
Archived NIST Technical Series Publication

The attached publication has been archived (withdrawn), and is provided solely for historical purposes.

It may have been superseded by another publication (indicated below).

Archived Publication

Series/Number:

Title:

Publication Date(s):

Withdrawal Date:

Withdrawal Note:

Superseding Publication(s)

The attached publication has been superseded by the following publication(s):

Series/Number:

Title:

Author(s):

Publication Date(s):

URL/DOI:

Additional Information (if applicable)

Contact:

Latest revision of the

attached publication:

Related information:

Withdrawal
announcement (link):

Date updated: March 25, 2019

NIST Special Publication 800-56B Rev. 1

Recommendation for Pair-Wise Key-Establishment Schemes Using
Integer Factorization Cryptography

September 2014

March 21, 2019

SP 800-56B Rev. 1 is superseded in its entirety by the publication of
SP 800-56B Rev. 2.

NIST Special Publication 800-56B Rev. 2

Recommendation for Pair-Wise Key-Establishment Schemes Using
Integer Factorization Cryptography

Elaine Barker; Lily Chen; Allen Roginsky; Apostol Vassilev; Richard
Davis; Scott Simon

March 2019

https://doi.org/10.6028/NIST.SP.800-56Br2

Computer Security Division (Information Technology Laboratory)

https://csrc.nist.gov
https://csrc.nist.gov/publications/detail/sp/800-56b/rev-1/archive/2014-10-01

N/A

https://doi.org/10.6028/NIST.SP.800-56Br2
https://csrc.nist.gov/publications/detail/sp/800-56b/rev-1/archive/2014-10-01
https://csrc.nist.gov

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.SP.800-56Br1

NIST Special Publication 800-56B
Revision 1

Recommendation for Pair-Wise Key-

Establishment Schemes Using Integer

Factorization Cryptography

Elaine Barker

Lily Chen

Dustin Moody

http://dx.doi.org/10.6028/NIST.SP.800-56Br1

C O M P U T E R S E C U R I T Y

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.SP.800-56Br1

NIST Special Publication 800-56B

Revision 1

Recommendation for Pair-Wise Key-

Establishment Schemes Using Integer

Factorization Cryptography

Elaine Barker

Lily Chen

Dustin Moody

Computer Security Division

Information Technology Laboratory

This publication is available free of charge from:

http://dx.doi.org/10.6028/NIST.SP.800-56Br1

September 2014

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology

Willie May, Acting Under Secretary of Commerce for Standards and Technology and Acting Director

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.SP.800-56Br1

ii

Authority

This publication has been developed by NIST in accordance with its statutory responsibilities under the

Federal Information Security Management Act of 2002 (FISMA), 44 U.S.C. § 3541 et seq., Public Law

107-347. NIST is responsible for developing information security standards and guidelines, including

minimum requirements for Federal information systems, but such standards and guidelines shall not apply

to national security systems without the express approval of appropriate Federal officials exercising

policy authority over such systems. This guideline is consistent with the requirements of the Office of

Management and Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as

analyzed in Circular A-130, Appendix IV: Analysis of Key Sections. Supplemental information is

provided in Circular A-130, Appendix III, Security of Federal Automated Information Resources.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory

and binding on Federal agencies by the Secretary of Commerce under statutory authority. Nor should

these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of

Commerce, Director of the OMB, or any other Federal official. This publication may be used by

nongovernmental organizations on a voluntary basis and is not subject to copyright in the United States.

Attribution would, however, be appreciated by NIST.

National Institute of Standards and Technology Special Publication 800-56B
Natl. Inst. Stand. Technol. Spec. Publ. 800-56B, 122 pages (September 2014)

http://dx.doi.org/10.6028/NIST.SP.800-56Br1
CODEN: NSPUE2

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.SP.800-56Br1

Comments on this publication may be submitted to:

National Institute of Standards and Technology

Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Email: 56B2014rev-comments@nist.gov

Certain commercial entities, equipment, or materials may be identified in this document in order to

describe an experimental procedure or concept adequately. Such identification is not intended to imply

recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or

equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST

in accordance with its assigned statutory responsibilities. The information in this publication, including

concepts and methodologies, may be used by Federal agencies even before the completion of such

companion publications. Thus, until each publication is completed, current requirements, guidelines,

and procedures, where they exist, remain operative. For planning and transition purposes, Federal

agencies may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and

provide feedback to NIST. All NIST Computer Security Division publications, other than the ones

noted above, are available at http://csrc.nist.gov/publications.

mailto:56B2014rev-comments@nist.gov
http://csrc.nist.gov/publications

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.SP.800-56Br1

iii

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology

(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s

measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of

concept implementations, and technical analyses to advance the development and productive use of

information technology. ITL’s responsibilities include the development of management, administrative,

technical, and physical standards and guidelines for the cost-effective security and privacy of other than

national security-related information in Federal information systems. The Special Publication 800-series

reports on ITL’s research, guidelines, and outreach efforts in information system security, and its

collaborative activities with industry, government, and academic organizations.

Abstract

This Recommendation specifies key-establishment schemes using integer factorization cryptography,

based on ANS X9.44, Key-establishment using Integer Factorization Cryptography [ANS X9.44], which

was developed by the Accredited Standards Committee (ASC) X9, Inc.

Keywords

assurances; integer factorization cryptography; key agreement; key confirmation; key derivation;

key-establishment; key management; key recovery; key-transport.

Acknowledgements

This publication was developed in collaboration with the National Security Agency (NSA). The

Federal Information Security Management Act of 2002 mandates that NIST consult with the

NSA on standards and guidelines for securing information systems. In particular, NIST wishes

to acknowledge the substantial contributions made by Rich Davis of the NSA, who served on

this publication's development team. He helped to develop the technical content of these

guidelines and provided editorial review.

 NIST also thanks the many contributions by the public and private sectors whose thoughtful and

constructive comments improved the quality and usefulness of this publication. The authors also

acknowledge the contributions by Andrew Regenscheid and Miles Smid made to the previous

version of this Recommendation.

Conformance Testing

Conformance testing for implementations of this Recommendation will be conducted within the

framework of the Cryptographic Algorithm Validation Program (CAVP) and the Cryptographic

Module Validation Program (CMVP). The requirements of this Recommendation are indicated

by the word “shall.” Some of these requirements may be out-of-scope for CAVP or CMVP

validation testing, and thus are the responsibility of entities using, implementing, installing or

configuring applications that incorporate this Recommendation.

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.SP.800-56Br1

iv

Table of Contents

1 Introduction ... 1

2 Scope and Purpose .. 1

3 Definitions, Symbols and Abbreviations ... 1

3.1 Definitions.. 1

3.2 Symbols and Abbreviations ... 8

4 Key-Establishment Schemes Overview ... 14

4.1 Key-Establishment Preparations .. 15

4.2 Key-Agreement Process... 17

4.3 Key-Transport Process ... 18

5 Cryptographic Elements .. 20

5.1 Cryptographic Hash Functions .. 20

5.2 Message Authentication Code (MAC) Algorithms ... 20

5.2.1 MacTag Computation for Key Confirmation .. 20

5.2.2 MacTag Verification for Key Confirmation .. 21

5.3 Random Bit Generators.. 21

5.4 Nonces.. 21

5.5 Key-Derivation Methods ... 22

5.5.1 The Single-step Key-Derivation Function ... 23

5.5.1.1 The Single-step KDF Specification .. 23

5.5.1.2 OtherInfo ... 25

5.5.2 The Extraction-then-Expansion Key-Derivation Procedure 28

5.5.3 Application-Specific Key-Derivation Methods ... 28

5.6 Key Confirmation .. 28

5.6.1 Unilateral Key Confirmation for Key-Establishment Schemes 29

5.6.1.1 Adding Unilateral Key Confirmation to a Key-Establishment Scheme

... 29

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.SP.800-56Br1

v

5.6.2 Bilateral Key Confirmation for KAS2 Schemes .. 32

5.6.3 Minimum Requirements for MacKey and MacTag ... 32

6 RSA Key Pairs ... 33

6.1 General Requirements .. 33

6.2 Criteria for RSA Key Pairs for Key-Establishment ... 34

6.2.1 Definition of a Key Pair ... 34

6.2.2 Formats .. 34

6.3 RSA Key-Pair Generators .. 35

6.3.1 RSAKPG1 Family: RSA Key-Pair Generation with a Fixed Public Exponent . 35

6.3.1.1 rsakpg1-basic .. 35

6.3.1.2 rsakpg1-prime-factor .. 37

6.3.1.3 rsakpg1-crt .. 37

6.3.2 RSAKPG2 Family: RSA Key-Pair Generation with a Random Public Exponent

.. 38

6.3.2.1 rsakpg2-basic .. 38

6.3.2.2 rsakpg2-prime-factor .. 40

6.3.2.3 rsakpg2-crt .. 40

6.4 Required Assurances .. 41

6.4.1 Assurances Required by the Key-Pair Owner ... 41

6.4.1.1 Obtaining Owner Assurance of Key-Pair Validity 42

6.4.1.2 RSAKPV1 Family: RSA Key-Pair Validation with a Fixed Exponent

... 43

6.4.1.3 RSAKPV2 Family: RSA Key-Pair Validation with a Random

Exponent ... 47

6.4.1.4 RSA Key-Pair Validation (Intended Exponent-Creation Method

Unknown) ... 50

6.4.1.5 Owner Assurance of Private-Key Possession 52

6.4.2 Assurances Required by a Public-Key Recipient .. 53

6.4.2.1 Obtaining Assurance of Public-Key Validity for a Received Public

Key .. 53

6.4.2.2 Partial Public-Key Validation for RSA... 53

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.SP.800-56Br1

vi

6.4.2.3 Recipient Assurances of an Owner’s Possession of a Private Key 54

7 Primitives and Operations ... 56

7.1 Encryption and Decryption Primitives... 56

7.1.1 RSAEP ... 56

7.1.2 RSADP ... 57

7.2 Encryption and Decryption Operations ... 58

7.2.1 RSA Secret-Value Encapsulation (RSASVE) ... 58

7.2.1.1 RSASVE Components .. 58

7.2.1.2 RSASVE Generate Operation ... 58

7.2.1.3 RSASVE Recovery Operation .. 59

7.2.2 RSA with Optimal Asymmetric Encryption Padding (RSA-OAEP) 60

7.2.2.1 RSA-OAEP Components .. 61

7.2.2.2 The Mask Generation Function (MGF) .. 61

7.2.2.3 RSA-OAEP Encryption Operation ... 63

7.2.2.4 RSA-OAEP Decryption Operation ... 65

7.2.3 RSA-based Key-Encapsulation Mechanism with a Key-Wrapping Scheme

(RSA-KEM-KWS) ... 69

7.2.3.1 RSA-KEM-KWS Components ... 69

7.2.3.2 Symmetric Key-Wrapping Methods ... 69

7.2.3.3 RSA-KEM-KWS Encryption Operation ... 74

7.2.3.4 RSA-KEM-KWS Decryption Operation .. 76

8 Key-Agreement Schemes .. 79

8.1 Common Components for Key Agreement ... 80

8.2 KAS1 Key Agreement ... 80

8.2.1 KAS1 Assumptions ... 81

8.2.2 KAS1-basic .. 81

8.2.3 KAS1 Key Confirmation ... 83

8.2.3.1 KAS1 Key-Confirmation Components ... 83

8.2.3.2 KAS1-Party_V-confirmation .. 84

8.3 KAS2 Key Agreement ... 85

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.SP.800-56Br1

vii

8.3.1 KAS2 Assumptions .. 85

8.3.2 KAS2-basic .. 86

8.3.3 KAS2 Key Confirmation ... 88

8.3.3.1 KAS2 Key-Confirmation Components ... 88

8.3.3.2 KAS2-Party_V-confirmation .. 89

8.3.3.3 KAS2-Party_U-confirmation .. 90

8.3.3.4 KAS2-bilateral-confirmation .. 91

9 Key-Transport Schemes ... 93

9.1 Additional Input ... 94

9.2 KTS-OAEP: Key-Transport Using RSA-OAEP ... 94

9.2.1 KTS-OAEP Assumptions .. 95

9.2.2 Common components .. 96

9.2.3 KTS-OAEP-basic ... 96

9.2.4 KTS-OAEP Key Confirmation .. 97

9.2.4.1 KTS-OAEP Common Components for Key Confirmation 97

9.2.4.2 KTS-OAEP-Party_V-confirmation... 97

9.3 KTS-KEM-KWS: Key-Transport using RSA-KEM-KWS ... 98

9.3.1 KTS-KEM-KWS Family Assumptions ... 99

9.3.2 Common Components of the KTS-KEM-KWS Schemes 100

9.3.3 KTS-KEM-KWS-basic .. 100

9.3.4 KTS-KEM-KWS Key Confirmation ... 102

9.3.4.1 KTS-KEM-KWS Common Components for Key Confirmation...... 102

9.3.4.2 KTS-KEM-KWS-Party_V-confirmation .. 102

10 Rationale for Selecting a Specific Scheme .. 103

10.1 Rationale for Choosing a KAS1 Key-Agreement Scheme .. 104

10.2 Rationale for Choosing a KAS2 Key-Agreement Scheme .. 106

10.3 Rationale for Choosing a KTS-OAEP Key-Transport Scheme 109

10.4 Rationale for Choosing a KTS-KEM-KWS Key-Transport Scheme 111

11 Key Recovery ... 113

12 Implementation Validation .. 113

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.SP.800-56Br1

viii

Appendix A: References ... 115

A.1 Normative References .. 115

A.2 Informative References ... 116

Appendix B: Data Conversions (Normative) .. 117

B.1 Integer-to-Byte String (I2BS) Conversion ... 117

B.2 Byte String to Integer (BS2I) Conversion ... 117

Appendix C: Prime-Factor Recovery (Normative) .. 118

Appendix D: Revisions (Informative) ... 120

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.SP.800-56Br1

ix

Figures

Figure 1: Owner Key-establishment Preparations ...16

Figure 2: Key-Agreement Process ...17

Figure 3: Key-transport Process...19

Figure 4: RSA-OAEP Encryption Operation ...65

Figure 5: RSA-OAEP Decryption Operation ..68

Figure 6: RSA-KEM-KWS Encryption Operation ..76

Figure 7: RSA-KEM-KWS Decryption Operation ..79

Figure 8: KAS1-basic Scheme ...83

Figure 9: KAS1-Party_V-confirmation Scheme (from Party V to Party U)84

Figure 10: KAS2-basic Scheme ...88

Figure 11: KAS2-Party_V-confirmation Scheme (from Party V to Party U)90

Figure 12: KAS2-Party_U-confirmation Scheme (from Party U to Party V)91

Figure 13: KAS2-bilateral-confirmation Scheme ..92

Figure 14: KTS-OAEP-basic Scheme ...97

Figure 15: KTS-OAEP-Party_V-confirmation Scheme ..98

Figure 16: KTS-KEM-KWS-basic Scheme ...102

 1

1 Introduction

Many U.S. Government Information Technology (IT) systems need to employ strong

cryptographic schemes to protect the integrity and confidentiality of the data that they process.

Algorithms such as the Advanced Encryption Standard (AES), as defined in Federal Information

Processing Standard (FIPS) 197 [FIPS 197]; Triple DES, as specified in NIST Special

Publication (SP) 800-67 [SP 800-67]; and HMAC, as defined in FIPS 198 [FIPS 198] make

attractive choices for the provision of these services. These algorithms have been standardized to

facilitate interoperability between systems. However, the use of these algorithms requires the

establishment of secret keying material that is shared in advance. Trusted couriers may manually

distribute this secret keying material, but as the number of entities using a system grows, the

work involved in the distribution of the secret keying material grows rapidly. Therefore, it is

essential to support the cryptographic algorithms used in modern U.S. Government applications

with automated key-establishment schemes.

This Recommendation provides the specifications of key-establishment schemes that are

appropriate for use by the U.S. Federal Government, based on a standard developed by the

Accredited Standards Committee (ASC) X9, Inc.: ANS X9.44, Key Establishment using Integer

Factorization Cryptography [ANS X9.44]. A key-establishment scheme can be characterized as

either a key-agreement scheme or a key-transport scheme. This Recommendation provides

asymmetric-based key-agreement and key-transport schemes that are based on the Rivest Shamir

Adleman (RSA) algorithm. When there are differences between this Recommendation and the

referenced ANS X9.44 [ANS X9.44] standard, this key-establishment schemes Recommendation

shall have precedence for U.S. Government applications.

2 Scope and Purpose

This Recommendation is intended for use in conjunction with NIST Special Publication 800-57-

Part 1, Recommendation for Key Management [SP 800-57]. This key-establishment schemes

Recommendation, the Recommendation for Key Management [SP 800-57], and the FIPS 186

[FIPS 186] standard are intended to provide information for a vendor to implement secure key-

establishment using asymmetric algorithms in FIPS 140 [FIPS 140] validated modules.

A scheme is a component of a protocol, which in turn may provide security properties not

provided by the scheme when considered by itself. Note that protocols, per se, are not specified

in this Recommendation.

3 Definitions, Symbols and Abbreviations

3.1 Definitions

Additional input Information known by two parties that is cryptographically bound to the

keying material being protected using the encryption operation.

Algorithm A clearly specified mathematical process for computation; a set of rules

that, if followed, will give a prescribed result.

 2

Approved Federal Information Processing Standards (FIPS)-approved or NIST-

recommended. An algorithm or technique that meets at least one of the

following: 1) is specified in a FIPS or NIST Recommendation, 2) is

adopted in a FIPS or NIST Recommendation or 3) is specified in a list

of NIST-approved security functions (e.g., specified as approved in

the annexes of FIPS 140 [FIPS 140]).

Assumption Used to indicate the conditions that are required to be true when an

approved key-establishment scheme is executed in accordance with

this Recommendation.

Assurance of

possession of a

private key

Confidence that an entity possesses a private key associated with a

given public key.

Assurance of validity Confidence that either a key or a key pair is arithmetically correct.

Binding Assurance of the integrity of an asserted relationship between items of

information that is provided by cryptographic means. Also see Trusted

association.

Bit length The length in bits of a bit string.

Bit string An ordered sequence of 0’s and 1’s.

Byte A bit string of length eight. A byte is represented by a hexadecimal

string of length two. The rightmost hexadecimal character represents the

rightmost four bits of the byte, and the leftmost hexadecimal character

of the byte represents the leftmost four bits of the byte. For example, 9d

represents the bit string 10011101.

Byte string An ordered sequence of bytes.

Certification

Authority (CA)

The entity in a Public Key Infrastructure (PKI) that is responsible for

issuing public-key certificates and exacting compliance to a PKI policy.

Ciphertext Data in its enciphered form.

Cryptographic key

(Key)

A parameter used with a cryptographic algorithm that determines its

operation.

Data integrity A property whereby data has not been altered in an unauthorized

manner since it was created, transmitted or stored.

In this Recommendation, the statement that a cryptographic algorithm

"provides data integrity" means that the algorithm is used to detect

unauthorized alterations.

 3

Decryption The process of transforming ciphertext into plaintext using a

cryptographic algorithm and key.

Destroy An action applied to a key or a piece of (secret) data. In this

Recommendation, after a key or a piece of data is destroyed, no

information about its value can be recovered.

Encryption The process of transforming plaintext into ciphertext using a

cryptographic algorithm and key.

Entity An individual (person), organization, device, or process. “Party” is a

synonym.

Entity authentication A process that establishes the origin of information, or determines an

entity’s identity to the extent permitted by the entity’s identifier.

Fresh Newly established keying material is considered to be fresh if the

probability of being equal to any previously established keying material

is acceptably small. The acceptably small probability may be

application specific.

Greatest common

divisor

The largest positive integer that divides each of two positive integers

without a remainder.

Hash function A function that maps a bit string of arbitrary length to a fixed-length bit

string. Approved hash functions are expected to satisfy the following

properties:

1. One-way: It is computationally infeasible to find any input that

maps to any pre-specified output, and

2. Collision resistant: It is computationally infeasible to find any

two distinct inputs that map to the same output.

Hash value The fixed-length bit string produced by a hash function.

Identifier A bit string that is associated with a person, device or organization. It

may be an identifying name, or may be something more abstract (for

example, a string consisting of an Internet Protocol (IP) address and

timestamp).

Key agreement A (pair-wise) key-establishment procedure where the resultant secret

keying material is a function of information contributed by two

participants, so that no party can predetermine the value of the secret

keying material independently from the contributions of the other party.

Contrast with key-transport.

 4

Key-agreement

transaction

A key-establishment event which results in secret keying material that

is shared between the parties using a key-agreement scheme.

Key confirmation A procedure to provide assurance to one party (the key-confirmation

recipient) that another party (the key-confirmation provider) actually

possesses the correct secret keying material and/or shared secret.

Key-confirmation

provider

The party that provides assurance to the other party (the recipient) that

the two parties have indeed established a shared secret or shared keying

material.

Key-derivation

function

A function used to derive keying material from a shared secret (or a

key) and other information.

Key-derivation

method

A method by which keying material is derived from a shared secret and

other information. A key-derivation method may use a key-derivation

function or a key-derivation procedure.

Key-derivation

procedure

A multi-step process that uses an approved Message Authentication

Code (MAC) algorithm to derive keying material from a shared secret

and other information.

Key establishment The procedure that results in keying material that is shared between the

participating parties in a key-establishment transaction.

Key-establishment

transaction

An instance of establishing secret keying material using a key-

establishment scheme.

Key management The activities involved in the handling of cryptographic keys and other

related security parameters (e.g., initialization vectors (IVs) and

passwords) during the entire life cycle of the keys, including their

generation, storage, establishment, entry and output, and destruction.

Key pair A public key and its corresponding private key; a key pair is used with a

public-key algorithm.

Key transport A key-establishment procedure whereby one party (the sender) selects a

value for the secret keying material and then securely distributes that

value to another party (the receiver). Contrast with key agreement.

Key-transport

transaction

A key-establishment event which results in secret keying material that

is shared between the parties using a key-transport scheme.

Key wrapping A method of protecting keying material (along with associated integrity

information) that provides both confidentiality and integrity protection

when using a symmetric-key algorithm.

 5

Key-wrapping key In this Recommendation, a key-wrapping key is a symmetric key

established during a key-transport transaction and used with a key-

wrapping algorithm to protect the keying material to be transported.

Keying material Data that is represented as a binary string such that any non-overlapping

segments of the string with the required lengths can be used as

symmetric cryptographic keys. In this Recommendation, keying

material is derived from a shared secret established during an execution

of a key-agreement scheme, or transported by the sender in a key-

transport scheme. As used in this Recommendation, secret keying

material may include keys, secret initialization vectors, and other secret

parameters.

Least common

multiple

The smallest positive integer that is divisible by two positive integers

without a remainder. For example, the least common multiple of 2 and

3 is 6.

Length in bits of a

non-negative integer x

The length, in bits, of the shortest bit string containing the binary

representation of x. For example, the length in bits of 5 (i.e., 101) is 3.

When x = 0, its length in bits is 1.

Length in bytes of a

non-negative integer,

x

The length, in bytes, of the shortest byte string containing the binary

representation of x. For example, the length in bytes of 5 is 1. When x =

0, its length in bytes is 1.

MAC tag Data obtained from the output of a MAC algorithm that can be used by

an entity to verify the integrity and the origination of the information

used as input to the MAC algorithm.

Message

Authentication Code

(MAC) algorithm

A family of one-way cryptographic functions that is parameterized by a

symmetric key. A given function in the family produces a MacTag on

input data of arbitrary length. A MAC algorithm can be used to provide

data-origin authentication, as well as data integrity. In this

Recommendation, a MAC algorithm is used for key confirmation and

key derivation.

Nonce A time-varying value that has, at most, an acceptably small chance of

repeating. For example, a nonce is a random value that is generated

anew for each use, a timestamp, a sequence number, or some

combination of these.

Owner For a key pair, the owner is the entity that is authorized to use the

private key associated with a public key, whether that entity generated

the key pair itself or a trusted party generated the key pair for the entity.

 6

Party An individual (person), organization, device, or process. “Entity” is a

synonym for party.

Prime number An integer that is greater than 1 and divisible only by 1 and itself.

Primitive A low-level cryptographic algorithm used as a basic building block for

higher-level cryptographic operations or schemes.

Private key A cryptographic key that is kept secret and is used with a public-key

cryptographic algorithm. A private key is associated with a public key.

Protocol A special set of rules used by two or more communicating entities that

describe the message order and data structures for information

exchanged between the entities.

Provider A party that provides (1) a public key (e.g., in a certificate); (2)

assurance, such as an assurance of the validity of a candidate public key

or assurance of possession of the private key associated with a public

key; or (3) key confirmation. Contrast with recipient.

Public key A cryptographic key that may be made public and is used with a public-

key cryptographic algorithm. A public key is associated with a private

key.

Public-key algorithm A cryptographic algorithm that uses two related keys, a public key and a

private key. The two keys have the property that determining the private

key from the public key is computationally infeasible.

Public-key certificate A data structure that contains an entity’s identifier(s), the entity's public

key and possibly other information, along with a signature on that data

set that is generated by a trusted party, i.e. a certificate authority,

thereby binding the public key to the included identifier(s).

Public-key

cryptography

A form of cryptography that uses two related keys, a public key and a

private key; the two keys have the property that, given the public key, it is

computationally infeasible to derive the private key.

For key establishment, public-key cryptography allows different parties

to communicate securely without having prior access to a secret key

that is shared, by using one or more pairs (public key and private key)

of cryptographic keys.

Public-key validation The procedure whereby the recipient of a public key checks that the key

conforms to the arithmetic requirements for such a key in order to

thwart certain types of attacks.

 7

Receiver The party that receives secret keying material via a key-transport

transaction. Contrast with sender.

Recipient A party that receives (1) a public key (e.g., in a certificate); (2)

assurance, such as an assurance of the validity of a candidate public key

or assurance of possession of the private key associated with a public

key; or (3) key confirmation. Contrast with provider.

Relatively prime Two positive integers are relatively prime if their greatest common

divisor is 1.

Scheme A (cryptographic) scheme consists of a set of unambiguously specified

transformations that are capable of providing a (cryptographic) service

when properly implemented and maintained. A scheme is a higher-level

construct than a primitive, and a lower-level construct than a protocol.

Secret keying

material (that is

shared)

As used in this Recommendation, the secret keying material that is

either (1) derived by applying the key-derivation method to the shared

secret and other shared information during a key-agreement transaction,

or (2) is transported during a key-transport transaction.

Security properties The security features (e.g., entity authentication, replay protection, or

key confirmation) that a cryptographic scheme may, or may not,

provide.

Security strength

(also, “Bits of

security”)

A number associated with the amount of work (that is, the number of

operations) that is required to break a cryptographic algorithm or

system.

Sender The party that sends secret keying material to the receiver using a key-

transport transaction. Contrast with receiver.

Shall This term is used to indicate a requirement of a Federal Information

Processing Standard (FIPS) or a requirement that needs to be fulfilled to

claim conformance to this Recommendation. Note that shall may be

coupled with not to become shall not.

Shared secret A secret value that has been computed during a key-establishment

scheme, is known by both participants, and is used as input to a key-

derivation method to produce keying material.

Should This term is used to indicate an important recommendation. Ignoring

the recommendation could result in undesirable results. Note that

should may be coupled with not to become should not.

http://en.wikipedia.org/wiki/Greatest_common_divisor
http://en.wikipedia.org/wiki/Greatest_common_divisor

 8

Symmetric key A single cryptographic key that is used with a secret (symmetric) key

algorithm.

Symmetric-key

algorithm

A cryptographic algorithm that uses one secret key that is shared

between authorized parties.

Target security

strength

The desired security strength for a cryptographic application. The target

security strength is selected based upon the amount of security desired

for the information protected by the keying material established using

this Recommendation.

Trusted association Assurance of the integrity of an asserted relationship between items of

information that may be provided by cryptographic or non-

cryptographic (e.g., physical) means. Also see Binding.

Trusted party A party that is trusted by an entity to faithfully perform certain services

for that entity. An entity may choose to act as a trusted party for itself.

Trusted third party A third party, such as a CA, that is trusted by its clients to perform

certain services. (By contrast, for example, the sender and receiver in a

scheme are considered to be the first and second parties in a key-

establishment transaction).

3.2 Symbols and Abbreviations

A Additional input that is bound to keying material; a byte string.

[a, b] The set of integers x such that a ≤ x ≤ b.

AES Advanced Encryption Standard (as specified in FIPS 197 [FIPS

197]).

ANS American National Standard.

ASC The Accredited Standards Committee of the American National

Standards Institute (ANSI).

ASN.1 Abstract Syntax Notation One.

BS2I Byte String to Integer conversion routine.

Bytelen Routine to determine the length in bytes of a string of bytes.

c Ciphertext; an integer.

C, C0, C1 Ciphertext; each is a byte string.

 9

CA Certification Authority.

CRT Chinese Remainder Theorem.

d RSA private exponent; a positive integer.

Data A variable-length string of zero or more (eight-bit) bytes.

DerivedKeyingMaterial Derived keying material; a bit string.

dP RSA private exponent for the prime factor p in the CRT format,

i.e., d mod (p-1); an integer.

dQ RSA private exponent for the prime factor q in the CRT format,

i.e., d mod (q-1); an integer.

e RSA public exponent; a positive integer.

eBits Length in bits of the RSA exponent e.

GCD(a, b) Greatest Common Divisor of two positive integers a and b. For

example, GCD(12, 16) = 4.

H An auxiliary function used in certain key derivation methods. H is

either an approved hash function, hash, or an HMAC-hash based

on an approved hash function, hash, with a salt value used as the

HMAC key.

HMAC Keyed-hash Message Authentication Code (as specified in FIPS

198 [FIPS 198]).

HMAC-hash Keyed-hash Message Authentication Code (as specified in [FIPS

198]) with an approved hash function hash.

I2BS Integer to Byte String conversion routine.

ID The bit string denoting the identifier associated with an entity.

IDP, IDR, IDU, IDV Identifier bit strings for parties P, R, U, and V, respectively.

IFC Integer Factorization Cryptography.

k Keying material; a positive integer.

K Keying material; a byte string.

KBits Length in bits of the keying material.

 10

KAS Key-Agreement Scheme.

KAS1-basic The basic form of Key-Agreement Scheme 1.

KAS1-Party_V-

confirmation

Key-Agreement Scheme 1 with confirmation by party V.

Previously known as KAS1-responder-confirmation.

KAS2-basic The basic form of Key-Agreement Scheme 2.

KAS2-bilateral-

confirmation

Key-Agreement Scheme 2 with bilateral confirmation.

KAS2-Party_V-

confirmation

Key-Agreement Scheme 2 with confirmation by party V.

Previously known as KAS2-responder-confirmation.

KAS2-Party_U-

confirmation

Key-Agreement Scheme 2 with confirmation by party U.

Previously known as KAS2-initiator-confirmation.

KC Key Confirmation.

KDF Key-Derivation Function.

KDM Key-Derivation Method.

KEM Key-Encapsulation Mechanism.

KeyData Keying material other than that which is used for the MacKey

employed in key confirmation.

KTS Key-transport Scheme (i.e., KTS-OAEP or KTS-KEM-KWS).

KTS-OAEP-basic The basic form of the key-transport Scheme with Optimal

Asymmetric Encryption Padding.

KTS-OAEP-Party_V-

confirmation

Key-transport Scheme with Optimal Asymmetric Encryption

Padding and key confirmation provided by party V. Previously

known as KTS-OAEP-receiver-confirmation.

KTS-KEM-KWS-basic The basic form of the key-transport Scheme with the Key

Encapsulation Mechanism and Key-Wrapping Scheme.

KTS-KEM-KWS-Party_V-

confirmation

Key-transport Scheme using the Key Encapsulation Mechanism

and a Key-Wrapping Scheme, and with key confirmation provided

by party V.

KWK Key-Wrapping Key; a byte string.

 11

kwkBits Length in bits of the key-wrapping key.

KWS (Symmetric) Key-Wrapping Scheme.

LCM(a, b) Least Common Multiple of two positive integers a and b. For

example, LCM(4, 6) = 12.

MAC Message Authentication Code.

MacData A byte string input to the MacTag computation.

MacDataU, (or MacDataV) MacData associated with party U (or party V, respectively), and

used to generate MacTagU (or MacTagV, respectively). Each is a

byte string.

MacKey Key used to compute the MAC; a byte string.

MacKeyLen Length in bytes of the MacKey.

MacTag A byte string that allows an entity to verify the integrity of the

information. MacTag is the output from the MAC algorithm

(possibly after truncation). The literature sometimes refers to

MacTag as a Message Authentication Code (MAC).

MacTagV, (MacTagU) The MacTag generated by party V (or party U, respectively). Each

is a byte string.

MacTagLen The length of MacTag in bytes.

Mask Mask; a byte string.

MGF Mask Generation Function.

mgfSeed String from which a mask is derived; a byte string.

 n RSA modulus. n = pq, where p and q are distinct odd primes.

(n, d) RSA private key in the basic format.

(n, e) RSA public key.

(n, e, d, p, q, dP, dQ, qInv) RSA private key in the Chinese Remainder Theorem (CRT)

format.

NV Nonce contributed by party V; a byte string.

nBits Length in bits of the RSA modulus n.

 12

nLen Length in bytes of the RSA modulus n.

Null The empty bit string.

OtherInfo Other information for key derivation; a bit string.

p First prime factor of the RSA modulus n.

(p, q, d) RSA private key in the prime-factor format.

PrivKeyU, PrivKeyV Private key of party U or V, respectively.

PubKeyU, PubKeyV Public key of party U or V, respectively.

q Second prime factor of the RSA modulus n.

qInv Inverse of q modulo p in the CRT format, i.e., q-1 mod p; an

integer.

RBG Random Bit Generator.

RSA Rivest-Shamir-Adleman algorithm

RSASVE RSA Secret Value Encapsulation.

RSA-KEM-KWS RSA Key Encapsulation Mechanism with a Key-Wrapping

Scheme.

RSA-OAEP RSA with Optimal Asymmetric Encryption Padding.

S String of bytes.

s Security strength in bits.

SHA Secure Hash Algorithm.

TMacTagBits(X) A truncation function that outputs the most significant (i.e.,

leftmost) MacTagBits bits of the input string, X, when the bit

length of X is greater than MacTagBits; otherwise, the function

outputs X. For example, T2(1011)=10, T3(1011)=101, and

T4(1011)=1011.

TransportedKeyingMaterial Transported keying material.

TTP A Trusted Third Party.

U One party in a key-establishment scheme.

 13

V Another party in a key-establishment scheme.

X Byte string to be converted to or from an integer; the output of

conversion from an ASCII string.

X =? Y Check for equality of X and Y.

x Non-negative integer to be converted to or from a byte string.

x mod n The modular reduction of the (arbitrary) integer x by the positive

integer n (the modulus). For the purposes of this Recommendation,

y = x mod n is the unique integer satisfying the following two

conditions: 1) 0 y n, and 2) x y is divisible by n.

x -1 mod n The multiplicative inverse of the integer x modulo the positive

integer n. This quantity is defined if and only if x is relatively

prime to n. For the purposes of this Recommendation, y = x1 mod

n is the unique integer satisfying the following two conditions:

1) 0 y n, and 2) 1 = (xy) mod n.

{X} Indicates that the inclusion of X is optional.

{x, y} A set containing the integers x and y.

X || Y Concatenation of two strings X and Y.

x The ceiling of x; the smallest integer x. For example, 5 = 5 and

5.3 = 6.

x The absolute value of x.

Z A shared secret that is used to derive secret keying material using

a key-derivation method; a byte string.

z The integer form of Z.

(n) Lambda function of the RSA modulus n, i.e., the least positive

integer i such that 1= ai mod n for all a relatively prime to n.

When n=pq, (n) = LCM(p-1, q-1).

 Exclusive-Or (XOR) operator, defined as bit-wise modulo 2

arithmetic with no carry.

 14

4 Key-Establishment Schemes Overview

Secret cryptographic keying material may be electronically established between parties by using

a key-establishment scheme, that is, by using either a key-agreement scheme or a key-transport

scheme. Key-establishment schemes may use either symmetric-key techniques or asymmetric-

key techniques or both. The key-establishment schemes described in this Recommendation use

asymmetric-key techniques.

In this Recommendation, the approved key-establishment schemes are described in terms of the

roles played by parties “U” and “V.” These are specific labels that are used to distinguish between

the two participants engaged in key establishment – irrespective of the actual labels that may be used

by a protocol employing a particular approved key-establishment scheme.

During key agreement, the derived secret keying material is the result of contributions made by both

parties. To be in conformance with this Recommendation, a protocol employing any of the approved

pair-wise key-agreement schemes shall unambiguously assign the roles of U and V to the

participants by clearly defining which participant performs the actions ascribed by this

Recommendation to party U, and which performs the actions ascribed herein to party V.
During key transport, one party selects the secret keying material to be transported. The secret

keying material is then encrypted/wrapped, and sent to the other party. The party that sends the

secret keying material is called the sender, and the other party is called the receiver. In this

Recommendation, key-wrapping is performed in the same transaction that establishes the key-

wrapping key using an approved key-transport scheme, and party U is always assigned the role

of the sender, while party V is the receiver.

The security of the Integer Factorization Cryptography (IFC) schemes in this Recommendation

relies on the intractability of factoring integers that are products of two sufficiently large, distinct

prime numbers. All IFC schemes in this Recommendation are based on RSA.

The security of an IFC scheme also depends on its implementation, and this document includes a

number of practical recommendations for implementers. For example, good security practice

dictates that implementations of procedures employed by primitives, operations, schemes, etc.,

include steps that destroy any potentially sensitive locally stored data that is created (and/or

copied for use) during the execution of a particular procedure, and whose continued local storage

is not required after the procedure has been exited. The destruction of such locally stored data

ideally occurs prior to or during any exit from the procedure. This is intended to limit

opportunities for unauthorized access to sensitive information that might compromise a key-

establishment process.

Explicit instructions for the destruction of certain potentially sensitive values that are likely to be

locally stored by procedures are included in the specifications found in this Recommendation.

Examples of such values include local copies of any portions of secret or private keys that are

employed or generated during the execution of a procedure, intermediate results produced during

computations, and locally stored duplicates of values that are ultimately output by a procedure.

However, it is not possible to anticipate the form of all possible implementations of the specified

primitives, operations, schemes, etc., making it impossible to enumerate all potentially sensitive

data that might be locally stored by a procedure employed in a particular implementation.

Nevertheless, the destruction of any potentially sensitive locally stored data is an obligation of all

implementations.

 15

Error handling can also be an issue. Section 7 cautions implementers to handle error messages in

a manner that avoids revealing even partial information about the decryption/decoding processes

that may be performed during the execution of a particular procedure.

For compliance with this Recommendation, equivalent processes may be used. Two processes

are equivalent if, whenever the same values are input to each process (either as input parameters

or as values made available during the process), each process produces the same output as the

other.

Some processes are used to provide assurance (for example, assurance of the arithmetic validity

of a public key or assurance of possession of a private key associated with a public key). The

party that provides the assurance is called the provider (of the assurance), and the other party is

called the recipient (of the assurance).

A number of steps are performed to establish secret keying material as described in Sections 4.1,

4.2, and 4.3.

4.1 Key-Establishment Preparations

The owner of a private/public key pair is the entity that is authorized to use the private key of

that key pair. Figure 1 depicts the steps that may be required of that entity when preparing for a

key-establishment process (i.e., either key agreement or key transport).

The first step in the preparation is for the entity to obtain a key pair. Either the entity (i.e., the

owner) generates the key pair as specified in Section 6.3, or a trusted third party (TTP) generates

the key pair as specified in Section 6.3 and provides it to the owner. The owner obtains assurance

of key-pair validity and, as part of the process, obtains assurance that it actually possesses the

(correct) private key. Approved methods for obtaining assurance of key-pair validity by the

owner are provided in Section 6.4.1.

An identifier is used to label the entity that owns a key pair used in a key-establishment

transaction. This label may uniquely distinguish the entity from all others, in which case it could

rightfully be considered an identity. However, the label may be something less specific – an

organization, nickname, etc. – hence, the term identifier is used in this Recommendation, rather

than the term identity. For example, an identifier could be “Vegetable.gardener123,”

rather than an identifier that names a particular person. A key pair’s owner (or an agent trusted

to act on the owner’s behalf) is responsible for ensuring that the identifier associated with its

public key is appropriate for the applications in which the public key will be used.

For each key pair employed during a key-establishment transaction, this Recommendation

assumes that there is a trusted association between the owner’s identifier(s) and the owner’s

public key. The association may be provided using cryptographic mechanisms or by physical

means. The use of cryptographic mechanisms may require the use of a binding authority (i.e., a

trusted authority) that binds the information in a manner that can be verified by others; an

example of such a trusted authority is a registration authority working with a CA who creates a

certificate containing both the public key and the identifier(s). The binding authority shall verify

the owner’s intent to associate the public key with the specific identifier(s) chosen for the owner;

the means for accomplishing this is beyond the scope of this Recommendation. The binding

authority shall obtain assurance of both the arithmetic validity of the owner’s public key and the

 16

owner’s possession of the private key corresponding to that public key. (Approved techniques

that can be employed by the binding authority to obtain these assurances are described in Section

6.4.2.1 [method 1], Section 6.4.2.2, Section 6.4.2.3 and Section 6.4.2.3.2.)

As an alternative to reliance upon a binding authority, trusted associations between identifiers

and public keys may be established by the direct exchange of this information between entities,

using a mutually trusted method (e.g., a trusted courier or a face-to-face exchange). In this case,

each entity receiving a public key and associated identifier(s) shall be responsible for obtaining

the same assurances that would have been obtained on the entity’s behalf by a binding authority

(see the previous paragraph). Entities shall also be responsible for maintaining (by cryptographic

or other means) the trusted associations between any identifiers and public keys received through

such exchanges.

If an entity engaged in a key-establishment transaction owns a key pair that is employed during

the transaction, then the identifier used to label that party shall be one that has a trusted

association with the public key of that key pair. If an entity engaged in a key-establishment

transaction does not employ a key pair during the transaction, but an identifier is still

desired/required for that party, then a non-null identifier shall be selected/assigned in accordance

with the requirements of the protocol relying upon the transaction.

Owner obtains

Assurance of

Key Pair Validity

(6.4.1)

Obtain

Key Pair

(6.3)

Owner Ready for Key Establishment

Owner

generates

TTP

generates

Provide

Assurance of Possession

and Identifier to a

Binding Authority

Figure 1: Owner Key-establishment Preparations

After the above steps have been performed, the key-pair owner is ready to enter into a key-

establishment process.

 17

4.2 Key-Agreement Process

Figure 2 depicts the steps implemented by an entity when establishing secret keying material

with another entity using one of the key-agreement schemes described in this Recommendation.

(Some discrepancies in ordering may occur in practice, depending on the communication

protocol in which the key-agreement process is performed.) Note that some of the actions shown

may not be a part of every scheme. For example, key confirmation is not provided in the basic

key-agreement schemes (see Sections 8.2.2 and 8.3.2). The specifications of this

Recommendation indicate when a particular action is required.

Figure 2: Key-Agreement Process

 18

Each participant obtains the identifier associated with the other entity, and verifies that the

identifier of the other entity corresponds to the entity with whom the participant wishes to

establish secret keying material.

Each entity that requires the other entity’s public key for use in the key-agreement scheme

obtains a public key that has a trusted association with the other party’s identifier, and obtains

assurance of the validity of the public key. Approved methods for obtaining assurance of the

validity of another entity’s public key are provided in Section 6.4.2.

Each entity generates either a (random) secret value or a nonce, as required by the particular key-

agreement scheme. If the scheme requires an entity to generate a secret value, that secret value is

generated as specified in Section 5.3 and encrypted using the other entity's public key. The

resulting ciphertext is then provided to the other entity. If the key-agreement scheme requires

that an entity provide a nonce, that nonce is generated as specified in Section 5.4 and provided

(in plaintext form) to the other party. (See Sections 8.2 and 8.3 for details).

Each participant in the key-agreement process uses the appropriate public and/or private keys to

establish a shared secret (Z) as specified in Section 8.2.2 or 8.3.2. Each participant then derives

secret keying material from the shared secret (and other information), as specified in Section 5.5.

If the key-agreement scheme includes key confirmation provided by one or both of the

participants, then key confirmation is performed as specified in Section 8.2.3 or 8.3.3. When

performed in accordance with those sections, successful key confirmation may also provide

assurance that a key-pair owner possesses the (correct) private key (see Section 6.4.2.3.2).

The owner of any key pair used during the key-agreement transaction is required to have

assurance that the owner is in possession of the correct private key. Likewise, the recipient of

another entity’s public key is required to have assurance that its owner is in possession of the

corresponding private key. Assurance of private-key possession is obtained prior to using the

derived keying material for purposes beyond those of the key-agreement transaction itself. This

assurance may be provided/obtained either through key confirmation, or by some other

approved means (see Sections 6.4.1 and 6.4.2).

4.3 Key-Transport Process

Figure 3 depicts the steps implemented by two entities when using one of the key-transport

schemes described in this Recommendation to establish secret keying material.

The entity who will act as the sender obtains the identifier associated with the entity that will act

as the receiver, and verifies that the receiver’s identifier corresponds to an entity to whom the

sender wishes to send secret keying material.

Prior to performing key transport, the sender obtains the receiver’s public key and obtains

assurance of its validity. Approved methods for obtaining assurance of the validity of another

entity’s public key are provided in Section 6.4.2. The sender is also required to have assurance

that the receiver is in possession of the private key corresponding to the receiver’s public key

prior to key transport, unless that assurance is obtained via key confirmation included as part of

the scheme. (See Sections 9.2 and 9.3 for details).

The sender selects the secret keying material (and, perhaps, additional input) to be transported to

the other entity. Then, using the intended receiver’s public key, the sender either encrypts that

 19

material directly (as specified in Section 9.2.3) or employs a combination of secret value

encapsulation and key wrapping (as specified in Section 9.3.3). The resulting ciphertext is

transported to the receiver.

Prior to participating in a key-establishment transaction, the receiver is required to have

assurance of the validity of its own key pair. This assurance may be renewed whenever desired.

Upon (or before) receipt of the transported ciphertext, the receiver retrieves the private key from

its own key pair. Using its private key, the receiver takes the necessary steps (as specified in

Section 9.2.3 or 9.3.3) to decrypt the ciphertext and obtain the transported plaintext keying

material.

Figure 3: Key-transport Process

If the key-transport scheme includes key confirmation, then key confirmation is provided by the

receiver to the sender as specified in Section 9.2.4 or 9.3.4. Through the use of key confirmation,

the sender can obtain assurance that the receiver has correctly recovered the keying material

from the ciphertext. Successful key confirmation may also provide assurance that the receiver

was in possession of the correct private key (see Section 6.4.2.3.2).

Obtain receiver’s public key

and obtain assurance of its

validity

(6.4.2)

Key transport completed

Key transport sender

Select the keying

material

Encrypt keying material

(9.2.3, 9.3.3)

Transport encrypted

keying material

Obtain assurance of receiver’s

possession of the (correct)

private key (if key

confirmation is not required

by scheme)

(9.2, 9.3)

Key transport receiver

Receive encrypted keying

material and retrieve receiver’s

private key

Decrypt encrypted keying

material

Provide key confirmation (if

required by scheme)

(9.2.4, 9.3.4)

Obtain receiver’s public key

and obtain assurance of its

validity

(6.4.2)

Key transport completed

Key transport sender

Select the keying

material

Encrypt keying material

(9.2.3, 9.3.3)

Transport encrypted

keying material

Obtain assurance of receiver’s

possession of the (correct)

private key (if key

confirmation is not required

by scheme)

(9.2, 9.3)

Key transport receiver

Receive encrypted keying

material and retrieve receiver’s

private key

Decrypt encrypted keying

material

Provide key confirmation (if

required by scheme)

(9.2.4, 9.3.4)

 20

5 Cryptographic Elements

This section describes the basic cryptographic elements that support the development of key-

establishment schemes specified in this Recommendation.

5.1 Cryptographic Hash Functions

In this Recommendation, cryptographic hash functions may be used in mask generation during

RSA-OAEP encryption/decryption, in key derivation, and/or in MAC-tag computation during

key confirmation. An approved hash function shall be used when a hash function is required

(see [FIPS 180] and [FIPS 202]).

5.2 Message Authentication Code (MAC) Algorithms

A Message Authentication Code (MAC) algorithm defines a family of one-way (MAC) functions

that is parameterized by a symmetric key. The input to a MAC function includes a symmetric

key, called MacKey, and a binary data string called MacData. That is, a MAC function is

represented as MAC(MacKey, MacData). In this Recommendation, a MAC function is used in

key confirmation and may be used for key derivation.

Approved MAC algorithms are specified in [FIPS 198] (i.e., HMAC) and [SP 800-38B] (i.e.,

CMAC). HMAC requires the use of an approved hash function; CMAC requires the use of an

approved block cipher algorithm.

Key derivation may be performed as either a single- or multiple-step process. When used for

single-step key derivation, either an approved hash function, or HMAC with an approved hash

function shall be selected as the function H, in accordance with Section 5.5.1. The appropriate

use of HMAC and/or CMAC in an extraction-then-expansion key-derivation procedure (a

multiple-step process) is specified in [SP 800-56C]. Additional approved application-specific

uses of MAC algorithms for key-derivation purposes are provided in [SP 800-135].

When used for key confirmation, the key-confirmation provider is required to compute a MAC

tag on received or derived data using the agreed-upon MAC function. A symmetric key derived

from a shared secret (during a key-agreement transaction) or extracted from transported keying

material (during a key-transport transaction) is used as MacKey. The resulting MAC tag is sent to

the key-confirmation recipient, who can obtain assurance (via MAC-tag verification) that the

shared secret and derived keying material were correctly computed (in the case of key

agreement) or that the transported keying material was successfully received (in the case of key

transport). MAC-tag computation and verification are defined in Sections 5.2.1 and 5.2.2.

5.2.1 MacTag Computation for Key Confirmation

The computation of the MAC tag is represented as follows:

MacTag = TMacTagBits[MAC(MacKey, MacData)].

To compute a MAC tag:

1. An approved, agreed-upon MAC algorithm (see [FIPS 198] or [SP 800-38B]) is used with a

MacKey to compute a MAC on the MacData, where MacKey is a symmetric key, and

 21

MacData represents the data on which the MAC tag is computed. The minimum length of

MacKey is specified in Section 5.6.3.

MacKey is obtained from the DerivedKeyingMaterial (when a key-agreement scheme

employs key confirmation) or obtained from the TransportedKeyingMaterial (when a key-

transport scheme employs key confirmation), as specified in Section 5.6.1.1.

The resulting MAC consists of MacBitLen bits, which is the full output length of the selected

MAC algorithm.

2. The MacBitLen bits are input to a truncation function TMacTagBits to obtain the most significant

(i.e., leftmost) MacTagBits bits, where MacTagBits represents the intended length of the

MacTag, which is required to be less than or equal to MacBitLen. (When MacTagBits equals

MacBitLen, TMacTagBits acts as the identity function.) The minimum value for MacTagBits is

specified in Section 5.6.3.

Note: A routine implementing a MacTag computation for key confirmation shall destroy any

local copies of MacKey and MacData, any locally stored portions of MacTag, and any other

locally stored values used or produced during the execution of the routine; their destruction shall

occur prior to or during any exit from the routine – whether exiting early because of an error or

exiting normally, with the output of MacTag.

5.2.2 MacTag Verification for Key Confirmation

To verify the MAC tag received during key confirmation, a new MAC tag, MacTag, is

computed as specified in Section 5.2.1 using the values of MacKey, MacTagBits, and MacData

possessed by the key-confirmation recipient. MacTag is compared with the received MAC tag

(i.e., MacTag). If their values are equal, then it may be inferred that the same MacKey,

MacTagBits, and MacData values were used in the computation of MacTag and MacTag. That

is, the key-confirmation provider has obtained the same keying material as the key-confirmation

recipient.

5.3 Random Bit Generators

Whenever this Recommendation requires the use of a randomly generated value (for example,

for obtaining keys or nonces), the values shall be generated using an approved random bit

generator (RBG), as specified in [SP 800-90], that provides an appropriate security strength.

When an approved RBG is used to generate a secret value as part of a key-establishment scheme

specified in this Recommendation (i.e., Z in a scheme from the KAS1 or KTS-KEM-KWS

families, or ZU and ZV in a scheme from the KAS2 family), that RBG shall be instantiated to

support a security strength that is equal to or greater than the security strength associated with the

RSA modulus length as specified in [SP 800-57, Part 1]. See [SP 800-90] for details.

5.4 Nonces

A nonce is a time-varying value that has (at most) a negligible chance of repeating. This

Recommendation requires party V to supply a nonce, NV, during the execution of key-agreement

schemes in the KAS1 family (see Section 8.2). This nonce is included in the input to the key-

derivation process, and (when key confirmation is employed) is also used in the computation of

the MAC tag sent from party V to party U.

 22

A nonce may be composed of one (or more) of the following components (other components

may also be appropriate):

1. A random bit string that is generated anew for each nonce, using an approved random bit

generator. A nonce containing a component of this type is called a random nonce.

2. A timestamp of sufficient resolution (detail) so that it is different each time it is used.

3. A monotonically increasing sequence number, or

4. A combination of a timestamp and a monotonically increasing sequence number, such

that the sequence number is reset when and only when the timestamp changes. (For

example, a timestamp may show the date but not the time of day, so a sequence number

is appended that will not repeat during a particular day.)

For the KAS1 schemes, the required nonce NV should be a random nonce, including a

component that consists of a random bit string that is generated anew for each transaction using

an approved random bit generator (RBG). For conformance with this Recommendation, the

security strength (in bits) supported by the instantiation of this RBG shall be at least 112 bits for

use with a 2048-bit RSA modulus, and shall be at least 128 bits for use with a 3072-bit RSA

modulus. For use with a 2048-bit RSA modulus, the length in bits of the random bit string

incorporated into the random nonce shall be at least 112 bits, but should be at least 224 bits. For

use with a 3072-bit RSA modulus, the length in bits of the random bit string incorporated into

the random nonce shall be at least 128 bits, but should be at least 256 bits. For details

concerning the security strength supported by an instantiation of a random bit generator, see [SP

800-90].

As part of the proper implementation of this Recommendation, system users and/or agents

trusted to act on their behalf should determine that the components selected for inclusion in

required nonces meet the security requirements of those users or agents. The application tasked

with performing key establishment on behalf of a party should determine whether or not to

proceed with a key-establishment transaction, based upon the perceived adequacy of the

method(s) used to form the required nonces. Such knowledge may be explicitly provided to the

application in some manner, or may be implicitly provided by the operation of the application

itself.

5.5 Key-Derivation Methods

This section introduces approved key-derivation methods for use in key establishment as

specified in this Recommendation. An approved key-derivation method shall be used to derive

keying material from the shared secret Z during the execution of a key-establishment scheme

from the KAS1, KAS2, or KTS-KEM-KWS family of schemes.

Key-derivation methods that conform to this Recommendation include the use of an approved

single-step key-derivation function (KDF), as well as the use of an approved two-step

(extraction-then-expansion) key-derivation procedure (for more details, see Sections 5.5.1 and

5.5.2, respectively). Certain approved application-specific key-derivation methods may be used

as well (see Section 5.5.3). Other key-derivation methods may be temporarily allowed for

backward compatibility; these other allowable methods – and any restrictions on their use – will

be specified in [FIPS 140 IG].

 23

When employed during the execution of a key-establishment scheme as specified in this

Recommendation, the agreed-upon key-derivation method uses input that includes a freshly

created shared secret Z along with other information. The derived keying material shall be

computed in its entirety before outputting any portion of it, and (all copies of) Z shall be

destroyed immediately following its use. The output produced by the key-derivation method

shall only be used as secret keying material – such as a symmetric key used for key wrapping,

data encryption, or message integrity; a secret initialization vector; or, perhaps, a master (key-

derivation) key that will be used to generate additional keying material (possibly using a

different process) (see [SP 800-108]). Non-secret keying material (such as a non-secret

initialization vector) shall not be generated from input that includes the shared secret Z.

5.5.1 The Single-step Key-Derivation Function

This section specifies an approved key-derivation function (KDF) that is executed in a single

step, rather than the two-step procedure discussed in Section 5.5.2. The input to the KDF

includes the shared secret Z (represented as a byte string).

This single-step KDF uses an auxiliary function H, which can be either 1) an approved hash

function (see Section 5.1), denoted by hash, or 2) an HMAC based on an approved hash

function (as specified in [FIPS 198]), denoted by HMAC-hash. When the single-step key-

derivation function is employed by a key-establishment scheme specified in this

Recommendation, any approved hash function, hash, can be used to define the auxiliary

function, H, whether H = hash or H = HMAC-hash (see Section 5.5.1.1).

5.5.1.1 The Single-step KDF Specification

This section specifies an approved single-step key-derivation function (KDF) whose input

includes the shared secret Z (represented as a byte string) and other information.

The KDF is specified as follows:

Function call: kdf (Z, OtherInput),

 where OtherInput consists of KBits and OtherInfo.

Auxiliary Function H (two options):

Option 1: H(x) = hash(x), where hash is an approved hash function (see Section 5.1); the

input, x, is a bit string.

Option 2: H(x) = HMAC-hash(salt, x), where HMAC-hash is an instantiation of the HMAC

function (as defined in [FIPS 198]) employing an approved hash function, hash

(see Section 5.1). An implementation-dependent byte string, salt, serves as the

HMAC key, and x (the input to H) is a bit string that serves as the HMAC

“message” – as specified in [FIPS 198].

Implementation-Dependent Parameters:

1. hBits: an integer that indicates the length (in bits) of the output block of the hash

function, hash, employed by the auxiliary function, H, that is used to derive blocks of

secret keying material.

2. max_H_inputBits: an integer that indicates the maximum-permitted length (in bits) of the

bit string, x, used as input to the auxiliary function, H.

 24

3. salt: a (secret or non-secret) byte string that is only required when an HMAC-based

auxiliary function is implemented (see Option 2 above). The salt could be, for example,

a value computed from nonces exchanged as part of a key-establishment protocol that

employs one or more of the key-agreement schemes specified in this Recommendation, a

value already shared by the protocol participants, or a value that is pre-determined by the

protocol. The length of the salt can be any agreed-upon length. However, if there is no

means of selecting the salt, then it shall be an all-zero byte string whose bit length equals

the length of the input block for the hash function, hash.

Input:

1. Z: a byte string that represents the shared secret.

2. KBits: An integer that indicates the length (in bits) of the secret keying material to be

derived; KBits shall be less than or equal to hBits (232 –1).

3. OtherInfo: A bit string of context-specific data (see Section 5.5.1.2 for details).

Process:

1. reps = KBits / hBits .

2. If reps > (232 1), then output an error indicator, and exit this process without performing

the remaining actions.

3. Initialize a 32-bit, big-endian bit string counter as 0000000116 (i.e. 0x00000001).

4. If counter || Z || OtherInfo is more than max_H_inputBits bits long,

then output an error indicator, and exit this process without performing the remaining

actions.

5. For i = 1 to reps by 1, do the following:

5.1 Compute K(i) = H(counter || Z || OtherInfo).

5.2 Increment counter (modulo 232), treating it as an unsigned 32-bit integer.

6. Let K_Last be set to K(reps) if (KBits / hBits) is an integer; otherwise, let K_Last be set to

the (KBits mod hBits) leftmost bits of K(reps).

7. Output DerivedKeyingMaterial = K(1) || K(2) || … || K(reps-1) || K_Last.

Output:

The bit string DerivedKeyingMaterial (of length KBits bits), or an error indicator.

Errors:

1. The intended bit length of the derived keying material (as specified by KBits) is too long.

2. The bit string Z || OtherInfo (when prepended with a 32-bit counter) is too long.

Notes: When an approved key-establishment scheme employs this single-step KDF and

OtherInfo is used, the participants shall know which entity is acting as party U and which

entity is acting as party V to ensure (among other things) that they will derive the same

 25

keying material. (See Sections 8 and 9 for descriptions of the specific actions required of

parties U and V during the execution of each of the approved key-establishment schemes

that use a key-derivation method.) The roles of parties U and V shall be assigned to the key-

establishment participants by the protocol employing the key-establishment scheme.

In step 5.1 above, the entire output of the hash function hash shall be used, whether H(x) =

hash(x) or H(x) = HMAC-hash(salt, x). Therefore, the bit length of each output block of H is

hBits bits. Some of the approved hash functions (see Section 5.1) are defined with an

internal truncation operation (e.g., SHA-384). In these cases, the “entire output” of hash is

the output value (e.g., for SHA-384, the entire output is defined to be the 384 bits resulting

from the internal truncation, so hBits = 384, in this case). Any truncation performed by the

KDF (external to hash) is done in step 6 above.

5.5.1.2 OtherInfo

The bit string OtherInfo should be used to ensure that the derived keying material is adequately

“bound” to the context of the key-establishment transaction. Although other methods may be

used to bind keying material to the transaction context, this Recommendation makes no

statement as to the adequacy of these other methods. Failure to adequately bind the derived

keying material to the transaction context could adversely affect the types of assurance that can

be provided by certain key-agreement schemes.

Context-specific information that may be appropriate for inclusion in OtherInfo:

- Public information about parties U and V, such as their identifiers.

- The public keys contributed by each party to the key-establishment transaction. (One

could, for example, include a certificate that contains the public key.)

- Other public and/or private information shared between parties U and V before or

during the transaction, such as nonces or secret data already shared by parties U and

V.

- An indication of the protocol or application employing the key-derivation method.

- Protocol-related information, such as a label or session identifier.

- The desired length of the derived keying material.

- An indication of the key-establishment scheme and/or key-derivation method used.

- An indication of various parameter or primitive choices (e.g., hash functions, MAC

tag lengths, etc.).

- An indication of how the derived keying material should be parsed, including an

indication of which algorithm(s) will use the (parsed) keying material.

For rationale in support of including entity identifiers, scheme identifiers, and/or other

information in OtherInfo, see Appendix B of [SP 800-56A]

If OtherInfo is used, the meaning of each information item and each item’s position within the

OtherInfo bit string shall be specified. In addition, each item of information included in

OtherInfo shall be unambiguously represented. For example, OtherInfo could take the form of a

fixed-length bit string, or, if greater flexibility is needed, OtherInfo could be represented in a

Datalen || Data format, where Data is a variable-length string of zero or more (eight-bit) bytes,

and Datalen is a fixed-length, big-endian counter that indicates the length (in bytes) of Data.

These requirements can be satisfied, for example, by using ASN.1 DER encoding as specified in

5.5.1.2.2 for OtherInfo.

 26

Recommended formats for OtherInfo are specified in Sections 5.5.1.2.1 and 5.5.1.2.2. One of

these two formats should be used by the single-step KDF specified in Section 5.5.1.1 when the

auxiliary function employed is H = hash. When OtherInfo is included during the key-derivation

process, and the recommended formats are used, the included items of information shall be

divided into (three, four, or five) subfields as defined below.

AlgorithmID: A required non-null subfield that indicates how the derived keying material

will be parsed and for which algorithm(s) the derived secret keying material will be used. For

example, AlgorithmID might indicate that bits 1 to 112 are to be used as a 112-bit HMAC

key and that bits 113 to 240 are to be used as a 128-bit AES key.

PartyUInfo: A required non-null subfield containing public information about party U. At a

minimum, PartyUInfo shall include IDU, an identifier for party U, as a distinct item of

information. This subfield could also include information about the public key (if any)

contributed to the key-establishment transaction by party U. Although the schemes specified

in the Recommendation do not require the contribution of a nonce by party U, any nonce

provided by party U should be included in this subfield.

PartyVInfo: A required non-null subfield containing public information about party V. At a

minimum, PartyVInfo shall include IDV, an identifier for party V, as a distinct item of

information. This subfield could also include information about the public key(s) contributed

to the key-establishment transaction by party V. When this KDF is used in a KAS1 scheme

(see Section 8.2), the nonce, NV, supplied by party V shall be included in this field.

SuppPubInfo: An optional subfield that contains additional, mutually known public

information (e.g., KBits, an identifier for the particular key-establishment scheme that was

used to determine Z, an indication of the protocol or application employing that scheme, a

session identifier, etc. This is particularly useful if these aspects of the key-establishment

transaction can vary). While an implementation may be capable of including this subfield,

the subfield may be null for a given transaction.

SuppPrivInfo: An optional subfield that contains additional, mutually known private

information (e.g., a secret symmetric key that has been communicated through a separate

channel). While an implementation may be capable of including this subfield, the subfield

may be null for a given transaction.

5.5.1.2.1 The Concatenation Format for OtherInfo

This section specifies the concatenation format for OtherInfo. This format has been designed to

provide a simple means of binding the derived keying material to the context of the key-

establishment transaction, independent of other actions taken by the relying application. Note:

When the single-step KDF specified in Section 5.5.1.1 is used with H = hash as the auxiliary

function and this concatenation format for OtherInfo, the resulting key-derivation method is the

Concatenation Key-Derivation Function specified in the original version of SP 800-56A.

For this format, OtherInfo is a bit string equal to the following concatenation:

 AlgorithmID || PartyUInfo || PartyVInfo {|| SuppPubInfo }{|| SuppPrivInfo },

where the five subfields are bit strings comprised of items of information as described in Section

5.5.1.2.

 27

Each of the three required subfields AlgorithmID, PartyUInfo, and PartyVInfo shall be the

concatenation of a pre-determined sequence of substrings in which each substring represents a

distinct item of information. Each such substring shall have one of these two formats: either it is

a fixed-length bit string, or it has the form Datalen || Data – where Data is a variable-length

string of zero or more (eight-bit) bytes, and Datalen is a fixed-length, big-endian counter that

indicates the length (in bytes) of Data. (In this variable-length format, a null string of data shall

be represented by a zero value for Datalen, indicating the absence of following data.) A protocol

using this format for OtherInfo shall specify the number, ordering and meaning of the

information-bearing substrings that are included in each of the subfields AlgorithmID,

PartyUInfo, and PartyVInfo, and shall also specify which of the two formats (fixed-length or

variable-length) is used by each such substring to represent its distinct item of information. The

protocol shall specify the lengths for all fixed-length quantities, including the Datalen counters.

Each of the optional subfields SuppPrivInfo and SuppPubInfo (when allowed by the protocol

employing the one-step KDF) shall be the concatenation of a pre-determined sequence of

substrings representing additional items of information that may be used during key derivation

upon mutual agreement of parties U and V. Each substring representing an item of information

shall be of the form Datalen || Data, where Data is a variable-length string of zero or more

(eight-bit) bytes, and Datalen is a fixed-length, big-endian counter that indicates the length (in

bytes) of Data; the use of this form for the information allows U and V to omit a particular

information item without confusion about the meaning of the other information that is provided

in the SuppPrivInfo or SuppPubInfo subfield. The substrings representing items of information

that parties U and V choose not to contribute are set equal to Null, and are represented in this

variable-length format by setting Datalen equal to zero. If a protocol allows the use of the

OtherInfo subfield SuppPrivInfo and/or the subfield SuppPubInfo, then the protocol shall specify

the number, ordering and meaning of additional items of information that may be used in the

allowed subfield(s) and shall specify the fixed-length of the Datalen counters.

5.5.1.2.2 The ASN.1 Format for OtherInfo

The ASN.1 format for OtherInfo provides an alternative means of binding the derived keying

material to the context of the key-establishment transaction, independent of other actions taken

by the relying application. Note: When the single-step KDF specified in Section 5.5.1.1 is used

with H = hash as the auxiliary function and with this ASN.1 format for OtherInfo, the resulting

key-derivation method is the ASN.1 Key-Derivation Function specified in the original version of

SP 800-56A.

For the ASN.1 format, OtherInfo is a bit string resulting from the ASN.1 Distinguished Encoding

Rules (DER) encoding (see [ISO/IEC 8825]) of a data structure comprised of a sequence of three

required subfields AlgorithmID, PartyUInfo, and PartyVInfo, and, optionally, a subfield

SuppPubInfo and/or a subfield SuppPrivInfo – as described in Section 5.5.1.2. A protocol using

this format for OtherInfo shall specify the type, ordering and number of distinct items of

information included in each of the (three, four, or five) subfields employed.

5.5.1.2.3 Other Formats for OtherInfo

Formats other than those provided in Sections 5.5.1.2.1 and 5.5.1.2.2 (e.g., those providing the

items of information in a different arrangement) may be used for OtherInfo, but the context-

specific information described in the preceding sections should be included (see the discussion

 28

in Section 5.5.1.1). This Recommendation makes no statement as to the adequacy of other

formats.

5.5.2 The Extraction-then-Expansion Key-Derivation Procedure

This Recommendation permits the use of an approved extraction-then-expansion key-derivation

procedure as an alternative to the single-step key-derivation function specified in Section 5.5.1.

When the extraction-then-expansion key-derivation procedure is employed in an approved key-

agreement scheme, the secret keying material is derived in two steps using the shared secret Z

(represented as a byte string) as input (along with a salt and additional data, such as that included

in the OtherInfo used by the KDFs specified above; also see Appendix B for guidance). The first

step is called (randomness) extraction, and the second step is called (key) expansion. The details

of the approved extraction-then-expansion key-derivation procedure are specified in [SP 800-

56C].

5.5.3 Application-Specific Key-Derivation Methods

Additional approved application-specific key-derivation methods are enumerated in [SP 800-

135]. A routine that implements a key-derivation procedure specified in [SP 800-135] shall

destroy any local copies of sensitive input values, as well as any other locally stored values used

or produced during its execution (including any local copies of portions of the derived keying

material). Their destruction shall occur prior to or during any exit from the routine – whether

exiting early because of an error or exiting normally, with the output of keying material.

5.6 Key Confirmation

The term key confirmation (KC) refers to actions taken to provide assurance to one party (the

key-confirmation recipient) that another party (the key-confirmation provider) is in possession of

a (supposedly) shared secret and/or to confirm that the other party has the correct version of

keying material that was derived or transported during a key-establishment transaction (correct,

that is, from the perspective of the key-confirmation recipient.) Such actions are said to provide

unilateral key confirmation when they provide this assurance to only one of the participants in

the key-establishment transaction; the actions are said to provide bilateral key confirmation when

this assurance is provided to both participants (i.e., when unilateral key confirmation is provided

in both directions).

Oftentimes, key confirmation is obtained (at least implicitly) by some means that are external to

the key-establishment scheme employed during a transaction (e.g., by using a symmetric key that

was established during the transaction to decrypt an encrypted message sent later by the key-

confirmation provider), but this is not always the case. In some circumstances, it may be

appropriate to incorporate the exchange of explicit key-confirmation information as an integral

part of the key-establishment scheme itself. The inclusion of key confirmation may enhance the

security services that can be offered by a key-establishment scheme. For example, the key-

establishment schemes incorporating key confirmation that are specified in this Recommendation

could be used to provide the KC recipient with assurance that the KC provider is in possession of

the private key corresponding to the provider’s public key-establishment key, from which the

recipient may infer that the provider is the owner of that key pair.

 29

For key confirmation to comply with this Recommendation, key confirmation shall be

incorporated into an approved key-establishment scheme as specified in the sections that follow.

If any other methods are used to provide key confirmation, this Recommendation makes no

statement as to their adequacy.

5.6.1 Unilateral Key Confirmation for Key-Establishment Schemes

As specified in this Recommendation, unilateral key confirmation occurs when one participant in

the execution of a key-establishment scheme (the key-confirmation “provider”) demonstrates to

the satisfaction of the other participant (the key-confirmation “recipient”) that both the KC

provider and the KC recipient have possession of the same secret MacKey.

MacKey shall be a symmetric key that is unique to a specific execution of a key-establishment

scheme and (from the perspective of the KC provider) shall be unpredictable prior to that key-

establishment transaction. In the case of a key-agreement scheme, MacKey is derived using the

shared secret Z created during the execution of that scheme (see Section 5.5 for the details of key

derivation). In the case of a key-transport scheme, MacKey is included as part of the transported

keying material. Section 5.6.1.1 specifies how MacKey is to be extracted from the derived or

transported keying material.

MacKey and certain context-specific MacData (as specified in Sections 5.6.1.1) are used by the

KC provider as input to an approved MAC algorithm to obtain a MAC tag that is sent to the KC

recipient. The recipient performs an independent computation of the MAC tag. If the MAC tag

value computed by the KC recipient matches the MAC tag value received from the KC provider,

then key confirmation is successful. (See Section 5.2 for MAC-tag generation and verification,

and Section 5.6.3 for a discussion of MAC-tag security.)

In the case of a key-agreement scheme (see Sections 8.2.3 and 8.3.3), successful key

confirmation provides assurance to the KC recipient that the same Z value has been used by both

parties to correctly derive the keying material (which includes MacKey). In the case of a key-

transport scheme (see Sections 9.2.4 and 9.3.4), successful key confirmation provides assurance

to the KC recipient (who sent the keying material) that the transported keying material (which

includes MacKey) has been correctly decrypted or unwrapped by the party to whom it was sent.

A close examination of the KC process shows that each of the pair-wise key-establishment

schemes specified in this Recommendation that incorporate key confirmation can be used to

provide the KC recipient with assurance that the KC provider is currently in possession of the

(correct) private key – the one corresponding to the KC provider’s public key-establishment key.

The use of transaction-specific values for both MacKey and MacData prevents (for all practical

purposes) the replay of any previously computed value of MacTag. The receipt of a correctly

computed MAC tag provides assurance to the KC recipient that the KC provider has used the

correct private key during the current transaction – to successfully recover the secret data that are

a prerequisite to learning the value of MacKey.

5.6.1.1 Adding Unilateral Key Confirmation to a Key-Establishment Scheme

To include unilateral key confirmation, the following steps shall be incorporated into the

scheme. (Additional details will be provided for each scheme in the appropriate subsections of

Sections 8 and 9.) In the discussion that follows, the key-confirmation provider, P, may be either

 30

party U or party V, as long as the KC provider, P, contributes a key pair to the key-establishment

transaction. The key-confirmation recipient, R, is the other party.

1. The provider, P, computes

 MacDataP = message_stringP || IDP || IDR || EphemDataP || EphemDataR {|| TextP}

where

- message_stringP is a six-byte character string, with a value of “KC_1_U” when party

U is providing the MAC tag, or “KC_1_V” when party V is providing the MAC tag.

(Note that these values will be changed for bilateral key confirmation, as specified in

Section 5.6.2.)

- IDP is the identifier used to label the key-confirmation provider.

- IDR is the identifier used to label the key-confirmation recipient.

- EphemDataP and EphemDataR are (ephemeral) values contributed by the KC provider

and recipient, respectively. These values are specified in the sections describing the

schemes that include key confirmation.

- TextP is an optional bit string that may be used during key confirmation and that is

known by both parties.

The content of each of the components that are concatenated to form MacDataP shall be

precisely defined and unambiguously represented. A particular component’s content may be

represented, for example, as a fixed-length bit string or in the form Datalen || Data, where

Data is a variable-length string of zero or more (eight-bit) bytes, and Datalen is a fixed-

length, big-endian counter that indicates the length (in bytes) of Data. These requirements

could also be satisfied by using a specific ASN.1 DER encoding of each component. It is

imperative that the provider and recipient have agreed upon the content and format that will

be used for each component of MacDataP.

MacData shall include a non-null identifier, IDP, for the key-confirmation provider.

Depending upon the circumstances, the key-confirmation recipient’s identifier, IDR,

may be replaced by a null string. The rules for selecting IDP and IDR are as follows:

As specified in this Recommendation, the key-confirmation provider must own a key pair

that is employed by the basic key-establishment scheme (KAS1-basic, KAS2-basic,

KTS-OAEP-basic, or KTS-KEM-KWS-basic) that determines the MacKey value used in the

key-confirmation computations performed during the transaction. The identifier, IDp,

included in MacDataP shall be one that has a trusted association with the public key of

that key pair.

If the key-confirmation recipient also owns a key pair that is employed by the basic key-

establishment scheme used during the transaction, then the identifier, IDR, included in

MacDataP shall be one that has a trusted association with the public key of that key pair.

If the key-confirmation recipient does not own a key pair employed for key-establishment

 31

purposes, and no identifier has been used to label that party during the execution of the basic

key-establishment scheme employed by the transaction, then IDR may be replaced by a null

string. However, if an identifier is desired/required for that party for key confirmation

purposes, then a non-null value for IDR, shall be selected/assigned in accordance with the

requirements of the protocol relying upon the transaction.

2. Whenever a particular identifier has been used to label the key-confirmation recipient

or key-confirmation provider in the execution of the basic key-establishment scheme used

during the transaction, that same identifier shall be used as IDP or IDR, respectively, in the

MacDataP used during key confirmation. For example, if party U is the key-confirmation

recipient, and IDU has been used to label party U in the OtherInfo employed by the key-

derivation method of a key-agreement scheme used during the transaction, then the

MacDataP used during key confirmation shall have IDR = IDU.

In the case of a key-agreement scheme: After computing the shared secret Z and applying the

key-derivation function to obtain the derived keying material, DerivedKeyingMaterial (see

Section 5.5), the KC provider uses agreed-upon bit lengths to parse DerivedKeyingMaterial

into two parts, MacKey and KeyData:

MacKey || KeyData = DerivedKeyingMaterial.

In the case of a key-transport scheme: The KC provider parses the

TransportedKeyingMaterial into MacKey and KeyData:

MacKey || KeyData = TransportedKeyingMaterial.

3. Using an agreed-upon bit length MacTagBits, the KC provider computes MacTagP (see

Sections 5.2.1 and 5.6.3):

 MacTagP = TMacTagBits[MAC (MacKey, MacDataP)],

and sends it to the KC recipient.

4. The KC recipient forms MacDataP, determines MacKey, computes MacTagP in the same

manner as the KC provider, and then compares its computed MacTagP to the value received

from the provider. If the received value is equal to the computed value, then the recipient is

assured that the provider has used the same value for MacKey and that the provider shares the

recipient’s value of MacTagP.

Each participant shall destroy all copies of the MacKey that he employed for key-confirmation

purposes during a particular pair-wise key-establishment transaction, once MacKey is no longer

needed to provide or obtain key confirmation as part of that transaction.

If MacTagP cannot be verified by the KC recipient during a particular key-establishment

transaction, then key confirmation has failed, and both participants shall destroy all of their

copies of MacKey and KeyData. In particular, MacKey and KeyData shall not be revealed by

either participant to any other party (not even to the other participant), and the keying material

shall not be used for any further purpose. In the case of a key-confirmation failure, the key-

establishment transaction shall be terminated.

 32

Note: The key-confirmation routines employed by the KC provider and KC recipient shall

destroy all local copies of MacKey, KeyData, MacData, and any other locally stored values used

or produced during their execution. Their destruction shall occur prior to or during any exit from

those routines – whether exiting normally or exiting early, because of an error.

Unilateral key confirmation, as specified in this Recommendation, can be incorporated into any

key-establishment scheme in which the key-confirmation provider is required to own a key-

establishment key pair that is used in the key-establishment process. Unilateral key confirmation

may be added in either direction to a KAS2 scheme (see Sections 8.3.3.2 and 8.3.3.3); it may

also be added to a KAS1, KTS-OAEP, or KTS-KEM-KWS scheme, but only with party V (the

party contributing the key pair) acting as the key-confirmation provider, and party U acting as

the key-confirmation recipient (see Sections 8.2.3.1, 9.2.4.2, and 9.3.4.2).

5.6.2 Bilateral Key Confirmation for KAS2 Schemes

Bilateral key confirmation, as specified in this Recommendation, can be incorporated into a

KAS2 key-agreement scheme, since each party is required to own a key-establishment key pair

that is used in the key-agreement process. Bilateral key confirmation is accomplished by

performing unilateral key confirmation in both directions (with party U providing MacTagU to

KC recipient V, and party V providing MacTagV to KC recipient U) during the same scheme.

To include bilateral key confirmation, two instances of unilateral key confirmation (as specified

in Section 5.6.1.1, subject to the modifications listed below) shall be incorporated into the KAS2

scheme, once with party U as the key-confirmation provider (i.e., P = U and R = V), and once

with party V as the key-confirmation provider (i.e., P = V and R = U). Additional details will be

provided in Section 8.3.3.4.

In addition to setting P = U and R = V in one instance of the unilateral key-confirmation

procedure described in Section 5.6.1.1 and setting P = V and R = U in a second instance, the

following changes/clarifications apply when using the procedure for bilateral key confirmation:

1. When computing MacTagU, the value of message_stringU that forms the initial segment of

MacDataU is the six-byte character string “KC_2_U”.

2. When computing MacTagV, the value of message_stringV that forms the initial segment of

MacDataV is the six-byte character string “KC_2_V”.

3. If used at all, the value of the (optional) byte string TextU used to form the final segment of

MacDataU can be different than the value of the (optional) byte string TextV used to form the

final segment of MacDataV, provided that both parties are aware of the value(s) used.

4. The identifiers used to label the parties U and V when forming MacDataU shall be the same

as the identifiers used to label the parties U and V when forming MacDataV, although IDU

and IDV will play different roles in the two strings. If IDP = IDU and IDR = IDV are used in

MacDataU, then IDP = IDV and IDR = IDU are used in MacDataV.

5.6.3 Minimum Requirements for MacKey and MacTag

For compliance with this Recommendation, a MAC tag used for key confirmation shall be

generated using an approved MAC algorithm, which can be HMAC [FIPS 198] with an

 33

approved hash function or AES CMAC [SP 800-38B] with a key length of 128, 192, or 256 bits

(see Section 5.2). MacKey shall be at least 112 bits in length when a 2048-bit RSA modulus is

used during the transaction, and at least 128 bits in length when a 3072-bit modulus is used. The

bit length of MacTag shall be at least 64 bits for key-confirmation in this Recommendation. For

other applications, please refer to the relevant specifications for the minimum length required for

message authentication codes.

In cases where key confirmation is incorporated in a key-transport scheme as specified in this

Recommendation, the method used to generate the MAC key that is included in the transported

keying material shall comply with the methods specified in [SP 800-133] for generating

symmetric keys. The MAC key and MAC algorithm shall be capable of supporting at least a

112-bit security strength when a 2048-bit RSA modulus is used during the transaction, and of

supporting at least a 128-bit security strength when a 3072-bit modulus is used.

6 RSA Key Pairs

6.1 General Requirements

The following are requirements on RSA key pairs (see the Recommendation for Key

Management [SP 800-57]):

1. Each key pair shall be created using an approved key-generation method as specified in

Section 6.3.

2. The private keys and prime factors of the modulus shall be protected from unauthorized

access, disclosure, and modification.

3. Public keys shall be protected from unauthorized modification. This is often

accomplished by using public-key certificates that have been signed by a Certification

Authority (CA).

4. A recipient of a public key shall be assured of the integrity and correct association of (a)

the public key and (b) the identifier of the entity that owns the key pair (that is, the party

with whom the recipient intends to establish secret keying material). This assurance is

often provided by verifying a public-key certificate that was signed by a trusted third

party (for example, a CA), but may be provided by direct distribution of the public key

and identifier from the owner, provided that the recipient trusts the owner and distribution

process to do this.

5. One key pair shall not be used for different cryptographic purposes (for example, a

digital-signature key pair shall not be used for key establishment or vice versa), with the

following possible exception: when requesting the certificate for a public key-

establishment key, the private key-establishment key associated with the public key may

be used to sign the certificate request (see SP 800-57, Part 1 on Key Usage for further

information). A key pair may be used in more than one key-establishment scheme.

However, a key pair used for schemes specified in this Recommendation should not be

used for any schemes not specified herein.

6. The owner of a key pair shall have assurance of the key pair’s validity (see Section

6.4.1.1); that is, the owner shall have assurance of the correct generation of the key pair

 34

(see Section 6.3), consistent with the criteria of Section 6.2; assurance of private and

public-key validity; and assurance of pair-wise consistency.

7. A recipient of a public key shall have assurance of the validity of the public key (see

Section 6.4.2.1). This assurance may be provided, for example, through the use of a

public-key certificate if the CA obtains sufficient assurance of public-key validity as part

of its certification process.

8. A recipient of a public key shall have assurance of the owner’s possession of the

associated private key (see Section 6.4.2.3). This assurance may be provided, for

example, through the use of a public key certificate if the CA obtains sufficient assurance

of possession as part of its certification process.

6.2 Criteria for RSA Key Pairs for Key Establishment

6.2.1 Definition of a Key Pair

A valid RSA key pair, in its basic form, shall consist of an RSA public key (n, e) and an RSA

private key (n, d), where:

1. n, the public modulus, shall be the product of exactly two distinct, odd positive prime

factors, p and q, that are kept secret. Let nBits be the length of n in bits.

2. The public exponent e shall be an odd integer that is selected prior to the generation of p

and q such that:

65 537 ≤ e < 2256

3. The prime factors p and q shall be generated using one of the methods specified in

Appendix B.3 of [FIPS 186] such that:

a. (2)(2nBits/2-1) p (2nBits/2 - 1).

b. (2)(2nBits/2-1) q (2nBits/2 - 1).

c. |p – q| > 2nBits/2-100.

d. GCD(e, LCM(p-1, q-1)) = 1.

4. The private exponent d shall be selected such that:

a. 2nBits/2 < d < LCM((p-1), (q-1)), and

b. d = e-1 mod (LCM((p-1), (q-1))).

Note that these criteria are also specified in [FIPS 186].

6.2.2 Formats

The RSA private key may be expressed in several formats. The basic format of the RSA private

key consists of the modulus n and a private-key exponent d that depends on n and the public-key

exponent e; this format is used throughout this Recommendation. The other two formats may be

used in implementations, but may require appropriate modifications for correct implementation.

To facilitate implementation testing, the format for the private key shall be one of the following:

1. The basic format: (n, d).

 35

2. The prime-factor format: (p, q, d).

3. The Chinese Remainder Theorem (CRT) format: (n, e, d, p, q, dP, dQ, qInv), where dP =

d mod (p – 1), dQ = d mod (q – 1), and qInv = q–1 mod p.

Key-pair generators and key-pair validation methods are given for each of these formats in

Sections 6.3 and 6.4, respectively.

6.3 RSA Key-Pair Generators

The key pairs employed by the key-establishment schemes specified in this Recommendation

shall be generated using the techniques specified in Appendix B.3 of [FIPS 186], employing the

requisite methods for prime-number generation, primality testing, etc., that are specified in

Appendix C of that document.

An approved RSA key-pair generator shall be used to produce a random RSA key pair with a

modulus length of either 2048 or 3072 bits, possibly using other inputs during the process. Key-

pair generators require the use of an approved random bit generator (RBG). See Section 5.3.

The approved RSA key-pair generators provided in Sections 6.3.1 and 6.3.2 are differentiated

by the method for determining the public-key exponent e that is used as part of an RSA public

key (i.e., (n, e)); Section 6.3.1 addresses the use of a fixed value for the exponent, whereas

Section 6.3.2 uses a randomly generated value.

6.3.1 RSAKPG1 Family: RSA Key-Pair Generation with a Fixed Public Exponent

The RSAKPG1 family of key-pair generation methods consists of three RSA key-pair generators

where the public exponent has a fixed value (see Section 6.2).

Three representations are addressed:

1. rsakpg1-basic generates the private key in the basic format (n, d),

2. rsakpg1-prime-factor generates the private key in the prime-factor format (p, q, d), and

3. rsakpg1-crt generates the private key in the Chinese Remainder Theorem format (n, e, d,

p, q, dP, dQ, qInv).

An implementation may perform a key-pair validation before outputting the key pair from the

generator. The key-pair validation methods for this family are specified in Section 6.4.1.2.

6.3.1.1 rsakpg1-basic

rsakpg1-basic is the generator in the RSAKPG1 family where the private key is in the basic

format (n, d).

Function call: rsakpg1-basic(s, nBits, e)

Input:

1. s: the target security strength;

 36

2. nBits: the intended length in bits of the RSA modulus; and

3. e: a fixed public exponent an odd integer, such that 65 537 ≤ e < 2256.

Process:

1. Check the values:

a. If s is not the integer 112 or 128, output an indication that the security strength

is incorrect, and exit without further processing.

b. If s =112 and nBits ≠ 2048, or if s =128 and nBits ≠ 3072, output an indication

that the modulus length is incorrect, and exit without further processing.

c. If e is not an odd integer such that 65 537 ≤ e < 2256, output an indication that

the exponent is out of range, and exit without further processing.

2. Generate the prime factors p and q, as specified in [FIPS 186].

3. Determine the private exponent d:

 d = e–1 mod LCM(p – 1, q – 1) .

In the event that no such d exists, or in the very rare event that 𝑑 ≤ 2𝑛𝐵𝑖𝑡𝑠/2, discard the

results of all computations and repeat the process, starting at step 2.

4. Determine the modulus n as n = p · q.

5. Perform a pair-wise consistency test by verifying that k = (ke)d mod n for some integer k

satisfying 1 < k < n-1. If an inconsistency is found, output an indication of a pair-wise

consistency failure, and exit without further processing.

6. Output (n, e) as the public key, and (n, d) as the private key.

Output:

1. (n, e): the RSA public key, and

2. (n, d): the RSA private key in the basic format.

Errors: Indications of the following:

1. The security strength is incorrect,

2. The modulus length is incorrect,

3. The fixed public exponent is out of range, or

4. Pair-wise consistency failure.

 37

 Note that key-pair validation, as specified in Section 6.4.1.2.1, can be performed after step 5 and

before step 6. If an error is detected, output an indication of a key-pair validation failure, and exit

without further processing.

A routine that implements this generation function shall destroy any local copies of p, q, and d,

as well as any other locally stored values used or produced during its execution. Their

destruction shall occur prior to or during any exit from the routine (whether exiting early,

because of an error, or exiting normally, with the output of an RSA key pair). Note that the

requirement for destruction includes any locally stored portions of the output key pair.

6.3.1.2 rsakpg1-prime-factor

rsakpg1-prime-factor is the generator in the RSAKPG1 family where the private key is in the

prime factor format (p, q, d).

Function call: rsakpg1-prime-factor(s, nBits, e)

The inputs, outputs and errors are the same as in rsakpg1-basic (see 6.3.1.1), except that the

private key is in the prime-factor format: (p, q, d).

The steps are the same as in rsakpg1-basic, except that processing Step 6 is replaced by the

following:

6. Output (n, e) as the public key, and (p, q, d) as the private key.

Note that key-pair validation, as specified in Section 6.4.1.2.2, can be performed after step 5 and

before step 6. If an error is detected, output an indication of a key-pair validation failure, and exit

without further processing.

A routine that implements this generation function shall destroy any local copies of p, q, and d,

as well as any other locally stored values used or produced during its execution. Their

destruction shall occur prior to or during any exit from the routine (whether exiting early,

because of an error, or exiting normally, with the output of an RSA key pair). Note that the

requirement for destruction includes any locally stored portions of the output key pair.

6.3.1.3 rsakpg1-crt

rsakpg1-crt is the generator in the RSAKPG1 family where the private key is in the Chinese

Remainder Theorem format (n, e, d, p, q, dP, dQ, qInv).

Function call: rsakpg1-crt(s, nBits, e)

The inputs, outputs and errors are the same as in rsakpg1-basic (see 6.3.1.1), except that the

private key is in the Chinese Remainder Theorem format: (n, e, d, p, q, dP, dQ, qInv).

The steps are the same as in rsakpg1-basic, except that processing steps 5 and 6 are replaced by

the following:

5. Determine the components dP, dQ and qInv:

a. dP = d mod (p – 1).

b. dQ = d mod (q – 1).

 38

c. qInv = q–1 mod p.

6. Perform a pair-wise consistency test by verifying that k = (ke)d mod n for some integer k

satisfying 1 < k < n-1. If an inconsistency is found, output an indication of a pair-wise

consistency failure, and exit without further processing.

7. Output (n, e) as the public key, and (n, e, d, p, q, dP, dQ, qInv) as the private key.

Note that key-pair validation, as specified in Section 6.4.1.2.3, can be performed after step 6 and

before step 7. If an error is detected, output an indication of a key-pair validation failure, and exit

without further processing.

A routine that implements this generation function shall destroy any local copies of p, q, dP, dQ,

qInv, and d, as well as any other locally stored values used or produced during its execution.

Their destruction shall occur prior to or during any exit from the routine (whether exiting early,

because of an error, or exiting normally, with the output of an RSA key pair). Note that the

requirement for destruction includes any locally stored portions of the output key pair.

6.3.2 RSAKPG2 Family: RSA Key-Pair Generation with a Random Public
Exponent

The RSAKPG2 family of key-pair generation methods consists of three RSA key-pair generators

where the public exponent e is a random value in the range 65 537 ≤ e < 2256.

Three representations are addressed:

1. rsakpg2-basic generates the private key in the basic format (n, d),

2. rsakpg2-prime-factor generates the private key in the prime factor format (p, q, d), and

3. rsakpg2-crt generates the private key in the Chinese Remainder Theorem format (n, e, d,

p, q, dP, dQ, qInv).

An implementation may perform a key-pair validation before outputting the key pair from the

generation function. The key-pair validation methods for this family are specified in Section

6.4.1.3.

6.3.2.1 rsakpg2-basic

rsakpg2-basic is the generator in the RSAKPG2 family where the private key is in the basic

format (n, d).

Function call: rsakpg2-basic(s, nBits, eBits)

Input:

1. s: the target security strength;

2. nBits: the intended length in bits of the RSA modulus; and

3. eBits: the intended length in bits of the public exponent an integer such that 17 eBits

 256. Note that the public exponent shall be an odd integer, such that 65 537 ≤ e < 2256.

 39

Process:

1. Check the values:

a. If s is not the integer 112 or 128, output an indication that the security strength

is incorrect, and exit without further processing.

b. If s =112 and nBits ≠ 2048, or if s =128 and nBits ≠ 3072, output an indication

that the modulus length is incorrect, and exit without further processing.

c. If eBits is not an integer such that 17 eBits 256, output an indication that

the exponent length is out of range, and exit without further processing.

2. Generate an odd public exponent e in the range [2eBits – 1 + 1, 2eBits – 1] using an approved

RBG that supports a minimum security strength of s bits (see Section 5.3).

3. Generate the prime factors p and q as specified in [FIPS 186]

4. Determine the private exponent d:

 d = e–1 mod LCM(p – 1, q – 1).

In the event that no such d exists, or in the very rare event that 𝑑 ≤ 2𝑛𝐵𝑖𝑡𝑠/2, discard the

results of all computations and repeat the process, starting at step 2.

5. Determine the modulus n as n = p · q.

6. Perform a pair-wise consistency test by verifying that k = (ke)d mod n for some integer k

satisfying 1 < k < n-1. If an inconsistency is found, output an indication of a pair-wise

consistency failure, and exit without further processing.

7. Output (n, e) as the public key, and (n, d) as the private key.

Output:

1. (n, e): the RSA public key, and

2. (n, d): the RSA private key in the basic format.

Errors: Indications of the following:

1. The security strength is incorrect,

2. The modulus length is incorrect,

3. The exponent length is out of range, or

4. Pair-wise consistency failure.

 40

Note that key-pair validation, as specified in Section 6.4.1.3.1, can be performed after step 6 and

before step 7. If an error is detected, output an indication of a key-pair validation failure, and exit

without further processing.

A routine that implements this generation function shall destroy any local copies of p, q, and d,

as well as any other locally stored values used or produced during its execution. Their

destruction shall occur prior to or during any exit from the routine (whether exiting early,

because of an error, or exiting normally, with the output of an RSA key pair). Note that the

requirement for destruction includes any locally stored portions of the output key pair.

6.3.2.2 rsakpg2-prime-factor

rsakpg2-prime-factor is the generator in the RSAKPG2 family where the private key is in the

prime-factor format (p, q, d).

Function call: rsakpg2-prime-factor(s, nBits, eBits)

The inputs, outputs and errors are the same as in rsakpg2-basic (see 6.3.2.1), except that the

private key is in the prime-factor format: (p, q, d).

The steps are the same as in rsakpg2-basic, except that processing Step 7 is replaced by the

following:

7. Output (n, e) as the public key, and (p, q, d) as the private key.

Note that key-pair validation as specified in Section 6.4.1.3.2 can be performed after step 6 and

before step 7. If an error is detected, output an indication of a key-pair validation failure, and exit

without further processing.

A routine that implements this generation function shall destroy any local copies of p, q, and d,

as well as any other locally stored values used or produced during its execution. Their

destruction shall occur prior to or during any exit from the routine (whether exiting early,

because of an error, or exiting normally, with the output of an RSA key pair). Note that the

requirement for destruction includes any locally stored portions of the output key pair.

6.3.2.3 rsakpg2-crt

rsakpg2-crt is the generator in the RSAKPG2 family where the private key is in the Chinese

Remainder Theorem format (n, e, d, p, q, dP, dQ, qInv).

Function call: rsakpg2-crt(s, nBits, eBits)

The inputs, outputs and errors are the same as in rsakpg2-basic (see 6.3.2.1), except that the

private key is in the Chinese Remainder Theorem format: (n, e, d, p, q, dP, dQ, qInv).

The steps are the same as in rsakpg2-basic, except that processing Steps 6 and 7 are replaced by

the following:

6. Determine the components dP, dQ and qInv:

a. dP = d mod (p – 1).

 41

b. dQ = d mod (q – 1).

c. qInv = q–1 mod p.

7. Perform a pair-wise consistency test by verifying that k = (ke)d mod n for some integer k

satisfying 1 < k < n-1. If an inconsistency is found, output an indication of a pair-wise

consistency failure, and exit without further processing.

8. Output (n, e) as the public key, and (n, e, d, p, q, dP, dQ, qInv) as the private key.

Note that key-pair validation as specified in Section 6.4.1.3.3 can be performed after step 7 and

before step 8. If an error is detected, output an indication of a key-pair validation failure, and exit

without further processing.

A routine that implements this generation function shall destroy any local copies of p, q, dP, dQ,

qInv, and d, as well as any other locally stored values used or produced during its execution.

Their destruction shall occur prior to or during any exit from the routine (whether exiting early,

because of an error, or exiting normally, with the output of an RSA key pair). Note that the

requirement for destruction includes any locally stored portions of the output key pair.

6.4 Required Assurances

Secure key establishment depends upon the use of valid key-establishment keys. The security of

key-establishment schemes also depends on limiting knowledge of the private keys to those who

have been authorized to use them (i.e., their respective owners) and to the trusted third party that

may have generated them1. In addition to preventing unauthorized entities from gaining access to

private keys, it is also important that owners have access to their correct private keys.

To explain the assurance requirements, some terminology needs to be defined. The owner of a

key pair is the entity that is authorized to use the private key that corresponds to the owner’s

public key, whether or not the owner generated the key pair. The recipient of a public key is the

entity that is participating in a key-establishment transaction with the owner and obtains the

owner’s public key before or during the current transaction.

Prior to or during a key-establishment transaction, the participants in the transaction (i.e., parties

U and V) shall obtain the appropriate assurances about the key pairs used during that transaction.

The types of assurance that may be sought by one or both of the parties (U and/or V) concerning

the components of a key pair (i.e., the private key and public key) are discussed in Sections 6.4.1

and 6.4.2.

6.4.1 Assurances Required by the Key-Pair Owner

Prior to the use of a key pair in a key-establishment transaction, the key-pair owner shall have

assurance of the validity of the key pair. Assurance of key-pair validity provides assurance that a

key pair was generated in accordance with the requirements in Sections 6.2 and 6.3. Key-pair

validity implies public-key validity and assurance of possession of the correct private key.

Assurance of key-pair validity can only be provided by an entity that has the private key (e.g.,

1 The trusted third party is trusted not to use or reveal the private keys.

 42

the owner). Depending on an organization’s requirements, a renewal of key-pair validity may be

prudent. The method of obtaining initial and renewed assurance of key-pair validity is addressed

in Section 6.4.1.1.

Assurance of key-pair validity can be renewed at any time (see Section 6.4.1.1). As time passes,

an owner may lose possession of the correct value of the private-key component of their key

pair, e.g. due to an error; for this reason, renewed (i.e., current) assurance of possession of a

private key can be of value for some applications. See Section 6.4.1.5 for techniques that the

owner can use to obtain renewed assurance of private-key possession separately from assurance

of key-pair validity.

6.4.1.1 Obtaining Owner Assurance of Key-Pair Validity

Key-pair validation shall be performed prior to the first use of the key pair in a key-

establishment transaction (see Section 4.1). Assurance of key-pair validity shall be obtained by

its owner using (all of) the following steps.

1. Key-pair generation: Assurance that the key pair has been correctly formed, in a manner

consistent with the criteria of Section 6.2, is obtained using one of the following two

methods:

a. Owner generation – The owner obtains the desired assurance if it generates the

public/private key pair as specified in Section 6.3.

b. TTP generation – The owner obtains the desired assurance when a trusted third

party (TTP) who is trusted by the owner generates the public/private key pair as

specified in Section 6.3 and provides it to the owner.

2. The owner shall perform a pair-wise consistency test by verifying that k = (ke)d mod n for

some integer k satisfying 1 < k < n-1. Note that if the owner generated the key pair (see

method 1.a above), an initial pair-wise consistency test was performed during key

generation (see Section 6.3). If a TTP generated the key pair and provided it to the owner

(see method 1.b above), the owner shall perform the consistency check separately, prior

to the first use of the key pair in a key-establishment transaction (see Section 4.1).

3. Key-pair validation: A key pair shall be validated using one of the following methods:

a. The owner generated the key pair: The owner either

1) Performs a successful key-pair validation during key-pair generation (see

Section 6.3), or

2) Performs a successful key-pair validation separately from key-pair generation

(see Section 6.4.1.2 or 6.4.1.3).

b. TTP key-pair validation: A trusted third party (trusted by the owner) either

1) Performs a successful key-pair validation during key-pair generation (see

Section 6.3), or

2) Performs a successful key-pair validation separately from key-pair generation

(as specified in Sections 6.4.1.2 or 6.4.1.3), and indicates the success to the

 43

owner. Note that if the key-pair validation is performed separately from the

key-pair generation, and the TTP does not have the key pair, then the party

that generated the key pair or owns the key pair must provide it to the TTP.

c. The TTP generated the key pair (with or without performing key-pair validation),

and the owner performs the key-pair validation – The owner performs a key-pair

validation as specified in Section 6.4.1.4.

Note that the use of a TTP to generate a key pair or to perform key-pair validation for an owner

means that the TTP must be trusted (by both the owner and any recipient) to not use the owner’s

private key to masquerade as the owner or otherwise compromise the key-establishment

transaction.

The key pair can be revalidated at any time by the owner as follows:

A. Perform a pair-wise consistency test by verifying that k = (ke)d mod n for some integer k

satisfying 1 < k < n-1, and

B. Perform a successful key-pair validation:

1. If the intended value or length of the exponent is known, then perform a successful

key-pair validation as specified in Section 6.4.1.2 or 6.4.1.3.

2. If the intended value or length of the exponent is NOT known, then perform a

successful key-pair validation as specified in Section 6.4.1.4.

6.4.1.2 RSAKPV1 Family: RSA Key-Pair Validation with a Fixed Exponent

The RSAKPV1 family of key-pair validation methods corresponds to the RSAKPG1 family of

key-pair generation methods (see Section 6.3.1).

6.4.1.2.1 rsakpv1-basic

rsakpv1-basic is the key-pair validation method corresponding to rsakpg1-basic (see Section

6.3.1.1).

Function call: rsakpv1-basic (s, nBits, efixed, (npub, epub), (npriv, d))

Input:

1. s: the target security strength;

2. nBits: the expected length in bits of the RSA modulus;

3. efixed: the intended fixed public exponent an odd integer such that 65 537 ≤ efixed < 2256;

4. (npub, epub): the RSA public key to be validated; and

5. (npriv, d): the RSA private key to be validated in the basic format.

Process:

1. Check the ranges:

 44

a. If s is not the integer 112 or 128, output an indication that the security strength is

incorrect, and exit without further processing.

b. If nBits is not the integer 2048 or 3072, output an indication that the modulus

length is incorrect, and exit without further processing.

c. If efixed is not an odd integer such that 65 537 ≤ efixed < 2256, output an indication

that the fixed exponent is out of range, and exit without further processing.

2. Compare the public exponents:

If epub efixed, output an indication that the request is invalid, and exit without further

processing.

3. Check the modulus:

a. If npub npriv, output an indication of an invalid key pair, and exit without further

processing.

b. If the length in bits of the modulus npub is not nBits, output an indication of an

invalid key pair, and exit without further processing.

4. Prime factor recovery:

a. Recover the prime factors p and q from the modulus npub, the public exponent

epub and the private exponent d (see Appendix C):

(p, q) = RecoverPrimeFactors (npub, epub, d)

b. If RecoverPrimeFactors outputs an indication that the prime factors were not

found, output an indication that the request is invalid, and exit without further

processing.

c. If npub pq, then output an indication that the request is invalid, and exit

without further processing.

5. Check the prime factors:

a. Apply an approved primality test to test the prime number p (see Appendix C.3

in [FIPS 186]).

b. If the primality test indicates that p is not prime, output an indication of an invalid

key pair, and exit without further processing.

c. If (p < 2(2nBits/2-1)) or (p > 2nBits/2 – 1), output an indication of an invalid key pair,

and exit without further processing.

d. If GCD (p – 1, epub) 1, output an indication of an invalid key pair, and exit

without further processing.

e. Apply an approved primality test to test the prime number q (see Appendix C.3

in [FIPS 186]).

 45

f. If the primality test indicates that q is not prime, output an indication of an invalid

key pair, and exit without further processing.

g. If (q < 2(2nBits/2-1)) or (q > 2nBits/2 – 1), output an indication of an invalid key

pair. and exit without further processing.

h. If GCD (q – 1, epub) 1, output an indication of an invalid key pair, and exit

without further processing.

i. If |p – q| 2nBits/2-100 output an indication of an invalid key pair, and exit without

further processing.

6. Check that the private exponent d satisfies

a. 2nBits/2< d < LCM (p – 1, q – 1).

and

b. 1 = (d · epub) mod LCM (p – 1, q – 1).

If either check fails, output an indication of an invalid key pair, and exit without further

processing.

7. Output an indication that the key pair is valid.

Output:

1. status: An indication that the key pair is valid or an indication of an error.

Errors: Indications of the following:

1. The security strength is incorrect,

2. The modulus length is incorrect,

3. The fixed exponent is out of range,

4. The key pair is invalid.

A routine that implements this validation function shall destroy any local copies of p, q and d, as

well as any other locally stored values used or produced during its execution. Their destruction

shall occur prior to or during any exit from the routine (whether exiting early, because of an

error, or exiting normally).

6.4.1.2.2 rsakpv1-prime-factor

rsakpv1-prime-factor is the key-pair validation method corresponding to rsakpg1-prime-factor

(see 6.3.1.2).

Function call: rsakpv1-prime-factor (s, nBits, efixed, (npub, epub), (p, q, d))

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1), except

that the private key is in the prime-factor format: (p, q, d).

 46

The steps are the same as in rsakpv1-basic except that in processing:

A. Step 3 is replaced by the following:

3. Check the modulus:

a. If npub pq, output an indication of an invalid key pair, and exit without further

processing.

b. If the length in bits of the modulus npub is not nBits, output an indication of an

invalid key pair, and exit without further processing.

B. Step 4 (prime factor recovery) is omitted.

A routine that implements this validation function shall destroy any local copies of p, q, and d, as

well as any other locally stored values used or produced during its execution. Their destruction

shall occur prior to or during any exit from the routine (whether exiting early, because of an

error, or exiting normally).

6.4.1.2.3 rsakpv1-crt

rsakpv1-crt is the key-pair validation method corresponding to rsakpg1-crt.

Function call: rsakpv1-crt (s, nBits, efixed, (npub, epub), (npriv, epriv, d, p, q, dP, dQ, qInv))

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1), except

that the private key is in the Chinese Remainder Theorem format: (npriv, epriv, d, p, q, dP, dQ,

qInv).

The steps are the same as in rsakpv1-basic except that in processing:

A. Step 2 is replaced by the following:

2. Compare the public exponents:

If (epub efixed) or (epub epriv), output an indication of an invalid key pair, and exit

without further processing.

B. Step 3 is replaced by

3. Check the modulus:

a. If npub pq, or npub npriv, output an indication of an invalid key pair, and

exit without further processing.

b. If the length in bits of the modulus npub is not nBits, output an indication of

an invalid key pair, and exit without further processing.

C. Step 4 (prime factor recovery) is omitted,

D. Step 7 is replaced by the following:

7. Check the CRT components: Check that the components dP, dQ and qInv satisfy

a. 1 < dP < (p – 1).

 47

b. 1 < dQ < (q – 1).

c. 1 < qInv < p .

d. 1 = (dP · efixed) mod (p – 1).

e. 1 = (dQ · efixed) mod (q – 1).

f. 1 = (qInv · q) mod p .

If any of the criteria in Section 6.2.1 are not met, output an indication of an

invalid key pair, and exit without further processing.

8. Output an indication that the key pair is valid.

A routine that implements this validation function shall destroy any local copies of p, q, d, dP,

dQ, and qInv, as well as any other locally stored values used or produced during its execution.

Their destruction shall occur prior to or during any exit from the routine (whether exiting early,

because of an error, or exiting normally).

6.4.1.3 RSAKPV2 Family: RSA Key-Pair Validation with a Random Exponent

The RSAKPV2 family of key-pair validation methods corresponds to RSAKPG2 family of key-

pair generation methods (see Section 6.3.2).

6.4.1.3.1 rsakpv2-basic

rsakpv2-basic is the validation method corresponding to rsakpg2-basic (see Section 6.3.2.1).

Function call: rsapkv2-basic (s, nBits, eBits, (npub, e), (npriv, d))

The method is the same as the rsapkv1-basic method in Section 6.4.1.2.1, except that:

A. The efixed input parameter becomes eBits, which is the expected length in bits of the

public exponent, an integer such that 17 ≤ eBits ≤ 256.

B. Step 1c is replaced by:

c. If (eBits < 17) or (eBits > 256), output an indication that the exponent is out of

range, and exit without further processing.

C. Step 2 is replaced by:

2. Check the public exponent.

If the public exponent epub is not odd, or if the length in bits of the public

exponent epub is not eBits, output an indication of an invalid key pair, and exit

without further processing.

A routine that implements this validation function shall destroy any local copies of p, q, and d, as

well as any other locally stored values used or produced during its execution. Their destruction

shall occur prior to or during any exit from the routine (whether exiting early, because of an

error, or exiting normally).

 48

6.4.1.3.2 rsakpv2-prime-factor

rsakpv2-prime-factor is the key-pair validation method corresponding to rsakpg2-prime-factor

key-pair generation method (see Section 6.3.2.2).

Function call: rsakpv2-prime-factor (s, nBits, eBits, (npub, epub), (p, q, d))

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1), except

that the private key is in the prime factor format: (p, q, d).

The steps are the same as in rsakpv1-basic (see Section 6.4.1.2.1), except that:

A. The efixed input parameter becomes eBits, which is the expected length in bits of the

public exponent, an integer such that 17 ≤ eBits ≤ 256.

B. Step 1c is replaced by:

c. If (eBits < 17) or (eBits > 256), output an indication that the exponent is out of

range, and exit without further processing.

C. Step 2 is replaced by:

2. Check the public exponent.

If the public exponent epub is not odd, or if the length in bits of the public

exponent epub is not eBits, output an indication of an invalid key pair, and exit

without further processing.

D. Step 3 is replaced by the following:

3. Check the modulus:

a. If npub pq, output an indication of an invalid key pair, and exit without

further processing.

b. If the length in bits of the modulus npub is not nBits, output an indication of

an invalid key pair, and exit without further processing.

E. Step 4 (prime factor recovery) is omitted.

A routine that implements this validation function shall destroy any local copies of p, q, and d, as

well as any other locally stored values used or produced during its execution. Their destruction

shall occur prior to or during any exit from the routine (whether exiting early, because of an

error, or exiting normally).

6.4.1.3.3 rsakpv2-crt

rsakpv2-crt is the key-pair validation method corresponding to rsakpg2-crt key-pair generation

method (see Section 6.3.1.3).

Function call: rsakpv2-crt (s, nBits, eBits, (npub, epub), (npriv, epriv, d, p, q, dP, dQ, qInv))

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1), except

that the private key is in the Chinese Remainder Theorem format: (npriv, epriv, d, p, q, dP, dQ,

qInv).

 49

The steps are the same as in rsakpv1-basic (see Section 6.4.1.2.1), except that:

A. The efixed input parameter becomes eBits, which is the expected length in bits of the

public exponent, an integer such that 17 ≤ eBits ≤ 256.

B. Step 1c is replaced by:

c. If (eBits < 17) or (eBits > 256), output an indication that the exponent is out of

range, and exit without further processing.

C. Step 2 is replaced by the following:

2. Compare the public exponents:

If (epub epriv) or (epub is not odd) or (length in bits of epub is not eBits), output an

indication of an invalid key pair, and exit without further processing.

D. Step 3 is replaced by

3. Check the modulus:

a. If (npub pq) or (npub npriv) output an indication of an invalid key pair,

and exit without further processing.

b. If the length in bits of the modulus npub is not nBits, output an indication of

an invalid key pair, and exit without further processing.

E. Step 4 (prime factor recovery) is omitted,

F. Step 7 is replaced by the following:

7. Check the CRT components: Check that the components dP, dQ and qInv satisfy

a) 1 < dP < (p – 1).

b) 1 < dQ < (q – 1).

c) 1 < qInv < p .

d) 1 = (dP · epub) mod (p – 1).

e) 1 = (dQ · epub) mod (q – 1).

f) 1 = (qInv · q) mod p.

If any of the criteria in Section 6.2.1 are not met, output an indication of an

invalid key pair, and exit without further processing.

8. Output an indication that the key pair is valid.

A routine that implements this validation function shall destroy any local copies of p, q, d, dP,

dQ, and qInv, as well as any other locally stored values used or produced during its execution.

 50

Their destruction shall occur prior to or during any exit from the routine (whether exiting early,

because of an error, or exiting normally).

6.4.1.4 RSA Key-Pair Validation (Intended Exponent-Creation Method Unknown)

Public-key validation may be performed when the intended fixed value or intended length of the

public exponent is unknown by the entity performing the validation (i.e., the entity is unaware of

whether the key pair was generated as specified in Section 6.3.1 or as specified in Section 6.3.2).

The entity performing the validation (i.e., the key-pair owner or a TTP trusted by the owner)

knows only the key pair to be validated and its representation (i.e., either basic, prime factor or

crt).

6.4.1.4.1 basic-pkv

In this format, the private key is represented as (n, d).

Function call: basic_pkv (s, nBits, (npub, epub), (npriv, d))

The method is the same as the rsapkv1-basic method in Section 6.4.1.2.1, except that:

A. A value for efixed is not available as an input parameter.

B. Step 1.c is replaced by:

If epub is not an odd integer such that 65 537 ≤ epub < 2256, output an indication that the

fixed exponent is out of range, and exit without further processing.

C. Step 2 is not performed.

A routine that implements this validation function shall destroy any local copies of p, q, and d, as

well as any other locally stored values used or produced during its execution. Their destruction

shall occur prior to or during any exit from the routine (whether exiting early, because of an

error, or exiting normally).

6.4.1.4.2 prime-factor-pkv

In this format, the private key is represented as (p, q, d).

Function call: prime-factor_pkv (s, nBits, (npub, epub), (p, q, d))

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1), except

that the private key is in the prime factor format: (p, q, d).

The steps are the same as in rsakpv1-basic (see Section 6.4.1.2.1), except that:

A. A value for efixed is not available as an input parameter.

B. Step 1.c is replaced by:

If epub is not an odd integer such that 65 537 ≤ epub < 2256, output an indication that the

fixed exponent is out of range, and exit without further processing.

C. Step 2 is not performed.

D. Step 3 is replaced by the following:

 51

3. Check the modulus:

a. If npub pq, output an indication of an invalid key pair, and exit without

further processing.

b. If the length in bits of the modulus npub is not nBits, output an indication of

an invalid key pair, and exit without further processing.

E. Step 4 (prime factor recovery) is omitted.

A routine that implements this validation function shall destroy any local copies of p, q, and d, as

well as any other locally stored values used or produced during its execution. Their destruction

shall occur prior to or during any exit from the routine (whether exiting early, because of an

error, or exiting normally).

6.4.1.4.3 crt_pkv

In this format, the private key is represented as (n, e, d, p, q, dP. dQ, qInv).

Function call: crt_pkv(s, nBits, (npub, epub), (npriv, epriv, d, p, q, dP, dQ, qInv))

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1), except

that the private key is in the Chinese Remainder Theorem (CRT) format: (npriv, epriv, d, p, q, dP,

dQ, qInv).

The steps are the same as in rsakpv1-basic (see Section 6.4.1.2.1), except that:

A. A value for efixed is not available as an input parameter.

B. Step 1c is replaced by:

If epub is not an odd integer such that 65 537 ≤ epub < 2256, output an indication that the

fixed exponent is out of range, and exit without further processing.

C. Step 2 is not performed.

D. Step 3 is replaced by

3. Check the modulus:

a. If (npub pq) or (npub npriv), output an indication of an invalid key pair,

and exit without further processing.

b. If the length in bits of the modulus npub is not nBits, output an indication of

an invalid key pair, and exit without further processing.

E. Step 4 (prime factor recovery) is omitted,

F. Step 7 is replaced by the following:

7. Check the CRT components: Check that the components dP, dQ and qInv satisfy

a) 1 < dP < (p – 1).

b) 1 < dQ < (q – 1).

 52

c) 1 < qInv < p .

d) 1 = (dP · epub) mod (p – 1).

e) 1 = (dQ · epub) mod (q – 1).

f) 1 = (qInv · q) mod p.

If any of the criteria in Section 6.2.1 are not met, output an indication of an

invalid key pair, and exit without further processing.

8. Output an indication that the key pair is valid.

A routine that implements this validation function shall destroy any local copies of p, q, dP, dQ,

and qInv, as well as any other locally stored values used or produced during its execution. Their

destruction shall occur prior to or during any exit from the routine (whether exiting early,

because of an error, or exiting normally).

6.4.1.5 Owner Assurance of Private-Key Possession

An owner’s initial assurance of possession of his private key is obtained when assurance of key-

pair validity is obtained (see Section 6.4.1.1); assurance of key-pair validity is required prior to

the owner’s use of a key pair for key establishment. As time passes, an owner could lose

possession of the private key of a key pair. For this reason, renewing the assurance of possession

may be appropriate for some applications (i.e., assurance of possession can be refreshed). A

discussion of the effect of time on the assurance of private-key possession is provided in SP 800-

89 [SP 800-89].

Renewed assurance that the owner continues to possess the correct associated private key shall

be obtained in one or more of the following ways:

1. The key-pair owner renews assurance of key-pair validity – The owner obtains assurance

of renewed key-pair validity (see Section 6.4.1.1), thereby also obtaining renewed

assurance of private key possession.

2. The key-pair owner receives renewed assurance via key confirmation – The owner

employs the key pair to successfully engage another party in a key-agreement transaction

using a scheme from the KAS2 family that incorporates key confirmation. The key

confirmation shall be performed with the owner as key-confirmation recipient in order to

obtain assurance that the private key functions correctly.

- The KAS2-Party_V-confirmation scheme in Section 8.3.3.2 can be used to provide

assurance to party U that party V possesses the private key associated with party V’s

public key (PubKeyV) used during the key-agreement transaction.

- The KAS2-Party_U-confirmation scheme in Section 8.3.3.3 can be used to provide

assurance to party V that party U possesses the private key associated with party U’s

public key (PubKeyU) used during the key-agreement transaction.

- The KAS2-bilateral-confirmation scheme in Section 8.3.3.4 can be used to provide

assurance to each party that the other party possesses the private key associated with

that party’s public key that is used during the key-agreement transaction.

 53

3. The owner receives assurance via an encrypted certificate - The key-pair owner uses the

private key while engaging in a key-establishment transaction with a Certificate

Authority (trusted by the owner) using a scheme in this Recommendation, after providing

the CA with the corresponding public key. As part of this transaction, the CA generates a

(new) certificate containing the owner’s public key and encrypts that certificate using

(some portion of) the symmetric keying material that has been established. Only the

encrypted form of the certificate is provided to the owner. By successfully decrypting the

certificate and verifying the CA’s signature, the owner obtains assurance of possession of

the correct private key (at the time of the key-establishment transaction).

The key-pair owner (or agents trusted to act on the owner’s behalf) should determine that the

method used for obtaining renewed assurance of the owner’s possession of the correct private

key is sufficient and appropriate to meet the security requirements of the owner’s intended

application(s).

6.4.2 Assurances Required by a Public-Key Recipient

In this Recommendation, the recipient of a public key is an entity that does not (and should not)

have access to the corresponding private key of the other party. The recipient of a candidate

public key shall have:

1. Assurance of the arithmetic validity of the other party’s public key before using it in a

key-establishment transaction with its claimed owner, and

2. Assurance that the claimed public-key owner (i.e., the other party) actually possesses the

private key corresponding to that public key.

6.4.2.1 Obtaining Assurance of Public-Key Validity for a Received Public Key

The recipient shall obtain assurance of public-key validity using one or more of the following

methods:

1. Recipient Partial Public-Key Validation - The recipient performs a successful partial

public-key validation (see Section 6.4.2.2).

2. TTP Partial Public-Key Validation – The recipient receives assurance that a trusted third

party (trusted by the recipient) has performed a successful partial public-key validation

(see Section 6.4.2.2).

3. TTP Key-Pair Validation – The recipient receives assurance that a trusted third party

(trusted by the recipient and the owner) has performed key-pair validation in accordance

with Section 6.4.1.1 (step 3.b).

Note that the use of a TTP to perform key-pair validation (method 3) implies that both the owner

and any recipient of the public key trust that the TTP will not use the owner’s private key to

masquerade as the owner or otherwise compromise the key-establishment transaction.

6.4.2.2 Partial Public-Key Validation for RSA

Partial public-key validation for RSA consists of conducting plausibility tests. These tests

determine whether the public modulus and public exponent are plausible, not necessarily

whether they are completely valid, i.e., they may not conform to all RSA key-generation

 54

requirements as specified in this Recommendation. Plausibility tests can detect unintentional

errors with a reasonable probability. Note that full RSA public-key validation is not specified in

this Recommendation, as it is an area of research. Therefore, if an application requires assurance

of full public-key validation, then another approved key-establishment method shall be used.

Plausibility tests shall include the tests specified in SP 800-89 [SP 800-89], Section 5.3.3, with

the caveat that the length of the modulus shall be a length that is specified in this

Recommendation.

6.4.2.3 Recipient Assurances of an Owner’s Possession of a Private Key

When two parties engage in a key-establishment transaction, there is (at least) an implicit claim

of ownership made whenever a public key is provided on behalf of a particular party. That party

is considered to be a claimed owner of the corresponding key pair – as opposed to being a true

owner – until adequate assurance can be provided that the party is actually the one authorized to

use the private key. The claimed owner can provide such assurance by demonstrating its

knowledge of that private key.

The recipient of another party’s public key shall obtain an initial assurance that the other party

(i.e., the claimed owner of the public key) actually possesses the associated private key, either

prior to or concurrently with performing a key-establishment transaction with that other party.

Obtaining this assurance is addressed in Sections 6.4.2.3.1 and 6.4.2.3.2. As time passes,

renewing the assurance of possession may be appropriate for some applications; assurance of

possession can be renewed as specified in Section 6.4.2.3.2. A discussion of the effect of time on

the assurance of private-key possession is provided in SP 800-89 [SP 800-89].

As part of the proper implementation of this Recommendation, system users and/or agents

trusted to act on their behalf should determine which of the methods for obtaining assurance of

possession meet their security requirements. The application tasked with performing key

establishment on behalf of a party should determine whether or not to proceed with a key-

establishment transaction, based upon the perceived adequacy of the method(s) used. Such

knowledge may be explicitly provided to the application in some manner, or may be implicitly

provided by the operation of the application itself.

If a binding authority is the public-key recipient: At the time of binding an owner’s identifier to

his public key, the binding authority (i.e., a trusted third party, such as a CA) shall obtain

assurance that the owner is in possession of the correct private key. This assurance shall either

be obtained using one of the methods specified in Section 6.4.2.3.2 (e.g., with the binding

authority acting as the public-key recipient) or by using an approved alternative (see SP 800-57,

Part 1, Sections 5.2 and 8.1.5.1.1.2).

Recipients not acting in the role of a binding authority: The recipients shall obtain this assurance

either through a trusted third party (see Section 6.4.2.3.1) or directly from the owner (i.e., the

other party) (see Section 6.4.2.3.2) before using the derived keying material for purposes beyond

those required during the key-establishment transaction itself. If the recipient chooses to obtain

this assurance directly from the other party (i.e., the claimed owner of that public key), then to

comply with this Recommendation, the recipient shall use one of the methods specified in

Section 6.4.2.3.2.

Note that the requirement that assurance of possession be obtained before using the established

keying material for purposes beyond those of the key-establishment transaction itself does not

 55

prohibit the parties to a key-establishment transaction from using a portion of the derived or

transported keying material during the key-establishment transaction for purposes required by

that key-establishment scheme. For example, in a transaction involving a key-agreement scheme

that incorporates key confirmation, the parties establish a (purported) shared secret, derive

keying material, and — as part of that same transaction — use a portion of the derived keying

material as the MAC key in their key-confirmation computations.

6.4.2.3.1 Recipient Obtains Assurance from a Trusted Third Party

The recipient of a public key may receive assurance that its owner (i.e., the other party in the

key-establishment transaction) is in possession of the correct private key from a trusted third

party (trusted by the recipient), either before or during a key-establishment transaction that

makes use of that public key. The methods used by a third party trusted by the recipient to obtain

that assurance are beyond the scope of this Recommendation (see however, the discussion in

Section 6.4.2.3.2 and Section 8.1.5.1.1.2 of SP 800-57 [SP 800-57]).

The recipient of a public key (or agents trusted to act on behalf of the recipient) should know the

method(s) used by the third party, in order to determine that the assurance obtained on behalf of

the recipient is sufficient and appropriate to meet the security requirements of the recipient’s

intended application(s).

6.4.2.3.2 Recipient Obtains Assurance Directly from the Claimed Owner (i.e., the Other

Party)

The recipient of a public key can directly obtain assurance of the claimed owner’s current

possession of the corresponding private key by successfully completing a key-establishment

transaction that explicitly incorporates key confirmation, with the claimed owner serving as the

key-confirmation provider. Note that the recipient of the public key in question will also be the

key-confirmation recipient. Also note that this use of key confirmation is an additional benefit

beyond its use to confirm that two parties possess the same keying material.

There are a number of key-establishment schemes specified in this Recommendation that can be

used. In order to claim conformance with this Recommendation, the key-establishment

transaction during which the recipient of a public key seeks to obtain assurance of its owner’s

current possession of the corresponding private key shall employ one of the following approved

key-establishment schemes:

1. The KAS1-Party_V-confirmation scheme in Section 8.2.3.2 can be used to provide

assurance to party U that party V possesses the private key corresponding to party V’s

public key (PubKeyV) that is used during the key-agreement transaction.

2. The KAS2-Party_V-confirmation scheme in Section 8.3.3.2 can be used to provide

assurance to party U that party V possesses the private key corresponding to party V’s

public key (PubKeyV) that is used during the key-agreement transaction.

3. The KAS2-Party_U-confirmation scheme in Section 8.3.3.3 can be used to provide

assurance to party V that party U possesses the private key corresponding to party U’s

public key (PubKeyU) that is used during the key-agreement transaction.

 56

4. The KAS2-bilateral-confirmation scheme in Section 8.3.3.4 can be used to provide

assurance to each party that the other party possesses the private key corresponding to the

other party’s public key that is used during the key-agreement transaction.

5. The KTS-OAEP-Party_V-confirmation scheme in Section 9.2.4.2 can be used to provide

assurance to party U (the key-transport sender) that party V (the key-transport receiver)

possesses the private key corresponding to party V’s public key (PubKeyV) that is used

during the key-transport transaction.

6. The KTS-KEM-KWS-Party_V-confirmation scheme in Section 9.3.4.2 can be used to

provide assurance to party U (the key-transport sender) that party V (the key-transport

receiver) possesses the private key corresponding to party V’s public-key (PubKeyV) that

is used during the key-transport transaction.

The recipient of a public key (or agents trusted to act on the recipient’s behalf) shall determine

whether or not using one of the key-establishment schemes in this Recommendation to obtain

assurance of possession through key confirmation is sufficient and appropriate to meet the

security requirements of the recipient’s intended application(s). Other approved methods (e.g.,

see Section 5.4.4 of SP 800-57-Part 1 [SP 800-57]) of directly obtaining this assurance of

possession from the owner are also allowed. If obtaining assurance of possession directly from

the owner is not acceptable, then assurance of possession shall be obtained indirectly as

discussed in Section 6.4.2.3.1.

Successful key confirmation (performed in the context described in this Recommendation)

demonstrates that the correct private key has been used in the key-confirmation provider’s

calculations, and thus also provides assurance that the claimed owner is the true owner.

The assurance of possession obtained via the key-confirmation schemes identified above may be

useful even when the recipient has previously obtained independent assurance that the claimed

owner of a public key is indeed its true owner. This may be appropriate in situations where the

recipient desires renewed assurance that the owner possesses the correct private key (and that the

owner is still able to use it correctly), including situations where there is no access to a trusted

party who can provide renewed assurance of the owner’s continued possession of the private

key.

7 Primitives and Operations

7.1 Encryption and Decryption Primitives

RSAEP and RSADP are the basic encryption and decryption primitives from the RSA

cryptosystem [RSA 1978], specified in [PKCS 1]. RSAEP produces ciphertext from keying

material using a public key; RSADP recovers the keying material from the ciphertext using the

corresponding private key. The primitives assume that the RSA public key is valid.

7.1.1 RSAEP

RSAEP produces ciphertext using an RSA public key.

Function call: RSAEP((n, e), k)

Input:

 57

1. (n, e): the RSA public key.

2. k: an integer such that 1 < k < n – 1.

Assumption: The RSA public key is valid (see Section 6.4).

Process:

1. If k does not satisfy 1 < k < n – 1, output an indication that k is out of range, and exit

without further processing.

2. Let c = (k)e mod n.

3. Output c.

Output:

 c: the ciphertext, an integer such that 1 < c < n – 1, or an error indicator.

A routine that implements this primitive shall destroy any local copies of the input k, as well as

any other potentially sensitive locally stored values used or produced during its execution. Their

destruction shall occur prior to or during any exit from the routine (whether exiting early,

because of an error, or exiting normally, with the output of c).

7.1.2 RSADP

RSADP is the basic decryption primitive. It recovers plaintext from ciphertext using an RSA

private key.

Function call: RSADP((n, d), c)

Input:

1. (n, d): the RSA private key.

2. c: the ciphertext, such that 1 < c < n – 1.

Process:

1. If the ciphertext c does not satisfy 1 < c < n – 1, output an indication that the ciphertext is

out of range, and exit without further processing.

2. Let k = cd mod n.

3. Output k.

Output:

 k: an integer such that 1 < k < n – 1, or an error indicator.

Note:

Care should be taken to ensure that an implementation of RSADP does not reveal even

partial information about the value of k. An opponent who can reliably obtain particular bits

 58

of k for sufficiently many chosen ciphertext values may be able to obtain the full decryption

of an arbitrary ciphertext by applying the bit-security results of Håstad and Näslund [HN

1998].

A routine that implements this primitive shall destroy any local copies of the input d, as well as

any other potentially sensitive locally stored values used or produced during its execution (such

as any locally stored portions of k). Their destruction shall occur prior to or during any exit from

the routine (whether exiting early, because of an error, or exiting normally, with the output of k).

Note that the requirement for destruction includes any locally stored portions of the output.

7.2 Encryption and Decryption Operations

7.2.1 RSA Secret-Value Encapsulation (RSASVE)

The RSASVE generate operation is used by one party in a key-establishment transaction to

generate and encrypt a secret value to produce ciphertext using the public key-establishment key

of the other party. When this ciphertext is received by that other party, and the secret value is

recovered (using the RSASVE recover operation and the corresponding private key-

establishment key), the secret value is then considered to be a shared secret. Secret-value

encapsulation employs a Random Bit Generator (RBG) to generate the secret value.

The RSASVE generate and recovery operations specified in Sections 7.2.1.2 and 7.2.1.3,

respectively, are based on the RSAEP and RSADP primitives (see Section 7.1). These operations

are used by the KAS1 and KAS2 key-agreement families (see Sections 8.2 and 8.3), and by the

RSA-KEM KWS key-transport family (see Sections 9.3 and 7.2.3).

7.2.1.1 RSASVE Components

RSASVE uses the following components:

1. RBG: An approved random bit generator (see Section 5.3).

2. RSAEP: RSA Encryption Primitive (see Section 7.1.1).

3. RSADP: RSA Decryption Primitive (see Section 7.1.2).

7.2.1.2 RSASVE Generate Operation

RSASVE.GENERATE generates a secret value and corresponding ciphertext using an RSA public

key.

Function call: RSASVE.GENERATE((n, e))

Input:

(n, e): an RSA public key.

Assumptions: The RSA public key is valid.

Process:

1. Compute the value of nLen as the length in bytes of the modulus n.

2. Generation:

 59

a. Using the RBG (see Section 5.3), generate an nLen byte string, Z.

b. Convert Z to an integer z (See Appendix B.2):

 z = BS2I(Z, nLen).

c. If z does not satisfy 1 < z < n – 1, then go to step 2a.

3. RSA encryption:

a. Apply the RSAEP encryption primitive (see Section 7.1.1) to the integer z

using the public key (n, e) to produce an integer ciphertext c:

c = RSAEP((n, e), z).

b. Convert the ciphertext c to a ciphertext byte string C of length nLen bytes

(see Appendix B.1):

C = I2BS(c, nLen).

 4. Output the string Z as the secret value, and the ciphertext C.

Output:

Z: the secret value to be shared (a byte string of length nLen bytes), and C: the ciphertext (a

byte string of length nLen bytes).

A routine that implements this operation shall destroy any locally stored portions of Z and z, as

well as any other potentially sensitive locally stored values used or produced during its

execution. Their destruction shall occur prior to or during any exit from the routine (whether

exiting early, because of an error, or exiting normally, with the output of Z and C). Note that the

requirement for destruction includes any locally stored portions of the secret value Z included in

the output.

7.2.1.3 RSASVE Recovery Operation

RSASVE.RECOVER recovers a secret value from ciphertext using an RSA private key. Once

recovered, the secret value is considered to be a shared secret.

Function call: RSASVE.RECOVER((n, d), C)

Input:

1. (n, d): an RSA private key.

2. C: the ciphertext; a byte string of length nLen bytes.

Assumptions: The RSA private key is part of a valid key pair.

Process:

1. Compute the value of nLen as the length in bytes of the modulus n.

 60

2. Length checking:

If the length of the ciphertext C is not nLen bytes, output an indication of a decryption

error, and exit without further processing.

3. RSA decryption:

a. Convert the ciphertext C to an integer ciphertext c (see Appendix B.2):

c = BS2I(C).

b. Apply the RSADP decryption primitive (see Section 7.1.2) to the ciphertext

c using the private key (n, d) to produce an integer z:

z = RSADP((n, d), c) .

c. If RSADP indicates that the ciphertext is out of range, output an indication

of a decryption error, and exit without further processing.

d. Convert the integer z to a byte string Z of length nLen bytes (see Appendix

B.1):

Z = I2BS(z, nLen).

4. Output the string Z as the secret value (i.e., the shared secret), or an error indicator.

Output:

Z: the secret value/shared secret (a byte string of length nLen bytes), or an error indicator.

Note:

Care should be taken to ensure that an implementation does not reveal information about the

encapsulated secret value (i.e., the value of the integer z or its byte string equivalent Z). For

instance, the observable behavior of the I2BS routine should not reveal even partial

information about the byte string Z. An opponent who can reliably obtain particular bits of Z

for sufficiently many chosen ciphertext values may be able to obtain the full decryption of an

arbitrary RSA-encrypted value by applying the bit-security results of Håstad and Näslund

[HN 1998].

A routine that implements this operation shall destroy any local copies of the input d, any locally

stored portions of Z and z, and any other potentially sensitive locally stored values used or

produced during its execution. Their destruction shall occur prior to or during any exit from the

routine (whether exiting early, because of an error, or exiting normally, with the output of Z).

Note that the requirement for destruction includes any locally stored portions of the output.

7.2.2 RSA with Optimal Asymmetric Encryption Padding (RSA-OAEP)

RSA-OAEP consists of asymmetric encryption and decryption operations that are based on an

approved hash function, an approved random bit generator, a mask-generation function, and the

 61

RSAEP and RSADP primitives. These operations are used by the KTS-OAEP key-transport

schemes (see Section 9.2).

In the RSA-OAEP encryption operation, a data block is constructed by the sender (party U) from

the keying material to be transported and the hash of additional input (see Section 9.1) that is

shared by party U and the intended receiving party (party V). A random byte string is generated,

after which both the random byte string and the data block are masked in a way that binds their

values. The masked values are used to form the plaintext that is input to the RSAEP primitive,

along with the public key-establishment key of party V. The resulting RSAEP output further

binds the random byte string, the keying material and the hash of the additional data in the

ciphertext that is sent to party V.

In the RSA-OAEP decryption operation, the ciphertext and the receiving party’s (i.e., party V’s)

private key-establishment key are input to the RSADP primitive, recovering the masked values

as output. The mask-generation function is then used to reconstruct and remove the masks that

obscure the random byte string and the data block. After removing the masks, party V can

examine the format of the recovered data and compare its own computation of the hash of the

additional data to the hash value contained in the unmasked data block, thus obtaining some

measure of assurance of the integrity of the recovered data – including the transported keying

material.

RSA-OAEP can process up to nLen – 2HLen – 2 bytes of keying material, where nLen is the

length of the recipient’s RSA modulus in bytes (i.e., 256 or 384, in this Recommendation), and

HLen is the length (in bytes) of the values output by the underlying hash function.

7.2.2.1 RSA-OAEP Components

RSA-OAEP uses the following components:

1. H: An approved hash function (see Section 5.1). HLen is used to denote the

length (in bytes) of the hash function output.

2. MGF: The mask-generation function (see Section 7.2.2.2).

3. RBG: An approved random bit generator (see Section 5.3).

4. RSAEP: RSA Encryption Primitive (see Section 7.1.1).

5. RSADP: RSA Decryption Primitive (see Section 7.1.2).

7.2.2.2 The Mask Generation Function (MGF)

MGF is a mask-generation function based on an approved hash function (see Section 5.1). The

purpose of the MGF is to generate a string of bits that may be used to “mask” other bit strings.

The MGF is used by the RSA-OAEP-based schemes specified in Section 9.2.

Let hash be an approved hash function, and let hashLen denote the length of the hash function

output in bytes.

 62

For the purposes of this Recommendation, the MGF shall not be invoked more than once by

each party during a given transaction using a given MGF seed (i.e., a mask shall be derived only

once by each party from a given MGF seed).

Function call: MGF(mgfSeed, maskLen)

Auxiliary Function:

hash: an approved hash function (see Section 5.1).

Implementation-Dependent Parameters:

1. hashLen: an integer that indicates the length (in bytes) of the output block of the auxiliary

hash function, hash.

2. max_hash_inputLen: an integer that indicates the maximum-permitted length (in bytes) of

the bit string, x, that is used as input to the auxiliary hash function, hash.

Input:

1. mgfSeed: a byte string from which the mask is generated.

2. maskLen: the intended length of the mask (in bytes).

Process:

1. If maskLen > 232 hashLen, output an error indicator, and exit from this process without

performing the remaining actions.

2. If mgfSeed is more than max_hash_inputLen bytes long, then output an error indicator,

and exit this process without performing the remaining actions.

3. Set T={}, the empty string.

4. For counter from 0 to maskLen / hashLen – 1, do the following:

a) Let D = I2BS(counter, 4) (see Appendix B.1).

b) Let T = T || hash(mgfSeed || D).

 5. Output the leftmost maskLen bytes of T as the byte string mask.

Output:

The byte string mask (of length maskLen bytes), or an error indicator.

A routine that implements this function shall destroy any local copies of the input mgfSeed, any

locally stored portions of mask (e.g., any portion of T), and any other potentially sensitive locally

stored values used or produced during its execution. Their destruction shall occur prior to or

during any exit from the routine (whether exiting early, because of an error, or exiting normally,

with the output of mask). Note that the requirement for destruction includes any locally stored

portions of the output.

 63

7.2.2.3 RSA-OAEP Encryption Operation

The RSA-OAEP.Encrypt operation produces a ciphertext from keying material and additional

input using an RSA public key, as shown in Figure 4. See Section 9.1 for more information on

the additional input. Let HLen be the length in bytes of the output of hash function H.

Function call: RSA-OAEP.ENCRYPT((n, e), K, A)

Input:

1. (n, e): the receiver’s RSA public key.

2. K: the keying material; a byte string of length at most nLen – 2HLen – 2, where nLen =

256 or 384 in this Recommendation.

3. A: additional input; a byte string (may be the empty string) to be cryptographically bound

to the keying material (see Section 9.1).

Assumptions: The RSA public key is valid.

Process:

1. nLen = the length of n in bytes.

2. Length checking:

a. KLen = the length of K in bytes.

b. If KLen > nLen – 2HLen – 2, then output an indication that the keying

material is too long, and exit without further processing.

3. OAEP encoding:

a. Apply the selected hash function to compute:

HA = H(A).

HA is a byte string of length HLen. If A is an empty string, then HA is the

hash value for the empty string.

b. Construct a byte string PS consisting of nLen – KLen – 2HLen – 2 zero

bytes. The length of PS may be zero.

c. Concatenate HA, PS, a single byte with a hexadecimal value of 01, and the

keying material K to form data DB of length nLen – HLen – 1 bytes as

follows:

DB = HA || PS || 01 || K,

where 01 represents the bit string 00000001.

 64

d. Using the RBG (see Section 5.3), generate a random byte string mgfSeed of

length HLen bytes.

e. Apply the mask-generation function in Section 7.2.2.2 to compute:

dbMask = MGF(mgfSeed, nLen – HLen – 1).

f. Let maskedDB = DB dbMask.

g. Apply the mask-generation function in Section 7.2.2.2 to compute:

mgfSeedMask = MGF(maskedDB, HLen).

h. Let maskedMGFSeed = mgfSeed mgfSeedMask.

i. Concatenate a single byte with hexadecimal value 00, maskedMGFSeed, and

maskedDB to form an encoded message EM of length nLen bytes as follows:

EM = 00 || maskedMGFSeed || maskedDB

 where 00 represents the bit string 00000000.

4. RSA encryption:

a. Convert the encoded message EM to an integer em (see Appendix B.2):

em = BS2I(EM).

b. Apply the RSAEP encryption primitive (see Section 7.1.1) to the integer em

using the public key (n, e) to produce a ciphertext integer c:

c = RSAEP((n, e), em).

c. Convert the ciphertext integer c to a ciphertext byte string C of length nLen

bytes (see Appendix B.1):

C = I2BS(c, nLen).

 5. Zeroize all intermediate values and output the ciphertext C.

Output: C: the ciphertext (a byte string of length nLen bytes), or an error indicator.

A routine that implements this operation shall destroy any local copies of sensitive input values

(e.g., K and any sensitive portions of A), as well as any other potentially sensitive locally stored

values used or produced during its execution (including HA, DB, mfgSeed, dbMask, maskedDB,

mgfSeedMask, maskedMGFSeed, EM, and em). Their destruction shall occur prior to or during

any exit from the routine – whether exiting early, because of an error, or exiting normally, with

the output of C.

 65

Figure 4: RSA-OAEP Encryption Operation

7.2.2.4 RSA-OAEP Decryption Operation

RSA-OAEP.DECRYPT recovers keying material from a ciphertext and additional input using an

RSA private key as shown in Figure 5. Let HLen be the length in bytes of the output of hash

function H.

Function call: RSA-OAEP.DECRYPT((n, d), C, A)

Input:

1. (n, d): the receiver’s RSA private key.

2. C: the ciphertext; a byte string.

3. A: additional input; a byte string (may be the empty string) whose cryptographic binding

to the keying material is to be verified (see Section 9.1).

DB = HA PS 01 K

mgfSeed

MGF

MGF

EM = 00 maskedMGFSeed maskedDB

BS2I

RSAEP

I2BS

C

DB = HA PS 01 K

mgfSeed

MGF

MGF

EM = 00 maskedMGFSeed maskedDB

BS2I BS2I

RSAEPRSAEP

I2BSI2BS

C

 66

Assumptions: The RSA private key is valid.

Process:

1. Initializations:

a. nLen = the length of n in bytes. For this Recommendation, nLen = 256 or 384.

b. DecryptErrorFlag = False.

2. Check for erroneous input:

a. If the length of the ciphertext C is not nLen bytes, output an indication of

erroneous input, and exit without further processing.

b. Convert the ciphertext byte string C to a ciphertext integer c

(see Section B.2):

c = BS2I(C)

c. If the ciphertext integer c is not such that 1 < c < n – 1, output an indication of

erroneous input, and exit without further processing.

3. RSA decryption:

a. Apply the RSADP decryption primitive (see Section 7.1.2) to the ciphertext

integer c using the private key (n, d) to produce an integer em:

 em = RSADP((n, d), c).

b. Convert the integer em to an encoded message EM, a byte string of length

nLen bytes (see Appendix B.1):

EM = I2BS(em, nLen).

4. OAEP decoding:

a. Apply the selected hash function (see Section 5.1) to compute:

HA = Hash(A).

HA is a byte string of length HLen bytes.

b. Separate the encoded message EM into a single byte Y, a byte string

maskedMGFSeed′ of length HLen bytes, and a byte string maskedDB′ of

length nLen – HLen – 1 bytes as follows:

EM = Y || maskedMGFSeed′ || maskedDB′.

c. Apply the mask-generation function specified in Section 7.2.2.2 to compute:

 67

mgfSeedMask′ = MGF(maskedDB′, HLen).

d. Let mgfSeed′ = maskedMGFSeed′ mgfSeedMask′.

e. Apply the mask-generation function specified in Section 7.2.2.2 to compute:

dbMask′= MGF(mgfSeed′, nLen – HLen – 1).

f. Let DB′ = maskedDB′ dbMask′.

g. Separate DB′ into a byte string HA of length HLen bytes and a byte string X

of length nLen – 2HLen – 1 bytes as follows:

DB′ = HA′ || X.

5. Check for RSA-OAEP decryption errors:

a. If Y is not a 00 byte, then DecryptErrorFlag = True.

b. If HA′ does not equal HA, then DecryptErrorFlag = True.

c. If X does not have the form PS || 01 || K, where PS consists of zero or more

consecutive 00 bytes, then DecryptErrorFlag = True.

The type(s) of any error(s) found shall not be reported.

(See the notes below for more information.)

6. Output of the decryption process:

a. If DecryptErrorFlag = True, then output an indication of an (unspecified)

decryption error, and exit without further processing. (See the notes below for

more information.)

b. Otherwise, output K, the portion of the byte string X that follows the leading

01 byte.

Output:

K: the recovered keying material (a byte string of length at most nLen – 2HLen 2 bytes), or

an error indicator.

A routine that implements this operation shall destroy any local copies of sensitive input values

(including d and any sensitive portions of A), any locally stored portions of K, and any other

potentially sensitive locally stored values used or produced during its execution (including

DecryptErrorFlag, em, EM, HA, Y, maskedMGFSeed , maskedDB, mgfSeedMask , mfgSeed ,

dbMask , DB, HA, and X). Their destruction shall occur prior to or during any exit from the

routine – whether exiting because of an error, or exiting normally, with the output of K. Note that

the requirement for destruction includes any locally stored portions of the recovered keying

material.

Notes:

 68

1. Care should be taken to ensure that the different error conditions that may be detected

in step 5 above cannot be distinguished from one another by an opponent, whether by

error message or by process timing. Otherwise, an opponent may be able to obtain

useful information about the decryption of a chosen ciphertext C, leading to the attack

observed by Manger in [Manger 2001]. A single error message should be employed

and output the same way for each type of decryption error. There should be no

difference in the observable behavior for the different RSA-OAEP decryption errors.

2. In addition, care should be taken to ensure that even if there are no errors, an

implementation does not reveal partial information about the encoded message em or

EM. For instance, the observable behavior of the mask-generation function should

not reveal even partial information about the MGF seed employed in the process

(since that could compromise portions of the maskedDB′ segment of EM). An

opponent who can reliably obtain particular bits of EM for sufficiently many chosen-

ciphertext values may be able to obtain the full decryption of an arbitrary ciphertext

by applying the bit-security results of Håstad and Näslund [HN 1998].

Figure 5: RSA-OAEP Decryption Operation

EM = Y maskedMGFSeed’ maskedDB’

MGF

BS2I

RSADP

I2BS

C

MGF

DB’ = HA’ X

EM = Y maskedMGFSeed’ maskedDB’

MGF MGF

BS2I BS2I

RSADPRSADP

I2BSI2BS

C

MGF MGF

DB’ = HA’ X

 69

7.2.3 RSA-based Key-Encapsulation Mechanism with a Key-Wrapping Scheme
(RSA-KEM-KWS)

RSA-KEM-KWS is used by the KTS-KEM-KWS key-transport schemes (see Section 9.3). RSA-

KEM-KWS operations include a key-encapsulation method based on the RSASVE secret-value

encapsulation operations and an approved key-derivation method. These operations are used to

communicate a symmetric key-wrapping key to the intended receiving party. RSA-KEM-KWS

operations also include an approved symmetric key-wrapping method, which is used to convey

the actual keying material to the intended receiving party.

RSA-KEM-KWS can process keying material of any length supported by the key-wrapping

algorithm.

7.2.3.1 RSA-KEM-KWS Components

RSA-KEM-KWS uses the following components:

1. KDM: A key-derivation method (see Section 5.5).

2. KWA: A symmetric key-wrapping algorithm, consisting of a wrapping operation

KWA.WRAP and an unwrapping operation KWA.UNWRAP (see Section

7.2.3.2).

3. RSASVE: A secret-value encapsulation technique consisting of a pair of operations: one

that generates a secret value and encrypts it to produce ciphertext (the

RSASVE.GENERATE operation specified in Section 7.2.1.2), and another

that recovers the secret value from the ciphertext (the RSASVE.RECOVER

operation specified in Section 7.2.1.3).

4. RBG: A random bit generator (see Section 5.3).

7.2.3.2 Symmetric Key-Wrapping Methods

Symmetric key-wrapping is used to wrap (i.e., encrypt and integrity-protect) keying material. In

this Recommendation, the KTS-KEM-KWS schemes specified in Section 9.3 use a key-

wrapping operation to produce ciphertext C from keying material K using an approved key-

wrapping method and a key-wrapping key KWK.

Three methods of key wrapping are approved for RSA-KEM-KWS: CCM, KW and KWP;

CCM is specified in [SP 800-38C], while KW and KWP are specified in [SP 800-38F]. All three

methods are modes of operation for AES, as specified in FIPS 197.

For environments in which additional input may need to be wrapped with the keying material to

be transported, the CCM mode shall be used; otherwise, any of the three approved key-

wrapping methods may be used.

 70

7.2.3.2.1 Key-Wrapping using CCM

The input to the CCM mode specified in SP 800-38C includes a nonce Nonce, additional input2

A and the keying material to be wrapped3 K; the additional input could be a null string.

See Appendix A.1 in [SP 800-38C] for restrictions on the (individual and combined) lengths of

the nonce, the additional input and the keying material to be wrapped.

Also required for the CCM mode is the length of the MAC tag to be produced4 TBits; see

Appendix B.2 in [SP 800-38C] for guidance on the selection of the length of the MAC tag. The

wrapping operation encrypts the nonce, the additional input and the keying material to be

wrapped using a key-wrapping key5 KWK, resulting in C1, which includes the ciphertext

resulting from the encryption operation, together with a MAC tag of length TBits.

The additional input shall be available to both party U and party V (e.g., by an exchange of

information or using information already known by both parties). Information that may be

appropriate for inclusion in the additional input is discussed in Section 9.1.

Party U, who wraps the keying material, shall provide the nonce to the receiving party, party V.

Either party U and party V shall have agreed (in advance) on the MAC-tag length, or party U

shall send the MAC-tag length to party V, along with C1.

The key-wrapping operation using CCM is

Function call: KWA.WRAP(KWK, K, Nonce, TBits, A)

Input:

1. KWK: The key-wrapping key; a 128-, 192- or 256-bit string.

2. K: The keying material to be wrapped; a byte string.

3. Nonce: A nonce, as specified in Section 5.4; a bit string.

4. TBits: The bit length of the MAC tag to be generated; an integer.

5. A: The additional input (see Section 9.1); a byte string.

Process:

1. If ((the length of KWK is not in the set {128, 192, 256}) OR (the value of TBits or the

lengths of Nonce, K and/or A are not considered valid for the CCM mode6)), then return

an error indicator, and exit without further processing.

2 Called associated data A in SP 800-38C.

3 Called the payload P in SP 800-38C.

4 Called Tlen in SP 800-38C.

5 Called K in SP 800-38C.

6 As specified in [SP 800-38C].

 71

2. C1 = CCM.Encrypt(KWK, TBits, Nonce, K, A).

3. Return C1.

Output:

The ciphertext C1 (a byte string) or an error indicator.

Note that the inputs to the CCM.Encrypt operation in process step 2 do not exactly match the

specification of the Generation-Encryption process in [SP 800-38C], in which (the equivalents

of) KWK and TBits are listed as prerequisites, while the nonce, additional input and keying

material to be wrapped are listed as inputs.

A routine that implements this operation shall destroy any local copies of sensitive input values

(including KWK, K, and any sensitive portions of A), as well as any other potentially sensitive

locally stored values used or produced during its execution. (The CCM.Encrypt routine should

do the same.) Their destruction shall occur prior to or during any exit from the routine – whether

exiting because of an error, or exiting normally, with the output of C1.

7.2.3.2.2 Key-Unwrapping using CCM

When party V receives C1, the plaintext keying material K may be recovered from C1 using the

key-wrapping key KWK, the received or agreed-upon length of the MAC tag TBits, the received

nonce Nonce and the known value of any additional input A using the CCM mode. The

unwrapping operation recovers the keying material K from C1 (the encrypted keying material,

concatenated with a MAC tag) using the key-wrapping key KWK, Nonce and A, and verifies their

integrity using the MAC tag.

Restrictions on the nonce Nonce, the ciphertext C1, the additional input A and the length of the

MAC tag TBits are provided in [SP 800-38C].

Function: KWA.UNWRAP(KWK, C1, Nonce, TBits, A,)

Input:

1. KWK: The key-wrapping key; a 128-, 192- or 256-bit string.

2. C1: The ciphertext to be unwrapped; a byte string.

3. Nonce: A nonce, as specified in Section 5.4; a bit string.

4. TBits: The bit length of the MAC tag to be generated; an integer.

5. A: The additional input (see Section 9.1); a byte string.

Process:

1. If ((the length of KWK is not in the set {128, 192. 256}) OR (the value of TBits, or the

lengths of Nonce, C1 and/or A are not considered valid for the CCM mode7)), then return

an error indicator, and exit without further processing.

2. (status, K) = CCM.Decrypt(KWK, TBits, Nonce, A, C1).

7 As specified in [SP 800-38C].

 72

3. If (status indicates an error), return status, and exit without further processing.

4. Return K.

Output:

The plaintext keying material K (a byte string), or an error indicator.

Note that the inputs to the CCM.Decrypt operation in process step 2 do not exactly match the

specification of the Decryption-Verification process in [SP 800-38C], in which (the equivalents

of) KWK and TBits are listed as prerequisites, while the nonce, the additional input and C1 are

listed as inputs.

A routine that implements this operation shall destroy any local copies of sensitive input values

(including KWK and any sensitive portions of A), any locally stored portions of K, and any other

potentially sensitive locally stored values used or produced during its execution. (The

CCM.Decrypt routine should do the same.) Their destruction shall occur prior to or during any

exit from the routine – whether exiting early, because of an error, or exiting normally, with the

output of K. Note that the requirement for destruction includes any locally stored portions of the

unwrapped (i.e., plaintext) keying material.

7.2.3.2.3 Key Wrapping Using KW or KWP

The KW and KWP modes used for key wrapping do not include methods for handling additional

input; therefore, these methods shall not be used when additional input needs to be wrapped with

the keying material K.

The input to the KW or KWP modes specified in [SP 800-38F] is the keying material to be

wrapped8 K. The wrapping operation encrypts and integrity protects the keying material using a

key-wrapping key9 KWK. Limitations on the length of K are provided in Section 5.3.1 of [SP

800-38F].

Function: KWA.WRAP(KWK, K)

Input:

1. KWK: The key-wrapping key.

2. K: The keying material to be wrapped; a semiblock string for KW, or a byte string

for KWP (see SP 800-38F for details).

Process:

1. If the length of K is not valid, then return an error indicator and exit without further

processing.

2. C1 = Wrap(KWK, K).

3. Return C1.

8 Called the plaintext P in [SP 800-38F].

9 Called K in [SP 800-38C].

 73

Output: The ciphertext C1, or an error indicator.

In process step 2, Wrap is either KW-AE or KWP-AE, as specified in [SP 800-38F].

Also, note that the inputs to the Wrap operation in step 2 do not exactly match the specification

for the KW and KWP wrapping methods in [SP 800-38F], in which KWK is listed as a

prerequisite, while K is listed as an input.

A routine that implements this operation shall destroy any local copies of the input values KWK

and K, as well as any other potentially sensitive locally stored values used or produced during its

execution. (The Wrap routine should do the same.) Their destruction shall occur prior to or

during any exit from the routine – whether exiting because of an error, or exiting normally, with

the output of C1.

7.2.3.2.4 Key Unwrapping Using KW or KWP

The unwrapping operation recovers the keying material K from the ciphertext C1 using the key-

wrapping key KWK. Limitations on the length of C1 are provided in Section 5.3.1 of [SP 800-

38F].

Function: KWA.UNWRAP(KWK, C1)

Input:

1. KWK: The key-wrapping key.

2. C1: The ciphertext to be unwrapped; a byte string.

Process:

1. If the length of C1 is not valid, then return an error indicator, and exit without further

processing.

2. (status, K) = Unwrap(KWK, C1).

3. If (status indicates an error), return status, and exit without further processing.

4. Return K.

Output:

The plaintext keying material K, or an indication of an error.

In process step 2, Unwrap is either KW-AD or KWP-AD, as specified in [SP 800-38F].

Note that in process step 2, the returned values have been slightly altered from those specified in

[SP 800-38F]. In [SP 800-38F], either the plaintext key or a “FAIL” indicator is returned,

whereas process step 2 is specified with two return values: an indication of the status of the

operation (e.g., SUCCESS or FAIL) and the plaintext key if the Unwrap operation doesn’t

indicate “FAIL.”.

In addition, the inputs to the Unwrap operation in process step 2 do not exactly match the

specification in [SP 800-38F], in which KWK is listed as a prerequisite, while C1 is listed as an

input.

A routine that implements this operation shall destroy any local copies of the input value KWK,

any locally stored portions of K, and any other potentially sensitive locally stored values used or

 74

produced during its execution (the Unwrap routine should do the same.) Their destruction shall

occur prior to or during any exit from the routine – whether exiting early, because of an error, or

exiting normally, with the output of K. Note that the requirement for destruction includes any

locally stored portions of the unwrapped (i.e., plaintext) keying material.

7.2.3.3 RSA-KEM-KWS Encryption Operation

RSA-KEM-KWS.ENCRYPT is illustrated in Figure 6. The public key-establishment key of the

intended receiving party (i.e., party V) is input to RSASVE.GENERATE, obtaining a secret value

Z and corresponding ciphertext byte string C0. This secret value, along with any required

OtherInfo shared by the sender and the intended receiving party (see Section 5.5), is used as

input to the key-derivation method to obtain a key-wrapping key. This key-wrapping key is used

by the key-wrapping method to encrypt the keying material, producing a ciphertext byte string

C1. Depending on the key-wrapping method used, other parameters or data may be required.

The output of the RSA-KEM-KWS encryption operation is the concatenation of C0 and C1.

Function call: RSA-KEM-KWS.ENCRYPT((n, e), kwkBits, K, A)

Input:

1. (n, e): the receiver’s RSA public key.

2. kwkBits: the length of the key-wrapping key in bits; an integer.

3. K: the keying material to be wrapped; a byte string.

4. Nonce: A nonce, as specified in Section 5.4; a bit string.

5. TBits: The bit length of the MAC tag to be generated; an integer.

6. A: The additional input (see Sections 7.2.3.2.1 and 9.1); a byte string (may be the

empty string).

7. OtherInfo: A bit string of context-specific data (see Section 5.5.1.2 for details).

Assumptions: The RSA public key is valid.

Process:

1. nLen = the length of n in bytes.

2. Length checking:

a. KLen = the length of K in bytes.

b. If KLen is not consistent with the lengths supported by the key-wrapping

method used in Section 7.2.3.2, output an indication that the keying material

length is not supported, and exit without further processing.

3. Secret-value generation and encapsulation:

 75

Use the RSASVE.GENERATE operation specified in Section 7.2.1.2 to generate a secret-

value byte string Z and a corresponding RSA-ciphertext byte string C0 using party V’s

public key, where both Z and C0 are nLen bytes in length.

(Z, C0) = RSASVE.GENERATE((n, e)).

4. Key derivation:

Derive a key-wrapping key KWK of length kwkBits bits from the byte string Z

KWK = KDM(Z, kwkBits, OtherInfo),

where the OtherInfo is known by both parties (see Section 5.5).

5. Key-wrapping:

Wrap the keying material K using the key-wrapping key KWK (see Section 7.2.3.2) to

produce a KWA-ciphertext byte string C1. Depending on the key-wrapping method used,

a nonce, the length of the MAC tag to be generated, and additional input are required,

although the additional input could be a null string (see Section 7.2.3.2).

C1 = KWA.WRAP(KWK, K {, Nonce, TBits, A}) .

6. Concatenation:

Concatenate the RSA-ciphertext byte string C0 and the KWA-ciphertext byte string C1 to

form a ciphertext byte string C:

C = C0 || C1.

Output:

The ciphertext C (a byte string), or an error indicator.

Errors: An indication that the keying material length is not supported.

A routine that implements this operation shall destroy any local copies of sensitive input values

(including d and any sensitive portions of A and OtherInfo), any locally stored portions of K, and

any other potentially sensitive locally stored values used or produced during its execution (such

as Z and KWK). The RSASVE.RECOVER and KWA.UNWRAP routines shall destroy their own

locally stored quantities, as specified in Sections 7.2.1.3 and 7.2.3.2. All of this required

destruction shall occur prior to or during any exit from the RSA-KEM-KWS.DECRYPT routine –

whether exiting because of an error, or exiting normally, with the output of K. Note that the

requirement for destruction includes any locally stored portions of the plaintext keying material.

 76

Figure 6: RSA-KEM-KWS Encryption Operation

7.2.3.4 RSA-KEM-KWS Decryption Operation

RSA-KEM-KWS.DECRYPT is illustrated in Figure 7. The private key-establishment key of the

intended receiving party (i.e., party V) and C0 are input to RSASVE.RECOVER, which returns the

secret value Z. This secret value (along with any required OtherInfo) is used as input to the key-

derivation method to recover the key-wrapping key. The key-wrapping key is then used to

decrypt C1 and recover the transported keying material. Depending on the key-wrapping method

used, a nonce, a MAC-tag length and additional input are also required for the process.

Function call: RSA-KEM-KWS.DECRYPT((n, d), C, kwkBits {, Nonce, TBits, A})

Input:

1. (n, d): the recipient’s RSA private key.

2. C: the ciphertext; a byte string.

3. kwkBits: the length of the key-wrapping key in bits; an integer.

4. Nonce: A nonce, as specified in Section 5.4; a bit string.

5. TBits: The bit length of the MAC tag to be generated; an integer.

6. A: additional input; a byte string.

7. OtherInfo: A bit string of context-specific data (see Section 5.5.1.2 for details).

Assumptions: The RSA private key is valid, and the value of KBits is known.

 77

Process:

1. nLen = the length of n in bytes, where nLen = 256 or 384 in this Recommendation.

2. Length checking:

a. cLen = the length of the ciphertext string C in bytes.

b. If cLen nLen, or if cLen nLen is not consistent with the lengths supported

by the symmetric key-wrapping algorithm, output an indication of a

decryption error, and exit without further processing.

c. If kwkbits is not among the lengths appropriate for the block-cipher algorithm

used by the key-wrapping method, output an indication of a decryption error,

and exit without further processing.

3. Separation:

Separate the ciphertext byte string C into an RSA-ciphertext byte string C0 of length nLen

bytes and a KWA-ciphertext byte string C1 of length cLen nLen bytes:

C = C0 || C1.

4. Recover the secret value, which then becomes the shared secret:

 Recover the secret-value byte string Z from the RSA-ciphertext byte string C0 using the

RSASVE.RECOVER operation specified in Section 7.2.1.3.

Z = RSASVE.RECOVER((n, d), C0)

 If an indication of a decryption error is returned, output an indication of a decryption

error, and exit without further processing.

5. Key derivation:

Derive a key-wrapping key KWK of length kwkBits bits from the byte string Z

KWK = KDM(Z, kwkBits,OtherInfo),

where the OtherInfo is known by both parties (see Section 5.9).

6. Key unwrapping:

Unwrap the KWA-ciphertext byte string C1 using the key-wrapping key KWK and,

depending on the key-wrapping method used, the nonce, MAC-tag length and additional

input needed to recover the keying material K (see Section 7.2.3.2), and verify the

correctness of A:

K = KWA.UNWRAP(KWK, C1 {, Nonce, TBits, A}).

 78

If the unwrapping operation outputs an error indicator, output an indication of a

decryption error, and exit without further processing.

7. Output the keying material K.

Output:

The recovered keying material K (a byte string) that was wrapped, or an error indicator.

Errors: An indication of a decryption error.

A routine that implements this operation shall destroy any local copies of sensitive input values

(including d and any sensitive portions of A and OtherInfo), any locally stored portions of K, and

any other potentially sensitive locally stored values used or produced during its execution (such

as Z and KWK). The RSASVE.RECOVER and KWA.UNWRAP routines shall destroy their own

locally stored quantities, as specified in Sections 7.2.1.3 and 7.2.3.2. All of this required

destruction shall occur prior to or during any exit from the RSA-KEM-KWS.DECRYPT routine

– whether exiting because of an error, or exiting normally with the output of K. Note that the

requirement for destruction includes any locally stored portions of the plaintext keying material.

Notes:

1. Care should be taken to ensure that the different error conditions in Steps 2, 4, and 6

cannot be distinguished from one another by an adversary, whether by error message or

timing. Otherwise, an adversary may be able to obtain useful information about the

decryption of a chosen ciphertext C, leading to the attack observed by Manger in

[Manger 2001]. A single error message should be employed and output the same way for

each error type. There should be no difference in timing or other behavior for the

different errors.

2. In addition, care should be taken to ensure that even if there are no errors, an

implementation does not reveal partial information about the secret value Z. For instance,

the observable behavior of the KDM should not reveal even partial information about the

Z value employed in the key-derivation process. An adversary who can reliably obtain

particular bits of Z for sufficiently many chosen-RSA-ciphertext values may be able to

obtain the full decryption of an arbitrary RSA-ciphertext by applying the bit-security

results mentioned in Annex B.5.2.2 (last paragraph) of ANS X9.44 [ANS X9.44].

 79

Figure 7: RSA-KEM-KWS Decryption Operation

8 Key-Agreement Schemes

In a key-agreement scheme, two parties, party U and party V, establish keying material over

which neither has complete control of the result, but both have influence. This Recommendation

provides two families of key-agreement schemes: KAS1 and KAS2. The KAS1 family consists

of the KAS1-basic and KAS1-Party_V-confirmation schemes, and the KAS2 family consists of

the KAS2-basic, KAS2-Party_V-confirmation, KAS2-Party_U-confirmation, and KAS2-

bilateral-confirmation schemes. These schemes are based on secret-value encapsulation (see

Section 7.2.1).

Key confirmation is included in some of these schemes to provide assurance that the participants

share the same keying material; see Section 5.6 for the details of key confirmation. When

possible, each party should have such assurance. Although other methods are often used to

provide this assurance, this Recommendation makes no statement as to the adequacy of these

other methods. Key confirmation may also provide assurance of private-key possession.

For both of the KAS1 and KAS2 schemes, Party V shall have an identifier, IDV, that has an

association with the key pair that is known (or discoverable) and trusted by party U (i.e., there

shall be a trusted association between IDV and party V’s public key). For the KAS2 key-

agreement schemes, party U shall also have such an identifier, IDU.

A general flow diagram is provided for each key-agreement scheme. The dotted-line arrows

represent the distribution of public keys by the parties themselves or by a third party, such as a

Certification Authority (CA). The solid-line arrows represent the distribution of nonces or

cryptographically protected values that occur during the key-agreement scheme. Note that the

flow diagrams in this Recommendation omit explicit mention of various validation checks that

are required. The flow diagrams and descriptions in this Recommendation assume a successful

completion of the key-agreement process.

For each scheme, there are conditions that must be satisfied to enable proper use of that scheme.

These conditions are listed as assumptions. Failure to meet all such conditions could yield

 80

undesirable results, such as the inability to communicate or the loss of security. As part of the

proper implementation of this Recommendation, system users and/or agents trusted to act on

their behalf (including application developers, system installers, and system administrators) are

responsible for ensuring that all assumptions are satisfied at the time that a key-establishment

transaction takes place.

8.1 Common Components for Key Agreement

The key-agreement schemes in this Recommendation have the following common components:

1. RSASVE: RSA secret-value encapsulation, consisting of a generation operation

RSASVE.GENERATE and a recovery operation RSASVE.RECOVER (see

Section 7.2.1).

2. KDM: A key-derivation method (see Section 5.5).

8.2 KAS1 Key Agreement

For each of the KAS1 key-agreement schemes, even if both parties have key-establishment key

pairs, only party V’s key-establishment key pair is used.

The KAS1 key-agreement schemes have the following general form:

1. Party U generates a secret value (which will become a shared secret) and a corresponding

ciphertext using the RSASVE.GENERATE operation and party V’s public key-

establishment key, and then sends the ciphertext to party V.

2. Party V recovers the secret value from the ciphertext using the RSASVE.RECOVER

operation and its private key-establishment key; the secret value is then considered to be

the shared secret. Party V generates a nonce and sends it to party U.

3. Both parties then derive keying material from the shared secret and “other information”,

including party V’s nonce, using a key-derivation method. The length of the keying

material that can be agreed on is limited only by the length that can be output by the key-

derivation method.

4. If key confirmation (KC) is incorporated in the scheme, then the derived keying material

is parsed into two parts, MacKey and KeyData, and a string MacData is formed (see

Sections 5.6 and 8.2.3.2.), MacKey and MacData are used to compute a MAC tag of

length MacTagLen bytes (see Sections 5.2.1, 5.2.2, 5.6.1 and 5.6.3), and MacTag is sent

from party V (the KC provider) to party U (the KC recipient). If the MAC tag computed

by party V matches the MAC tag computed by party U, then the successful establishment

of keying material is confirmed to party U.

The following schemes are defined:

1. KAS1-basic, the basic scheme without key confirmation (see Section 8.2.2).

2. KAS1-Party_V-confirmation, a variant of KAS1-basic with unilateral key

confirmation from party V to party U (see Section 8.2.3).

For the security properties of the KAS1 key-agreement schemes, see Section 10.1.

 81

8.2.1 KAS1 Assumptions

1. Party V has been designated as the owner of a key-establishment key pair that was

generated as specified in Section 6.3. Party V has assurance of possession of the correct

value for its private key as specified in Section 6.4.1.5.

2. Party U and party V have agreed upon an approved key-derivation method (see Section

5.5), as well as an approved algorithm to be used with that method (e.g., a specific hash

function) and other associated parameters related to the cryptographic elements to be

used.

3. If key confirmation is used, party U and party V have agreed upon an approved MAC

algorithm and associated parameters, including the lengths of MacKey and MacTag (see

Section 5.2).

4. When an identifier is used to label either party during the key-agreement process, both

parties are aware of the particular identifier employed for that purpose. In particular,

when an identifier is used to label party V during the key-agreement process, that

identifier’s association with party V’s public key is trusted by party U. When an identifier

is used to label party U during the key-agreement process, it has been selected/assigned

in accordance with the requirements of the protocol relying upon the use of the key-

agreement scheme.

5. Party U has obtained assurance of the validity of party V’s public key, as specified in

Section 6.4.2.

The following is an assumption for using any keying material derived during a KAS1 key-

agreement scheme for purposes beyond those of the scheme itself.

Party U has obtained (or will obtain) assurance that party V is (or was) in possession of

the private key corresponding to the public key used during the key-agreement

transaction, as specified in Section 6.4.2.3.

This assumption recognizes the possibility that assurance of private-key possession may be

provided/obtained by means of key confirmation performed as part of a particular KAS1

transaction.

8.2.2 KAS1-basic

KAS1-basic is the basic key-agreement scheme in the KAS1 family. In this scheme, party V

does not contribute to the formation of the shared secret; instead, a nonce is used as a party V-

selected contribution to the key-derivation method, ensuring that both parties influence the

derived keying material.

Let (PubKeyV, PrivKeyV) be party V’s key-establishment key pair. Let KBits be the intended

length in bits of the keying material to be established. The parties shall perform the following or

an equivalent sequence of steps, as illustrated in Figure 8.

Party U shall execute the following key-agreement transformation in order to a) establish a

shared secret Z with party V, and b) derive secret keying material from Z.

Actions: Party U generates a shared secret and derives secret keying material as follows:

 82

1. Use the RSASVE.GENERATE operation in Section 7.2.1.2 to generate a secret value Z
and a corresponding ciphertext C using party V’s public key-establishment key

PubKeyV. Note that the secret value Z will become a shared secret when recovered by

Party V.

2. Send the ciphertext C to party V.

3. Obtain party V’s nonce NV from party V. If NV is not available, return an error

indicator without performing the remaining actions.

4. Construct the other information (e.g., OtherInfo) for key derivation (see Section 5.5)

using the nonce NV and the identifiers IDU and IDV, if available.

5. Use the agreed-upon key-derivation method (see Section 5.5) to derive secret keying

material with the specified length from the shared secret value Z and other input. If

the key-derivation method outputs an error indicator, return an error indicator without

performing the remaining actions.

6. Output the DerivedKeyingMaterial.

Any local copies of Z, OtherInfo, DerivedKeyingMaterial and any intermediate values used

during the execution of party U’s actions shall be destroyed prior to or during the termination of

the actions in steps 3, 4, and 6.

Party V shall execute the following key-agreement transformation in order to a) establish a

shared secret Z with party U, and b) derive secret keying material from Z.

Actions: Party V obtains the shared secret and derives secret keying material as follows:

1. Receive a ciphertext C from party U.

2. Use the RSASVE.RECOVER operation in Section 7.2.1.3 to recover the secret value Z
from the ciphertext C using the private key-establishment key PrivKeyV; hereafter, Z

is considered to be a shared secret. If the call to RSASVE.RECOVER outputs an error

indicator, return an error indicator without performing the remaining actions.

3. Obtain a nonce NV (see Section 5.4), and send NV to party U.

4. Construct the other information OtherInfo for key derivation (see Section 5.5) using

the nonce NV and the identifiers IDU and IDV, if available.

5. Use the agreed-upon key-derivation method to derive secret keying material with the

specified length from the shared secret value Z and other input. If the key-derivation

method outputs an error indicator, return an error indicator without performing the

remaining actions.

6. Output the DerivedKeyingMaterial.

Any local copies of Z, PrivKeyV, OtherInfo, DerivedKeyingMaterial and any intermediate values

used during the execution of party V’s actions shall be destroyed prior to or during the

termination of the actions in steps 2, 5 and 6.

Party U Party V

 83

Figure 8: KAS1-basic Scheme

The messages may be sent in a different order, i.e., NV may be sent before C.

It is extremely important that an implementation not reveal any sensitive information. It is also

important to conceal partial information about the shared secret Z to prevent chosen-ciphertext

attacks on the secret-value encapsulation scheme.

8.2.3 KAS1 Key Confirmation

The KAS1-Party_V-confirmation scheme is based on the KAS1-basic scheme.

8.2.3.1 KAS1 Key-Confirmation Components

The components for KAS1 key agreement with key confirmation are the components listed in

Section 8.1, plus the following:

MAC: A message authentication code algorithm with the following parameters (see Section

5.2),

a. MacKeyLen: the length in bytes of MacKey, and

b. MacTagLen: the length in bytes of MacTag.

For KAS1 key confirmation, the length of the keying material shall be at least 14 bytes for a

256-byte (i.e., 2048-bit) modulus, and 16 bytes for a 384-byte (i.e., 3072-bit) modulus. The

keying material is usually longer so that other keying material is available for subsequent

operations. MacKey shall be the first MacKeyLen bytes of the keying material and shall be used

only for the key-confirmation operation of a single transaction.

 (PubKeyV, PrivKeyV)

Obtain party V’s public key-
establishment key

PubKeyV

(Z, C) =
RSASVE.GENERATE(PubKeyV)

C

Z =
RSASVE.RECOVER(PrivKeyV, C)

Compute
DerivedKeyingMaterial

and destroy Z

NV

Compute
DerivedKeyingMaterial
and destroy Z

 84

8.2.3.2 KAS1-Party_V-confirmation

Figure 9 depicts a typical flow for a KAS1 scheme with unilateral key confirmation from party V

to party U. In this scheme, party V and party U assume the roles of key-confirmation provider

and recipient, respectively.

To provide (and receive) key confirmation (as described in Section 5.6.1.1), both parties set

EphemDataV = NV, and EphemDataU = C:

Party V provides MacTagV to party U (as specified in Section 5.6.1.1, with P = V and R = U),

where MacTagV is computed (as specified in Section 5.2.1) using

MacDataV = “KC_1_V” || IDV || IDU || NV || C{ || TextV}.

Party U uses the identical format and values to compute MacTagV, and then verifies that the

newly computed MacTagV matches the MacTagV value provided by party V.

The MacKey used during key confirmation shall be destroyed by party V immediately after the

computation of MacTagV, and by party U immediately after the verification of the received

MacTagV or a (final) determination that the received MacTagV is in error.

Party U Party V

 (PubKeyV, PrivKeyV)

Obtain party V’s public key-
establishment key

PubKey

(Z, C) =
RSASVE.GENERATE(PubKeyV)

C

Z =
RSASVE.RECOVER(PrivKeyV,

C)

Compute
DerivedKeyingMaterial =

MacKey || KeyData
and destroy Z

NV

Compute
DerivedKeyingMaterial =

MacKey || KeyData
and destroy Z

MacTagV =?
TMacTagBits[MAC(MacKey,

MacDataV)]

MacTagV

MacTagV =
TMacTagBits[MAC(MacKey,

MacDataV)

Figure 9: KAS1-Party_V-confirmation Scheme (from Party V to Party U)

Certain messages may be combined or sent in a different order (e.g., NV and MacTagV may be

sent together, or NV may be sent before C).

 85

8.3 KAS2 Key Agreement

In this family of key-agreement schemes, key-establishment key pairs are used by both party U

and party V.

The schemes in this family have the following general form:

1. Party U generates a secret value (which will become a component of the shared secret)

and a corresponding ciphertext using the RSASVE.GENERATE operation and party V’s

public key-establishment key, and sends the ciphertext to party V.

2. Party V recovers party U’s secret component from the ciphertext received from party U

using the RSASVE.RECOVER operation and its private key-establishment key.

3. Party V generates a secret value (which will become a second component of the shared

secret) and the corresponding ciphertext using the RSASVE.GENERATE operation and

party U’s public key-establishment key, and sends the ciphertext to party U.

4. Party U recovers party V’s secret component from the ciphertext received from party V

using the RSASVE.RECOVER operation and its private key-establishment key.

5. Both parties concatenate the two secret components to form the shared secret, and then

derive keying material from the shared secret and “other information” using a key-

derivation method. The length of the keying material that can be agreed on is limited only

by the length that can be output by the key-derivation method.

6. Party U and/or party V may additionally provide key confirmation. If key confirmation is

incorporated, then the derived keying material is parsed into two parts, MacKey and

KeyData. MacKey is then used to compute a MAC tag of MacTagLen bytes on MacData

(see Sections 5.2.1, 5.2.2, 5.6.1 and 5.6.3). MacTag is sent from the KC provider to the

KC recipient. If the MAC tag computed by the provider matches the MAC tag computed

by the recipient, then the successful establishment of keying material is confirmed by the

recipient.

The following schemes are defined:

1. KAS2-basic, the basic scheme without key confirmation (see Section 8.3.2).

2. KAS2-Party_V-confirmation, a variant of KAS2-basic with unilateral key

confirmation from party V to party U (see Section 8.3.3.2).

3. KAS2-Party_U-confirmation, a variant of KAS2-basic with unilateral key

confirmation from party U to party V (see Section 8.3.3.3).

4. KAS2-bilateral-confirmation, a variant of KAS2-basic with bilateral key

confirmation between party U and party V (see Section 8.3.3.4).

For the security properties of the KAS2 key-agreement schemes, see Section 10.2.

8.3.1 KAS2 Assumptions

1. Each party has been designated as the owner of a key-establishment key pair that was

generated as specified in Section 6.3. Prior to or during the key-agreement process, each

 86

party has obtained assurance of its possession of the correct value for its own private key

as specified in Section 6.4.1.5.

2. The parties have agreed upon an approved key-derivation method (see Section 5.6), as

well as an approved algorithm to be used with that method (e.g., a hash function) and

other associated parameters to be used for key derivation.

3. If key confirmation is used, party U and party V have agreed upon an approved MAC

algorithm and associated parameters, including the lengths of MacKey and MacTag (see

Section 5.2). The parties must also agree on whether one party or both parties will send

MacTag, and in what order.

4. When an identifier is used to label a party during the key-agreement process, that

identifier has a trusted association to that party’s public key. (In other words, whenever

both the identifier and public key of one participant are employed in the key-agreement

process, they are associated in a manner that is trusted by the other participant.) When an

identifier is used to label a party during the key-agreement process, both parties are aware

of the particular identifier employed for that purpose.

5. Each party has obtained assurance of the validity of the public keys that are used during

the transaction, as specified in Section 6.4.2.3.

The following is an assumption for using any keying material derived during a KAS2 key-

agreement scheme for purposes beyond those of the scheme itself.

Each party has obtained (or will obtain) assurance that the other party is (or was) in

possession of the private key corresponding to their public key that was used during the

key-agreement transaction, as specified in Section 6.4.2.3.

This assumption recognizes the possibility that assurance of private-key possession may be

provided/obtained by means of key confirmation performed as part of a particular KAS2

transaction.

8.3.2 KAS2-basic

Figure 10 depicts the typical flow for the KAS2-basic scheme. The parties exchange secret

values that are concatenated together to form the mutually determined shared secret to be input

to the key-derivation method.

Party U shall execute the following key-agreement transformation in order to a) establish a

mutually determined shared secret Z with party V, and b) derive secret keying material from Z.

Actions: Party U generates a shared secret and derives secret keying material as follows:

1. Use the RSASVE.GENERATE operation in Section 7.2.1.2 to generate a secret value

ZU and a corresponding ciphertext CU using party V’s public key-establishment key

PubKeyV.

2. Send the ciphertext CU to party V.

3. Receive a ciphertext CV from party V. If CV is not available, return an error indicator

without performing the remaining actions.

4. Use the RSASVE.RECOVER operation in Section 7.2.1.3 to recover ZV from the

ciphertext CV using the private key-establishment key PrivKeyU. If the call to

 87

RSASVE.RECOVER outputs an error indicator, return an error indicator without

performing the remaining actions.

5. Construct the mutually determined shared secret Z from ZU and ZV

Z = ZU || ZV.

6. Construct the other information (e.g., OtherInfo) for key derivation (see Section 5.5)

using the identifiers IDU and IDV, if available.

7 Use the agreed-upon key-derivation method (see Section 5.6) to derive secret keying

material with the specified length from the shared secret Z and other input. If the key-

derivation method outputs an error indicator, return an error indicator without

performing the remaining actions.

8. Output the DerivedKeyingMaterial.

Any local copies of Z, ZU, ZV, PrivKeyU, OtherInfo, DerivedKeyingMaterial and any intermediate

values used during the execution of party U’s actions shall be destroyed prior to or during the

termination of the actions in steps 3, 4, 7 and 8.

Party V shall execute the following key-agreement transformation in order to a) establish a

mutually determined shared secret Z with party U, and b) derive secret keying material from Z.

Actions: Party V generates a shared secret and derives secret keying material as follows:

1. Receive a ciphertext CU from party U.

2. Use the RSASVE.RECOVER operation in Section 7.2.1.3 to recover ZU from the

ciphertext CU using the private key-establishment key PrivKeyU. If the call to

RSASVE.RECOVER outputs an error indicator, return an error indicator without

performing the remaining actions.

3. Use the RSASVE.GENERATE operation in Section 7.2.1.2 to generate a secret value

ZV and a corresponding ciphertext CV using party U’s public key-establishment key

PubKeyU.

4. Send the ciphertext CV to party U.

5. Construct the mutually determined shared secret Z from ZU and ZV

Z = ZU || ZV.

6. Construct the other information (e.g., OtherInfo) for key derivation (see Section 5.5)

using the identifiers IDU and IDV, if available.

7. Use the agreed-upon key-derivation method (see Section 5.5) to derive secret keying

material DerivedKeyingMaterial of length KBits from the shared secret Z and

OtherInfo. If the key-derivation method outputs an error indicator, return an error

indicator without performing the remaining actions.

8. Output the DerivedKeyingMaterial.

 88

Any local copies of Z, ZU, ZV, PrivKeyV, OtherInfo, DerivedKeyingMaterial and any intermediate

values used during the execution of party V’s actions shall be destroyed prior to or during the

termination of the actions in steps 2, 7 and 8.

Party U Party V

(PubKeyU, PrivKeyU) (PubKeyV, PrivKeyV)

Obtain party V’s public key-
establishment key

PubKeyV

PubKeyU

Obtain party U’s public key-
establishment key

(ZU, CU) =
RSASVE.GENERATE(PubKeyV)

CU

ZU =
RSASVE.RECOVER(PrivKeyV,

CU)

ZV =
RSASVE.RECOVER(PrivKeyU,

CV)

CV

(ZV, CV) =
RSASVE.GENERATE(PubKeyU)

Z = ZU || ZV Z = ZU || ZV

Compute
DerivedKeyingMaterial

and destroy Z

Compute
DerivedKeyingMaterial

and destroy Z

Figure 10: KAS2-basic Scheme

The messages may be sent in a different order, i.e., CV may be sent before CU.

It is extremely important that an implementation not reveal any sensitive information. It is also

important to conceal partial information about ZU, ZV and Z to prevent chosen-ciphertext attacks

on the secret-value encapsulation scheme. In particular, the observable behavior of the key-

agreement process should not reveal partial information about the shared secret Z.

8.3.3 KAS2 Key Confirmation

The KAS2 key-confirmation schemes are based on the KAS2-basic scheme.

8.3.3.1 KAS2 Key-Confirmation Components

The components for KAS2 key agreement with key confirmation are the components in Section

8.1, plus the following:

3. MAC: A message authentication code algorithm with the following parameters (see

Section 5.2)

a. MacKeyLen: the length in bytes of MacKey.

 89

b. MacTagLen: the length in bytes of MacTag.

For KAS2 key confirmation, the length of the keying material shall be at least 14 bytes for a

256-byte (i.e., 2048-bit) modulus, and at least 16 bytes for a 384-byte (i.e., 3072-bit) modulus.

The keying material is usually longer so that other keying material is available for subsequent

operations. MacKey shall be the first MacKeyLen bytes of the keying material and shall be used

only for the key-confirmation operation.

8.3.3.2 KAS2-Party_V-confirmation

Figure 11 depicts a typical flow for a KAS2 scheme with unilateral key confirmation from party

V to party U. In this scheme, party V and party U assume the roles of the key-confirmation

provider and recipient, respectively.

To perform key confirmation (as described in Section 5.6.1.1), both parties set EphemDataV =

CV, and EphemDataU = CU.

Party V provides MacTagV to party U (as specified in Section 5.6.1.1, with P = V and R = U),

where MacTagV is computed (as specified in Section 5.2.1) on

MacDataV = “KC_1_V” || IDV || IDU || CV || CU{ || TextV}.

Party U (the KC recipient) uses the identical format and values to compute MacTagV and then

verifies that the newly computed MacTagV equals MacTagV as provided by party V.

The MAC key used during key confirmation (i.e., MacKey) shall be destroyed by party V

immediately after the computation of MacTagV, and by party U immediately after the

verification of the received MacTagV or a (final) determination that the received MacTagV is in

error.

Party U Party V

(PubKeyU, PrivKeyU) (PubKeyV, PrivKeyV)

Obtain party V’s public key-
establishment key

PubKeyV

PubKeyU

Obtain party U’s public key
establishment-key

(ZU, CU) =
RSASVE.Generate(PubKeyV)

CU

ZU =
RSASVE.Recover(PrivKeyV, CU)

ZV =
RSASVE.RECOVER(PrivKeyU,

CV)

CV

(ZV, CV) =
RSASVE.GENERATE(PubKeyU)

Z = ZU || ZV Z = ZU || ZV

 90

Compute
DerivedKeyingMaterial =

MacKey || KeyData
and destroy Z

Compute
DerivedKeyingMaterial =

MacKey || KeyData
and destroy Z

MacTagV =?
TMacTagBits[MAC(MacKey,

MacDataV)]

MacTagV

MacTagV =
TMacTagBits[MAC(MacKey,

MacDataV)]

Figure 11: KAS2-Party_V-confirmation Scheme (from Party V to Party U)

Certain messages may be combined or sent in a different order (e.g., CV and MacTagV may be

sent together, or CV may be sent before CU).

8.3.3.3 KAS2-Party_U-confirmation

Figure 12 depicts a typical flow for a KAS2 scheme with unilateral key confirmation from party

U to party V. In this scheme, party U and party V assume the roles of key-confirmation provider

and recipient, respectively.

To provide (and receive) key confirmation (as described in Section 5.6.1.1), both parties set

EphemDataV = CV, and EphemDataU = CU.

Party U provides MacTagU to party V (as specified in Section 5.6.1.1, with P = U and R = V),

where MacTagU is computed (as specified in Section 5.2.1) on

MacDataU = “KC_1_U” || IDU || IDV || CU || CV{ || TextU}.

Party V (the KC recipient) uses the identical format and values to compute MacTagU and then

verifies that the newly computed MacTagU matches the MacTagU value provided by party U.

The MAC key used during key confirmation shall be destroyed by party U immediately after the

computation of MacTagU, and by party V immediately after the verification of the received

MacTagU or a (final) determination that the received MacTagU is in error.

 91

Party U Party V

(PubKeyU, PrivKeyU) (PubKeyV, PrivKeyV)

Obtain party V’s public key-
establishment key

PubKeyV

PubKeyU

Obtain party U’s public key-
establishment key

(ZU, CU) =
RSASVE.GENERATE(PubKeyV)

CU

ZU =
RSASVE.RECOVER(PrivKeyV,

CU)

ZV =
RSASVE.RECOVER(PrivKeyU,

CV)

CV

(ZV, CV) =
RSASVE.GENERATE(PubKeyU)

Z = ZU ZV Z = ZU ZV

Compute
DerivedKeyingMaterial =

MacKey || KeyData
and destroy Z

Compute
DerivedKeyingMaterial =

MacKey || KeyData
and destroy Z

MacTagU =
TMacTagBits[MAC(MacKey,

MacDataU)]

MacTagU

MacTagU =?
TMacTagBits[MAC(MacKey,

MacDataU)]

Figure 12: KAS2-Party_U-confirmation Scheme (from Party U to Party V)

Note that CV may be sent before CU; in which case CU and MacTagU may be sent together.

8.3.3.4 KAS2-bilateral-confirmation

Figure 13 depicts a typical flow for a KAS2 scheme with bilateral key confirmation. In this

scheme, party U and party V assume the roles of both the KC provider and recipient in order to

obtain bilateral key confirmation.

To provide bilateral key confirmation (as described in Section 5.6.1.2), party U and party V

exchange and verify MacTags that have been computed (as specified in Section 5.9.1.1) using

EphemDataU = CU, and EphemDataV = CV.

Party V provides MacTagV to party U (as specified in Section 5.6.1.1, with P = V and R = U);

MacTagV is computed by party V (and verified by party U) on

MacDataV = “KC_2_V” || IDV || IDU || CV || CU{ || TextV}.

 92

Party U provides MacTagU to party V (as specified in Section 5.6.1.1, with P = U and R = V);

MacTagU is computed by party U (and verified by party V) on

MacDataU = “KC_2_U” || IDU || IDV || CU || CV{ || TextU}.

The MAC key used during key confirmation shall be destroyed by each party immediately

following its use to compute and verify the MAC tags used for key confirmation. Once party U

has computed MacTagU and has either verified the received MacTagV or made a (final)

determination that the received MacTagU is in error, party U shall immediately destroy its copy

of MacKey. Similarly, after party V has computed MacTagV and has either verified the received

MacTagU or made a (final) determination that the received MacTagU is in error, party V shall

immediately destroy its copy of MacKey.

Party U Party V

(PubKeyU, PrivKeyU) (PubKeyV, PrivKeyV)

Obtain party V’s public key-
establishment key

PubKeyV

PubKeyU

Obtain party U’s public key-
establishment key

(ZU, CU) =
RSASVE.GENERATE(PubKeyV)

CU

ZU =
RSASVE.RECOVER(PrivKeyV,

CU)

ZV =
RSASVE.RECOVER(PrivKeyU,

CV)

CV

(ZV, CV) =
RSASVE.GENERATE(PubKeyV)

Z = ZU ZV Z = ZU ZV

Compute
DerivedKeyingMaterial =

MacKey || KeyData
and destroy Z

Compute
DerivedKeyingMaterial =

MacKey || KeyData
and destroy Z

MacTagV =?
TMacTagBits[MAC(MacKey,

MacDataV)]

MacTagV

MacTagV =
TMacTagBits[MAC(MacKey,

MacDataV)]

MacTagU =
TMacTagBits[MAC(MacKey,

MacDataU)]

MacTagU

MacTagU =?
TMacTagBits[MAC(MacKey,

MacDataU)]

Figure 13: KAS2-bilateral-confirmation Scheme

 93

Certain messages may be sent in a different order (and/or combined with others), e.g., CV may be

sent before CU and/or MacTagV may be sent before MacTagU.

9 Key-Transport Schemes

In a key-transport scheme, two parties, party U (the sender) and party V (the receiver), establish

keying material selected initially by party U. The keying material may be cryptographically

bound to additional input (see Section 9.1).

In this Recommendation, two families of key-transport schemes are specified: KTS-OAEP and

KTS-KEM-KWS.

Key confirmation is included in some of these schemes to provide assurance to the sender that

the participants share the same keying material (see Section 5.6 for further details on key

confirmation).

In key-transport schemes that provide key confirmation (see Sections 9.2.4.2 and 9.3.4.2), the

transported keying material shall contain a MAC key as the first bits of the keying material such

that

 TransportedKeyingMaterial = MacKey || KeyData.

MacKey will be used for the computation and verification of the MAC tag. KeyData is the

keying material to be used subsequent to the key-transport transaction. The MAC key shall be

generated anew for each instance of a key-establishment transaction using an approved random

bit generator that supports the security strength required for the key-establishment transaction.

The MAC key length (in bits) shall be equal to or greater than the security strength associated

with the modulus length (in bits) used in the key-establishment scheme (see SP 800-57-Part 1

[SP 800-57]). KeyData may be null, or may contain keying material to be used subsequent to the

key-transport transaction. MacKey shall be used during key confirmation and then immediately

destroyed.

In key-transport schemes that do not provide key confirmation (see Sections 9.2.4.1 and 9.3.4.1),

the TransportedKeyingMaterial = KeyData.

A general flow diagram is provided for each key-transport scheme. The dotted-line arrows

represent the distribution of public keys by the parties themselves or by a third party, such as a

Certification Authority (CA). The solid-line arrows represent the distribution of

cryptographically protected values that occur during the key-transport or key-confirmation

process. Note that the flow diagrams in this Recommendation omit explicit mention of various

validation checks that are required. The flow diagrams and descriptions in this Recommendation

assume a successful completion of the key-transport process.

As in Section 8, there are conditions that must be satisfied for each key-transport scheme to

enable proper use of that scheme. These conditions are listed as assumptions. Failure to meet any

of such conditions could yield undesirable results, such as the inability to communicate or the

loss of security. As part of the proper implementation of this Recommendation, system users

and/or agents trusted to act on their behalf (including application developers, system installers,

and system administrators) are responsible for ensuring that all assumptions are satisfied at the

time that a key-establishment transaction takes place.

 94

9.1 Additional Input

Additional input to the key-transport process may be employed to ensure that the transported

keying material is adequately “bound” to the context of the key-transport transaction. The use of

additional input, A, is explicitly supported by the key-transport schemes specified in Sections 9.2

and 9.3. Each party to a key-transport transaction shall know whether or not additional input is

employed in that transaction.

Context-specific information that may be appropriate for inclusion in the additional input:

 Public information about parties U and V, such as names, e-mail addresses, and/or other

identifiers.

 An identifier and/or other information associated with the RSA public key employed in

the key-transport transaction. One might, for example, include (a hash of) a certificate

that contains that RSA public key.

 Other public and/or private information shared between parties U and V before or during

the transaction, such as nonces, counters, or pre-shared secret data. (The inclusion of

private information is limited to situations in which the additional input, A, is afforded

adequate confidentiality protection.)

 An indication of the protocol or application employing the key-transport scheme.

 Protocol-related information, such as a label or session identifier.

 An indication of the key-transport scheme used during the transaction.

 An indication of various parameter or primitive choices (e.g., hash functions, MAC

algorithms, MacTag lengths, etc.).

 An indication of how the transported keying material should be parsed, including an

indication of which algorithm(s) will use the (parsed) keying material.

Both parties to the key-transport transaction shall know the format of the additional input, A, and

shall acquire A in time to use it as required by the scheme. The methods used for formatting and

distributing the additional input are application-defined. System users and/or agents trusted to act

on their behalf should determine that the information selected for inclusion in A and the methods

used for formatting and distributing A meet the security requirements of those users.

9.2 KTS-OAEP: Key-Transport Using RSA-OAEP

The KTS-OAEP family of key-transport schemes is based on the RSA-OAEP encrypt and

decrypt operations (see Section 7.2.2), which are, in turn, based on the asymmetric encryption

and decryption primitives, RSAEP and RSADP (see Section 7.1). In this family, only party V’s

key pair is used.

The key-transport schemes of this family have the following general form:

1. Party U (the sender) encrypts the keying material (and possibly additional input – see

Section 7.2.2.3) to be transported using the RSA-OAEP.ENCRYPT operation and party V’s

 95

(the receiver’s) public key-establishment key to produce ciphertext, and sends the

ciphertext to party V.

2. Party V decrypts the ciphertext using its private key-establishment key and the RSA-

OAEP.DECRYPT operation to recover the transported keying material.

3. If key confirmation is incorporated, then the transported keying material is parsed into

two parts, a transaction-specific (random) value for MacKey, followed by KeyData. The

Mackey portion of the keying material and an approved MAC algorithm are used by

each party to compute a MAC tag (of an appropriate, agreed-upon length) on what should

be the same MacData (see Sections 5.6 and 9.2.4.2). The MAC tag computed by party V

(the key-confirmation provider) is sent to party U (the key-confirmation recipient). If the

value of the MAC tag sent by party V matches the MAC tag value computed by party U,

then party U obtains a confirmation of the success of the key-transport transaction.

The common components of the schemes in the KTS-OAEP family are listed in Section 9.2.2.

The following schemes are then defined:

1. KTS-OAEP-basic, the basic scheme without key confirmation (see Section 9.2.3).

2. KTS-OAEP-Party_V-confirmation, a variant of KTS-OAEP-basic with unilateral key

confirmation from party V to party U (see Section 9.2.4).

For the security attributes of the KTS-OAEP family, see Section 10.3.

9.2.1 KTS-OAEP Assumptions

1. Party V has been designated as the owner of a key-establishment key pair that was

generated as specified in Section 6.3. Party V has obtained assurance of its possession of

the correct value for its private key as specified in Section 6.4.1.5.

2. The parties have agreed upon an approved hash function appropriate for use with the

mask-generation function used by RSA-OAEP (see Sections 5.1, and 7.2.2).

3. Prior to or during the transport process, the sender and receiver have either agreed upon

the form and content of the additional input A (a byte string to be cryptographically

bound to the transported keying material so that the cipher is a cryptographic function of

both values), or agreed that A will be an empty string (see Section 9.1 above).

4. If key confirmation is used, the parties have agreed upon an approved MAC algorithm

and associated parameters (see Section 5.2).

5. When an identifier is used to label either party during the key-transport process, both

parties are aware of the particular identifier employed for that purpose. In particular, the

association of the identifier used to label party V with party V’s public key is trusted by

party U. When an identifier is used to label party U during the key-transport process, it

has been selected/assigned in accordance with the requirements of the protocol relying

upon the use of the key-transport scheme.

6. Party U has obtained assurance of the validity of party V’s public key, as specified in

Section 6.4.2.

 96

7. Prior to or during the key-transport process, party U has obtained (or will obtain)

assurance that party V is (or was) in possession of the (correct) private key corresponding

to the public key-establishment key used during the transaction, as specified in Section

6.4.2.

8. Prior to or during the key-transport process, the keying material to be transported has

been/is determined and has a format as specified at the beginning of Section 9.

9.2.2 Common components

The schemes in the KTS-OAEP family have the following common component:

1. RSA-OAEP: asymmetric operations, consisting of an encryption operation RSA-

OAEP.ENCRYPT and a decryption operation RSA-OAEP.DECRYPT (see Section 7.2.2).

9.2.3 KTS-OAEP-basic

KTS-OAEP-basic is the basic key-transport scheme in the KTS-OAEP family without key

confirmation.

Let (PubKeyV, PrivKeyV) be party V’s (the receiver’s) key-establishment key pair. Let K be the

keying material to be transported from party U (the sender) to party V; note that the length of K

is restricted by the length of the RSA modulus and the length of the hash-function used during

the RSA-OAEP process (see Section 7.2.2.3). The parties shall perform the following or an

equivalent sequence of steps, which are also illustrated in Figure 14.

Party U shall execute the following steps in order to transport keying material to party V.

Party U Actions:

1. Encrypt the keying material K using party V’s public key-establishment key PubKeyV

and the additional input A, to produce a ciphertext C (see Section 7.2.2.3):

C = RSA-OAEP.ENCRYPT(PubKeyV, K, A).

2. If an error indication has been returned, then return an error indication without

performing the remaining actions.

3. Send the ciphertext C to party V.

Any local copies of K, A, and any intermediate values used during the execution of party U’s

actions shall be destroyed prior to or during step 2.

Party V shall execute the following steps when receiving keys transported from party U.

Party V Actions:

1. Receive the ciphertext C.

2. Decrypt the ciphertext C using the private key-establishment key PrivKeyV and the

additional input A, to recover the transported keying material K (see Section 7.2.2.4):

 97

K = RSA-OAEP.DECRYPT(PrivKeyV, C, A).

If the decryption operation outputs an error indicator, return an error indication

without performing the remaining actions.

3. Output K.

Any local copies of K, PrivKeyV, A, and any intermediate values used during the execution of

party V’s actions shall be destroyed prior to or during step 3.

Party U Party V

K to be transported (PubKeyV, PrivKeyV)

Obtain party V’s public key-
establishment key

PubKeyV

C = RSA-OAEP.
ENCRYPT(PubKeyV, K, A)

C

K = RSA-OAEP.
DECRYPT(PrivKeyV, C, A)

Figure 14: KTS-OAEP-basic Scheme

9.2.4 KTS-OAEP Key Confirmation

The KES-OAEP-Party_V-confirmation scheme is based on the KTS-OAEP-basic scheme.

9.2.4.1 KTS-OAEP Common Components for Key Confirmation

The components for KTS-OAEP with key confirmation are the same as for KTS-OAEP-basic

(see Section 9.2.2), plus the following:

MAC: A message authentication code algorithm with the following parameters (see Section

5.2):

a. MacKeyLen: the length in bytes of MacKey.

b. MacTagLen: the length in bytes of MacTag.

For KAS2 key confirmation, the length of the keying material shall be at least 14 bytes for a

256-byte (i.e., 2048-bit) modulus, and 16 bytes for a 384-byte (i.e., 3072-bit) modulus, and

usually longer so that keying material other than MacKey is available for subsequent operations.

MacKey shall be the first MacKeyLen bytes of the keying material and shall be used only for the

key-confirmation operation.

9.2.4.2 KTS-OAEP-Party_V-confirmation

KTS-OAEP-Party_V-confirmation is a variant of KTS-OAEP-basic with unilateral key

confirmation from party V to party U.

 98

Figure 15 depicts a typical flow for the KTS-OAEP-Party_V-confirmation scheme. In this

scheme, party V and party U assume the roles of key-confirmation provider and recipient,

respectively.

To provide (and receive) key confirmation (as described in Section 5.6.1.1), both parties form

MacData with EphemDataV = Null, and EphemDataU = C:

Party V provides MacTagV to party U (as specified in Section 5.6.1.1, with P = V and R = U),

where MacTagV is computed (as specified in Section 5.2.1) using

MacDataV = “KC_1_V” || IDV || IDU || Null || C{ || TextV}.

Party U uses the identical format and values to compute MacTagV, and then verifies that the

newly computed MacTagV matches the MacTagV value provided by party V.

The MAC tag used during key confirmation shall be destroyed by party V immediately after the

computation of MacTagV, and by party U immediately after the verification of the received

MacTagV or a (final) determination that the received MacTagV is in error.

Party U Party V

K = MacKey ll KeyData (PubKeyV, PrivKeyV)

Obtain party V’s public key-
establishment key

PubKeyV

C = RSA-OAEP.
ENCRYPT(PubKeyV, K, A)

C

K = RSA-OAEP.
DECRYPT(PrivKeyV, C, A)

 MacKey || KeyData = K

MacTagV =?
TMacTagBits[MAC(MacKey,

MacDataV)]

MacTagV

MacTagV =
TMacTagBits[MAC(MacKey,

MacDataV)]

Figure 15: KTS-OAEP-Party_V-confirmation Scheme

9.3 KTS-KEM-KWS: Key-Transport using RSA-KEM-KWS

The KTS-KEM-KWS family of key-transport schemes is based on the RSA-KEM-KWS encrypt

and decrypt operations (see Section 7.2.3). These operations employ the asymmetric RSASVE

secret-value encapsulation operations and an approved key-derivation method to establish a

key-wrapping key that is transaction specific. The key-wrapping key is used with an approved

symmetric key-wrapping method to wrap (and unwrap) the keying material to be transported. In

this family, only party V’s key pair is used, and the transported keying material may be any

length permitted by the key-wrapping method.

The key-transport schemes of this family have the following general form:

 99

1. Using the RSA-KEM-KWS.ENCRYPT operation, party U (the sender) first generates a

secret byte string Z and a corresponding ciphertext component by employing the

RSASVE.GENERATE operation and the public key-establishment key of party V (the

receiver). The byte string Z (along with OtherInfo or its equivalent) is then used as input

to the key-derivation method to derive a transaction-specific key-wrapping key (KWK) of

an appropriate, agreed-upon bit length kwkBits. The keying material to be transported is

wrapped using the KWK and the symmetric key-wrapping method to produce a second

ciphertext component. The two ciphertext components are sent to party V.

2. Using the RSA-KEM-KWS.DECRYPT operation, party V employs the

RSASVE.RECOVER operation and its private key-establishment key to obtain Z from the

first ciphertext component. Party V then employs the key-derivation method (with inputs

Z, kwkBits, and OtherInfo or its equivalent) to derive the same KWK that was used by

party U. The KWK and the symmetric key-unwrapping algorithm are used to obtain the

transported keying material from the second ciphertext component.

3. If key confirmation is incorporated, the transported keying material consists of a

transaction-specific (random) MAC key MacKey, followed by KeyData. MacKey and an

approved MAC algorithm are used by each party to compute a MAC tag (of an

appropriate, agreed-upon length) on what should be the same MacData (see Section 5.6).

The value of MacTag computed by the party V (the key-confirmation provider) is sent to

party U (the key-confirmation recipient). If the value of MacTag sent by party V matches

the MacTag value computed by party U, then party U obtains a confirmation of the

success of the key-transport transaction.

Common components of the schemes in the KTS-KEM-KWS family are listed in Section 9.3.2.

Two schemes are then defined:

1. KTS-KEM-KWS-basic, the basic scheme without key confirmation (see Section 9.3.3).

2. KTS-KEM-KWS-Party_V-confirmation, a variant with unilateral key confirmation

from the receiver (Party V) to the sender (Party U) (see Section 9.3.4).

For the security attributes of the KTS-KEM-KWS family, see Section 10.4.

9.3.1 KTS-KEM-KWS Family Assumptions

1. Party V has been designated as the owner of a key-establishment key pair that was

generated as specified in Section 6.3. Party V has obtained assurance of the validity of its

key pair as specified in Section 6.4.1.5, and has obtained assurance of its possession of

the correct value for its private key as specified in Section 6.4.1.5.

2. The parties have agreed upon an approved key-derivation method (see Section 5.6), as

well as an approved algorithm to be used with that method (e.g., a hash function) and

other associated parameters to be used for key derivation.

3. The sender and receiver have agreed upon an approved key-wrapping method (i.e.,

either CCM, KW or KWP). The cryptographic algorithm used in the key-wrapping

operation is either AES-128, AES-192 or AES-256, with key lengths of 128, 192 or 256

bits, respectively. The appropriate key length is provided as the value of kwkBits in

 100

Section 9.3.3. The key-wrapping method protects the transported keying material at a

security strength that is equal to or greater than the target security strength of the

applicable key transport scheme (see Section 7.2.3). If the CCM mode is used during key

wrapping, the sender and receiver have agreed on the counter-generation function, the

formatting function, and the length of the MAC tag to be used during the key-wrapping

operation (see Section 7.2.3.2.1). If the KW or KWP mode is used for key wrapping, the

sender and receiver have agreed on the cipher function and the valid plaintext lengths to

be used during key wrapping.

4. If the CCM mode will be used for key wrapping, prior to or during the transport process,

the parties have either agreed upon the format and content of the additional input A (a

byte string to be cryptographically bound to the transported keying material in that the

cipher is a cryptographic function of both values), or agreed that A will be the empty

string (see Section 9.1 above). Note that for the KW and KWP modes, additional input is

not accommodated.

5. If key confirmation is used, the parties have agreed upon an approved MAC algorithm

and associated parameters (see Section 5.2).

6. When an identifier is used to label either party during the key-transport process, both

parties are aware of the particular identifier employed for that purpose. In particular,

when an identifier is used to label party V during the key-transport process, that

identifier’s association to party V’s public key is trusted by party U. When an identifier is

used to label party U during the key-transport process, it has been selected/assigned in

accordance with the requirements of the protocol relying upon the use of the key-

transport scheme.

7. Party U has obtained assurance of the validity of party V’s public key, as specified in

Section 6.4.2.

8. Prior to or during the key-transport process, party U has obtained (or will obtain)

assurance that party V is (or was) in possession of the private key corresponding to the

public key-establishment key used during the transaction, as specified in Section 6.4.2.3.

9. Prior to or during the key-transport process, the keying material to be transported has

been (or will be) determined, with a format as specified at the beginning of Section 9.

9.3.2 Common Components of the KTS-KEM-KWS Schemes

The schemes in the KTS-KEM-KWS family have the following common component:

1. RSA-KEM-KWS: Consisting of an encryption operation RSA-KEM-KWS.ENCRYPT

and a decryption operation RSA-KEM-KWS.DECRYPT (see Section

7.2.3).

9.3.3 KTS-KEM-KWS-basic

KTS-KEM-KWS-basic is the basic key-transport scheme in the KTS-KEM-KWS family

without key confirmation.

Let (PubKeyV, PrivKeyV) be party V’s key-establishment key pair. Let K be a local copy of the

keying material to be transported from party U to party V. The parties shall perform the

following or an equivalent sequence of steps, which are also illustrated in Figure 16.

 101

Party U shall execute the following steps in order to transport keying material to party V.

Party U Actions:

1. Using party V’s public key-establishment key PubKeyV, the length kwkBits of the key to

be used for key-wrapping, and keying material K, generate a ciphertext C (see Section

7.2.3.3), which includes an encrypted Z value as C0 and the wrapped keying material as

C1. If the CCM mode is to be used for key wrapping, also generate a nonce (Nonce), and

include the nonce, the agreed-upon length of the MAC tag (TBits) and the additional

input A as input when invoking the RSA-KEM-KWS.ENCRYPT routine, i.e.:

C = RSA-KEM-KWS.ENCRYPT(PubKeyV, kwkBits, K, {, Nonce, TBits, A}).

2. If an error indication is returned, return an error indication without performing the

remaining actions.

3. Send the ciphertext C to party V, and, if the CCM mode was used for key wrapping, also

send Nonce.

Any local copies of K and any intermediate values used during the execution of party U’s actions

shall be destroyed prior to or during steps 2 and 3.

Party V shall execute the following steps when receiving keys transported from party V.

Party V Actions:

1. Receive the transported keying material C, and if the CCM mode will be used for key

unwrapping, also receive Nonce.

2. Using the private key-establishment key PrivKeyV, the ciphertext C, and the length

kwkBits of the key-wrapping key, recover the keying material K (see Section 7.2.3.4). If

the CCM mode is to be used for key unwrapping, also include the received Nonce, the

agreed-upon length of the MAC tag (TBits) and the additional input A as input when

invoking the RSA-KEM-KWS.DECRYPT routine, i.e.:

K = RSA-KEM-KWS.DECRYPT(PrivKeyV, C, kwkBits {, Nonce, TBits, A}).

3. If the decryption operation outputs an error indicator, return an error indication without

performing the remaining actions.

4. Output K.

Any local copies of K, PrivKeyV, and any intermediate values used during the execution of party

V’s actions shall be destroyed prior to or during steps 3 and 4.

Party U Party V

K to be transported (PubKeyV, PrivKeyV)

 102

Obtain party V’s public key-
establishment key

PubKeyV

C = RSA-KEM-KWS.
ENCRYPT(PubKeyV, K {, Nonce,

TBits, A})

C {, Nonce}

K = RSA-KEM-KWS.
DECRYPT(PrivKeyV, C {, Nonce,

TBits, A})

Figure 16: KTS-KEM-KWS-basic Scheme

Note that in Figure 16, KLen is not shown as an input to the decrypt function.

9.3.4 KTS-KEM-KWS Key Confirmation

The KTS-KEM-KWS-Party_V-confirmation scheme is based on the KTS-KEM-KWS-basic

scheme.

9.3.4.1 KTS-KEM-KWS Common Components for Key Confirmation

The components for KTS-KEM-KWS-Party_V-confirmation are the same as for KTS-KEM-

KWS-basic (see Section 9.3.2), plus the following:

MAC: A message authentication code algorithm with the following parameters (see

Section 5.2):

a. the MacKeyLen: length in bytes of MacKey.

b. the MacTagLen: length in bytes of MacTag.

For KTS-KEM-KWS key confirmation, the length of the keying material shall be at least 14

bytes when nLen is 128 bytes and 16 bytes when nLen is 384 bytes, and usually longer so that

keying material other than MacKey is available for subsequent operations. MacKey shall be the

first MacKeyLen bytes of the keying material and shall be used only for key confirmation.

9.3.4.2 KTS-KEM-KWS-Party_V-confirmation

KTS-KEM-KWS-Party_V-confirmation is a variant of KTS-KEM-KWS-basic with

unilateral key confirmation from party V to party U.

Figure 17 depicts a typical flow for the KTS-KEM-KWS-Party_V-confirmation scheme. In

this scheme, party V and party U assume the roles of the key-confirmation provider and

recipient, respectively.

To provide (and receive) key confirmation (as described in Section 5.6.1.1), both parties set

EphemDataV = Null, and EphemDataU = C.

Party V provides MacTagV to party U (as specified in Section 5.6.1.1, with P = V and R = U),

where MacTagV is computed (as specified in Section 5.2.1) using

MacDataV = “KC_1_V” || IDV || IDU || Null || C{ || TextV}.

Party U uses the identical format and values to compute MacTagV and then verifies that the

newly computed MacTagV matches the MacTagV value provided by party V.

 103

The MacKey value used during key confirmation shall be destroyed by party V immediately

after the computation of MacTagV, and by party U immediately after the verification of the

received MacTagV or a (final) determination that the received MacTagV is in error.

Party U Party V

K = MacKey ll KeyData (PubKeyV, PrivKeyV)

Obtain party V’s public key-
establishment key

PubKeyV

C = RSA-KEM-KWS.

ENCRYPT(PubKeyV, K {, Nonce,
TBits, A})

C {, Nonce}

K = RSA-KEM.KWS.

DECRYPT(PrivKeyV, C {,
Nonce, TBits, A})

 MacKey || KeyData = K

MacTagV =?
TMacTagBits[MAC(MacKey,

MacDataV)]

MacTagV

MacTagV =
TMacTagBits[MAC(MacKey,

MacDataV)]

Figure 17: KTS-KEM-KWS-Party_V-confirmation Scheme

Note that in Figure 17, KLen is not shown in the decrypt operation.

10 Rationale for Selecting a Specific Scheme

The subsections that follow describe security properties that may be considered when a user

and/or developer is choosing a key-establishment scheme from among the various schemes

described in this Recommendation. The descriptions are intended to highlight certain similarities

and differences between families of key-establishment schemes and/or between schemes within a

particular family; they do not constitute an in-depth analysis of all possible security properties of

every scheme under all adversary models.

The (brief) discussions will focus on the extent to which each participant in a particular

transaction has assurance that fresh keying material has been successfully established with the

intended party (and no one else). To that end, it is important to distinguish between the actual

identifier of a participant in a key-establishment transaction and the role (party U or party V)

assumed by that participant during the transaction. To simplify matters, in what follows, assume

that the actual identifiers of the (honest) participants in a key-establishment transaction are the

proverbial “Alice,” acting as party U, and “Bob,” acting as party V. (Pretend, for the sake of

discussion, that these identifiers are unique among the universe of possible participants.) The

identifier associated with their malevolent adversary is “Eve.” The discussions will also consider

the ill effects of certain compromises that might occur. The basic security properties that are

cited depend on such factors as how a shared secret is calculated, how keying material is

established, and what types of key-confirmation (if any) are incorporated into a given scheme.

 104

Note 1: In order to provide concise descriptions of security properties possessed by the various

schemes, it is necessary to make some assumptions concerning the format and type of data that is

used as input during key derivation. The following assumptions are made solely for the purposes

of Sections 10.1 through 10.4; they are not intended to preclude the options specified elsewhere

in this Recommendation.

1. When discussing the security properties of schemes, it is assumed that the OtherInfo

input to a (single-step) key-derivation function employed during a particular key-

agreement transaction uses either the concatenation format or the ASN.1 format (see

Section 5.5.1.2). It is also assumed that OtherInfo includes sufficiently specific identifiers

for the participants in the transaction, an identifier for the key-establishment scheme

being used during the transaction, and additional input (e.g., a nonce, and/or session

identifier) that may provide assurance to one or both participants that the derived keying

material will reflect the specific context in which the transaction occurs (see Section

5.5.1.2 and Appendix B of [SP 800-56A] for further discussion concerning context-

specific information that may be appropriate for inclusion in OtherInfo).

2. In general, OtherInfo may include additional secret information (already shared between

parties U and V), but that is not assumed to be the case in the analysis of the security

properties that follows.

3. In cases where an approved extraction-then-expansion key-derivation procedure is

employed (see Section 5.5.2), it is assumed that the equivalent of this OtherInfo is used as

the Context input during the key-expansion step, as specified in [SP 800-56C].

4. Finally, it is assumed that all required nonces employed during a transaction are random

nonces that contain a component consisting of a random bit string formed in accordance

with the recommendations of Section 5.4.

Note 2: Different schemes may possess different security properties. A scheme should be

selected based on how well the scheme fulfills system requirements. For instance, if messages

are exchanged over a large-scale network where each exchange consumes a considerable amount

of time, a scheme with fewer exchanges during a single key-agreement transaction might be

preferable to a scheme with more exchanges, even though the latter may possess more security

benefits. It is important to keep in mind that a key-establishment scheme is usually a component

of a larger protocol that may offer security-related assurances beyond those that can be provided

by the key-establishment scheme alone. For example, the protocol may include specific features

that limit opportunities for accidental or intentional misuse of the key-establishment component

of the protocol. Protocols, per se, are not specified in this Recommendation.

10.1 Rationale for Choosing a KAS1 Key-Agreement Scheme

In both schemes included in the KAS1 family, only Bob (assumed to be acting as party V) is

required to own an RSA key pair that is used in the key-agreement transaction. Assume that the

identifier used to label party V during the transaction is one that is associated with Bob’s RSA

public key in a manner that is trusted by Alice (who is acting as party U). This can provide Alice

with some level of assurance that she has correctly identified the party with whom she will be

establishing keying material if the transaction is successfully completed.

 105

Each KAS1 scheme requires Alice to employ the RSASVE.GENERATE operation to select a

(random) secret value Z and encrypt it as ciphertext C using Bob’s RSA public key. Unless

Bob’s corresponding private key has been compromised, Alice has assurance that no unintended

entity (i.e., no one but Bob) could employ the RSASVE.RECOVER operation to obtain Z from C.

Absent the compromise of Bob’s RSA private key and/or Z, Alice may attain a certain level of

confidence that she has correctly identified party V as Bob. Alice’s level of confidence is

dependent upon:

 The specificity of the identifier that is associated with Bob’s RSA public key,

 The degree of trust in the association between that identifier and the public key,

 The assurance of the validity of the public key, and

 The availability of evidence that the keying material has been correctly derived by Bob

using Z (and the other information input to the agreed-upon key-derivation method), e.g.

through key confirmation with Bob as the provider.

In general, Bob has no assurance that party U is Alice, since Bob has no assurance concerning

the accuracy of any identifier that may be used to label party U (unless, for example, the protocol

using a key-agreement scheme from the KAS1 family also includes additional elements that

establish a trusted association between an identifier for Alice and the ciphertext, C, that she

contributes to the transaction while acting as party U).

The assurance of freshness of the derived keying material that can be obtained by a participant in

a KAS1 transaction is commensurate with the participant’s assurance that different input will be

supplied to the agreed-upon key-derivation method during each such transaction. Alice can

obtain assurance that fresh keying material will be derived based on her unilateral selection and

contribution of the random Z value. Bob can obtain similar assurance owing to his selection and

contribution of the nonce NV, which is also used as input to the agreed-upon key-derivation

method.

The KAS1-Party_V-confirmation scheme permits party V to provide evidence to party U that

keying material has been correctly derived. When the KAS1-Party_V-confirmation scheme is

employed during a key-agreement transaction, party V provides a key-confirmation MAC tag,

MacTagV, to party U as specified in Section 8.2.3.2. This allows Alice (who is acting as party U,

the key-confirmation recipient) to obtain assurance that party V has possession of the MacKey

derived from the shared secret Z (and nonce NV) and has used it with the appropriate MacDataV

to compute the received MacTagV. In the absence of a compromise of secret information (e.g.,

Bob’s RSA private key and/or Z), Alice can also obtain assurance that the appropriate identifier

has been used to label party V, and that the participant acting as party V is indeed Bob, the

owner of the RSA public key associated with that identifier.

Specifically, by successfully comparing the received value of MacTagV with her own

computation, Alice (acting as party U, the key-confirmation recipient) may obtain assurance that

1. Party V has correctly recovered Z from C, and, therefore, possesses the RSA private key

corresponding to Bob’s RSA public key – from which it may be inferred that party V is

Bob;

2. Both parties have correctly computed (at least) the same MacKey portion of the derived

keying material;

 106

3. Both parties agree on the values (and representation) of IDV, IDU, NV, C, and any other

data included in MacDataV; and

4. Bob (acting as party V) has actively participated in the transaction.

Consequently, when the KAS1-Party_V-confirmation scheme is employed during a particular

key-agreement transaction (and neither Z nor Bob’s RSA private key has been compromised),

Alice can obtain assurance of the active (and successful) participation in the transaction by Bob.

The acquisition of Bob’s RSA private key by their adversary, Eve, may lead to the compromise

of shared secrets and derived keying material from past, current, and future legitimate

transactions (i.e., transactions that involve honest parties and are not actively influenced by an

adversary) that employ the compromised private key. For example, Eve may be able to

compromise a particular KAS1 transaction between Alice and Bob as long as she acquires the

ciphertext, C, contributed by Alice and the nonce, NV, contributed by Bob (as well as any other

data used as input during key derivation). In addition to compromising legitimate KAS1

transactions, once Eve has learned Bob’s RSA private key, she may be able to impersonate Bob

while acting as party V in future KAS1 transactions (with Alice or any other party). Other

schemes and applications that rely on the compromised private key may also be adversely

affected. (See the appropriate subsection for details.)

Even without knowledge of Bob’s private key, if Eve learns the value of Z that has been (or will

be) used in a particular KAS1 transaction between Alice and Bob, then she may be able to derive

the keying material resulting from that transaction as easily as Alice and Bob (as long as Eve

also acquires the value of NV and any other data used as input during key derivation).

Alternatively, armed with knowledge of the Z value that has been (or will be) selected by Alice,

Eve might be able to insert herself into the transaction (in the role of party V) while

masquerading as Bob.

10.2 Rationale for Choosing a KAS2 Key-Agreement Scheme

In the schemes included in the KAS2 family, both Alice (assumed to be acting as party U) and

Bob (assumed to be acting as party V) are required to own an RSA key pair that is used in their

key-agreement transaction. Assume that the identifier used to label party V during the transaction

is one that is associated with Bob’s RSA public key in a manner that is trusted by Alice.

Similarly, assume that the identifier used to label party U during the transaction is one that is

associated with Alice’s RSA public key in a manner that is trusted by Bob. This can provide each

party with some level of assurance concerning the identifier of the other party, with whom

keying material will be established if the transaction is successfully completed.

Each KAS2 scheme requires Alice to employ the RSASVE.GENERATE operation to select a

(random) secret value ZU and encrypt it as ciphertext CU using Bob’s RSA public key. Unless

Bob’s corresponding private key has been compromised, Alice has assurance that no unintended

entity (i.e., no one but Bob) could employ the RSASVE.RECOVER operation to obtain ZU from

CU. Similarly, each KAS2 scheme requires Bob to employ the RSASVE.GENERATE operation to

select a (random) secret value ZV and encrypt it as ciphertext CV using Alice’s RSA public key.

Unless Alice’s corresponding private key has been compromised, Bob has assurance that no

unintended entity (i.e., no one but Alice) could employ the RSASVE.RECOVER operation to

obtain ZV from CV.

 107

Absent the compromise of Bob’s RSA private key and/or ZU, Alice may attain a certain level of

confidence that she has correctly identified party V as Bob. Alice’s level of confidence is

commensurate with:

 The specificity of the identifier that is associated with Bob’s RSA public key,

 The degree of trust in the association between that identifier and Bob’s public key,

 The assurance of validity of the public key, and

 The availability of evidence that the keying material has been correctly derived by Bob

using Z = ZU || ZV (and the other information input to the agreed-upon key-derivation

method), e.g. through key-confirmation with Bob as the provider.

Similarly, absent the compromise of Alice’s private key and/or ZV, Bob may attain a certain level

of confidence that he has correctly identified party U as Alice. Bob’s level of confidence is

commensurate with:

 The specificity of the identifier that is associated with Alice’s RSA public key,

 The degree of trust in the association between that identifier and Alice’s public key,

 The assurance of validity of the public key, and

 The availability of evidence that the keying material has been correctly derived by Alice

using Z = ZU || ZV (and the other information input to the agreed-upon key-derivation

method), e.g. through key-confirmation with Alice as the provider.

The assurance of freshness of the derived keying material that can be obtained by a participant in

a KAS2 transaction is commensurate with the participant’s assurance that different input will be

supplied to the agreed-upon key-derivation method during each such transaction. Alice can

obtain assurance that fresh keying material will be derived, based on her selection and

contribution of the random ZU component of Z. Bob can obtain similar assurance owing to his

selection and contribution of the random ZV component of Z.

Evidence that keying material has been correctly derived may be provided by using one of the

three schemes from the KAS2 family that incorporates key confirmation. The KAS2-Party_V-

confirmation scheme permits party V (Bob) to provide evidence of correct key derivation to

party U (Alice); the KAS2-Party_U-confirmation scheme permits party U (Alice) to provide

evidence of correct key derivation to party V (Bob); the KAS2-bilateral-confirmation scheme

permits each party to provide evidence of correct key derivation to the other party.

When the KAS2-Party_V-confirmation scheme or the KAS2-bilateral-confirmation scheme is

employed during a key-agreement transaction, party V provides a key-confirmation MAC tag,

MacTagV, to party U as specified in Section 8.3.3.2 or Section 8.3.3.4, respectively. This allows

Alice (who is the recipient of MacTagV) to obtain assurance that party V has possession of the

MacKey derived from the shared secret Z and has used it with the appropriate MacDataV to

compute the received MacTagV. In the absence of a compromise of secret information (e.g.,

Bob’s RSA private key and/or ZU), Alice can also obtain assurance that the appropriate identifier

has been used to label party V, and that the participant acting as party V is indeed Bob, the

owner of the RSA public key associated with that identifier.

Similarly, when the KAS2-Party_U-confirmation scheme or the KAS2-bilateral-confirmation

scheme is employed during a key-agreement transaction, party U provides a key-confirmation

MAC tag, MacTagU, to party V as specified in Section 8.3.3.3 or Section 8.3.3.4, respectively.

This allows Bob (who is the recipient of MacTagU) to obtain assurance that party U has

 108

possession of the MacKey derived from the shared secret Z and has used it with the appropriate

MacDataU to compute the received MacTagU. In the absence of a compromise of secret

information (e.g., Alice’s RSA private key and/or ZV), Bob can also obtain assurance that the

appropriate identifier has been used to label party U, and that the participant acting as party U is

indeed Alice, the owner of the RSA public key associated with that identifier.

Specifically, by successfully comparing the value of a received MAC tag with his/her own

computation, a key-confirmation recipient in a KAS2 transaction (be it Alice or Bob) may obtain

the following assurances.

1. He/She has correctly decrypted the ciphertext that was produced by the other party and,

thus, that he/she possesses the RSA private key corresponding to the RSA public key that

was used by the other party to produce that ciphertext – from which it may be inferred

that the other party had access to the RSA public key owned by the key-confirmation

recipient. For example, if Alice is a key-confirmation recipient, she may obtain assurance

that she has correctly decrypted the ciphertext CV using her RSA private key, and so may

also obtain assurance that her corresponding RSA public key was used by party V to

produce CV.

2. The ciphertext sent to the other party was correctly decrypted and, thus, the other party

possesses the RSA private key corresponding to the RSA public key that was used to

produce that ciphertext – from which it may be inferred that the other party is the owner

of that RSA public key. For example, if Alice is a key-confirmation recipient, she can

obtain assurance that party V has correctly decrypted the ciphertext CU using the RSA

private key corresponding to Bob’s RSA public key – from which she may infer that

party V is Bob.

3. Both parties have correctly computed (at least) the same MacKey portion of the derived

keying material.

4. Both parties agree on the values (and representation) of IDV, IDU, CV, CU, and any other

data included as input to the MAC algorithm.

5. Assuming that there has been no compromise of either participant’s RSA private key

and/or either component of Z, a key-confirmation recipient in a KAS2 transaction can

obtain assurance of the active (and successful) participation in that transaction by the

owner of the RSA public key associated with the key-confirmation provider. For

example, if Alice is a key-confirmation recipient, she can obtain assurance that Bob has

actively – and successfully – participated in that KAS2 transaction.

The acquisition of a single RSA private key by their adversary, Eve, will not (by itself) lead to

the compromise of derived keying material from legitimate KAS2 transactions between Alice

and Bob that employ the compromised RSA key pair. (In this context, a “legitimate transaction”

is one in which Alice and Bob act honestly, and there is no active influence exerted by Eve.)

However, if Eve acquires an RSA private key, she may be able to impersonate that RSA key

pair’s owner while participating in KAS2 transactions. (For example, If Eve acquires Alice’s

private key, she may be able to impersonate Alice – acting as party U or as party V – in KAS2

transactions with Bob or any other party). Other schemes and applications that rely on the

compromised private key may also be adversely affected. (See the appropriate subsection for

details.)

 109

Similarly, the acquisition of one (but not both) of the secret Z components, ZU or ZV, would not

(by itself) compromise the keying material derived during a legitimate KAS2 transaction

between Alice and Bob in which the compromised value was used as one of the two components

of Z. However, armed with knowledge of only one Z component, Eve could attempt to launch an

active attack against the party that generated it. For example, if Eve learns the value of ZU that

has been (or will be) contributed by Alice, then Eve might be able to insert herself into the

transaction by masquerading as Bob (while acting as party V). Likewise, an adversary who

knows the value of ZV that has been (or will be) selected by Bob might be able to participate in

the transaction by masquerading as Alice (while acting as party U).

10.3 Rationale for Choosing a KTS-OAEP Key-Transport Scheme

In each of the key-transport schemes included in the KTS-OAEP family, only Bob (assumed to

be acting as party V, the key-transport receiver) is required to own an RSA key pair that is used

in the transaction. Assume that the identifier used to label party V during the transaction is one

that is associated with Bob’s RSA public key in a manner that is trusted by Alice (who is acting

as party U, the key-transport sender). This can provide Alice with some level of assurance that

she has correctly identified the party with whom she will be establishing keying material if the

key-transport transaction is successfully completed.

Each KTS-OAEP scheme requires Alice to employ the RSA-OAEP.ENCRYPT operation to

encrypt the selected keying material (and any additional input) as ciphertext C, using Bob’s RSA

public key. Unless Bob’s corresponding private key has been compromised, Alice has assurance

that no unintended entity (i.e., no one but Bob) could employ the RSA-OAEP.DECRYPT

operation to obtain the transported keying material from C. Absent the compromise of Bob’s

RSA private key (or some compromise of the keying material itself – perhaps prior to transport),

Alice may attain a certain level of confidence that she has correctly identified party V as Bob.

Alice’s level of confidence is commensurate with:

 The specificity of the identifier that is associated with Bob’s RSA public key,

 The degree of trust in the association between that identifier and the public key,

 The assurance of validity of the public key, and

 The availability of evidence that the transported keying material has been correctly

recovered from C by Bob, e.g. through key confirmation with Bob as the provider.

In general, Bob has no assurance that party U is Alice, since Bob has no assurance concerning

the accuracy of any identifier that may be used to label party U (unless, for example, the protocol

using a key-transport scheme from the KTS-OAEP family also includes additional elements that

establish a trusted association between an identifier for Alice and the ciphertext, C, that she

sends to Bob while acting as party U).

Due to Alice’s unilateral selection of the keying material, only she can obtain assurance of its

freshness. (Her level of confidence concerning its freshness is dependent upon the actual manner

in which the keying material is generated by/for her.) Given that Bob simply accepts the keying

material that is transported to him by Alice, he has no assurance that it is fresh.

The randomized plaintext encoding used during the RSA-OAEP.ENCRYPT operation can provide

assurance to Alice that the value of C will change from one KTS-OAEP transaction with Bob to

 110

the next, which may help obfuscate the occurrence of a repeated transport of the same keying

material from Alice to Bob, should that ever be necessary.

The KTS-OAEP-Party_V-confirmation scheme permits party V to provide evidence to party U

that keying material has been correctly recovered from the ciphertext C. When the KTS-OAEP-

Party_V-confirmation scheme is employed during a key-transport transaction, party V provides a

key-confirmation MAC tag (MacTagV) to party U as specified in Section 9.2.4.2. This allows

Alice (who is acting as party U, the key-confirmation recipient) to obtain assurance that party V

has recovered the fresh MAC key (MacKey) that was included in the transported keying material

and that party V has used it with the appropriate MacDataV to compute the received MacTagV. In

the absence of a compromise of secret information (e.g., Bob’s RSA private key and/or the MAC

key), Alice can also obtain assurance that the appropriate identifier has been used to label party

V, and that the participant acting as party V is indeed Bob, the owner of the RSA public key

associated with that identifier.

Specifically, by successfully comparing the received value of MacTagV with her own

computation, Alice (acting as party U, the key-confirmation recipient) may obtain assurance that

1. Party V has correctly recovered MacKey from C, and, therefore, possesses the RSA

private key corresponding to Bob’s RSA public key – from which it may be inferred that

party V is Bob;

2. Both parties agree on the values (and representation) of IDV, IDU, C, and any other data

included in MacDataV; and

3. Bob has actively participated in the transaction (as party V), assuming that neither the

transported MAC key nor Bob’s RSA private key has been compromised. Alice’s level of

confidence is commensurate with her confidence in the freshness of the MAC key.

The acquisition of Bob’s RSA private key by their adversary, Eve, may lead to the compromise

of keying material established during past, current, and future legitimate transactions (i.e.,

transactions that involve honest parties and are not actively influenced by an adversary) that

employ the compromised private key. For example, Eve may be able to compromise a particular

KTS-OAEP transaction between Alice and Bob, as long as she also acquires the ciphertext, C,

sent from Alice to Bob. In addition to compromising legitimate KTS-OAEP transactions, once

Eve has learned Bob’s RSA private key, she may be able to impersonate Bob while acting as

party V in future KTS-OAEP transactions (with Alice or any other party). Other schemes and

applications that rely on the compromised private key may also be adversely affected. (See the

discussions of other schemes in this section.)

Even without knowledge of Bob’s private key, if the KTS-OAEP-Party_V-confirmation scheme

is used during a particular key-transport transaction, and Eve learns the value of MacKey that

Alice will send to Bob, then it may be possible for Eve to mislead Alice about Bob’s (active and

successful) participation. As long as Eve also acquires the value of C intended for Bob (and any

other data needed to form MacDataV), it may be possible for Eve to correctly compute MacTagV

and return it to Alice as if it had come from Bob (who may not even be aware that Alice has

initiated a transaction with him). Such circumstances could arise, for example, if (in violation of

this Recommendation) Alice were to use the same MAC key while attempting to transport

keying material to multiple parties (including both Bob and Eve).

 111

10.4 Rationale for Choosing a KTS-KEM-KWS Key-Transport Scheme

In each of the key-transport schemes included in the KTS-KEM-KWS family, only Bob

(assumed to be acting as party V, the key-transport receiver) is required to own an RSA key pair

that is used in the transaction. Assume that the identifier used to label party V during the

transaction is one that is associated with Bob’s RSA public key in a manner that is trusted by

Alice (who is acting as party U, the key-transport sender). This can provide Alice with some

level of assurance that she has correctly identified the party with whom she will be establishing

keying material if the key-transport transaction is successfully completed.

Each KTS-KEM-KWS scheme requires Alice (as part of the RSA-KEM-KWS.ENCRYPT

operation) to employ the RSASVE.GENERATE operation to select a (random) secret value Z and

encrypt it as ciphertext C0 using Bob’s RSA public key. A key-wrapping key, KWK, is derived

from Z (and other information input to the agreed-upon key-derivation method) and then KWK is

used by Alice to wrap the selected keying material (and any additional input) as ciphertext C1,

using the agreed-upon symmetric key-wrapping method. The concatenation of C0 and C1 forms

the ciphertext C that Alice sends to party V.

Unless Bob’s RSA private key has been compromised, Alice has assurance that no unintended

entity (i.e., no one but Bob) could employ the RSASVE.RECOVER operation to obtain Z from C0,

derive KWK, and then use that key to obtain the plaintext keying material from C1. Absent the

compromise of Bob’s RSA private key, Z, and/or KWK (or some compromise of the plaintext

keying material itself – perhaps prior to transport), Alice may attain a certain level of confidence

that she has correctly identified party V as Bob. Alice’s level of confidence is commensurate

with:

 The specificity of the identifier that is associated with Bob’s RSA public key,

 The degree of trust in the association between that identifier and the public key,

 The assurance of validity of the public key,

 The perceived strength of the key-wrapping method, and

 The availability of evidence that the transported keying material has been correctly

unwrapped by Bob, e.g. through key confirmation with Bob as the provider.

In general, Bob has no assurance that party U is Alice, since Bob has no assurance concerning

the accuracy of any identifier that may be used to label party U (unless, for example, the protocol

using a key-transport scheme from the KTS-KEM-KWS family also includes additional elements

that establish a trusted association between an identifier for Alice and the ciphertext, C, that she

sends to Bob while acting as party U).

Due to Alice’s unilateral selection of the keying material that is transported, only she can obtain

assurance of its freshness. (Her level of confidence concerning its freshness is dependent upon

the actual manner in which the keying material is generated by/for her.) Given that Bob simply

accepts the keying material that is transported to him by Alice, he has no assurance that it is

fresh.

The use of a transaction-specific (random) Z (and hence, a transaction-specific KWK) can

provide assurance to Alice that the values of both C0 and C1 will change from one KTS-KEM-

KWS transaction with Bob to the next, which may help obfuscate the occurrence of a repeated

transport of the same keying material from Alice to Bob, should that ever be necessary.

 112

The KTS-KEM-KWS-Party_V-confirmation scheme permits party V to provide evidence to

party U that keying material has been correctly recovered from the ciphertext C. When the KTS-

KEM-KWS-Party_V-confirmation scheme is employed during a key-transport transaction, party

V provides a key-confirmation MAC tag (MacTagV) to party U as specified in Section 9.3.4.2.

This allows Alice (who is acting as party U, the key-confirmation recipient) to obtain assurance

that party V has recovered the fresh MAC key (MacKey) that was included in the transported

keying material and that party V has used it with the appropriate MacDataV to compute the

received MacTagV. In the absence of a compromise of secret information (e.g., Bob’s RSA

private key, Z, KWK, and/or MacKey), Alice can also obtain assurance that the appropriate

identifier has been used to label party V, and that the participant acting as party V is indeed Bob,

the owner of the RSA public key associated with that identifier.

Specifically, by successfully comparing the received value of MacTagV with her own

computation, Alice (acting as party U, the key-confirmation recipient) may obtain assurance that

 Party V has correctly recovered Z from C0, and, therefore, possesses the RSA private key

corresponding to Bob’s RSA public key – from which it may be inferred that party V is

Bob;

 Bob has correctly derived the key-wrapping key, KWK, from Z and the other information

input to the key-derivation method – from which it may be inferred that both parties

agree on the value(s) (and representation) of that other information;

 Bob has successfully used KWK to recover MacKey from C1;

 Both parties agree on the values (and representation) of IDV, IDU, C, and any other data

included in MacDataV; and

 Bob has actively participated in the transaction (as party V), assuming that neither Bob’s

RSA private key, Z, KWK, nor MacKey has been compromised. Alice’s level of

confidence is commensurate with her confidence in the freshness of the MAC key.

The acquisition of Bob’s RSA private key by their adversary, Eve, may lead to the compromise

of keying material established during past, current, and future legitimate transactions (i.e.,

transactions that involve honest parties and are not actively influenced by an adversary) that

employ the compromised private key. For example, Eve may be able to compromise a particular

KTS-KEM-KWS transaction between Alice and Bob, given that she acquires the ciphertext (and

other data) sent from Alice to Bob. (Besides the ciphertext, Eve must acquire the other

information that was used along with Z to derive the key-wrapping key, and any other inputs

necessary for the key-unwrapping process). In addition to compromising legitimate KTS-KEM-

KWS transactions, once Eve has learned Bob’s RSA private key, she may be able to impersonate

Bob while acting as party V in future KTS-KEM-KWS transactions (with Alice or any other

party). Other schemes and applications that rely on the compromised private key may also be

adversely affected. (See the appropriate subsection for details.)

Even without knowledge of Bob’s private key, if Eve learns the value of Z that has been (or will

be) used in a particular KTS-KEM-KWS transaction between Alice and Bob, then Eve may be

able to derive the key-wrapping key, KWK, and unwrap the transported keying material as easily

as Bob (as long as she also acquires the ciphertext and other requisite data; a similar result would

follow from Eve’s acquisition of KWK by other means.) Alternatively, armed with knowledge of

 113

the Z value that has been (or will be) selected by Alice (or armed with the corresponding value of

KWK), Eve might be able to insert herself into the transaction (in the role of party V) while

masquerading as Bob.

If the KTS-KEM-KWS-Party_V-confirmation scheme is used during a particular key-transport

transaction, and Eve learns the value of MacKey that Alice will send to Bob, then it may be

possible for Eve to mislead Alice about Bob’s (active and successful) participation. As long as

Eve also acquires the value of C intended for Bob (and any other data needed to form

MacDataV), it may be possible for Eve to correctly compute MacTagV and return it to Alice as if

it had come from Bob (who may not even be aware that Alice has initiated a transaction with

him). Such circumstances could arise, for example, if (in violation of this Recommendation)

Alice were to use the same MAC key while attempting to transport keying material to multiple

parties (including both Bob and Eve).

11 Key Recovery

For some applications, the secret keying material used to protect data or to process protected data

may need to be recovered (for example, if the normal reference copy of the secret keying

material is lost or corrupted). In this case, either the secret keying material or sufficient

information to reconstruct the secret keying material needs to be available (for example, the keys

and other inputs to the scheme used to perform the key-establishment process).

Keys used during the key-establishment process shall be handled in accordance with the

following:

1. One or both keys of a key pair may be saved.

2. A key-wrapping key may be saved.

In addition, the following information that is used during key-establishment may need to be

saved:

3. The nonce(s),

4. The ciphertext,

5. Additional input, and

6. OtherInfo, or its equivalent.

General guidance on key recovery and the protections required for each type of key is provided

in the Recommendation for Key Management [SP 800-57].

12 Implementation Validation

When the NIST Cryptographic Algorithm Validation System (CAVS) has established a

validation program for this Recommendation, a vendor shall have its implementation tested and

validated by the Cryptographic Algorithm Validation Program (CAVP) and Cryptographic

Module Validation Program (CMVP) in order to claim conformance to this Recommendation.

Information on the CAVP and CMVP is available at http://csrc.nist.gov/cryptval/.

http://csrc.nist.gov/cryptval/

 114

An implementation claiming conformance to this Recommendation shall include one or more of

the following capabilities:

 Key-pair generation as specified in Section 6.3.

 Explicit public-key validation as specified in Section 6.4.3.

 A key-agreement scheme from Section 8, together with an approved random bit

generator and an approved key-derivation method from Section 5.5.

 A key-transport scheme as specified in Section 9, together with an approved random bit

generator, an approved hash function, an approved symmetric key-wrapping method, as

specified in Section 7.2.3.2, and an approved key-derivation method from Section 5.5

for RSA-KEM-KWS based schemes.

An implementer shall also identify the appropriate specifics of the implementation, including:

 The hash function to be used (see Section 5.1).

 The MacKey length(s). The minimum length is 14 bytes for a 256-byte (i.e., 2048-bit)

modulus, and 16 bytes for a 384-byte (i.e., 3072-bit) modulus.

 The length of the MAC tag (the minimum length is 64 bits, i.e., 8 bytes).

 The key-establishment schemes available (see Sections 8 and 9).

 The key-derivation method to be used if a key-agreement scheme is implemented,

including the format of OtherInfo or its equivalent (see Section 5.5).

 The type of nonces to be generated (see Section 5.4).

 How assurance of private-key possession and assurance of public-key validity are

expected to be achieved by both the owner and the recipient.

 If a key-transport scheme is implemented, the key-wrapping method used and whether or

not a capability is available to handle additional input (see Section 7.2.3.2).

 The RBG used, and its security strength (see Section 5.3).

 115

Appendix A: References

A.1 Normative References

[FIPS 140] FIPS 140-2, Security Requirements for Cryptographic Modules, May 25, 2001.

FIPS 140-3 is currently under development.

[FIPS 140 IG] FIPS 140-2 Implementation Guidance; available at

http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf

[FIPS 180] FIPS 180-4 Secure Hash Standard, March 2012.

[FIPS 186] FIPS 186-4, Digital Signature Standard, July 2013.

[FIPS 197] FIPS 197, Advanced Encryption Standard, November 2001.

[FIPS 198] FIPS 198-1, The Keyed-Hash Message Authentication Code (HMAC), July 2008.

[FIPS 202] Draft FIPS 202, SHA-3 Standard: Permutation-Based Hash and Extendable-

Output Functions, August 2014.

 [SP 800-38B] NIST SP 800-38B, Recommendation for Block Cipher Modes of Operation: The

CMAC Mode for Authentication, May 2005.

[SP 800-38C] NIST SP 800-38C, Recommendation for Block Cipher Modes of Operation: The

CCM Mode for Authentication and Confidentiality, May 2004.

[SP 800-38F] NIST SP 800-38F, Recommendation for Block Cipher Modes of Operation:

Methods for Key-wrapping, December 2012.

[SP 800-56A] NIST SP 800-56A, Recommendation for Pair-Wise Key-establishment Schemes

Using Discrete Logarithm Cryptography, Revision 2, May 2013.

[SP 800-56C] NIST SP 800-56C, Recommendation for Key Derivation through Extraction-then-

Expansion, November 2011.

[SP 800-57] NIST SP 800-57-Part 1, Recommendation for Key Management, Revision 3, July

2012.

[SP 800-67] NIST SP 800-67, Recommendation for the Triple Data Encryption Algorithm,

Revision 1, January 2012.

[SP 800-89] NIST SP 800-89, Recommendation for Obtaining Assurances for Digital

Signature Applications, November 2006.

[SP 800-90A] Recommendation for Random Number Generation Using Deterministic Random

Bit Generators, January 2012.

[SP 800-90B] DRAFT Recommendation for the Entropy Sources Used for Random Bit

Generation, August 2012.

[SP 800-90C] DRAFT Recommendation for Random Bit Generator (RBG) Constructions,

August 2012.

http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf

 116

 [SP 800-108] NIST SP 800-108, Recommendation for Key Derivation Using Pseudorandom

Functions, October 2009.

[SP 800-133] NIST SP 800-133, Recommendation for Cryptographic Key Generation,

November 2012.

[SP 800-135] NIST SP 800-135, Recommendation for Existing Application-Specific Key

Derivation Functions, Revision 1, December 2011.

[ANS X9.44] ANS X9.44 Public Key Cryptography for the Financial Services Industry: Key

Establishment Using Integer Factorization Cryptography, August 2007.

[ISO/IEC 8825] ISO/IEC 8825-1, Information Technology – ASN.1 encoding rules: Specification

of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and

Distinguished Encoding Rules (DER), December 2008.

[PKCS 1] Public Key Cryptography Series (PKCS) #1: RSA Cryptography Specifications

Version 2.1", RFC 3447, February 2003.

A.2 Informative References

[Manger 2001] A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption Padding

(OAEP) as Standardized in PKCS #1 v2.0, J. Manger, In J. Kilian, editor,

Advances in Cryptology – Crypto 2001, pp. 230 – 238, Springer-Verlag, 2001.

[RSA 1978] A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, R.

Rivest, A. Shamir and L. Adleman, Communications of the ACM, 21(2), pp. 120

– 126, 1978.

[HN 1998] The Security of all RSA and Discrete Log Bits, J. Håstad and M. Näslund, Proc. of

the 39th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 510

– 521, 1998.

[Boneh 1999] Twenty Years of Attacks on the RSA Cryptosystem, D. Boneh, Notices of the

American Mathematical Society (AMS), 46(2), 203 – 213. 1999.

http://crypto.stanford.edu/~dabo/abstracts/RSAattack-survey.html
http://www.ams.org/notices

 117

Appendix B: Data Conversions (Normative)

B.1 Integer-to-Byte String (I2BS) Conversion

Input: A non-negative integer X and the intended length n of the byte string satisfying

 28n > X.

Output: A byte string S of length n bytes.

1. Qn+1 = X.

2. For i = n to 1 by −1

2.1 Qi = (Qi+1)256.

2.2 Xi = Qi+1 - (Qi · 256).

2.3 Si = the 8-bit binary representation of the non-negative integer Xi.

3. Let S1, S2,…, Sn be the bytes of S from leftmost to rightmost.

4. Output S.

B.2 Byte String to Integer (BS2I) Conversion

Input: A non-empty byte string S (SLen is used to denote the length of the byte string).

Output: A non-negative integer X.

1. Let S1, S2,… SSLen be the bytes of S from first to last (i.e., from leftmost to rightmost).

2. Let X = 0.

3. For i = 1 to SLen by 1

3.1 Let Xi be the non-negative integer whose 8-bit binary representation is Si.

3.2 X = X + (Xi · 256 SLen–i).

4. Output X.

 118

Appendix C: Prime-Factor Recovery (Normative)

The following algorithm recovers the prime factors of a modulus, given the public and private

exponents. The algorithm is based on Fact 1 in [Boneh 1999].

Function call: RecoverPrimeFactors(n, e, d)

Input:

1. n: modulus

2. e: public exponent

3. d: private exponent

Output:

1. (p, q): prime factors of modulus

Errors: “prime factors not found”

Assumptions: The modulus n is the product of two prime factors p and q; the public and private

exponents satisfy de 1 (mod (n)) where (n) = LCM(p – 1, q – 1)

Process:

1. Let k = de – 1. If k is odd, then go to Step 4.

2. Write k as k = 2tr, where r is the largest odd integer dividing k, and t 1.

3. For i = 1 to 100 do:

a. Generate a random integer g in the range [0, n1].

b. Let y = gr mod n.

c. If y = 1 or y = n – 1, then go to Step g.

d. For j = 1 to t – 1 do:

i. Let x = y2 mod n.

ii. If x = 1, go to Step 5.

iii. If x = n – 1, go to Step g.

iv. Let y = x.

e. Let x = y2 mod n.

f. If x = 1, go to Step 5.

 119

g. Continue.

4. Output “prime factors not found,” and exit without further processing.

5. Let p = GCD(y – 1, n) and let q = n/p.

6. Output (p, q) as the prime factors.

Any local copies of d, p, q , k, t, r, x, y, g and any intermediate values used during the execution

of the RecoverPrimeFactors function shall be destroyed prior to or during steps 4 and 6. Note

that this includes the values for p and q that are output in step 6.

Notes:

1. According to Fact 1 in [Boneh 1999], the probability that one of the values of y in an

iteration of Step 3 reveals the factors of the modulus is at least 1/2, so on average, at most

two iterations of that step will be required. If the prime factors are not revealed after 100

iterations, then the probability is overwhelming that the modulus is not the product of two

prime factors, or that the public and private exponents are not consistent with each other.

2. The algorithm bears some resemblance to the Miller-Rabin primality-testing algorithm

(see, e.g., FIPS 186).

3. The order of the recovered prime factors p and q may be the reverse of the order in which

the factors were generated originally.

 120

Appendix D: Revisions (Informative)

In the 2014 revision, the following revisions were made:

 Section 3.1 – Added definitions of assumptions, binding, destroy, fresh, key-derivation

function, key-derivation method, key-wrapping key, MAC tag, and trusted association;

removed algorithm identifier, digital signature, initiator, responder.

 Section 4 – Used party U and party V to name the parties, rather than using the initiator

and responder as the parties. In Sections 8 and 9, the schemes have been accordingly

renamed: KAS1-responder-confirmation is now KAS1-Party_V-confirmation, KAS2-

responder-confirmation is now KAS2-Party_V-confirmation, KAS2-initiator-

confirmation is now KAS2-Party_U-confirmation, KTS-OAEP-receiver-confirmation is

not KTS-OAEP-Party_V-confirmation, and KTS-KEM-KWS-receiver-confirmation is

now KTS-KEM-KWS-Party_V-confirmation.

 Section 4 – Added requirements to destroy the local copies of secret and private values

and all intermediate calculations before terminating a routine normally or in response to

an error. Instructions to this effect have been inserted throughout the document.

 The discussion about identifiers vs. identity and binding have been moved to Section 4.1.

 Section 4.3 – The phrase “IFC-based” has been removed throughout the document.

 Section 5.4 – More discussion has been added about the use of nonces, including new

requirements and recommendations.

 Section 5.5 – Key derivation has been divided into single-step key derivation methods

(Section 5.5.1), an extract-then-expand key derivation procedure (Section 5.5.2) and

application-specific key-derivation methods (Section 5.5.3).

 Section 5.5.1.2 – The use of OtherInfo (including identifiers) during the derivation of keys

is recommended, but no longer required (Section 5.5.1.2).

 Moved the general introduction of key-confirmation to Section 5.9 – The discussion now

incorporates the material from Section 6.6 of the previous version of the document.

 Section 6.4 – There is now a longer, and more thorough discussion of validity in Section

6.4. The concept of trusted associations has been introduced.

 Section 6.4.1.1 – Removed “or TTP” from the following: “The key pair can be

revalidated at any time by the owner as follows….”

 Section 7.2.3.2 – Moved discussion of symmetric key-wrapping methods from Section 5.7

to Section 7.2.3.2; much more information is now provided.

 Section 10 – The rationale for choosing each scheme type has been combined in this new

section, along with a discussion of their security properties.

 The old Appendix A, Summary of Differences between this Recommendation and ANS

X9.44 (Informative), was removed.

 121

 The old Appendix E becomes Appendix D, and the changes introduced in this Revision

are listed here.

 All figures are replaced to reflect the content, text, and terminology changes.

 Security requirements have been updated; in particular, the 80-bit security strength is no

longer permitted in this Recommendation.

 Changes to handle the destruction of local keys and intermediate values have been

introduced.

 General changes have been made to make this Recommendation more similar to [SP 800

56A].

