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EFFECT OF EDDY CURRENTS IN A CORE CONSIST-
ING OF CIRCULAR WIRES

By Chester Snow

ABSTRACT

This paper discusses mathematically the eddy currents in an infinitely long (or

toroidal) core which consists of a bundle of wires of circular cross section. The
wires are assumed to have a uniform and constant permeability and conductivity.

The cases treated include those in which the oircuit inclosing the core may have

resistance, inductance, and capacitance in series with the winding, and may also

have an electromotive force which is any arbitrary function of the time. This

is therefore more general than solutions heretofore published which cover only

the case of a sinusoidal electromotive force.

The resulting formulas are applicable in problems connected with loading coils

in communication circuits, with ignition apparatus, etc.

If a current 7(0 flows in a circuit with A'' turns per cm in a long solenoid whose
core consists of a bundle of A''' long straight wires of circular section, the magnetic

field H is parallel to the wires and has the value of 47r7(i) at all points in the air

space, and hence over the surface of each wire. The field H{r, t) at time t at any
point in a wire a distance r from its center is then connected with the external

current by the relation

H{rt)'=4:irN

where a is the radius of the core wire, Ob is the s*^ positive root of the Bessel's

function Jo(a) and /3 is a characteristic of the core wire defined by /3= 47r/iXa2,

where /x is its magnetic permeability and X is electrical conductivity. From this

equation, by integration, the induced electromotive force by which the core

reacts upon the current I{t) may be computed, and this shows that the progress

of the current I{t) is determined by the integro-differential equation

CO

V{t)

where the applied emf is V (t), the resistance of the circuit R, its series capacity C
with charge Q (t) . The total inductance of the circuit is L and € is a ratio defined

by 6=1
J

^ where Sfi is the total cross-sectional area of core wires.

This shows that when the applied emf V (t) is periodic wuth frequency jc- the

circuit acts as if its resistance were R' and inductance U where R' and U are

functions of the frequency given by

-= - (l-€)Fi (n^) and ^^= (1-€)F2 (n/3)
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where the functions Fi and F2 are expressed in terms of her and hei functions of

Vn^ and are plotted against V^ in the paper. When V (t) is an arbitrary-

function of the time the current is found as an infinite series of exponential

functions of the time, the first two terms of which may or may not be real. All

the others are real exponentials corresponding to the time constants of the circuit,

and all are determined by the roots of a certain transcendental equation which is

discussed.
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I. INTRODUCTION

The variations in current in a coil whose core consists of a bundle

of round iron wires causes a varying penetration of magnetic field

into these wires, and this in turn reacts by electromagnetic induction

upon the progress of the current, complicating it in such a manner
that it is not usually amenable to mathematical treatment. How-
ever, the problem here treated is approximately applicable in certain

cases.

^

In this idealized case, to which the following treatment apphes

exactly, the magnetic permeability of the core is considered constant

in the hope that an effective value may be assigned to this constant

in the formulas obtained which may render them approximately

correct. The demagnetizing effect of the ends of the coil is also

neglected, so that the results are applicable only to closed magnetic

circuits. In fact, the coil is treated as a very long straight solenoid.

However, the results would obviously represent the behavior of a

torus or anchor-ring type of coil if the diameter of the core is small

compared to the mean radius of the ring.

II. MAGNETIC FIELD IN THE CORE WIRES IN TERMS OF
THE CURRENT

If a circular cylinder of radius a, with its axis in the z axis extend-

ing indefinitely in both directions, filled with a conductor whose con-

ductivity is X, and whose magnetic permeability is fx, is subjected to

a uniform and constant magnetic field parallel to its axis, the mag-

netic field intensity withbi it will be uniform and constant and the

same as in the smToimding air. If, however, beginning at the time

^o, this field in the air is caused to change with time, due to external

phenomena, in such a manner that it has the same value H{t) at any

time t, at all points on the boundary of the conducting cylinder, then

1 It was undertaken because of the necessity for some quantitative formula to account for the effect of

eddy currents upon the voltage induced in a magneto.
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the circular eddy cui'rents induced in the cylinder by this changing

field will cause the value of the field within to lag behind the uniform

value Hit) which it would have in their absence. If we can find the

manner in which the penetration of the magnetic induction into the

circular core is influenced by these eddy currents, then it will be

possible to take account of their reaction upon the external phenomena
by which they are induced. The theory of the quasi-stationary

state, which was first laid down by Maxwell, assumes that the time

rate of change of the field vectors is slow relative to such rates as

occur in optics, so that Ohm's law applies at every instant. This

leads to the conclusion that within the conducting cylinder the field

H (z component only) must satisfy the partial differential equation

4:Tr\flH=
r br

( ^^\
(1)

Fig. 1.

—

Section of infinite solenoid encircling one circular conducting cylinder

The second member of this equation is V^ -S^, since H is a. function of

r only. This equation is derived by neglecting terms which corre-

spond to the fact that the time in which field changes are propagated

as waves from one part to another of the finite space is negligibly

small compared to the time in which the induced currents spread

through the medium. The equation (1) is therefore a diffusion

equation rather than one of propagation with a definite velocity.

The same assumption shows that in the surrounding air, or insulat-

ing medium, the field must rise or fall simultaneously with its rise

or fall in the apparatus or neighboring circuits in which it origi-

nates. Thus (fig. 1) the plane section ^S* (of any finite shape) may
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be considered the boundary of the air, the section of an infinite

cylinder inclosing the smaller circular conducting wire. There may
be circular windings around this outer cylinder (iV turns per cm) so

that the current circulating around unit length of the cylinder is

NI it) at time t. At the inner boundary of S (and at all points in

the air within 8) the field must, therefore, have the value 4iirNI (<)•

Consequently, the boundary condition, which holds at every instant

t, at the boundary r = a oi the inner conducting cylinder is

H(a,t)=^4:TrNI(t) (2)

The solution of (1) with the boundary condition (2) for the case where

/ (t) = In (t) =A ne'°* (real part) (3)

is readily found to be

4:irNjJ^-yJ-in^^
J^Kr, t) =

J—
where

^(^> ')
=

r / 7 • ^, ^ne'-' (real part) (4)

^=4.Trfi\a^ (5)

and Jo is BessePs function of order zero.

The general solution of the problem, where 7(0 is an arbitrary

function, which may be represented by the Fourier integral identity

/(i) = i- C'dne^' r e-'^''I{t')dt' (6)
-<67rJ -oo J -co

is therefore

/.oo Jo(^-yJ-in^) ^co

E(r, = 2iV dn ,\ , . /-
e'°* e-^^'I{t') dt' (7)

J -oo e/o(V~'^^/3) J -ooJoi-^-in^)

The roots Zi, 22, 23 • • • of J o{z) are all real, hence the roots tii, 7^2, 713 • • •

of Jo (-J
— inp) are all on the upper half of the imaginary axis of n;

iz^
that is, ^k=~o~* Consequently the path of the integration with

respect to n in the integral in equation (7) may be any path from
71= — 00 real to ?i= + 00 real, which may be continuously deformed

into the real axis without passing through any of the poles of the

integrand which are the roots of Jo {^J—in^) =0. For any applica-

tion of physical interest, we may assume that I{t) becomes identically

zero when t goes into the remote future or the remote past, thus

insuring the convergence of the Fourier integral in equation (6).

Under these circumstances, the order of mtegration in the double

integral in equation (7) may be reversed, giving the solution for the

magnetic field in the wire in the form
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Hir, t) = 4.^^N[^_J{n^|^{^, t-AdV (8)

where

\a J 27rJ_oo JoU-m^)

The equation (8) appears to indicate that the field at time t depends

upon the values which the current shall have in the future, since the

integration extends to all values greater than t. This is not the case,

however, for it is found that the definition equation (9) makes ^ (
-' M

identically zero if t is negative. This is shown by deforming the path

of integration for the integral in equation (9) indefinitely downward
in the complex n plane, which is permissible since no poles of the

integrand will be encountered. The integral then vanishes if t is

negative, because of the vanishing factor c*°* = e~°2* e*°it (where

71 = Til + 1712) for this vanishes when 712 and t are both negative. Con-
sequently the equation (8) may be written

E{r,i) = 4.TrN^''_J{nrl^(^*t-Adf (10)

For positive values of t the path of the integral in equation (9) may
be deformed indefinitely upward in the complex n plane, thus reduc-

ing the integral to a series of contour integrals each taken aroimd one

and only one pole, so that equation (9) reduces to

^(^^» f)=oifKo

^_Y,^±(th,-f-',,^..— T ( \ ^ xx<>0 (11)
bt s=l OL^Jl («b)

^ ^ '

Using this expression in equation (10) gives ^ after integration by
parts and reduction by means of the formula

s=i aaJi(ag) a

' The solution equation (12) may also be derived by the method of Riemann for finding the temperature

in the body when its surface temperature is a known function of the time. See Byerly: "Fourier's Series

and Spherical, Cylindrical, and Ellipsoidal Harmonics," pp. 86-88. It is interesting to note that equation

(12) also gives the course of the eddy currents created by a sudden change of magnetization. Thus if 7(0 =
constant when-oo<KO and 7(0=0 when <>0 then equation (12) gives

H(r,0 = go2 ^, '^^/^ ^ e ,3 whenOO
8= 1 0:3^1(0:3)

This is identical with a result obtained by B. "Wecdensky: Annalen dor Physik, 3G9, p. 612; 1921
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where ae is the s*^ positive root of Jo(a) = 0.

E(r,t) = 4:TrNI(t)-4:7rN^
Jo s=i o-b^iKo-b)

= 47riV^7(0-47riV I{f)JLi rVve ^ (?r (12)
j-co s=i agt/i (.aej

If the current lit) were a known function of the time, this equation

would give the value of the axial component of magnetic field at a

point in the core wire at a distance r from its center at any time t.

The current 7(0, however, will be influenced by ihQ reaction of the

field upon its circuit so that in general I{t) will not be known.

It is evident from the fact that the field has the uniform value

AivNIit) at all points in the air within the section S, that there may
be any number N' of equal core wires like the one just considered,

in which the field will be given by the expression equation (12),

where r is the radial distance of a point from the axis of each wire

no matter where it is situated within the section S. If S^. is the cross-

sectional area occupied by air and S^= N'-jra-^ that occupied by the

core material of permeability /x so that S = Sa-rS^, then the magnetic

flux through S is by equation (12)

4>i
= ffu^3dS = 4L7rN(S,+ fiS,)I(t)

oo

- 4wNt.S,l3J^i {t-M drJ] ^2 e--'^ (13)

s = l

Suppose the external circuit in which / (f) flows has a resistance, i?,

and its terminals are connected to a capacity, C, and that it contains

an applied electromotive force, V{t), which is an arbitrary function

of the time. If the current / is considered positive when it encircles

right-handedly the axis of the core, then the induced electromotive

force in the circuit due to that part of the flux within S is

F/ = - iV^ = - 47rxY2 (S, + fxS,) i (0

00

+ 4.7rN'ixS,^ri {t-Mdr^^^, e-«''- (14)

s= l

The coefficient of / (0 on the right side of this equation is

Lo-=4:7rNHS, + piS,) (15)
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where Lq is the self-inductance which the circuit would have if the

core wires were nonconducting (that is, if i3
= 47r/jXa^ = 0), and if the

windings had no radial thickness. The actual inductance L will be

larger than io, due to the thickness of the windings. Moreover, it is

possible to have additional inductance of any value Zi inserted in

this circuit which has no coupling with the field in /S. Hence, if the

inductance L is arbitrary then the total induced electromotive force

in the circuit is
00

V'=-Lm^-{\-e)u{^ 'i{t-MdrY^A;e-''''' (16)
J LmJa^-

s = l

where

L =Lo^U and i-^^^"^^-^ (17)

Thus € is a positive ratio less than 1 which might be small or exactly

zero in limiting cases. The equation to determine the current is

therefore
00

Z/(0 + i?7(04-^-(l-6)X^ P/(^-^T)(^r^^2 6—'^= V(t) (18)

s= l

where Q{t) is the charge on the condenser. Since I{t) = Q{t) this

may be written
00

Zm + RQ{t) +^-(l-e)L^jy{t-MdT^-^2e-''''^= V{t) (19)

S=l

Before attempting to solve the linear integro-differential equation

(19) when the external electromotive force V(t) is an arbitrary func-

tion of the time, we may first consider the special case where the

latter is periodic.

m. CASE OF PERIODIC ALTERNATING CURRENT

If

V{t) = Fo(0 = ^M^i"* (real part) (20)

then

Q{t)=QM= ^^ s

LiinY^Ein+ j.- (1
- .WinV J] „^.(^ff,„g)

8=1

Y (^®^^ P^^*) (9 1 ^

(inyr + inR'+i^c
16017°—27 2
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where

^^=-a-e)F.(«;3)=-(l-.)2^^,^J|l^ (22)

8=1

^^=a_0F.(»«=(l-.)I],;4^. (23),

S=l

There is no real value of n for which the denominator in equation (21)

vanishes. When n is real, this constitutes the solution for the

periodic case and L' and W are the alternating current inductance

and resistance of the circuit. The equations (22) and (23) show that

the apparent resistance E' becomes infinite with infinite frequency,

while the apparent inductance approaches a finite limit.

i' =i '-»->&
s=l

= €L

The precise manner in which i' approaches this limit and R' becomes
infinite will be found presently.

n
When the frequency,/=x-> is so small that 7i/3=27r jS/'< ai^= (2.405)^

the sums in equations (22) and (23) may be expanded in ascending

powers of n/3 as follows:

CO CO 00 00

S 4mi8 _^SrMn^ 1 _ .Yl ^^jS V^/ __ , n i,
(in^\

a,\a,^+ in^)~^Lj a,^\
,
m^~^Zj a^^Zj^ ^^ V«bV

s=l s=l IH 2 s=l k=0

CO oo ^^

k=0 6=1

oo oo

^n'^'J]i- DHn^y^ S,^+e+ i 4n^Yj^- DHn^Y'' S,^+4 (24)
' - k=0

00

=S^' (25)

k=0 k=0

where
00

^2k'

s=l
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Hence the general expressions equations (22) and (23) may be replaced

by the special ones

F,M)=4My^i-ir(n^y^ s.

k=0

oo

F2(n^)=-4n^Yj^-ir{n^y^ S,^^

if (26)

^ n/3<ai2= (2.405)2

(27)

The roots ai, ^2, «3 of Jo(«) = as well as the sums of even

powers of their reciprocals 82^. are well known. In fact ^

52 = 2-^ S, = 2-', ^e =^2-^ ^8 = ^2-^S '^^o^xls-^^ (28)

and ;S'2n may be computed by the relation

ifc-i \n-h \n \n-lJ'\fc-^\l
(29)

2Jo (2)

This may be derived from the expansion ^

00

'rjj)=J]^''^--''^\^\<''^ (30)

n=l

By means of equation (30) we may now show that the series oc-

00

curring in equation (21), namely, y.—27—2^ • "^x i^ identically

s=l

J2(V— mi3).

Jo^-yj-in^)
that is, we may prove that

00

4;Z^ _J2(g)

2--^)-Jo(2)
(31)

identically, that is for all values of z for which each side has a meaning.

» N. Nielsen: Handbuch der Theorie der Cylinderfunktionen, pp. 35S-360.
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We shall first prove that equation (31) is true whenever the

modulus of z is less than a, the smallest positive root of Jo{o)=0.
To do this we note that

s=l s=l s=l s=l

CX) OO 00 00

s= l n=0 n=o s=l

2^

11=0 s=l n = l

CO

2^

11=1

CO

2/0(2) /o(2) ^ ^

This establishes equation (31) when |2|<ai. To show that equation

(31) holds identically, that is for all points in the 2 plane, let g{2)

denote the series on the left of equation (31), which evidently con-

verges and defines a function of 2 at all points in the 2 plane except

the points 2= ±as, s=l, 2, S 00 ... . which are all first-order

poles for the function g{2). It has no other singularities. But these

are all first-order poles of the second member of equation (31), and

there are no others. Consequently, the product G{2) = g{2) Jo{z)

is a function which is equal to J2(2) at all points 2 inside the circle of

radius ai. Furthermore, G{z) and J2(2) have no poles in the finite

part of the 2 plane and must be identical everywhere, so that equation

(31) is an identity. If we place z^= —in(3 in equation (31) it gives

the relation above stated, namely,

CX)

2;
4m/3 J2(^l-^n^)

-^
,

2J,' {-^' -JnB)
^^^^

Wia^^' + in^) J^{^-in^) \ - ini3J oi^J - in0)
s=l

By means of equation (32) we may express the alternating current

inductance and resistance of the circuit in terms of her and hei

functions of -yjn^, for since

Jo(V-i^^i3)^berV«^+i beiVniS (33)

it follows that

2Jo'(V-m/3) _ 2 ber'bei-berbei' + 2(berber' + beibei0 , .

V

-

inl3Jc{^' - in(3)
~ V^ her- -\- her



Snow] Eddy Currents in Circular Wires 711

the argument of her and hei being understood to be the real quantity

From equations (21), (32), and (34) it follows that

2F(V^)

where

!W(x) ^ber x bei' x— bei x ber' x

Z(x)^ber X ber' aj + bei x bei' ic (37)

X{x)=iherxy+ {heixY

The functions W and Z occur with the same argument -^Jn^ in the

well-lvnown expressions for the skin effect or alternating current

inductance and resistance of a wire of radius a in which the current

flows parallel to the axis.^ However, the formula for the latter con-

W Z
tain the ratios -y and y where Y (in distinction from the X here

defined) is

F=(ber'x)2+(bei'x)2 (38)

By making use of a table of her and hei functions and their deriva-

tives, and the equations (35), (36), and (37), one may compute the

alternating-current inductance and resistance of the circuit without

the necessity of computing the infinite series in equations (22) and

(23). However, this series converges very rapidly for all values of

71/3, and it may be doubted whether the use of her and hei functions

would really result in a simplification of the computation. In order

to find asymptotic or high frequency expressions for U and R^ it is

more convenient to resort to the corresponding expansions for Bessel's

functions.

When n/3 is large and positive the asymptotic expansion of the

Bessel's function gives

This gives the following asymptotic expansions for the apparent

inductance and resistance of the circuit for high frequency:

i^.(™««l-^A (40)

V~2'
1

—5 if-^^is small compared to 1 (41)
^P ^Jn^

* B. S. Sci. Paper No. 169, p. 174.
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By means ot equations (32) and (21) we may now express the periodic

charge Qn(0 corresponding to a periodic electromotive force of type

(20) in the form ^

where

i{z)=Lz'-Rz^-\-^+{l-.)Lz^^f^^^ (43)

The functions Fi and F^ of equations (22) and (23) have been com-

puted and plotted in Figures 2 and 3 against x= -^Jn^. In Figure 4

are shown the observed and computed values of the resistance change

with frequency for a certain coil whose core consisted of a large

number of iron wires about 1 mm in diameter. The coil was not

Very long compared to its diameter, so that the demagnetizing effects

of its ends probably account for most of the deviation between the

observed and computed values. The observations were taken about

two years ago by Dr. F. B. Silsbee, of this bureau. The curve was
constructed by assuming that /3 = 47r/xXa^=10~*.

IV. CASE OF AN ARBITRARY APPLIED ELECTROMOTIVE
FORCE

When V{t) is an arbitrary function of the time which like the

current becomes identically zero at infinitely remote past and future

time, it may be represented by the Fourier integral identity

F(/) =A r°° dne'^' P e-'^''V{t') dt' (44)
^TTj-co J -co

The solution of equation (19) then is, by equation (42)

1 r°° d7)p^^^ r°°

^TTJ _oo / (y — in) J -oo

= P V(f)^{t-r)dt' (45)
J-oo

where

m-i~J[ j^^^ (46)
'dn_

/(V^=^

» The periodic solution equation (42) may also be derived by assuming that V{t), lit), and H(r, t) are

each proportional to e'°'. In satisfying the partial differential equation (1) with the boundary condition

equation (2), the Bessel's function naturally makes its appearance in this form; that is, with argument

yl—inff. The circuit equations corresponding to equations (13) to (19), inclusive, would then have to be

applied; the final equation corresponding to equation (19) then becomes identical (for the periodic case)

with equation (42).
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Qi K ^ to ^ <Vl

^ ?D <^
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N <> 'O ^. (^ M.
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The justification for making the upper Hmit of t' in equation (45)

equal to t rather than + oo Hes in the fact that 12(0 is identically zero

if t is negative or zero (and hence U{t — t') is zero when ^'^0- This

depends upon the fact that (since L is never zero and ^ is not con-

sidered to be zero at present) the values of n which are roots of

/(V— ^^) = all lie in the upper half of the complex n plane. Hence

by deforming the path indefinitely downward in the complex n plane,

we find that ^{t) vanishes when t is negative or zero. It will be shown

presently from the definition of the function / that its roots are so

situated, and this must be evident from general considerations since

the system is dissipative. If it were not so we should obtain the

absurd result that by the same downward displacement of the path

a value of Qit) (or I(t)) at time t of the tj^pe ^e(b+iw)(t-t') j^e to a unit
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emf which is destined to be applied at time f in the future—the more
remote in the future the greater its effect now.

The physical interpretation of 12(0 may be obtained from equation

(45) by considering the case of an emf applied at time t = so that

V(0 = if KO. Then equation (45) gives

Q(t)= rv{fMt-r)df= rv(t-f)Q{f)dt' (45')

and differentiating and noting that Q(o) =

i(t)= rv{f)h{t-f)df

= F( + 0)O(0+ rV{t-fMt')df (45")

Thus if a constant emf of unit value is applied at time t= then

I{t) = ^(t). Or in words, 9.{t) is the value of the current due to unit

emf applied at time / = 0, and held constant thereafter. It is to be

noted that 12(0) is the initial, current in this case and it will always

be zero since the circuit must have an inductance L.

Let Tik be the Jc^^ root of / {-y/ — in) = 0, the roots being arranged in

order of increasing magnitudes of their moduli. Then when t is

positive we may deform the path of the n integral in equation (46)

indefinitely upward so that it reduces to a series of contour integrals

each encircling one and only one pole hi n = n^. By shrinking these

loops to infinitesimal circles around these poles and evaluating the

integrals by Cauchy's method of residues, we obtain from equation

(46)
00

(if the roots are distinct)

VZjfiz^)) f"{z,)V ^''' 3/" (2,)/ ^ '

fc=3

(if 01 and 22 are coincident)

where 2ij is a root of

nz)=L2'-Rz'+^-}-il-e)L2'^^^pl§^^0 (48)

If 2t=Xt+ i?/k then
| 2/t I <C ^^k >0. If we differentiate this expres-

sion for f{z) with respect to z and make use of the properties of

Bessel's functions and also of the fact that z^ is a root of f(z) = 0, then

the equation (47) reduces to the following when the roots are distinct:
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k=i Lz^^-^7Tr2--^g{z)
Cz^

717

(49)

^l-^W-2{z.^-^^i-^^k^

This requires obvious modification in case the first two roots are

coincident. However, if the roots can be found, on the assumption

that they are distinct the expression for fl(#) may then be evaluated

in case these two roots approach coincidence. When ^ is small the

denominator in equation (49) is arranged in the order of magnitude

of the terms.

The completion of the problem calls for a discussion of the roots of

j{z) = and an examination of methods of determining them. Before

considering this in general we may first confirm the truth of equation

(49) in case the conductivity of the core wires is negligibly small so

that there are no eddy currents and ^ is zero. The characteristic

equation (48) then reduces to

Z^=l^-\riWo

Lz^-Rz^ +^=0 so that

Z2^ = ho— iWi w„ =

Hence
VLC 4.U

(50)

J^i2i^+^p=-2iZw<

Cz^'
— Z22^+7^= 2iLwi

and this gives in equation (49)

12(0 =
1 e~^°*' sin Wot

L Wo

This used in equation (45) gives the well-known solution

V{f)e-'^^'-"Hm Wo{t-r)dr

(51)

«^^^ =ir
sm= CVo \l-e- ^ot (cos Wot + 6 ^^^_ Wot)

|

I Wo\

if F is constant. Differentiating this gives

_Vo _^, sin Wot _
L Wo

(See equation (45'')-)

m=^e-^-^^-^^^VMt)

(52)

(53)
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It is to be noted that equations (51), (52), and (53) preserve their

meaning even if Wo is zero or imaginary, which illustrates the state-

ment made above about two roots becoming identical as do Zi and

22 when Wo = 0. We may now examine the general case where /3 is

not equal to zero and the eddy currents, therefore, exert their influ-

ence upon the current. If we let

the characteristic equation (48) becomes

1 r, mi
,

^' \-\_JM _ ,
2Jo'{x) ._.

l-eL L x'^LCx'JJoix) ^ xJo(x)
^^^^

Since the coefficients of equation (55) are all real, it follows that for

each complex root there must be another corresponding complex root

which is conjugate to it. We are only interested in those roots which

are positive reals and those complex roots whose real parts are posi-

tive. This equation contains three real positive parameters, namely,

r^^-j -y- and Yfi'
'^^^ pure ratio e may in certain limiting

cases be zero, but in general it must be less than 1 and greater than

or equal to zero. The parameters ^ and jy^ may have any positive

value, or zero. When /S is not equal to zero, the equation (55) always

has an infinite number of positive real roots (corresponding to tune

constants of the system). In addition to these, it has two ''principal

roots" which are real or complex, depending upon the values of the

three parameters.

The real roots may be found as the abscissa of the points of inter-

section of the curves y(x) and Y{x), where

Jo{x) xJoix) jLJas\a,^-X^) ^

s=l

The curve Y(x) may be plotted once for all as shown in the Figure

5. Its infinities are the roots of Joix) = 0, its zeros the roots of J2{x).

If C is finite, the curve y{x) is — <» when x = 0, and approaches
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— Tzr when x = co. It has no mmmiuin, but one maximum value

which is given by

_ Lc ['fRy_j 1
y"'~l-el\2Lj LCJ

which occurs at

• If the maximum value ^/m is positive, the curve y(x) crosses the

axis twice. It is evident from the figure that the cm-ve y will always

cut every branch of the Y curve except possibly the first (principal

branch). If R is sufficiently large, it is evident that the y curve will
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cut this principal branch in two distinct points if (7 is finite (in one

only if (7=00
; that is, no condenser). In this case all roots are real.

If then we imagine that R decreases, the other parameters being

fixed, a critical value of R will be reached (if C is finite) for which the

y curve just touches the Y curve. The two roots are identical. For
smaller values of R these two roots are conjugate complex roots and

the system might be called ^'underdamped," but no further decrease

in R can make the y curve become tangent to any branch of the Y
curve so that no other complex roots exist. The relation which

must exist between the three parameters in order that this ''critical

damping" exist is that there is a value of x between and 0^ = 2.405,

which simultaneously satisfies both of the equations

2/(x)=r(x)

y'(x) = Y'ix)
^''^

If X could be eliminated between these equations there would result

an equation between the three parameters—the condition for

"critical" damping. This is not an easy thing to do for general

values of /3. Neither is the determination of these complex roots.

The real roots x^ and hence 2k =-7^ may be most conveniently eval-

uated by the graphical method, using Figure 5. In most practical

applications /3 will be small and the complex roots 2^ will have to be

computed by a different method. The exact form of the character-

istic equation may be written in terms of z as

00

s=l

or if liSs^Kai^

00

4 (1 - 6) ^0«2/3-2^^2u+4+ ^'-f
^'+ZC^O (62)

n=o

When ^2^ is negligible compared to 1, this reduces to

il:_^(^2)34_(^2)2_|^2+^^0 (63)

The pair of complex roots of this cubic for 2" (where 2^ = a±i6 and

a>0, &>0) will give the complex roots approximately of fiz). The
third root is 2^ = a negative real, and this is quite inapplicable to the

problem, as we have shown there are no such roots of /(s). This

third root in fact violates the assumption that ^z^ is small. The
other roots (real) must be determined graphically by the use of

Figure 5.
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By means of equation (57) we may obtain the relation which must
exist between the parameters for ''criticar' damping when ^z is

small. Placing 2^ = ^, the condition is that the equation

(Lr_#^3+j._«^+_l^=o (64)

should have a double root which is a positive real, and ^ must, there-

fore, be a root also of

fc^^|^ + 2^-f
= (65)

Solving equation (65) for ^ and placing this value in equation (64)

gives the condition for critical damping (when ^ is small).

LC" im-'^im
br

Since ^t- must be small for this relation to be valid, the bracket is 1

minus a small correction due to the existence of eddy currents. This

shows that for a given inductance and capacity the circuit will be

critically damped with a larger resistance than if there were no eddy

currents. This might seem paradoxical if one thought of the effect

of the eddy currents as equivalent to a mere increase in resistance of

the circuit. But it must be remembered that they also affect its

equivalent inductance. Moreover, the phrase ''critical damping"
as here used is not intended to imply that the system behaves like a

single circuit or a finite number of circuits, since there are always an

infinite number of real time constants of the system. The words

''critical damping," "underdamped," and "overdamped" are here

used with reference to the two principal roots, as in the three dotted

curves of Figure 5. In this sense it is evident that if the circuit were

underdamped in the absence of eddy currents, then it w^ould

always be imderdamped with them, and in certain cases if over-

damped without them, then their presence would render it under-

damped. This corresponds to the case where the y curve in Figure

5 might cross the axis of x without rising high enough to cut the

principal branch of Y curve. Whatever the nature of the two

principal roots, it is evident that for large values of /S the real exponen-

tial terms of fi(0 corresponding to the remaining (real) roots will

exert an important influence upon the course of the current.
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If we allow the capacity C of the condenser to increase indefinitely,

the first root of f{z)=0 approaches zero in such a manner that its

principal part is given by p—2=R so that the contribution of the first

root (for Z:= 1) to the second member of equation (49) is just o*

The second root ^2^=-^ is found from the abscissa X2 of the points

of intersection of the curve

.<.)-ii-,(-¥4.)

J (x)
with the curve Y{x) = J .

\
and if ^ is also small (as it is in all practical

J o(X)

cases) this value of X2^ is the small positive root of

X2'
, .^ 8 2 SpR _^

which is

[-'i^F]

T^.D

The remaining roots are the positive abscissa of the points of

J (x)
intersection of the curves of Figure 5 Y{x) = J^ ^ . and the curve

-^ • If /3 is so small that y{ai) is very close to its

asymptotic value — r-^- and if this is a large negative value, the roots

are very approximately all the roots of Jo{^) =0 beginning with the

first. On the other hand, if e is zero the roots are the roots of Ji{x) = 0.

In general they will be between these two extremes when /S is very

small. Thus if e is so large and jS so sm^all that the y curve has passed

its maximum and reached a negative value as low as — 5 by the time

X reaches the value ai = 2.405, then all the roots lie near the roots

of Jo. In this case, if we let cCs= ag(l + ^g) where ^g is small and a^

is the s^^ root of Jo(x) = 0, then it is readily found that when ^g is

small it is given by

t= 2
^^ l-2ag[l+2/(ag)l

In general, the graphical method, using Figure 5, will be most con-

venient for finding the remaining roots. In conclusion it may be

interesting to point out an analogy.

When the magnetizing current I{t) is periodic of frequency ^ so

that I{t) is the real part of In e^""* and the magnetizing force is the real
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part of 47riV/n e^^^ then the field ^ in a core wu-e is given by equation

(4) as

€v-m^)
E{r, t)=4.irNI^e'-'i\^2^J::!!ll (real part)

J^{^|-in^)

This follows immediately from the fact that within the core wire H
satisfies the equation

a^ dr^ r d r

and H reduces to 47riV7nC'°* (real part) when r = a. The problem

analogous to this is that where an electric field, the real part of

E^e^^^, is applied to a cylindrical wire of radius a. In this case the

electric field E which is parallel to z satisfies the equation

-^^=^+-|^and E=Ene'-'whenr = a

The analogy between H and E in the two cases is perfect, and E{r, t) is

given by

E{r, t) = E,e'^' ;H«^Z!^(real part)

Jo(^-in^)

This is the equation for the ''skin effect" in the cylinder with steady

alternating current. Similarly, the distribution of current when the

applied electric field is an arbitrary function of the time £"(0 is given

by the equation analogous to equation (12)

2J
&:)?^«-.

S=l

It is not improbable that this equation for the transient current

may be found in the Hterature.
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V. SUMMARY

It has been shown in Section II that if a current I(t) flows in a

circuit which consists of uniform winding around a cyUndrical core

of N' equal parallel wires, each of circular section of radius a, con-

ductivity X, and magnetic permeability /z, and if the circuit has a

total resistance R, a series capacity C, and an inductance L, all

referred to zero frequency, then the course of the current under the

influence of an arbitrary, applied electromotive force F(0, together

with the influence of the eddy currents in the core wire, will be

determined by the equation

LQ{t) + Rm-}-^P—{l-e)L^jy{t-MdTj]-^^^^ (19)

s=l

where Q(t) is the charge on the condenser, so that Iit) = Qit) = —^^7-

and j3 is a constant depending upon the core wires, and defined by

/3 = 4x^X^2 (5)

The numerical constant as is the s*^ positive root of Jo(a) = and

the pure ratio € is a positive number, which is always less than 1

and defined by

l-e=^-^^ (17)

N being the number of turns of the windings per cm length along

the cylinder, fx the permeability of the core wire, and S^ the total

cross section of the core wires= iWa^ where N^ is their niunber.

In Section III it is shown that for the case of a periodic applied

n
electromotive force of frequency /=^. the steady periodic current

is the same as if the circuit possessed the inductance X' and the

resistance R\ both being functions of the frequency and given by

L'-L AL
<x>

-a-e)F.m=-(l-e)J]^jff$^^ (22)L — L
s=l

R'-R AR^^= (1 - e)F.m ^ (1 -e)2^^. (23)nL
s= l

The functions Fi and F2 are expressed as power series in n/S by equa-

tions (26) and (27), which are only valid if n^<Cai^= (2.405)2. ^hey
are also expressed in terms of her and hei functions and their deriva-

tives, with argument -y/nb in the equations (35) and (36). They
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are plotted to two scales in Figures 1 and 2. It is also shown that

for high frequencies they take the asymptotic forms

Fi(n^)« 1-^^-1 (40)

5 (^^)F2(n0)^J

In Section IV it is shown that under the influence of an arbitrary

electromotive force V(t), which is applied at time < = — oo, the current

will be given by

7(0= P V(nh(t-t')dr (45'0

where Q(t) is the current that would be produced by a constant

electromotive force applied at time ^ = 0, if conditions had remained

static previous to that time.

This characteristic function Q{t) is studied in detail. It is expressed

in the form
00

12(0= -22^

if the roots are distinct

k=l

k=3

if Zi and 22 are coincident, where z^ is a root of

Kz) = O^Lz'-Rz'+^+{l-e)Lz'f^^^ (48)

The first two roots may be either real or complex, all the others real.

The curve (fig. 5) is plotted to facilitate the determination of these

roots in any numerical case.

Washington, May 6, 1926.


