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Abstract 

Defensive code is instructions added to software for the purpose of hardening it against uncontrolled 
failures and security problems. It is often assumed that defensive code causes a significant reduction in 
software performance, which justifies its omission from all but the most security-critical applications. We 
performed an experiment to measure the application-level performance impact of seven defensive code 
options on two different workloads in four different environments. Of the seven options, only one yielded 
clear evidence of a significant reduction in performance; the main effects of the other six were either 
materially or statistically insignificant. 

1 Introduction 

Defensive code is instructions added to software for the purpose of hardening it against uncontrolled failures 
and security problems. Typically these instructions test for conditions that “can’t happen” (more precisely, 
could not happen if the software were working as intended) and force the application to terminate if they 
in fact occur. This behavior is desirable not only to hasten the detection and correction of faults in the 
software, but also to prevent as-yet uncorrected faults from being exploitable for malicious purposes. 

Defensive code can be explicit code added by the software author or it can be safety checks that are retrofit 
into an application using automated methods to protect “risky” operations. While the latter kind of safety 
checks are more powerful in mitigating failure modes and vulnerabilities that the software author never 
contemplated, by the same token one then acquires the burden of proving that they add practical value over 
the status quo without incurring unacceptable costs. 

In a previous case study [1] we investigated one kind of automated protection at a micro-benchmark level and 
learned that defensive code need not always make a big difference to performance. In this work we expand 
on that result by measuring the application-level performance impact of several examples of both flavors of 
defensive code on two different workloads in four different environments. We found only one defensive code 
option that yielded clear evidence of a significant reduction in performance; the main effects of the others 
were either materially or statistically insignificant. 

The remainder of this report is assembled as follows. Section 2 introduces terms used throughout the 
report. Section 3 describes the environmental conditions of the experiment. Section 4 introduces the software 
applications that were used as test subjects. Section 5 covers validation of the selected metrics and measures. 
Section 6 covers the experiment itself. Finally, Section 7 finishes with conclusions and future work. 

2 Terms 

The terms factor and independent variable are synonymous. They refer to a property of the system under 
test that is deliberately changed within the scope of the experiment. In some communities these are called 
predictor variables or input variables. 

The different values to which a factor is set in an experiment are called levels of that factor. Usually, the 
levels of all factors are mapped onto the same numerical scale to simplify discussion and data management. 
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In this report we use the scale of 0,1 for the “low” and “high” values of 2-levelled factors and integers 0 to 
N for factors with more than 2 levels. 

A treatment is a specific combination of factor levels. For example, if there are two factors, each of which 
has two levels, then there are four possible treatments. 

In the International Vocabulary of Metrology (VIM) [2], a quantity is an ob jective property (e.g., length) 
that has a magnitude that can be expressed as a numeric value with a reference (e.g., the metre) that 
defines what the numeric value indicates. In contrast, a software metric, as commonly understood, may be 
quantitative in nature without necessarily expressing the magnitude of an ob jective property (e.g., a security 
metric meant to indicate risk), or it may quantify the magnitude of an ob jective property in units that have 
no realization as a measurement standard (e.g., size expressed as a count of function points). 

A dependent variable is a quantity or metric that is used to determine the effects of different treatments. In 
some communities these are called response variables or output variables. 

The term measure is used variously to refer to the instruments, methods, and units that are candidates for 
use in obtaining and stating the values of quantities and metrics. 

Finally, a controlled variable is any property that could in principle change, but that has been deliberately 
kept constant within the scope of the experiment. 

Any terms that remain unclear should be interpreted in light of the VIM, the design of experiments literature, 
the statistics literature, and the terms’ ordinary dictionary definitions. 

3 Environments 

The experiment was conducted on one version of Linux, two versions of Android, and one version of Windows 
on four separate devices. 

3.1 Linux 

The Linux device was a Dell Precision T5400 with dual Xeon X5450 4-core CPUs and 4 GiB of DDR2-667D 
ECC RAM. 

Testing was conducted under Slackware 14.1 64-bit with a replacement kernel, version 3.15.5. The kernel’s 
HZ value was set to 1000, which enables the maximum resolution of CPU time results from bash’s time 
command. 

To reduce extraneous and irrelevant variability, data collection was performed in single-user mode with 
SpeedStep disabled in the BIOS configuration as well as the kernel so that the CPUs would operate at a 
fixed frequency. The CPUs did not support Turbo Boost. 

The test programs and kernel were built using the GNU Compiler Collection (GCC) version 4.9.0, GNU 
Binutils 2.23.52.0.1.20130226, Yasm 1.2.0, and the GNU C library. 

3.2 Android 1 

The first Android device was a Droid X phone with a single-core, 32-bit Cortex-A8 (OMAP3630) CPU. The 
operating system had been upgraded to Android 4.4.4 (KitKat, API level 19) via CyanogenMod 11 rev. 
20140713 (unofficial) [3]. The kernel identified itself as version 2.6.32.9-AeroKernel but a config file was not 
provided. 

The CPU’s frequency was locked at 1 GHz by changing the CPU governor option under Settings, System, 
Performance, Processor from “interactive” to “performance.” 
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The test programs were built using the Android Native Development Kit (NDK) Revision 9d for x86 64, 
arm-linux-androideabi-4.8 toolchain, API level 17 (for compatibility with Android 2), and the Bionic C 
library. 

Test programs were run in a shell opened using the Android Debug Bridge (ADB) [4] with the device 
connected to a PC with a USB cable. Sleep mode and screen savers were disabled. 

3.3 Android 2 

The second Android device was a Nexus 7 (2012 version) tablet with a quad-core, 32-bit Cortex-A9 
(Tegra 3 T30L) CPU. It had been upgraded to Android 4.2.2 (Jelly Bean, API level 17) via AOKP but­
tered aokp tilapia 2013-07-14 [5]. A custom build of kernel version 3.2.47 was used in this experiment. That 
kernel’s HZ value was set to 100. 

The slightly older ROM installed on the tablet lacked the option to change the CPU governor in the setup 
menu, but equivalent tweaks were possible using control files in /sys/devices/system/cpu/cpu0/cpufreq. 
Choosing “performance” raised the frequency to 1.3 GHz which is supposedly restricted to single-core mode 
[6], so to be safer we chose “userspace” with a frequency of 1.2 GHz instead. 

Android 2 used the same compiled binaries as Android 1. 

Test programs were run in an ADB shell in the same manner as for Android 1. 

3.4 Windows 

The Windows device was a Dell Latitude E6330 laptop with a Core i5-3320M 2-core, 4-thread CPU, running 
Windows 7 Professional Service Pack 1 64-bit with minimal unnecessary software. SpeedStep and Turbo 
Boost were disabled in the BIOS configuration to reduce the variability of results. 

The test programs were built using Visual Studio Express 2013 (VS2013) for Windows Desktop 12.0.21005.13 
x64 Cross Tools and Yasm 1.2.0 and deployed with Visual C++ 2013 Redistributable (x64) 12.0.21005.1. 

4 Applications 

We sought test applications with the following features: 

• Can be compiled for all of the targeted platforms; 

• Has some CPU-intensive use on all of the targeted platforms; 

• Contains explicit defensive code that can be turned on or off; 

• Can be run non-interactively for ease of benchmarking. 

The two applications that we chose for testing are FFmpeg and GNU Go, described in the following subsec­
tions. 

http:12.0.21005.13
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4.1 FFmpeg 

FFmpeg [7] is a multimedia framework containing both libraries and command-line applications for audio 
and video processing. We tested version 2.3. 

Multi-threaded decoding when the requisite thread libraries are linked and multiple CPU cores are available. 

Although many platforms now provide hardware-assisted decoding of video, FFmpeg’s software decoders 
still have plausible use for the many video formats that the hardware acceleration does not support. 

FFmpeg is a particularly good example for showing relevance to security as there is the potential for a 
fault in FFmpeg to be remotely exploitable through a maliciously crafted video file to execute arbitrary 
code with the privileges of the user attempting to decode the video. There is of course no guarantee that 
vulnerabilities will not manifest in unchecked places, such as the remotely exploitable integer overflow in the 
LZO implementation that was corrected in release 2.2.4 [8], but this is no reason to omit safety checks where 
they already seem warranted. 

4.2 GNU Go 

GNU Go [9] (hereafter called Gnugo) is simply a program that plays the strategy board game Go. We tested 
a version pulled from the Git repository on 2014-06-06. We cannot cite a meaningful version number as 
there had not been a numbered release since early 2009. 

Gnugo is a single-threaded program. For testing and benchmarking purposes it has several non-interactive 
modes of execution. 

5 Validation of measures 

In three of the four environments a version of the Bash shell [10] was used to obtain measurements. Bash 
has a built-in time command that provides one measure of elapsed time and two measures of CPU time. The 
two measures of CPU time indicate “user” time and “system” time respectively. Results are reported to a 
maximum numerical resolution of 0.001 s. On Linux and Android, the resolution of the CPU time metrics 
is limited by the kernel’s compiled-in HZ configurable, which can be as low as 100 Hz. 

On Windows, the original plan was to use the Bash shell provided by the Cygwin environment [11]. However, 
this version failed validation, as did the Bash shell included in MSYS version 1.0.11 [12]. The builtin time 
commands of these shells registered little or no user CPU time for the test applications that were built 
using VS2013, presumably due to some disconnect between the Bash shell environment and the Visual C++ 
runtime environment. As a substitute, we used a stripped-down version of the TimeMem / time-windows 
utility [13], built with VS2013, to obtain equivalent measurements. 

With that substitution, all four environments had an instrument that reported results for elapsed, user, and 
system time to a numerical resolution of 0.001 s, although the resolution of the measurements proved to be 
less than that in 3 of the 4 cases. 

To validate the measures we reused the 10sec-user étalon from [14]. 10sec-user is a single-threaded C program 
that executes a busy-waiting loop polling the system function gettimeofday until the timer readings indicate 
that at least 10 s have elapsed. As reported in [14], when profiled under Linux, this workload produces results 
for elapsed and CPU time that have much less variability than is normally seen. 
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5.1 Face validity 

As was done in [14], we checked that the 10sec-user workload did indeed execute for approximately 10 s of 
elapsed time using a digital wristwatch and a script that simply printed “Start” and “Stop” before and after 
the program ran, with an approximately 2 s pause between the start of the script and the start of the timed 
run. A failure of this primitive validation would indicate that the timekeeping on the platform being tested 
was significantly off, which was a plausible risk considering that unofficial ROMs and kernels were being 
employed on the two Android devices. 

Results are shown in Table 1. Allowing for varying reaction times of the timekeeper and varying latencies 
for printing the “start” and “stop” messages, there is no evidence in this small sample of an egregious 
timekeeping anomaly. 

Table 1: Elapsed times (s) from manual stopwatch validation of 10sec-user 

Environment Try 1 Try 2 Try 3 
Linux 10.01 10.01 10.03 

Android 1 9.99 10.01 10.06 
Android 2 9.99 10.01 10.00 
Windows 10.07 10.07 10.01 

5.2 Linux 

In Linux, gettimeofday is implemented in user space [15]. Results are shown in Figure 1. The single outlier 
of 10.012 s for elapsed time occurred on the first iteration, possibly reflecting one or more one-time overheads 
such as loading the executable binary into the file system cache. 
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Figure 1: Bar plot of results from 1000 iterations of the 10sec-user workload in Linux 

5.3 Android 1 and 2 

Results are shown in Figure 2 and Figure 3. The bins for each histogram were aligned so that there is one 
bar for each distinct measurement value that was returned. 
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Not only did the Android environment shift a large part of the CPU time burden of 10sec-user from user 
to system, indicating that gettimeofday may still be implemented in kernel space on this platform, it also 
yielded a wider distribution of measurement values, greater variability in the division of CPU time between 
user space and kernel space, and a lower resolution of CPU time. The resolution of 0.01 s on the tablet was 
as expected given that the kernel’s HZ value was set to 100. On the other hand, the resolution of between 
0.0075 s and 0.008 s on the phone corresponds to none of the normally configurable HZ values for the kernel 
(which are 100 Hz, 250 Hz, 300 Hz, and 1000 Hz). 

It is worth noting that an initial configuration of the Android phone that we tried was invalidated by this ex­
ercise, with the anomaly being that the user and system CPU time measures added together fell significantly 
short of 10 s. Investigation using the command top -m 5 -n 1 -s cpu under the environmental conditions 
of the test but with no test workload revealed a continuous load from com.android.inputmethod.latin and 
system server accounting for approximately 22 % of the available CPU cycles. Reducing the background 
loads required both a clean flash of the latest ROM and switching from the terminal app to ADB. For 
consistency we switched to ADB for Android 2 as well, although it had less impact on the tablet. 

Despite those mitigations, the sums of user and system time (Figure 4) still reached as low as 9.71 s, indicating 
that background loads and overhead still had a greater impact on the test application than they did under 
Linux. 
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Figure 2: Histogram of results from 1000 iterations of the 10sec-user workload in Android 1 

5.4 Windows 

10sec-user would not build using VS2013, so it was built using GCC 4.8.3 in Cygwin instead. Results are 
shown in Figure 5. Clearly, the resolution of all three measurements is approximately 0.016 s. 

6 Experiment 

We now proceed to the main experiment. Its goal is to measure and identify patterns in the performance 
impacts of several types of defensive code on two different applications in four different environments. 
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Figure 3: Histogram of results from 1000 iterations of the 10sec-user workload in Android 2 
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Figure 4: Kernel density plots (bandwidth 0.005 s) of the sums of user and system times 

6.1 Workloads 

For FFmpeg, we transcoded a test video. The transcoding process reduced the size and frame rate of the 
video, reduced the sample rate and bit depth of the audio, and changed the video encoding from h264 to 
mpeg4. The input file was .mov format, 65.17 s in duration, and 178 099 858 bytes in size. It contained an 
approximately 20 292 kb/s, 1920 × 1080 pixels, 29.97 Hz, h264 (High) video stream and a 1536 kb/s, 48 kHz, 
pcm s16le (2 bytes per sample) stereo audio stream. The resulting output files were less than 5 MB in size 
yet easily recognizable as transcodings of the input. This was the command line: 

ffmpeg -y -v quiet -i test.mov -vf scale=320:180 -r 3 -ar 24000 -c:a pcm_u8 out.mov 

For Gnugo, we created a non-interactive test workload by having it calculate what moves it would have made 
at each of the 252 board states of the famous “Game of the Century” between Go Seigen and Honinbo Shusai 
which began on 1933-10-16. The standard output stream of the program was captured for comparison with 
expected results. 

gnugo --seed 13131313 --infile GameOfTheCentury.sgf --replay both 
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Figure 5: Bar plot of results from 1000 iterations of the 10sec-user workload in Windows 

This non-interactive benchmark makes necessary compromises in order to enable useful data collection. The 
interactivity of a typical game-playing session has been removed; the focus is entirely on the computation 
of moves. The use of a transcoding workload with FFmpeg instead of playing a video in real time makes an 
analogous tradeoff, but transcoding is itself a representative use case. 

6.2 Builds 

To simplify production we used pre-configured sources and replaced the native build scripts with our own, 
carrying over those compilation options that did not conflict with independent variables. Configurables 
relating to independent variables were changed to command line options. We tweaked options to favor 
execution speed while being cautions about compromises of correctness that were not already made in the 
stock builds. 

For brevity, the following subsections omit long strings of routine options such as preprocessor definitions, 
include paths, library paths, and linked libraries that were carried over from the original build scripts. 
Complete details can be found in the Makefiles provided in the raw data distribution available from the 
Software Performance Pro ject’s web page [16]. 

6.2.1 Linux 

Build options used for both applications included -O3, -fno-strict-aliasing, --gc-sections, and 
--as-needed. 

The Gnugo build added the -flto link-time optimization option. It could not be used with FFmpeg as it 
caused a link failure. 

The FFmpeg build used -f elf -m amd64 with Yasm and for GCC added -std=c99, -pthread, 
-fno-math-errno, -fno-signed-zeros, and -fno-tree-vectorize. 

Since the GCC compiler was built natively with --with-arch=core2, command-line options to tune the 
binaries for the specific hardware were unnecessary. 
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6.2.2 Android 

The Android binaries were built to use hardware floating point and linked with libm hard.a. GCC’s auto­
vectorization pass doesn’t use NEON (“Advanced SIMD”) unless -funsafe-math-optimizations is speci­
fied [17, §3.17.4]; however, FFmpeg includes its own NEON assembly code. 

Build options used for both applications included -march=armv7-a, -mtune=cortex-a8, -marm, 
-mfloat-abi=hard, -mfpu=neon, -O3, -flto, -fno-strict-aliasing, -D_NDK_MATH_NO_SOFTFP=1, 
--gc-sections, --as-needed, and --no-warn-mismatch. The last was needed to avoid link errors when 
using hard floating point in this version of the NDK. 

The FFmpeg build added -std=c99, -pthread, -fno-math-errno, -fno-signed-zeros, and 
-fno-tree-vectorize. 

6.2.3 Windows 

Build options used for both applications included the compiler options /O2, /Gw, /MD, /analyze-, and 
/favor:INTEL64 and the linker options /INCREMENTAL:NO, /SUBSYSTEM:CONSOLE, and /OPT:REF,ICF. 

The Gnugo build added the /GL (with implicit /ltcg) global/link-time optimization option, which was used 
only for Gnugo as it caused a link failure with FFmpeg. This failure could be related to the similar one 
occurring on Linux. 

The FFmpeg build used -f win64 -m amd64 with Yasm and set the configuration variable 
HAVE_STRUCT_POLLFD for compatibility with current Windows headers (_WIN32_WINNT ≥ 0x0600). 

Some C source files were renamed to eliminate collisions when Visual Studio wrote object files to the working 
directory, an issue that arose as a result of simplifications made in our build scripts. 

6.3 Independent variables 

Table 2 shows the factors and levels for the experiment. The os and app factors are consistent with the 
descriptions in previous sections. The other factors address defensive code options, some of which are general 
and others of which are specific to one app or the other. 

Table 3 shows how the defensive code factors were reduced to command-line options for the various compilers, 
assemblers, and linkers used. 

A gamut of new debugging options that might qualify as defensive code was introduced in GCC version 4.8 
and expanded significantly in GCC 4.9 [17, §3.9]. These options, which have the form -fsanitize=... on 
the command line, were not tested in this experiment. 

Additional options to facilitate address space layout randomization and memory protection are commonly 
used in combination with the defensive code options to harden software against attacks that evade the active 
checking, but as these additional options do not modify the application logic itself they are not relevant to 
the experiment. 

Several of the defensive code options that were tested support multiple levels of checking thoroughness. 
To avoid a combinatorial explosion of possible treatments, for each one we tested only the minimum and 
maximum levels of checking. Assuming monotonicity of performance impact, this suffices to determine the 
worst-case performance impact of each kind of checking but sacrifices information on the compromises that 
one might fall back on if the worst case turns out to be unacceptable. 

The defensive code options are described in more detail in the following subsections. 
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Table 2: Independent variables for the experiment 

Factor Description Level 0 Level 1 Level 2 Level 3 
os Environment Linux Android 1 Android 2 Windows 

app Workload FFmpeg Gnugo 
stk GCC stack protector No All 
trp GCC integer overflow traps No Yes 
gs VS buffer security check No All 
for FORTIFY SOURCE No 2 
ffa FFmpeg assert level 0 2 
ffb FFmpeg safe bitstream reader Disabled Enabled 
gga Gnugo assertions Disabled Enabled 

Table 3: Reduction of defensive code factors to compiler command line 

Factor Level 0 Level 1 
stk -fno-stack-protector -fstack-protector-all 
trp1 -DCONFIG_FTRAPV=0 -fno-trapv -DCONFIG_FTRAPV=1 -ftrapv 
gs2 /GS­ /sdl 
for -U_FORTIFY_SOURCE -D_FORTIFY_SOURCE=2 
ffa -DNDEBUG -DASSERT_LEVEL=0 -UNDEBUG -DASSERT_LEVEL=2 
ffb -DCONFIG_SAFE_BITSTREAM_READER=0 -DCONFIG_SAFE_BITSTREAM_READER=1 
gga -DNDEBUG -DGG_TURN_OFF_ASSERTS -UNDEBUG -UGG_TURN_OFF_ASSERTS 

6.3.1 GCC stack protector 

The stack protector is a GCC feature that is generally applicable to any compiled C or C++ program and 
consequently was used for both of the test workloads. 

GCC supports the following options (quoted from [17, §3.10]): 

-fstack-protector 
Emit extra code to check for buffer overflows, such as stack smashing attacks. This is done by adding 
a guard variable to functions with vulnerable ob jects. This includes functions that call alloca, and 
functions with buffers larger than 8 bytes. The guards are initialized when a function is entered and 
then checked when the function exits. If a guard check fails, an error message is printed and the 
program exits. 

-fstack-protector-strong 
Like -fstack-protector but includes additional functions to be protected—those that have local array 
definitions, or have references to local frame addresses. 

-fstack-protector-all
 
Like -fstack-protector except that all functions are protected.
 

Stack-protector-all is reputed to have an onerous impact on performance [18]. Stack-protector and stack-
protector-strong attempt to mitigate the performance impact by protecting only a subset of functions. 
Together with the default of no-stack-protector, these options would create a four-level factor. To limit the 
size of the experiment, we chose to test only no-stack-protector and stack-protector-all. 

To confirm the efficacy of stack-protector-all we ran the following test program, which yielded a specific 
abort at run time: 

1CONFIG FTRAPV applies to FFmpeg only.
 
2For gs = 1, both applications required additional options to disable static checks that blocked compilation.
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#include <string.h> 
int main () { 
char buf[10]; 
strcpy (buf, "012345678901234567890123456789"); 
return 0; 

} 

On Linux: 

*** stack smashing detected ***: ./stktest1 terminated 

On Android (from logcat): 

F/libc ( 6678): stack corruption detected
 
F/libc ( 6678): Fatal signal 6 (SIGABRT) at 0x00001a16 (code=-6), thread 6678 (stktest1)
 

6.3.2 GCC –ftrapv 

The -ftrapv code generation option of GCC “generates traps for signed overflow on addition, subtraction, 
multiplication operations” [17, §3.18]. Unfortunately, the operability of -ftrapv is dubious given an old but 
still open bug [19] and more recent reports of failure [20]. Empirically, it did not trip on the following test 
program on either Linux or Android: 

#include <stdio.h> 
#include <limits.h> 
int main () { 
int x = INT_MAX; 
printf ("%d\n", x); 
x++; 
printf ("%d\n", x); 
return 0; 

} 

However, GCC documentation for the -fsanitize=signed-integer-overflow option, which has function­
ality similar to -ftrapv, asserts that this case is “not an overflow” because of integer promotion rules [17, 
§3.9]. 

Regardless, -ftrapv did have observable effects on the compilation and execution of programs for the 
experiment. We therefore retained it as a factor to provide a plausible if imperfect estimate of the performance 
impact that a fully functional -ftrapv option might have. 

The most similar option with VS2013 appears to be /RTCc, “Reports when a value is assigned to a smaller 
data type and results in a data loss,” but /RTC cannot be combined with optimization at all. 

6.3.3 Visual C++ stack protector 

The Visual Studio analog of GCC’s stack protector is the /GS (“Buffer Security Check”) switch. 
It is on by default, but without additional steps its behavior is similar to -fstack-protector or 
-fstack-protector-strong, not -fstack-protector-all. 

The /sdl (“Enable Additional Security Checks”) switch enables a stricter form of /GS (similar to 
-fstack-protector-all) and changes some compile-time warnings into errors. To obtain the desired be­
havior, we used the /sdl switch but then turned off any compile-time checks that prevented the applications 
from building. 

For the following test program, an executable built with /GS- exited with a segmentation violation while an 
executable built with /sdl (plus /D_CRT_SECURE_NO_WARNINGS to disable a static check) exited quietly: 
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#include <stdio.h> 
#include <string.h> 
int main () { 
char buf[10];
 
strcpy (buf, "012345678901234567890123456789");
 
printf ("Length is %d\n", strlen(buf));
 
return 0;
 

} 

Rebuilding and running the test program within the IDE with the VS-pro ject equivalent of /sdl 
/D_CRT_SECURE_NO_WARNINGS obtained the following diagnostic: 

Run-Time Check Failure #2 - Stack around the variable ’buf’ was corrupted. 

Presumably, the run-time checks were working in the command line environment, but there was no visible 
indication because there was no error handler registered to output diagnostics [21]. 

Visual Studio 2013 supports more aggressive run-time error checks with the /RTC switch, but /RTC cannot 
be combined with optimization. 

6.3.4 FORTIFY SOURCE 

FORTIFY SOURCE is a GNU libc feature that adds safety checking for calls of a set of standard libc 
functions that are known to be vulnerable to buffer overflows. The following is quoted from the fea­
ture test macros man page [22]: 

FORTIFY SOURCE (since glibc 2.3.4) 
Defining this macro causes some lightweight checks to be performed to detect some buffer overflow 
errors when employing various string and memory manipulation functions. Not all buffer over­
flows are detected, just some common cases. In the current implementation checks are added for 
calls to memcpy(3), mempcpy(3), memmove(3), memset(3), stpcpy(3), strcpy(3), strncpy(3), 
strcat(3), strncat(3), sprintf (3), snprintf (3), vsprintf (3), vsnprintf (3), and gets(3). If 
FORTIFY SOURCE is set to 1, with compiler optimization level 1 (gcc –O1 ) and above, checks that 

shouldn’t change the behavior of conforming programs are performed. With FORTIFY SOURCE 
set to 2 some more checking is added, but some conforming programs might fail. Some of the checks 
can be performed at compile time, and result in compiler warnings; other checks take place at run 
time, and result in a run-time error if the check fails. Use of this macro requires compiler support, 
available with gcc(1) since version 4.0. 

On Linux, with FORTIFY SOURCE level 1 or 2, the following test program: 

#include <string.h> 
int main () { 
char buf[10]; 
strcpy (buf, "01234567890123456789"); 
return 0; 

} 

Yielded a warning at compile time and a specific abort at run time: 

*** buffer overflow detected ***: ./fortest1 terminated 

However, in the Android environment specified in Section 3.2 and Section 6.2.2, neither the warning nor 
the abort would reproduce. Although support for FORTIFY SOURCE level 1 reportedly was introduced 
in Android 4.2 [23], the binary produced with -D_FORTIFY_SOURCE=1 on the compiler command line was 
exactly the same size as that produced with -U_FORTIFY_SOURCE. Moreover, the string “FORTIFY” occurs 
in none of the header files included with NDK r9d or even r10. 

Finding no evidence that FORTIFY SOURCE was doing anything at all in our Android NDK builds, we 
tested this feature only on Linux. 
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6.3.5 FFmpeg-specific options 

FFmpeg’s configure script supports the following options (quoted from configure - -help): 

--disable-safe-bitstream-reader 
disable buffer boundary checking in bitreaders 
(faster, but may crash) 

--assert-level=level 0(default), 1 or 2, amount of assertion testing, 
2 causes a slowdown at runtime. 

--enable-ftrapv Trap arithmetic overflows 

These options affect definitions of the preprocessor variables CONFIG_SAFE_BITSTREAM_READER, 
ASSERT_LEVEL, and CONFIG_FTRAPV that are placed in the generated files config.h and config.asm. 

Although three source files contain code that is conditional on CONFIG_FTRAPV, the primary mechanism 
of --enable-ftrapv is the addition of -ftrapv to CFLAGS. We therefore considered this combination 
equivalent to the use of -ftrapv with Gnugo. 

--enable-safe-bitstream-reader does not enable the safe bitstream reader in all contexts. In modules 
where that checking was believed to be redundant, including some modules that are relevant to our test case, 
the authors inserted #define UNCHECKED_BITSTREAM_READER 1 statements to override the global configure 
setting. Commentary in libavcodec/get bits.h explains: 

/* 
* Safe bitstream reading:
 
* optionally, the get_bits API can check to ensure that we
 
* don’t read past input buffer boundaries. This is protected 
* with CONFIG_SAFE_BITSTREAM_READER at the global level, and 
* then below that with UNCHECKED_BITSTREAM_READER at the per­
* decoder level. This means that decoders that check internally 
* can "#define UNCHECKED_BITSTREAM_READER 1" to disable
 
* overread checks.
 
* Boundary checking causes a minor performance penalty so for 
* applications that won’t want/need this, it can be disabled 
* globally using "#define CONFIG_SAFE_BITSTREAM_READER 0".
 
*/
 

Similarly, --assert-level=0 does not disable all assertions. There are many assertions that use the standard 
C macro directly, and those are not affected by --assert-level. Furthermore, a subset of the C assertions 
are protected by statements like the following (from libavcodec/ratecontrol.c): 

#undef NDEBUG // Always check asserts, the speed effect is far too small to disable them. 

Although global deletion of #define UNCHECKED_BITSTREAM_READER 1 and #undef NDEBUG statements 
would be a straightforward patch, we refrained from overriding the authors’ intent. Instead, we simply 
used -DNDEBUG -DASSERT_LEVEL=0 for ffa level 0 and -UNDEBUG -DASSERT_LEVEL=2 for ffa level 1. 

6.3.6 Gnugo-specific options 

According to the Gnugo documentation, Gnugo developers “are strongly encouraged to pepper their code 
with assertions to ensure that data structures are as they expect” [24, §4.6.3]. The Gnugo engine contains 
many such assertions, including defensive code to ensure that references to board locations are actually on 
the board by validating indices. They are enabled by default and may be disabled by defining the variable 
GG_TURN_OFF_ASSERTS during compilation. Other Gnugo components use standard C language assertions, 
which are similarly disabled by defining the variable NDEBUG. For the gga factor we bundled these two 
together, defining both variables or not to disable or enable all assertions. 
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6.4 Executables 

The sizes of the built executables for Linux, Android, and Windows are compared in Figure 6, Figure 7, and 
Figure 8 respectively. On Linux, evidently -ftrapv caused the most significant expansion, followed by the 
stack protector. On Android, FFmpeg shows the same clear pattern as on Linux. For Gnugo the pattern is 
too weak to separate the groups. On Windows, the patterns are different for the two applications and the 
changes in size are all much smaller than for Linux or Android. 

6.5 Experimental design 

Table 4: Applicability of defensive code factors 

Linux (os=0) Android (os=1,2) Windows (os=3)

app
FFmpeg
(app=0)

Gnugo
(app=1)

FFmpeg
(app=0)

Gnugo
(app=1)

FFmpeg
(app=0)

Gnugo
(app=1)

stk 0, 1 0, 1 0, 1 0, 1 X X

trp 0, 1 0, 1 0, 1 0, 1 X X

gs X X X X 0, 1 0, 1

for 0, 1 0, 1 X X X X

ffa 0, 1 X 0, 1 X 0, 1 X

ffb 0, 1 X 0, 1 X 0, 1 X

gga X 0, 1 X 0, 1 X 0, 1

# treat 32 16 16 8 8 4

Table 4 shows the applicability of the defensive code factors by os and app. An X indicates that a factor is 
not available in the given context (particular combinations of os and app). 

We collected as many samples as possible for every applicable treatment without attempting to further 
reduce the number of treatments through a fractional design. 

As shown, the experimental design is not orthogonal. However, orthogonality can be achieved by subsetting 
the data by combinations of os and app, essentially breaking the experiment into 8 smaller experiments 
that have full factorial designs.3 With the main effects of os and app being irrelevant, the only negatives of 
this approach are that we do not get singular summary results for the defensive code factors and analyzing 
interactions between those factors and os/app is more cumbersome. 

6.6 Ordering 

Data collection was broken into multiple sessions on each device to provide availability for other tasks, 
to enable inspection of partial results, and to account for any “boot dependency” (the possibility that 
performance could have a component that varies randomly from one reboot of the device to the next but 
remains constant for the period of uptime between reboots). 

Within each session, each “iteration” consisted of a single run of each of the test binaries, executed in a 
random order with all Gnugo and all FFmpeg binaries shuffled together. This ordering helped control for 
any macroscopic time dependency (drift) that might have occurred at the system level as well as any local 
ordering effects that might exist among the treatments. A session would terminate only at the end of an 
iteration so that the same number of samples would be collected for each treatment. 

3In principle, the two versions of Android could be combined in an experiment with os as a factor. 
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Figure 6: Sorted data plots of executable binaries for Linux, identified by treatment. FFmpeg treatment 
encoding: stk-trp-for-ffa-ffb; Gnugo treatment encoding: stk-trp-for-gga. 
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Table 5: Size of FFmpeg workload output by levels of os 

os 
0 4 876 207 B 
1 4 874 685 B 
2 4 875 251 B 
3 4 875 071 B 

Size of out.mov 

Table 6: Counts of sessions and numbers of iterations per treatment or session 

Iterations per 
treatment session 

os Sessions min max min max 
0 5 106 106 9 69 
1 4 65 65 14 19 
2 4 78 79 14 24 
3 4 371 371 61 127 

6.7 Validation of workload outputs 

Each execution of an experimental workload was followed by a comparison of its output with an expected 
output. A mismatch would have resulted in an abort of the session with retention of the discrepant data for 
further investigation. 

Although FFmpeg outputs were repeatable and consistent among treatments within each os environment, 
none of the four environments exactly reproduced the output of any other, as shown in Table 5. Nevertheless, 
all four outputs were apparently valid transcodings of the input, based on inspection. 

For Gnugo, the only discrepancy of results was the addition of carriage return characters at line ends in the 
Windows environment. 

6.8 Results 

6.8.1 Sample sizes 

See Table 6. An infrastructural fault on the tablet caused 3 of the first 4 sessions to stop prematurely in 
the middle of an iteration, resulting in slightly different numbers of samples among the treatments. The 
next 3 attempts at collecting more data on the tablet led to a spontaneous shutdown after only 1 or 2 
complete iterations. Since the standard deviation cannot be calculated for a sample of size one, the few data 
resulting from the last 3 sessions were set aside. Among the retained data, the most significant imbalance 
within a session was 14 versus 15 samples, and after combining sessions the worst imbalance was 78 versus 
79 samples. These imbalances were deemed to have an insignificant effect on the orthogonality of the 
experiments as analyzed. 

6.8.2 Distributions 

In general, most of the distributions were less skewed than those seen in previous experiments of this pro ject, 
with the caveat that the samples here were smaller and would be less likely to capture low-frequency events. 

On Linux, each session began with a high outlier in elapsed time for every treatment of FFmpeg. The 
pattern was much weaker for Gnugo and did not appear on Windows or Android. 

Evidence of drift and possibly a small boot-dependency effect was apparent in some plots from Windows 
where the range of results was very narrow. Nevertheless, it appeared only under such magnification (stretch­
ing of the Y axis) that there is no potential for a materially significant impact. 
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6.8.3 Main effects and interactions 

On three of the four devices, system time remained always negligible. The CPU time accounting on Android 1 
was discrepant, apparently attributing CPU time to kernel space that on other devices was attributed to 
user space. This discrepancy resulted in confounding of the effects and interactions plots. To resolve the 
confounding, we summed the user and system time measures to yield a single CPU time measure. 

Table 7 shows the relative magnitudes of the main effects (level 1 versus level 0) using pooled data (i.e., 
combining the data from multiple sessions). 95 % confidence intervals were determined using the ordinary 
method, applying the t-distribution based on an assumption of approximate normality of the observed times.4 

Effective degrees of freedom for the uncertainties were computed using the Welch-Satterthwaite formula [27, 
§G.4.1]. 

Table 8 restates the relative magnitudes using the mean-of-means method to reduce the data to summary 
statistics instead of pooling all of the data across sessions. This is one way to mitigate a boot-dependency 
effect. With the number of reboots having been constrained by practicality, it makes the confidence intervals 
much wider,5 and more of the marginal effects lose statistical significance. However, the estimates do not 
change very much given the essentially-balanced nature of the data. 

Figure 9 through Figure 16 in Appendix A provide a complete set of elapsed time plots for main effects and 
2-factor interactions for pooled data subset by combinations of os and app. The corresponding plots for 
CPU time and mean-of-means, which proved to be redundant, are not provided here but can be found in 
the raw data distribution available from the Software Performance Project’s web page [16]. 

Each figure is organized as the cross product of a set of factors with itself. Main effects appear along 
the diagonal. For interactions, the columns determine which factor is used for the X axis while the rows 
determine which factor is used for separate lines. 

In the main effects plots, what is important is the differences in the value of the dependent variable, which 
result in a sloping line. In the interaction plots, what is important is the differences in slope or lack of 
parallelism when comparing multiple lines. A different slope means that the magnitude of the effect of one 
factor differed depending on the level of another factor. 

The vertical scales of all plots within a figure are the same and are set to cover the range of the biggest 
effect. Thus, it is valid to compare the plots within a figure to each other to gauge the relative magnitudes 
of effects, but similar relative comparisons between figures are not valid. Note in particular that Figure 15 
has a magnified vertical axis because the effects were all very small, and the presence of sloping lines in that 
figure does not indicate the presence of large effects. 

The numbers inside of the plots indicate the count of samples represented by each mean. No corrections 
were attempted for the slight imbalances in the data for Android 2 (os = 2). 

6.9 Analysis 

6.9.1 Main effects 

Assuming that the estimates are accurate, we have a significant slowdown attributable to trp, marginal 
slowdowns attributable to stk and gga, and negligible slowdowns for all other factors. The trp slowdown 
varies by os and app, but has a relative magnitude on the order of 50 % and remains statistically significant 
in every context even with the more conservative mean-of-means analysis. 

4Although in previous experiments we found the bias-corrected and accelerated (BCa) bootstrap method [25, 26] to per­
form better on non-normally-distributed data, the small samples in this experiment—especially with mean-of-means—are a 
contraindication for use of BCa. 

5Ref. [28] describes an analogous problem and illustrates methods for incorporating assumptions to narrow the confidence 
intervals. 
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Table 7: Relative magnitudes of main effects (level 1 versus level 0) computed using pooled data 

Factor os app Elapsed time effect (%) νeff CPU time effect (%) νeff 

stk 0 0 0.02 ± 0.92 3389.87 0.58 ± 0.83 3389.86 
0 1 2.39 ± 2.49 1689.98 2.39 ± 2.49 1689.98 
1 0 6.86 ± 1.56 1029.40 6.88 ± 1.57 1029.40 
1 1 5.67 ± 3.95 513.35 5.67 ± 3.95 513.35 
2 0 2.14 ± 0.57 1207.52 6.90 ± 1.59 1254.94 
2 1 5.22 ± 3.94 624.01 5.21 ± 3.93 624.03 

trp 0 0 31.40 ± 0.10 3156.14 27.85 ± 0.06 3364.10 
0 1 68.19 ± 0.33 1368.76 68.19 ± 0.33 1368.75 
1 0 27.11 ± 0.55 966.73 27.25 ± 0.55 966.68 
1 1 54.79 ± 1.04 395.12 54.82 ± 1.04 394.99 
2 0 9.39 ± 0.31 1078.17 30.48 ± 0.57 1256.76 
2 1 62.04 ± 0.96 510.67 62.01 ± 0.96 510.95 

gs 3 0 0.37 ± 0.05 2883.79 0.73 ± 0.07 2935.45 
3 1 0.64 ± 0.20 1475.81 0.64 ± 0.20 1475.77 

for 0 0 0.11 ± 0.92 3389.88 −0.09 ± 0.82 3388.27 
0 1 −0.36 ± 2.42 1693.59 −0.36 ± 2.42 1693.59 

ffa 0 0 0.69 ± 0.92 3389.87 0.59 ± 0.83 3388.43 
1 0 0.80 ± 1.52 1032.54 0.81 ± 1.53 1032.74 
2 0 0.16 ± 0.58 1253.80 0.52 ± 1.54 1256.98 
3 0 1.11 ± 0.04 2957.47 1.47 ± 0.05 2924.13 

ffb 0 0 0.06 ± 0.92 3389.93 −0.29 ± 0.82 3389.14 
1 0 0.07 ± 1.51 1037.60 0.07 ± 1.52 1037.62 
2 0 −0.04 ± 0.57 1256.89 −0.31 ± 1.52 1256.94 
3 0 −0.39 ± 0.05 2824.76 −0.29 ± 0.07 2893.95 

gga 0 1 2.61 ± 2.49 1693.98 2.61 ± 2.49 1693.98 
1 1 4.13 ± 3.90 517.24 4.13 ± 3.90 517.24 
2 1 4.49 ± 3.91 624.56 4.48 ± 3.91 624.55 
3 1 4.05 ± 0.03 1302.60 4.05 ± 0.03 1300.52 

6.9.2 Interactions 

The plots in Appendix A reveal only minor 2-way interactions. However, it is evident from Table 7 that trp 
caused a significantly worse slowdown for Gnugo (app = 1) than it did for FFmpeg (app = 0). 

The os×app interactions are not captured by the summary data presented, but they would be unsurprising: 
when the demand for CPU cycles increases because of a change in app, devices with slower and fewer CPU 
cores are impacted more. 

6.9.3 Root cause of trp performance hit 

Level 1 of trp corresponds to use of the -ftrapv compiler switch. A 2005 article on compiler checks described 
the implementation of -ftrapv as follows: 

“In practice, this means that the GCC compiler generates calls to existing library functions rather than 
generating assembler instructions to perform these arithmetic operations on signed integers.” [29] 

Disassembly of unoptimized binaries for the test program shown in Section 6.3.2 confirmed that -ftrapv had 
the effect of replacing a single addl instruction with a call to a function that performed addition, checked 
for overflow, and aborted the program if an overflow had occurred. The overflow checking involved two 
conditional branches. Apparently, the costs of this code expansion were not completely erased by high levels 
of optimization, but some combinations of os and app suffered much more than others. 
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Table 8: Relative magnitudes of main effects (level 1 versus level 0) computed using mean-of-means 

Factor os app Elapsed time effect (%) νeff CPU time effect (%) νeff 

stk 0 0 −0.01 ± 4.27 158.00 0.58 ± 3.87 157.99 
0 1 2.39 ± 11.76 77.81 2.39 ± 11.76 77.81 
1 0 6.86 ± 6.51 61.49 6.88 ± 6.54 61.49 
1 1 5.68 ± 17.07 29.73 5.68 ± 17.08 29.73 
2 0 2.14 ± 2.37 58.79 6.86 ± 7.19 61.88 
2 1 5.37 ± 18.71 29.90 5.37 ± 18.70 29.90 

trp 0 0 31.39 ± 0.26 118.77 27.85 ± 0.26 156.20 
0 1 68.18 ± 1.56 63.00 68.19 ± 1.56 63.00 
1 0 27.10 ± 2.26 57.62 27.24 ± 2.27 57.59 
1 1 54.80 ± 4.51 22.81 54.82 ± 4.51 22.80 
2 0 9.37 ± 0.77 41.15 30.45 ± 2.29 60.61 
2 1 62.06 ± 4.60 24.38 62.02 ± 4.60 24.39 

gs 3 0 0.37 ± 0.48 28.86 0.72 ± 0.57 29.13 
3 1 0.64 ± 2.29 13.94 0.64 ± 2.29 13.94 

for 0 0 0.10 ± 4.27 157.99 −0.09 ± 3.84 157.92 
0 1 −0.37 ± 11.45 77.98 −0.37 ± 11.45 77.98 

ffa 0 0 0.69 ± 4.30 158.00 0.58 ± 3.87 157.93 
1 0 0.81 ± 6.35 61.67 0.82 ± 6.38 61.69 
2 0 0.16 ± 2.39 61.79 0.51 ± 6.96 62.00 
3 0 1.11 ± 0.29 29.18 1.47 ± 0.32 27.08 

ffb 0 0 0.01 ± 4.27 158.00 −0.29 ± 3.84 157.96 
1 0 0.07 ± 6.31 61.97 0.07 ± 6.33 61.98 
2 0 −0.10 ± 2.38 62.00 −0.37 ± 6.90 62.00 
3 0 −0.39 ± 0.48 27.42 −0.29 ± 0.62 28.61 

gga 0 1 2.60 ± 11.78 78.00 2.60 ± 11.78 78.00 
1 1 4.13 ± 16.85 29.96 4.13 ± 16.86 29.96 
2 1 4.33 ± 18.56 29.94 4.33 ± 18.55 29.94 
3 1 4.05 ± 0.40 12.17 4.05 ± 0.39 12.15 

Conclusion 

We performed an experiment to measure and identify patterns in the performance impacts of several types 
of defensive code on two different applications in four different environments. For the most part, the per­
formance differences were small in magnitude and materially if not statistically insignificant. The exception 
was GCC’s -ftrapv option, which resulted in over 50 % slowdown for one app. 

Additional plots and raw data from the experiment are available from the Software Performance Pro ject’s 
web page [16]. 
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A Main effect and interaction plots 

Note: Confidence intervals (95 %) are not drawn when the range is vanishingly small. 
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Figure 9: Plots for elapsed time in os = 0, app = 0 using pooled data 
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Figure 10: Plots for elapsed time in os = 0, app = 1 using pooled data 
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Figure 11: Plots for elapsed time in os = 1, app = 0 using pooled data 
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Figure 12: Plots for elapsed time in os = 1, app = 1 using pooled data 
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Figure 13: Plots for elapsed time in os = 2, app = 0 using pooled data 
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Figure 14: Plots for elapsed time in os = 2, app = 1 using pooled data 
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Figure 15: Plots for elapsed time in os = 3, app = 0 using pooled data 
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Figure 16: Plots for elapsed time in os = 3, app = 1 using pooled data 
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