives and Select Benchmarks

2. Implement and Run Evaluations
3. Analyze and Report Results

Readers unfamiliar with Al measurement concepts may benefit from consulting the Glossary in

the Appendix as they read this document.

10
11
12
13
14
15
16
17

18
19

20
21
22
23

NIST Al 800-2 ipd
January 2026

1. DEFINING EVALUATION OBIJECTIVES
AND SELECTING BENCHMARKS

The first stage in effectively evaluating Al capabilities is to select benchmarks? that suit the
evaluator’s purposes, divided here into two high-level practices:

1.1. Define evaluation objectives.
1.2. Select benchmarks that meet evaluation objectives.

The design, execution, and reporting of an evaluation all depend on the evaluation objectives,
including what should be measured (the measurement construct) and intended uses for the
results produced. Possible uses of benchmark evaluation results could include:

e Informing or assessing decisions made while developing an Al system, such as what
algorithms or data to use to train systems.
Assessing whether an Al system is fit to use in a specific scenario.
Comparing Al systems to decide which are most suitable for deployment.
Assessing the efficacy of deployment configurations or of mitigations intended to
address security, criminal misuse, or other risks.
Validating that an Al system has been deployed and configured properly.
Informing predictions or forecasts of the real-world impacts of an Al system.

See Table 1.1 for select evaluation objectives and relevant considerations for benchmark
selection.

Table 1.1 Possible benchmark fit assessment for example evaluation scenarios. Based on how
the evaluation will be used and what should be measured (Practice 1.1), the evaluator assesses
what a candidate benchmark measures (Practice 1.2.1) and whether it relates to the evaluation
objectives (Practice 1.2.2).

Example evaluation objective
. Possible What the benchmark measures Conceptual fit
How What Is measured benchmark assessment
measurements
will be used

Al developer Graduate-level GPQA- Accuracy of answering a selection of Benchmark
looking to evaluate | chemistry, biology, | Diamond multiple (4) choice questions directly
training progress and physics (4] intended to be difficult to answer measures the
(on multiple choice | multiple choice even with internet searches, construct of
science question guestion developed and validated by PhD interest in the
answering) answering students or graduates in the fields of | setting

3 Terms defined in the Glossary are underlined. If a term appears multiple times, it is underlined only
once per section.

N

N o o AW

10
11
12
13
14
15
16
17
18
19

NIST Al 800-2 ipd

assessing risk
posed by criminal
misuse of model
capabilities

ability to exploit
web application
vulnerabilities is
uplifted relative to
pre-existing tools

and open-source web applications
scored as having “critical”
vulnerabilities (Common Vulnerability
Scoring System) in the National
Vulnerability Database

January 2026

accuracy chemistry, biology, and physics
Technical Human-preferred | Arena-Hard | LLM-judged human preference Predicts
integrator deciding | responses in [5] ranking estimates (Brier score) for downstream
which model to everyday LLM responses to everyday questions | outcomes of
use in an Al- conversation sampled topic-wise interest in the
powered general- setting
purpose chatbot
Al deployer Vulnerability to AgentDojo | Fraction of successful prompt Conceptually
looking to prompt injection [6] injection attacks on LLM agents in a related to the
understand the attacks during selection of realistic everyday tasks evaluation
security risk posed | everyday tasks with access to typical tools and objective in
to users by the applications in office workspace the setting
model deployed as populated with manual and LLM-
an agent generated dummy data
Third-party Extent to which a CVE-Bench | Success rate of autonomous LLM Conceptually
evaluator novice attacker’s [7] agent(s) at exploiting a sample of free | related to the

evaluation
objective in
the setting

Practice 1.1 Define evaluation objectives.

Every evaluation must be guided by clear objectives, which identify what the evaluation aims to
measure in order to achieve the evaluation’s end goal (i.e., to support the intended use of
evaluation results). For example, a technical integrator choosing a model for a consumer
chatbot application may conduct an evaluation with the objective of determining which of
several models generates the most human-preferred responses to everyday questions.

Two questions are critical to development of an evaluation objective:

1. How will the measurements be used? Document intended uses of evaluation results.
For example, an evaluation might be used to assess performance at a specific task,
compare models, or assess risks associated with model use. Common considerations

include:

a. Properties vs. outcomes. Sometimes, one objective of evaluation may be to
measure or predict a downstream outcome (e.g., the incidence of Al-assisted
exploits of web applications or user satisfaction with a chatbot). In other cases,
the objective is to measure an abstract property (e.g., mathematical reasoning
ability).

b. Baselines. If the objective is to assess differences in behavior (e.g., increases or
decreases in performance at a task), relevant baseline measures should be noted

N

O 00N O Ul W

10
11
12
13
14

15

16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

NIST Al 800-2 ipd
January 2026

for comparison (e.g., human performance). These guidelines do not cover the
process of collecting baseline measurements.

2. What should be measured? Based on the intended use cases for the Al system or threat
models for risk assessment, decide and document what concept should be measured
(the measurement construct). For example, an evaluation of a system intended to assist
researchers might seek to assess a chatbot’s ability to answer complex science
guestions, while a security risk assessment might seek to assess a system’s vulnerability
to prompt injection attacks. Common considerations include:

a. Comparison. Many evaluations aim to compare measurements of different
models (e.g., to select between models or assess change over time).

b. Measuring average-, best-, or worst-case behavior. [Emerging Practice*] For
example, high-stakes risk assessments may focus on best- or worst-case
behavior; comparison shopping may focus on average-case behavior.

Practice 1.2 Select benchmarks that meet evaluation objectives.

After defining the evaluation objective, the next step is to select a benchmark or benchmarks.
These guidelines focus on selection from existing benchmarks, but if existing benchmarks are
not suitable, evaluators may choose to modify existing benchmarks or create new ones.

Conduct a survey of existing benchmarks. Based on the considerations below, choose
benchmarks of sufficient quality and conceptual fit to satisfy the evaluation objectives. Clearly
document exactly what each benchmark is expected to measure and how it relates to the
evaluation objectives before conducting the evaluation, similar to scientific preregistration.
These details are critical for accurately interpreting and qualifying the results (Practice 3.3).

1. What does the benchmark measure? [Emerging Practice] Document, in detail, precisely
what each candidate benchmark measures. For example, the GPQA benchmark [4]
purports to measure accuracy at answering a selection of multiple-choice questions
intended to be difficult to answer even with internet searches at the time of creation,
developed and validated by PhD students or graduates in the fields of chemistry,
biology, and physics. Consider what the benchmark’s description claims to measure and
the accuracy of this claim based on available information about its construction,
validation, and usage by others, as well as knowledge of the construct nominally being
measured. When possible, manually inspect examples of questions, or test items,
contained in the benchmark. Relevant details often include:

a. Subject matter. What topics does the benchmark cover?
b. Difficulty. What is the intended difficulty of the benchmark?

4 Practices presented in this document are intended to reflect best practice; where relevant, practices
that are relatively less mature in ecosystem use are labeled as emerging practice.

5

O 00 N O Ul A WN -

B W WWWWWWWWWNNRNRNNNNNNNRRRRRRRRP RPB R
O VWO NOWUDEWNROWVWOWOWNOUDN,WNROWLVOOWNOOO UM WNRO

NIST Al 800-2 ipd
January 2026

c. Testitem format. How are the benchmark items formatted?

d. Grading. How are responses graded or assessed?

2. Is what the benchmark measures relevant to the evaluation objective? Document the
relationship between the benchmark and evaluation objective. A benchmark can be
relevant to the evaluation objective in multiple ways:

a. The benchmark directly measures the construct of interest. If the content of a
benchmark already reflects the construct of interest, it can be used directly. For
example, the GPQA benchmark [4] may directly test graduate-level chemistry,
biology, and physics multiple-choice question answering accuracy.

i. Coverage. Test items should have high coverage across the entire space
of tasks that pertain to the evaluation objectives and few items should be
irrelevant. It may be possible to filter an existing benchmark to use only
the subset of test items that are relevant to the evaluation objectives.
Make note of any subject areas or other aspects not covered in the
benchmark. For example, GPQA includes questions on only biology,
chemistry, and physics.

ii. Testitem format. Test items should reflect intended use cases. For
example, the items in many benchmarks are multiple-choice questions,
usually with a single best answer per question. This question format
simplifies benchmark implementation but sacrifices validity for many
evaluation aims, as most tasks that LLMs are used for in practice, such as
a chatbot answering user questions are more akin to free-response than
multiple-choice.

b. The benchmark is conceptually related to the evaluation objective. Often, there
may not be a benchmark that directly measures the construct of interest,
especially if the goal of evaluation is to predict a downstream outcome or if the
task is hazardous or sensitive (e.g., cyberattacks or deepfake generation).
However, existing benchmarks may instead measure proxy tasks which are
prerequisites, subparts, or close relations to the task of interest.

i. Use cases and threat models. Draw on use cases and threat models of
interest to assess the connection between the benchmark content and
evaluation objective. For example, no automated benchmark can directly
measure how much an Al system uplifts a novice’s ability to attack critical
infrastructure, but an Al system that is unable to attack easy-to-exploit
web applications could be inferred not to produce such uplift.

ii. Subject matter expertise. Integrate theoretical analysis by subject matter
experts to build evidence for or against a conceptual relationship.

c. The benchmark predicts downstream outcomes of interest. [Emerging Practice]
More rarely, there may be existing evidence of correlation between benchmark
results and downstream outcomes or indicators of interest even if they are only

O 00 N O Ul A WN -

W W WWWWWWWNNRNRNNNNNNNRERRRRRRRP P R
0O NOWUDS WNROWVUWOWNOUDN,WNROWLVOOWNOOO UL WNRO

NIST Al 800-2 ipd
January 2026

weakly conceptually related, for example, between an automated assessment of
chatbot responses to user prompts and previously observed human preferences
for chatbot responses.

3. Is the benchmark suitable for the intended uses of evaluation results? Different
benchmarks provide different kinds of evaluation results.

a.

Desired level of difficulty. The ideal range of item difficulty depends on the
reason(s) for evaluation. If the objective is to compare model performance
during development, then a benchmark that is either too hard or too easy to the
point of saturating is not useful. If the goal is to assess behavior relative to a
threshold, many items should ideally be near that threshold to increase precision
close to the boundary. If the goal is to assess average behavior on a specific task,
the benchmark should have a realistic and representative level of difficulty.
Validated baseline measures (e.g., human performance on the same task).
Having relevant baseline or reference measures is beneficial when an evaluation
seeks to compare the performance of an Al system to the performance of
alternative approaches (e.g., humans only, prior non-Al automation, humans
assisted by Al, or random chance). Besides capturing realistic alternatives
relevant to the evaluation objectives, existing baseline(s) should also be
statistically robust (e.g., sufficient number and expertise of human test-takers,
for a human performance baseline).

4. Is the benchmark of sufficient quality? Even if a benchmark is a good fit for the
evaluation objective, flaws in its construction may make it less useful and possibly
misleading.

a.

Diversity of test items in the evaluation. A broader diversity of items means it is

less likely there is some shared idiosyncrasy of all the items in the benchmark

that could affect results. This enables broader inferences to be made based on

the results of the evaluation.

Quantity of test items. In addition to coverage and item diversity, the number of

items in the benchmark affects whether results (statistically) support evaluation

objectives. Statistical power analysis can support this determination.

Aspects of the benchmark, including contents or prompt formats, that may have

influenced system training prior to evaluation. If systems are trained to solve

specific benchmark contents or formats, evaluation results may become

“contaminated” — systems may take advantage of spurious relationships in the

benchmark data to score higher than they would on unseen data in practice.

i. Contamination risk can be reduced by efforts to keep benchmark data

hidden during training or by using benchmark data generated after the
system was created.

O 00 N O Ul A WN -

[S
N P O

NIST Al 800-2 ipd
January 2026

ii. [Emerging Practice] Some benchmarks include canary strings (unique
sequences intentionally inserted into benchmark data) to check for
blatant instances of training on the test set.

5. What other practical considerations may affect benchmark usage?

a.

Ease of use. Operational considerations include the amount of human labor
required for setup and running, the computational cost to run the benchmark,
and the benchmark’s compatibility with a wide-range of Al systems (e.g., agent
architectures).

Results reported by others. If others have reported results for the same
benchmark before, the benchmark may be a good candidate for validating and
contextualizing the evaluation setup by comparing against previous evaluations
(also see Section 3).

NIST Al 800-2 ipd
January 2026

2. IMPLEMENTING AND RUNNING EVALUATIONS

The previous section discussed practices around defining evaluation objectives and selecting
benchmarks based on those objectives. Given the selected benchmark(s), this section discusses
how to implement and run fully automated benchmark evaluations. This process is divided into

u A~ W N

O 00 N O

10
11

12
13
14
15

four high-level practices:

2.1. Design the evaluation protocol.

2.2. Write the evaluation code.

2.3. Run the evaluation and track results.
2.4. Debug the evaluation.

See Table 2.1 for some examples how these practices have been applied in past CAISI
benchmark evaluations.

Table 2.1 Possible implementation and execution practices for example benchmarks. Select

design principles inform choice of protocol settings (Practice 2.1). The protocol is implemented,

provided as open source software in the examples (Practice 2.2). In the process of running the
evaluation (Practice 2.3), debugging may be required (Practice 2.4).

Evaluation Protocol
Design Details of Protocol
Principles

CAISI [8] used | Comparability | Task settings inspect_ev | Older models sometimes
GPQA [4] Tools: none als a had trouble outputting
among other Performance | Instructions: asked model to the selected choice in
science and optimization output selected choice, then an the correct format,
knowledge explanation which was caught by
benchmarks Submission attempts: one manual transcript
for review. CAISI used an
comparison Model settings LLM-as-a-judge to parse
across Al Reasoning settings: “high” for selected choices from
models. OpenAl models, 31,000 reasoning model responses.

budget for Anthropic models

Scoring settings

Number of samples: all 198

GPQA-Diamond questions

LLM-as-a-judge: used to parse

answer choice from response
CAISI [8] used | Comparability | Task settings usnistgov/ | Models were allowed to
CVE-Bench [7] Tools: command-line tools for caisi- access the internet in
to evaluate External cybersecurity functions and cyber- order to download new
models for validity accessing the internet evals tools and more

https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/gpqa
https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/gpqa
https://github.com/usnistgov/caisi-cyber-evals
https://github.com/usnistgov/caisi-cyber-evals
https://github.com/usnistgov/caisi-cyber-evals
https://github.com/usnistgov/caisi-cyber-evals

o b~ W

10

11
12
13

14
15
16
17
18
19

NIST Al 800-2 ipd

January 2026
offensive Instructions: act as a skilled accurately match
cyber Cost control cybersecurity expert realistic vulnerability
capabilities. Submission attempts: unlimited discovery workflows.
Performance However, via automated
optimization Model settings transcript review, CAISI
Reasoning settings: “medium” for discovered that models
OpenAl models, 0 reasoning sometimes used
budget for Anthropic models command line tools like
curl to search the web
Agent settings for answers to test
Agent scaffolding: CAISI- items.
implemented ReACT loop
Agent budget: 500,000 As a mitigation, CAISI
“weighted” input/output tokens changed the system
prompt to instruct
Scoring settings models not to trigger
Number of test items and trials searches for answers.”
per task: 15 items and 4 trials per
task.

Practice 2.1 Design the evaluation protocol.

A given benchmark can generally be implemented in many different ways. It is up to the
evaluator to design an evaluation protocol—the full set of operational procedures carried out
during an evaluation—that meets the evaluator’s needs. This sub-section presents best

practices for evaluation protocol design.
2.1.1 Evaluation protocol design principles

The most important principle of evaluation protocol design is that procedures should be
designed to support the objectives of the evaluation (Practice 1.1). This principle overrides all
others.

That said, there are common design principles that can help guide protocol design for a broad
range of evaluation objectives. These principles are particularly useful if evaluation objectives
are only roughly defined. Common design principles include:

1. Comparability. If the evaluation objective is to compare models or systems, the
evaluation protocol should be designed such that evaluation results can be meaningfully
compared. As a rule of thumb, the greater the consistency of a protocol between
different models or systems, the more comparable results will be.

If one wishes to compare evaluation results to existing baseline results (e.g., human

> In the longer run, a more robust solution would be to disable internet access while providing more tools and
documentation up front. This would both improve reproducibility and reduce test-time contamination.

10

w N

O 00N O U1 b~

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

NIST Al 800-2 ipd
January 2026

baselines), then evaluation protocols should also be designed with this in mind. For
example, the evaluator may want to use a protocol that provides models with tools and
information comparable to those used in existing baselines.

External validity. In many cases, the objective of an evaluation is to gain information on
how a model or system will behave in certain external contexts (e.g., real-world, worst-
case, best-case, hypothetical) different from that of the evaluation. For evaluation
results to be informative in these external contexts, the evaluation protocol should be
designed with external validity in mind.

For example, to design for real-world validity, models can be scaffolded in ways that
mirror the scaffolding that they would be used with in real-world applications. Similarly,
cost-performance tradeoff settings (e.g., reasoning effort) can be chosen to mirror real-
world usage.

Cost control. [Emerging Practice] There are both practical and methodological reasons
to design evaluation protocols with execution cost in mind, with cost referring to
resources like time, money, tokens, etc.

On the practical front, all else being equal, cheaper evaluations are easier to run.
Moreover, for certain types of agentic evaluations (e.g., when agents can compress their
contexts and have effectively infinite context length), some form of cost-control must be
implemented to prevent agents from running indefinitely.

On the methodological front, the execution costs incurred by a model during an
evaluation can have a big impact on the comparability and external validity of results.
This is because the performance of language models and general-purpose Al systems
can often be increased by running them in higher-execution-cost modes.

For example, to meaningfully compare evaluation results on a one-dimensional
measurement scale, execution costs should be controlled to be uniform across systems.
Otherwise, if uniform cost-controls are not implemented, a downstream user may be
able to obtain higher downstream utility with a cheaper but seemingly lower-
performing model run in a higher-execution-cost mode. Uniform cost-controls across
models are not strictly necessary though—if one is willing to report both costs and
performance alongside each other, then comparability is valid even if different systems
incur different costs. We comment on this approach more in Section 3.3.3.

Finally, as a rule of thumb, when evaluating systems for the purpose of estimating their
real-world utility, costs should be controlled to be similar to costs incurred in real-world

11

O 00 N O Ul A WN -

NRNNRNNNRRRRBRRBRRBR R
U D WNREROWVWOWOWNOOOU A WNERO

26

27
28
29
30
31
32
33
34
35
36
37
38
39

NIST Al 800-2 ipd
January 2026

usage.

4. Performance optimization. [Emerging Practice] For certain evaluation objectives, there
may be a need to optimize aspects of an evaluation protocol. Optimization here means
iteratively generating results using one version of the protocol, and updating the
protocol in order to change the results to be “better” along some axis (which could be
exactly defined or only qualitatively specified).

As an example, if the objective of an evaluation is to establish an upper or lower bound
for a measured metric of a model across a large family of scaffolds, one way to
accomplish this is to evaluate the model with a scaffold that has been optimized to
maximize or minimize the metric. As another example, suppose a model has a tendency
to refuse to engage with an evaluation task but the evaluation objective is to measure
its behavior conditioned on non-refusal. One way to measure this conditional behavior
is to optimize the prompt (i.e. iteratively update the prompt) fed to the model to get it
to avoid refusals.

When optimizing performance, one useful practice is to conduct optimization against a
set of “development set” of benchmark items distinct from the “test-set” benchmark
items being evaluated. If one forgoes a “dev-set” and optimizes against the test-set
directly, there is an increased risk that the optimized evaluation protocol has overfit to
the test-set and lost external validity, meaning the results of the evaluation can no
longer be used to make meaningful inferences about the behavior of the model in other
contexts.

2.1.2 Common evaluation protocol settings

The previous sub-section listed some high-level design principles that can help guide the design
of an evaluation protocol. This sub-section lists common configurable variables (which specify
execution details) shared by many different types of evaluation protocols. These variables are
referred to as evaluation protocol settings, and are divided into four setting types:

I. Inference settings are those that influence the process by which the model
generates its outputs, e.g., temperature or reasoning effort.

Il. Scaffolding settings are those that configure the agentic architecture and
system-level wrappers around the model, e.g., tool availability and aggregation
strategies like best-of-N (running a model N times and taking the best
performing output).

12

O 00 N O Ul A WN -

PR R R R R R R R R
O 0 NOU D WNRERO

NIST Al 800-2 ipd
January 2026

lll. Task settings are those that determine how benchmark items are presented to
models/systems and how models/systems can go about solving items.

IV. Scoring settings are those that determine how test items are scored.

In the table below, we organize common protocol settings by their setting type. This table also
serves as an evaluation design checklist, since making an improper choice for an applicable
setting can significantly reduce an evaluation's relevance to its objectives.

When setting for protocol settings, sensitivity analyses, such as tool ablation experiments (in
which evaluations are re-run without particular tools being available to an agent), may be
valuable for gauging robustness of evaluation results or assessing the impact of evaluation
protocol design on results. In some cases, such as assessing the performance impacts of a new
agent scaffold or prompting method, such experiments may be the primary goal of the
evaluation.

Table 2.2 Common Evaluation Settings Examples of evaluation settings. Evaluation settings are
organized by their setting type(s), and for each setting we provide a brief description of what it
is and what it influences.

Evaluation
Protocol
Setting

Setting

Description
Type(s)

Sampling influences the process by which each successive
) token is generated. Common sampling settings include

Sampling Inference .
temperature, top_p, or top_k. In some circumstances, a model

developer may have recommended settings for sampling.

Reasoning models can often be configured to use more or less
“reasoning” when solving benchmark items. This is usually
done via a “reasoning effort” setting, which can either be a
categorical or numeric setting, and is commonly set at the API-
request level.

Reasoning

offort Inference | Configuring models to use more (less) reasoning generally

increases (decreases) their performance at the cost of causing
them to use more (less) computational resources (in the form
of time, money, or tokens). The tradeoff between
performance and cost can depend on both the model and the
domain, with certain domains like advanced mathematics
being particularly sensitive.

13

NIST Al 800-2 ipd
January 2026

Evaluation
Protocol
Setting

Setting
Type(s)

Description

Reasoning effort should generally be set based on the “cost
control” design principle.

Safeguards /
filters

Inference
or
Scaffolding

Models can be served with intrinsic (e.g., weight-alteration
based) or extrinsic (e.g., input/output classifier based)
safeguards that cause certain classes of tasks to be refused.
Evaluators can sometimes configure whether safeguards are
enabled, and this choice can significantly impact evaluation
results when the domain of evaluation overlaps with the
domains of the model’s safeguards.

Model
Provider

Inference
or
Scaffolding

The model provider (which could be the evaluator themselves)
is the entity responsible for running the underlying
computations that transform model inputs into model
outputs.

The choice of model provider can impact both the logistics and
semantics of an evaluation. In the former case, the provider
impacts logistics via factors like inference costs, throughput,
and data retention policies. In the latter case, the provider can
impact semantics because different providers may serve the
same model with different capabilities (e.g., different context
lengths or tool call support), and providers can also have bugs
in the models they serve (see section 2.4 for more discussion
of such bugs)

Finally, some providers offer more advanced features like tool
calling that is built into their APIs, meaning provider choice
should be treated as a scaffolding setting.

Agent
scaffolding

Scaffolding

Agent scaffolding defines exactly how a model is turned into
an agent. Options for agent scaffolding include using a high-
level architectural pattern like ReAct [10], or using off-the-
shelf, pre-built agents like Claude Code, codex-cli, or gemini-
cli.

14

NIST Al 800-2 ipd
January 2026

Evaluation
Protocol
Setting

Setting
Type(s)

Description

A key sub-consideration when designing agents is whether and
how to provide them with context-compression tools, which
allow them to operate past their normal context limits.

Agent
budget

Scaffolding

A key property of many agents is that they can be run for an
extended (possible indefinite) period of time. Thus, unlike non-
agentic evaluations where task items have a natural stopping
point, for agentic evaluations a stopping condition must be
explicitly defined.

A common way to do this is via agent budgets, which limit the
amount of resources (e.g., tokens, money, time) an agent can
use. Agents with larger budgets generally have higher
performance, though this effect varies by model and domain.
Agent budgets should be set based on the “cost control”
design principle.

Best / maj-
of-N
aggregation

Scaffolding

This is a type of scaffolding where a model is queried multiple
times, possibly in parallel, and its results are aggregated using
a scheme like best-of-N (where the right answer is known) or
majority-of-N (where the right answer is not known). This type
of scaffolding is applicable to both agents and standalone
models.

For a best/majority-of-N scaffold, the choice of N allows one to
trade off a model’s performance against the computational
resources it consumes. In certain circumstances, this setting
can also be adjusted post-hoc during the scoring phase of an
evaluation.

This setting should be set based on the “cost control”
principle.

design

Prompts /
instructions

Scaffolding
or Task

When presenting a test item to a model, the evaluator defines
the instructions given to the model that describe how the item
should be completed. For example, for a multiple-choice
guestion, the model could be prompted to “Read the question
and pick the best answer out of the choices given.”

15

NIST Al 800-2 ipd
January 2026

Evaluation
Protocol
Setting

Setting
Type(s)

Description

The instructions presented to a model can impact what is
being measured. For example, the level of detail in instructions
can influence whether an evaluation is or is not measuring a
model’s skill at resolving ambiguity and inferring intentions.

For agentic evaluations with a limit placed on the resources an
agent can use to solve each test item, a key design decision for
task instructions is whether or how to communicate this limit
to the agent (e.g., periodically reminding the agent how many
resources it has left versus leaving it up to the agent to
properly keep track of its available resources).

Instructions can also be used to outline constraints or rules,
such as rules against looking up certain kinds of information on
the internet. To ensure models cannot gain an unfair
advantage by ignoring such rules, evaluators should ensure
that the grading process for the task matches the rules as
presented to the model. Ambiguous or over-broad rules can
potentially cause models to under-perform or lead to
performance differences between models if rules are
interpreted differently.

Tools

Scaffolding
or Task

For many classes of benchmarks or types of benchmark tasks,
it may be reasonable to provide a model with tools to
complete each benchmark item. For example, for certain
scientific, engineering, or mathematical tasks, it may be
desirable to provide models access to a code execution tool to
carry out complex calculations. For tasks that require esoteric
knowledge, it may be desirable to provide models access to an
internet search tool.

Depending on the evaluation objectives, it may be more
appropriate to treat tools as scaffolding settings rather than
task settings as described above, i.e., it may be desirable for
different evaluated systems to have access to different tools.

16

NIST Al 800-2 ipd
January 2026

Evaluation
Protocol
Setting

Setting
Type(s)

Description

For example, this may be the case when the objective is to
understand the utility provided by different tools.

Note: Whether to provide internet search tools is a particularly
consequential decision, as internet access may allow models
to cheat by looking up answers online [9]. Potential
mitigations are discussed below in Sections 2.2 and 2.4.

Execution
Environment

Scaffolding
or Task

The execution environment is the environment in which an
agent’s tool calls have an effect. Examples of environments
include docker containers, virtual machines, or large-scale
networked systems of computers. Environments can come
pre-loaded with files relevant to the agent/task, and some
environments may have access to the broader internet.

Similar to tools, the execution environment can be treated as a
scaffolding and/or task setting depending on one’s evaluation
objectives.

Key design principles that are relevant to choosing an
execution environment include comparability (e.g., one may
want environments that behave consistently across repeated
evaluations) and external validity (e.g., one may want
environments that are similar to real world deployment
conditions).

Number of
submission
attempts

Task

For many agentic benchmarks, the evaluator determines the
number of submission attempts an agent is allowed for a test
item, as well as the type of feedback given to the agent for
incorrect submissions.

Number of
test items

Task

Sometimes, benchmarks come with more test items than one
actually needs for an evaluation. In these cases the evaluation
implementer needs to decide on how many items to use.
Generally, this decision should be made by balancing statistical
power and the budget the evaluator has for their evaluation
exercise.

17

N

0O N O U AW

NIST Al 800-2 ipd
January 2026

Evaluation
Protocol
Setting

Setting

Description
Type(s)

Models are generally sampled nondeterministically (though in
certain cases, it may be possible to directly measure
performance without sampling, e.g., via next-token
probabilities). Having models attempt each item multiple
Number of times increases evaluation cost but can reduce uncertainty of
trials per Scoring evaluation results and enable an evaluator to quantify what
test item portion of the uncertainty stems from model sampling. These
multiple attempts or trials may also be referred to as
“epochs”, as in the Inspect evaluation framework [11]. As with
the number of test items, the choice of trials per item involves
a tradeoff with evaluation budget.

Some test item formats do not have a programmatically
gradable answer. Instead, the answer must be judged using a
more subjective procedure (e.g., against a written rubric). In
these cases, automated evaluations often rely on using one or
more LLMs to grade answers. Because the results of the
evaluations are determined solely by the LLM-judge, the

design and quality of the judge can have a significant impact
LLM as a

d Scoring on the meaning of evaluation results.
juage

[Emerging Practice] Some practices that are helpful when
designing an LLM-as-a-judge setup include ensuring sufficient
guality and consistency of grading and interpretations of the
rubric, which can include comparing with human grading,
using multiple judges and computing interrater agreement,

and carefully designing and testing judge model prompts.

Practice 2.2 Write the evaluation code.

For automated benchmark evaluations, the evaluation protocol is ultimately implemented as
computer code. We call this the evaluation code. Depending on the benchmark, models, and
nature of the evaluation conducted, the amount of evaluation code required can range from
tens of lines to thousands of lines or more.

The previous sub-section discusses practices for the macro-level design of an evaluation

18

N =

O 00N O Ul W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38

NIST Al 800-2 ipd
January 2026

protocol. Here, this sub-section describes practices for the micro-level implementation of an
evaluation protocol as evaluation code:

1. Evaluation frameworks. Running evaluations can often be made easier by using

evaluation frameworks, which provide software libraries for querying models, agent
scaffolding and tools, error handling, and logging evaluation results instead of having to
write those functions from scratch.

Parsing answers. Many evaluations require converting a model’s answer into a specific
format that can be programmatically compared to the correct answer. A common way
this is done is by coding a parser that extracts a formatted answer from a model.
However, such parsers can be brittle, as sometimes models can output answers that are
technically correct when checked by a human but which the parser is unable to handle.
One way to make parsers more robust is to utilize LLMs as a part of the parsing logic.

Benchmark versioning. [Emerging Practice] When making improvements and changes
to a benchmark or its code, it is helpful to tag different versions of the benchmark with
version numbers, and to track the version number associated with evaluation results.
Versioning can be done using techniques like Python packaging numbers, git tags, or
commit hashes.

Semantic Versioning can be a helpful format to use, as it allows an evaluator to mark
breaking changes (e.g., as major version increments), points at which the results of an
evaluation before and after a change are no longer properly comparable. An example of
a breaking change might be updating environments to install new dependencies that
agents would previously have had to install themselves. An example of a non-breaking
change might be fixing semantically irrelevant misspellings in some of the task item
problem statements.

Sandboxing. [Emerging Practice] When agents are able to run arbitrary code,
sandboxing them in containers or virtual machines—an isolated environment that
prevents them from affecting the rest of the system—reduces security risks and makes
evaluations more portable.

Modularity as a design principle. When writing evaluation code, it can be helpful to
design the code to be compatible with many different types of models and agents. This
makes it easy to collect data on multiple different models / agents, which helps
contextualize evaluation results.

Practice 2.3 Run the evaluation and track results.

19

https://semver.org/

w N

o b

10
11
12
13
14

15

16
17

18

19
20
21
22
23
24
25
26
27
28
29

30
31
32

33
34
35

NIST Al 800-2 ipd
January 2026

Once evaluation code is written, running an evaluation can be a fairly straightforward
procedure: the evaluator needs only to run a command in a terminal or press a button in a user
interface.

However, keeping clear records of evaluation results is important. This practice helps the
evaluator avoid unnecessarily rerunning evaluations, and helps them keep track of the suitable
use cases for their different evaluation results.

Helpful practices for evaluation result management include:

1. Saving full evaluation logs alongside summary statistics.

2. Ensuring key information like the exact model/system version is present in evaluation
logs.

3. [Emerging Practice] Saving code or including commit hashes alongside evaluation logs.

4. [Emerging Practice] Tagging evaluation logs with metadata including their purpose.

5. [Emerging Practice] Grouping together evaluation logs that are meant to be compared
to one another.

Practice 2.4 Debug the evaluation.

Automated benchmark evaluations can have bugs in their code or mistakes in their evaluation
protocols. It is important to take steps to identify and fix these errors.

2.4.1 Common bugs

In this section, we list some common classes of bugs that one may encounter when performing
automated benchmark evaluations. In the subsequent section, we discuss techniques for
identifying these bugs.

1. Degraded serving. Models might be served in a degraded state due to improper
configuration of or bugs in inference engines, quantization procedures (which control
the precision of the floating-point numbers involved in model computations), and chat
templates. Degraded serving is a particular concern when an evaluator self-hosts
models. However, even commercial providers may serve models in a degraded state
(e.g. commercial providers often vary on what context length they serve a given model
with).

2. Tool calling errors. Errors in correctly calling tools or formatting tool calls can degrade
agent performance and may be alleviated through better prompting or tool parsing
code.

3. Test item solvability. It is important to validate the solvability of test items in
evaluations that involve evaluated systems interacting with complex virtual
environments. It is common for these environments to have bugs (e.g., networking

20

O 0o N O U b W IN B

W W WWWWWWNNNNNNNNNNRRRRRRRRB RPB R
N O OUDS WNROWOWWOWMNOUDN,WNROWLVOOWNO U WNRO

NIST Al 800-2 ipd
January 2026

issues, broken dependencies, file permissions, etc.) that make certain items unsolvable.

In particular, it can be useful to check that the tools and affordances in the environment
are functioning as intended. For example, is the networking and internet access (if
allowed) in the environment functioning as intended?

Refusals. Models may have safeguards that prevent them from fulfilling some types of
requests, such as for assistance in cybersecurity exploitation or dual-use biology tasks. If
refusal behavior during evaluation may differ from refusal behavior under realistic
usage,® evaluators should check for the presence of refusals or other safeguards
interventions in evaluation transcripts to determine whether and how they may be
impacting evaluation results.

Evaluation cheating. [Emerging Practice] Evaluation cheating occurs when a model has
an opportunity to solve a test item in an unintended way that undermines its
measurement validity.

For example, cheating can occur via “solution contamination,” in which a model is able
to access solution information in an unintended way, from searching benchmark
answers on the internet using coding tools to finding solution files or other artifacts
unintentionally left in the testing environment. Cheating can also arise through “grader
gaming,” if models can craft solutions that score highly on an evaluation’s automated
scoring function by exploiting implementation loopholes rather than solving the test
item as intended, such as solving a coding problem by removing the failing tests rather
than fixing the bug.

Cheating is more likely to occur on agentic evaluations, where models often have access
to flexible coding tools that can enable potentially unwanted solution paths.

Evaluation awareness. [Emerging Practice] Recent work has shown that for certain
models, model behavior can be influenced by cues that the input is part of an evaluation
exercise [12][13][14]. The sensitivity to these cues is a challenge to external validity,
since such cues are unlikely to be present during real-world use.

A form of evaluation awareness that is easy to detect is verbalized evaluation
awareness, wherein models will output text that directly references the possibility that
they are being evaluated. Unfortunately, the absence of verbalized evaluation

bFor example, a malicious user might be able to find jailbreaks that circumvent refusal. In such a case, an
evaluation seeking to assess real-world performance may need to incorporate jailbreaks or otherwise modified
refusals into the evaluation protocol.

21

v b~ WDN B

N O

0o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

NIST Al 800-2 ipd
January 2026

awareness does not imply the absence of evaluation awareness. Developing more
general solutions to detect and quantify the effect of evaluation awareness is an open
line of research.

2.4.2 Quality assurance techniques

Quality assurance can diagnose issues in evaluation code and mistakes in evaluation protocols
identified above. Relevant high-level quality assurance techniques include:

A. Manual transcript review. A powerful technique for quality assurance of automated

B.

benchmark evaluations is to manually review evaluation transcripts to detect and
diagnose bugs and mistakes. When conducting review, a useful heuristic is to look for
and examine unexpected behaviors. While not all unexpected behaviors are caused by
bugs or mistakes, many bugs and mistakes will cause unexpected behaviors. Dedicated
software for generating and viewing transcripts can make manual review more efficient.

Automated transcript review. [Emerging Practice] Evaluators may be able to extend and
augment manual transcript review processes using automated transcript review.
Automated transcript review involves using software tools, including LLMs, to analyze
evaluation transcript data.

For example, evaluators could programmatically check the number of tool calls that
returned an error in a particular transcript. Or, evaluators could use LLM judges to score
transcripts for the presence of problems like evaluation cheating.

When using LLM judges for transcript review, evaluators should consider checking that
these judges’ decisions match human judges’ decisions. Providing detailed rubrics,
richer task context (such as solution write-ups), or using multiple LLM judges can help
increase the accuracy of LLM-based transcript review systems. These practices mirror
the ones detailed in Section 2.1.2’s section on LLM-as-a-judge scoring.

Task review. In addition to reviewing transcripts, it can also be useful to review whether
tasks are properly configured.

For example, it can be helpful to manually review task instructions and ask: “If a human
was given the same instructions, would they be confused?” Instructions can often be
improved if the answer to this question is “yes”. Furthermore, it can be beneficial to
include multiple individuals in this review process to ensure interpretation consistency.

22

O 00 N O Ul A WN -

W W WWWNRNNNNNNNNNRRRPRRRRPRP R R
DR WNRPOOONOODUDNWNRPROOOONOUDNWNIERO

w
(]

NIST Al 800-2 ipd
January 2026

For evaluations that involve complex virtual environments, it can be useful to create and
run deterministic solutions against the evaluator’s in-house setup of the environment.
Any test item whose deterministic solution does not successfully solve the task is likely
to have some task configuration issue.

. Comparison to existing evidence. Another assurance technique is to compare results to

existing evidence such as other results on the same or closely related benchmarks.
Differences do not necessarily signify that results are invalid, but suggest a need for
further analysis to identify the cause of the divergence and to rule out the possibility of
measurement issues (e.g., an inappropriately implemented evaluation protocol or a
poorly selected benchmark). Results of other evaluations also provide important context
for claims (see Practice 3.3).

For example, as one check of whether the serving engine for a model is configured
properly, an evaluator can test the model on a benchmark that the model developer has
reported numbers on and check that their results are concordant with the developer’s
numbers. Differences could indicate an issue on the part of one of the evaluations.

Particularly unexpected or anomalous results might be valid, but they might also
indicate failure to achieve the evaluation objective. For example, one model performing
anomalously well could potentially indicate a contamination issue.

Comparing evaluation results to baselines can provide additional context to sense-check
whether the evaluation was implemented as intended and/or whether the baselines are
appropriate for comparison.

Item pattern analysis. [Emerging Practice] If an intended interpretation depends on
assumed similarities or other relationships between benchmark items, consider
analyzing whether the empirical results reflect this expected structure. For example, if
an evaluator is using a benchmark containing both multiple-choice and open-ended
guestions to assess biology knowledge, substantial differences in the rank ordering of
models between the multiple-choice and open-ended sections of the benchmark may
suggest that the formats are measuring distinct capabilities rather than a unified
construct.

23

0O NO U~ WN B

10
11

12
13
14

15

16

17
18
19
20

21

22

NIST Al 800-2 ipd
January 2026

3. ANALYZING AND REPORTING RESULTS

Once benchmark measurements are obtained, the next step is to process, contextualize, and
analyze results. Analysis procedures should take into account the evaluation objective, the
evaluation protocol, and characteristics of the selected benchmark. The aim of analysis is not
only to draw conclusions, but also to determine the appropriate degree of confidence for those
conclusions. Accordingly, evaluators should understand the evaluation’s sources of uncertainty
and gauge the evaluation’s robustness — that is, the consistency of the conclusions under
variations in measurement conditions or analysis procedures.

After analysis, evaluators should report qualified conclusions and share sufficient information
for others to interpret and replicate their results.

This section divides the analysis and reporting process into three key practices:

3.1 Conduct statistical analysis and uncertainty quantification.
3.2 Share details of evaluation and evaluation data.

3.3 Report qualified claims.

See Table 3.1 for an example of these analysis and reporting practices.

Table 3.1 Example of CAISI benchmark evaluation analysis and reporting. Provides a

description of statistical analysis and uncertainty reported (Practice 3.1), details on how the

evaluation was performed (Practice 3.2), and how claims were qualified in the final report

(Practice 3.3).

linear mixed model.
These standard
errors account for
LLM sampling and
finite benchmark
size.

selection criteria,
and cost-
performance
profiles.

Evaluation Statistical analysis Reported details Qualified claims
CAISI [8] used | CAISI reported CAISI reported CAISI reported that “U.S. models and DeepSeek’s
GPQA [4] to average accuracy detailed models achieve similar performance on question
evaluate across the full information on and answer-style science and knowledge
models’ benchmark with a the evaluation benchmarks. Leading U.S. models are slightly
scientific standard error of the | protocol, more performant, but not by much.”). Based on
knowledge. mean estimated benchmark the benchmark content, CAISI described the

using a generalized version and evaluation as “measuring performance on

challenging scientific questions that require
graduate-level expertise to answer reliably.” CAISI
compared benchmark results to developers’ self-
reported scores and published this comparison.

24

N o o AN

0o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

NIST Al 800-2 ipd
January 2026

Practice 3.1 Conduct statistical analysis and uncertainty quantification.

Evaluators should define, conduct, and report a statistically valid analysis procedure which
aligns with intended evaluation objectives, accounts for sources of variation and uncertainty,
and describes underlying assumptions. It is good practice to define a statistical analysis
procedure in advance of implementing and running the evaluation, in conjunction with the task
setting specification practices described in Sections 1 and 2. Results of statistical analysis should
be interpreted in light of broader evaluation objectives, limitations, and context.

Characteristics of a robust and transparent analysis procedure include:

1.

Appropriate modeling assumptions are made and reported. Reasonable assumptions
may greatly increase the precision of an analysis. For example, the Bradley-Terry
model’s assumption that model rankings are transitive results in much smaller
confidence intervals for model performance. Any assumptions used in results analysis
including the application of statistical modeling should be clearly specified and reported,
along with the results of any checks of these assumptions.

Appropriate aggregate statistics are selected. This includes any aggregation functions
applied at a test item level (e.g., across trials, such as pass@k) as well as across items
(e.g., mean of item scores). For example, if the evaluation goal is to predict typical
performance on some set of tasks, for which benchmark items are considered a
representative sample (in terms of both content and difficulty), then one appropriate
metric could be the expected score across items in the set. If the evaluation goal is to
compare models, evaluators could consider metrics that are specifically designed for
comparison, such as Bradley-Terry coefficient. If evidence suggests that the benchmark
measures multiple constructs, then care should be taken that aggregate metrics do not
combine these measurements in an arbitrary manner.

Whenever possible, statistics are reported with estimated uncertainties for associated
sources of variation [15]. Uncertainty quantifications could take the form of standard
errors, confidence intervals, credible intervals, etc. as appropriate and should be clearly
defined. Uncertainty metrics should be computed using methods aligned with the
statistical assumptions of the analysis, and the description of evaluation metrics should
make clear the contributions and alignment of estimated uncertainties to particular
sources of variation. Ideally, different sources of variation should be decomposed and
reported separately. For example, in many evaluations, two additive sources of variation
in results that contribute to uncertainty of estimates are (1) variation due to
nondeterministic sampling of model completions for each item and (2) variation
stemming from the hypothetical sampling of test items into the benchmark from an
item superpopulation.

25

O 00 NO UL WDN -

[EEN
o

11

12
13
14

15
16
17
18
19
20
21
22

23
24
25

26
27
28
29
30
31
32
33
34
35
36
37

NIST Al 800-2 ipd
January 2026

4. Unquantified sources of variation are clearly indicated — or when possible,
approximated or bounded [Emerging Practice]. For example, the analysis procedure may
not statistically account for factors such as prompt format or task environmental
conditions, but variations in these factors may introduce random or systematic
variations in measured results.

5. Comparisons are supported by appropriate statistical tests. For example, a comparison
can be made between mean scores of two evaluated models using a statistical test on
the paired difference with appropriate standard error. However, statistical test results
should be interpreted probabilistically and considered alongside effect size.

Practice 3.2 Share details of evaluation and evaluation data.

Sharing evaluation details and evaluation data such as test transcripts increases reproducibility
and enables others to draw their own determinations about what results imply, though
transparency must be weighed against business and security concerns.

1. Report key evaluation details. Such details include but are not necessarily limited to the
evaluation objective (Practice 1.1); selected benchmark version(s); number and type of
test items (Practice 1.2); exact model version(s); details of the evaluation protocol
including information about cost controls, performance optimization practices, key
evaluation protocol setting choices, and sensitivity analyses (Practice 2.1) statistical
assumptions and results of statistical analysis with uncertainty estimates (Practice 3.1).
Using an interoperable format or schema to share these details may improve clarity and
ease of replication.

2. Consider reporting both aggregate statistics and item-level results. While aggregate
statistics are useful for headline comparisons, item-level results can be particularly
useful for enabling comparison of results obtained by different evaluators.

3. Report costs alongside performance. [Emerging Practice] When models and systems
are not uniformly cost controlled, evaluation results should report both the
performance of models and the costs-incurred to achieve such performance levels (see
Section 2.1.1). One possible way to present this data is to plot cost and performance of
different systems on a two-dimensional graph (see Figure 3.2, for example).

Some evaluations may also provide evidence about the performance of a system for a
wide range of different costs. For example, the trajectory of an Al agent can be
truncated at different points, or a fixed set of responses can be used to compute the
accuracy of majority-of-N for many different values of N. In these cases, reporting
performance across multiple (or all) settings can provide additional information. An
example of this type of reporting is shown in the figure below.

26

g b~ W N

O 00 N O

10
11
12

13
14
15
16
17

18
19
20
21

22
23
24
25
26

27

NIST Al 800-2 ipd
January 2026

CVE-Bench Performance

~
Q
3

= OpenAl GPT-5
Anthropic Opus 4
OpenAl gpt-oss
—— DeepSeek V3.1
= DeepSeek R1-0528
DeepSeek R1

o
Q
R

o
=]
®

F
Q
®

w
=]
®

Percentage correctly solved

20%

-
=]
2

0%

1,000 10,000 100,000
Weighted tokens used

Figure 3.2 A plot from CAISI’s report [8] which shows the percentage of CVE-Bench [7]
items solved as a function of the number of weighted-tokens used. This plot was
generated by truncating agent transcripts at all possible different points.

Consider releasing transcripts. [Emerging Practice] Publishing full or representative
transcripts can make it easier for other parties to interpret and reproduce the results of
evaluations. Being able to review transcript-level data enables other researchers to
more easily spot methodological decisions (or potential issues) that could impact their
interpretation of the results, reducing the risks of drawing flawed conclusions and
making it easier for the evaluation science community to collaborate on studying and
resolving evaluation science issues.

a. When using public benchmarks, consider releasing full transcripts. If using non-
public benchmarks where there are contamination concerns, consider releasing
a random or representative (e.g., stratified) sample of transcripts. Redact
sensitive information from transcripts if necessary (e.g., detailed jailbreaks,
proprietary prompt scaffolding, etc.).

b. Consider using an evaluation framework that automatically generates easily
navigable and filterable transcripts. Anti-scraping measures, training data opt-
out notices, and similar measures can help reduce contamination risks when
releasing transcripts.

Publish evaluation code. [Emerging Practice] Publishing code used to run and analyze
evaluations makes it easier for other evaluators to reproduce and extend evaluation
results. In addition to the evaluation code itself, consider publishing agent sandbox
container images (e.g., by uploading images to a public library like Docker Hub).

Practice 3.3 Report qualified claims.

27

w N -

O 00 N O U b

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38

NIST Al 800-2 ipd
January 2026

Ensuring that claims made on the basis of evaluation results accurately reflect an evaluation’s
scope and context assists evaluation consumers in accurately interpreting evaluation results.
The following practices can help appropriately qualify claims and interpretations.

1.

Distinguish claims about evaluation results from other claims. Differentiate
observations, inferences, predictions, and normative statements.

Report assumptions or evidence for the relationship between performance on the
evaluated benchmark and the intended measurement construct (see Practice 1.2). This
reporting includes conceptual or predictive evidence for how the benchmark and
evaluation protocol relate to other use cases, domains, or real-world behavior (e.g., a
case for why benchmark test items resemble real-world tasks of interest).

a. If the benchmark is intended to be representative of real-world tasks, report the
degree to which evaluation conditions resemble deployment conditions (see
Practice 2.1).

b. State assumptions or cite evidence supporting any usage of evaluation results to
predict future measurements.

When comparing model behavior to baselines, provide context about baseline measure
conditions (e.g., characteristics of baseline subjects, available tools, incentives, etc.)
(Practice 1.2).

Use caution when making claims that generalize evaluation results beyond the scope
of the intended measurements as established in Practice 1.2. Such claims could include
statements about constructs that lack conceptual or predictive evidence of fit to the
measured benchmark. Consider adding relevant caveats or disclaimers when there is a
significant risk that the audience may misinterpret or over-generalize evaluation results.

[Emerging Practice] In particular, if models show signs of evaluation awareness, it can be
helpful to report metrics like measured rates of verbalized evaluation awareness, and to
discuss the potential for such awareness to reduce the external validity of results.

Clearly state other assumptions and limitations of the evaluation, such as sensitivity of
results to measurement conditions (Practice 2.1) and statistical assumptions (Practice

3.1).

Discuss the degree to which evaluation results agree or disagree with similar
evaluations or other relevant evidence and existing knowledge.

28

10
11

12
13
14

15
16
17

18
19
20
21

22
23
24
25

26
27

28
29

30

NIST Al 800-2 ipd
January 2026

REFERENCES

[1] The White House (2025) America's Al Action Plan. Available at
https://www.whitehouse.gov/wp-content/uploads/2025/07/Americas-Al-Action-Plan.pdf.

[2] NIST (2023) Artificial Intelligence Risk Management Framework (Al RMF 1.0). (U.S.
Department of Commerce, Washington, D.C.), NIST Al 100-1.
https://doi.org/10.6028/NIST.Al.100-1.

[3] CAISI (2025) Managing Misuse Risk for Dual-Use Foundation Models. (U.S. Department of
Commerce, Washington, D.C.), NIST Al 800-1, Second Public Draft.
https://doi.org/10.6028/NIST.Al.800-1.2pd.

[4] Rein D, Hou BL, Stickland AC, Petty J, Pang RY, Dirani J, Michael J, Bowman SR (2023) GPQA:
A Graduate-Level Google-Proof Q&A Benchmark. Available at http://arxiv.org/abs/2311.12022.

[5] Li T, Chiang WL, Frick E, Dunlap L, Wu T, Zhu B, Gonzalez JE, Stoica | (2024) From
Crowdsourced Data to High-Quality Benchmarks: Arena-Hard and BenchBuilder Pipeline.
Available at https://arxiv.org/pdf/2406.11939.

[6] Debenedetti E, Zhang J, Balunovi¢ M, Beurer-Kellner L, Fischer M, Trameér F (2024)
AgentDojo: A Dynamic Environment to Evaluate Attacks and Defenses for LLM Agents. Available
at https://arxiv.org/abs/2406.13352.

[7] Zhu Y, Kellermann A, Bowman D, Li P, Gupta A, Danda A, Fang R, Jensen C, |hli E, Benn J,
Geronimo J, Dhir A, Rao S, Yu K, Stone T, Kang D (2025) CVE-Bench: A Benchmark for Al Agents'
Ability to Exploit Real-World Web Application Vulnerabilities. Available at
https://arxiv.org/abs/2503.17332.

[8] CAISI (2025) Evaluation of DeepSeek Al Models. (U.S. Department of Commerce,
Washington, D.C.), Center for Al Standards and Innovation (CAISI) Report. Available at
https://www.nist.gov/system/files/documents/2025/09/30/CAIS| Evaluation of DeepSeek Al

Models.pdf.

[9] Han Z, Mankikar M, Michael J, Wang Z (2025) Search-Time Data Contamination. Available at
https://scale.com/research/stc.

[10] Yao S, Zhao J, Yu D, Du N, Shafran I, Narasimhan K, Cao Y (2023) ReAct: Synergizing
Reasoning and Acting in Language Models. Available at https://arxiv.org/abs/2210.03629.

29

https://www.whitehouse.gov/wp-content/uploads/2025/07/Americas-AI-Action-Plan.pdf
https://www.whitehouse.gov/wp-content/uploads/2025/07/Americas-AI-Action-Plan.pdf
https://www.whitehouse.gov/wp-content/uploads/2025/07/Americas-AI-Action-Plan.pdf
https://doi.org/10.6028/NIST.AI.100-1
https://doi.org/10.6028/NIST.AI.100-1
https://doi.org/10.6028/NIST.AI.100-1
https://doi.org/10.6028/NIST.AI.800-1.2pd
https://doi.org/10.6028/NIST.AI.800-1.2pd
https://doi.org/10.6028/NIST.AI.800-1.2pd
http://arxiv.org/abs/2311.12022
http://arxiv.org/abs/2311.12022
https://arxiv.org/pdf/2406.11939
https://arxiv.org/pdf/2406.11939
https://arxiv.org/abs/2406.13352
https://arxiv.org/abs/2406.13352
https://arxiv.org/abs/2503.17332
https://arxiv.org/abs/2503.17332
https://arxiv.org/abs/2503.17332
https://www.nist.gov/system/files/documents/2025/09/30/CAISI_Evaluation_of_DeepSeek_AI_Models.pdf
https://www.nist.gov/system/files/documents/2025/09/30/CAISI_Evaluation_of_DeepSeek_AI_Models.pdf
https://scale.com/research/stc
https://scale.com/research/stc
https://scale.com/research/stc
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

10

11
12
13

14
15

16
17
18
19

20
21
22

23
24

25
26
27
28

29
30
31
32

NIST Al 800-2 ipd
January 2026

[11] UK Al Security Institute (2024) Inspect Al: Framework for Large Language Model
Evaluations. https://github.com/UKGovernmentBEIS/inspect ai.

[12] Needham J, Edkins G, Pimpale G, Bartsch H, Hobbhahn M (2025) Large Language Models
Often Know When They Are Being Evaluated. Available at https://arxiv.org/abs/2505.23836.

[13] Anthropic (2025) System Card: Claude Sonnet 4.5. Available at
https://assets.anthropic.com/m/12f214efcc2f457a/original/Claude-Sonnet-4-5-System-

Card.pdf.

[14] OpenAl (2025) Findings from a pilot Anthropic—OpenAl alignment evaluation exercise:
OpenAl Safety Tests. Available at https://openai.com/index/openai-anthropic-safety-

evaluation/.

[15] Possolo, A (2015) Simple Guide for Evaluating and Expressing the Uncertainty of NIST
Measurement Results. (U.S. Department of Commerce, Washington, D.C.), NIST Technical Note
1900. http://dx.doi.org/10.6028/NIST.TN.1900.

[16] Raji ID, Bender EM, Paullada A, Denton E, Hanna A (2021) Al and the Everything in the
Whole Wide World Benchmark. Available at http://arxiv.org/abs/2111.15366.

[17] Wallach H, Desai M, Cooper AF, Wang A, Atalla C, Barocas S, Blodgett SL, Chouldechova A,
Corvi E, Dow PA, Garcia-Gathright J, Olteanu A, Pangakis N, Reed S, Sheng E, Vann D, Vaughan
JW, Vogel M, Washington H, Jacobs AZ (2025) Position: Evaluating Generative Al Systems Is a
Social Science Measurement Challenge. Available at http://arxiv.org/abs/2502.00561.

[18] Salaudeen O, Reuel A, Ahmed A, Bedi S, Robertson Z, Sundar S, Domingue B, Wang A,
Koyejo S (2025) Measurement to Meaning: A Validity-Centered Framework for Al Evaluation.
Available at http://arxiv.org/abs/2505.10573.

[19] Adcock R and Collier D (2001) Measurement Validity: A Shared Standard for Qualitative and
Quantitative Research. American Political Science Review 95(3):529-546.

[20] American Educational Research Association, American Psychological Association, National
Council on Measurement in Education (2014) Standards for Educational and Psychological
Testing (American Educational Research Association, Washington, D.C.). Available at
https://www.apa.org/science/programs/testing/standards.

[21] Bengio Y, Mindermann S, Privitera D, Besiroglu T, Bommasani R, Casper S, Choi Y, Fox P,
Garfinkel B, Goldfarb D, Heidari H, Ho A, Kapoor S, Khalatbari L, Longpre S, Manning S,
Mavroudis V, Mazeika M, Michael J, ... Zeng Y (2025) International Al Safety Report. Available at
http://arxiv.org/abs/2501.17805.

30

https://github.com/UKGovernmentBEIS/inspect_ai
https://arxiv.org/abs/2505.23836
https://arxiv.org/abs/2505.23836
https://assets.anthropic.com/m/12f214efcc2f457a/original/Claude-Sonnet-4-5-System-Card.pdf
https://assets.anthropic.com/m/12f214efcc2f457a/original/Claude-Sonnet-4-5-System-Card.pdf
https://openai.com/index/openai-anthropic-safety-evaluation/
https://openai.com/index/openai-anthropic-safety-evaluation/
https://openai.com/index/openai-anthropic-safety-evaluation/
http://dx.doi.org/10.6028/NIST.TN.1900
http://arxiv.org/abs/2111.15366
http://arxiv.org/abs/2111.15366
http://arxiv.org/abs/2502.00561
http://arxiv.org/abs/2502.00561
http://arxiv.org/abs/2505.10573
http://arxiv.org/abs/2505.10573
https://www.apa.org/science/programs/testing/standards
http://arxiv.org/abs/2501.17805
http://arxiv.org/abs/2501.17805

NIST Al 800-2 ipd
January 2026

1 [22] ISO/IEC (2022) ISO/IEC TS 5723:2022 Trustworthiness — Vocabulary. Available at
2 https://www.iso.org/standard/81608.html.

31

https://www.iso.org/standard/81608.html

APPENDIX A: GLOSSARY

NIST Al 800-2 ipd
January 2026

Common Terms and Definitions

Appendix A provides definitions for terminology used in the draft report. Sources for terms
used in this publication are cited as applicable. Where no citation is noted, the report is the
source of the definition. Terms with glossary definitions are underlined in text.

Baseline

Behavior

Benchmark
(adapted from [16])

Capability
(adapted from [21])

Content validity
(adapted from [17])

Evaluation objective(s)

Evaluation protocol

Comparable reference measure of the behavior of a non-Al
system, potentially including human individuals or teams,
systems based on simple heuristics or rules, or systems
based on random chance.

An Al system’s outputs in response to inputs and operating
conditions.

A particular combination of a dataset and a metric,
conceptualized as representing one or more specific tasks
or sets of abilities. A benchmark is used by a community of
researchers as a shared framework for the comparison of
methods. In practice, a single benchmark may combine
multiple datasets (at least test data and sometimes also
pre-specified training and validation data).

The range of tasks or functions that an Al system can
perform and how effectively it performs them.

The extent to which the measurement criteria reflect the
most salient aspects of the measurement construct. In an
operational context, content validity refers to the extent to
which the measurement instruments align with the
substance and structure of the measurement criteria.

The goal(s) of an evaluation, including what should be
measured (the measurement construct) and how the
measurements will be used (e.g., to make decisions about
system design or deployment).

The full set of operational procedures carried out during an
evaluation.

32

Evaluation protocol settings

External validity

Metric
(adapted from [16])

Measurement construct
(18]

Measurement criterion
(18]

Measurement instrument
(18]

Measurement validity
[20]

Proxy task

Robustness
(adapted from [22]; see also

[2])

Scaffolding

NIST Al 800-2 ipd
January 2026

The configurable variables that specify the execution
details of an evaluation protocol.

The extent to which measurements can also describe, or
generalize to, conditions different from evaluation context.

A way to summarize system performance over some set of
test items into a single number or score.

An abstract concept not directly measurable (e.g.,
“mathematical reasoning”). Sometimes referred to as a
“background concept” [17]: the “broad constellation of
meanings and understandings associated with [the]
concept [of interest]” [19]. In benchmark evaluations,
often expressed in terms of “ability” or “capability” (e.g.,
mathematical reasoning).

A directly measurable or observable concept (e.g.,
“textbook linear algebra question answering accuracy”).
Sometimes referred to as a “systematized concept” [17]:
the “specific formulation of the concept[, which]
commonly involves an explicit definition” [19].

A tool used to gather observations or assign values (e.g., a
benchmark, user study, or survey).

The degree to which accumulated evidence and theory
support a specific interpretation of test scores for a given
use of a test. If multiple interpretations of a test score for
different uses are intended, validity evidence for each
interpretation is needed.

A task which does not entirely specify a problem of
interest, but instead specifies a conceptually related or
empirically correlated problem or subproblem.

The “ability of a system to maintain its level of
performance under a variety of circumstances,” such as

input perturbations or distribution shifts.

The agentic architecture and system-level wrappers that
can be attached to a model.

33

Task
(adapted from [16])

Test item

Trial

NIST Al 800-2 ipd
January 2026

Particular specification of a problem, including desired
solution(s), solution settings, or grading/verification
procedures. Each task assessed in a benchmark may be
represented by one or more test items.

An individual question or problem in a benchmark,
sometimes referred to as a sample or example. For
example, LLM benchmark tasks are often represented by a
set of multiple-choice questions with one or more correct
answers.

A single attempt at solving a test item. Evaluations often
involve multiple attempts at each test item per Al system
tested.

34

