
NIST Technical Note 1860

Defensive code’s impact on software
performance

David Flater

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.TN.1860

http://dx.doi.org/10.6028/NIST.TN.1860

NIST Technical Note 1860

Defensive code’s impact on software
performance

David Flater
Software and Systems Division

Information Technology Laboratory

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.TN.1860

January 2015

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology
Willie May, Acting Under Secretary of Commerce for Standards and Technology and Acting Director

http://dx.doi.org/10.6028/NIST.TN.1860

Certain commercial entities, equipment, or materials may be identified in this
document in order to describe an experimental procedure or concept adequately.

Such identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the

entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Technical Note 1860
Natl. Inst. Stand. Technol. Tech. Note 1860, 31 pages (January 2015)

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.TN.1860

CODEN: NTNOEF

http://dx.doi.org/10.6028/NIST.TN.1860

1 NIST Technical Note 1860

Defensive code’s impact on software performance

David Flater

January 2015

Abstract

Defensive code is instructions added to software for the purpose of hardening it against uncontrolled
failures and security problems. It is often assumed that defensive code causes a significant reduction in
software performance, which justifies its omission from all but the most security-critical applications. We
performed an experiment to measure the application-level performance impact of seven defensive code
options on two different workloads in four different environments. Of the seven options, only one yielded
clear evidence of a significant reduction in performance; the main effects of the other six were either
materially or statistically insignificant.

1 Introduction

Defensive code is instructions added to software for the purpose of hardening it against uncontrolled failures
and security problems. Typically these instructions test for conditions that “can’t happen” (more precisely,
could not happen if the software were working as intended) and force the application to terminate if they
in fact occur. This behavior is desirable not only to hasten the detection and correction of faults in the
software, but also to prevent as-yet uncorrected faults from being exploitable for malicious purposes.

Defensive code can be explicit code added by the software author or it can be safety checks that are retrofit
into an application using automated methods to protect “risky” operations. While the latter kind of safety
checks are more powerful in mitigating failure modes and vulnerabilities that the software author never
contemplated, by the same token one then acquires the burden of proving that they add practical value over
the status quo without incurring unacceptable costs.

In a previous case study [1] we investigated one kind of automated protection at a micro-benchmark level and
learned that defensive code need not always make a big difference to performance. In this work we expand
on that result by measuring the application-level performance impact of several examples of both flavors of
defensive code on two different workloads in four different environments. We found only one defensive code
option that yielded clear evidence of a significant reduction in performance; the main effects of the others
were either materially or statistically insignificant.

The remainder of this report is assembled as follows. Section 2 introduces terms used throughout the
report. Section 3 describes the environmental conditions of the experiment. Section 4 introduces the software
applications that were used as test subjects. Section 5 covers validation of the selected metrics and measures.
Section 6 covers the experiment itself. Finally, Section 7 finishes with conclusions and future work.

2 Terms

The terms factor and independent variable are synonymous. They refer to a property of the system under
test that is deliberately changed within the scope of the experiment. In some communities these are called
predictor variables or input variables.

The different values to which a factor is set in an experiment are called levels of that factor. Usually, the
levels of all factors are mapped onto the same numerical scale to simplify discussion and data management.

2 NIST Technical Note 1860

In this report we use the scale of 0,1 for the “low” and “high” values of 2-levelled factors and integers 0 to
N for factors with more than 2 levels.

A treatment is a specific combination of factor levels. For example, if there are two factors, each of which
has two levels, then there are four possible treatments.

In the International Vocabulary of Metrology (VIM) [2], a quantity is an ob jective property (e.g., length)
that has a magnitude that can be expressed as a numeric value with a reference (e.g., the metre) that
defines what the numeric value indicates. In contrast, a software metric, as commonly understood, may be
quantitative in nature without necessarily expressing the magnitude of an ob jective property (e.g., a security
metric meant to indicate risk), or it may quantify the magnitude of an ob jective property in units that have
no realization as a measurement standard (e.g., size expressed as a count of function points).

A dependent variable is a quantity or metric that is used to determine the effects of different treatments. In
some communities these are called response variables or output variables.

The term measure is used variously to refer to the instruments, methods, and units that are candidates for
use in obtaining and stating the values of quantities and metrics.

Finally, a controlled variable is any property that could in principle change, but that has been deliberately
kept constant within the scope of the experiment.

Any terms that remain unclear should be interpreted in light of the VIM, the design of experiments literature,
the statistics literature, and the terms’ ordinary dictionary definitions.

3 Environments

The experiment was conducted on one version of Linux, two versions of Android, and one version of Windows
on four separate devices.

3.1 Linux

The Linux device was a Dell Precision T5400 with dual Xeon X5450 4-core CPUs and 4 GiB of DDR2-667D
ECC RAM.

Testing was conducted under Slackware 14.1 64-bit with a replacement kernel, version 3.15.5. The kernel’s
HZ value was set to 1000, which enables the maximum resolution of CPU time results from bash’s time
command.

To reduce extraneous and irrelevant variability, data collection was performed in single-user mode with
SpeedStep disabled in the BIOS configuration as well as the kernel so that the CPUs would operate at a
fixed frequency. The CPUs did not support Turbo Boost.

The test programs and kernel were built using the GNU Compiler Collection (GCC) version 4.9.0, GNU
Binutils 2.23.52.0.1.20130226, Yasm 1.2.0, and the GNU C library.

3.2 Android 1

The first Android device was a Droid X phone with a single-core, 32-bit Cortex-A8 (OMAP3630) CPU. The
operating system had been upgraded to Android 4.4.4 (KitKat, API level 19) via CyanogenMod 11 rev.
20140713 (unofficial) [3]. The kernel identified itself as version 2.6.32.9-AeroKernel but a config file was not
provided.

The CPU’s frequency was locked at 1 GHz by changing the CPU governor option under Settings, System,
Performance, Processor from “interactive” to “performance.”

3 NIST Technical Note 1860

The test programs were built using the Android Native Development Kit (NDK) Revision 9d for x86 64,
arm-linux-androideabi-4.8 toolchain, API level 17 (for compatibility with Android 2), and the Bionic C
library.

Test programs were run in a shell opened using the Android Debug Bridge (ADB) [4] with the device
connected to a PC with a USB cable. Sleep mode and screen savers were disabled.

3.3 Android 2

The second Android device was a Nexus 7 (2012 version) tablet with a quad-core, 32-bit Cortex-A9
(Tegra 3 T30L) CPU. It had been upgraded to Android 4.2.2 (Jelly Bean, API level 17) via AOKP but­
tered aokp tilapia 2013-07-14 [5]. A custom build of kernel version 3.2.47 was used in this experiment. That
kernel’s HZ value was set to 100.

The slightly older ROM installed on the tablet lacked the option to change the CPU governor in the setup
menu, but equivalent tweaks were possible using control files in /sys/devices/system/cpu/cpu0/cpufreq.
Choosing “performance” raised the frequency to 1.3 GHz which is supposedly restricted to single-core mode
[6], so to be safer we chose “userspace” with a frequency of 1.2 GHz instead.

Android 2 used the same compiled binaries as Android 1.

Test programs were run in an ADB shell in the same manner as for Android 1.

3.4 Windows

The Windows device was a Dell Latitude E6330 laptop with a Core i5-3320M 2-core, 4-thread CPU, running
Windows 7 Professional Service Pack 1 64-bit with minimal unnecessary software. SpeedStep and Turbo
Boost were disabled in the BIOS configuration to reduce the variability of results.

The test programs were built using Visual Studio Express 2013 (VS2013) for Windows Desktop 12.0.21005.13
x64 Cross Tools and Yasm 1.2.0 and deployed with Visual C++ 2013 Redistributable (x64) 12.0.21005.1.

4 Applications

We sought test applications with the following features:

• Can be compiled for all of the targeted platforms;

• Has some CPU-intensive use on all of the targeted platforms;

• Contains explicit defensive code that can be turned on or off;

• Can be run non-interactively for ease of benchmarking.

The two applications that we chose for testing are FFmpeg and GNU Go, described in the following subsec­
tions.

http:12.0.21005.13

4 NIST Technical Note 1860

4.1 FFmpeg

FFmpeg [7] is a multimedia framework containing both libraries and command-line applications for audio
and video processing. We tested version 2.3.

Multi-threaded decoding when the requisite thread libraries are linked and multiple CPU cores are available.

Although many platforms now provide hardware-assisted decoding of video, FFmpeg’s software decoders
still have plausible use for the many video formats that the hardware acceleration does not support.

FFmpeg is a particularly good example for showing relevance to security as there is the potential for a
fault in FFmpeg to be remotely exploitable through a maliciously crafted video file to execute arbitrary
code with the privileges of the user attempting to decode the video. There is of course no guarantee that
vulnerabilities will not manifest in unchecked places, such as the remotely exploitable integer overflow in the
LZO implementation that was corrected in release 2.2.4 [8], but this is no reason to omit safety checks where
they already seem warranted.

4.2 GNU Go

GNU Go [9] (hereafter called Gnugo) is simply a program that plays the strategy board game Go. We tested
a version pulled from the Git repository on 2014-06-06. We cannot cite a meaningful version number as
there had not been a numbered release since early 2009.

Gnugo is a single-threaded program. For testing and benchmarking purposes it has several non-interactive
modes of execution.

5 Validation of measures

In three of the four environments a version of the Bash shell [10] was used to obtain measurements. Bash
has a built-in time command that provides one measure of elapsed time and two measures of CPU time. The
two measures of CPU time indicate “user” time and “system” time respectively. Results are reported to a
maximum numerical resolution of 0.001 s. On Linux and Android, the resolution of the CPU time metrics
is limited by the kernel’s compiled-in HZ configurable, which can be as low as 100 Hz.

On Windows, the original plan was to use the Bash shell provided by the Cygwin environment [11]. However,
this version failed validation, as did the Bash shell included in MSYS version 1.0.11 [12]. The builtin time
commands of these shells registered little or no user CPU time for the test applications that were built
using VS2013, presumably due to some disconnect between the Bash shell environment and the Visual C++
runtime environment. As a substitute, we used a stripped-down version of the TimeMem / time-windows
utility [13], built with VS2013, to obtain equivalent measurements.

With that substitution, all four environments had an instrument that reported results for elapsed, user, and
system time to a numerical resolution of 0.001 s, although the resolution of the measurements proved to be
less than that in 3 of the 4 cases.

To validate the measures we reused the 10sec-user étalon from [14]. 10sec-user is a single-threaded C program
that executes a busy-waiting loop polling the system function gettimeofday until the timer readings indicate
that at least 10 s have elapsed. As reported in [14], when profiled under Linux, this workload produces results
for elapsed and CPU time that have much less variability than is normally seen.

5 NIST Technical Note 1860

5.1 Face validity

As was done in [14], we checked that the 10sec-user workload did indeed execute for approximately 10 s of
elapsed time using a digital wristwatch and a script that simply printed “Start” and “Stop” before and after
the program ran, with an approximately 2 s pause between the start of the script and the start of the timed
run. A failure of this primitive validation would indicate that the timekeeping on the platform being tested
was significantly off, which was a plausible risk considering that unofficial ROMs and kernels were being
employed on the two Android devices.

Results are shown in Table 1. Allowing for varying reaction times of the timekeeper and varying latencies
for printing the “start” and “stop” messages, there is no evidence in this small sample of an egregious
timekeeping anomaly.

Table 1: Elapsed times (s) from manual stopwatch validation of 10sec-user

Environment Try 1 Try 2 Try 3
Linux 10.01 10.01 10.03

Android 1 9.99 10.01 10.06
Android 2 9.99 10.01 10.00
Windows 10.07 10.07 10.01

5.2 Linux

In Linux, gettimeofday is implemented in user space [15]. Results are shown in Figure 1. The single outlier
of 10.012 s for elapsed time occurred on the first iteration, possibly reflecting one or more one-time overheads
such as loading the executable binary into the file system cache.

10.001 10.012

Elapsed (s)

C
ou

nt

0
20

0
40

0
60

0
80

0
10

00 999

1

9.999 10 10.001

User (s)

0
20

0
40

0
60

0
80

0
10

00

12

951

37

0 0.001 0.002

Sys (s)

0
20

0
40

0
60

0
80

0
10

00

887

101

12

Figure 1: Bar plot of results from 1000 iterations of the 10sec-user workload in Linux

5.3 Android 1 and 2

Results are shown in Figure 2 and Figure 3. The bins for each histogram were aligned so that there is one
bar for each distinct measurement value that was returned.

6 NIST Technical Note 1860

Not only did the Android environment shift a large part of the CPU time burden of 10sec-user from user
to system, indicating that gettimeofday may still be implemented in kernel space on this platform, it also
yielded a wider distribution of measurement values, greater variability in the division of CPU time between
user space and kernel space, and a lower resolution of CPU time. The resolution of 0.01 s on the tablet was
as expected given that the kernel’s HZ value was set to 100. On the other hand, the resolution of between
0.0075 s and 0.008 s on the phone corresponds to none of the normally configurable HZ values for the kernel
(which are 100 Hz, 250 Hz, 300 Hz, and 1000 Hz).

It is worth noting that an initial configuration of the Android phone that we tried was invalidated by this ex­
ercise, with the anomaly being that the user and system CPU time measures added together fell significantly
short of 10 s. Investigation using the command top -m 5 -n 1 -s cpu under the environmental conditions
of the test but with no test workload revealed a continuous load from com.android.inputmethod.latin and
system server accounting for approximately 22 % of the available CPU cycles. Reducing the background
loads required both a clean flash of the latest ROM and switching from the terminal app to ADB. For
consistency we switched to ADB for Android 2 as well, although it had less impact on the tablet.

Despite those mitigations, the sums of user and system time (Figure 4) still reached as low as 9.71 s, indicating
that background loads and overhead still had a greater impact on the test application than they did under
Linux.

Elapsed (s)

C
ou

nt

10.003 10.008

0
20

0
40

0
60

0
80

0

User (s)

0.8 1.0 1.2 1.4 1.6 1.8 2.0

0
5

10
15

20

Sys (s)

8.0 8.2 8.4 8.6 8.8 9.0 9.2

0
5

10
15

20
25

Figure 2: Histogram of results from 1000 iterations of the 10sec-user workload in Android 1

5.4 Windows

10sec-user would not build using VS2013, so it was built using GCC 4.8.3 in Cygwin instead. Results are
shown in Figure 5. Clearly, the resolution of all three measurements is approximately 0.016 s.

6 Experiment

We now proceed to the main experiment. Its goal is to measure and identify patterns in the performance
impacts of several types of defensive code on two different applications in four different environments.

7 NIST Technical Note 1860

Elapsed (s)

C
ou

nt

10.0015 10.0035

0
20

0
40

0
60

0
80

0
10

00

User (s)

0.6 0.7 0.8 0.9 1.0 1.1

0
10

20
30

40
50

Sys (s)

8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4

0
10

20
30

40
50

Figure 3: Histogram of results from 1000 iterations of the 10sec-user workload in Android 2

9.70 9.80 9.90 10.00

0
10

20
30

40

Android 1

User + system time (s)

D
en

si
ty

9.70 9.80 9.90 10.00

0
10

20
30

40
Android 2

User + system time (s)

D
en

si
ty

Figure 4: Kernel density plots (bandwidth 0.005 s) of the sums of user and system times

6.1 Workloads

For FFmpeg, we transcoded a test video. The transcoding process reduced the size and frame rate of the
video, reduced the sample rate and bit depth of the audio, and changed the video encoding from h264 to
mpeg4. The input file was .mov format, 65.17 s in duration, and 178 099 858 bytes in size. It contained an
approximately 20 292 kb/s, 1920 × 1080 pixels, 29.97 Hz, h264 (High) video stream and a 1536 kb/s, 48 kHz,
pcm s16le (2 bytes per sample) stereo audio stream. The resulting output files were less than 5 MB in size
yet easily recognizable as transcodings of the input. This was the command line:

ffmpeg -y -v quiet -i test.mov -vf scale=320:180 -r 3 -ar 24000 -c:a pcm_u8 out.mov

For Gnugo, we created a non-interactive test workload by having it calculate what moves it would have made
at each of the 252 board states of the famous “Game of the Century” between Go Seigen and Honinbo Shusai
which began on 1933-10-16. The standard output stream of the program was captured for comparison with
expected results.

gnugo --seed 13131313 --infile GameOfTheCentury.sgf --replay both

8 NIST Technical Note 1860

10.015 10.031

Elapsed (s)

C
ou

nt

0
20

0
40

0
60

0
80

0
10

00

503 497

9.984 10 10.015 10.031

User (s)

0
20

0
40

0
60

0
80

0
10

00

2

524

449

25

0 0.016 0.031

Sys (s)

0
20

0
40

0
60

0
80

0
10

00

386

512

102

Figure 5: Bar plot of results from 1000 iterations of the 10sec-user workload in Windows

This non-interactive benchmark makes necessary compromises in order to enable useful data collection. The
interactivity of a typical game-playing session has been removed; the focus is entirely on the computation
of moves. The use of a transcoding workload with FFmpeg instead of playing a video in real time makes an
analogous tradeoff, but transcoding is itself a representative use case.

6.2 Builds

To simplify production we used pre-configured sources and replaced the native build scripts with our own,
carrying over those compilation options that did not conflict with independent variables. Configurables
relating to independent variables were changed to command line options. We tweaked options to favor
execution speed while being cautions about compromises of correctness that were not already made in the
stock builds.

For brevity, the following subsections omit long strings of routine options such as preprocessor definitions,
include paths, library paths, and linked libraries that were carried over from the original build scripts.
Complete details can be found in the Makefiles provided in the raw data distribution available from the
Software Performance Pro ject’s web page [16].

6.2.1 Linux

Build options used for both applications included -O3, -fno-strict-aliasing, --gc-sections, and
--as-needed.

The Gnugo build added the -flto link-time optimization option. It could not be used with FFmpeg as it
caused a link failure.

The FFmpeg build used -f elf -m amd64 with Yasm and for GCC added -std=c99, -pthread,
-fno-math-errno, -fno-signed-zeros, and -fno-tree-vectorize.

Since the GCC compiler was built natively with --with-arch=core2, command-line options to tune the
binaries for the specific hardware were unnecessary.

9 NIST Technical Note 1860

6.2.2 Android

The Android binaries were built to use hardware floating point and linked with libm hard.a. GCC’s auto­
vectorization pass doesn’t use NEON (“Advanced SIMD”) unless -funsafe-math-optimizations is speci­
fied [17, §3.17.4]; however, FFmpeg includes its own NEON assembly code.

Build options used for both applications included -march=armv7-a, -mtune=cortex-a8, -marm,
-mfloat-abi=hard, -mfpu=neon, -O3, -flto, -fno-strict-aliasing, -D_NDK_MATH_NO_SOFTFP=1,
--gc-sections, --as-needed, and --no-warn-mismatch. The last was needed to avoid link errors when
using hard floating point in this version of the NDK.

The FFmpeg build added -std=c99, -pthread, -fno-math-errno, -fno-signed-zeros, and
-fno-tree-vectorize.

6.2.3 Windows

Build options used for both applications included the compiler options /O2, /Gw, /MD, /analyze-, and
/favor:INTEL64 and the linker options /INCREMENTAL:NO, /SUBSYSTEM:CONSOLE, and /OPT:REF,ICF.

The Gnugo build added the /GL (with implicit /ltcg) global/link-time optimization option, which was used
only for Gnugo as it caused a link failure with FFmpeg. This failure could be related to the similar one
occurring on Linux.

The FFmpeg build used -f win64 -m amd64 with Yasm and set the configuration variable
HAVE_STRUCT_POLLFD for compatibility with current Windows headers (_WIN32_WINNT ≥ 0x0600).

Some C source files were renamed to eliminate collisions when Visual Studio wrote object files to the working
directory, an issue that arose as a result of simplifications made in our build scripts.

6.3 Independent variables

Table 2 shows the factors and levels for the experiment. The os and app factors are consistent with the
descriptions in previous sections. The other factors address defensive code options, some of which are general
and others of which are specific to one app or the other.

Table 3 shows how the defensive code factors were reduced to command-line options for the various compilers,
assemblers, and linkers used.

A gamut of new debugging options that might qualify as defensive code was introduced in GCC version 4.8
and expanded significantly in GCC 4.9 [17, §3.9]. These options, which have the form -fsanitize=... on
the command line, were not tested in this experiment.

Additional options to facilitate address space layout randomization and memory protection are commonly
used in combination with the defensive code options to harden software against attacks that evade the active
checking, but as these additional options do not modify the application logic itself they are not relevant to
the experiment.

Several of the defensive code options that were tested support multiple levels of checking thoroughness.
To avoid a combinatorial explosion of possible treatments, for each one we tested only the minimum and
maximum levels of checking. Assuming monotonicity of performance impact, this suffices to determine the
worst-case performance impact of each kind of checking but sacrifices information on the compromises that
one might fall back on if the worst case turns out to be unacceptable.

The defensive code options are described in more detail in the following subsections.

10 NIST Technical Note 1860

Table 2: Independent variables for the experiment

Factor Description Level 0 Level 1 Level 2 Level 3
os Environment Linux Android 1 Android 2 Windows

app Workload FFmpeg Gnugo
stk GCC stack protector No All
trp GCC integer overflow traps No Yes
gs VS buffer security check No All
for FORTIFY SOURCE No 2
ffa FFmpeg assert level 0 2
ffb FFmpeg safe bitstream reader Disabled Enabled
gga Gnugo assertions Disabled Enabled

Table 3: Reduction of defensive code factors to compiler command line

Factor Level 0 Level 1
stk -fno-stack-protector -fstack-protector-all
trp1 -DCONFIG_FTRAPV=0 -fno-trapv -DCONFIG_FTRAPV=1 -ftrapv
gs2 /GS­ /sdl
for -U_FORTIFY_SOURCE -D_FORTIFY_SOURCE=2
ffa -DNDEBUG -DASSERT_LEVEL=0 -UNDEBUG -DASSERT_LEVEL=2
ffb -DCONFIG_SAFE_BITSTREAM_READER=0 -DCONFIG_SAFE_BITSTREAM_READER=1
gga -DNDEBUG -DGG_TURN_OFF_ASSERTS -UNDEBUG -UGG_TURN_OFF_ASSERTS

6.3.1 GCC stack protector

The stack protector is a GCC feature that is generally applicable to any compiled C or C++ program and
consequently was used for both of the test workloads.

GCC supports the following options (quoted from [17, §3.10]):

-fstack-protector
Emit extra code to check for buffer overflows, such as stack smashing attacks. This is done by adding
a guard variable to functions with vulnerable ob jects. This includes functions that call alloca, and
functions with buffers larger than 8 bytes. The guards are initialized when a function is entered and
then checked when the function exits. If a guard check fails, an error message is printed and the
program exits.

-fstack-protector-strong
Like -fstack-protector but includes additional functions to be protected—those that have local array
definitions, or have references to local frame addresses.

-fstack-protector-all

Like -fstack-protector except that all functions are protected.

Stack-protector-all is reputed to have an onerous impact on performance [18]. Stack-protector and stack-
protector-strong attempt to mitigate the performance impact by protecting only a subset of functions.
Together with the default of no-stack-protector, these options would create a four-level factor. To limit the
size of the experiment, we chose to test only no-stack-protector and stack-protector-all.

To confirm the efficacy of stack-protector-all we ran the following test program, which yielded a specific
abort at run time:

1CONFIG FTRAPV applies to FFmpeg only.

2For gs = 1, both applications required additional options to disable static checks that blocked compilation.

11 NIST Technical Note 1860

#include <string.h>
int main () {
char buf[10];
strcpy (buf, "012345678901234567890123456789");
return 0;

}

On Linux:

*** stack smashing detected ***: ./stktest1 terminated

On Android (from logcat):

F/libc (6678): stack corruption detected

F/libc (6678): Fatal signal 6 (SIGABRT) at 0x00001a16 (code=-6), thread 6678 (stktest1)

6.3.2 GCC –ftrapv

The -ftrapv code generation option of GCC “generates traps for signed overflow on addition, subtraction,
multiplication operations” [17, §3.18]. Unfortunately, the operability of -ftrapv is dubious given an old but
still open bug [19] and more recent reports of failure [20]. Empirically, it did not trip on the following test
program on either Linux or Android:

#include <stdio.h>
#include <limits.h>
int main () {
int x = INT_MAX;
printf ("%d\n", x);
x++;
printf ("%d\n", x);
return 0;

}

However, GCC documentation for the -fsanitize=signed-integer-overflow option, which has function­
ality similar to -ftrapv, asserts that this case is “not an overflow” because of integer promotion rules [17,
§3.9].

Regardless, -ftrapv did have observable effects on the compilation and execution of programs for the
experiment. We therefore retained it as a factor to provide a plausible if imperfect estimate of the performance
impact that a fully functional -ftrapv option might have.

The most similar option with VS2013 appears to be /RTCc, “Reports when a value is assigned to a smaller
data type and results in a data loss,” but /RTC cannot be combined with optimization at all.

6.3.3 Visual C++ stack protector

The Visual Studio analog of GCC’s stack protector is the /GS (“Buffer Security Check”) switch.
It is on by default, but without additional steps its behavior is similar to -fstack-protector or
-fstack-protector-strong, not -fstack-protector-all.

The /sdl (“Enable Additional Security Checks”) switch enables a stricter form of /GS (similar to
-fstack-protector-all) and changes some compile-time warnings into errors. To obtain the desired be­
havior, we used the /sdl switch but then turned off any compile-time checks that prevented the applications
from building.

For the following test program, an executable built with /GS- exited with a segmentation violation while an
executable built with /sdl (plus /D_CRT_SECURE_NO_WARNINGS to disable a static check) exited quietly:

12 NIST Technical Note 1860

#include <stdio.h>
#include <string.h>
int main () {
char buf[10];

strcpy (buf, "012345678901234567890123456789");

printf ("Length is %d\n", strlen(buf));

return 0;

}

Rebuilding and running the test program within the IDE with the VS-pro ject equivalent of /sdl
/D_CRT_SECURE_NO_WARNINGS obtained the following diagnostic:

Run-Time Check Failure #2 - Stack around the variable ’buf’ was corrupted.

Presumably, the run-time checks were working in the command line environment, but there was no visible
indication because there was no error handler registered to output diagnostics [21].

Visual Studio 2013 supports more aggressive run-time error checks with the /RTC switch, but /RTC cannot
be combined with optimization.

6.3.4 FORTIFY SOURCE

FORTIFY SOURCE is a GNU libc feature that adds safety checking for calls of a set of standard libc
functions that are known to be vulnerable to buffer overflows. The following is quoted from the fea­
ture test macros man page [22]:

FORTIFY SOURCE (since glibc 2.3.4)
Defining this macro causes some lightweight checks to be performed to detect some buffer overflow
errors when employing various string and memory manipulation functions. Not all buffer over­
flows are detected, just some common cases. In the current implementation checks are added for
calls to memcpy(3), mempcpy(3), memmove(3), memset(3), stpcpy(3), strcpy(3), strncpy(3),
strcat(3), strncat(3), sprintf (3), snprintf (3), vsprintf (3), vsnprintf (3), and gets(3). If
FORTIFY SOURCE is set to 1, with compiler optimization level 1 (gcc –O1) and above, checks that

shouldn’t change the behavior of conforming programs are performed. With FORTIFY SOURCE
set to 2 some more checking is added, but some conforming programs might fail. Some of the checks
can be performed at compile time, and result in compiler warnings; other checks take place at run
time, and result in a run-time error if the check fails. Use of this macro requires compiler support,
available with gcc(1) since version 4.0.

On Linux, with FORTIFY SOURCE level 1 or 2, the following test program:

#include <string.h>
int main () {
char buf[10];
strcpy (buf, "01234567890123456789");
return 0;

}

Yielded a warning at compile time and a specific abort at run time:

*** buffer overflow detected ***: ./fortest1 terminated

However, in the Android environment specified in Section 3.2 and Section 6.2.2, neither the warning nor
the abort would reproduce. Although support for FORTIFY SOURCE level 1 reportedly was introduced
in Android 4.2 [23], the binary produced with -D_FORTIFY_SOURCE=1 on the compiler command line was
exactly the same size as that produced with -U_FORTIFY_SOURCE. Moreover, the string “FORTIFY” occurs
in none of the header files included with NDK r9d or even r10.

Finding no evidence that FORTIFY SOURCE was doing anything at all in our Android NDK builds, we
tested this feature only on Linux.

13 NIST Technical Note 1860

6.3.5 FFmpeg-specific options

FFmpeg’s configure script supports the following options (quoted from configure - -help):

--disable-safe-bitstream-reader
disable buffer boundary checking in bitreaders
(faster, but may crash)

--assert-level=level 0(default), 1 or 2, amount of assertion testing,
2 causes a slowdown at runtime.

--enable-ftrapv Trap arithmetic overflows

These options affect definitions of the preprocessor variables CONFIG_SAFE_BITSTREAM_READER,
ASSERT_LEVEL, and CONFIG_FTRAPV that are placed in the generated files config.h and config.asm.

Although three source files contain code that is conditional on CONFIG_FTRAPV, the primary mechanism
of --enable-ftrapv is the addition of -ftrapv to CFLAGS. We therefore considered this combination
equivalent to the use of -ftrapv with Gnugo.

--enable-safe-bitstream-reader does not enable the safe bitstream reader in all contexts. In modules
where that checking was believed to be redundant, including some modules that are relevant to our test case,
the authors inserted #define UNCHECKED_BITSTREAM_READER 1 statements to override the global configure
setting. Commentary in libavcodec/get bits.h explains:

/*
* Safe bitstream reading:

* optionally, the get_bits API can check to ensure that we

* don’t read past input buffer boundaries. This is protected
* with CONFIG_SAFE_BITSTREAM_READER at the global level, and
* then below that with UNCHECKED_BITSTREAM_READER at the per­
* decoder level. This means that decoders that check internally
* can "#define UNCHECKED_BITSTREAM_READER 1" to disable

* overread checks.

* Boundary checking causes a minor performance penalty so for
* applications that won’t want/need this, it can be disabled
* globally using "#define CONFIG_SAFE_BITSTREAM_READER 0".

*/

Similarly, --assert-level=0 does not disable all assertions. There are many assertions that use the standard
C macro directly, and those are not affected by --assert-level. Furthermore, a subset of the C assertions
are protected by statements like the following (from libavcodec/ratecontrol.c):

#undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.

Although global deletion of #define UNCHECKED_BITSTREAM_READER 1 and #undef NDEBUG statements
would be a straightforward patch, we refrained from overriding the authors’ intent. Instead, we simply
used -DNDEBUG -DASSERT_LEVEL=0 for ffa level 0 and -UNDEBUG -DASSERT_LEVEL=2 for ffa level 1.

6.3.6 Gnugo-specific options

According to the Gnugo documentation, Gnugo developers “are strongly encouraged to pepper their code
with assertions to ensure that data structures are as they expect” [24, §4.6.3]. The Gnugo engine contains
many such assertions, including defensive code to ensure that references to board locations are actually on
the board by validating indices. They are enabled by default and may be disabled by defining the variable
GG_TURN_OFF_ASSERTS during compilation. Other Gnugo components use standard C language assertions,
which are similarly disabled by defining the variable NDEBUG. For the gga factor we bundled these two
together, defining both variables or not to disable or enable all assertions.

14 NIST Technical Note 1860

6.4 Executables

The sizes of the built executables for Linux, Android, and Windows are compared in Figure 6, Figure 7, and
Figure 8 respectively. On Linux, evidently -ftrapv caused the most significant expansion, followed by the
stack protector. On Android, FFmpeg shows the same clear pattern as on Linux. For Gnugo the pattern is
too weak to separate the groups. On Windows, the patterns are different for the two applications and the
changes in size are all much smaller than for Linux or Android.

6.5 Experimental design

Table 4: Applicability of defensive code factors

Linux (os=0) Android (os=1,2) Windows (os=3)

app
FFmpeg
(app=0)

Gnugo
(app=1)

FFmpeg
(app=0)

Gnugo
(app=1)

FFmpeg
(app=0)

Gnugo
(app=1)

stk 0, 1 0, 1 0, 1 0, 1 X X

trp 0, 1 0, 1 0, 1 0, 1 X X

gs X X X X 0, 1 0, 1

for 0, 1 0, 1 X X X X

ffa 0, 1 X 0, 1 X 0, 1 X

ffb 0, 1 X 0, 1 X 0, 1 X

gga X 0, 1 X 0, 1 X 0, 1

treat 32 16 16 8 8 4

Table 4 shows the applicability of the defensive code factors by os and app. An X indicates that a factor is
not available in the given context (particular combinations of os and app).

We collected as many samples as possible for every applicable treatment without attempting to further
reduce the number of treatments through a fractional design.

As shown, the experimental design is not orthogonal. However, orthogonality can be achieved by subsetting
the data by combinations of os and app, essentially breaking the experiment into 8 smaller experiments
that have full factorial designs.3 With the main effects of os and app being irrelevant, the only negatives of
this approach are that we do not get singular summary results for the defensive code factors and analyzing
interactions between those factors and os/app is more cumbersome.

6.6 Ordering

Data collection was broken into multiple sessions on each device to provide availability for other tasks,
to enable inspection of partial results, and to account for any “boot dependency” (the possibility that
performance could have a component that varies randomly from one reboot of the device to the next but
remains constant for the period of uptime between reboots).

Within each session, each “iteration” consisted of a single run of each of the test binaries, executed in a
random order with all Gnugo and all FFmpeg binaries shuffled together. This ordering helped control for
any macroscopic time dependency (drift) that might have occurred at the system level as well as any local
ordering effects that might exist among the treatments. A session would terminate only at the end of an
iteration so that the same number of samples would be collected for each treatment.

3In principle, the two versions of Android could be combined in an experiment with os as a factor.

15 NIST Technical Note 1860

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

13.5 14.0 14.5 15.0 15.5 16.0 16.5

Linux FFmpeg

Size (MB)

00000
00100
00001
00101
00010
00110
00011
00111
10000
10100
10001
10101
10010
10110
10011
10111
01000
01100
01001
01101
01010
01110
01011
01111
11000
11100
11001
11101
11010
11110
11011
11111

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

7.7 7.8 7.9 8.0

Linux Gnugo

Size (MB)

0001

0011

0000

0010

1001

1011

1010

1000

0101

0111

0100

0110

1101

1111

1100

1110

Figure 6: Sorted data plots of executable binaries for Linux, identified by treatment. FFmpeg treatment
encoding: stk-trp-for-ffa-ffb; Gnugo treatment encoding: stk-trp-for-gga.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

12.5 13.0 13.5 14.0

Android FFmpeg

Size (MB)

0000
0001
0010
0011
1000
1001
1010
1011
0100
0101
0110
0111
1100
1101
1110
1111

●

●

●

●

●

●

●

●

7.35 7.40 7.45 7.50 7.55 7.60 7.65 7.70

Android Gnugo

Size (MB)

001

000

011

101

100

010

111

110

Figure 7: Sorted data plots of executable binaries for Android, identified by treatment. FFmpeg treatment
encoding: stk-trp-ffa-ffb; Gnugo treatment encoding: stk-trp-gga.

●

●

●

●

●

●

●

●

10.85 10.90 10.95 11.00

W7 FFmpeg

Size (MB)

010
011
000
001
110
111
100
101

●

●

●

●

7.14 7.15 7.16 7.17 7.18 7.19

W7 Gnugo

Size (MB)

00

10

01

11

Figure 8: Sorted data plots of executable binaries for Windows, identified by treatment. FFmpeg treatment
encoding: gs-ffa-ffb; Gnugo treatment encoding: gs-gga.

16 NIST Technical Note 1860

Table 5: Size of FFmpeg workload output by levels of os

os
0 4 876 207 B
1 4 874 685 B
2 4 875 251 B
3 4 875 071 B

Size of out.mov

Table 6: Counts of sessions and numbers of iterations per treatment or session

Iterations per
treatment session

os Sessions min max min max
0 5 106 106 9 69
1 4 65 65 14 19
2 4 78 79 14 24
3 4 371 371 61 127

6.7 Validation of workload outputs

Each execution of an experimental workload was followed by a comparison of its output with an expected
output. A mismatch would have resulted in an abort of the session with retention of the discrepant data for
further investigation.

Although FFmpeg outputs were repeatable and consistent among treatments within each os environment,
none of the four environments exactly reproduced the output of any other, as shown in Table 5. Nevertheless,
all four outputs were apparently valid transcodings of the input, based on inspection.

For Gnugo, the only discrepancy of results was the addition of carriage return characters at line ends in the
Windows environment.

6.8 Results

6.8.1 Sample sizes

See Table 6. An infrastructural fault on the tablet caused 3 of the first 4 sessions to stop prematurely in
the middle of an iteration, resulting in slightly different numbers of samples among the treatments. The
next 3 attempts at collecting more data on the tablet led to a spontaneous shutdown after only 1 or 2
complete iterations. Since the standard deviation cannot be calculated for a sample of size one, the few data
resulting from the last 3 sessions were set aside. Among the retained data, the most significant imbalance
within a session was 14 versus 15 samples, and after combining sessions the worst imbalance was 78 versus
79 samples. These imbalances were deemed to have an insignificant effect on the orthogonality of the
experiments as analyzed.

6.8.2 Distributions

In general, most of the distributions were less skewed than those seen in previous experiments of this pro ject,
with the caveat that the samples here were smaller and would be less likely to capture low-frequency events.

On Linux, each session began with a high outlier in elapsed time for every treatment of FFmpeg. The
pattern was much weaker for Gnugo and did not appear on Windows or Android.

Evidence of drift and possibly a small boot-dependency effect was apparent in some plots from Windows
where the range of results was very narrow. Nevertheless, it appeared only under such magnification (stretch­
ing of the Y axis) that there is no potential for a materially significant impact.

17 NIST Technical Note 1860

6.8.3 Main effects and interactions

On three of the four devices, system time remained always negligible. The CPU time accounting on Android 1
was discrepant, apparently attributing CPU time to kernel space that on other devices was attributed to
user space. This discrepancy resulted in confounding of the effects and interactions plots. To resolve the
confounding, we summed the user and system time measures to yield a single CPU time measure.

Table 7 shows the relative magnitudes of the main effects (level 1 versus level 0) using pooled data (i.e.,
combining the data from multiple sessions). 95 % confidence intervals were determined using the ordinary
method, applying the t-distribution based on an assumption of approximate normality of the observed times.4

Effective degrees of freedom for the uncertainties were computed using the Welch-Satterthwaite formula [27,
§G.4.1].

Table 8 restates the relative magnitudes using the mean-of-means method to reduce the data to summary
statistics instead of pooling all of the data across sessions. This is one way to mitigate a boot-dependency
effect. With the number of reboots having been constrained by practicality, it makes the confidence intervals
much wider,5 and more of the marginal effects lose statistical significance. However, the estimates do not
change very much given the essentially-balanced nature of the data.

Figure 9 through Figure 16 in Appendix A provide a complete set of elapsed time plots for main effects and
2-factor interactions for pooled data subset by combinations of os and app. The corresponding plots for
CPU time and mean-of-means, which proved to be redundant, are not provided here but can be found in
the raw data distribution available from the Software Performance Project’s web page [16].

Each figure is organized as the cross product of a set of factors with itself. Main effects appear along
the diagonal. For interactions, the columns determine which factor is used for the X axis while the rows
determine which factor is used for separate lines.

In the main effects plots, what is important is the differences in the value of the dependent variable, which
result in a sloping line. In the interaction plots, what is important is the differences in slope or lack of
parallelism when comparing multiple lines. A different slope means that the magnitude of the effect of one
factor differed depending on the level of another factor.

The vertical scales of all plots within a figure are the same and are set to cover the range of the biggest
effect. Thus, it is valid to compare the plots within a figure to each other to gauge the relative magnitudes
of effects, but similar relative comparisons between figures are not valid. Note in particular that Figure 15
has a magnified vertical axis because the effects were all very small, and the presence of sloping lines in that
figure does not indicate the presence of large effects.

The numbers inside of the plots indicate the count of samples represented by each mean. No corrections
were attempted for the slight imbalances in the data for Android 2 (os = 2).

6.9 Analysis

6.9.1 Main effects

Assuming that the estimates are accurate, we have a significant slowdown attributable to trp, marginal
slowdowns attributable to stk and gga, and negligible slowdowns for all other factors. The trp slowdown
varies by os and app, but has a relative magnitude on the order of 50 % and remains statistically significant
in every context even with the more conservative mean-of-means analysis.

4Although in previous experiments we found the bias-corrected and accelerated (BCa) bootstrap method [25, 26] to per­
form better on non-normally-distributed data, the small samples in this experiment—especially with mean-of-means—are a
contraindication for use of BCa.

5Ref. [28] describes an analogous problem and illustrates methods for incorporating assumptions to narrow the confidence
intervals.

18 NIST Technical Note 1860

Table 7: Relative magnitudes of main effects (level 1 versus level 0) computed using pooled data

Factor os app Elapsed time effect (%) νeff CPU time effect (%) νeff

stk 0 0 0.02 ± 0.92 3389.87 0.58 ± 0.83 3389.86
0 1 2.39 ± 2.49 1689.98 2.39 ± 2.49 1689.98
1 0 6.86 ± 1.56 1029.40 6.88 ± 1.57 1029.40
1 1 5.67 ± 3.95 513.35 5.67 ± 3.95 513.35
2 0 2.14 ± 0.57 1207.52 6.90 ± 1.59 1254.94
2 1 5.22 ± 3.94 624.01 5.21 ± 3.93 624.03

trp 0 0 31.40 ± 0.10 3156.14 27.85 ± 0.06 3364.10
0 1 68.19 ± 0.33 1368.76 68.19 ± 0.33 1368.75
1 0 27.11 ± 0.55 966.73 27.25 ± 0.55 966.68
1 1 54.79 ± 1.04 395.12 54.82 ± 1.04 394.99
2 0 9.39 ± 0.31 1078.17 30.48 ± 0.57 1256.76
2 1 62.04 ± 0.96 510.67 62.01 ± 0.96 510.95

gs 3 0 0.37 ± 0.05 2883.79 0.73 ± 0.07 2935.45
3 1 0.64 ± 0.20 1475.81 0.64 ± 0.20 1475.77

for 0 0 0.11 ± 0.92 3389.88 −0.09 ± 0.82 3388.27
0 1 −0.36 ± 2.42 1693.59 −0.36 ± 2.42 1693.59

ffa 0 0 0.69 ± 0.92 3389.87 0.59 ± 0.83 3388.43
1 0 0.80 ± 1.52 1032.54 0.81 ± 1.53 1032.74
2 0 0.16 ± 0.58 1253.80 0.52 ± 1.54 1256.98
3 0 1.11 ± 0.04 2957.47 1.47 ± 0.05 2924.13

ffb 0 0 0.06 ± 0.92 3389.93 −0.29 ± 0.82 3389.14
1 0 0.07 ± 1.51 1037.60 0.07 ± 1.52 1037.62
2 0 −0.04 ± 0.57 1256.89 −0.31 ± 1.52 1256.94
3 0 −0.39 ± 0.05 2824.76 −0.29 ± 0.07 2893.95

gga 0 1 2.61 ± 2.49 1693.98 2.61 ± 2.49 1693.98
1 1 4.13 ± 3.90 517.24 4.13 ± 3.90 517.24
2 1 4.49 ± 3.91 624.56 4.48 ± 3.91 624.55
3 1 4.05 ± 0.03 1302.60 4.05 ± 0.03 1300.52

6.9.2 Interactions

The plots in Appendix A reveal only minor 2-way interactions. However, it is evident from Table 7 that trp
caused a significantly worse slowdown for Gnugo (app = 1) than it did for FFmpeg (app = 0).

The os×app interactions are not captured by the summary data presented, but they would be unsurprising:
when the demand for CPU cycles increases because of a change in app, devices with slower and fewer CPU
cores are impacted more.

6.9.3 Root cause of trp performance hit

Level 1 of trp corresponds to use of the -ftrapv compiler switch. A 2005 article on compiler checks described
the implementation of -ftrapv as follows:

“In practice, this means that the GCC compiler generates calls to existing library functions rather than
generating assembler instructions to perform these arithmetic operations on signed integers.” [29]

Disassembly of unoptimized binaries for the test program shown in Section 6.3.2 confirmed that -ftrapv had
the effect of replacing a single addl instruction with a call to a function that performed addition, checked
for overflow, and aborted the program if an overflow had occurred. The overflow checking involved two
conditional branches. Apparently, the costs of this code expansion were not completely erased by high levels
of optimization, but some combinations of os and app suffered much more than others.

19

7

NIST Technical Note 1860

Table 8: Relative magnitudes of main effects (level 1 versus level 0) computed using mean-of-means

Factor os app Elapsed time effect (%) νeff CPU time effect (%) νeff

stk 0 0 −0.01 ± 4.27 158.00 0.58 ± 3.87 157.99
0 1 2.39 ± 11.76 77.81 2.39 ± 11.76 77.81
1 0 6.86 ± 6.51 61.49 6.88 ± 6.54 61.49
1 1 5.68 ± 17.07 29.73 5.68 ± 17.08 29.73
2 0 2.14 ± 2.37 58.79 6.86 ± 7.19 61.88
2 1 5.37 ± 18.71 29.90 5.37 ± 18.70 29.90

trp 0 0 31.39 ± 0.26 118.77 27.85 ± 0.26 156.20
0 1 68.18 ± 1.56 63.00 68.19 ± 1.56 63.00
1 0 27.10 ± 2.26 57.62 27.24 ± 2.27 57.59
1 1 54.80 ± 4.51 22.81 54.82 ± 4.51 22.80
2 0 9.37 ± 0.77 41.15 30.45 ± 2.29 60.61
2 1 62.06 ± 4.60 24.38 62.02 ± 4.60 24.39

gs 3 0 0.37 ± 0.48 28.86 0.72 ± 0.57 29.13
3 1 0.64 ± 2.29 13.94 0.64 ± 2.29 13.94

for 0 0 0.10 ± 4.27 157.99 −0.09 ± 3.84 157.92
0 1 −0.37 ± 11.45 77.98 −0.37 ± 11.45 77.98

ffa 0 0 0.69 ± 4.30 158.00 0.58 ± 3.87 157.93
1 0 0.81 ± 6.35 61.67 0.82 ± 6.38 61.69
2 0 0.16 ± 2.39 61.79 0.51 ± 6.96 62.00
3 0 1.11 ± 0.29 29.18 1.47 ± 0.32 27.08

ffb 0 0 0.01 ± 4.27 158.00 −0.29 ± 3.84 157.96
1 0 0.07 ± 6.31 61.97 0.07 ± 6.33 61.98
2 0 −0.10 ± 2.38 62.00 −0.37 ± 6.90 62.00
3 0 −0.39 ± 0.48 27.42 −0.29 ± 0.62 28.61

gga 0 1 2.60 ± 11.78 78.00 2.60 ± 11.78 78.00
1 1 4.13 ± 16.85 29.96 4.13 ± 16.86 29.96
2 1 4.33 ± 18.56 29.94 4.33 ± 18.55 29.94
3 1 4.05 ± 0.40 12.17 4.05 ± 0.39 12.15

Conclusion

We performed an experiment to measure and identify patterns in the performance impacts of several types
of defensive code on two different applications in four different environments. For the most part, the per­
formance differences were small in magnitude and materially if not statistically insignificant. The exception
was GCC’s -ftrapv option, which resulted in over 50 % slowdown for one app.

Additional plots and raw data from the experiment are available from the Software Performance Pro ject’s
web page [16].

Acknowledgments

Thanks to William F. Guthrie and Jim Filliben of the Statistical Engineering Division for consultation.
Thanks to Vadim Okun and other reviewers for helpful reviews.

Special thanks to Paul E. Black and Barbara Guttman for group management and operational support to
make this research possible.

20 NIST Technical Note 1860

References

[1] David Flater and William F. Guthrie.	 A case study of performance degradation attributable to run­
time bounds checks on C++ vector access. NIST Journal of Research, 118:260–279, May 2013. http:
//dx.doi.org/10.6028/jres.118.012.

[2] Joint Committee for Guides in Metrology.	 International vocabulary of metrology—Basic and gen­
eral concepts and associated terms (VIM), 3rd edition. JCGM 200:2012, http://www.bipm.org/en/
publications/guides/vim.html.

[3] CyanogenMod, 2014. http://www.cyanogenmod.org/.

[4] Android Debug Bridge, 2014. http://developer.android.com/tools/help/adb.html.

[5] Android Open Kang Project (AOKP), 2013. http://aokp.co/.

[6] Nexus 7 (2012 version), 2014. http://en.wikipedia.org/wiki/Nexus 7 (2012 version).

[7] FFmpeg, 2014. https://www.ffmpeg.org/.

[8] Don A. Bailey.	 Raising Lazarus - The 20 Year Old Bug that Went to Mars, June 2014. http:
//blog.securitymouse.com/2014/06/raising-lazarus-20-year-old-bug-that.html.

[9] GNU Go, 2014. http://www.gnu.org/software/gnugo/.

[10] GNU Bash, 2014. https://www.gnu.org/software/bash/.

[11] Cygwin, 2014. https://www.cygwin.com/.

[12] MSYS, 2014. http://www.mingw.org/wiki/msys.

[13] Time-windows,	 Windows port of Unix time utility, 2014. https://code.google.com/p/
time-windows/.

[14] David Flater. Screening for factors affecting application performance in profiling measurements.	 NIST
Technical Note 1855, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg,
MD 20899, October 2014. http://dx.doi.org/10.6028/NIST.TN.1855.

[15] Stack Overflow.	 What are vdso and vsyscall?, November 2013. https://stackoverflow.com/
questions/19938324/what-are-vdso-and-vsyscall.

[16] Software	 Performance Pro ject web page, 2014. http://www.nist.gov/itl/ssd/cs/
software-performance.cfm.

[17] GCC Manual, version 4.9.0, April 2014. https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/.

[18] Han Shen.	 [PATCH] Add a new option “–fstack-protector-strong”. GCC-patches mailing list, June
2012. https://gcc.gnu.org/ml/gcc-patches/2012-06/msg00974.html.

[19] Steven Bosscher. GCC Bug 35412: Correctness with –ftrapv dependended on libcall notes, May 2009.
http://gcc.gnu.org/bugzilla/show bug.cgi?id=35412.

[20] Stack Overflow.	 How to make gcc ftrapv work?, December 2013. https://stackoverflow.com/
questions/20851061/how-to-make-gcc-ftrapv-work.

[21] Nikola Dudar. Response to ‘ set security error handler no longer declared’. Visual C++ General forum.
http://www.windows-tech.info/17/088c02904eb201ba.php.

[22] Feature test macros man page. Linux Programmer’s Manual, §7, August 2012.

[23] Security	 enhancements in Android 4.2, 2012. https://source.android.com/devices/tech/
security/enhancements42.html.

http://dx.doi.org/10.6028/jres.118.012
http://dx.doi.org/10.6028/jres.118.012
http://www.bipm.org/en/publications/guides/vim.html
http://www.bipm.org/en/publications/guides/vim.html
http://www.cyanogenmod.org/
http://developer.android.com/tools/help/adb.html
http://aokp.co/
http://en.wikipedia.org/wiki/Nexus_7_(2012_version)
https://www.ffmpeg.org/
http://blog.securitymouse.com/2014/06/raising-lazarus-20-year-old-bug-that.html
http://blog.securitymouse.com/2014/06/raising-lazarus-20-year-old-bug-that.html
http://www.gnu.org/software/gnugo/
https://www.gnu.org/software/bash/
https://www.cygwin.com/
http://www.mingw.org/wiki/msys
https://code.google.com/p/time-windows/
https://code.google.com/p/time-windows/
http://dx.doi.org/10.6028/NIST.TN.1855
https://stackoverflow.com/questions/19938324/what-are-vdso-and-vsyscall
https://stackoverflow.com/questions/19938324/what-are-vdso-and-vsyscall
http://www.nist.gov/itl/ssd/cs/software-performance.cfm
http://www.nist.gov/itl/ssd/cs/software-performance.cfm
https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/
https://gcc.gnu.org/ml/gcc-patches/2012-06/msg00974.html
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=35412
https://stackoverflow.com/questions/20851061/how-to-make-gcc-ftrapv-work
https://stackoverflow.com/questions/20851061/how-to-make-gcc-ftrapv-work
http://www.windows-tech.info/17/088c02904eb201ba.php
https://source.android.com/devices/tech/security/enhancements42.html
https://source.android.com/devices/tech/security/enhancements42.html

21 NIST Technical Note 1860

[24] GNU Go Program Documentation, Edition 3.8, June 2014.	 Info document included with GNU Go
software distribution.

[25] Bradley Efron. Better bootstrap confidence intervals.	 Journal of the American Statistical Association,
82(397):171–185, March 1987. http://www.jstor.org/stable/2289144. See also the comments and
rejoinder that follow on pages 186–200, http://www.jstor.org/stable/i314281.

[26] Bradley Efron and Robert J. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall, 1993.

[27] Joint Committee for Guides in Metrology.	 Evaluation of measurement data—Guide to the expression
of uncertainty in measurement. JCGM 100:2008, http://www.bipm.org/utils/common/documents/
jcgm/JCGM 100 2008 E.pdf.

[28] Mark S. Levenson, David L. Banks, Keith R. Eberhardt, Lisa M. Gill, William F. Guthrie, Hung-kung
Liu, Mark G. Vangel, James H. Yen, and Nien-fan Zhang. An approach to combining results from
multiple methods motivated by the ISO GUM. NIST Journal of Research, 105(4):571–579, July 2000.
http://dx.doi.org/10.6028/jres.105.047.

[29] Robert C. Seacord.	 Compiler checks. Build Security In, May 2013. https://buildsecurityin.
us-cert.gov/articles/knowledge/coding-practices/compiler-checks.

http://www.jstor.org/stable/2289144
http://www.jstor.org/stable/i314281
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://dx.doi.org/10.6028/jres.105.047
https://buildsecurityin.us-cert.gov/articles/knowledge/coding-practices/compiler-checks
https://buildsecurityin.us-cert.gov/articles/knowledge/coding-practices/compiler-checks

22 NIST Technical Note 1860

A Main effect and interaction plots

Note: Confidence intervals (95 %) are not drawn when the range is vanishingly small.

9.
5

10
.5

11
.5

12
.5

Index

N
A

0 1stk

● ●

1696 1696

9.
5

10
.5

11
.5

12
.5

Index

N
A

0 1trp

●

●

1696

1696

9.
5

10
.5

11
.5

12
.5

Index

N
A

0 1for

● ●

1696 1696
9.

5
10

.5
11

.5
12

.5

Index

N
A

0 1ffa

●
●

1696 1696
9.

5
10

.5
11

.5
12

.5

N
A

0 1ffb

● ●

1696 1696

9.
5

10
.5

11
.5

12
.5

Index

N
A

0 1trp

●

●

848

848

●

●

848

848

stk=0
stk=1

9.
5

10
.5

11
.5

12
.5

Index

N
A

0 1for

● ●

848 848
● ●

848 848

stk=0
stk=1

9.
5

10
.5

11
.5

12
.5

Index

N
A

0 1ffa

●
●

848 848
●

●
848 848

stk=0
stk=1

9.
5

10
.5

11
.5

12
.5

Index

N
A

0 1ffb

● ●

848 848
● ●

848 848

stk=0
stk=1

9.
5

10
.5

11
.5

12
.5

Index

N
A

0 1for

● ●

848 848

● ●

848 848

trp=0
trp=1

9.
5

10
.5

11
.5

12
.5

Index

N
A

0 1ffa

●
●

848 848

●
●

848 848

trp=0
trp=1

9.
5

10
.5

11
.5

12
.5

Index

N
A

0 1ffb

● ●

848 848

● ●

848 848

trp=0
trp=1

9.
5

10
.5

11
.5

12
.5

Index

N
A

0 1ffa

● ●

848 848
●

●848
848

for=0
for=1

9.
5

10
.5

11
.5

12
.5

Index

N
A

0 1ffb

● ●

848 848
● ●

848 848

for=0
for=1

9.
5

10
.5

11
.5

12
.5

Index

N
A

0 1ffb

● ●

848 848
● ●

848 848

ffa=0
ffa=1

s

Figure 9: Plots for elapsed time in os = 0, app = 0 using pooled data

23 NIST Technical Note 1860

25
0

30
0

35
0

40
0

45
0

Index

N
A

0 1stk

●

●848
848

25
0

30
0

35
0

40
0

45
0

Index

N
A

0 1trp

●

●

848

848

25
0

30
0

35
0

40
0

45
0

Index

N
A

0 1for

● ●

848 848

25
0

30
0

35
0

40
0

45
0

N
A

0 1gga

●

●848
848

25
0

30
0

35
0

40
0

45
0

Index

N
A

0 1trp

●

●

424

424

●

●

424

424

stk=0
stk=1

25
0

30
0

35
0

40
0

45
0

Index

N
A

0 1for

● ●

424 424● ●

424 424

stk=0
stk=1

25
0

30
0

35
0

40
0

45
0

Index

N
A

0 1gga

●

●424
424

●

●424
424

stk=0
stk=1

25
0

30
0

35
0

40
0

45
0

Index

N
A

0 1for

● ●

424 424

● ●

424 424

trp=0
trp=1

25
0

30
0

35
0

40
0

45
0

Index

N
A

0 1gga

●

●424 424

●

●424
424

trp=0
trp=1

25
0

30
0

35
0

40
0

45
0

Index

N
A

0 1gga

●

●424
424

●

●424
424

for=0
for=1

s

Figure 10: Plots for elapsed time in os = 0, app = 1 using pooled data

24 NIST Technical Note 1860

60
0

65
0

70
0

75
0

80
0

Index

N
A

0 1stk

●

●

520

520
60

0
65

0
70

0
75

0
80

0

Index

N
A

0 1trp

●

●

520

520

60
0

65
0

70
0

75
0

80
0

Index

N
A

0 1ffa

●
●

520 520

60
0

65
0

70
0

75
0

80
0

N
A

0 1ffb

● ●

520 520

60
0

65
0

70
0

75
0

80
0

Index

N
A

0 1trp

●

●

260

260

●

●

260

260

stk=0
stk=1 60

0
65

0
70

0
75

0
80

0

Index

N
A

0 1ffa

●

●
260 260

●
●

260 260

stk=0
stk=1 60

0
65

0
70

0
75

0
80

0

Index

N
A

0 1ffb

● ●

260 260

● ●

260 260

stk=0
stk=1

60
0

65
0

70
0

75
0

80
0

Index

N
A

0 1ffa

● ●

260 260

●

●260
260

trp=0
trp=1

60
0

65
0

70
0

75
0

80
0

Index

N
A

0 1ffb

● ●

260 260

● ●

260 260

trp=0
trp=1

60
0

65
0

70
0

75
0

80
0

Index

N
A

0 1ffb

● ●

260 260
● ●

260 260

ffa=0
ffa=1

s

Figure 11: Plots for elapsed time in os = 1, app = 0 using pooled data

25 NIST Technical Note 1860

25
00

30
00

35
00

Index

N
A

0 1stk

●

●

260

260
25

00
30

00
35

00

Index

N
A

0 1trp

●

●

260

260

25
00

30
00

35
00

N
A

0 1gga

●

●

260
260

25
00

30
00

35
00

Index

N
A

0 1trp

●

●

130

130

●

●

130

130

stk=0
stk=1

25
00

30
00

35
00

Index

N
A

0 1gga

●

●

130
130

●

●

130
130

stk=0
stk=1

25
00

30
00

35
00

Index

N
A

0 1gga

●

●

130
130

●

●

130
130

trp=0
trp=1

s

Figure 12: Plots for elapsed time in os = 1, app = 1 using pooled data

26 NIST Technical Note 1860

16
5

17
0

17
5

18
0

18
5

Index

N
A

0 1stk

●

●

630

629
16

5
17

0
17

5
18

0
18

5

Index

N
A

0 1trp

●

●

629

630

16
5

17
0

17
5

18
0

18
5

Index

N
A

0 1ffa

●
●

631 628

16
5

17
0

17
5

18
0

18
5

N
A

0 1ffb

● ●

628 631

16
5

17
0

17
5

18
0

18
5

Index

N
A

0 1trp

●

●

315

315

●

●

314

315

stk=0
stk=1

16
5

17
0

17
5

18
0

18
5

Index

N
A

0 1ffa

● ●

316 314

●
●

315 314

stk=0
stk=1

16
5

17
0

17
5

18
0

18
5

Index

N
A

0 1ffb

● ●

314 316

● ●

314 315

stk=0
stk=1

16
5

17
0

17
5

18
0

18
5

Index

N
A

0 1ffa

● ●

315 314

●

●316 314

trp=0
trp=1

16
5

17
0

17
5

18
0

18
5

Index

N
A

0 1ffb

● ●

314 315

● ●

314 316

trp=0
trp=1

16
5

17
0

17
5

18
0

18
5

Index

N
A

0 1ffb

● ●

316 315
●

●

312 316

ffa=0
ffa=1

s

Figure 13: Plots for elapsed time in os = 2, app = 0 using pooled data

27 NIST Technical Note 1860

14
00

16
00

18
00

20
00

22
00

Index

N
A

0 1stk

●

●

314

314
14

00
16

00
18

00
20

00
22

00

Index

N
A

0 1trp

●

●

315

313

14
00

16
00

18
00

20
00

22
00

N
A

0 1gga

●

●

314
314

14
00

16
00

18
00

20
00

22
00

Index

N
A

0 1trp

●

●

157

157

●

●

158

156

stk=0
stk=1 14

00
16

00
18

00
20

00
22

00

Index

N
A

0 1gga

●

●157
157

●

●

157

157

stk=0
stk=1

14
00

16
00

18
00

20
00

22
00

Index

N
A

0 1gga

●

●

158
157

●

●156
157

trp=0
trp=1

s

Figure 14: Plots for elapsed time in os = 2, app = 1 using pooled data

28 NIST Technical Note 1860

21
.8

21
.9

22
.0

22
.1

Index

N
A

0 1gs

●

●

1484

1484
21

.8
21

.9
22

.0
22

.1

Index

N
A

0 1ffa

●

●

1484

1484

21
.8

21
.9

22
.0

22
.1

N
A

0 1ffb

●

●

1484

1484

21
.8

21
.9

22
.0

22
.1

Index

N
A

0 1ffa

●

●

742

742

●

●

742

742

gs=0
gs=1 21

.8
21

.9
22

.0
22

.1

Index

N
A

0 1ffb

●

●

742

742

●

●

742

742

gs=0
gs=1

21
.8

21
.9

22
.0

22
.1

Index

N
A

0 1ffb

●

●

742

742

●

●

742

742

ffa=0
ffa=1

s

Figure 15: Plots for elapsed time in os = 3, app = 0 using pooled data

29 NIST Technical Note 1860

26
6

27
0

27
4

27
8

Index

N
A

0 1gs

●

●

742

742
26

6
27

0
27

4
27

8

N
A

0 1gga

●

●

742

742

26
6

27
0

27
4

27
8

Index

N
A

0 1gga

●

●

371

371

●

●

371

371

gs=0
gs=1

s

Figure 16: Plots for elapsed time in os = 3, app = 1 using pooled data

	Introduction
	Terms
	Environments
	Linux
	Android 1
	Android 2
	Windows

	Applications
	FFmpeg
	GNU Go

	Validation of measures
	Face validity
	Linux
	Android 1 and 2
	Windows

	Experiment
	Workloads
	Builds
	Linux
	Android
	Windows

	Independent variables
	GCC stack protector
	GCC --ftrapv
	Visual C++ stack protector
	FORTIFY_SOURCE
	FFmpeg-specific options
	Gnugo-specific options

	Executables
	Experimental design
	Ordering
	Validation of workload outputs
	Results
	Sample sizes
	Distributions
	Main effects and interactions

	Analysis
	Main effects
	Interactions
	Root cause of trp performance hit

	Conclusion
	Main effect and interaction plots

