
NIST Special Publication 1017-2

Smokeview (Version 6)
A Tool for Visualizing

Fire Dynamics Simulation Data
Volume II: Technical Reference Guide

Glenn P. Forney

karenw
Typewritten Text
http://dx.doi.org/10.6028/NIST.SP.1017-2

karenw
Typewritten Text

karenw
Typewritten Text

NIST Special Publication 1017-2

Smokeview (Version 6)
A Tool for Visualizing

Fire Dynamics Simulation Data
Volume II: Technical Reference Guide

Glenn P. Forney
Fire Research Division

Engineering Laboratory

August 2013
Smokeview Version 6

SVN Repository Revision : 16676

U
N

IT
E

D
STATES OF AM

E
R

IC
A

D
E

PA
RTMENT OF COMMERC

E

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology
Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director

karenw
Typewritten Text
http://dx.doi.org/10.6028/NIST.SP.1017-2

Certain commercial entities, equipment, or materials may be identified in this
document in order to describe an experimental procedure or concept adequately. Such

identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Special Publication 1017-2
Natl. Inst. Stand. Technol. Spec. Publ. 1017-2, 70 pages (August 2013)

CODEN: NSPUE2

karenw
Typewritten Text
http://dx.doi.org/10.6028/NIST.SP.1017-2

Preface

This guide is part of a three volume set of companion documents describing how to use Smokeview in Vol
ume I, the Smokeview User’s Guide [1], describing technical details of how the visualizations are performed
in Volume II, the Smokeview Technical Reference Guide [2], and presents example cases verifying the var
ious visualization capabilities of Smokeview in Volume III, the Smokeview Verification Guide [3]. Details
on the use and technical background of the Fire Dynamics Simulator is contained in the FDS User’s [4]
and Technical reference guide [5] respectively. This guide is Volume II the Smokeview Technical Reference
guide.

Smokeview is a software tool designed to visualize numerical calculations generated by the Fire Dy
namics Simulator (FDS), a computational fluid dynamics (CFD) model of fire-driven fluid flow and CFAST
a two-zone fire model used to calculate the evolving distribution of smoke, fire gases and temperature. This
report documents some of the algorithms Smokeview uses to visualize fire dynamics data giving some of the
technical and programming details. Details on the use of Smokeview may be found in the Smokeview User’s
Guide. Smokeview uses the 3D graphics library OpenGL to visualizing fire and smoke data. This library is
used to specify the location, color and lighting of objects residing within a 3D world defined by FDS. In the
context of FDS, these objects may be used to represent geometry (such as blockages) or to visualize data.
Smokeview presents fire modeling data using visualization techniques such as tracer particles, 2D shaded
contours, iso-surfaces or flow vectors. Soot data or smoke is visualized using a variation of the 2D shaded
contour technique where transparency rather than color is used to represent the opacity or optical thickness
of smoke. The details used to implement various techniques for visualizing smoke are discussed.

i

ii

About the Author

Glenn Forney is a computer scientist at the Engineering Laboratory of NIST. He received a bachelor of
science degree in mathematics from Salisbury State College and a master of science and a doctorate in
mathematics from Clemson University. He joined NIST in 1986 (then the National Bureau of Standards)
and has since worked on developing tools that provide a better understanding of fire phenomena, most
notably Smokeview, a software tool for visualizing Fire Dynamics Simulator data.

iii

iv

Disclaimer

The US Department of Commerce makes no warranty, expressed or implied, to users of Smokeview, and
accepts no responsibility for its use. Users of Smokeview assume sole responsibility under Federal law for
determining the appropriateness of its use in any particular application; for any conclusions drawn from the
results of its use; and for any actions taken or not taken as a result of analysis performed using this tools.

Smokeview and the companion program FDS is intended for use only by those competent in the fields
of fluid dynamics, thermodynamics, combustion, and heat transfer, and is intended only to supplement the
informed judgment of the qualified user. These software packages may or may not have predictive capability
when applied to a specific set of factual circumstances. Lack of accurate predictions could lead to erroneous
conclusions with regard to fire safety. All results should be evaluated by an informed user.

Throughout this document, the mention of computer hardware or commercial software does not con
stitute endorsement by NIST, nor does it indicate that the products are necessarily those best suited for the
intended purpose.

v

vi

Contents

Preface i

About the Author iii

Disclaimer v

1 Introduction 1

1.1 Basic Description of Smokeview . 1

1.2 Version History . 2

1.3 Model Development . 2

1.4 Capabilities . 3

1.5 Overview . 3

2 Preliminaries 5

2.1 Defining Objects . 5

2.1.1 Setting the Scene . 7

2.1.2 Projections . 7

2.1.3 Stereo Projections . 7

2.1.4 Viewports . 9

2.2 Coloring, Shading and Blending Objects . 9

2.2.1 Color . 9

2.2.2 Shading . 10

2.2.3 Blending . 10

2.3 Motion . 15

2.3.1 Implementation . 16

3 Visualizing Data 19

3.1 Coloring Data . 19

3.1.1 Determining Data Bounds . 20

3.1.2 Converting data to a color . 20

3.1.3 Interpolating Colors . 20

3.2 2D Contours . 24

3.2.1 Line contours . 24

3.2.2 Banded contours . 24

3.3 3D Contours - Isosurfaces . 28

3.4 Particle Systems . 29

3.4.1 Massless Particles . 29

3.5 Computing and Visualizing Fractional Effective Dose data 34

3.5.1 FED example . 36

vii

4 Visualizing Smoke and Fire 39

4.1 Introduction . 39

4.2 Radiation Transport Equation . 40

4.2.1 Approximating the Radiation Transport Equation . 41

4.2.2 Discretizing the Radiation Transport Equation . 42

4.2.3 Splitting the Radiation Transport Equation . 44

4.3 Slice Rendering . 45

4.3.1 Computing Opacity . 46

4.3.2 Adjusting Opacity . 46

4.3.3 Orienting Slice Planes . 48

4.3.4 Compressing Slice Plane Data . 48

4.3.5 A Limitation of the Slice Solution Method . 52

4.4 Volume Rendering . 52

4.4.1 Implementation . 55

4.5 Future Work . 56

5 Future Work 57

5.1 Visualize Cases more Realistically . 57

5.2 Fire Computations in Smokeview . 57

5.3 Visualize Larger Cases . 58

5.4 Tools and Techniques . 58

Bibliography 61

Bibliography 62

Appendices 62

A Smokeview Program Structure 63

B Interfacing OpenGL with the Host Operating System 67

B.1 Buffers . 67

B.2 Initialization and Callback Routines . 67

C Rendering Smokeview Images 69

viii

List of Figures

2.1	 Right hand rule used by Smokeview for specifying a 3D vertex locations. 6

2.2	 Points, lines and a shaded triangle drawn using OpenGL. 6

2.3	 Example view frustum used to convert 3D scenes to 2D screen viewport. 8

2.4	 View frustums for stereo pairs. 8

2.5	 Examples of several viewports in a typical Smokeview scene. 9

2.6	 The FDS townhouse case drawn using flat and smooth shading. 11

2.7	 Two spheres drawn showing the effect of using averaged normals. Using non-averaged

normals results in a faceted or gem-like appearance. 12

2.8	 A slice file drawn transparently mixes slice colors with those in the background. When

drawn opaquely, any portion of the scene behind the slice file is hidden. 14

2.9	 Diagram relating the vector u × v and the angle θ with vectors u, v. 16

3.1	 1D colorbar and 3D color cube . 21

3.2	 Slice file snapshots illustrating old and new method for coloring data. 23

3.3	 Color interpolation examples . 25

3.4	 2D line contour canonical forms. 26

3.5	 2D band contour canonical forms. 26

3.6	 Snapshot of an isosurface of temperature at 100 ◦C (212 ◦F). 30

3.7	 Snapshot of an isosurface of temperature at 100 ◦C (212 ◦F). 31

3.8	 3D isosurface canonical forms. 32

3.9	 Example of triangle decimation. 33

3.10 Setup for determining the slope of a smooth curve passing through three points. 34

3.11 Plume flow visualized using particles and particle streaks. 35

3.12 Plot of FED vs. time for ambient and smoke filled rooms. 37

4.1	 Diagram illustrating components of the radiation transport equation 41

4.2	 Setup for discretizing the equations used to model radiance within a column of 3D smoke data. 42

4.3	 Solutions to the RTE on two sub-intervals are combined to form a solution to the RTE for

the merger of these intervals. 44

4.4	 Light emitted from the background is obscured by intervening smoke. 46

4.5	 Diagram illustrating the adjustment required to the opaqueness parameter, α , for non-axis

aligned views. 47

4.6	 Smoke plume visualized using several vertical parallel partially transparent planes. 49

4.7	 Realistic visualization of a townhouse kitchen fire simulated using FDS. 50

4.8	 Slice plane orientation chosen to be most perpendicular to the line of sight 51

4.9	 Diagram illustrating the angle between the line of sight and the vector normal to the slice

planes. 51

4.10 Opacity and color is computed for each pixel on an image plane by solving a line integral

representation of a simplified form of the radiation transport equation. 53

ix

4.11 Volume rendered smoke plume shown from several points of view. 54

4.12 Example linear colormaps used for converting temperature to color. 55

A.1 Smokeview external library usage . 64

A.2 Smokeview program structure . 65

x

Chapter 1

Introduction

1.1 Basic Description of Smokeview

Smokeview is a software tool designed to visualize numerical predictions generated by the Fire Dynamics
Simulator (FDS), a computational fluid dynamics (CFD) model of fire-driven fluid flow [6, 4] and CFAST
a two-zone fire model[7] used to calculate the evolving distribution of smoke, fire gases and temperature.
Most of Smokeview is written in the C programming language using the 3D graphics library, OpenGL [8],
for implementing visualization algorithms and GLUT [9] for interacting with both the user and the operating
system. More specifically, OpenGL is used to specify the location, color and lighting of objects residing
within a 3D world defined by FDS. In the context of FDS, these objects may be used to represent geometry
(such as blockages) or to visualize data. Smokeview uses these underlying techniques as building blocks to
visualize data such as tracer particles, 2D shaded contours or 3D level iso-surfaces. Soot data or smoke may
also be visualized using a variation of a 2D shaded contour, where transparency rather than color is used to
represent the opacity or optical thickness of smoke. This report describes these algorithms giving some of
the technical and programmatic details.

Smokeview is comprised of approximately 115 000 lines of code. Most of it is written in C [10]. A
small but important part is written in Fortran 90 [11]. This part is used to read data generated by FDS.
Additional software libraries (about 250 000 lines of code) are used for implementing dialogs, rendering
images and decompressing data files. The use of portable libraries allows Smokeview to run on many
platforms including Windows, Linux and OS X (for the Macintosh).

The fundamental purpose of visualization is to gain insight into the phenomena being studied. There is
no one best method for visualizing data. Each visualization technique highlights a different aspect of the
data. Smokeview visualizes fire dynamics data, typically results from the Fire Dynamics Simulator. This
data takes many forms. Some data is static, whereas other data evolves with time. Some data represents
geometric objects whereas other data represents the solution to the flow equations solved by FDS or a zone
fire model such as CFAST. Smokeview displays fire dynamics data allowing quantitative assessment to be
performed using visualization techniques such as animated tracer particles that follow the flow, animated
shaded 2D and 3D contours that display flow quantities and animated flow vectors that display flow quan
tities and direction. Smokeview also visualizes smoke realistically by converting soot density to smoke
opacity, displaying smoke as it would actually appear. Each of these visualization techniques highlight
different aspects of the underlying flow phenomena.

For details on the use of Smokeview, the reader is advised to read the Smokeview User’s Guide [1].
For details on how Smokeview is verified, see the Smokeview Verification Guide [3]. For details on set
ting up and running FDS cases, read the FDS User’s Guide [4]. For details on the theory and algorithms
implemented in FDS read the FDS Technical Guide [6].

1

1.2 Version History

Beginning in the early 1980s and continuing into the 1990s, Howard Baum and Ronald Rehm of NIST de
veloped the basic flow solver that evolved into the Fire Dynamics Simulator which was publicly released
in 2000[12]. Their solution technique, known as Large Eddy Simulation or LES, captures numerically very
complicated fire plume dynamics. Unfortunately, the power of the methodology could not be appreciated
without an effective way to view the calculation results. Early attempts to visualize the calculation results
consisted of nothing more than little particles swirling about in a box. This was useful to the model devel
opers, but hardly to anyone else. It just did not look like a fire.

Smokeview was written to address this problem. It is an advanced scientific visualization tool whose
drawing algorithms are based on physics, not just a tool for drawing pretty pictures. Version 1 of Smokeview
was publicly released in February 2000, version 2 in December 2001, version 3 in November 2002, version
4 in July 2004 and version 5 in September 2007. The present version of Smokeview is 6, officially released
in June 2012.

Along with particle tracking as performed before, it visualized fire flow data by coloring and animating
fire/smoke flow making it much easier to interpret FDS simulation results. Immediately after September
11, 2001, work began on both FDS and Smokeview to enable them to model and visualize much larger
problems. As a result, fire scenarios with several million grid cells can now be modeled and visualized
using a cluster of computers.

The next big step in Smokeview’s development was the implementation of an algorithm for realisti
cally visualizing smoke. The line between FDS which performs smoke flow computations and Smokeview
which performs smoke flow visualization became blurred as Smokeview now performs physics-based com
putations (Beer’s law) in order to visualize the smoke. The present algorithm for visualizing smoke only
considers the effects of absorption - how much an object is obscured by smoke. Future work involves mod
eling the effects of scattering - how the interaction between light and smoke effects the visualization and
coloring the fire more realistically based on physics principles such as the blackbody temperature curve.
The challenge is to represent color in an appropriate manner, considering the complexities associated with
perception. For example, one complication is that often the color that one perceives depends on what was
just seen.

1.3 Model Development

Currently, Smokeview is maintained by the Engineering Laboratory (EL) of the National Institute of Stan
dards and Technology. Starting with Version 5, the FDS-Smokeview development team uses an Internet-
based development environment called Google Code, a free service of the search engine company, Google.
Google Code is a widely used service designed to assist open source software development by providing
a repository for source code, revision control, program distribution, bug tracking, and various other very
useful services.

The Smokeview manuals are typeset using LATEX, specifically, PDF LATEX. The LATEX files are essentially
text files that are under SVN (Subversion) control. The figures are either in the form of PDF or jpeg files,
depending on whether they are vector or raster format. There are a variety of LATEX packages available,
including MiKTeX, a Windows version. The FDS-Smokeview developers edit the manuals as part of the
day to day upkeep of the model. Different editions of the manuals are distinguished by date.

Changes made to Smokeview are tracked using revision control software. Not every change results in a
change to the version number. The version number changes after it is judged that the source code changes
warrant a version number change. For minor changes and bug fixes, incremental versions are released,
referenced according to fractions of the integer version number. For example, version 5.1.4 would be a

2

maintenance release of feature version 5.1, which in turn is an update within the major application release
referred to as Smokeview 5. This happens every few weeks. A minor release from 5.2 to 5.3, for example,
might happen only a few times a year, when significant improvements have been made to the visualizations.

A suite of simple verification visualizations are routinely run to ensure that the daily changes have not
altered any of the important visualization algorithms. The Smokeview verification suite is documented in
Ref [3].

1.4 Capabilities

Smokeview is a program designed to visualize numerical calculations generated by the Fire Dynamics Simu
lator. Smokeview visualizes both dynamic and static data. Dynamic data is visualized by animating particle
flow (showing location and values of tracer particles), 2D contour slices (both within the domain and on
solid surfaces) and 3D iso surfaces. 2D contour slices can also be drawn with colored vectors that use veloc
ity data to show flow direction, speed and value. Static data is visualized similarly by drawing 2D contours,
vector plots and 3D level surfaces. Smokeview features in more detail include:

Particle Animations Lagrangian or moving particles can be used to visualize the flow field. Often these
particles represent smoke or water droplets.

Color Contours Animated 2D shaded color contour plots are used to visualize gas phase information, such
as temperature or density.

Animated Flow Vectors Flow vector animations, though similar to color contour animations (the vector
colors are the same as the corresponding contour colors), are better than solid contour animations at
highlighting flow features.

Animated Isosurfaces Isosurface or 3D level surface animations may be used to represent flame bound
aries, layer interfaces and various other gas phase variables.

Realistic Smoke Smoke, fire and sprinkler spray are displayed realistically using a series of partially trans
parent planes.

This report describes some of the technical details involved in implementing these capabilities.

1.5 Overview

Smoke and other attributes of fire are visualized by Smokeview using both quantitative and realistic tech
niques. Smokeview uses quantitative display techniques such as 2D and 3D contouring. Realistic display
of data refers to the intent of presenting the data in a form as it would actually appear. The first part of this
document presents some of the details involved in using these techniques for displaying FDS generated data.

To implement these techniques, Smokeview uses various tools and techniques such as color, lighting,
motion and transformation. These basic building blocks, discussed in Appendix 2, are used by each of
the techniques Smokeview uses for visualizing data, in particular, smoke visualization. A more thorough
treatment may be may be found in Martz’s OpenGL Distilled [13], the OpenGL Programming Guide (Red
book) [8] or the SuperBible [14]. Appendix A gives some of the programmatic details in particular giving
the structure and naming conventions of some of the program source files and how the external libraries
are organized and used. Appendix B gives the details of how the OpenGL components used by Smokeview
interact with the host operating system. Finally, several miscellaneous topics such as image rendering and
data compression are detailed.

3

4

Chapter 2

Preliminaries

2.1 Defining Objects

Smokeview defines object locations in terms of a right handed coordinate system with the x axis pointing
to the right, the y axis pointing to the back and the z axis pointing up (see Fig. 2.1). Coordinate values
as defined in an FDS input file for objects such as blockages, vents, etc. are transformed internally within
Smokeview to lie between 0.0 and 1.0. All Smokeview objects are drawn by grouping appropriately OpenGL
vertices.

A vertex in OpenGL has the same meaning as in geometry, a location. Vertices are specified in Smoke-
view using either glVertex3f(x,y,z) or glVertex3fv(xv). The suffix for glVertex indicates the number and
type of data value to be passed. For example, 3f is used when passing 3 scalar floating points. The suffix 3fv
is used to when passing a pointer (or equivalently a memory address) to 3 floating point values.

To illustrate, suppose that xyz is a floating point array of size 3 containing a 3D coordinate. One could
then use either of the two OpenGL calls:

glVertex3fv(xyz);
glVertex3f(xyz[0],xyz[1],xyz[2]);

to represent the vertex location.
Groups of vertices may be built up to form more complex geometric objects. Several objects are il

lustrated in Fig. 2.2. They are formed by grouping vertices together and surrounding them with calls to
glBegin() and glEnd(). The argument passed to glBegin() determines which higher level object
is drawn. To draw a shaded triangle one would use

glBegin(GL_TRIANGLE);
glVertex3f(0.0,0.0,0.0);
glVertex3f(0.0,1.0,0.0);
glVertex3f(1.0,0.0,0.0);
glEnd();

Similarly, to draw points or to connect the vertices with lines (also shown in Fig. 2.2) one would replace
GL_TRIANGLE above with GL_POINTS or GL_LINES respectively.

The triangle is the fundamental construct Smokeview uses to visualize objects. To be useful though,
these objects need to be colored, moved and projected onto a 2D terminal screen. These topics are discussed
in the following sections.

5

x

z

y

Figure 2.1: Right hand rule used by Smokeview for specifying a 3D vertex locations.

Figure 2.2: Points, lines and a shaded triangle drawn using OpenGL. Vertices are defined using glVertex*
and the particular shapes are generated by passing GL_POINTS, GL_LINES, and GL_TRIANGLE to
glBegin()

6

2.1.1 Setting the Scene

3D objects must be flattened or converted to 2D in order to display them on a computer screen. This occurs
in two steps. The first step is called a projection. Smokeview uses three kinds of projections: perspective,
orthographic and stereo. The second step takes whatever projection that has been applied and maps the
resulting flattened geometry onto a subset of the computer screen. This window subset, usually a rectangle,
is called a viewport. All viewports in Smokeview are rectangular.

2.1.2 Projections

Projections are used to flatten the 3D scene onto a two dimensional plane. Two common projections are
orthographic and perspective. An orthographic projection is size preserving. Objects in the foreground take
up the same amount of screen space as objects in the background. This projection is sometimes called a
parallel projection because parallel lines in the 3D scene remain parallel when drawn on the screen.

A perspective projection creates an illusion of depth by causing objects in the background to take up
less screen space than the same sized object drawn in the foreground. Both projection methods are available
in Smokeview.

Smokeview uses glFrustum to perform perspective projections

glFrustum(
(double)fleft,(double)fright,
(double)fdown,(double)fup,
(double)fnear,(double)ffar);

and glOrtho to perform orthographic projections

glOrtho(
(double)fleft,(double)fright,
(double)fdown,(double)fup,
(double)fnear,(double)ffar);

where fleft, fright, fdown, fup, fnear, ffar are six clipping planes bounding the view frustum
(truncated pyramid) for the perspective projection or the box in the orthographic projection. Drawing does
not occur outside of the 3D region defined by these 6 clipping planes. An additional six clipping planes
parallel to the x, y and z axes may be activated in Smokeview (using the clipping dialog box) to hide
geometry making it easier to see interior objects or visualizations (hence the term clipping plane). OpenGL
allows one to define clipping planes along arbitrarily oriented planes.

2.1.3 Stereo Projections

A stereo projection is simply a perspective applied twice making adjustments to simulate the viewpoint
as seen for an observer’s left and right eye. The two resulting versions of the scene can then be drawn in
succession using shuttered glasses synced with the monitor to render the stereo effect. Alternatively, left and
right versions of the scene may be drawn at the same time using stereo viewers to reveal the stereo effect.
Figure 2.4 illustrates the two view frustums used for a stereo projection.

7

Monitor View Frustum

Figure 2.3: Example view frustum used to convert 3D scenes to 2D screen viewport.

Left eye

Right eye

Figure 2.4: View frustums for stereo pairs.

8

3D scene

Title

Color bar

Time bar

Figure 2.5: Examples of several viewports in a typical Smokeview scene.

2.1.4 Viewports

A viewport is the particular portion of the screen where the drawing occurs. Smokeview defines separate
viewports for drawing the title, time bar, color bar and the 3D scene. Figure 2.5 illustrates the relationship
between the 3D scene and the 2D screen giving several viewport examples used by Smokeview.

Smokeview uses glViewport() to establish a window viewport. In particular, the call

glViewport(left,down,width,height);

is used to set up the portion of the screen where 3D drawing occurs where left and down are the bottom
left screen coordinates of the viewport and width and height are the width and height of the viewport.

2.2 Coloring, Shading and Blending Objects

Color, shading and blending are three aspects of the same process used to draw objects residing in a three
dimensional environment. Smokeview uses color to display and more importantly to distinguish between
two or more geometric or data elements. Shading adds a further depth cue (besides perspective projections
discussed earlier) to present the illusion of 3 dimensions. Using a virtual light source, colors are changed
subtly based upon the relative orientation of the light source and the surface being drawn. Portions of the
surface oriented away from the light are drawn darker than portions oriented towards the light. Blending is
the process of combining the colors of two or more objects in such a way that objects in the background may
be seen through semi-transparent objects drawn in the foreground. Together, color, shading and blending
add to the illusion that the image drawn on a two dimensional terminal screen is three dimensional.

2.2.1 Color

Color in OpenGL is defined using four not three components. Besides the expected components of red,
green and blue, OpenGL uses a component designated as alpha to represent opaqueness. Each component
ranges from 0.0 to 1.0. An alpha component of 0.0 indicates a color that is completely transparent while an
alpha component of 1.0 represents a color that is completely opaque.

9

Colors are specified using the OpenGL routine glColorXXX(). As with glVertexXXX(), XXX is
replaced by a suffix used to indicate the number and type of argument passed. For the most part, Smokeview
uses glColor3f, glColor4f, glColor3fv and glColor4fv. As before, the 3 or 4 indicates the
number of data values used. If 3 is specified in the call then it is tacitly assumed that the fourth component,
alpha, has value 1.0. In other words, the color is opaque. The f parameter indicates that floating point
values are used and the v parameter indicates that the variable passed is a pointer to the actual data to be
referenced.

2.2.2 Shading

OpenGL uses two shading models for drawing objects, flat and Gouraud. These models are specified us
ing glShadeModel(GL_FLAT) and glShadeModel(gl_SMOOTH) respectively. Gouraud shading
is also referred to as smooth shading. Flat shading assumes that objects are drawn in an environment with
uniform lighting - light surrounds an object equally in all directions. Smooth lighting on the other hand
assumes that light comes from a particular direction. This causes subtle changes in color to occur across
an object’s surface. Figure 2.6 shows examples of FDS blockages (the standard townhouse scenario) drawn
using flat and smooth shading. Flat shading diminishes the three dimensionality of the scene.

A normal vector, another vertex attribute, is required to implement a smooth lighting scheme. A normal
vector points in a direction perpendicular to the surface at the vertex. OpenGL uses this information to
estimate the fraction of light from the light source reflected off of the given surface and intercepted by the
observer. This is similar to a configuration factor calculation performed in fire modeling. The amount of
light perceived by the observer depends on the relative orientation of the light source, the object (as specified
by the location and normal vector of each vertex) and the observer.

For planar surfaces, the same normal vector is applied to each vertex defining the surface. For curved
surfaces, normal vectors are determined using an average of the normal directions of faces surrounding the
vertex. If normals are not averaged then the discontinuity in slope going from one face or triangle to another
will result in a faceted or gem-like appearance. Figure 2.7 shows examples of drawing using non-averaged
and averaged normals.

The Gouraud method for shading then determines a vertex color using the angle between the light
source direction and the vertex normal vector. The color of the object being shaded is then determined by
interpolating these colors.

Smokeview uses smooth shading or lighting to draw blockages and iso-surfaces. Particle, slice and
boundary files are drawn without shading as are 3D smoke and Plot3D files.

2.2.3 Blending

Smokeview using OpenGL draws semi-transparent objects by combining or blending the color of the object
currently being drawn with the color in the current background buffer.1 The blending fraction is determined
from the alpha color component of the object currently being drawn. A small alpha results in a small
contribution from the currently drawn object color while a large alpha results in a large contribution. More
precisely:

updated background color = α × fragment color + (1 − α) × original background color (2.1)

This particular blending model is the most common (there are others) and is activated in Smokeview using
the OpenGL call

1The background buffer is updated as each object is drawn.

10

flat shading

smooth (Gouraud) shading

Figure 2.6: The FDS townhouse case drawn using flat and smooth shading. All blockage surfaces have
identical colors when drawn with flat shading. When drawn with smooth shading, blockage colors change.
Surfaces are darker when not in direct view of the light source adding to a sense of depth.

11

separate normals → faceted drawing averaged normals → smooth drawing

Figure 2.7: Two spheres drawn showing the effect of using averaged normals. Using non-averaged normals
results in a faceted or gem-like appearance.

12

glBlendFunc(GL_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

Choosing an alpha less than one allows one to see through objects. Smokeview uses this feature to
implement partially transparent blockages and 2D animated slices. Slice files illustrated in Fig. 2.8 are drawn
using transparency. Smokeview also implements data chopping or hiding using blending or transparency.
Data to be hidden is assigned an alpha value of 0.0 causing it to be completely transparent.

Complications arise, however, because this blending model is not commutative. The final color the user
sees depends on the order in which the intermediate colors are drawn. To demonstrate this simply, consider
two objects, one opaque and one semi-transparent. An opaque object drawn second and in front of a semi
transparent object will totally obscure the semi-transparent object. A semi-transparent object drawn second
and in front of an opaque object will blend with but not obscure the opaque object drawn previously.

To be more precise, consider two objects with colors c1 and c2 and alpha values α1 and α2. Let the
background color be denoted b0. Then blending object 1 with the background results in a new background
color, b1, given by

b1 = (1 − α1)b0 + α1c1 (2.2)

Blending the color c2 with b1 results in a new background color, b2, given by

b2 = (1 − α2)b1 + α2c2 (2.3)

= (1 − α2)((1 − α1)b0 + α1c1) + α2c2 (2.4)

= (1 − α2)(1 − α1)b0 + α1c1 + α2c2 − α2α1c1 (2.5)

Now blend colors c1 and c2 to the original background in the opposite order. Blending the color c2 to
with the background color b0 results in a new background color, b̂1, given by

b̂1 = (1 − α2)b0 + α2c2 (2.6)

Blending c1 to the interim background color b̂1 results in a new background color, b̂2, given by

b̂2 = (1 − α1)b̂0 + α1c1 (2.7)

b̂2 = (1 − α1)((1 − α2)b0 + α2c2) + α1c1 (2.8)

b̂2 = (1 − α1)(1 − α2)b0 + α2c2 + α1c1 − α1α2c2 (2.9)

In general, b2 − b̂2 = c2. Of course b2 b̂2 = 0 or α2 = 0 but = α1α2(c2 − c1) = 0, unless c1 = = 0 if α1
this is a trivial case in which one of the two fragments is completely transparent.

The application to Smokeview is that since all smoke is drawn with the same color, smoke slice plane
drawing is order independent. However, whenever fire is visualized along with smoke, multiple colors may
exist in a given plane (black for smoke, orange for fire). In this case, the order that the planes are drawn
becomes important.

In order then to prevent inconsistent drawing for the general case, opaque objects are drawn first then
partially transparent objects are drawn next from back to front (from the point of view of the observer).
Otherwise transparent objects may appear blended in front of objects when they should in fact be obscured.
Of significance in Smokeview, is that slice plane ordering is not important when drawing 3D smoke since
all smoke is drawn with the same color (but different opacities). However, order is important when drawing
smoke and fire (two different colors) or if considering more elaborate lighting algorithms where in general
every vertex may have a different color (due to lighting effects).

When lighting is not applied, colors within a triangle are determined in two steps using bi-linear in
terpolation. First, colors along a triangle edge are linearly interpolated using the two colors of the vertices

13

partially transparent slice plane

opaque slice plane

Figure 2.8: A slice file drawn transparently mixes slice colors with those in the background. When drawn
opaquely, any portion of the scene behind the slice file is hidden.

14

bounding the edge. Second, the interior colors are determined along a horizontal scan line again using linear
interpolation using colors previously interpolated on the triangle edge.

Flat shaded triangles may be drawn more efficiently but are not effective at visualizing a 3D effect. More
sophisticated shading techniques are required and are discussed next.

2.3 Motion

Previous sections discussed how appearance is important in visualization. This section discusses how motion
may be used to gain insight into fire phenomena. Motion may be thought of in two separate but equivalent
ways - keeping the scene fixed and changing the observer’s location and view direction or keeping the
observer fixed and translating, rotating and/or scaling the scene.

Objects are moved or translated in OpenGL by applying a transformation to the current modelview
matrix. The transformation is a matrix whose particular form depends on whether it is a translation, a
rotation or a scaling.

A translation by (x,y,z) is performed by using glTranslate3f(x,y,z). This OpenGL call gener
ates the matrix ⎞⎛

T
 =

⎜⎜⎝

1 0 0 −x

0 1 0 −y

0 0 1 −z

0 0 0 1

⎟⎟⎠
 (2.10)

and applies it to the modelview matrix.
A rotation of θ degrees about the unit-vector axis, (x,y,z), is performed using glRotatef(θ ,x,y,z).

A rotation of θ degrees about the x axis is performed using glRotate(θ ,1.0,0.0,0.0). This OpenGL
call generates the matrix ⎞⎛

R =

⎜⎜⎝

1 0 0 0

0 cos(θ) −sin(θ) 0

0 sin(θ) cos(θ) 0

0 0 0 1

⎟⎟⎠
 (2.11)

and applies it to the modelview matrix.
It is of interest to rotate a scene between vectors u and v about an axis perpendicular to both vectors as

illustrated in Fig. 2.9. The rotation axis is formed by generating the cross-product of u and v, namely u × v.
The rotation amount θ is found using cos(θ) = u · v/(||u|| · ||v||) . For the special case that u and v are unit
vectors and u = (0,0,1), a vector along the z axis, then θ and the rotation axis are given by

θ = cos−1(vz) (2.12)

u × v = (−vy,vx,0) (2.13)

so that the OpenGL call to perform the desired rotation would be glRotatef(180 cos−1(vz)/π,−vy,vx,0).
A scaling of (a,b,c) meaning that x components are scaled by a, y components are scaled by b, and z

components are scaled by c is performed using glScale3f(a,b,c). This OpenGL call generates the
matrix ⎞⎛

a 0 0 0

0 b 0 0

R =

⎜⎜⎝

⎟⎟⎠
 (2.14)

0 0 c 0
0 0 0 1

15

vu
vu)θcos(

u

v

vu

Figure 2.9: Diagram relating the vector u × v and the angle θ with vectors u, v.

and applies it to the modelview matrix. Smokeview uses scaling to view cases with large aspect ratios,
tunnel fires for example.

This multiplication is usually performed in hardware by the video card. The modelview matrix is initial
ized to the identity matrix then multiplied by these translation, rotation or scaling transformation matrices
as the scene is moved using the glTranslate, glRotate and glScale OpenGL calls.

2.3.1 Implementation

The desired translation and rotation amounts are communicated between the user and Smokeview using key
board and/or mouse callback routines. Mouse motion is intercepted by the GLUT mouse callback routines
in Smokeview and named mouse (first time mouse is clicked) and motion (when mouse is pressed and
moving). GLUT informs the callback of the screen pixel coordinate which Smokeview uses to determine an
elevation or azimuth angle or a translation amount depending on which control key (none, CTRL or ALT)
is pressed. Smokeview translates and scales the coordinate system defined in an FDS scenario using

x̂ = (x − xmin)/(xyzmax − xyzmin) (2.15)

ŷ = (y − ymin)/(xyzmax − xyzmin) (2.16)

ẑ = (z − zmin)/(xyzmax − xyzmin) (2.17)

where xmin and xmax are the smallest and largest x coordinate considering all meshes. ymin, ymax, zmin and
zmax are defined similarly.

The Smokeview scene is then translated in this coordinate system using glTranslate using the
mouse position as passed to Smokeview by GLUT.

The Smokeview scene may be rotated about either a vertical or horizontal axis both passing through
the scene center. The rotation angle about the horizontal axis (aligned perpendicular to the viewer’s line of
sight) is called an elevation angle and the rotation angle about the vertical axis is called an azimuth angle.
These two angles and the translation amount are used by Smokeview to control the orientation of the scene.
Rotations are then implemented in Smokeview using

glTranslatef(xcen,ycen,zcen);

glRotatef(YZ_AXIS_angle,cos(az_angle),-sin(az_angle),1.0);

glRotatef(XY_AXIS_angle,0.0,0.0,1.0);

glTranslatef(-xcen,-ycen,-zcen);

16

where xcen, ycen, zcen are the coordinates of the scene center, YZ_AXIS_angle is the elevation
angle, and XY_AXIS_angle is the azimuth angle. The scene center (center of rotation) is translated to the
origin, requested rotations are implemented, then the scene is translated back to its original location.

17

18

Chapter 3

Visualizing Data

Smokeview uses color and contours to visualize data quantitatively. Color is used to indicate how much of a
quantity is at a given location whereas contours are used to identify where rather than how much a specified
quantity occurs.

Coloring methods for visualizing data work by assigning colors based upon data values to various ver
tices within the scene. These vertices coincide with the FDS grid, either within a horizontal or vertical
plane (slice or Plot3D file) or on a blockage exterior (boundary file). The video card then interpolates these
colors at the interior of the figure, usually a triangle, formed by the vertices. Coloring variations result from
differing methods for interpolating color between the vertices, either interpolating within the 3D color cube
or using a 1D texture map (the colorbar).

Smokeview uses marching algorithms for generating contours, marching squares for generating 2D
contours and marching cubes [15] for generating 3D contours. Marching algorithms work by reducing the
general contouring problem to that of finding the contour in an elementary figure such as a square or a
cube. Marching squares are used for finding 2D contours in a plane and marching cubes are used for finding
isosurfaces in a volume. A contour for a region is then generated by splitting the region into a series of
squares for 2D contours or a series of cubes for a 3D contour and finally assembling the contour acquired
from all the parts.

Smokeview uses two methods for representing Smokeview flow data realistically. The first involves par
ticles, representing smoke flow by tracking tracer particles as they move through the simulation influenced
by an underlying velocity field. This velocity field and the particle motion is computed by FDS and commu
nicated to Smokeview using data files. This was the first method Smokeview implemented for visualizing
smoke flow and was inspired by the software tool named Frames written by James Sims.

The second method for visualizing smoke flow involves a method known as volumetric rendering.
Smoke transparency is visualized using the optical properties of soot noting that the amount of light obscured
by smoke and hence its shade depends on the quantity of smoke between the observer and the background.
Smokeview then integrates the smoke opacity one grid plane at a time using a simple implementation of
Beer’s law in the video hardware.

3.1 Coloring Data

Smokeview uses several methods to visualize data quantitatively involving converting data values to color.
The basic procedure is to

1. obtain minimum and maximum data bounds to use in scaling, either through calculation or specification
by the user,

19

2. map data onto integer indices between 0 to 255 ,

3. obtain colors using indices computed in step 2 to index into a color table (a numerical representation of
the color bar)

4. display colors using 1D texture maps (or glColorxx in the case of particles).

These steps are detailed in the following sections. It is important to point out that the use of 1D texture maps
in step 4 enables more detail to be obtained from the visualization due to the way that color interpolations
between grid points are performed.

3.1.1 Determining Data Bounds

Smokeview uses three methods for setting data bounds. First, the bounds may be set by the user. This
would be useful to ensure consistent coloring when several file types are displayed simultaneously (say slice
and boundary files). A second method is to use percentile bounds (1st and 99th by default) which are useful
when data outliers are present. To find percentile bounds, Smokeview scans the data computing a histogram.
It then picks data bounds at a specified percentile levels, 1st and 99th by default. The third method for setting
data bounds is to simply pick the global bounds for the data.

3.1.2 Converting data to a color

An index into a color table of size 256 is computed using

color index =

⎧⎨ ⎩

0 v < vmin

1 + 253(v − vmin)/(vmax − vmin) vmin ≤ v ≤ vmax (3.1)
255 v > vmax

where vmin and vmax are specified data bounds. Each table entry contains 4 components (red, green, blue
and opacity). Each component is scaled from 0.0 to 1.0. The data in the colorbar data structure then defines
colors (by default) as illustrated by the bold path in Fig. 3.1. Other colorbars may be used, for example a
color bar containing shades of gray from white to black.

3.1.3 Interpolating Colors

Consider the following code segment for drawing a shaded triangle with red, green and blue vertices:

glBegin(GL_TRIANGLE);
glColor3f(1.0,0.0,0.0);
glVertex3f(0.0,0.0,0.0);

glColor3f(0.0,1.0,0.0);
glVertex3f(0.0,1.0,0.0);

glColor3f(0.0,0.0,1.0);
glVertex3f(1.0,0.0,0.0);
glEnd();

OpenGL interpolates colors between the vertices and interior to the triangle using the color cube as in
Fig. 3.1. For example, if two vertices A and B are colored (0.0,1.0,0.5) and (1.0,0.5,0.0), then a point half

20

(0,0,0)

(1,0,1)

(0,1,1) (1,1,1)

(1,1,0)(0,1,0)

(1,0,0)

(0,1,0.5)

(1,0.5,0)

(0,0,1)

Color interpolated
within the colorbar

Color interpolated within
the 3D color cube

colorbar path

(0.5,0.75,0.25)

(0,0.5,1)

(0.5,1,0)

(0,0,0)

(1,0,1)

(0,1,1) (1,1,1)

(1,1,0)(0,1,0)

(1,0,0)

(0,1,0.5)

(1,0.5,0)

(0,0,1)

Color interpolated
within the colorbar

Color interpolated within
the 3D color cube

colorbar path

(0.5,0.75,0.25)

(0,0.5,1)

(0.5,1,0)

a) colorbar b) 3D color cube

Figure 3.1: The 1D colorbar on the left is mapped onto the 3D color cube along the bold path from blue
to cyan to green to yellow to red. Colors interpolated within the cube are different than colors interpolated
within the colorbar.

21

way in between would be colored (0.5,0.75,0.25), the average of the two colors. This color is the midpoint
of the line segment AB interior to the color cube.

Smokeview version 4 (and earlier) uses this method, interpolating data within the 3D color cube (not the
colorbar). As a result, near the fire or wherever there are large temperature gradients, interpolation artifacts
occur. For example, if a red (1,0,0) region occurs near a blue (0,0,1) region, the interpolated color halfway
in between would be (0.5,0.0,0.5), a shade of purple, not in the colorbar. In general, suppose that ci j is an
integer index between 0 and 255 and that f (ci j) is the ci j’th color in the colorbar. Then the interpolated
color between the two colors f (c1) and f (c2) would be

interpolated color = (f (c1) + f (c2))/2 (3.2)

This is not a good method for displaying colors related to data since only data on the colorbar have
physical meaning. By using 1D texture maps, color indices are interpolated not colors. Therefore, colors
displayed in data plots are always contained in the colorbar which is what we want.

Smokeview interpolates color indices not colors. As a result, interpolated colors are contained in the
colorbar. This interpolation method is implemented using 1D texture maps. A 1D texture map is defined
using the desired colorbar. A texture coordinate is assigned to each data vertex. Color indices at pixels
between vertices are interpolated using the texture coordinate. In general, Smokeview uses the scheme,

interpolated color = f ((c1 + c2)/2) (3.3)

where c1 and c2 are color indices as before.
The following code segment sets up the use of 1D texture map.

glTexEnvf(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,GL_REPLACE);

glEnable(GL_TEXTURE_1D);

glBindTexture(GL_TEXTURE_1D,texture_slice_colorbar_id);

The following code segments (simplified) shows an example of drawing a slice in a YZ plane.

for(j=jmin; j<jmax; j++){
for(k=kmin; k<kmax; k++){

glTexCoord1f(r11); glVertex3f(xplane, yy1, z1);

glTexCoord1f(r31); glVertex3f(xplane, y3, z1);

glTexCoord1f(rmid); glVertex3f(xplane,ymid,zmid);

glTexCoord1f(r31); glVertex3f(xplane, y3, z1);

glTexCoord1f(r33); glVertex3f(xplane, y3, z3);

glTexCoord1f(rmid); glVertex3f(xplane,ymid,zmid);

glTexCoord1f(r33); glVertex3f(xplane, y3, z3);

glTexCoord1f(r13); glVertex3f(xplane, yy1, z3);

glTexCoord1f(rmid); glVertex3f(xplane,ymid,zmid);

glTexCoord1f(r13); glVertex3f(xplane, yy1, z3);

glTexCoord1f(r11); glVertex3f(xplane, yy1, z1);

glTexCoord1f(rmid); glVertex3f(xplane,ymid,zmid);

}

}

glEnd();

Figure 3.2 shows the old and new method for coloring. Note that the new method results in crisper,
clearer colors. Fig. 3.3 illustrates two methods for interpolating color. Colors are interpolated in Fig. 3.3a

22

interpolate colors within a 3D color cube interpolate colors within 1D texture color bar

Figure 3.2: Slice file snapshots illustrating old and new method for coloring data.

23

within the color cube where the colors within the cube have value (r,g,b). Colors are interpolated in Fig.
3.3b with the colorbar.

3.2 2D Contours

The 2D contouring problem may be stated as: find the region in a 2D plane where a particular value exists
(line contour) or an interval of values exist (banded contour). In each case, the region to be contoured is
divided into a series of squares. The problem is solved for each square and assembled to obtain the general
solution. The square locations correspond to the grid set up in the FDS input file.

3.2.1 Line contours

Mathematically, the 2D line contouring problem may be expressed as: for some level L, find the line(s) in
the desired region where f (x,y) = L. Consider this problem for one square and assume that f is known at
each square corner. The problem is solved by noting that the value of f at each of the four square corners is
either greater than or less than or equal to the contour level L. There are then two states at each of the four
corners. As a result, there are 16 cases to consider. These 16 cases may be reduced to 4 after accounting for
various symmetries such as rotational, mirror and high/low. High/low symmetry refers to the observation
that a case with one corner value above L will look the same as one with 3 corners above L. Figure 3.4
shows these four cases. Corners with blue dots indicate that the solution at this point is greater than L. Red
lines indicate the line contouring solution. The algorithm may be summarized as follows:

1. Split the region to be contoured into a number of squares, each square aligned with the underlying FDS
grid.

2. For each square:

(a) Number the square corners as illustrated in Fig. 3.4.

(b) For each cell corner beginning with corner 0: assign 1 if its value exceeds L, 0 otherwise.

(c) Use resulting 4 digit binary number (0 → 15) to determine the case number to be plotted. Using
this numbering scheme, the cases are numbered from left to right 0 1, 5 and 3.

3.2.2 Banded contours

The banded contouring algorithm works similarly to the line contouring algorithm discussed previously.
The 2D banded contouring problem may be expressed mathematically as given an interval [L,H], find the
2D region where L ≤ f (x,y) ≤ H. The problem is solved by noting that the value of f at each of four
square corners is either less than L, greater than H or in between. There are three states at each of four
corners resulting in 81 cases to consider. These 81 cases may be reduced to 13 after accounting for various
symmetries such as rotational, mirror and high/low. High/low symmetry is defined as before. Figure 3.5
shows these four cases. Each square corner is labeled with an L, M or H denoting that the value of f at that
corner is below L, between L and H or above H respectively. The contoured region is bounded by black
lines and contains a series of one or more red lines in the interior. The algorithm may be summarized as
follows:

1. Split the region to be contoured into a number of squares, each square aligned with the underlying FDS
grid.

24

150

200

25

0

75

175

50

100

125

200100

0

a) colors interpolated within the color cube

150

200

25

0

75

175

50

100

125

200100

0

b) colors interpolated within the colorbar

Figure 3.3: Illustration showing colors representing data interpolated two different ways within a triangle:
interpolated with the 3D color cube and interpolated with the colorbar

25

Figure 3.4: 2D line contour canonical forms.

HL

H L

ML

M H

ML

H M

ML

M M

ML

H L

ML

M L

LL

H H

LL

H M

LL

M M

LL

H L

LL

M L

MM

M M

LL

L L

Figure 3.5: 2D band contour canonical forms.

26

2. For each square:

(a) Number square corners as illustrated in Fig. 3.5.

(b) For each cell corner beginning with corner 0: assign 0 if value is less than L, 1 if value is between
L and H and 2 if value exceeds H.

(c) Use resulting 4 digit base 3 number (0 → 80) to determine the case number to be plotted. The case
numbers in the first row are 0, 40, 1, 2 and 3. The case numbers in the second row are 5, 8, 10, 11
and 13. The case numbers in the last row are 14, 16 and 20.

27

3.3 3D Contours - Isosurfaces

An isosurface is a surface in 3-D space that defines constant values of a dependent variable. For example,
if one is interested in investigating regions at a certain temperature, say 100 ◦C, one would generate an
animated isosurface specifying this value..

The isosurfaces are generated at each desired time step using a marching cube algorithm [15] modified
to remove ambiguities. A decimation procedure is used to reduce the number of resulting triangles by
collapsing nodes of triangles with large aspect ratios and re-triangulating. This makes the isosurface look
better and also reduces storage requirements. Figures 3.6 and 3.7 illustrates the use of isosurfaces for
visualizing the stoichiometric mixture fraction. These figures show different ways of drawing isosurfaces.

Isosurface uncertainty Data used to generate isosurfaces has uncertainty, therefore the location of the
isosurface also has uncertainty. Bounds for this uncertainty may be expressed in terms of data uncertainty
and data variation (the smaller the variation the larger the uncertainty). The Smokeview verification guide [3]
shows that the uncertainty in isosurface location, Δx, between two node, data value pairs (x1,T1) and (x2,T2)
may be bounded using

 Δx

x2 − x1

 max(|ΔT1|, |ΔT2|)≤ (3.4)
|T2 − T1|

where ΔT1 and ΔT2 are the uncertainty in T1 and T2 at x1 and x2 respectively.

Algorithm for generating an Isosurface The algorithm for generating an isosurface may be summarized
as follows:

1. Split region to be contoured into a number of cubes, each cube aligned with the underlying FDS grid.

2. For each cube:

(a) Number cube corners from 0 to 7 as illustrated in Fig. 3.8.

(b) For each cube corner beginning with corner 0: assign 1 if value exceeds L, 0 otherwise.

(c) Use resulting 8 digit binary number (0 → 255) to determine the case number to be plotted.

(d) Triangulate cube surface, storing vertex locations and edge numbers according to case

3. Triangle decimation. Eliminate small triangles (any triangle with two or more vertices closest to the
same node). Replace removed triangle vertices with a vertex with coordinates that are the average of the
three removed vertices coordinates. Re-triangulate using this new vertex. This process is illustrated in
Fig. 3.9.

4. Estimate normal directions (to be associated with a vertex). For each vertex:

(a) determine triangles sharing the vertex

(b) determine the normal vector (normalized with length 1.0) of each triangle using the vertex

(c) construct a harmonic weighted average of triangle normal vectors where all weights sum to 1.0
and each weight is inversely proportional to the corresponding triangle area

(d) store the resulting average along with vertex data

28

Vertex normals in 3D An averaged normal vector, Vi, for vertex i may then be determined by summing
over all triangles n connected to a vertex i as in

Un 1 un × vn 1
Vi = ∑ /∑ = ∑ /∑ (3.5)

An An ||un × vn||2 ||un × vn|| n n n n

where for the n’th triangle, un and vn are two sides, An = ||un × vn|| is the triangle area and Un = un × vn/An

is a unit vector normal to the triangle.

Vertex normals in 2D The use of inverse area weights or harmonic averages to construct average normal
vectors at isosurface vertices is justified by the following two dimensional example. As illustrated in Fig.
3.10, consider the quadratic y(x) = A + Bx +Cx2 with y(−Δx2) = 0, y(0) = 1 and y(Δx1) = 0 . The slope at
x = 0 is given by y1(0) = B. Likewise, the slope of the vector perpendicular to this curve at x = 0 is −1/B.
The coefficient B may be determined from the two simultaneous equations y(Δx1) = 0 and (y(−Δx2) = 0
(note that A = 1 since y(0) = 1) or

21 + BΔx1 +CΔx1 = 0 (3.6)
21 − BΔx2 +CΔx2 = 0 (3.7)

which has solution

2 2Δx1 − Δx Δx1 − Δx2B = 2 = (3.8)
Δx1Δx2(Δx1 + Δx2) Δx1Δx2

The slope N of the normal at x = 0 is then given by

1 1
N = − = (3.9)

B 1/Δx1 − 1/Δx2

The slope N1 of the normal to the line segment between (0,1) and (Δx1,0) is N1 = Δx1. The slope N2 of the
normal to the line segment between (−Δx2,0) and (0,1) is N2 = −Δx2. Therefore the average slope N may
be expressed in terms of N1 and N2 as

1
N = (3.10)

1/N1 + 1/N2

3.4 Particle Systems

3.4.1 Massless Particles

FDS uses particles as tracer elements to allow one to visualize flow. FDS also uses particles as droplets
to model fire suppression or as fuel elements that can be transported and burned, for example, as embers
emitted from a burning tree. Particle positions are determined in FDS using the differential equation

d x p
= V (xp, t) (3.11)

dt

where xp represents particle position and V represents the velocity field.

29

Figure 3.6: Snapshot of an isosurface of temperature at 100 ◦C (212 ◦F).

30

outline view

solid view

Figure 3.7: Snapshot of an isosurface of temperature at 100 ◦C (212 ◦F).

31

0

1 2

3

4
6

7

5

Figure 3.8: 3D isosurface canonical forms. Dots occur at corners where the data value is greater than the

isosurface value. Other corners are below the isosurface value. Red polygons intersect cube edges at the

isosurface value. The red polygon (isosurface) NEVER intersects an edge with two or zero dots on the ends.

32

before decimation

after decimation

Figure 3.9: Example of triangle decimation. Triangle with red dots is removed. Region is re-triangulated by
replacing any edges connected to a red dot with the blue dot (average position of removed red dot).

33

(Δx1,0)(-Δx2,0)

(0,1)

Figure 3.10: Setup for determining the slope of a smooth curve passing through three points.

The assumption this model uses to compute particle flow is that the drag force on the particle is large
compared to mg, the force due to gravity.

Figure 3.11 shows particles represented as particles and as streaks. A particle streak visualizes where
a particle is located over a period of time. The streak length is specified as time. Static particle images are
not effective at displaying motion. For example, the particle image in Fig. 3.11a does not show particle
motion. Streak lines, however, in Fig. 3.11b shows curved motion due to interior obstructions. Particle size
is specified using

glPointSize(partpointsize);

The floating point value of partpointsize is specified using the File/Bounds dialog box. Streak
line length is specified in terms of time, a certain number of seconds before the current display time. Streak
length is also specified in the File/Bounds dialog box.

3.5 Computing and Visualizing Fractional Effective Dose data

The fractional effective dose (FED), developed by Purser [16], is a measure of human incapacitation due to
combustion gases. FED index data is computed by Smokeview using CO, CO2 and O2 gas concentration data
computed by FDS. Future work involves incorporating other constituents such as soot or HCN. Smokeview
obtains this data from FDS using slice files.

The total FED is computed here in terms of FED components for CO and O2. A hyper-ventilating factor
due to CO2 is applied to the FED for CO. The total FED is then given by

FEDtot = FEDCO × HVCO2 + FEDO2 (3.12)

Other terms involving CN, NOx and irritants are neglected. The fraction of an incapacitating dose due
to CO, FEDCO is calculated using

34

a) Particles b) Particle streaks

Figure 3.11: Plume flow visualized using particles and particle streaks.

35

 t
FEDCO(t) = 2.764 × 10−5 (CCO(t))1.036 dt (3.13)

0

where t is time in minutes and CCO is the CO concentration (ppm). The fraction of an incapacitating
dose due to low O2 hypoxia , FEDO2 , is calculated using t dt

FEDO2 (t) = (3.14)
0 exp [8.13 − 0.54(20.9 −CO2 (t))]

where t is time in minutes and CO2 is the O2 concentration (volume per cent). The hyperventilation
factor induced by carbon dioxide, HVCO2 , is calculated using

exp(0.1903CCO2 (t) + 2.0004)
HVCO2 (t) = (3.15)

7.1

where t is time in minutes and CCO2 is the CO2 concentration (percent).

3.5.1 FED example

Assuming that CCO(t) = CO, CCO2 (t) = CO2 and CO2 (t) = O2 are constant, equations 3.13, 3.14 and 3.15
reduce to

FEDCO(t) = 2.764 × 10−5 CO1.036 t (3.16)

FEDO2 (t) = exp(−8.13 + 0.54 (20.9 − O2))t (3.17)

exp(0.1903 CO2 + 2.0004)
HVCO2 (t) = (3.18)

7.1

so that the total FED is given by

FEDtot = FEDCO(t) × HVCO2 (t) + FEDO2 (t) (3.19)
exp(0.1903 CO2 + 2.0004)

= 2.764 × 10−5 CO1.036 × exp(−8.13 + 0.54(20.9 − O2)) t
7.1

(3.20)

Figure 3.12 presents two FED computations where CO, CO2 and O2 are constant. The first for a smoke
filled room with CO=10 000 ppm, CO2 = 5% and O2 = 10% and the second for a room with ambient
conditions with CO=9 ppm, CO2 = 0% and O2 = 21%

36

http:exp(�8.13
http:exp(�8.13

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 2 4 6 8 10 12 14 16

FE
D

t (s)

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16

FE
D

t (s)

a) ambient b) smoke filled

Figure 3.12: Plot of FED vs. time for ambient and smoke filled rooms.

37

38

Chapter 4

Visualizing Smoke and Fire

4.1 Introduction

This chapter documents the physics and associated numerical algorithms used by Smokeview [1] to visu
alize smoke and fire. Smoke color and opacity are visualized using quantitative physics based methods.
Flame color at present is visualized using an arbitrary user specified color palette where color is mapped to
gas temperature. Future work involves mapping color to a blackbody temperature curve enabling a more
quantitative choice of color for this application.

Realistic visualization of fire calculation methods are important for applications where one wishes to
observe qualitative effects of fire and smoke rather than determine quantitative characteristics of data such
as temperature or velocity. This would be the case for a fire fighter using a computer based fire fighting
simulator. Realistic visualization methods, however, complement but do not replace other more traditional
visualization methods such as 2D contouring or 3D iso-surfacing which are better suited for quantitatively
analyzing data.

Complete methods for visualizing smoke and fire data taking into account interactions between light and
smoke require the solution of the radiation transport equation (RTE) [17] also called the volume rendering
equation in visualization literature. [18] This equation models how light is affected after interacting with
smoke, a participating medium. In particular, Smokeview uses the RTE to account for extinction (absorption
plus out-scattering) by the smoke and emission from the fire.

The form of the RTE used by Smokeview to model smoke and fire appearance is identical to that used
by FDS to model radiative heat transfer. Smokeview uses an extinction coefficient appropriate for visible
light while FDS use one appropriate for infrared wavelengths of light. With the proper extinction coefficient,
however, Smokeview can also view smoke at other wavelengths, simulating a thermal imager, for example.
Smokeview solves the RTE assuming a gray gas environment. This is the default solution method for
FDS. One other important difference is that Smokeview requires a solution at only one point at a time
(any arbitrary point though), the observer’s viewpoint, while FDS requires a radiation field, a solution at all
points within the solution domain. Even so, the solution of this integro-differential equation for visualization
requires significant computation and memory resources. Approximations are required in order to display
smoke and fire at interactive frame rates. The primary approximation is to take advantage of the low albedo
character of smoke allowing one to either simplify or eliminate scattering terms in the RTE.

Two techniques discussed for visualizing smoke are slice rendered and volume rendered methods [18,
19]. These methods both solve a form of the RTE equation. The integrated quantity in both cases is radiance,
the intensity of light seen by the observer. They differ in how the integration path is partitioned.

The first approach, a slice rendering method, splits the integration path at grid planes within a 3D mesh.
There is one partially transparent slice for each plane of simulated data. Planes are drawn through the data

39

along the coordinate planes or diagonally to these planes. The particular plane drawn is chosen to be the one
most perpendicular to the viewer’s line of sight. The resulting partially transparent slice planes are drawn
individually and combined by the video hardware to form one image.

The separation distance between slice planes becomes smaller as more planes are used to simulate a
case. As a result, the computed opacity values are subject to increased round off error due to finite precision
arithmetic. In fact, if these planes are sufficiently close, the computed opacities truncate to zero. In this
situation, volume rendering methods are required.

The second approach, a volume rendering method, also integrates a simplified form of the radiation
transport equation, but over the entire data mesh. The integration occurs from the front of the solution
domain (relative to the observer) to the back, rather than across just one slice plane. By performing the entire
integral at once instead of in pieces, the volume rendered method does not suffer from the round off errors of
the slice rendered method. The intermediate computational terms in the volume rendered method are stored
using full precision arithmetic rather than 8 bits. A volume rendered method then computes opacity across
multiple grid planes. As a result, there is only one plane of data displayed. The video hardware is again
exploited, but this time to compute a line integral for each pixel in the observer’s view. Opacities and color
for both methods are computed using transfer functions using soot density and temperature data obtained
from a fire simulation.

This chapter is organized as follows. A model for visualizing smoke and fire is discussed. This model,
the radiative transport equation (RTE), is simplified in several ways, one of which gives the Beer-Lambert
law. Two methods are then discussed for visualizing smoke both using a form of the RTE. The first method,
slice rendering, uses a series of partially transparent slices to represent smoke and fire. The second method,
volume rendering, solves the RTE over the entire domain. Finally, several areas for which the visualization
methods may be improved are given.

4.2 Radiation Transport Equation

The model used here to visualize smoke is the radiation transport equation (RTE) [17]. This equation uses
radiance to represent smoke appearance. Radiance has units of Watts per square meter per unit solid an
gle W/(sr · m2). The solid angle accounts for the fact that a light source appears brighter if it emits a given
amount of light through a smaller cross-sectional area. This has the interesting implication, ignoring atmo
spheric effects and as pointed out in Ref. [20], that the sun’s radiance appears the same observed from Earth
as from Mars. The diminished heat flux (W/m2 on Mars due to the increased distance from the sun is ex
actly offset by the reduced solid angle (sr) that the sun’s disk subtends. From a visualization perspective, this
implies that image radiance does not depend on distance from the observer unless a participating medium
is present to absorb or scatter light. The radiation transport equation discussed in this section models the
change in radiance due to these factors.

The radiation transport equation is used to calculate radiance due to one or more light sources within a
region possibly containing a participating medium such as smoke [17]. The change in radiance along a ray
with direction ω at any one instant and wavelength may be expressed using

(ω · ∇)C(x,ω) = −σa(x)C(x,ω)−σs(x)C(x,ω)+σa(x)Ce(x,ω)+σs(x) p(x,ω,ω 1)Ci(x,ω 1)dω
1 (4.1)' C(" ' C(" ' C(" 4π' C("absorption out−scattering emission

in−scattering

where C(x,ω) represents the radiance at x along a direction ω . As illustrated in Fig. 4.1, the right hand
side of (4.1) is split into four components accounting for absorption, in and out scattering and emission
where σa(x) is the absorption coefficient, σs(x) is the scattering coefficient, Ce(x,ω) is the radiance emitted

40

Light/Smoke interactions

absorption in-scatteringout-scattering emission

Volume Rendering Equation – Radiation Transport Equation

4

),(),,()(),()(),()(),()(),()(dxLxpxxLxxLxxLxxL iseasa

)()()(xLx
dx

xdL
t xte

L
xL
)(

dx L0

Beer’s law

Figure 4.1: Diagram illustrating components of the radiation transport equation. Absorption and out-
scattering terms decrease radiance. Emission and in-scattering terms increase radiance.

at x along a direction ω and p(x,ω,ω 1) is the fraction of light moving along direction ω 1 scattered along
direction ω . Absorption and out-scattering cause radiance to decrease while emission and in-scattering
cause radiance to increase. The radiance terms C, Ce and Ci have units of W/(m2 · sr). The coefficients σa

and σs have units of 1/m and specify the time and location dependent change per unit length to the radiance
term to which they are applied.

4.2.1 Approximating the Radiation Transport Equation

The RTE may be simplified in several ways depending on which terms are included or ignored. This section
derives an approximate solution in which the in-scattering integral term in (4.1) is neglected and the absorp
tion and out-scattering coefficients are combined (both are loss terms) using σt (x) = σa(x) + σs(x). This
simplification then only includes interactions between light and smoke due to absorption, out-scattering and
emission. Note that the Beer-Lambert law results if the emission term is also dropped.

Equation (4.1) is then approximated by neglecting the integral term and using σt (x) = σa(x) + σs(x) to
obtain

dC
(x) = −σt (x)C(x) + σa(x)Ce(x) (4.2)

dx

C(x0) = C0 (4.3)
 xThis equation may be solved by rearranging terms and applying the integrating factor exp(σt (s)ds)x0

obtaining

x xdC
exp σt (s)ds (x) + σt (x)C(x) = exp σt (s)ds σa(x)Ce(x) (4.4)

x0 dx x0

x xd
exp σt (s)ds C(x) = exp σt (s)ds σa(x)Ce(x) (4.5)

dx x0 x0

Integrating both sides and substituting the integration limits results in

x xN xN x
exp σt (s)ds C(x) = exp σt (s)ds σa(x)Ce(x)dx (4.6)

x0 x0 x0 x0

xN xN x
exp σt (s)ds C(xN) −C0 = exp σt (s)ds σa(x)Ce(x)dx (4.7)

x0 x0 x0

41

 � �

C0 CNCi+1Ci

xNx0 xi

i+1i

xi+1

x

observerbackground

x

212 CCC

x0 xND

,C=2C1+C2

x0 D D xN

,C1 ,C2

Figure 4.2: Setup for discretizing the equations used to model radiance within a column of 3D smoke data.
The transparency across the interval from xi to xi+1 is τi. The transparency across the intervals from xi to the
observer is the product of individual transparencies or τiτi+1 · · ·τN−1

x xN xNSolving for C(xN) after noting that σt (s)ds − σt (s)ds = − σt (s)ds results in x0 x0 x

xN xN xN

C(xN) = exp − σt (s)ds C0 + exp − σt (s)ds σa(x)Ce(x)dx (4.8)
x0 x0 x

which may be simplified to

xN

C(xN) = τ(x0,xN)C0 + τ(x,xN)σa(x)Ce(x)dx (4.9)
x0

after defining τ(a,b) as
b

τ(a,b) = exp − σt (s)ds (4.10)
a

which represents the optical depth between a and b. As noted earlier, if the emission term is neglected and
σt (x) = σt is constant over a path with length L = xN − x0, then (4.9) simplifies to

C(xN)
= exp(−σt L) (4.11)

C0

which is the Beer-Lambert law.

4.2.2 Discretizing the Radiation Transport Equation

The approximate RTE solution given in (4.9) is discretized by converting integral terms into Riemann sums.
Figure 4.2 illustrates the terms used to perform these discretizations. The path is split into N parts each with
length Δx = (xN − x0)/N. The coordinate system is set up so that the initial radiance, C0, is located at x0,
most distant from the observer and the final radiance, CN , is located at xN closest to the observer.

The optical depth, τ(a,b), defined in (4.10) is discretized using a Riemann sum after defining sample
points s j = x0 + jΔs for j = 0 to N with spacing Δs = (xN − x0)/N to obtain

N−1xN

τ
N−1
i = τ(xi,xN) = exp − σt (s)ds ≈ exp − ∑ σt (s j)Δs (4.12)

xi j=i

N−1 N−1
= ∏ exp (−σt (s j)Δs) = ∏ τ j (4.13)

j=i j=i

42

where τ j = exp (−σt (s j)Δs) represents the transparency over one discretization interval. For i = N − 1 to 0,
the optical depth τN−1 may be computed recursively using i

τ
N−1

τ
N−1 = τi (4.14)i i+1

where the recursion is initiated with τN−1 = 1. Substituting 1 − αN−1 = τN−1 and 1 − αi = τi into (4.14)N i i
gives

1 − αi
N−1 = (1 − αi

N
+
−
1

1)(1 − αi) = 1 − αi
N
+
−
1

1 − αi + αi
N
+
−
1

1
αi (4.15)

which simplifies to

α
N−1

α
N−1

i = i+1 + (1 − αi
N
+
−
1

1)αi (4.16)

Similarly, the radiance given by the RTE solution C(xN) in (4.9) may be discretized to obtain

N−1
CN = τN−1 C0 + ∑ τN−1

σa,i Ce,i Δx (4.17)0 i
i=0

where σa,i = σa(xi), Ce,i = Ce(xi), xi = x0 + iΔx and Δx = (xN − x0)/N. This simplifies to

N−1
CN = τN−1C0 + ∑ τN−1 Ĉe,i (4.18)0 i

i=0

where Ĉe,i = σa,iCe,iΔx. If Ĉe,i is interpreted as the emitted color of the fire or heated gas at location i and
C0 is interpreted as the color of the light source behind the smoke, then (4.18) restated in words gives color
seen by the observer computed as a weighted average of source and emitted colors where each weight is the
optical depth from the observer to the corresponding color location. These emitted colors can be determined
from a blackbody temperature curve or from a colormap meant to show variations in temperature in terms
of color.

The terms in (4.18) are summed from back to front meaning that the location of the i = 0 term is farthest
from the observer, while the location of the i = N − 1 term is closest. We wish to perform this sum in
reverse order, from front to back so that the sum may be terminated early if additional contributions would
not significantly change the result.

Therefore, to compute CN , let ĈN
j denote the partial sum using terms i = j through i = N − 1 in the

summation term in (4.18). Using this notation ĈN = τN−1C0 +ĈN . Then 0 0

N−1
ĈN

j = ∑ τi
N−1 Ĉe,i (4.19)

i= j

N−1
ĈN

j+1 = ∑ τi
N−1 Ĉe,i (4.20)

i= j+1

Subtracting (4.20) from (4.19) and solving for ĈN
j results in

ĈN
j = ĈN

j+1 + τN
j
−1 Ĉe, j (4.21)

The strategy then for volume rendering an image is for each pixel in the 2D projected image to

43

C0 CNCi+1Ci

xNx0 xi

i+1i

xi+1

x

observerbackground

x

212 CCC

x0 xND

C=2C1+C2

x0 D D xN

C1

C2

Figure 4.3: Solutions to the RTE on two sub-intervals are combined to form a solution to the RTE for the
merger of these intervals.

1. convert the background radiance C0 to a color,

2. convert the emitted radiances along the integration path to colors and

3. form a weighted average of these colors using either equation (4.18) or (4.21) where the weights are
optical depths obtained using (4.16) .

The conversion from radiance to color may be based on a blackbody temperature curve if realistic flame
colors are the goal or arbitrary if only a qualitative view of the fire is the goal. Equations (4.16) and (4.21)
are equivalent to the recursions presented in Ref. [21, Chapter 39] for performing volume rendering.

4.2.3 Splitting the Radiation Transport Equation

This section discusses splitting the Radiation Transport Equation (RTE), so that it may be solved separately
on multiple meshes or multiple slice planes. The final solution is then obtained by appropriately combining
solutions obtained on each mesh or slice plane.

It is more practical to draw smoke one mesh at a time when visualizing multiple mesh cases since
required data may not be easily accessible from all meshes, especially if the GPU1 is used for drawing. The
RTE solution or equivalently the computed radiance and smoke opacity require properties for the entire line
of sight which may encompass more than one data mesh. This section discusses how radiance and opacity
may be computed by combining solutions from each individual mesh along the line of sight. For example, as
illustrated in Fig. 4.3, consider an interval [x0,xN] that is split at D into two sub-intervals [x0,D] and [D,xN].
The goal then is to compute a radiance and opacity for [x0,xN] using radiances and opacities computed on
the two sub-intervals.

Let C be a radiance computed on [x0,xN] and C1 and C2 be radiances computed on two sub-intervals of
[x0,xN]. Likewise, let τ be an optical depth computed on [x0,xN] and τ1 and τ2 be optical depths computed
on two sub-intervals of [x0,xN]. From (4.9) and (4.10), the radiance C and optical depth τ are given by

xN

C = τ(x,xN)σa(x)Ce(x)dx (4.22)
x0

τ = τ(x0,xN) (4.23)

Likewise, the radiances C1 and C2 and optical depths τ1 and τ2 for the intervals [x0,D] and [D,xN] are
given by

1graphics processing unit of the video card

44

D
C1 = τ(x,D)σa(x)Ce(x)dx (4.24)

x0
xN

C2 = τ(x,xN)σa(x)Ce(x)dx (4.25)
D

τ1 = τ(x0,D) (4.26)

τ2 = τ(D,xN) (4.27)

The optical depth τ can be split into two parts giving

τ = τ(x0,xN) = τ(x0,D)τ(D,xN) = τ1τ2 (4.28)

since from (4.10) it can be shown that for any x, τ(a,b) = τ(a,x)τ(x,b). The radiance C can also be split
into two parts giving

xN

C = τ(x,xN)σa(x)Ce(x)dx (4.29)
x0

D xN

= τ(x,xN)σa(x)Ce(x)d x + τ(x,xN)σa(x)Ce(x)dx (4.30)
x0 D

D xN

= τ(D,xN) τ(x,D)σa(x)Ce(x)dx + τ(x,xN)σa(x)Ce(x)dx (4.31)
x0 D

= τ2C1 +C2 (4.32)

Summarizing, full-interval values C and α may be written in terms of sub-interval values C1, C2, α1 and
α2 using

τ = τ1τ2 (4.33)

C = τ2C1 +C2 (4.34)

Equations (4.33) and (4.34) may then be used to draw smoke and fire one mesh at a time. These
two equations are also the basis for combining RTE solutions obtained on multiple slice planes, which is
discussed next.

4.3 Slice Rendering

A slice rendering algorithm for visualizing smoke consists of splitting the RTE across individual slice planes
within a single mesh. The 3D computational domain is partitioned into a series of 2D slices. The RTE is
then solved on each slice. Each slice solution only accounts for conditions between adjacent slices. The
individual partially transparent slice solutions are then combined using video hardware to form the final
image. Problems can occur with numerical round off error if two slices are too close together which require
solution methods involving data volumes rather than data slices. These methods are discussed in the next
section.

There are many ways to slice a 3D data set. The slice orientation is chosen to be the one most perpen
dicular to the viewer’s line of sight, for which possible choices are slice planes parallel to the three cartesian
coordinate planes (XY, XZ, YZ) or planes diagonal to the data. The opacity at each grid node is computed
using the distance Δx between adjacent YZ planes and soot density data computed by the fire model. If
slice orientations other than YZ are displayed, then opacities are adjusted if the distance between planes is
different than Δx. Opacity data is computed and compressed using run length encoding as a preprocessing
step and decompressed one frame at a time as data is displayed.

45

x

Observer

Background

Figure 4.4: Light emitted from the background is obscured by intervening smoke.

4.3.1 Computing Opacity

Computing opacity at slice plane nodes is illustrated in Fig. 4.4. A ray travels from the background to the
observer through intervening smoke. Light is absorbed or scattered by the smoke as the ray passes each
slice plane. Emission effects are accounted for by coloring the smoke. Scattering effects presently are only
accounted for in the value of the total mass extinction coefficient. Light losses are assumed to be from
both absorption and scattering. The obscuration is computed along each ray one grid plane at a time, using
the Beer-Lambert law as follows. The α = 1 − τ values are pre-computed by FDS using the Beer-Lambert
law [17]

α = 1 − exp(−σt Δx) (4.35)

for a particular view direction (down the x axis) where Δx is this distance between two grid planes and as
before σt = σa + σs is the total mass extinction coefficient. The Beer-Lambert law is an empirical relation
ship relating light absorption to the material properties of the medium the light is travelling through, in this
case soot or smoke.

The α parameter in (4.35) is used by OpenGL [8] to blend smoke planes with the current background.
The α parameter used here also represents an opacity, 0.0, for completely transparent, and 1.0 for completely
opaque.

4.3.2 Adjusting Opacity

The absorption parameter, α , needs to be adjusted for view directions not aligned with the axis orthogonal
to the viewing planes (see Fig. 4.5). The absorption coefficient also needs to be adjusted when the distance
between adjacent smoke planes changes, or viewing planes are skipped.

Ten million exponential operations per second are required to display smoke with corrected α’s at 10
frames per second if the simulation has grid dimensions of 100 × 100 × 100. Recent advances in CPU and
video hardware makes these types of visualizations possible. These corrections may also be performed

46

̂

x x̂

ix px

ex

Figure 4.5: Diagram illustrating the adjustment required to the opaqueness parameter, α , for non axis aligned
views. The adjusted opacity α̂ along the Δx̂ segment is related to α value along the Δx segment using
(1 − α̂) = (1 − α)Δx̂/Δx

in the video card (GPU), resulting in increased display rates because the GPU performs the corrections
simultaneously at all or many of the grid nodes rather than one at a time as the CPU would.

The α obscurations are pre-computed using the distance Δx between adjacent planes along the x axis.
The adjusted α̂ expressed in terms of Δx̂ is given by

α̂ = 1 − exp(−σt Δx̂) (4.36)

where Δx̂ is the distance between planes along the line of site. Equations (4.35) and (4.36) may be used
to solve for α̂ in terms of α to obtain

α̂ = 1 − (1 − α)Δx̂/Δx (4.37)

after noting that

1 − α̂ = exp(−σt Δx̂) = exp(−σt Δx)Δx̂/Δx = (1 − α)Δx̂/Δx (4.38)

The computation of (4.37) is expensive because the exponential is computed at each grid node for every
time step. In addition, numerical cancellation may occur for small α leading to loss of significant digits.
Both problems may be solved by expanding (4.37) in a Taylor series and keeping only the first few terms:

α2 α3
α̂ ≈ αr − r(r − 1) + r(r − 1)(r − 2) (4.39)

2 6

where r = sec(θ) = Δx̂/Δx = ||xp − xe||/n · (xp − xe), n is the unit vector normal to the current plane
being drawn, θ is the angle between the view direction and n, xe is the observers position and xp is the vertex
being drawn (along the view direction). These terms are illustrated in Fig. 4.5.

When planes are skipped, (4.37) may be simplified. In particular, when every 2nd plane is skipped,
Δx̂/Δx = 2, so that (4.37) simplifies to

α̂ = 1 − (1 − α)2 = 2α − α2 (4.40)

47

The video hardware uses α values contained in the smoke planes to obscure the background much
like a camera uses a neutral density filter to darken a scene. Extending the analogy, Smokeview uses one
spatial/time varying numerical neutral density filter for each plane of smoke data. On a node by node basis
then, each smoke plane obscures the current image stored in the OpenGL back buffer by the amount (1− α)
to form a new back buffer image. Figure 4.6 illustrates this process showing several snapshots of a fire
plume. The final image in the lower right is the most realistic. A simplistic description of one step of this
process is given by

new buffer image = (1 − α) × old buffer image (4.41)

This process is repeated for each smoke plane.
Figure 4.7 illustrates this process showing smoke and fire in a townhouse kitchen fire. The visualization

is performed by displaying a series of partially transparent planes. For illustration, these planes are made
more conspicuous (in Fig. 4.7a) by skipping smoke planes (displaying every third plane) and orienting them
along the x axis. Figure 4.7b shows the visualization as it normally appears with all slice planes shown and
oriented along a plane most perpendicular to the view direction.

4.3.3 Orienting Slice Planes

Smoke opacity data computed as described in the previous sections is stored in a 3D array. This array
corresponds to the solution domain as set up in an FDS input file (or some other model). Smoke planes are
drawn in Smokeview through this data. The orientation is chosen to be most perpendicular to the viewer’s
line of sight. A plane orientation exactly perpendicular to the view direction could be drawn if one is willing
to pay the added CPU cost of interpolating opacity values between grid nodes.

Figure 4.8 illustrates this process showing three view directions and the corresponding smoke plane
orientations that would be used. Off-axis viewing is minimized by selecting the view planes orientation that
minimizes the angle between the planes normal direction and the view direction. This angle, θ , is illustrated
in Fig. 4.9, and is given by

n · ve cos(θ) = (4.42)
||n|| ||ve||

where n is normal vector for the candidate smoke plane, and ve is the view direction vector. In OpenGL,
the view direction vector, ve, is computed by simply obtaining the OpenGL modelview matrix, M and
multiplying it by the vector, (0,0,1)T or equivalently the third row of M.

4.3.4 Compressing Slice Plane Data

The opacity parameters are computed at each slice plane node for all time steps. The space required to
store these values can easily become quite large. Compression techniques are required to reduce storage
requirements.

Storage reduction occurs in two steps. First, four byte floating point soot densities are converted to one
byte smoke opacities using the Beer-Lambert law. Video cards presently use only one byte to represent opac
ity. Next, the sequence of opacity values are compressed using run-length encoding, a compression scheme
where repeated “runs” of data are replaced with a number (number of repeats), and the value repeated. In
more detail,

48

8 slices 11 slices

14 slices all slices

Figure 4.6: Smoke plume visualized using several vertical parallel partially transparent planes. The smoke
plume looks more realistic as more slice planes are included to form the image.

49

a) slices skipped and oriented along ‘X’ directions

b) all slices shown and oriented towards viewer

Figure 4.7: Realistic visualization of a townhouse kitchen fire simulated using FDS. For illustrative pur
poses, planes in the top image are oriented along the x axis. Planes in the bottom image are aligned along
the y axis, the axis most perpendicular to the line of sight.

50

View direction

.875 2.625 .75 4.25

View direction

.875 2.625 .75 4.25

View direction

.875 2.625 .75 4.25

a) slice planes parallel to the y axis b) slice planes parallel to the y = x axis c) slice planes parallel to the x axis

Figure 4.8: Slice plane orientation chosen to be most perpendicular to the line of sight

n
Xe

Figure 4.9: Diagram illustrating the angle between the line of sight and the vector normal to the slice planes.
Slice plane orientation is chosen to minimize this angle.

51

1. Represent four or more consecutive identical characters as #nc where # is a special character denoting
the beginning of a repeated sequence, n is the number of repeats and c is the character repeated. n can
be up to 254 (255 is used to represent the special character).

2. Represent characters not repeated four or more times as is.

The character string aaaaaabbbbcc would then be encoded as #6a#4bcc.
Run length encoding provides a reasonably good compression ratio, is simple to implement and more

importantly can be decompressed quickly. This last property is important for any compression scheme
chosen because it is a rate limiting step in the process that Smokeview uses to display smoke data. The CPU
time required to compute the smoke flow can easily exceed one minute of CPU time per output time step,
so extra time used to produce a more compact file is affordable. However, each data frame is decompressed
on the fly so a compression format that can be rapidly decompressed is critical.

A second compression scheme is used by Smokezip, companion software to FDS and Smokeview, to
more compactly compress FDS files. Smokezip uses the ZLIB compression library [22].

4.3.5 A Limitation of the Slice Solution Method

As noted earlier, the slice rendering method for visualizing smoke records opacities on grid planes using

α = 1 − exp(−σt Δx) (4.43)

where again Δx is the distance between adjacent grid planes. Problems with round off error can occur
because α’s are stored using only 8 bits, the size typical video hardware uses to represent color and alpha
channels. As a result, opacity values are quantized. Only values of 0, 1/255, · · · , 254/255 and 1 can be
represented. In particular, any α value computed to be smaller than 1/255 will truncate to 0. This can
occur when more grid cells are used to resolve a solution domain, i.e. when Δx is sufficiently small so that
α < 1/255.

For example, suppose that a 1 m column of smoke has opacity of 0.5. Substituting Δx = 1 and α = 1/2
into (4.43) gives σt = − ln(1/2). Solving for Δx using this value of σt and α = 1/255 gives

ln(254/255)
Δx = (4.44)

ln(1/2)

Therefore, the opacity, α , will truncate to zero (for this example) whenever Δx < ln(254/255)/ ln(1/2) ≈
0.00567. Equivalently, the opacity truncates to zero when N > ln(1/2)/ ln(254/255) ≈ 177, where N is the
number of grid planes in the 1 m column of smoke. Smoke drawn in this situation will be invisible.

To overcome this problem, the RTE needs to be solved across the full 3D data mesh where intermediate
smoke opacities are stored using full precision arithmetic. One such algorithm is discussed in the next
section.

4.4 Volume Rendering

Volume rendering is the process of visualizing 3D data by projecting partially transparent colors derived
from 3D data onto a 2D plane forming an image. An entire volume of data is used to generate an image
rather than just a slice as in the previous section. Transfer functions or colormaps are used to map data to
color and optical density (opacity). In this application temperature is mapped to color and soot density is
mapped to opacity. These colors and opacities are then combined to form an image. The transfer functions
may be arbitrarily designed to highlight certain portions of the data or based on physics designed to produce

52

x0

ii CT

Ci i
xi

Convert temperature and density
within each ray to color and

Ti Si

Ci i
ii S opacity

Image plane
0̂0Ĉ

bi l d i i

xN

Combine colors and opacities to
form one color and opacity

Cast rays through each
image plane pixel

Figure 4.10: Opacity and color is computed for each pixel on an image plane by solving a line integral
representation of a simplified form of the radiation transport equation. Rays are cast from the observer
through the image plane into the 3D data set converting temperatures to color and soot densities to opacity.
The line integral is computed for each pixel where the ray intersects the data set.

realistic appearing images. Figure 4.10 illustrates this process. Soot density is mapped to opacity. The
colors and opacities are then combined to form an image. The strategy then is to perform color mixing in
the same way that light would behave by solving an approximate form of the radiation transport equation.
The approximate RTE solution given in (4.9) is used to collapse 3D data into 2D images projected onto the
sides of the mesh visible to the observer.

Figure 4.11 illustrates the effect of projecting an image onto a plane. The top center image is presented
from the point of view of the observer. The perspective is correct. The two images below show the same
image but from a different viewpoint. The scene is rotated left and right to show more clearly the images
projected on the front facing sides of the data mesh. As the scene is moved through rotations and translations
the projected surface images are constantly recomputed and redrawn presenting the illusion that the image
is 3D and drawn within (rather than on the surface) of the data mesh.

Three example colormaps are illustrated in Fig. 4.12. The black/orange colormap in Fig. 4.12a is used
to produce an image. If the temperature is below a user specified value, the color is black, representing
soot (where emission is not significant). If the temperature is above this value then it is a shade of orange,
representing emission from a fire. The particular shade chosen is based on the color emitted by a black
body source. The black to white colormap in Fig. 4.12b along with an extinction coefficient appropriate

53

a) normal view as seen by the observer

b) same image as in a) but viewed from the left c) same image as in a) but viewed from the right

Figure 4.11: Volume rendered smoke plume projected onto the outside surfaces of the data mesh and shown
from several points of view. The image, in a), is as viewed by the observer. The other two images, b) and
c), are rotated versions of the image as in a).

54

a) black stepped to orange

b) black to white

c) rainbow

Figure 4.12: Example colormaps used for converting temperature to color.

for infrared wavelengths could be used to simulate the effect of a thermal imager by using black for cool
temperatures and white for warm temperatures. The rainbow colormap in Fig. 4.12c produces non-realistic
images which can still be of value for highlighting data of interest.

4.4.1 Implementation

Data required to volume render smoke is made available to Smokeview by adding lines to an FDS input file
specifying 3D slice files for temperature and soot density such as

&SLCF XB=xmin,xmax,ymin,ymax,zmin,zmax, QUANTITY='TEMPERATURE' /

&SLCF XB=xmin,xmax,ymin,ymax,zmin,zmax, QUANTITY='DENSITY',SPEC_ID='SOOT' /

where xmin, · · · , zmax represent the domain boundary.
An algorithm for determining image opacities and colors using volume rendering is detailed below.

1. For each pixel in the image plane, cast a ray from the observer’s viewpoint through that pixel into the
3D data set

2. Step along the ray from the front (relative to the observer) to the back of the 3D data set converting data
values along the way to color and opacity. Choose a step size (possibly varying) to capture changes
occurring in the data set.

3. Combine the colors and opacities found in step 2 using recursions equations (4.16) and (4.21). Initiate
the recursion with α̂N = ĈN = 0. Continue the recursion for i = N − 1 to i = 0 by computing α̂i and Ĉi

using:

α̂i = α̂i+1 + (1 − α̂i+1)αi (4.45)

Ĉi = Ĉi+1 + (1 − α̂i+1)Ci (4.46)

where Ĉi and α̂i are color and opacity accumulated from steps N to i while stepping through the 3D
data set from front to back. When data is mapped appropriately to color and opacity, this recursion is
simply a numerical integration of the radiation transport equation. The values Ci and αi are the color
and opacity at the i’th step.

55

4. Mix the volume rendered color, ĈN , with the colors already rendered using equation (4.34) re-written as

updated background color = (1 − α̂N) × original background color + 1 ×ĈN (4.47)

The OpenGL call, glBlendFunc(GL_ONE,GL_ONE_MINUS_SRC_ALPHA); , is used to imple
ment this mixing mode in Smokeview.

A limitation of the volume rendering procedure is the large file sizes required to store the full precision
being used in computations. For example, smoke flow computed on a 128×128×128 mesh for 1024 time
steps requires 16 gigabytes to store data for visualization. As with the slice rendering method, compression
procedures are implemented using the ZLIB library [22] to reduce the file size.

4.5 Future Work

This chapter describes the algorithms Smokeview uses to display smoke and fire using physics based algo
rithms. These algorithms may be improved in several ways. Presently, only radiation from soot is used to
visualize smoke. The gray gas assumption may be relaxed by solving the RTE for several wavelength bands
(as may be done by FDS) and combining the results. The RTE line integration needs to terminate at the
first solid object encountered (FDS OBST) rather than the far side of the data mesh. The computational effi
ciency may be improved by implementing algorithms to skip over regions with little or no smoke. Research
on unstructured geometries for future incorporation into FDS may also lead to better visualization. Finally,
flame color computations may be made more quantitative by using a transfer function relating temperature
to color that is physics based rather than an assumed color map.

56

Chapter 5

Future Work

Smokeview is a software tool used to gain insight into results generated by fire models such as the Fire
Dynamics Simulator or CFAST. Two general areas of research need to be addressed in order to improve this
tool. First, scenarios with a large number of grid cells need to be visualized more effectively and efficiently
and second, some visualization algorithms need to be improved and others need to be added in order to more
effectively interpret fire modeling data. Some areas of research to accomplish these goals are described in
more detail in the following sections.

5.1 Visualize Cases more Realistically

Realism is a metric used to gauge qualitatively the accuracy of fire and smoke display. Realism itself is not
the primary goal, however. It is a side effect of the application of more physics. The primary goal is to gain
a better understanding of the data. This requires a more accurate representation of the underlying data which
in turn requires the application of more physics. Two areas being investigated are

• Investigate techniques for visualizing fire more realistically by using information about the fire such
as its temperature and composition (soot and various gas species) to color it more realistically. Flame
temperatures need to be modeled directly by FDS in order in order to use the blackbody temperature
curve to obtain flame color. Further, the resolution of the computation needs to be consistent with the
desired resolution of the flame image.

• Investigate algorithms for modeling the interaction of light and smoke. The transport of light into and
out of the smoke/fire (i.e., scattering) is another important factor that effects its appearance. Light
sources could consist of either man made lights or from the fire itself. Work also needs to be done
to generalize the wavelength of light used to visualize the scene, i.e., implementing an algorithm in
Smokeview to simulate a thermal imager or infrared viewer.

5.2 Fire Computations in Smokeview

The roles of FDS and Smokeview seem clear, FDS performs fire computations and Smokeview visualizes
them. This distinction became blurred with the addition of 3D smoke visualization algorithms in Smoke-
view. Further blurring the distinction, pre-visualization steps are performed in FDS, to convert soot density
to a smoke opacity. These two codes represent a suite of software dedicated to advanced scientific fire
modeling and visualization.

57

Additional fire computations are planned for Smokeview. The user will gain insight into the fire phe
nomena much more quickly by being able to manipulate and solve their problem in real time. Two examples
are detailed below.

• Investigate methods for modeling the motion of fire brands using either wind fields computed by FDS
or wind fields defined in Smokeview. This allows one to define the initial position and distribution of
fire brands and to note where they land.

• Implement a level set method proposed by Rehm and McDermott [23] for tracking an outdoor fire line.
The method would take into account terrain (i.e., non-level ground) defined by the user for outdoor fire
applications.

5.3 Visualize Larger Cases

Techniques need to be investigated for visualizing larger cases more effectively. Updating Smokeview to
allow 64 bit memory addressing is just one option. This is a brute force method. Techniques are also
required for honing or zeroing in on data of interest. The fire line used to visualize WUI (wildland urban
interface) simulations is a good example of this. A fire line in the context of Smokeview is simply a visual
display of temperature only visible where the fire is located. Additional techniques for visualizing large
cases that need to be investigated include:

• Investigate methods for making it easier to probe or mine data, i.e., to retrieve data of particular interest.
Now FDS data is stored sequentially. For large data sets one needs to retrieve data efficiently at a
particular time and region without reading the entire data set.

User defined spatial and temporal data subsets need to be loaded efficiently in order to shorten the time
required to visualize cases.

• Investigate standardized methods for storing data more efficiently and more effectively.	 Can we do it
better and be practical? The idea would be not to change how FDS outputs data but to consider whether
a separate filter program that would convert FDS generated data into a different format that would
enable other tools besides Smokeview to be able to visualize data, for example the visualization tool kit
VTK [24].

• Investigate parallelization methods for visualizing data. Smokeview presently has a limited ability to
execute code in parallel using a technique known as multi-threading. For example, smooth blockages
if present, are smoothed in parallel using the pthreads library. Smokeview in this respect is multi-
threaded. Techniques will be investigated for performing the drawing or visualization in parallel. This
may be necessary as cases get larger and larger. One technique for parallelizing the visualization is to
use several video cards each one drawing a portion of the scene.

5.4 Tools and Techniques

• Investigate methods for using the video card to perform scientific computations.	 The computational
power of the video card is already being exploited by Smokeview to perform simple smoke computa
tions. It will need to be exploited even more in order to make the proposed fire coloring and smoke
lighting computations practical. Techniques are being investigated for performing the computations
needed to implement the more realistic fire and smoke computations discussed earlier, in particular
CUDA [25]. Techniques such as these will be required it more complex visualization algorithms are to
be effective.

58

• Investigate alternative methods for implementing a graphical user interfaces (GUI) for Smokeview.
Smokeview uses GLUT for implementing a simple user interface. GLUT was not intended for de
veloping user interfaces as complex as what Smokeview requires. Alternatives for implementing user
interfaces will be investigated.

• Currently FDS and Smokeview run in batch mode without using updated information.	 As FDS or
CFAST begin to use data assimilation techniques, it would be useful if Smokeview could incorporate
updated results as they are computed.

59

60

Bibliography

[1] G.P. Forney. Smokeview (Version 6), A Tool for Visualizing Fire Dynamics Simulation Data, Volume
I: User’s Guide. NIST Special Publication 1017-1, National Institute of Standards and Technology,
Gaithersburg, Maryland, May 2013. i, 1, 39

[2] G.P. Forney. Smokeview (Version 6), A Tool for Visualizing Fire Dynamics Simulation Data, Volume
II: Technical Reference Guide. NIST Special Publication 1017-2, National Institute of Standards and
Technology, Gaithersburg, Maryland, May 2013. i

[3] G.P. Forney.	 Smokeview (Version 6), A Tool for Visualizing Fire Dynamics Simulation Data, Vol
ume III: Verification Guide. NIST Special Publication 1017-3, National Institute of Standards and
Technology, Gaithersburg, Maryland, May 2013. i, 1, 3, 28

[4] K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk, and K. Overholt. Fire Dynamics
Simulator, User’s Guide. National Institute of Standards and Technology, Gaithersburg, Maryland,
USA, and VTT Technical Research Centre of Finland, Espoo, Finland, sixth edition, September 2013.
i, 1

[5] K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk, and K. Overholt. Fire Dynamics
Simulator, Technical Reference Guide, Volume 1: Mathematical Model. National Institute of Stan
dards and Technology, Gaithersburg, Maryland, USA, and VTT Technical Research Centre of Finland,
Espoo, Finland, sixth edition, September 2013. i

[6] K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk, and K. Overholt.	 Fire Dynam
ics Simulator, Technical Reference Guide. National Institute of Standards and Technology, Gaithers
burg, Maryland, USA, and VTT Technical Research Centre of Finland, Espoo, Finland, sixth edition,
September 2013. Vol. 1: Mathematical Model; Vol. 2: Verification Guide; Vol. 3: Validation Guide;
Vol. 4: Configuration Management Plan. 1

[7] R. D. Peacock, G. P. Forney, and P. A. Reneke.	 CFAST – Consolidated Model of Fire Growth and
Smoke Transport (Version 6): Technical Reference Guide. Special Publication 1026, National Institute
of Standards and Technology, Gaithersburg, Maryland, July 2011. 1

[8] The Khronos OpenGL ARB Working Group Dave Shreiner.	 OpenGL Programming Guide - The
Official Guide to Learning OpenGL, Version 3.0 and 3.1. Addison-Wesley, Upper Saddle River, NJ, 7
edition, 2009. 1, 3, 46, 63

[9] Mark J. Kilgard. OpenGL Programming for the X Window System. Addison-Wesley Developers Press,
Reading, Massachussets, 1996. 1, 63

[10] Brian W. Kernighan, Dennis Ritchie, and Dennis M. Ritchie. C Programming Language (2nd Edition).
Prentice Hall PTR, March 1988. 1

61

1
[11] T. M. Ellis, Ivor R. PHilips, and Thomas M. Lahey. Fortran 90 Programming. Addison-Wesley, 1994.

[12] K.B. McGrattan, H.R. Baum, R.G. Rehm, A. Hamins, and G.P. Forney.	 Fire Dynamics Simulator,
Technical Reference Guide. NISTIR 6467, National Institute of Standards and Technology, Gaithers
burg, Maryland, January 2000. 2

[13] Paul Martz. OpenGL Distilled. Addison-Wesley, Upper Saddle River, NJ, 1st edition, 2006. 3

[14] Richard S. Wright Jr., Benjamin Lipchak, and Nicholas Haemel. OpenGL Super Bible - Comprehensive
Tutorial and Reference. Addison-Wesley, Upper Saddle River, NJ, 4 edition, 2007. 3

[15] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d surface construc
tion algorithm. In Proceedings of the 14th annual conference on Computer graphics and interactive
techniques, pages 163–169. ACM Press, 1987. 19, 28

[16] D.A. Purser.	 SFPE Handbook of Fire Protection Engineering, chapter Toxicity Assessment of Com
bustion Products. National Fire Protection Association, Quincy, Massachusetts, 3rd edition, 2002.
34

[17] Robert Siegel and John R. Howell.	 Thermal Radiation Heat Transfer. Taylor & Francis, Inc., New
York, NY, 4th edition, 2001. 39, 40, 46

[18] Marc Levoy. Display of surfaces from volume data. IEEE Comput. Graph. Appl., 8(3):29–37, 1988.
39

[19] Klaus Engel, Markus Hadwiger, Joe M. Kniss, Christof Rexk-Salama, and Daniel Weiskopf. Real-Time
Volume Graphics. A. K. Peters, Wellesley, Massachussets, 2006. 39

[20] Philip Dutre, Kavita Bala, and Philippe Bekaert.	 Advanced Global Illumination. A. K. Peters, Ltd.,
Natick, MA, USA, 2002. 40

[21] Randima Fernando.	 GPU Gems: Programming Techniques, Tips and Tricks for Real-Time Graphics.
Pearson Higher Education, 2004. 44

[22] Jean loup Gailly and Mark Adler. zlib version 1.1.4, http://zlib.net/, November 2002. 52, 56, 63

[23] R.G. Rehm and R. McDermott. Fire-Front Propagation Using the Level Set Method. NISTTN 1611,
National Institute of Standards and Technology, Gaithersburg, Maryland, April 2009. 58

[24] Will Schroeder, Ken Martin, and Bill Lorensen. The Visualization Toolkit, Third Edition. Kitware Inc.,
2004. 58

[25] What is CUDA, http://www.nvidia.com/object/cuda_what_is.html. 58

[26] Paul Rademacher. GLUI version 2.1, http://www.cs.unc.edu/ rademach/glui/. 63

[27] Thomas Boutell. GD version 2.0.7, http://www.boutell.com/gd/, November 2002. 63, 69

[28] Guy	 Eric Schalnat, Andreas Dilger, and Glenn Randers-Pehrson. libpng version 1.2.5,
http://www.libpng.org/pub/png/, November 2002. 63

[29] JPEG version 6b, http://www.ijg.org/. 63

62

http:http://www.ijg.org
http://www.libpng.org/pub/png
http://www.boutell.com/gd
http:http://www.cs.unc.edu
http://www.nvidia.com/object/cuda_what_is.html
http:http://zlib.net

Appendix A

Smokeview Program Structure

This chapter gives an overview of the program structure for Smokeview. Smokeview consists of about
115 000 lines of code. Most of it is written in C using standard libraries such as OpenGL [8] for imple
menting the graphics, GLUT [9] for providing a simple menu based user interface and interacting with the
host operating system. Additional graphical user interface (GUI) elements are implemented as dialog boxes
using the OpenGL based widget library GLUI [26]. The libraries GD [27], libpng [28], and libjpeg [29] are
used for converting Smokeview scenes/results into images files. The library libzip [22] is used for compres
sion. Smokeview uses this compression library when generating PNG files and when reading in 3D smoke
files compressed by Smokezip.

A small portion of Smokeview is written in Fortran 90 to input data generated by FDS. The use of
portable libraries allows Smokeview to run on many platforms including Windows, and various versions of
Unix such as IRIX (for the SGI), Linux and OS X (for the Macintosh).

Figure A.1 illustrates how these libraries and Smokeview are organized.
Since Smokeview is a large program and is constantly changing, it is not practical to give a line by line

detailed description. The interested user, however, should be able to use this overview as a starting point to
dig into those parts of Smokeview that may be of interest.

The program structure of Smokeview is fundamentally different than that of FDS in one important
respect. Smokeview is an event driven program with a graphical user interface. The term event driven in this
context means that the user controls the program flow using various means such as pressing a key, clicking
or dragging the mouse, selecting a menu item, etc. In other words, the user initiates events not the program.
The Smokeview response then depends on which event has occurred.

The program structure may then be described as follows. Smokeview starts out by performing initializa
tions and setting up the OpenGL environment. This is followed by a call to a GLUT routine that implements
the event loop. The event loop is literally a program loop without an exit which detects when the user in
vokes the various events, again these are key clicks, mouse clicks, menu selection, etc. Once an event is
detected, a user callback routine is called. Note that user callback routines are Smokeview code and the
event loop is GLUT library code. Part of Smokeview’s initialization process is to define which C procedures
are associated with which callbacks. This is performed in the Smokeview C routine InitOpenGL located
in the source file startup.c.

There is a Smokeview callback routine for every action that is performed. For example, the user callback
for loading a 3D smoke file is Load3DMenu. This is a menu callback because it is called after the user
selects a menu item. All menu callbacks are located in the source file menu.h. All other callback routines
are located in the source file callback.c.

Figure A.2 illustrates the program structure described in the previous paragraphs. Every OpenGL/GLUT

63

GLUI

GLUT

OpenGL

ZLIB

PNG JPEG

GD

SmokeviewFDS I/O

Image
rendering

User interface
and graphics

Figure A.1: Smokeview external library usage

program will use most of the callbacks named in this figure.

64

Display

Idle

Keyboard

Menus

Mouse

Reshape

GLUT
event loop

gluixxx - routines to
handle dialog boxes

IOxxx - routines to load
and draw FDS data
files

Implement all keyboard
equivalents

Called when nothing
else is happening
(draw next frame)

Draw one frame
of scene

Move and/or rotate
scene

Resize scene after
window changes size

OpenGL Setup

Smokeview Initialization

Figure A.2: Smokeview program structure

65

66

Appendix B

Interfacing OpenGL with the Host
Operating System

OpenGL by design draws the 3D geometry but does not interact with the user or the operating system.
Smokeview uses the graphics library utility toolkit (GLUT) for interacting with the user via the keyboard
and mouse and for interacting with the operating system to swap display buffers, to display fonts, to set
maximum frame rates, etc. Though not as sophisticated as other libraries, GLUT is simple to use and
is portable allowing Smokeview to be built on a number of different computer platforms including a PC
running Windows or Linux, a Silicon Graphics workstation running IRIX or a Macintosh running OS X.

B.1 Buffers

Smokeview uses several buffers provided by OpenGL for visualization. GLUT is used to manipulate these
buffers. Smokeview uses double buffering. Double buffering is the technique where drawing occurs in
the back buffer while the scene is simultaneously displayed using the front buffer. Smokeview uses the
GLUT routine glutSwapBuffers(); to swap the front and back buffers once drawing is complete.
Screen flickering occurs the if the display (front) buffer is updated while drawing occurs.

Hidden lines and surfaces are removed from a scene using the depth buffer. Each time Smokeview
draws an object, its depth (distance from the observer) is compared to the value previously stored in the
depth buffer. If the object’s depth is less than the value stored in the depth buffer then the object is considered
visible and the new depth value is store in the buffer. Otherwise the depth buffer remains unchanged and the
object is considered hidden.

B.2 Initialization and Callback Routines

Initializations are performed by GLUT to set up windows and to define display modes. Smokeview de
fines the display to handle color, a depth buffer and double buffering by passing the OpenGL keywords
GLUT_RGB, GLUT_DEPTH and GLUT_DOUBLE to glutInitDisplayMode as in

glutInitDisplayMode(GLUT_RGB|GLUT_DEPTH|GLUT_DOUBLE);

Smokeview creates a window with width windW and height windH using the GLUT calls

glutInitWindowSize(windW, windH);

glutCreateWindow("");

67

and defines callbacks with

glutSpecialUpFunc(specialkeyboard_up);

glutKeyboardUpFunc(keyboard_up);

glutKeyboardFunc(keyboard);

glutMouseFunc(mouse);

glutSpecialFunc(specialkeyboard);

glutMotionFunc(motion);

glutReshapeFunc(Reshape);

glutDisplayFunc(Display);

A callback is a routine that is called when a particular event occurs. For Smokeview these events would
be when a keyboard key is depressed (or when the key is released), when the mouse is clicked or when
the mouse is moved. Smokeview determines rotation and translation amounts using the motion callback
defined with glutMotionFunc(motion).

68

Appendix C

Rendering Smokeview Images

Smokeview uses the library GD [27] to convert the currently displayed scene into either a JPEG, PNG or GIF
image. Smokeview reads in the OpenGL back buffer and then uses the GD routine, gdImageSetPixel
to store the image data in GD’s internal format one pixel at a time. Finally, Smokeview uses a GD routine
to convert the image into the desired image format.

A summary of the steps in more detail are:

1. Allocate memory buffers and file pointers

RENDERfile = fopen(RENDERfilename, "wb");

pixels = (GLubyte *) malloc(width * height * sizeof(GLubyte) * 3);

2. Read pixel data from the back buffer

glReadPixels(x, y, width, height, GL_RGB, GL_UNSIGNED_BYTE, OpenGLimage);

3. Allocate the gd data structures used to hold image data

RENDERimage = gdImageCreateTrueColor(width,height);

4. Set pixel data

for (i = height-1 ; i>=0; i--) {
for(j=0;j<width;j++){

r=*p++; g=*p++; b=*p++;

rgb = (r<<16)|(g<<8)|b;

gdImageSetPixel(RENDERimage,j,i,rgb);

}

}

5. Write out data to a JPEG image file

gdImageJpeg(RENDERimage,RENDERfile,-1);

6. deallocate memory buffers and free file pointer

69

fclose(RENDERfile);
gdImageDestroy(RENDERimage);
free(OpenGLimage);

70

	Preface
	About the Author
	Disclaimer
	Introduction
	Basic Description of Smokeview
	Version History
	Model Development
	Capabilities
	Overview

	Preliminaries
	Defining Objects
	Setting the Scene
	Projections
	Stereo Projections
	Viewports

	Coloring, Shading and Blending Objects
	Color
	Shading
	Blending

	Motion
	Implementation

	Visualizing Data
	Coloring Data
	Determining Data Bounds
	Converting data to a color
	Interpolating Colors

	2D Contours
	Line contours
	Banded contours

	3D Contours - Isosurfaces
	Particle Systems
	Massless Particles

	Computing and Visualizing Fractional Effective Dose data
	FED example

	Visualizing Smoke and Fire
	Introduction
	Radiation Transport Equation
	Approximating the Radiation Transport Equation
	Discretizing the Radiation Transport Equation
	Splitting the Radiation Transport Equation

	Slice Rendering
	Computing Opacity
	Adjusting Opacity
	Orienting Slice Planes
	Compressing Slice Plane Data
	A Limitation of the Slice Solution Method

	Volume Rendering
	Implementation

	Future Work

	Future Work
	Visualize Cases more Realistically
	Fire Computations in Smokeview
	Visualize Larger Cases
	Tools and Techniques

	Bibliography
	Bibliography
	Appendices
	Smokeview Program Structure
	Interfacing OpenGL with the Host Operating System
	Buffers
	Initialization and Callback Routines

	Rendering Smokeview Images

