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FORMULA FOR THE INDUCTANCE OF A HELIX
MADE WITH WIRE OF ANY SECTION

By Chester Snow

ABSTRACT

The formula for the direct-current inductance of a single-layer helix which is

here obtained takes account of the helical shape of the wire and hence of the

axial component of current. It does not assume uniform current density over

the section of the wire, but is correct to the second order for any current distri-

bution which may be expanded by Maclaurin's theorem over the section of the

wire. It is especially simple if this section is symmetrical about two axes through

its center of gravity. It is correct to the second order inclusive in — where 2 -k p

is the pitch of the helix and a is the radius of the cylindrical form. The terms

neglected are of the order of ( -) log-- The formula is derived from the funda-

mental equations of the magnetic field and naturally takes account of the peri-

odic structure of the field, which is important in the vicinity of the wires. This

periodic part of the field, which is due to the discrete nature of the windings and
to their regular spacing, falls off rapidly (exponentially) as the distance from

the wire increases, so that, at appreciable distances, the field assumes its regular

value due to a current sheet. This current sheet differs from Lorentz's in that

it has an axial as well as a circular component of current. Attention is also

given to the mutual inductance of the helix and the return leads.

The inductance of a helix (aside from the leads or their mutual inductance) is

given in the form

Lh =ffuixiyJdSif'fu{x2y2)dS2M(,xly lx2y2)

where the integration is performed twice over any section of the wire (say, its

initial section) where u(xy) is the magnitude of the current density at a point

xy of this section, and where M(xxyiX2y2) is a symmetrical function of the two
points P(xiyO and P2 (x2y2) in this section. It represents the mutual inductance

between two unit current helical filaments of the same pitch 2irp and axial length

l=2irp N which pass through these two points. By studying this function and
making a number of reductions, an approximation to M is obtained, correct to

the second order in — > —^~ and
2

• It is then an easy matter to obtain the

inductance by surface integration over the section of the wire for ordinary kinds

of sections. Formulas for circular and rectangular wires are obtained and sim-

plified, equations (114), (120), (131).

The paper also contains (in Appendix 10) the exact solution for the field of a
helical current filament, infinite in length.
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I. INTRODUCTION

To compute the inductance of a coil, it is sufficient in most prac-

tical cases to proceed as if the wire completely filled all the winding

space. A single-layer solenoid may be replaced by an ideal current

sheet in which the windings consist of infinitely thin strips of tape

without any insulating space between them. Such a process will

undoubtedly give a first approximation to the inductance, but it is

evident that where precision is desired a formula for the inductance

should be based upon expressions which represent the magnetic field

in the immediate neighborhood of the windings or (as in the present

case) the vector potential within the wires themselves.

4. Second order approximation for G (y) 492

5. Evaluation of G\ (y) to the second order 493
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The results here presented have been derived directly from the

equations of the electromagnetic field and simplified by approxi-

mations to a preassigned order of small quantities (the second).

The coil has not been idealized as a set of circles, nor as a current

sheet, but cognizance has been taken of the discrete nature of the

windings and the helical nature of the wire. The results are formu-

lated for any shape of cross section of the wire and are not limited

to the case of uniform-current distribution over the section.

In 1906 Rosa obtained 1 a formula for the case of circular wire

which has been considered sufficiently correct for the most pre-

cise of modern absolute measurements. He considered the sole-

noid as made up of a series of parallel circles, so that he neglected

the helical shape of the wires and the axial component of current.

His argument is based upon Maxwell's theorem of geometrical mean
distance, which is derived from the logarithmic formula, and is

strictly applicable only to infinitely long cylindrical conductors, and
hence approximately correct for coils whose radius of winding is large.

Moreover, his method of replacing the tedious summations for wires

of finite sections by comparing them with the corresponding values

for thin strips is somewhat empirical and not quite satisfying. He
justified his method by numerical application to the case of a single-

layer solenoid wound with thin strips of no radial thickness and no
insulation space; that is, to a continuous cylindrical current sheet.

This is the only case where an exact formula existed which could be

used as a check. With a radius of winding of 25 cm, the results

agreed with the current-sheet formula to 1 part in 1,000,000, and
Rosa, therefore, concluded that there is no reason why it should not

be equally exact in the case of round wires with insulation spaces

between them. Since he does not start with an exact formula and

then neglect infinitesimals of known order, it is difficult to say just

what is the percentage error involved in Rosa's method due to the

curvature of the windings and their spacings, as well as the axial

component of current. In view of the increasing precision of elec-

trical measurements and on account of certain absolute measure-

ments which are being undertaken at this bureau, it seemed worth

while again to consider this problem with the object of obtaining a

more exact formula or one in which the percentage error could be

estimated.

In this paper the wire is regarded as a bundle of helical filaments,

all having the same pitch 2irp and same axial length l = 2irpN. The

y axis being taken as the axis of the cylinder, the initial section of the

wire S, in which the current enters, being in the xy plane, then two
points P

x
{x

xy^ and P
2 {x2y2) in this initial section characterize the

1 Rosa, Calculation of the Self-Inductance of Single-Layer Coils, Bull, of the Bureau of Standards, 2,

No. 2.
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two helical current filaments passing through these points. The
current density is assumed to be in the direction of the helical fila-

ment, of magnitude u{x
xy^ for P

x
and u(x2y2) for P

2 . Beginning

with the Newtonian integrals for the vector potential, it is found

that the inductance of the helical distribution L* (apart from the

lead wires) is

L*=ffu (xtyt) dStffu (x2y2)M {x{y
x
x2y2) dS2

where the integration extends twice over the initial wire section and

the function M{x$x
x2y2) is a symmetrical function of the two points

P
x
and P2 , which may be called the mutual inductance of the two

filaments passing through these points. It is defined by a definite

integral. By means of Neumann's theorem, this is expressed as a

Fourier-Bessel expansion whose coefficients involve definite integrals.

After some mathematical analysis, most of which is relegated to the

appendix, an approximation (86) for M is obtained which is correct

to the second order, inclusive, in the small quantities — *» ———

»

and -» where a is the radius of the cylindrical form upon which

the wire is wound. This consists of the logarithmic term

— 47raiVlog -yl(x2
— x

1)
2 +{y2

— y1)
2

, finite terms, and infinitesimal ones

of the order f»( )
log^>and(-) • The largest terms neglected

are of the order of ( - j log - • It is then an easy matter to inte-

grate this expression and obtain the inductance of a helical distri-

bution of current in a wire of any ordinary shape. The current

density is not assumed to be uniform, but its value is expanded by
Maclaurin's theorem, and thus a term arises which takes account of

the nonuniform distribution of current and admits of estimating the

source of error due to this unavoidable circumstance.

A fairly simple formula (108) is obtained in case the wire section S
is symmetrical about the x and y axes through its center of gravity.

Special cases of importance are those of circular wire (114) and rectan-

gular wire (131). The computation of inductance of a helix 40 cm
in length, of 400 turns, with a pitch of 1 mm and diameter of circular

wire 3^ mm, having a mean cylindrical radius a= 15 cm, gives a value

Zn = 26,553,512 + 16 ( 1 + 2 —Mem where u is the current density

and ux its partial derivative in the x direction. In case the

current density is uniform ux= and the 16 cm is added to the

inductance. In case the current density varies inversely as the dis-

tance from the axis (the " natural distribution") -= —2 so that
' u
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16 cm is subtracted. The two distributions differ by 32 cm in induc-

tance, or about 1 part in 1 ,000,000. Rosa's value is loss than tliis by

only 4 parts in 1,000,000.

If the circular wire in this example were replaced by square wire of

equal thickness, the inductance is Lh = 26,543,066 + 21 (l+-^M»

a decrease of 1 part in 2,600 from the circular case.

In Appendix 10 the exact expressions are obtained for the magnetic

field of a helical current filament, infinite in length. An equation is

obtained for the magnetic lines of force in the immediate neighbor-

hood of the helix in a plane through its axis. The lines of magnetic-

force very close to the filament (and in this plane) are identical with

the equipotential lines of a charged grating, which are shown in Fig-

ure 13 of volume 1 of Maxwell's Treatise.

In Appendix 1 1 the mutual inductance of the leads with the helix

is computed for a certain arrangement of the former.

II. GEOMETRICAL CONSIDERATIONS

If the point Px
{xxyx0) lies in that part of the xy plane between

the planes y= and y= 2irp for which x is positive, then it has

the rectangular coordinates x = xv y= yv 2= where 0<yl <2-n-p.

It has the cylindrical coordinates r = xx
= 0, y= yx . If this point

(fig. 1) be given a uniform angular velocity, -g (either positive or

negative) about the y axis combined with a simultaneous linear

velocity, p tt» in the y direction, it will trace a helical space curve ex-

tending from y= — co when = — oo to y= + <x> when = + co which

lies upon the cylinder r= x1
= const. The rectangular coordinates of

any point P on this helix are (fig. 1)

x = r cos

z= — r sin

y=Vx+ve

(i)

If the angle be allowed to have any real magnitude and if the pitch

p be the same for all helices in space, then the position of any point

in space may be uniquely specified by the three coordinates r, 0, and y,

the r and fixing, respectively, the cylinder and the plane through

the y axis upon which the point lies, and the coordinate y, specifying

the particular helix of all those lying upon the cylinder r = constant

which passes through the given point this coordinate y being defined

as the y coordinate of the point on the first positive turn of the helix

corresponding to = (y must always lie between zero and 2irp) .

A conducting wire of any section, which is wound upon the cylinder

r = a to form a single-layer solenoid, is frequently regarded as approxi-
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mately equivalent to N circular turns, each turn being similar to its

neighbor but displaced a distance 2rp from it in the y direction. A
much more accurate representation of the wire is to consider it as the

volume generated by imparting to the first section of the wire in the

xy plane the above-mentioned screw motion consisting of a uniform

angular velocity -^ about the y axis combined with a simultaneous

linear velocity p -j in the y direction. (See fig. 1.) Thus all

sections of the wire by the plane = constant have the same shape.

By P (rdy) we shall designate any point in this section, = constant,

Fig. 1.

—

Section of helical winding

which lies on the helical filament which passes through the initial

point P (r, 0, y) in the initial section. As changes from to + dd

this point P traces the element of arc

ds=^r2 + p
2 dd (2)

Similarly, any element of area dS = dr dy of this section generates

the volume element
dv = dr dy rdd (3)

The latter is independent of the pitch 2irp. It thus follows that the

volume of a turn of the helicoidal wire is the same as that of the

corresponding circular wire for which p = 0. In fact, the helical turn

could be produced by cutting the circular turn by the plane = and

giving it a uniform shear, which leaves the volume unchanged because

the length of each infinitesimal circular filament of the circular turn
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is increased by this shear in the same ratio that its normal cross

section is diminished.

Since the cross section of the conductor is not actually zero, we
may regard the wire as a bundle of helices each having the infini-

tesimal cross section dr dy in the plane = constant. However, the

plane = constant is not a normal plane for the helical curve. The
tangent to this curve has the direction cosines Zh, rrth, nh . Since r

and y remain constant as the point moves along a given helix while

dx
alone varies, it follows from (1) and (2) since lh = -j-

h =
— sin

v 1 +

mh
P

vT-K /1 + r2

nh =
cos

V 1 +p

(4)

The normal to the section = constant has the direction cosines

Z n = —sin 0"

ran = > (5)

nn = — cos 6^

III. DISTRIBUTION OF STEADY CURRENT

It will be assumed that the (vector) current density j at any point

in the section = constant has the direction of the helix which passes

through this point; that is, the direction of the above-mentioned

screw motion. The direction cosines of j are, therefore, given by (4)

.

Thus j has the same magnitude at any point P(r6y) of the con-

ducting section = constant as it has on the initial point of the same

helix at P(r,0,y) in the plane = 0. The magnitude of j will be

denoted by u(ry). If the wire carries the total current unity, then

l = fdrfdy u(ry){l nl h + m nmh + nnn h }

or by (4) and (5)

1 = fdxfdy
v

u(xy)

(6)
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This integration may be taken over the plane section of the wire

= 0, the xy plane where the current enters the helix.

The rectangular and the cylindrical components of the current

density at a point (rQy) in the wire are given by

h =
— u sin

pu

v1+'

h=
— u cos

V' +?

> or

j,=o

;»=

V1+S

h =pe

(7)

Whatever the function, u = u(r, y), the current density j is solenoidal;

that is, the divergence of j is zero. The distribution of steady

current over the section of the wire must remain a matter of assump-

tion, the exact nature of which must depend upon experimental

evidence. Two of the simplest cases are : (a) The magnitude of the

current density u(rj) is inversely proportional to the length of the
/»

helical filament ; that is, u—
,

== In this case the line integral
Vr2 + 2>

2 • 6

of the electric field taken along a line of flow from the section 6 = 6V

to 6 = 62 has the same value for all the current filaments in the section.

This may be called the natural distribution, (b) The current density

is uniform over the section ; that is, u(ry) = constant = c. The value

of c in either case is determined by equation (6) when the shape of

the section of the conducting wire is known.

IV. FUNDAMENTAL ELECTRICAL EQUATIONS

The magnetic vector H due to any finite distribution of current is

solenoidal and may be derived from a vector potential A by the

relation

i7=curl^L (8)

In the case of steady current, the fundamental equation of the

electromagnetic field is

curl H=4irj (9)

which requires that
div/ = (10)

The last equation requires that all currents flow in closed circuits.

It is evident that from (8) and (9) A must satisfy the equation

curlM= - V 2A + V div A = 4iry (11)
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which is not sufficient to uniquely determine A. However, it may
be shown that if j represents a finite, solenoidal current distribution

the Maxwell equation (9), together with the condition that H is

continuous and vanishes at infinity, does uniquely determine the

vector H. Consequently, all the solutions of (11) which are con-

tinuous with their first derivatives and vanish at infinity must have
everywhere the same curl and, therefore, lead to the same value of H.

Thus if the vector A t satisfies (11) one may form the new vector

A 2
=A

l + V</> where is a scaler function. Then curl ^4! = curl A 2 ,

which shows that both vectors A t and A2
give the same magnetic

field. Moreover, curl 2 A l = cuil 2 A2
= 4:irj, which shows that A 2

is

also a solution of (11).

Since any solution of (11) will serve the purpose, it is customary

to choose for simplicity that one which is solenoidal, so that

VM=-4ti7 (12)

div^i=0 (13)

subject to the condition that A and its first derivative is continuous

and vanishes canonically at infinity like the Newtonian potential

function. The solution of (12) is the (vector) Newtonian potential

C C C j {xx

y
lz l

) dxxdyxdzx

JS
(">

which will also satisfy (13) if j satisfies (10). The integral in (14) is

taken over the volume of all conductors where ; is different from zero.

The elementary contribution to the value of this integral of a current

/ flowing in the (vector) element ds is

Ids

^{x-x^y+iy-y^y+iz-z 1 )''

and this leads (by taking the curl according to 8) to the Biot-Savart

law for the magnetic field due to a current element. As long as

electric currents are regarded as closed, the truth or falsity of this

law must remain beyond the possibility of experimental test and this

even if one admits for the moment that the conception of the mag-
netic field is not a mathematical abstraction but is capable of direct

experimental evaluation. For it has long been known that this law

could be modified by the addition of terms of the type ^-* where \p

is any single-valued point function, without altering the value of the

magnetic field due to a closed current. Therefore, if one applies the

integral (14) to a part of a circuit which is not closed (as for example
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the N turns of the helix), this implies that the value of A for the

lead-in wires and other apparatus by which the circuit is to be closed

will be computed according to the same (Newtonian) integral.

With this understanding the value of the vector potential A h
, due

to the current in the helicoidal wire at any point in space P2 whose
rectangular coordinates are x2 , y2 ,

z2j or whose helical coordinates are

7*2, 62, V2i where 2 may have any real value, is given by the vector

equation

^M^^^ (15)

where the integration of r
x
and yx

is over the initial wire section S,

and where
R2 = r 2 + r 2 _ 2rir2 cos (e2

_
$i) (i 6 )

The vector equation (15) may be replaced by its three rectangular

components by substituting for the vector j its three rectangular

components in succession. These are given by (7). If we then

project the x and z components of Ah along the directions of increasing

r and 6 according to the equations

A t

h =Ax
h cos 2-A,h sin 6

2

A9
h= -Az

h sin 6
2
-A* cos

2

(fig. 1) (17)

we obtain

' r

7
^ h f rtdrt C , SJ f

2jrN sm($2 -dt)de l

1+
r7

^vh =

(18)

where the integration with respect to r% and yx is taken over the

initial section S of the wire in the plane = (or z = 0) , or over any
section of wire 6= constant.

It is possible to evaluate the integrals (18) for Ah at any point in

space in infinite series, involving cylinder functions and hypergeo-

metric functions. To write out these series in general would be un-

necessarily tedious, principally because of the enumeration of cases

necessary according to the position of the pointP2 (r2d2y2 ) . However, if

we are concerned only with the self-inductance of the helix or its own
mutual electromagnetic forces, we require merely a knowledge of the
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vector potential A at points inside the conducting wire. For the

inductive or electromagnetic action of this helix upon other con-

ductors (such as the lead-in wires or other coils), it will usually be

satisfactory to consider the current to be continuously distributed

over the entire winding space of the coil. If the other conductors

are not too close to the helix, this assumption will satisfy the most

precise requirements of experiments, for one may show that the

periodic variations or " ripples" in the magnetic field, due to the

discrete regular spacing of the windings, fall off exponentially and

very rapidly as the point moves away from the conducting wires.

In order that we may restrict the analysis of the magnetic field

(or vector potential) to those regions where we actually need it, we
may at this point consider the definition and general formulation of

the inductance of the helix.

V. DEFINITION OF INDUCTANCE OF THE HELIX

The circuit must be closed through the helix by means of lead-in

wires and other apparatus. Let A 1 be the vector potential due to the

current in these leads, etc. Then A =A l +Ah represents the poten-

tial due to this compound circuit which is closed and carries unit

current. The electromagnetic energy Toi this current distribution is

T=±L(l)> =%=±fffH*dxdyd2=±jff(j.A)dxdyd2

The last integral is taken only over the volume of the conductors

and is derived by classical transformations from the first, together

with the field equations and boundary conditions. From this equa-

tion the inductance of the circuit may be written (since (j'A) repre-

sents scalar product) as

L = Sff(jh -Ah)dvh + SSf(jh -A i)dvh + Sff(jyA*)dvl +
fff(jrA l)dVl

where dvh is the volume element of the helix, dvx
that of the leads. If

we make use of the Newtonian vector potentials in each case

**jfW "-lis*?
where

Z>2= (a?- x'Y+ (y- y'Y+ (s -2')a

this becomes

L= C C ihW)dvhdvh
' C C (W'j,)dvh 'dvx

Jhjh' D Jh'Ji D
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Or

L = L h + L l +2Mlh = inductance of the circuit

where

^^
The quantities L h and L

x
may be called the self-inductance of the

current distribution of the helix and of the leads, respectively, while

Mhl is their mutual inductance, the assumption being that all are

computed by the same type of vector potential, which in this case is

the Newtonian one, and which is equivalent to the Biot-Savart law of

magnetic force. The two methods here offered of computing ifhl are

in reality identical, since they differ only in the order of integrations.

One must integrate over the volume of the leads the value of Ah

at all points in the leads, due to the current in the helix. If the leads

are not too close to the helix one may compute ^.
h as if the current

in the helix were distributed in a continuous manner over the winding

space of the latter.

We are concerned here primarily with Lh , which is characteristic

of the helical distribution of current. The foregoing definition of L h

leads by the use of the expressions (18) for Ah to the formula

where

L h =ffdSau(r2y2)J'J'dSiu(rlyl ) M(r<yx
r2y2 ) (19)

M(rxyx
r
2y2)

=

V(1+S(1+
S>/« J»

2^Hv,-y^(e2 -el)?

(20)

R2 = r * + r2
2 - 2r

1
r2 cos (02

- 0J (21)

The function Mir^y^y^ is unaltered by interchange of the sub-

scripts j and
2
on either variable. The equation (19) exhibits L h

as the surface integral over the section of the wire at 6 = 0, with respect

to the variables r
xyv of the surface integral with respect to r2y2

of a

symmetrical function of the two points r
xyx

and r2y2
in this section.

It is evident that M, therefore, plays the part of the mutual induc-

tance of two helical filaments each carrying unit current, having the
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same pitch 2irp and number of turns N, the two filaments facing

characterized by the points r
tyt

and r
2y2 of the original section

through which they pass. The magnitude of the current density

u{ry) in formula (19) is subject to the restriction of equation (G)

which states that the total current through any section of the wire

is unity. No further restriction need be made at this point.

Since neither the shape of the wire section nor the nature of the

current distribution u enters into the determination of the function

M, but only the two helical filaments through the points P
t
and P2 ,

respectively, of the initial section S, it seems worth while to devote

considerable attention to the evaluation of this function in general.

We shall obtain an approximate expression for M which is correct to

the second order inclusive in the small quantity -• The ratio of the

linear dimensions of the cross section of the wire to the radius a of

the cylinder must in all cases be as small as —*-» and in exceptional

cases may be much smaller.

It may be noted that the term -i— occurring in the numerator of

the integral in (20) represents the contribution of the y component
of current. The denominator of this integral will approach zero

when the points P^r^) and P2
(r2y2)

approach each other, and it is

necessary to determine the precise manner in which the function M
then becomes infinite.

VI. THE MUTUAL INDUCTANCE Af OF TWO HELICAL FILA-
MENTS

If we let 6
2
— B

x
= 1 in (20) , it becomes

jf= ^
f2-N f-ft+fcN C0S 0i+ J2L

If we integrate first with respect to 6X with the proper change of

limits, this gives

M= ,,

r
f* ,J r°,

;
(^Triv+^Ycos <?+£-}

Jo V^2
+(2/ 2 -2/i + ?>0

1
)
2

I
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If in the first integral we let <f>=*2TN+<t>
1 and in the second let

<f>
= 2irN—<f>1 this becomes

M-.
r.r,

V0+8K9 j7(
cos

*+£M'
i

^R2 +(l-y2 + yi -p^>)

\V n2A r3V[J V(Z +y-^) 2 + #

Joja-y-pty+R2 Jo v(2/-2**>)
2+£2

where

y=y 2
— yi an<i l = 2irpN

(22)

(23)

It will be assumed in the following that y and 7
,

2
— r

t
are positive.

The expansions obtained for M under this restriction may then be

made general by interchanging in them y x
and y2 when y x > y2

and

by interchanging r
x
and r2

when r t > r2 since (22) shows that the

value of M is unaffected by interchanging either pair rv r2 or y lf y2
.

If X is positive, it is known that 2

Vx2

Also by Neumann's addition formula 2

00

J (sR) =2^2€nJn (r
i
s)Jn {r2S) cos 7k£

(24)

(25)

where cn = 1 if n^o and e = = and where Jn is a Bessel's function.

Combining (24) and (25) gives (if X is positive)

1 1

VX2+R2 -A2 + r? + r 2 - 2r
t
r2 cos

/»oo CO

= 2 I <fee~x*S€n«/'iifriS)e7n(r2s) cos n<£
J0 7J=

(26)

2 N. Nielsen, Handbuch der Theorie der Cylinderfunktionen, pp. 180 and 280.
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lleplacing X by y — p<f> in (26) one obtains

V

Jo -V

^cost+^-Jd*

h y/(y-p4>)
2 + r l

2 + r
2

2 -2r
l
r
2
cos

= 2 I 4>( COS + -£-\Z</>
I
^-(y-P^823€n^n(/'iS)Jn(^ 2s) COS 7l<£

Jo V ^1^2/ J0 n=o
.TV

00 rp r 2»2 "1

= S«n I d<j)'(f>\ COS (n— 1)9+ COS (71+1)0+—-COS?i0 •

n=o Jo L r
i
r2 J

• Idse-^-^'J^r^J^s)

=\ f5x(y-X)S€aCOS^^- p56-^{ Jn-frrfJi
V Jo »=o P Jo l

(r 2«)

2p2
1

+ «7n+iOv) ^n+i (r2s) + -r~Jn h\s)Jn (r
2
s)

I \l 2 J

(27)

Hence (22) may be written

(28)

where

v_

4)1 cos <j>+
JF (y) = rtr, f ! 7 .

j -y (y-r?*)*+ (''.-?,

,)
! -f4r 1

r2
sin2

1

JO JO t ^1^2

CO /*co
em ]

+ r,r,S |<bL ,
™

»= lJo

•
| Jn-l^^Jn-^^^r/n+l^i^/n+lC/^+^/n^^Jn^^) 1 (29)
I ')/2 J

where the real part of this complex quantity is to be taken. Similarly,

the substitution of I ± y for y in this expression gives F(l ±y). It is

assumed in these definitions (29) that y=y2
— y 1

>0 and r2
— r

1 >0.

102333°—26f 2
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By taking the real parts of these expressions, the formula (28) may
be written

if=
2

\r ,, G (l + y)+G (l-y)

+ 1 (y
)-^q+y)+g 1

q- y)

+ (l-y)G2 + G3

}

(30)

where

G (y) = -^J^J^xJ^

+ Jn+ifriS) Jn+i(r2
s) -\-~rJn (r

ts) Jn (T2s)
1 V 2 t

00

flt»
BBr

l
,,

>Xj
OOS^J -^Pn-iCyiS)^-!^)

00

^3=^2/jsin^ \*°ds
?

?l

l2V {
t/n. 1 (y 1g)e7n-i(r

-i(r2s)

(32)

(33)

(34)

In the following section we shall take up the simplification of these

G functions, carrying the approximations to the second order inclusive

in the small quantities -> — 1> and -
( =———V Where necessary,

it willbe assumed that r
t <r2 . Since Ifand each 6r function is unaltered

by interchange of r x
and r2 , the result of any expansion which is ex-

pressed in terms of r
t
and r2 under the assumption that r2

— r
1 >0, will

be valid when r t
— r2<0 if r t

and r2
are interchanged. Similarly, for

2/2 -2/r
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VII. EVALUATION OF M (riyir2y2 )

1. PRINCIPAL TERMS ARISING FROM G„

Since yll is small

Ga{y) _
G.(Uy)+GM-y)^ {y)

_ G<>(l) _y^ ,,
{l)

where by (31) — |- G " (I) may be replaced by

1

447

where

fc*= Yj^ sothat-=-^r

»+(s)
and

0o(m) =Jo

C

-V? J»8 (0<«

(35)

(36)

(37)

(38)

As considerable use will be made of the functions q (m), some of

their properties may be investigated. For this purpose we may make
use of a special case of (26), replacing X by 2X and letting r

1
= r 2

= l

and 6
X
= 0. This gives

v2A /X2 + sm2

1
r°°<fte-2xt / 2(0+2yVn

2
(*) cos n$

• , Jo *ri
(39)

Or if

** =
1+X2

oo

= 2 *»G») + / f^nM cos n#

0) cos n0

»=i

(40)

according to the definition (38) of </>n Gu). The identity (40) shows

that </>n On) is the Fourier coefficient in the cosine development of the

periodic function of 6,
** — . This gives a second integral

:yi- M
:2 cos 2

e

representation of
<f>n (n), namely,

2nddd ( -l)V C~ cos

7T Jo Vl3^-ff*^
2nddd

H
2 cos2 Vl-M2 sin2 6

(41)
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It follows from this integral form of </>n (/x) or from (38) by taking

account of the differential equation of the Bessels function, that n (/x)

satisfies the second order differential equation.

and the identical relation

(n+|^ n+2W=2(~l)(n+l)0 n+1 Oi)-(ri + i)«n(M) (43)

By expanding the integrand of (38) in a power series, it is found that

where F is the hypergeometric function. For the particular cases

n= and »=1 (44) shows that

*,W-^W (45)

^W=£{(J-l)tfW-j£(M)} (46)

where KQi) and E(p) are the complete elliptic integrals of the first and

second kind, respectively, whose modulus is /*. Another useful rela-

tion derivable from (42) and (43) is

. ~T |^(M)=(.-i)(0n_
1(M)-(J-i>n(M)|

=(n+ i){-<An+1(M)+(|-l)^(M)} (47)

which may also be put in the forms

f
(n+l)0n+1Oi)-n» n Qi) , __VWS , r\j-*fM

and

(48)

By combining (47) and (42) one finds also

CtMdn _1 I, . , /2 V , J 1 1-j.2 <?*„_

- 7 *

1
J -^iO»)+(|-i)»-0')} (49>

4^-2)
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The special cases of (48) and (49) where n = and n= 1, together with

the use of (43) and (47), give the following indefinite integrals:

/
0o (m)

dfx= —
7T/X

(50)

J*jT*
1

3x/xs

f0^s=£^{M
JVl~M2 (52)

In general, /t is less than one but it is necessary to know the manner
in which n (/x) becomes infinite when /* approaches one. This is

shown by the form of the hypergeometric function given in equations

(22) and (23) of Appendix 1. This shows that d (m) may also be put

in the form
„2n+l

<^)=^{^n(l-M2)-^n(l-M2
) ^g U-M2

)} (53)

where

WnU-M2
)
=

so that

Vn (l-iK2)=F(n+ i.»+ |. 1, 1-m2

)

2i(o) =4 log 2, r (n) =4 log 2 - 2V^-^-jif n>0

. (») - r.wflTYrn --i-fY-

(54)

ifs>0 (55)

In particular, if 1 — /x
2
is infinitesimal, then neglecting infinitesimals

of higher order than 1 — p?

n (M)=^{ro(n)-log (l- M*)-(y-i)(l-- M
2
) log (1-V)

+ (^ + 2)[(
ri+

2)
27i^-To^)](l-M2)---}

^4{ 1+(-
2

-4-) (1 --2)1^ (1 --2)+^^>
l-li2 d4M 1

[arrg+T.W-(»+0ri(ii)l(l-^

(56)
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Another relation which will be found useful is derivable from the

Fourier's series (40). Let/ (0) be any function of 6 which is devel-

opable in a cosine series as follows

:

00

f(fi) =| /o + ^J/n cos nd 0<6<TT (57)

71=1

Multiplying (40) and (57) together and integrating the product with

respect to from to x gives

7L /' IMA
/i

2 COS2 s

CO

^..W+^/.*.W (58)

In particular UM =(?-.0+^00*9=J]
™ ("-»)< + «" <»+!> *

n=l

this gives for the value of a series which appears later

S"
4hL-i<Jc)+<h»iQc) 9

/P-2\/tt2 _,, fl 2
<Z0 \

9 ^^All^^ Jo Vl-^sin^J

^-
_ 7T

(j^E(k)- \

2

e2 -y/i-lc2 sm2 ede\

(59)

The value of the series on the left of (59) may be determined by
graphical integration of the right side with less labor than by com-
putations based upon the power series definition of n .

By means of the foregoing properties of the functions
<f> n , we may

proceed with the simplification of the terms G (l) and G (y) in (35)

defined by (31). Changing s to — in (31) gives

7'^,/>./>vir^<«(s
<*o)

X r
The function of the two variables — and — defined by the integral

vir^^cs
X r

becomes infinite when — and -7 simultaneously approach the limits
r
2

T
2

and 1, respectively. It may be studied by noting that this func-

tion satisfies a certain partial differential equation in these two
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variables and reduces to

451

^" ( I /x^ l
W,10n 9 =l

' wIlile its

derivative with respect to — vanishes when ^=1. A much simpler

discussion is, however, possible, for we may prove that this function

of the two variables — and - may be expressed as a function of the
'2 7*2

single function ft(-» -1

J
defined by

4r
1
r

s

(61)

This theorem takes the following form

^92f^^JMJn(M)^M (62)

where \i is defined by (61). This important relation may be estab-

/v v-~ gives

V*v^ -=j^y rd„e
-^\J^\s)j (r 2s)

2^\2 + r l

2 + r
2

2 -2r
1
r 2 eos(e2

-6
1)

'
2
Jo 1

2

oo
I

+ 2,Jn (r
1
s)Jn (r2s) cos n(02 -0,)|

or

X / 4 7" 7*

SVV + 0r.+T>
/ 4r,r, /g^-jA

/r £\ °°

)

If, then, M has the value given by (61), this identity takes the form

r\^J?te~^J° (t)J°G0

OO

+2JnW/n0r) cos ^-^
(63)

A comparison of this Fourier series with the series (40) gives the
theorem (62).
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The second integral. in (60) contains the second order factor p
2

.

Therefore, we may place r
t
= r2

= a in this term, neglecting higher

order infinitesimals than the second. The theorem (62) by the use

of (45) then enables one to write (60) in the form

-£0(0=-^ f
ld\r i

d\4>M
Jo Jo

+£ fix, rASf<W.

where n and X are connected by (61). The first integral is evaluated

in Appendix 3, equation (19). The second may be evaluated graph-

ically. (See Appendix 2.) Letting

x^^-a, x2
= r2 -a, x = x2 -xv y= y2 -yv z = x+iy= x2 -x l

+i(V2-yi) (65)

and combining the results of Appendix 2 and Appendix 3 gives

-^(0 =?K+|Bo+^(^)-g(^)-^(^
2

)

+A^+Ai^yjj^ log(*^j (66)

The term in G "Q) in (36) may be written

_fo,,m.^P-*)ig)-2M)
-jg (67)

The value of G (y) is found in Appendix 4, equation (1), as

„ . N 4a3 \(x 2
— x t)

2
, /x 2

— x,\
, y

2 z 2
, z] ,„ oX

Hence if we let

A°~
8

}

Tc
+
If

(69)

we may collect all terms arising from G by adding together (66),

(67), and (68) in the form

_4a3

f p
2 „ , / gj + gA ttZ / a; 2-xA ttZ /V-gA

+A3^+Ai(^y+ A S^y-^ iogy <*»
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where the real part of the last term is to be taken and where it is

assumed that r2 — r
1 >0; that is, i2 -i,>0. When x

2
— x

1
<0 then

x
x
and x2 must be interchanged in the above equation. The finite

constants A 07 A v A 3 , and A 4
are functions of lc =—

,

given

by (20) of Appendix 3. The constants B and A
6
are determined,

respectively, by Appendix 2 and by (69)

.

2. PRINCIPAL TERMS ARISING FROM G,

From the definition (32) since G
x
contains the second order factor

p
2

, it is evident that to the second order inclusive

G
1
(l +y)+G 1 (l-y)

2

GO

= -GiQ) = -*2

V
2Y\^dse

~ lS t^?&*> +<W(a*)}
n=l

oo ,

- -af^^ate'** {Jn_*(t) + Jn+1
2
(0}

" *a2Zj n2

71=1

by the definition (38) . Making use of (59) , this gives

Q 1a+y)+G lg-y) _ w v
>

2 to21 V l)

where

Jo J Jo Vl-Psin2

(72)

The second order term G
x {y) is examined in Appendix 5. Equations

(13) and (14) of that appendix, together with (71 and (72), enable

us to write

gM G
1
(l + y)+0 1 (l-y) _

(73)

I O'l
* 2 12 s p 12 5 p 2 '\J)/Jrealpart
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where

n=l

and

oo [7»=4k>o 2

B2
=

i

(74)T (k) =4 log 2
-^Yjt^--

t=o 2

in z

#
71=1

The imaginary part of these expressions is to be discarded.

3. PRINCIPAL TERMS OF G2 AND G3

In equation (11) of Appendix 6 is derived the following expression

if r2 — r
x >

/ ri-rA / n-xi \

to the second order inclusive in x2
— x x

and p. This gives in (33)

oo

Similarly from the result of (13), Appendix 6, namely,

r°° 2 ns

is derived a value for (34)

oo

71=1

Hence, if we place ^r~^l= a ( l + ^p^2

)
in the first order terms and

place -y/r~
l
T2
= a in the second order term, and in conformity with the

previous forms let z = x + iy = x2 — x
x -\-i{y2— y x), we get, if a-=a-2 — x

t

>0 and y=y2-yt>0
oo _:

^^(S-l-iO+^EV

+^i<Ei(^f)

(76)

« »
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where the imaginary component is to be rejected. This may also

be written
(l-y)G

2 + G3 =

_4a3 '

j? iir

where
B4(^H]^a)+T".a))

m

'Q-tg-M'--*)

»©-Se '

n2

(78)

4. COLLECTION OF ALL TERMS IN M (x, yt x, yt)

The function u {x x yj u (x 2 y 2 )
M {x

t y x
x2 y 2 )

must be integrated

twice over the initial section of the wire in the plane 6 = to obtain

the inductance of the helical distribution of current by (19), where

u {x x y t)
is the magnitude of the current density at a point x

x y t
of

this section. Similarly, u (x2 y2)
is its value at any second point

x2 y2
of the same section. For the sake of arriving at a simpler and

more familiar notation for performing these integrations over a plane

area, it must be remembered that we have adopted the following

change of notation. Instead of representing the distance of the two
points P

t
and P

2
of the plane (oblique) section of the wire from the

axis of the cylinder by Xi and x 2 , we now use these letters to designate

the distance of P
t
and P

2
from the cylinder r = a, so that

x
l
= r

l
— a x 2

= r 2
— a (79)

Adding together the equations (70), (73), and (77) and substituting

in (30) gives

utm,)=%
°

j

8-A+g[g(go
_ fi|+g2) _| logir

]

+

V
2 sr. x tx t A

(x 2-x t)
2

. (y2 -y 1)
2l

<-w§)+^©^©)])

(80)
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where

z = \x 2 -xi\ + i\y2 -yi\ (81)

The terms which are functions of the complex variable z are func-

tions of the relative vector distance from the point P
x {x x y t)

to the

point P2 (x2 y 2), both points being in the plane section of the wire

given by 6 = 0; that is, the plane in which the current enters the helix.

The real part of these complex expressions is to be taken. Before

taking the real part, it may be noted that these transcendental

z
functions of the complex variable - admit of great simplification. In

Appendix 7, equation (8), it is shown that

00 00

*(?H- -S+S^)*- - * j-Sk*
,

82)

where

(-D TC

GO

fc=l

The series converges provided \z\ < 2irp; that is, provided that \z\ or

the modulus of z (which is the numerical distance from P
t
to P

2 )

shall be less than 27rp, the distance between successive helical

filaments.

In Appendix 8 a number of transformations are made by which it

is found—equation (22)—that if \z\ < 2irp

'84)

<f)]=
2466267+ -6375<4)

2

- 22 c
«fe)

where
00

1) Ef^ (85)
IV I

Making use of (82) and (84) in (80), we obtain the following

formula for the mutual inductance of two unit currents in the two

helical filaments having the same pitch 2irp and length I = 2irpN

which pass through the two points P
t
and P

2 , both in the same plane

section of the wire, made by a plane through the axis of the solenoid.
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-4^[1+^]log (f)

n=l
oo

-S-fe)'
7!= 2

In this expression x
x
is the distance of the point P

t
from the cylin-

drical form (r = a) measured in the direction of increasing r, where r

is the distance from the axis. The coordinate of P
t
in a direction

(in this section of the wire) which is perpendicular to that of x is yv
Since y x

and y2
enter this formula only in the form y2

— y^ the x axis

may be anywhere in the section. The real part of log z is log Rn

R X2
= >/(x 2-x 1 )

2 +(y 2 -y 1 )
2

( = the distance from P
x
to P

2) (87)

The real part of z is to be taken in (86), and in this form we may
write without restriction

z={x 2 -x x
)+i{y 2

-
y x )

instead of \x 2 -x x \

+i\y 2 -y x \

(88)

because the real part of even powers of z like

32n=[32-s1 +ify2-y1)]
2n

consists of terms of the type (x 2
— x

x)
2* (y 2

—
2/i)

28 where Tc and s are

integers. This is unaffected by interchange of x
x
and x 2

or of y x
and

y 2
. Consequently, with the definitions (87) and (88) , the expression

(86) is perfectly general. It obviously satisfies the requirement

that M be a symmetrical function of the two points P
t
and P2 .

The numerical coefficients bn are given by (83); the coefficients

ca by (85) . They are also numerical. The coefficient A 2 is a function

of Jc—
—

/— ' i \ 2
m 1^ a^s0 includes all other constant terms whichML

are numerical and is defined by

^
2
=-

2 (Bo-Bj+BJ + .66267-| log 7T (89)
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where

1

Jo Vl-^2 sin2

1f1r (n-l) + r.(n+ l)
ro(0)=41og2 ^

^-iZj „ —7%o(n)=410g2 _ 2y< i

so that

i #
2
-i log 7T + .663 = .0020*0

By the use of an integraph, the functions B and B
t have been

found, and the function A2
computed. (See figs. 2, 3, and 4.) The

other coefficients A , Av A3J
A A , and A

5
are also functions of &

given by

\(l-7<*)K(Jc)-a-2k>)E(Jc)
xA-±

^.2gft)-a-f)g(t) . 1 (93)
2fc

A-|
2£(fc)-(l-j)z(fc)

5 (94)

4

A=41~^ (95)

1+(ra)

(96)

The bracket in the second member of (86) contains terms which,

in general, represent four orders of magnitude. When the distance

between the points P
x
and P

2
is of the same order of magnitude as

the pitch of the windings, - and ^—- are finite. In this case the

8A a2

principal term is the finite one—V * The terms next in importance
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are of first order, which contain either the factor - or 4tN. The
V

second order terms are finite quantities, for we have now multiplied

in the second order infinitesimal ^* The terms of type log - are

of order higher than the first and lower than the second. The ex-

pression (86) has been obtained by neglecting terms of the type

Slog*-
a3 &

p
If the points P

x
and P

2
approach each other, the two helical

filaments approach coincidence throughout their entire length. In

z R
this case - and —— approach zero and the logarithmic term becomes

the predominating one, and MX2 becomes infinite in such a manner

that its principal part is 2(2tt(iN) log ~- • Since - is small, the
tx X2 a,

total length of each filament is practically 2iraN, and this shows that

the principal part of the mutual inductance of the two helical fila-

ments, when they are very close together, is the same as if they were

straight and parallel.

In taking the real part of the terms of type 2
2n

, n = l, 2, 3 • • • we
may place 2 = i? 12e

i*11 where <\>
X2 is the angle between the x axis (of

this section) and the line R X2 drawn from P x
to P2

. The real part

of 2211
is R 12 cos n<f> X2 , and since the terms in sin mf> X2 are imaginary,

and to be discarded, it follows that those remaining (cos n<t> 12) are

unaffected by changing the sign of <f> 12 . These terms thus depend

in a simple manner upon the distance R 12 and its direction. The
one term, of course, which is independent of direction is log R 12 .

VIII. GENERAL FORMULA FOR THE INDUCTANCE OF A
HELICAL DISTRIBUTION OF CURRENT FOR ANY SHAPE
OF SECTION OF THE WIRE

The inductance of the helical distribution of current has been

shown to be

£n= jjdx2dy2jjdx x
dy

x
u(x

xy x)u(x 2y2) M(x xy x
x 2y 2) (97)

This is a repeated surface integral over the plane section of the wire,

first with respect to the point P
x
and then with respect to P2

of the

symmetrical function of the two points

u{x
xy x)u{x 2y 2)M(x xy x

x 2y2)

The vector current density at a point x y of the section has been

assumed to have the direction of the helical filament passing through
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this section. Its magnitude is u (xy), and since the vector must be

solenoidal and the current is steady the current density has this same
value at all points of this helical fdament. The magnitude, u, may,
however, vary in passing from one filament to another; that is,

u= u (x y), and there is nothing in electrical theory to indicate the

nature of this variation. (This possible nonuniform distribution of

steady current is, of course, not to be confused with that which arises

from distributed capacity and electromagnetic induction when the

current is alternating. The current density in that case would also

vary along the length of the same helical filament. The more am-
bitious problem of determining such a distribution of alternating

current to a first approximation might be attacked by the method
of integral equations, using (86) as a starting point, which must
certainly be correct for vanishing frequency.)

In carrying out an absolute measurement of the highest precision,

one must obtain some evidence of an experimental nature as to the

function u (x y) or at least show that its variations are negligible for

the degree of precision aimed at. There can be no question but that

the current density u is practically constant over the section of the

wire, but in attempting a second order precision, as in the present

formula, one can not avoid a consideration of this nonuniformity.

Causes of this variation might be in the nonhomogeneity of the wire

caused by drawing or any other internal strains, or in the manner in

which the electromotive force is applied to the wire. Two of the

simplest assumptions that might be made are (a) that u is constant,

or (b) that u varies inversely as the length of the helical filament
c c

corresponding to the point (x y) ; that is, u=—= • This is the so-
r a ~t" x

called "natural distribution." In order to make an estimate of the

importance of this effect and to provide a formula by which it may
be corrected for, if known, we shall expand u (x y) by Maclaurin's

series in terms of the two small variables x and y. The degree to

which this expansion must be carried, to be commensurate with the

other approximations here made, will immediately become evident.

It will be recalled that the formula (97) for the inductance of the

helical distribution of current has been obtained on the assumption

that the total current flowing through any section of the wire is unity.

This places one restriction upon the current density u (x y) which,

since the section is oblique to the helix (and to the flow), has been

shown in equation (6) to take the form in the present notation.

//
u (xy) dxdy_ 1

This relation shows that all constant terms within the bracket of the
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second member of (86) contribute simply their own value to Lh \ for

the double surface integration indicated by (97) of the terms

+ 2ir-4 2 + -5- log —

V<-V1 + g_\ irf
2 3

x"&
p

/•.,

contributes to L^ the amount

a C ru (^Vi) dx 2dy 2 P ru^x{y^Jx£^[SA^ A 2jc_ a
\

=0|^ +2^ +T lo
gp)

(99)

This is true whatever the current distribution function u (xy).

Furthermore, the remaining terms within the bracket of (86) are all

O A „2

infinitesimal compared to—~, the most important being first order

or the order of -• Since (
-

J
is negligible, it is evident that, for the

remaining integrations, the factor— ,

—
, outside the bracket

Vi+$v l+S
may be replaced by 1. For the same reason, it is evident that the

Maclaurin expansion

„(*,)=„(o,o) + *(g)w+ ,(g)ro

will be sufficient to obtain a formula correct to the second order, and

the first order terms x ( >— ) and y ( >-- ) need be retained only in com-

bination with the first order terms within the bracket (86).

If for brevity we represent from here on u {0,0)
, ( j— J

and Ijr-)

by u, ux , and Uy, respectively, the Maclaurin expansion takes the form

u(xy)=u{l+x^ +y^ (100)

Substituting this form in (98) gives to the first order inclusive

^il1-^-^) (101)

102333°—26f 3



462 Scientific Papers of the Bureau of Standards i
vol. ti

where S is the area of the plane section and x and y the coordinates of

its center of gravity. This with (100) gives

(xxyi)=g\l + &i-v)~ + (Vi-V)\ (102)

<104)

If in (97) we make use of the expressions (86), (99), and (103) we
obtain the general formula

T iSA az
,
„ . ,2t, a] . ,-/, ,x\, 1

^-•{-^- +ftr^+% log -}-4™A (l |-| log -

16a^, /o\ /z\ 16a^4, raw* /k/-x?\ au, (k%,
2 -xy ~\\

+i^Kp)Kp)+~^t lir {—p^)+ir V—^— >J

+«? [1-27508 + 4 log
J] |JJdS 2fp, Q£f

-4»ajv[l -25 2s-2y &] ®§fr<%*ffd8, log Zfu

-4,aiV^Jp,J/«W, [(|+^) *.*^fr] log *„

+tojr [i-« »•-*«]£ff&S$"$$>. fej'«=1

71=2

where x and 1/ are the coordinates of the center of gravity of the

section, Jcx
2 and Jcy

2 the radii of gyration of the section about the y
and x axes, respectively, and SJcxy

2 the product of inertia of the

section referred to, a system of axes in which the y axis is a generating

line of the cylindrical form. These quantities are given by the

formulas

4§4m H/J> **dU
h2 =ljjy

2dS £2y
2 =~jjxydS

x>dS

(105)

The real part only of the complex quantity z = x2
— x t + i (y2

— Vi) is

to be taken.
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(106)

The formula (104) becomes more simple if referred to a new system

of axes parallel to the former, which pass through the center of

gravity of the section (x, y). If Shxt, Sky*, and Skxy now denote

the moments and product of inertia referred to the new axes through

the center of gravity, then

A'x i = A*x —X", h'yi = ky- — y , kxy = tcXy" — xy

The remaining integrals are also simplified by this transformation so

that we may write the general formula as follows:

+64^4 5[^]-4.«iv(1+ |)logI + 2«(l.27508)^

-i«aN(\ +f}hssds
'ii

ds '
iog b"

-*™NMSds4fdsi(y^h +^y°gR"

+^;p:j/«,[(i+y;i^»,]i;C(Sr
n=i

CO

In this formula x is the positive distance from the surface of the

cylindrical form to the center of gravity of the section, and x
xy x

and

x2y2
are now referred to this center of gravity as origin.

The principal term in this formula is

T =§^ A
a2 _327riW [ (1

- k2
) K{k) - (1 - 2k2

) E(k)
1

1

jL°—
7r

A
°p2 Si2 I P l

j

which is the well-known formula of Lorenz for the inductance of

a continuous cylindrical current sheet of radius a and length l = 2irpN

in which there is a circular component of eur-

(

where k2= > -, N9 \i]

rent only. (The axial length of each filament is l = 2irpN, that of

the coil is Z-f wire thickness).
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The inductance LQ of a current sheet (with circular component of

current only) for a cylinder of the same length, but which passes

through the center of gravity of the section of the wire would be

given by the same formula in which a is replaced by a-\-x and fc by £
where

\l
1+[w+w]

= fc+ ? fc(l_P)_|E!p (1 _^)

If we make use of the definitions (91 to (96) and expand to the

second order, inclusive, we find

- _32irN>{a + xY
f
(l-F) K(B - (1 -2F)g(£)— M2 h

(107)

(In this formula I is 2rpN and not the overall length of the sheet.)

1. WIRE OF SECTION S SYMMETRICAL WITH RESPECT TO THE x

AND y AXES THROUGH ITS CENTER OF GRAVITY

Since log R l2 and the real part of z2n = [x 2
— x

l -\-i(y2
— y l)]

2n are

both symmetrical functions of the two points P
x
and P

2 , it follows

that the second and fourth integrals in (106) will vanish because of

the assumed symmetry. Also fcxy = 0. We then obtain from (106) the

following formula for the inductance of a helix, in which the section

of the wire is symmetrical about both axes through its center of

gravity.

Z*=£ -4,r (»+*)# [logf-im—fe)!^-]
71= 1

00 -

+ 4

where

S

oo

n—2jf
# 2
= 1.644934

#3 = 1.202057

#4
= 1.082323

#5
= 1.036928

# 6
= 1.017343

# 7
= 1.008349

# 8
= 1.004077

# o = 1.002008

# 10
= 1.000995

#u = 1.000494

# 12
= 1.000245

(109)
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In this formula Ti denotes the geometric mean distance of the

section from itself and is defined by

logS =iJJd5 2JJdS 1
log R 12 (110)

Similarly Z
rea]

^ denotes the mean value of the mean value of the real

part of

Z2n= # 12
2n cos2?i</> 12

where

Z = x2
- x

x + c (y 2
- y x )

= R X2e^
It is defined by

^S=hj jdSJJdS
^ ZS=

^JfdS
^JJdS 1

R
ir^os2n<j> i2 (111)

For sections of any ordinary shape, this may be readily found by
means of integrations similar to those needed to evaluate Jcx i and Jc7u
^ (IU

The terms involving ur have canceled. The term —- is zero if

the current density is uniform, but for the "natural distribution"

the current density u (x) =
;

so that —- = — 1 . Hence theJ a + x u

—jr 1 )
(2

x
, 2

according as the

current distribution is constant or varies inversely as the length of

the helical filament through the point. This term serves to indicate

the error caused by neglect of the nonuniformity of current.

It may be noted that the formula (108) applies only to those wire

sections in which no two points can be farther apart than 27rp, the

pitch of the helix. A method of modifying the b n and cn series in

those exceptional cases where this condition is not satisfied is indi-

cated in Appendix 7.

We may now derive from (108) the two cases of greatest practical

importance, namely, that in which the wire has a circular section

and that of a rectangular shape.

(a) Wire of Circular Section.—Let the diameter of the wire

be a. Then

a; = 2 and £x> = fcy ,
= T7r

Each term Z âl is identically zero, for if

z
l
= x

l + cy
x
= r

x
ei0x and z 2

= x 2 + iy 2
= r2e

i6i

^(,,-^.,,^rp»+i)g(-i^)
t [<t+ff+1 . t)

il
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This gives for a circular section

^=ijjxySds^2n=
lj/<^

<wQ

=4jfdSf t
»j»*

(112)
= if n^O

Hence, the two series in (108) drop out.

It is readily found that for a circular section of diameter a

log f=log|-i= log ^ + -89473 (113)

Hence, we obtain from (108) the following formula for the inductance

of a helix wound with curcular wire

:

Zh= Zto
-^(a+|){2^(.89473-log^2)

(U4)

|M4^-«-K^'X'^)te)>
When the diameter of the wire a is equal to the pitch of the helix

2irp, the wires touch. When ^-=^~°,89473 = 0.40872, the principal

correction term vanishes.

(b) Wire of Rectangular Section.—Let the length of the sec-

tion in the y direction (parallel to the axis of the solenoid) be /3. The
insulating space is 2irp — j8. Let the thickness of the wire be a (in x

direction) . Then

x ~2 x
12 y 12

It is easilv found that

log- = log ~ + o( 3 tan + tan
fi J
-
Tob p * p 3\P a a P/ 12

-^&:^(i +s)+Siog(
1+

|:)]

(117)

In terms of the diagonal of the rectangle, p=^a?+&2 and of the

acute angle, = tan-1 -r> which it makes with the axis of the solenoid,

this becomes

log — = log ?p— + -x (tan2 log sin + cot 2 log cos 0)
V *?

(118)

+IIT5-0^ tan + cot 0|- 0.24545IK-«)
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It is also found by elementary integration that

\27i7>/reai

{ }
yiirp) (2n+l) (2n + 2) (2^ + 3) (2n + 4) sin2 cos2

* v ±J \ a jy P J (2ti+1) (2n + 2) (2n + 3) (2/1 + 4)

[in+l n~l

2 + <-«*
= iU

V2^>y (2n+l) (2n+2) (2n + 3) (2-n + 4)
if7liaevenandg

= !> = if wis odd and =
|

(119)

We thus obtain from (108) , when the wire has a rectangular section,

the general formula

L^-Ll> + 2.(a + l)\A 2 (*) +
l[

1+g|]log^

-2iV|-log^+ i (tan2 log sin + cot2 log cos 0)

+|((|~ #) tan + cot 0)- .24545

(120)

8 ™
, / p Y

n cos2n+40+(-l) n sin2n+*0-cos(2n+4)fl'|

sin2 0cos20^ 2D
V27rp/ 2n (2n + l) (2n + 2) (2n + 3) (2/^ + 4)

J

+l(J¥,_ !)(l+2?)fe)
.

+
,
[l8I28

c0S2n+4 + (
_ l)n sm2n+40

16 ™ / p Y
n -cos(2n + 4)0

sin2 cos2 ST*"1 \2-Tp/ 2n(2n+ 1) (2n + 2) (2n+3)
(2n + 4)

provided p<^2irp. If in exceptional cases p>2irp, these series may be

modified by taking out the cause of the divergence, which is the term

log 1 + ( s— ) • The remaining series will then converge if
|
z

\
< 47rp,

as explained in Appendix 7.
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It is seen by (109) that Sn approaches 1 with increasing n. Hence
to obtain a more rapidly converging series than the above, we may
notice that if S2n were replaced by 1 the two series in (108) would
become summable, for by repeated integration from x = to x = x of

the series

iSr4**-frn*
n=l

one finds that

°JLJ2n(2n+ l) (2/1 + 2) (2r*, + 3) (2ti + 4) 6 ^36
n=l (121)

(1 + xy log (1 + X) + (1 - xY log (1 - X)

and from this one finds that the real part of

k
2n+4 / ft \2n+4 / S„ \2n+4

25

(122)

/2irp\* /2jrp\2VI V 2irp ) \2ttpJ K&rp)
*\ a J\ $ ) LJ2n(2n + l) (2n + 2) (2n + 3) (2n + 4) 6

where

-<-A)fe)[(^)'

~ 4
(
x "^X^p/Lv 1 _

2^)

-fe)
2

]
tan"2^

(123)
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so that

(124)

-»fe)['-fe)"]'»-' 2-rP

Hence, the formula (120) may be written

L,.=r0+2.(a+|)j^w + i[i +gg-;]iog^

-2AJ~-log ^-4.41212 +| (tan2 log sin + cot2 log cos 6)

m ( 9 YMcos2n+4 fl+(-l) nsm2D+4
fl "I

S\2-kV) -cos(2ri + 4)fl) _
2n(2n + l)(2n + 2)(2n + 3)(2n + 4)

v° 2n 1;
J

4

sm2 0cos2 0Zj2tt(2n + l)(2n + 2)(27t + 3)(2ri + 4)
W2n

'J (126)
n=l

<^-0(-^)fe)
+
3

25

3

M /_P_V n
^
cos2n+40 + ( - !)

n sin2n+4 .9

16 \1 V27rp/ -cos(2n + 4)fl) Q _
sin2 (9cos2 0Zj2n(2rH-l)(2n + 2)(2n + 3)(27i + 4)

( 2n_1 j

This formula is preferable to (120) because in it the two series

converge more rapidly, since S2Q — 1 and £ 2n-i — 1 approach zero with

increasing n.
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In fact, it will be shown presently that in most cases the first two

or three terms of the first series will be sufficient for a precision

greater than 1 part in 1,000,000, while the second series may be

replaced by its first term, or neglected entirely.

A special case of (126) is that in which the wire section is a square.

Placing /3 = a and = jin (126) gives

Zh =I + 27r(«+|){^ 2W +\ log
p

+i(T-0('^)fe)"
_ 2n\- 3.48045- log ^£

•fey

3.^fe)"fc"?tj^)^F"

25

3

4n(4n + l)(4r*+ 2)(4n + 3)(4n + 4)
=i

3
\2ttP)

CO

64£
«=1

fe)
4D

(
(
- 1)n +2^)^—"^

4n(4n + l)(4n + 2)(4rH-3)(4nH-4).

(127)

Another special case of (126) is that in which the wire is a thin

tape. Placing a = o, p = /3, and = o in (126) gives
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Zj2n(2n + l)(2n + 2)
«=1 -J

(128)

(l +/-Ylog(l +/-) +(l- 9̂
Ylog(l-/-)

_,, 9 V 2vpJ b
\ 27rp7 V 2irpJ b

V 2irp/

fJLY
V27r2>;

a Zj2w(2n + l)(2n + 2)j

If in this equation we let fi
= 2irp, this gives the inductance of a

continuous current sheet. The bracket multiplying 2iV is found to

vanish, so that for a continuous current sheet

Ita =X + 2ira{-4 2(fc)+i[2(^^)-fczJ--.0610

ZJ2n(2n + l) (2^ + 2)
71=2

00

+2JV[-11048+4S 2.(2/+
2

1kL + 2) ]1
n=l

Oi

i^ = X + 27ra{A
2
(^)-.0755+i[2^^^^-tz]} (129)

This quantity Z^g is the inductance of a continuous helical current

sheet consisting of tape windings without insulation space. The
term L is that of a truly cylindrical current sheet winding in which
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there is a circular component of current only. The largest part of the

remaining terms is the term

7T IT JO "JO n
Vi+'/l

which is the principal term of 2iraA 2 (k) (equations 89 and 90).

This term is the contribution of the axial or y component of current

in the cylinder, as shown in Appendix 9. In Appendix 10 it is shown
O ~ T>

that the negative of this, -» represents the mutual inductance

between the helix and a return wire very close to the helix. The
remaining terms in (129) are relatively small and represent the end

effects due to the fact that the helical sheet differs slightly in shape

from the true cylinder.

A confirmation of this formula (129) for a helical current sheet

may be obtained by making use of the fact (Appendix 7) that

F2(-j-2 (-)= — log 2 sinh x-* When x 1
= x2

= this becomes

I y y I

— log 2 sin | y2 yi1 and the formula (108) then gives for the inductance

of a helical tape winding the expression

ib=£ +2^(4 2 (t) + |[.18123-2(^)-iz](^)
2

00

.in _(j_yi lo
„ « STY fl V ga=.

3J_ \2*WJ g p °£j\2irpj 2n(2n + l)(2n+2)
71=2

-2^[log 2 +fJ>(4-,)log sin,])

If we add to this the identically zero quantity

3\2tP)
b + l

/j_y

00 (J\2

'2w(2w + l)(2n + 2)
+s^

r
..,ay^L

n=2
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The function B Q of equation (90)
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Z .5 4 .5 .6 .7 .a .9

Fig. 3.

—

The junction B\ of equation (90)
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it becomes

Lh = L + 2ira

Inductance of a Helix 475

a.«>4[-(4)';k

+i[i,8m +2(^)-«](JL)'

-2iv[log Z +Stf'^dS^-o) log sin «]-6

(JLY

zi)
\2irp/ 2m(2» + l)(2n + 2)

-sjfyjtY"- ..^T."

(130)
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Equation (130) is identical with (128). If we place = 2t£> in (130)

it reduces to (129), since the integral

2 r*"

3 (ir - 0) log sin 6 dB = - log 2

and the terms multiplying 2N vanish identically.

The function A 2 (k) is plotted against Jc in Figure 4. It is obtained

by (90) in terms of B and B lf which were obtained by graphical

integration and are shown in Figures 2 and 3, respectively. A more
accurate evaluation of B could be made by means of the series given

in Appendix 9
2. NUMERICAL EXAMPLES

(a) Circular Wire (Formula 114)—

222-2
Pitch of helix = 27rp = 1 mm = .10 cm

J

Number of turns = N= 400

Radius of cylindrical form = a = 14.975 cm

a=a + | = 15.000cm

From these data l=2vpN=4Q cm

F= ^A~2= .36fc = .6P= .216

1+G)
KQc) = 1.7507538, A 2 Qc) = .90

#(£)= 1.4180834

- _327r(a) 3 f(l-F)£(D-(l-2P)£(fc1

Diameter of wire = a= ~ m111 = -05 cm

3(27rp) 2
l F

32tt(15) 3

->]

3(.01)

.64(1.750754) - .28(1.418083)

.216
l

or

or

or

i = 26,568 ,401 cm

Lh =L -2ir(15)ls00 (.89473 -.69315)-.90 -i log ^y^-

-K4F-0(1+ ^)I
-Zo-30rll61.26-3.18-. 17 (l+^)}

2* = Z -30t{i58.08-.17(i+^)1

=I -14,899 + 16(l+?^)

U = 26,553,502 + 16 (l+?^) cm
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u
If the current distribution is uniform — = and this adds 16 <-ni

u
to the above. If the current density varies inversely as the length

of the helical filament —^=—2 and this subtracts 16 cm from the
u

above. The two distributions differ in inductance by 32 cm or about

1 part in 1,000,000. Rosa's formula gives

Zh = £ -47raiv(.55687-log^ + #<

or

Lh - Zo - 24,000(.55687 - .69315 + .3351)

= Xo - 14,991 = 26,553,410 cm

In this particular example, Rosa's formula is therefore lower than

that here obtained for the case of uniform current distribution by
4 parts in 1,000,000.

(b) Square Wire.—To illustrate the formula (127) for square

wire, and to obtain a comparison with the preceding example, we
shall assume that the thickness a of the wire is the same as the

diameter of the round wire, the pitch, 2wp, number of turns N, and

radius of form a being also the same as before. Hence 1c and L , A 2)

and log - have the same values as before. Then for this square wire

(127 becomes

2o» =Z -24000 1r{-3.82702-|(j^i,i)-/Q,o)-/(o.i))-32P}

,30.(-, 15^(/(I,|)-/(i,0)-/(0,i))- 64(2
)
+ 21

(
1+^)

where

((-D n +2^)(S4 n

4?i(4n+l) (4n + 2) (4?i + 3) (4n + 4)

°°
/ 1 \ ,

\ y|\2Q
\

l) D + 22ni-l ) W4n-i
^ =i

^V2/ 4/i,(4ra+l) (4n + 2) (4n + 3;

1)

1)

2) (4n + 3) (4n + 4)

ih = Zo-24000ir | -3.82702 + 1 (1.56268) -32P

+ 30*- {3.18-640} +21 (l + ?^\

= Z -25345 +2l(\+?^)cm

= 26,543,070 if ux =
102333°—26t 4
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The inductance of the helix with square wire is less than the cor-

responding one with circular wire of the same thickness by 1 part

in 2,600. Here again Rosa's value is too low in this case by 6 parts

in 1,000,000. I am indebted to Dr. F. W. Grover, of Union College,

for the computation in this case by Rosa's method. The errors in

Rosa's formula would become more important with increase in pitch

of the helix or curvature of the solenoid. The formulas here ob-

tained contain definite correction terms to the second order in both

of these small quantities, and therefore permit of the use of smaller

solenoids for standards while maintaining the necessary precision.

It has been shown that even in the most unfavorable case (that of

a continuous helical current sheet) the second series in (128) may be

entirely neglected, as it amounts to about 1 part in 25,000,000.

The first series may be replaced by the two terms corresponding to

n = 1 and n = 2 without in any case making an error as large as 1 part

in 1,000,000. We may therefore write the formula (126) for the

inductance of a helix wound with rectangular wire in a simpler form.

3. SIMPLIFIED FORMULA FOR INDUCTANCE OF A HELIX WITH
RECTANGULAR WIRE

+ -1075 (x2 -y2
) - .00137 [2 (x4 + y

4
) -5x2

y
2
]

+ h4y [i" (x
'
o)+F(oy)-F(x,

y)]J

-[l.l8 + 2(-^=^-fcz]( a?-y3)+[l + a?-^]log|

f(x,o)+f(o,y)-f(x,y)
\

x*y2
j

where

X=
m>>

y^andz'-f^l (132)

(131)

F(x, y) ±f% y) + W+tf) logV^+? (133)

f{x,y)=[{l+yY-§x*{\+yy + 7*]\ogj{\+yy + x*

+ [(1 -yY-Q>x2 (l-y)»+ afl logVU-2/) 2 + z2

(134)

Ax(l+y)[(l+y2)-x2
] tan"

1+2/

Ax(l-y)[(l-y) 2 -x2
] tan" 1

1-2/



snow] Inductance of a HeHx 479

The function A
2
(k) is plotted against k2 =

/ * in Figure I

If the bracket which multiplies 4t( a + ~-
j TV in this equation be com-

puted with an error of 0.0001 and that multiplying -=- with an error
o

of 0.01, the error in 1^ will in general be less than 1 part in 1,000,000.

A computation of the inductance of the helix wound with square

wire has also been made by formula (131) with the same data as in

example 2, and the result differs from that of the preceding compu-
tation by 1 part in 2,000,000.

IX. APPENDIXES

Appendix 1.—EXPANSION OF CERTAIN HYPERGEOMETRIC
FUNCTIONS

The differential equation,

X (l- X)^M+ [y-(a+ f3+l) x]^- a0y=O (1)

where 7 — 1 is positive but not integral, has the general solution 3 in

the range
|
x

| < 1

.

y= C
x
F(a, 0, y, x) f C^F {a+1 - 7, + 1 - y, 2 -7, x) (2)

provided that neither 7 nor 2 — 7 is equal to zero or a negative integer.

In the range
1 1 — x

\

< 1 there is a particular solution

y tEEF(a,fi,a +P-y + l,l-x) (3)

which has a meaning if a + /3 — 7 is not equal to a negative integer.

Hence, in the common part of these two ranges, the function y 1 must
be of the form (2) ; that is,

yi==F (a, (3, a + (3-y + 1,1 -x) = C\F(a, (3, y,x)

(4)

+ C2x
1~yF(a+ 1 -7, + 1 -7, 2-7, x)

where (7, and C2 are numerical constants to be found. It is known
that

F(afi,y,l)=
T

r
{^ (

J)

-

( )̂

v,-heay-a-0>O (5)

and that

(1 - x)~+e-*F (a^
3yJ
x)^F(y-^y--^y

)
x) (6)

8 Reimann-Weber, Partial Diff. Gleichung, 2, pp. 4-39.
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If a + /3 —y>0 and we let x approach 1 in (6), then the second

member will approach the finite value w °\r(ff\
— an(* tms snows

that the function F(a,p,y,x) becomes infinite when x approaches 1,

and in such a manner that

limit
(l _ x)<*H-yF taSyx) = r(y)T(a + 0-y)

»-l.V ] r\a^,y,X)
r(a)r(j8) U;

if a + (3-y>0
Similarly, it is found that

limit F(a,0,y,x) T(y) .,

*-i log (i-x)
= -fwri lf «+^-t=o (7)

By the use of (7) when a + /3 — y>0 or (70 when a + — 7= we
may determine the constants G

x
and C2 in (4) as follows: Multiply

(4) by

or by
i
" /i_ \ ifa+j8 — 7 = 0. If we then let a; approach 1, this

gives in either case

o c
r(7)

i C
r(2 " T) m

Next multiply (4) by xy
~ l and let x = 0. This gives in either case

r 2 r(«+<8-7 + i)r(7-D ';

° 2 r(a)ros) iy;

Hence, when 7 — 1 is positive, but not integral, while a-f/3 — 7^0,
one finds from (8) and (9)

_ r(2-7)r(a+^-7 + i)r(7-D Mn .

r(7)r(a+l-7)r(j8+l-7)

If we let 7 — 1 = v and make use of the formula

where n may be zero or any positive integer, then the identity (4)

becomes with these values of Cx and C2

r(a- V)T((3-v)T(a)T(p)F{a,(3,a + p-v,l-x) _ (-l)»Tr(v-n)
2/lW— T(a + (3-v) simr(.v-n)

v— n
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provided that 0<x<l, a + P — v>l, and v>0. When v approaches

the integral value n, the second member of (12) becomes indeter-

minate, for the denominator of the bracket vanishes and so does the

numerator, but the indeterminate form can be evaluated; that is

when v = n = or a positive integer

VtW-K 1)
\dp T{l-v)

d I»r(/3) JPf \

Z-JT(s + l)di>\ T(s+l-v) )
s—o

S
3

- r(g+tt)r(g+<8) d l | , ,

3=0

(-D"{- rS+?) FW,n + l,x) log x

Zj r(s+i)r(s + i-^) ^ 10g r(s+i-^)
»=0

CO ]

, xpi s r(s+«)r(s+/3) d. _, ,
.

,

.

By the use of Gauss's formula

dz

d
logrw = -o+ |j(^--LWfe) (u)

where
(7= 0.57721566 = Euler's constant (15)

the limit (13) may be written

y,(.r) - (- D D
[-

rffi+ffi
F{a

> ft "+ * ») '°g

s=o

,

yi . r(s+a)r(s+ff) . , .

+
2-i

I
r(s + i)r(s +,+ i)^

(s + ,,+1) (16)
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limit /\p (s — v + 1) - \p (s - v + a)

v = n\ T(s-v+l)

C+ 2^\J^+ t+~(3~t+l+n-s~t+i)

Now limit (\p(s-v + l) -\J/(s — v + a) -\(/(s-v + p)\

t=8-n

T(s-n + l) iis-n>0

= (-l) n-8 r(ri-s) if s-n<0

Hence the limit (16) is

8=0

-(-i)«F(a,M+ M)log, (17)

+0

-^ L.\
t+l+n t + lj

This is the value of the second member of (12) when v= n. If we

let 7= a-f j8— v, then the identity (12) may be written in the general

form

r(7) ^(^ft^ 1 -^) 855

^-^r(7-q)r(T -/g)
F(^sin7r(a+ /8-7)r(7-a)r(7-/3)[ Y(l+y-a-P)

-a,y-P,l+y-a-0,x) (18)

when 7 — a — jS = — n = a negative integer or zero this takes the form

r(«)r(fl) pr .
1

,

(_1)t-«-/3
j

_ V^IT("Z+V- a^r(8 + 7~ggXg+ fl ~ 7- fi),
r>„:=

r(7-a)r(7-/3) (
"" :K)T a

Li T{s + l)
{ 8=0

r(a)rtf) „
'

~
r(tt+g- 7 +i)

F("'^' a+/j ~">
' +1

'
a'

) "8*

Sr{8 + a)r{s+p) * T ,, R \
(18a)
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"where
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T
fl K^7)=2(rra +rb"^i+a+^-7"rrr)

483

(19)

In case a 4-/3 — 7 = the first summation on the right of (18a) disap-

pears and the principal term, when x is small, contains log £ as a

factor. The identity (18) was derived on the assumption that 7^1.
This restriction can probably be removed to the extent that (18) is

an identity in all cases in which both sides of equation (18) have a

meaning. We are here interested in the special case of (18a) where

a= n + -

= n+ - + lc

7 = A: + 1

n+ 1 = a positive integer

Jc>0 but ~k need not be

an integer

(20)

In this case 7— a — /3=— 2n, so that one obtains from (18a) the

formula

( _l)»r(n + * +±) -

-(-i>n(»+±-*)[E" z^rw yv z
'HfeT r(2[n-«] + l)n 2«-»+£W 2s-n-7c+±Y

r(2«-i)

£1* r(2[n-s] +2)v(2s-n-^\(2s-n-]c-~)

log, y<*^ +£K*+^ + *)

1 (21)

xi(*-fH-iy r(« + i)r(«+2?i + i)

r^s+n+iy^s+n-fi +^1 y V j_2yiv;—
"i\^-/ r(s + i)r(s +

7rr(fc-n + ^ J

•
271 + 1)

a;
8 rB (n,fc)

where

"M^y^t+ l+
l_
+
t+nl l+

-Tt + 2n + l-tl^ (22)
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In particular

T (o,o) =4 log 2

r (n,*)« T (o,o)- J]
" 1—

f
_S

0-1
^"^! 4" S

2n_1

^l

if fc is integral

There is also the general recurrence relation

1 1

[ vol. ei

(23)

Te+1 (nlc) = TB (nJc)

-

+rv^ +
l

. _l
X

,
,,, 1 '* + 2n + l '« + l (24)s+n+H s+n+fc+2

The special case of (21) where n = is

rVw^6'J+^+1 ''i - s
)
=^>(H+i' 1 ' x

)
log X

(21a)

The special case of (21) where fc = is

s=2n-l>:0
I

;
= x

s=2n-l>0 r / i \~t

r(2n-«)

r(* + D
(-x) 8

V^ r
(
w+

s) /i i \,

- [<t.4+>)fr fr, 2 ! !v
2jr(s+1)r(s+27i+1^2j( . ,

,i *+2w+i m]
tt 1rr\ <

-f7l+
2 /

The special case where Tc = n = is

H»{)"

(21b)

JE
(21c)

r(S + D J & »+!)(« +J)

A special case of (18a) is a = ^ = n + ^ t y = 2n + l.



Snoto]

This gives
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where

1 1
r
(
n+ 2) / 1 1 \

=
h\'F (

n+
l
,n+

l
thx

)
logx

[<»+j)]'« L r(s+1)

n-l

r (0) =4 log 2, T (n) = 4 log 2 -2J*-J—X n >0

8-1

t=o\ t + n + 2/

Appendix 2.—GRAPHICAL METHOD OF COMPUTING BQ

In the integral

Ki

d\£ fax, PL
TT^JO JO /

(V 1'^)

1 +
4a2

let

This becomes

JO Jo VI + f x

2

(26)

— £= I? where Z? =
7r a2 °

This function B of 17 has been evaluated by means of an integraph

and plotted as a function of Jc
2 = ..

2 in Figure 2.

Appendix 3.—EVALUATION OF ^r^CdxA^MdX TO SECOND ORDER

Here m is a function of X defined by

1

1 +
4r

1
r 2

(1)
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and (^(m) is one of the functions defined by (38 J of the text. By
inverting the order of integration

Vr72 r<ZXi C'dMM -Ijr?* fViW^- V 2̂Jo

<^)^X (2)

But by (1)

\d\= — 4r,r2
—

?

so that

where

- Vr,ra fVi(/*)X<ZX- -4(r
1
r 2

)V» P ^fe)
Jo J ^«-£ ,

)
,

dn

1 f 1 _L2
i- / p

V 4r
x
7

2 v*~«'
(3)

M2 =

P(l - P) g1 - (1 - P) (1 + 3P) ^-g^-
2

}

1
1 (S-*1

)
2

1-
(r,-^) 2 § (4)/l +_____

Making use of the integral formula (49) gives

-V^ (\0u)AeZX- -4(r1r> P' tf>»^
JO J *»«-*») »

/*'

_ 4(r 1
r 2

)V» fri- M
2^ 1 (M)l l-/x,2

<friO*,)

3 lL M ^ J M 2 ^M 2
fc

a (S-f')

Now by (4) 1 -m 2
2 -

4
^)2

> hence by (55) and (56)

+ ^((5log2-3)(|-|>) 2

(5)

(6)
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Also by Maclaurin's theorem

M / dfi J
•

M X d/*i

8 C^MiL Mi ^Mi J

by (47) and (42). Or by (45) and (46)

[(^)t] =^[(2-„^(m 1)-2(1-m 1^(, 1) ]

*-**-—

g

(/

-^[(2-V) K(k) -2E(k)](Z-?) 2

By means of (6) and (7) , the value of (5) becomes

This gives the last term in (2). To evaluate the first, we may make
use of the form for </>i (/z) given by (41), by which

JO 7T J Ji yX2 + «2 + sm2 6

where

Z Vl— Ml
2

i 9 (^2 —

r

i)
2

,lnN
ff= - /

—

= - — and a2=^i — (10)
2-

v/r 1
r 2 Mi • 4r

xr2

Performing the integration with respect to X in (9) gives

ljrf2 f 0! (ju)dX = 4(r

^
2)V'

t? f
2
cos 26d6{ log fr + VV + «2 + sin2

0)

,
(11)

-logV«2 + sin2
0}

In this integral the term log (77 4- V*?
2 + a2 + sin2

0) may be expanded by
Maclaurin's theorem in ascending powers of a2

, since rj is finite. (It

may be noted that this procedure is not valid if y is also infinitesimal.

Hence, we can not expect the expression thus obtained to reduce to
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(12)

the correct value if we later let r] approach zero.) This gives for

finite values of t\

Ur~r~S (^(M)dX =^-2— v f* cos 2Od0 /[log (v + V*?
2 + sin2 0)

— log sin 0]

,«T 1 1
2 LAA?

2 + sin2
0(-vV + sin2 fl +^J

4- [log sin 0-log V«2 + sin2
0]}

We shall next evaluate the three separate integrals corresponding to

the three square brackets on the right of (12).

(A)

- 2
cos 26dd [log (r? + -vy + sin2

0) -log sin 0]
Trjo

This is the result of placing a = o in the original integral (11) and evi-

dently reduces to I
* /* £ Hence, by the use of (52)

J mi M VI — M
2

-
J

2
cos 2dd0 [log (i; + -vV + sin2

0) -log sin 0] =
7TJ0

7r/*l

(B)

(13)

o^
I

2 cos 26dd

2tt I V>7
2 + sin2

0(Vi7
2 + sin2 + t;)

a2 /** cos 26dd

2
sin2""2

-jf
a, i^ r

(
ft+

ft(-i)" [r
2*t/itZj r (»+l) >?

2" ijo
n = l

_a»f i fi
r
(
n~l) r

(
w+

ft/ IV
2| 2^2j r(«)r(n + l) V W

72= 1

-fj-l + Vt^[F(i,|..,i.)+?f(8.|,2*-)])

sin2n Odd

(14)
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(by Euler's transformation)

+VJ^(*»+ji»<»))

489

a3

7T I 2

a'

2*
TT+VT^-2

#(*) +[re +£§]}

This result is, in fact, valid for all positive values of 1c less than 1

;

that is, for any positive value of rj.

(C)

- I

2

cos 26dB [log sin 0-logV«2 + sin2
0]

Consider the integral

— I

2

cos 2Bdd log V«2 + sin2 = -— f 'cos log (1 + 2a2 -cos 0) d6
7TJ0 47Tjo

oo

--sJT*~'^( i-^)-cSs(hW-/.' ow,,h '*
71=1

= (l+2a2
) Y^

r
V^

+
2) 1_

8-v^ f-J r(fc + 2) (l+2«2
)
2k+2

(l+2a2
) M-l) 1

Z-/ r(s+l) ' (l+2a2
)
29

8=1 —*

(1t~ (

1_
V o+wrL—*—J

rfa-°

Placing a = o gives - I cos 20 log sin 0eZ0 = —-?

Hence
IT

- I

2

cos 26 [log sin (9 -log V«2 + sin2
0] dd=% (a- Vl+a2

)
7TJ0 ^

(15)

2^2 +

where

r2 - ;i-
2V^1^2
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a2
f£ — £') 2

The second order term -~ may be replaced by—=—
» but the first

order term is

2 V4VW 4(1+|)*(1+* 1
)* \ 4 f 8

provided that ^— ^>o, as is assumed throughout. Hence, collecting

the results (13), (14), and (15) gives for the value of (12) after

placing v =
Mi

2
V^VaJo ^ 0*)*

(16)

This is the first term of the right side of (2). Adding (16) and (8)

gives for (2)

vjo
^j;Wi(m)

4(r1r,)'/-[l f (l -Mi2
) Kim) - ( 1 -2M i

2
)£(mi) ,1 WO^t en

L Mi
3

J 4* «-*>7T 13

(17)

-^=p log «-«+"4^ (^-^2)

+ it-?) 1

8 [3 log 2-|
3,3tf(it)-#(fr)"ll
+

JJ

The first part of this expression which depends upon nx must next

be simplified by expressing n t
in terms of 1c and infinitesimals,

according to (3).

To do this let

Then

Let

^JLzM K+n

e
2
2=

I
P (1 - &*) £* + fc (1 - V) (1 + 3&») ^-^

jui = ^ + € 1 -e2
2

d-^2)za-)-(i-2p)£
,

a-)F»)
3fc

3
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Then
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F'Qc)
EQc)^^® and F" ffl = -£ [_K Qc) --j^ ff <*)

J

Then to the second order inclusive

FM-FQc) +i,F'(fc) -e,'F'(Jt) +| F "(fc)

+2(n^|) [(l -|) JT9D - *<*)] *

+Ki
#)[( 1 -?) ii:W - E(t)

]
(f
- ?I)2

Inserting these values in (17) gives

V*V^J dX
t

I <t>Md\

i{r xr 2
yi> \lV(l-K)K-{l-2k>)E A q-fr) (g-ff)

(18)

2(i-p)r(i-|wii

+

•

(,-i>.g)«-(.-g), iP lOj77^ (*-« s

tt-« >-(¥)
where the modulus of K and E is understood to be Jc. The factor of

the expression on the right is
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The final simplification of (18) is obtained by multiplying in this factor

and rearranging the result. This may be written

^r
t
r2

\ d\
t

\ d\ 4>
l (n)

where

A(*)4 [
(1 -*2)V~ 2*2)g- 1

]

^)=±[f-l]

M»=2E-«-^K
-i

[ (20)

W>t\\l S -IJ

where iT and 2£ are the complete elliptic integrals of the first and
second kinds, respectively, of modulus Jc and

1+(£)

Appendix 4.—SECOND ORDER APPROXIMATION FOR G (y)

GM = - V^J/ X
J/ X *&)

Here y is a first order infinitesimal and

-
2

x2
,

(r 2
- riy

47*^2 47-^2

Since this is a repeated integral over an infinitesimal range, the second

order approximation will be obtained by writing, according to (56)

<t> t (p)
= I

f
log 8a - 2 - log VX3 +(/-

2-rc)
2

J
+ infinitesimals
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Hence to the second order if z=r 2
— r

l
+iij

- T/wJdkxJdK<t> t
(/x)

=
-[(2 -log 8a)| + J

eZ\J cZXlogVXM^-^

G^ -T1T6S +-8- l0^ (-/)-8^ l0S (1)

where the real part is to be understood.

Appendix 5.—EVALUATION OF Gi(y) TO THE SECOND ORDER

•assra-r^ V=Vi-Vx (1)

where

r i r ^f
^ Jo [

1 +^] (2)

+ Ja+l (r ls)JQ+1 (r2s)]ds

Since x, y, and y are to be considered as infinitesimals of the samexv.
order, - and - will be finite ratios in general. This may also be

written

r , , r- 2
d fl^(g

>y>n) +^(g>^n)
(3)

^ 71= 1

where
fco g-ys

ttk (z, y, a)=V^i^2 , , , o2
«7k (ns) Jk(r2s) <fc? (4)

Since the second member of (3) contains the second order factor p
2

,

we may neglect all terms in uk which are infinitesimal in x, y, and a.

To simplify uk we note that by (61), (62), and (56)

*k(/0 - V^2

J

o

Vy8Jk (r lS) J*(r 2s) ds =l^p- +log 2a -log V^+?}
(5)

+ infinitesimals

where

m2=
1 ,

x2 +y2

^rir2

7»=4log2, r (^)=4log2-2Yl
&~ 1

-^if Jc>o (6)

102333°—26f 5
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The expression (5) may also be written

**W-ip^ + log2a-log*) (7)

where
z — x + iy (8)

and where the real part only of the complex function in (7) is to be

retained. From (4) and (5) it follows that

u*(x, y, a) -<f>M = - VV2I 1+<a2g2
e

yBAfas) J*{r2s) ds (9)

We may next show that when a, y, and x- i^r2 — r
1)

are positive

infinitesimals of the same order, the integral in the second member
of (9) differs by an infinitesimal from that obtained by replacing the

term J^ins) JK (r2s) by the principal term of its asymptotic expan-

1 POO 1f*Q

sion; that is, by *=• When this is proven to be allowable (9)J
7T s ^rxr2

will reduce to

Uk(s, y, «) =0kW - -
I 1+a2

t9
2 g

~ya cos ** ^

= 0k(M)-~J
o
jx^i «

a cos-s<fo (10)

r{-2— loS25-Jo T+?&
|

where the imaginary part is to be rejected.

The justification of this procedure is by no means self-evident, for

the magnitudes ns and r2s are not large in the lower part of the

range of integration; that is, where as is small. However, in this

a2s2

case the factor =
2 2

reduces the integrand to a negligible quantity;
JL "J

-
CX. S

when as is not small, s is of the order of —» and the asymptotic ex-

pansions for the Bessel's function then become valid. With this by
way of introduction, we may proceed to the proof by writing the

second member of (9) in the form

rco a2
g
2

Vn^ i 1 „2o2
e
~yB J* fas) Jit (r2s) ds

JO J- -f~ a b
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(which is the result of changing the variable of integration by the

t

transformation 8
VS->

The first integral on the right of (11) is infinitesimal, for it is

approximately equal to

**#*(!$ *($?)*

This integral, which contains the infinitesimal factor Va > is not

infinite, for the integral oscillates in sign between finite limits and
will be finite in amount, even if r

t
= r 2 , in w^hich case it reduces to

Although J k l-j=j oscillates between zero and a finite positive

value a large number of times when a is small, in the range of t from

to 1 its integral is finite. Hence, because of the factor -yja, the first

integral on the right side of (11) is negligible. In the second integral

where 2^1, we may write

*OD*QD-pd-^WC*-i) sin

'Vr '
r
«VS

xt

t

+ (-D k sm—r=+ ( kr — -7 Ism
2T

(12)

t

yfa

It is evident that the first term of this expansion, namely,

irt_ cos
xt_

is the only one which will not give an infinitesimal contribution to the

integral. For example, the term

(-1)* . 2t— sin-p

t
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contributes the integral

, ,v V I e tsm—i=
dx

which is equal to the algebraic sum of the areas of the arches of the

curve represented by the integrand. This curve consists of arches

whose width is ir -Jot (infinitesimal) and their height continually

diminishes in magnitude as t increases, while they alternate in sign.

The area (and the integral) is therefore smaller than the area of the

first loop or arch, which is infinitesimal.

Consequently the second member of (10) reduces to

h&
J*e cosg^)*

A further substitution t= -j= reduces this to

/»oo

if-JL
7T J 1 +

ys

-,e cos —

and the lower limit may be taken as zero instead of V"? since

I
V5" ys

e
a

cos — ds
1+s2 «

o

is infinitesimal. The second member of (11) then becomes

/»oo

-yrfp e cos — as

x v
which is a finite function of the two finite ratios - and - which estab-

et a

lishes the validity of (10). Replacing a by ^ in (10) and substitu

in (3) gives

oo

72=1

where
oo />oo . nz
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Appendix 6.—THE INTEGRAL jj(x) J k {rxx) J k (r2x) dx

Let/u) be an odd single-valued function of the complex variables,

which does not become infinite when the modulus of z becomes

infinite, and which assumes the real value /(a*) when z assumes the

real value x, where

z = x + iy = Reie

The real integrulj*^/(x) Jk fax) ,/k fax) dx (where r2 >r l >0) is taken

along the positive real axis of z on which y = 0, x>0, or simply = 0.

If— s <teHthe Hankel's function Hfiz) of the first kind has the

asymptotic expansion (when the modulus of z, that is It, is large).

W 0?) * 7 lp& + i(2 fr)l«

'

v " 4 * ;
(D

where P(z) and §(2) have the customary meaning. Also

Hence

Jk {z) =\ { Ht(p) - (- XfHHze*)

}

(2)

Jeo If00

/(x) Jk fax) </k (r2x) ^=2 J
/(*) J^r l

x)H
1

y
(r2x) dx

-5 P/(*) (-DVk (/'
x
x) J?!

k
(ra X ^)ifa

fn the last integral we may change the variable of integration from

x to x1 where

xl = xe1*

so that it becomes

+
1J~°7(

- ^) ( - 1)Vk ( - r^)Hl
*(rax*)dz*

or dropping the prime and placing

/(-*) - -/(x), (- l)Vk(-r 1
x) = Jk(ns)

just

4"2+ i /°-«/ (x) J* (nx)^^ da;

so that

J
00 1 /»oo

f(x)J\{r 1x)Jt {r2x)dx= 7r
-. f{x)TriJk {rlx)Hf{r2x)dx (3)
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An infinitesimal element of length near the origin contributes a

vanishing amount to this integral, so that we may imagine the path

of the integral to be along the real axis from — » to + oo
,
passing

not through the origin but going above it in an infinitesimal semi-

circle with the origin as center. If instead of ending at -f oo the path

were brought back to the starting point — oo by integrating along

a semicircle with center at the origin and infinite radius, the contri-

bution of this latter path would be zero. To show this, we make
use of (1) together with the corresponding asymptotic expansion for

Jfefe) when the imaginary part of z is positive, namely

1 ./ 2k+l \

Jkfe) »—r ( p(2) ~^ (0) }«~
,^""~r *'

(4)

Replace z in (1) by r2z, in (4) by r ±
z, then rxz and r2z have the same

angle since r
x and r2 are positive reals. Their moduli are rxR and

r2R, respectively. Hence, (1) and (4) give when R is large and

0<^<7T

^r
x
r2 - z

This vanishes with infinite value of R or mod z since z — x + iy and
iz= —y+ix, and y>0 on the semicircle. Therefore, (3) may be

written

f(x)Jk (r l
x)J*{r2x)dx= ^.Cpf(z)TriJ}l (r 1

z)Hl*(r2z)dz
Jo zn J (6^

if r2 >rx >0

where the contour integral in the second member encircles posi-

tively the entire upper half of the z plane. It may therefore be

shrunk down about a number of infinitesimal loops, each encircling

a pole of f{z) . If f(z) has no poles in the upper half of the z plane,

or if the sum of their residuals vanishes, then the value of the integral

is zero. In the particular case where

/(*) =
*+g »L_S! 2+

in\ (7)

the simple pole at 2=— gives the residue

Jo
*2V

r
2
>r, (8)
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This exact expression may be simplified for our present purpose be-

cause of the fact that even for the smallest value of n (that is, n= I)

-

—

1 and—- are very large (
— is considered a first order infinitesima I V

In other words, the pole lies so far up on the imaginary axis of z that

the asymptotic expansion (5) is applicable. Placing z =— in (5) gives

2
k
\ V ) \V) 2n^r

x
r 2 L V V /

(9)

This contains the small factor - > hence, a second order approximation

will be obtained by placing P (—^ )=P ( -^ )
= 1

<?)-K*--i)
2w

2

2nr
1

so that

(*
2

-z) , \

2n r2 r
x

7) T — T
since — and — } are both small. Therefore

_n (
rt~ ri

)
id (inr

x
\

Tr Y (inr^\_ 'pe \ p }
(10)

2
J
*\P ) * V? / 2nVr7,

neglecting infinitesimals of higher order than the second in — and

T — T— !
• Therefore the approximation to the second order inclusive

r
i

for the integral in (8) is

Mr lx)J*(r2x)dx= -r7~%e
n
(

r,

p
r

')_if r2>ri (ii)

r
Jo

X V
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Another particular case of (6) is where

2ft/«- (-%"A
[(-?)"('+y <,2)

in
The second order pole at z =— gives the residue

2n

(13)

in
z~p

to the second order inclusive.

Appendix 7.—TRANSFORMATIONS OF THE FUNCTION F2 (z)

If

2 = £+i?/ (1)

and if x>0, or if z = and y^2ir&, fc=±(0, 1, 2, 3,---) the

function Fa («) is defined hy the convergent series

oo

This series defines a single-valued, periodic function of z of period 2iri

in the above range of z.

The function —log (1— e~*) is a multiple-valued function, but its

principal branch is equal to the single-valued function F2 (z) . Hence,

if we understand in the following that the symbol log w (where co

is complex) refers to the principal branch of the logarithm, we may
write

F2(s)=2^=-log (1-6-) = -log 2e
2 ( e

2 -e 2 \ (3)

or

Fa(z)-i2=-log2sinh| (4)

Now

2sinhf= Z S[l +
(2
-|

[.)

2

]
(5)

Hence

Fa (2)-f=-log,-2log[l +
(24)

2

] (6)
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If |z|<2 7T then for fc-1, 2, 3, 4

n=l

*=1 fc=l n=l

n V27r/ / lfr
2D

n=l fc=i

hence

(8)

where

or if \z\ = 2irp ad x^o

h
(-l) nyi 1 (-l)"(27r) 2 -

n~ n 2j^2n~ 2n |2n ^° w

where the i?ns are Bernoulli's numbers

&!=-£=- 1.644934
1 6

& 2=+^(^)=+^ (1.082323)

^=-K^)= -^ (L0i7343)

b5 = --* (1.000995)

( — l)
n

so that bn= very approximately if n is large.

The expansion (8) will be convenient to use in case no two points

of the section S of the wire are separated by a distance greater than

27rp, the pitch of the helix. Such would be the case for a square or

circular wire, or a rectangular wire whose diagonal does not exceed

the pitch of the helix. If the diagonal p exceeds the pitch 2irp, but

is less than twice this value, one might use an expansion analogous

to (8) by taking out the term log 1 +
(
^— ) • The remaining

series would then converge for the range \z\ <47rp.
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Appendix 8.—TRANSFORMATIONS OF F t (z)

n=l n=l

Consider the integral

Instead of the positive real axis of s, the path of this integral may be

taken as any path in the complex s plane, which starts at the origin

and goes to infinity in any direction in which the integrand vanishes

with infinite value of s, provided also that this path may be deformed

into the positive real axis without passing through either of the two
poles of the integrand, which are at s = ± i. Let the path be a

straight line radiating from the origin, whose angle is a; that is, one

obtained by rotating the positive real axis through an angle a. Let

z= peie =x + iy where x>o; y>o, o<6< ~, s = Re[a
, ds = e

iadR

on the new path, so that

(2)

_ g-npR sin (0+«)+inPR cos (e+a)
fift-X R2 +

The variable of integration is here the modulus R which is real and

positive. It is evident that the integral on the right will converge,

and that over the circular arc at infinity vanish, provided that

O^Sa+ d^Tr; that is, — d^a^ir— with the exception of the value

a=^-in which case the pole s = i would lie upon the line. The two

cases which will be useful are the two limits of the range of a.

In the first case take a= —6. This negative rotation of the axis

encounters no poles; hence this gives

-s:&«w
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A second expression for the integral OD the left may be obtained

by taking a = T — 6. In thus rotating the positive real axis through

the positive angle ir — 0, the simple pole s = i is passed and leaves

a residual circuit integral about a loop inclosing Ihe pole whose value

is iri (1 +m) e~nz . This gives a second expression

J*o
°>"(y^) ds = *i (1 + ne) 4" + f° ('"jr^r) e~™ dt (4)

Adding these two expressions (3) and (4) for the integral on the left,

and dividing by two, gives

£>'2±^<fe^fjl + nZ) e-°> +fp
c0Snt -™; Shlint

dt (5)

Hence, summing with respect to n gives

oo oo

(6)
OO CO

Jo z2 + t
2
[_ 2-J n2 ~* Zj n J

%=1 n=l

(7)

where

i'/a 4>TAcosn< 2 n t t
2

., _,._.„

while ^(i + 27rn) = <£(0 and t'(t + 2irn) 4 #»'<*}.

The functions 7^
2 and F3 are the series defined by equation (78) in

the text.

The second member of (7) may be further simplified by taking

account of the periodicity of \f/(t) and writing the integral

/*O0 /»2tt riir f2Tr(Xl+l)

( )dt= ( )dt+ ( )dt... ( )<?*+____
J0 J0 J2x J 2*11
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This gives

[ Vol. 91

Fl
(z)+izF2(z)+iF3(z)=-ir

71=0

CO /

f
+2^j Pcftf <-(n+l)+[w(n+l)

= +WI+2 [(2T)
2+

l]
io
gfc)+S^+S^)

(8)

OO 00

n=l n=l

where

«B-2»+l-[»(n+ l)+g]2 1og(l + i)

/jlY
\2im/

(9)

* (,)-» fo+1) log ,.
Vy x 2

-2 (01og(l+i) (10)

1+
Ur(rH-l)J

To sum the (numerical) ^_ series (9), we may expand the term

log ( 1 + -
) in ascending powers of - • This gives

„ yu-D*ri 2 1

f^ n* L3A: ft + 1) (fc + 2)J

which leads to the expression of (9) as a double series

(11)

CO OO OO

Zj^-^Lj^J 7i* IsJc (lc + 1) (lc+ 2jj

or
CO

2j^-2j (
"" 1)k

L3* ft+ D (fc + 2)J2jw*
n-1 fc-3 n=-l

(12)
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To increase the rapidity of convergence of this scries, we may note
00

1

that for large values of Jc the sum S ~i is very nearly equal t<> unity

so that the fr
th term approaches (— l)

k
WT~ (i. 1) (h + r>)

which

corresponds to the development

-^lbg(l + a)-|[(l + x)log(l + a:)-a:]+l

CO

fc=3

For x= l this development (13) gives

00

Q-3-flog2-g(-l)'[^-
(fc + 1)

2

(fe + 2)]
(14)

fc=3

Adding this identically zero quantity to (12) gives

fc=3 «=1

The sum of the first 15 terms of the series on the right is — 0.000345,

and this differs from the series by less than 0.000001. Hence

00

Jj uq = 3 - ^| log 2 - 0.000345 - - 0.00400 (16)

To simplify the vn (z) series of (8), we proceed in a similar manner to

expand the logarithms in expression (10) for vn (z). This gives if

\z\<2tt

^w-SHr^fe)*^ (17)

a = L, 2 r_L_J__,A_A + 1]D1 n {ri+iy \_2n2 3n3 ^4w4 5n6^ J

and if A: > 1

1 1 1
Crik—** -«2k-2 (?i+l) 2k-2

' n2*- 1 (n + l) 2^ 1

(18)
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Using these expressions leads to the following double series for the
vn (z) series m (8)

:

OO CO

2.<.>-EE fcrW«-
n=l «=l fc = l

or

CO OO

E^2) ^(rJ- 2E c°(i0
n

(19)

»= 1 71 = 2

where

OO

C

ft=i
JJ

ri-»i«B»*»|>(g'S'-0-i®j-i)+j(gp-0-

= 1-2 log 2 + 0.54072 = 0.15442 (20)

and

fc= l

c°= „ J]pkif«>l (2D

Making use of (16) and (19) in (8) gives

*[-i*e>^*#+-4)]-*[§K£)'Kte)
OO

+ 4-fe) ios t -
2jr!°-60267 + °-63754fe)

2

- 22 c
»fe)

2D

l

(22)

»= 2

Appendix 9.—ANALYTICAL METHOD OF EVALUATING THE INTEGRAL B

Jo Jo Vi + ^i JoVi +v \vi + r/

(Interchanging the order of integration and performing the integration

with respect to rjo.) If we now let ~k
x = ,-

—

= this becomes

Now

~ 7,i 2 ^V fc
1 /
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If we next let Jc
1 =

2\i

1+X and note that hv Landen's transformation

( 7~T\ )
== (1 +^)^M then—

y

—

—

2
= ^r- and the preceding integralK

becomes

JCSBSHCN)™»«
where

1-Vl-fc
r- ov that A: — rrr and -Jl—tc2 — t~Tl*»-- A

so

Now

CO

r(»+i) J

£ <»4)
r(»'+i) v2^+i

i_
27iyj

4(
l0g

£ 1

/Ll ZJL 2.4.6 2ra jV2n + l
+
2^;i

n= l

Hence

he \i>%|VVT+^/_
(£) ,

7T(1-^)

8 V*!̂
kr

fe,
WLM (2n-l)
Z-J L 2.4.6.
72 = 1 "-

2n J \2n+l 2nyj

where

ly
i-yi-p
i + vi-^

(2)

(3)

(4)
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The constant B may be accurately computed by this formula. It

represents the contribution of the axial or y component of current to

the inductance of a continuous cylindrical current sheet consisting of

tape windings without insulation space between them, for the in-

ductance AL, due to ay component of current only in the limiting

case of a cylindrical current sheet, is

1 ri ri r2w r2* 1

isjon^jo "Jo *»-T ^ . /,-r.

-2 fW fW r*de f
2

dct> --.- —-----———-

-

tt
2
Jo °h Jo Jo V(y-2/

1

)
2 + 4a2 sm2

d<j>

ttJo ^Jo ^Jo V(2/-2/
1
)
2 + 4a3 sin2

'0 V(y ~ 2/

1

)
2 + 4a2 sin2 4>

7Tj0 JO JO

2 <Z0

V 1 ~ 7~,—2 si

-VJoHo ft77l-Vi^r
~ =^ 50

Appendix 10.—THE MAGNETIC FIELD OF AN INFINITELY LONG HELICAL
CURRENT FILAMENT

Imagine a helical filament having N turns to the right of the plane

y = 0, and N to the left, whose total length is % where J = 2irpN.

This helical filament winds around the y axis and lies on the cylinder

x == r x — r
r = r t . The points where it cuts the plane z = are' l or

y=Vi v = Vx

±2>ick where 0<y x
<2n:p where Jc = 0, 1, 2, 3, 4

The three quantities r
x , ylf and p characterize a helical filament

extending indefinitely in both directions along the y direction. Its

field is the limiting field approached by that of the helix of length, 2Z

when I increases indefinitely in both directions. The component of

magnetic field will be found to approach finite limits, although the

vector potential from which it is derived, and which is a Newtonian

integral, becomes logarithmically infinite. However, it is easy to

find a finite and continuous logarithmic vector potential which serves
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to define the field in this case. The limiting field may be found by
first computing the vector potential due to the finite helix extending

from ?/= — I to y = -f Z at a point P- {?/ = y 2 \ where —l<y 2 <l.

U-oj
It is evident from symmetry that when Z becomes infinite the poten-

tial will not be a function of 6
2 but of r 2 and y2 only, and will be a

periodic function of y2
for a given value of r 2 . These components

are by (18)

a t n\ f
2xN cos 6

1
dd

i

. , n, f2irN sin 0^1 , 1N

where there is a unit current in the helical filament which is wound
on the cylinder of radius r

x
and has a pitch 2irp, and which goes through

x = r 1

the point y = y x
where 0^y 1^2irp.

z=0ot6=0
and where

R2 = r *+ r
2
2- 2r

t
r
2 cos t (2)

The magnetic field at P3 (r2 , ?/2 , 0) will be independent of 2 ; that

is, functions of the two cylindrical coordinates r 2 and y 2 only, as will

the vector potential. Hence

Hr (r
2 , y2,

0>) =
~dy2

A6 (r
2' y» 0)

fl« (r„ y2, 0) =^
2

^r fo, y2, 0) ~^r^y fo, ft, 0) (3)

#y fo, ft, 0) = - g^r (r3 4, (r
2 , y3 , 0))

If we make use of Neumann's theorem in the form

^Hyi-y.-Pftsyi jn(r s) Jn (r2s) cos ne

, 1 (4)
where €0 =

^

en =l if n>0
102333°—26f 6
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we find

oo

Ae(r2,y 2
,0)=r

1

Ĵ

eA ds[Jn+1 (r.s) Jn+1 (r
2s)

f27TN

+ «/n-i (TjS) Jn-i(^)] ^
1COSnV ,y,"yi~ Pfll18

J—2tn

oo

A^yjjOJ-^Y; <fe[Jn+1 (r,8)J1M.,(rjg)

teJ"
(5)

J2a-N

-2jtN

oo

^y (**2, 2/2, 0) =2>][}n
Jo
* Jn^ Jn^

n=0

f27TN

+ JQ (*\s) Jn (r2s)] dB
x
cos ^e-lyi-yi-^ls

J -2ttN

now

C2** ^ cos- (y2 -y,)
dO

t
cos 710^-iw-yi-pftl*- ^_^

J-2.N * tfs* + n2
(6)

»S [g-(H-ys-yi)s_j_g-a-ya+Yi)s]

fi*s
2 + w2

and

J2irN

2ttN

'<», sin ^H^-ws-gjnj^-yJ
-2*N 1>

2^2 + ^2

% [g
_ tf+ya-yi)s_0-(Z-y2+yi)sl

Consider first the axial component -4 y (r2 , y 2 , o) which becomes

CO

Sr°° s ( n
€n ^ ^2 J*(riS)Jn(r2s) cos - (?/2-2/i)
J°

92,!L
' P

e-(H-y»-yi)s -|- g-(Z-yi+yi)sj'l)S|
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or

^y(r 2,?/ 2 ,
o)=2j

o

ds \ (1
2

n=l P
7)
2

oo

-2 XjC^*
---(riS)^

(ry<?)
{e-^+y-y^+^-^-^+y) 8

} (8)

Now when Z—>co the last sum vanishes if — l<y 2
— 2/i<+^- The

second sum approaches a finite limit, but the first integral becomes

infinite logarithmically, since

Jo s

diverges at the lower limit. However, this term contributes only a

finite amount (in the limit) to the magnetic field component He (r2 ,

y 2 , 6) by the second of equations (3) which is

-l^^-^^-^^JM ,s)ds

This integral is known as " Weber's discontinuous factor," and it is

known that

J^oo 2
J (r

1
s)J l

(r2s)ds=-r . . . if r2 >r x

o r2

= o . . . if r2 <r 1 (9)

This may be expressed as — ^— ay {r2,y2), where ay is a finite and

continuous vector potential given by

<ty(r 2 , y 2 ) = ~ 2 log **
2 if r 2 >r%

= -2logr
1
ifr 2 <r 1 (10)

(The passage from the Newtonian to the logarithmic vector poten-

tial amounts to discarding an infinite constant.) Hence, the axial

component A y (r2y 2) of the vector potential at any point P 2 (r 2y 2), due

to the unit current in the infinite helical filament, is

oo

A y {r 2y 2)
= 4 2j cos - (y 2

- Vl )

J q

' '

^ ds

71= 1 S2+
tf

-2logr
2 or -2logr

1 (11)
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according as r 2 is greater than or less than rv Now it has been shown
in Appendix 6, equations (8) and (11), that

s
2 +

2

*^4=^"D^) (12)

(independent of 1c)

provided r
2
>rv The last form is correct to the second order inclu-

sive, if -2. and
^ 2
~

ri
are small quantities of the first order. If r

2
<r

x

then we must interchange r
t
and r

2 in the second member of (12).

Consequently, if neither of the cylindrical radii r
x
and r2 are infini-

tesimal, the axial component of vector potential, due to unit current

in the infinite helical filament, is given by

00 _ (u
~

Tx \
2p \~^ e

n
\ p J n

Aylr2y 2) = -2 log ^2+^^ 2j n cos p ^"^'0 if r2>^i
n=l

CO

\ » l n
- - 2 log r ' +

iik E'-ir- cos
J
<*-*> if '.<'. <l3>

n=l

or, if we let

CO

WM - 2~= -log (l -«-*) (14)

»=1

where

z^^-r^ii^-Vt) (15)

Then (13) may be written

^jSj''©"' log rs if r,>ri

(16)

where the real part is to be taken. It is interesting to notice from

(13) or (16) that since the pitch is small compared to r t or r2 , the

series in (13) which is a periodic function of y 2 of period 2irp becomes

insignificant when the point P 2 is not very close to the filament,
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Leaving the term — 2 Jog r 2 as the value of Ay when r 2 >r x
. This

2
gives a magnetic field He=— which is that duo to a unit current

flowing along the y axis. If the point P2 is within the helix, the

magnetic field He is practically zero. However, if P2 comes very

close to the helix, the series becomes logarithmically infinite, since as

shown in Appendix 7, equation (8),

".fi)-^l4(l)+2^'fe)"*

where Sn = / jp

(17)

If we write

then

2==r2
- r ! + i (y2-y x)

=R l2e*"

real part "- 1

However, if one desires to follow the corkscrew shape of the mag-
netic lines in the immediate neighborhood of the helical current

filament, it is necessary to evaluate the other components of the

vector potential. A similar treatment of the second equation of (5),

taking account of the fact that the second form of (12) is inde-

pendent of k, shows that to the same approximation

A t {r 2y2
)=0 (19)

Similarly, the first equation of (5) reduces to

^(^^^^(^^....ifr,^
(20)

To examine the magnetic field of the helix, we may notice that at

points which are not very close to the helix it is not periodic, but is

equal to that produced by a current sheet in the cylinder r = r lf in

which there is unit current flowing in the direction of the axis and uni-

formly distributed, together with a uniform distribution of circular

current, the total current circulating around unit length of the
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cylinder being ~— > since 2irp is the pitch or width of one turn. This

part of the field is derived from a vector potential as follows

:

St
B
(r2,y 2)

= -g^- Ae
B
(r2,y 2)

3eB
(r2,y 2)

= -g^- A/(r2 ,y 2)

3y
B
(r2,y2) =-^(r2A9

B
(r2,y2

)J

(21)

where

A y
B
(r2y2)

= -2 log r2t A e
B
{r

2,y 2)
=-Mfr 2 >r 1

P'2

A y
B
{r

2y2)
= -2 log rv A e

B
(r2,y 2) =^

2
ifr2 <r 1

That is, making use of (22) in (21)

HT
a= 0, H9

B =-> Hy
*= Oif r2 >r tr2

Ht
°= 0, HeB= 0, Hy

*= 4Tr (^)if r
2
<r

x

(22)

(23)

In the case of the helix there is superposed upon this current-sheet

field HB a periodic field Hp
, which is negligible compared to the

former at appreciable distances from the helical filament, but which

becomes the predominating part of the field in the immediate neigh-

borhood of the helix. Its value at a point P 2 (r
2 y 2) is given by

He

^A(V^,(j))
where the real part is to be taken, and

(24)

z = \r 2 -r x \ + i (y 2 -yi) (25)

The only places where this field is appreciable are those in which

z is small compared to r x or r 2 ; that is, where z is of the same order as

z

.

the small quantity p or smaller, so that -is either finite or very small

(but not large). In this case
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^ \—££^ / = 7^-- minus a term -^t-%ft-
dr2 \ JT / p jr2 2r*-

which is negligible in comparison with the first.

The field Hp given by (24) is independent of 6 2 so that a study of it

in the xy plane d
2
= o gives a typical picture for any other plane

2
= constant. If we let r 2

= x
2 , then when P 2 is in the neighborhood

of the filament the periodic part of the magnetic field is given by

(26)

^(^ 2)=g-}^/(^ 2)=-g

He»(x 2y 2)=^ H/(x 2y 2)

where
l xi-sil+l|yi-yi|

^p = 4l0g [1-6- P J real part

If we take a new system of x and y axes parallel to the old ones but

with their origin in the helix, then a point in the neighborhood of the

origin has the coordinates

x=x 2 -xi y=y 2 -yi
and if x>o

'= 2logri-2e pcos^+Tp1 (27)

dt£p &\l/p

Since Hx
p= ^—&nd Hy

°= — ->— it is evident that ^p is the magnetic

flux function for that part of the periodic magnetic field near the

helix which lies in the xy plane. The x and y components of the

nonperiodic or "current sheet" part of the magnetic field may also be

expressed in terms of a flux function \f/

B
. In fact, the equations (23)

become with the new system of axes

77
d^ 77

d+°

where
yp

B = o if x > o

2x .. . (28)— if X<0
V

Hence the resultant field is derivable from the flux function

$ = $*+ $» (29)

The magnetic lines of force near the helix may be plotted from their

equations

ip = 2 log 1 - 2e~f cos - + e ~ p +V = constant (30)
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These lines of magnetic force are identical with the equipotential

lines due to a grating of parallel wires in one plane in the presence of

an electric field. They are shown in Figure 13 of Volume I of Max-
well's Electricity and Magnetism in connection with the electrostatic

problem which is mathematically identical with the one here con-

sidered.

Appendix 11.—CORRECTIONS DUE TO LEAD-IN WIRES

The inductance of the helix and lead-in wires together is

i=Z11 -f-Z 1 + 2iflh (1)

To compute the mutual inductance Mlh between the helix and lead

wires, we may assume that the latter are linear and lie in plane y = 0.

(See fig. 5.) The helix may be idealized as a continuous cylindrical

POINTS OF SUBSTITUTIONS
OF HUJX IN 6R»OOt_

Fig. 5.

—

Arrangement of lead wires

current sheet around which the current winds in helical lines; that is,

we may consider the coil as consisting of tape windings without

insulation between strips. Since each strip carries unit current, the

total flow in the y direction is everywhere constant and equal to

one, and the surface density of current has a y component ^— and a

circular component of amount o
==
T"

== ^
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It is evident that those leads whieh are perpendicular to the axis

of the cylindrical sheet have no mutual inductance with the latter,

so that

I

2Mhl = - 2 f
2

dy
x
[A y

h
(b, y l} o) - A y

h
(b, - yu o]

Jyo

±

= -4:{
2

A y
h (b,yv o)d7/l (2)

Jyo

where the y component of the vector potential at any point (b, y1}
o)

due to the current sheet, is given by

A *tt \-JL f2
j f

27r ^^y Kof yl7 o)
2x ]^dy2

j Q j0 + ¥ _2ab<x*++(y t-yp

l CO

=
t I

2

^2
I
^/V" )

dse-^1-^3 Jn (as) Jn {bs) cos n<f>by (4)

2

2

where

=
J \ dy2$™ dse

~
l7t
~yilsJ

°MJ°(hs)

"a

_ r [ 2-A^)'-e-(^)' ~]

(3)

Jo &J,WJ,(fe)[ ;

J
W

Substituting this value of A y
h
(b, ylt o) in (2) and integrating gives

2Mm= -4 j
F© + f(| - y.)- f(| +

y.)J
(4)

F(l) =
ffp"'

3?" 1

] ''.'Cm) -W*

= \ dX1
I dx\ dse~ Xs J (as) J (bs)

=-W fW f

X^x Z(/xx) =-4= fdX(Z-X)/ix*G*x) (5)
7r-yjaojo Jo T^aojo

1 "i
,
/ X V

i 1 , ,
/b-a\'

\^here

1
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Changing the variable of integration from X to m gives

where

But

Hence

S~rf
+
\2Jab)

(8)

J
m dlx=^m +const&nt

F(l) = ?Zmo f p° KWdn m, /#W _ £(mi) \|
« U»imVmo2-M2

Vmo
2
-Mi

2 V Mo Ml /J
(9)

If Z, 2/ , a, and & are numerically given, this equation enables one to

evaluate F(l) by mechanical integration. However, the integrand

of the integral in (9) becomes infinite at the upper limit /* = n . Hence
it must be put in a form more convenient for a graphical integration.

This may be done as follows:

by integration of parts

=vspr2

Z(Mi)+ p^3|^M_3ZW ),M (10)
Ml Jam M l

1— M J

Hence (9) may be written

If a and b are fixed, /i is determined. Hence the integral in this

expression (11) may be drawn by means of an integraph and plotted

as a function of j^ and also plotted as a function of Z. From the

latter curve, together with a table of elliptic integrals, the values of

F(l), FIjz — Vq j, and Fy 5 +y ) may De readily obtained, so that the

term 2MhX given by (4) may be computed.
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It is interesting to note that if b — a is very small, as well as yQ , the

return leads being very close to the solenoid, fi approaches 1 and ^
approaches Jc, so that approximately

2Mbl = -4F(l) = -4 f^X, f
X1

<ZAjux#Gux)
irajo Jo

jO K( X
}

ir Jo
y2
Jo

y
Vl+2/i2 *

It was shown in Appendix 9 thatH was the part of A 2 (k)

which represented the contribution to the self-inductance due to the

axial component of current in the helix. It is evident, therefore, that

the return leads when very close to the solenoid just cancel this term

by their mutual inductance.

An important practical conclusion may be drawn from this. It is

found from Figure 2 that for a coil 40 cm long, of mean radius 15 cm,
8/7 7?

so that & = 0.36, B has the value 2.5, so that the term ^ = 100 cm
7T

approximately, which is 1/200000 of the inductance of the whole.

The important conclusion may therefore be drawn that if the return

leads are close to the solenoid, as in Figure 5, the correction due to their

8aB (Jc)
mutual inductance with the helix may be taken as just —

• This

term is plotted in Figure 2.

The remaining correction term is Le , the inductance of the leads.

This may be computed by familiar methods in terms of their length,

diameter, and their mutual inductance with each other, the latter

computed as if they were linear.

Washington, February 25, 1926.


