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ALTERNATING CURRENT DISTRIBUTION IN

CYLINDRICAL CONDUCTORS
By Chester Snow

ABSTRACT

The fundamental equations of Maxwell for the scalar and vector potentials

4> and A are simplified by an approximation which is valid from the lowest to

the highest (radio) frequencies. This approximation is due to the difference in

the order of magnitude of the electrical conductivity of dielectrics and conductors.

The case of N conducting cylindrical groups surrounded by any number of

dielectrics is discussed and forms of solution obtained for 4> and A which are

proportional to e-vt—n- representing a simple possible type of propagation along

the cylinders. These lead to general formulas for the coefficients of leakage,

capacity, resistance, and inductance (all of which are functions of the frequency

in the general case) as well as expressions for the attenuation and phase velocity.

The mean energy relations are also expressed in terms of these coefficients.

Application is made to the case of two circular cylinders of different conductivity,

permeability, and radius, surrounded by a homogeneous, slightly conductive

dielectric. Asymptotic formulas for the alternating current resistance R and
inductance L of the line at high frequencies are obtained, which, together with

the exact expressions for the coefficients of leakage and capacity, lead to high-

frequency expressions for the attenuation and phase velocity. These are all

functions of the frequency due to the fact that the current distribution is not
uniform in the conductors.
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I. INTRODUCTION—STATEMENT OF PROBLEM

A knowledge of the mode of propagation and distribution of alter-

nating current in a cylindrical system is important, for such currents

are used in practice, and, moreover, the propagation of an arbitrary-

type of wave or "transient" may theoretically be found in terms of

the periodic solution by the use of Fourier's integral or by complex
integration. 1 In working out such distinct problems as that of

propagation along parallel wires where the dielectric extends to

infinity, and along a cable system where a conductor extends to

infinity, a number of formal similarities become evident. It may be

difficult to see just how general are these similarities if the initial

formulation of the problem is not sufficiently general. Some of the

approximations to be made are common to all problems of this type.

Moreover, the connections between the field vectors and such physical

concepts as resistance, inductance, and capacity may be made in a

manner which is quite inclusive. In this paper a discussion of the

general problem is undertaken in the hope that it may prove useful

in outlining the procedure or forecasting the results in particular

problems of this type.

II. FUNDAMENTAL EQUATIONS

1. TYPE OF WAVES—THE PROPAGATION CONSTANT 7

If all the conductors and dielectrics have their generating lines

parallel to the z axis, the electric vector may be represented by the

real part of Ee lpt~^z and the magnetic induction by the real part of

1 Thornton C. Fry., Phys. Rev., p. 115; August, 1919.
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Be lpt~'** where p is 2t times the frequency, and 7 is the complex

propagation constant which may be written

7 = 6 +
% pT (1)

The real quantities b and V represent the attenuation constant

and phase velocity, respectively, of this type of wave. There will

be a finite number of types of waves or values of 7 possible for a

given system, and we shall first consider the case where only one

type is present. It will be more convenient to deal with the complex

scalar and vector potentials 4> and A, respectively, and to derive

E and B from them by the relations

E=-V(j>-ipA}
B = curl A = l

xH\ (2)

The electromagnetic cgs system of units will be used throughout

with the exception of the dielectric constant Tc, which will be taken

in electrostatic cgs units. The electrical conductivity being X, and
the ratio of the units being c = 3 X 1010

, the Maxwell equations

ipJc^
curl B = Att/j. ( X

curl E= —ipB
Aire) E Div# =

Div E=0\
(3)

require that

v*.+»u.-f|

V2Ay + ?i
2Ay

= dx
dy

dx
V2Az +h2A z=-^=-yX

d2 d2

Where V2^+^-2

l2 = y
2 -

dA,

Airip/j(}
ipk\
Aire2)

X
dA _. A , 7

2 "

dx dy
yAz+

h2
4>

%p

(4)

Conversely any pair and A which satisfy these equations (4) and
give continuity to the tangential components of E and H will give

the correct field vectors.

2. GENERAL APPROXIMATIONS

It will be assumed that 7 is a small quantity of the order of - (first
c

order). In all materials Tc is of the order of unity, and hence the

complex conductivity a, defined by

->+£ (5)

will be very approximately equal to X in conductors; that is, a finite

magnitude (for copper X= 0.0006).
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In dielectrics X is of the same order, or even smaller than the term

7~5 # Thus for gutta-percha X=10—2i and fc = 4 so that 43 = ^4-

It is therefore evident that for a range of frequency from one cycle up
to the highest X will not be greater than the second order term

~r—? even if the dielectric is ten thousand times a better conductor
47TC2

than gutta-percha, and consequently the complex conductivity will

be a second order infinitesimal in all dielectrics. For the sake of the

most general results we shall assume that X may be of the same order

as j—.j or 7
2

. The magnetic permeability n will have the value 1 in

all dielectrics and in nonmagnetic metals.

The cause of the wave is assumed to be in certain electromotive

forces applied to the terminals of the conductor at, say, z = and

z= l, where the cylindrical conductors are connected by networks of

known impedances. The simple type of wave here proposed could

not exist, strictly speaking, if the cylinders were not infinitely long in

both directions. However, we are here concerned with engineering

rather than optical applications, so that we may assume that the

cylinders are so long that the regions of space in the neighborhood of

the terminals, where this simple type of wave is departed from, are

negligible compared to the regions between the terminals where it is

sufficiently correct. Therefore, we may ignore these terminal varia-

tions of field or we may consider the term "end impedances" suffi-

ciently elastic to include them. We shall assume that there is nothing

analogous to these applied electromotive forces in a magnetic sense;

no applied " magnetomotive forces " tending to magnetize the cylinders

in the z direction. Hence, the component of magnetic field in this

direction Hz will be everywhere infinitesimal, since it could only be

produced by the xy components of current which will be infinitesimal

in the dielectrics and also in the conductors since the normal com-

ponent of current in conductors must be continuous with its value

outside. Hence, Ax and Ay will be negligible. We may, therefore,

understand A to mean the z component Az in all that follows, since

the others are negligible.

The first approximation to the solution will, therefore, lead to

d<f>Ex — — =— j> dAx dx -dx=5

E"
= -¥y *,--%

dy

3

dx

Ez=E=- d*
z
-iVAz = y<l>-i?A Bz =

which hold at all points in the xy plane.

(6)
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3. DIFFERENTIAL EQUATIONS AND BOUNDARY CONDUCTIONS FOR
4> AND A

The electric component Ez (which will be designated by E from

now on) is of finite order of magnitude everywhere and is continuous

at all boundaries. Since E=y<l>— ipA, it follows that A and y<$> are

also finite. If 4> and A are continuous at all boundaries, the con-

tinuity of E will be assured. Since Ex and E7 are negligible in con-

ductors, <f> must have a constant value at all points in each conducting

section. Let <£ = cn at all points in the plane section SQ (z = constant)

of the 7i
th conductor or group of conductors in contact. Suppose there

are N such groups. The tangential component of the electric field

in the xy plane will be zero (and hence continuous) at all boundaries

between a dielectric and conductor or between two conductors. It

will also be continuous at boundaries between two different dielec-

trics if is continuous there. At such surfaces the conservation of

electricity, or solenoidal property of the total electric current, requires

f\th

that o r-be continuous. Since a is a second order quantity, the last

of the equations (4) reduced to V2
tf>
= 0. Similarly at the boundary

between two materials of different magnetic permeability, the con-

tinuity of Ha demands that

be continuous. The continuity of Bn is assured by the continuity of

A T> dAA since Bn = -^—
ds

Therefore, the differential equations which <i> and A must satisfy are

(a) V2
<£= everywhere

(b) tf>
= cn on the section Sn of the nth conducting group

(c) <t> is continuous everywhere
51

(d) a — is continuous at the boundaries between two
dn

different dielectrics

(e) ( r2 v-
) exists for all directions of r

r= oo \ dr /

(a) V2 A = in dielectrics

= 47ripjuX ( A — 4-
) in conductors

(jb) A is continuous at all boundaries

(c) - ^r— is continuous at all boundaries
ix on

{d) (r2
-7T- ) exists for all directions of r

r = co \ dr J

M7)

Y (8)



282 Scientific Papers of the Bureau of Standards [Voi.ni

The relation (8a) follows from (4) . The conditions at infinity (7e)

and (Sd) are derived as follows:

Let 7n denote the total z component of current through the section

SD of the nth conductor (or nth group of conductors in contact).

The set of closed contours or artificial boundaries, shown by
dotted lines in Figure 1, are drawn so that each artificial boundary

incloses a homogeneous material. In the case of materials extending

to infinity in the xy plane, the artificial boundary is closed by arcs

of a circle with center at some finite point and indefinitely large

Fig. 1.

—

Plane section of cylindrical media (z— constant) showing positive directions

of normals and line-elements in each region

(Full lines are natural boundaries. Dotted lines are artificial boundaries)

radius. The natural boundaries are shown by full lines. The
normal to the boundary is taken in each medium pointing toward

the boundary, and the positive direction of an element ds of an

artificial boundary curve is such that in going around this contour

in the* positive direction the homogeneous medium encircled is on

the left hand. Thus the directions of n and ds are related like those

of the x and y axes, respectively. With this understanding, the

statement of the conservation of electricity applied to the n th con-

ductor is

7/D = Ja
d

d
*dsa n=l, 2, 3 N (9)
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where the integral is taken around any closed curve in the dielectric

which encircles this conductor only, the normal n pointing toward

the conductor.

Since <£ and a -^ are continuous and V2
</> = in every dielectric, it

an

follows that
J
a— ds = taken over any closed curve which does no

encircle a conductor. Consequently by (9)

^ r ^ f d(f> , limit f
2ir

d<f>

72/,
* C d<f> , limit f 2ir d$ ,_

=2 « -^ dsa = - r\ a-^-dO
t^\J on r=oo J dr

where r is the radius of a circle with some finite point taken as center.

Since the terminal apparatus located in finite portions of the planes

2 = 0, and z = l are assumed to have no mutual capacity or coupling

with any of these cylinders, it follows that the sum of the currents

entering either end must be zero at every instant, so that

S/n = (10)
n=l

Hence, the r -^- must be zero. But if we assume that the den-
» /•= oo dr

sity of surface change on the natural boundaries is finite and falls

off so rapidly as the point on the boundary moves off to infinity

that the integral which defines its logarithmic potential is convergent,

then it follows that v~ must vanish in such a manner that r2 v~
dr r= co dr

exists which is the condition (7e).

Similarly, it is assumed that the density of current (surface den-

sities of molecular currents on boundaries or magnetic surface

charges) are so distributed that their logarithmic potential exists,

dA
and if r -^~ vanishes it must vanish canonically. The definition of

current takes the form

"f£
&. (ID1

47rJ(

the integral being taken in the dielectric as in (9) . A similar reason-

ing leads to the condition (8d).

In the next two sections it will appear that the conditions (7) and
(8) are necessary and sufficient to uniquely determine

<t>
and A in

terms of the potentials c
t
c2 cN . These solutions of (7) and

N
(8) will makeS ln = 0, which is reciprocal with the requirement that

r -5- and r =— shall vanish at infinity and in such a manner that
dr dr J

39058°—25 2

1
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Ir2-^- and r
2-^— shall exist. If no conductor extends to infinity,

then
<t>
and A are harmonic and the values of <£(«) and A(oo) will

be determinate, since one can not arbitrarily assign both the value

of the harmonic function and of its normal derivative at infinity

(if the c's are all arbitrary). In the case where a conductor, say,

the Nth
, extends to infinity, then A and E will not be harmonic in

this conductor but will satisfy

V2 A-4t tv ipa ^1 = = v2 E-4 rfipa E
since

<t>
(xN yN)-<£ (oo) = 1-1 =

if xNyN is on this conductor. Consequently, the vanishing of

r -z- I and hence r -r-
J
brings with it the fact that both A and E

mush vanish at infinity.

Whether either of the finite constants <f>(oo) or A(<x>) have the

value zero is a question without physical significance, since the x

and y components of electric and magnetic field will vanish properly

at infinity. But the linear combination y4>(°°) — ipA(co) has the

physical significance £'(oo)[=£'2 (eo)]. Consequently, we must con-

clude that for the type of wave assumed the first approximations

here attempted will give a definite value to E(co) which can not be

arbitrarily assigned the value zero. As a matter of fact, it will be

found that E(co) will not have the value zero in the case where one

conductor of finite section surrounds all the others. Even in this

case the formal solution we shall obtain will give the first approxi-

mation—that is, the finite terms—to the current distribution in con-

ductors. A further approximation would not appreciably affect

the value of E in conductors but would give a function Ez which is

not strictly harmonic in the dielectric and hence which vanishes at

infinity since -~- must do so.

In case more than one conductor extends to infinity we shall

assume that they are at the same potential and may be treated as

one group of conductors in contact. This avoids the case where two

conductors have infinite coefficients of capacity or leakage per unit

length.

III. THE COMPLEX SCALAR POTENTIAL

1. UNIQUENESS OF A SOLUTION

If the complex values cu c2 , . . . . cN which <j> must assume on the

conductors are arbitrarily assigned, there can not be more than one

function
<f>

satisfying the conditions (7). If there were another,

their difference 4>' + i<j>" would satisfy all these conditions and van-
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ish on each conductor, where <j>' and <f>" are real. The boundary
conditions {Id) imply the two real relations

dn^
A2

dn2 4ttc2V
x

a/ii
2 dnjX^ + X

d4>"
| x
W _ V

dn
x

2 dn2 4u-c^
Xl^ r

'

* '^i?1 dn^** dn')

Also <j>' and #" are harmonic within each dielectric section Sj and

W
r(ie

„ limitW
r<2e=()

J * r=coJdr

2r 2x

limit f 3^)' _Jrk _ limit f d<£

r= co

and

/('£-"£>-<>
taken around the artificial boundary of #j or only around that part

of it which is adjacent to another dielectric since <f>' and #" vanish

at conducting boundaries, and the integral vanishes for arcs of the

circle at infinity.

By the use of Green's theorem it is easy to show that

Summing all such equations for the entire dielectric region of the xy

plane gives

where the double integral on the left extends over the entire dielectric

region, the line integrals on the right are taken around all the closed

artificial boundaries of all the dielectrics. The terms corresponding

to the conducting part of these boundaries vanish because <f>' and <j>"

are zero there. The terms corresponding to the boundaries between

two dielectrics may be written by virtue of the above boundary
conditions in the form

AK*£-*"&>
over both sides of all the artificial boundaries between two dielectrics,

and this has been shown to be zero. Hence, <j>' and <j>" must be con-
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stant over the entire dielectric region, since they are continuous there.

They vanish on conductors and hence </>' = <j>" = 0, which shows that

there can not be more than one function (j> which satisfies the condi-

tions (7).

2. EXISTENCE AND UNIQUENESS OF A GENERALIZED GREEN'S
FUNCTION G

To find whether it is possible for any function <j> to exist which

satisfies the condition (7), and if so to obtain an integral representa-

tion of <t>, we may make use of a generalization of Green's function

G (xyto) , which may be regarded as the potential at any point xy

in the dielectric region, when there is a line source of unit strength

(per unit length along z) which is parallel to z, at some fixed point

to in the dielectric region, and when all the conductors are kept at

zero potential and all together receive the unit current from the line

source.

The properties of this function are

(a) \^~i+^~i) G(xy%r))=0 where xy is a point within any dielectric

section.

(b) 6 (xyto) and a (xy) ^- G (xyto) change continuously when the

point xy moves across the boundary line between two dielectrics.

(c) G (xyto) vanishes when the point xy moves up to a conducting

boundary of the dielectric region.

(d) When the point xy approaches the fixed point to, G (xyto) becomes

infinite in such a manner that it differs from p-—,„ f bv a
47TO. (frj)

J

finite quantity. The strength of the source is I a— - ds taken

around an infinitesimal circle with center at to, and is thus equal

to 1, if m is drawn toward the circle, on the outside. This repre-

sents the efflux of electricity from the line source per second per

unit length along z (leakage and displacement current together).

(e) When the dielectric region extends to infinity, if xy moves off

to infinity in any direction in the xy plane (to being a fixed finite

point), then -^- vanishes (so that the _ r 2 -=- (xyto) exists).

Hence, G takes on the asymptotic form G (xyto) = G( co to) + terms in

- and higher. The constant (z(oo^) is calculable, not assignable.

From these properties it is easily shown by applying Green's

theorem to the two functions G(xyx'y') and Gfax'y'), where xy

and to are any two distinct points whatever in the dielectric region,
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that this function is a symmetrical one of the two points; that is

G(xyttv)=G(Zr,xy). (12)

This means that the potential at xy due to a line charge at £t? will

have the same value as the potential at £77 due to a line charge at xy.

From this interpretation it is evident that (^« + v^) £= and

that if xy is a fixed point and £7? the variable, then G and a ^— will

be continuous.

If we apply the integral transformation

I

jav2GdSi= ja-^ds
s

to each homogeneous dielectric section Sj and sum for all of them,

excluding the point I17 by an infinitesimal circle, we find that

N
2 I

a-^(xkykZri)dsk =
dG

where the Tc
th integral is taken around any closed curve in the

dielectric which encircles the &* conducting group only. This

merely states the fact that the total flow from the line source

goes into the conductors and there is no flow to infinity.

To prove the existence and uniqueness of such a function G having

the desired properties, we may begin by assuming that a Green's

function gixyfr) has been constructed for the entire dielectric

region as if it were homogeneous. In the case of a closed finite region,

this is usually effected by writing

gixyfr) = -^logrixyZv) +v(xy£r,)

d2v d 2v
and choosing vixy^-q) as a function which satisfies ^ +^= in

1

X V

the region, and assumes the value ~— log r(x'y'^ri) when xy ap-

proaches the point x'y' on the boundary, thus making gixy^rj)

vanish when xy approaches the boundary point x'y' . The existence

and uniqueness of v is therefore a special case of the more general

problem of Dirichlet of finding a harmonic function which assumes

any assigned boundary values. Since the development of the

theory of Fredholm's integral equation it may be taken as satisfactorily

proven that a harmonic function exists and is unique if either

(a) Its value is assigned on all points of the boundary
or

(b) Its value is assigned on some parts of the boundary, and the

values of its normal derivative on all remaining parts.2

3 Cf. Volterra. Leoons sur les Equations Integrals, p. 126. Max Mason "Boundary Value Problems.

New Haven Math. Colloquium.

"
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In the case of an unbounded region, the value of g(xy%rj) when
xy goes to infinity is not prescribed, but the condition is imposed

that _ m r 2-~- shall exist. This, together with the facts that g shall

be harmonic in xy and vanish on all the internal boundaries of the

region and become logarithmically infinite when xy approaches

£??, serves to uniquely determine g and hence determines the value

which it will assume at infinity.

If we apply Green's theorem to the two functions a(xy)G(xy£
1ri1)

and a(xy)g(xy%ri) the point xy being the variable of integration,

we find if i^ is within the homogeneous dielectric section Sj and
£77 in £k

-giZiVih) =

-f
a
[
0(xyilVl)&l& _,(ly{,,^ffl)]&l

the integrals being taken around the artificial contours of the

corresponding dielectric section. The contour integral on the right

has the value zero if taken around any other artificial boundary of a

dielectric. Hence, adding all such terms to cover the entire dielectric

region we get

afoMMM) + S K(s) - «*(*)]
Q^0l G O&ifc) ds =g^Mv) (14)

where the line integral is taken once over all the boundaries between

different dielectrics, the point s(xy) being the point of integration

on this curve. The values a^s) and a2 (s) correspond to the medium
on the left and right of the curve, respectively, at the point s. The
.positive direction of ds may be arbitrary, but the direction of the

normal n must be such that n
x
and ds

x
are related to each other

like the directions of the x and y axes, respectively.

The continuity of G, a »—

»

g and -^- have been used in obtaining

this equation. (The point s (xy) on the boundary s is an ordinary

point for Green's function g)

.

If the point (£77) now approaches a point s'(x'y') on the path of

the line integral from the left side the equation becomes

a, is') G (s%Vt)
-

j^
f*'>-^')

j q (8%Vi)

+/K (s)-a2 («)] |£ (»') G («&,,) ds = g i^x'y') =g fovO
or

G (s% Vl ) + 2 f V'il"
2^ P- ("0 G fe) ds --&&S20 . (15)



snow] A. C. Distribution in Cylindrical Conductors 289

The same result is obtained when £77 approaches s' (x'y') from the

right, since the contribution of the infinitesimal element of the line

integral at s' is now

This is found from the fact that the principal part of ~- (s£rj) becomes

If the characteristic determinant of the integral equation (15) does

not vanish, it suffices to uniquely determine Gist-tfJ at all points s

on the boundary curve, and hence by (3) at all points in the dielectric

region. To prove that this determinant can not vanish, we make
use of the fact that if it does there must be at least one solution

Gois^rjj) not identically zero of the homogeneous integral equation

obtained by replacing the second member of (15) by zero; that is,

^ (*-t,%) +»/*$;*$ % fao «.(**) *-o. we)

But if this were the case we could construct a scalar potential func-

tion <£ (£f) for any point £77 within the dielectric region by the

formula

4>o (en) = -^yj*K to ~ a2 to] If;
(»&) ^o (•{A) & (17)

which could not be identically zero in all parts of the plane.

From the property of Green's function g, it is evident that 4> (£tj)

will vanish when £77 moves up to any conducting boundary, will be

harmonic in £77 at all ordinary points. Also it is evident that a

-r-2 will be continuous at the boundaries between dielectrics, and

_ (r2 ~ ) will exist. Finally, if £77 approaches a point on the

boundary between two dielectrics, then the homogeneous integral

equation (16), which G is assumed to satisfy, will show that 4> also

is continuous there. Thus cj> possesses all the properties which have
been shown sufficient to assure its nonexistence. Therefore, it may
be concluded that a function Gixyfy) and one only may be found.

3. THE EXISTENCE OF <t> AND ITS INTEGRAL REPRESENTATION

Assuming that the function of G has been constructed, we may
apply Green's theorem to the two functions <t>(xy) and G(xy^ri),

and obtain
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if £77 is a point within the homogeneous dielectric section Sit
the

integration being taken around the artificial boundary of Sj. Applied

to any other dielectric section S, the theorem gives

-Ja [*(,y
)^M-<?(ly{,)^](fe-o.

Adding the first expression to all the others of the second type so

as to include the entire dielectric region, it will be found that all the

integrals over the boundaries between two dielectrics cancel, because

of the continuity of <$> and a ^- on the one hand and of G and a ^~

on the other. Also the integrals G(xy^)-^- over the conducting bound-

aries of the region vanish because G vanishes there. The integrals

over the infinite circle vanish because rr- and r-ir- vanish at
dr dr

infinity.

Hence, we obtain the integral representation

<»--£}* f.C^g^*,
fc=i J onk

=ScAfe) (18)

where

fettris- faixy^^ ds*
'

(19)

this integral being taken around any closed contour in the dielectric

region which surrounds the lc
th group of conductors only.

The N equations of type (9), for the conservation of electricity

give N equations of the type

f dd> -, * C d<6k 7 ^, ,nn.

yln = a— dsn =Sck a 5— a«n=S ank ck (20)
J onn ?c= i J cmn fc=i

where the complex coefficient ank is defined by

***!'£*• <21 >

where this integral is taken over any closed curve in the dielectric

region which encircles the n th group of conductors only. From this

definition and the definition (8) of k it follows that the coefficients

ank constitute a symmetrical array, that is

ank = akn (22)

This is seen by inserting the definition (19) of <£k in (21), letting xy

denote a point on or near the boundary of the conducting section Su

and £77 a point on or near the boundary of the conducting section Sk

ank : -jjdsAa(xy) a((,)
d

-^ff-



snow] A. C. Distribution in Cylindrical Conductors 291

Since G(xyi-rj) = G(£nxy) this is easily seen to be identical with the

definition of akn .

The unique solution or integral representation (18) for 0(£tj) has

been obtained by assuming a function <j> to exist which satisfies all the

conditions in (7) of Section II. It remains to be shown that the

function #(£17) which is given by the right side of (19) does indeed sat-

isfy all these conditions, and that if each of the N currents IJ2 . . . . 7N

satisfies the equation of conservation of electricity (20) , the sum of

these currents will be identically zero, whatever the value of the N
constant potentials c

x
c2 . . . . cN or of 7.

To do this and to obtain an idea of their physical meaning we may
examine the N partial potentials of type <£k (£??) defined by (19).

4. PROPERTIES AND PHYSICAL INTERPRETATION OF THE PARTIAL
POTENTIALS 4> B

From the properties of G(xy^) it foUows that foiZn) has the

following properties

(«) (5 +|?)^ (^)=0

if £17 is any point not on a boundary. This is evident by differentiat-

ing under the integral sign twice with respect to £ and to ij which is

allowable since £77 is not a point on the line of integration. Since

it follows that

/ d2 d2 \
\de

+
df)

G{xy^)=0

d2
4>k ,

d$ k

d£2
' drf

=0

(b) When £17 moves across any boundary between two dielectrics fad-rf)

changes continuously because G(xy^rj) is also a continuous func-

tion of £?? for any fixed value of xy.

(c) At such boundaries a -— is also continuous because of the
dn

similar continuity of a — when xy is any fixed point.

(d) The _ (r 2 -~ ) exists when £17 goes to infinity in any direction

in the xy plane, because of the similar property of G (xy^rj) when
xy is a finite point.

(e) When & moves off to infinity in any direction in the xy plane

</>k(£i) will become constant, say <£ k (°°), which will not necessarily

be zero. From the definition (8) it is evident that <£ k (£?7) is equal

to the total conduction and displacement current (per unit length

along z) which flows into the Jc
th conductor, from the unit line

39058°—25 3
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source at fa, when all the conductors are at zero potential and all

together receive the total current unity, from the line source. It is

thus evident that if these conditions are satisfied, that <j>^(fa)

will not, in general, vanish when fa goes to infinity. If there is

one conductor extending to infinity, the Nth say, then <£N (oo) will

he unity and n ( oo )
==O, if n^N, since the infinite conductor will

in this case receive all of the current from the line source at fa

when the latter moves to infinity. The same statements are true

if <£N surrounds all the others.

(/) When the point fa approaches any conducting section Sn , then

</>k (fa) approaches zero if n^lc and 4>^{fa) approaches unity at the

boundary of conducting section Sk . This is evident from the

above interpretation of <t>)dfa) as the current into S k when there is

a unit line source at £17. When fa comes infinitely close to the

boundary of any conductor, the unit current will all flow from

the fine source into the conductor in its immediate neighborhood

and hence the flow into any other conductor will be zero.

Thus <£k possesses all the properties which we have shown are

necessary to make it unique and it may be determined by the methods
of harmonic analysis.

From these properties of each <£k it is evident that the function

<t>(fa) given by (18) does satisfy all the conditions (7) Section II.

It is the only one which exists.

The N functions 0^ . . . . <£N are not all independent for there

exists a linear relation between them:

N
S *kttij)=l (23)

fc=l

This also follows from the interpretation of foifa) as current into the

section $ k , since altogether the N conducting sections receive the

current unity from the line source at fa, equations (19) and (13).

From (23) it follows that there are N homogeneous linear relations

existing between the coefficients ank . Thus operating on (23) by

J
2wa^ sives

N
S «nk = forfc = l, 2, 3, . . . N (24)

n= l

From this it is evident that I
t
+ 1

2 + ... + 7N = identically

whatever the value of cv c2 , . . . . cN and 7. The last of the N equa-

tions (20) is not independent of the first N-l equations, but may be

derived from them by simply adding them together. The determi-



snow] A. C. Distribution in Cylindrical Conductors 293

nant of this array of coefficients vanishes and it is not possible to

solve this set of equations for all the c's in terms of the Ps.

Hence, when each $ k has been found, then if each of the N currents

satisfies the equation of conservation of electricity (20) the necessary

relation (10), that the sum of all the currents shall vanish, will be

automatically satisfied.

The physical meaning of </>k (^) follows from its properties. It

represents the potential at any point (£77) when the Jc
ih conductor

is at unit potential and all the others at zero potential in the presence

of the various conducting dielectrics, subject to the additional con-

dition that the whole flow out from the kih conductor goes into the

remaining ones, as there is no flow to infinity in the xy plane. This

is the meaning of the relations (23) and (24).

It is evident that </ik is, in general, complex on account of the sur-

face charges at the boundaries between two dielectrics. These

charges are eliminated from appearance by the use of 6 (xy^rj)

through which function their influence is exerted, so to speak. If the

dielectric were entirely homogeneous both as to its conductivity X

and its dielectric constant Tc, then the function <£k would be a real

electrostatic function, which would not involve X, Tc, or p, but would
depend only upon the geometric configuration of the conducting

sections which bound the dielectric region.

More generally, if the ratio

V1
*p*l

*1 *, a,
1

4ttc2

V ATq «2 V 1 A„rf

is real, for every pair of dielectrics in contact, then each <j>k is real,

and involves the values of these real ratios, but not the frequency.

In particular, if all the dielectrics are nonconducting, this ratio is

real and <£k will not involve the frequency.

In general, the surface charges and their phases, at the bound-
aries between different dielectrics, although they are eliminated

from consideration, are the cause of
<f>
being complex and involving

the frequency.

It is evident that if a real formula for </> k can be obtained for the

case of steady flow through the given dielectrics, with given conduc-

tivities X
X
X2 etc., then the complex solution <£ k may be

obtained by substituting in this expression the corresponding complex
conductivities a

x
a2 in place of their real values.

It is to be noted that <£k does not involve 7.
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5. THE COMPLEX COEFFICIENTS OF LEAKAGE AND CAPACITY

The complex charge of free electricity Q a upon, and the leakage

current Gn from, the nth conducting group per unit length along z are

given by

n 1 f , d<t> ,
* If, d4>k n

H*~TV&) k
dn n

tfSn _
fe

Ck 4~772
J

* dn~n
***

(25)

«nk = Gnk + if Cnk where

Consequently, if we resolve the complex coefficient ank into its real

and imaginar}^ components
N

£nk = <?kn and2 6rnk =

(26)

N
Cnk = Ckn and2 Cnk =

4=1

The equation of conservation of electricity (20) takes the form

yh = G n + ipQ n = - s(^nk+*pCnkVk. (27)

By adding to this equation the identically zero quantity

N N N / \

-C n 23«nk= - S "ilk Ca
= 221 ^nk+^Cnk )Cn

fc=l /t=l Jc=l\ /

it takes the form

yIn = G n +ipQ n = s(^nk + Z>CDk
j
(c„-C k

J
(28)

which shows that the real coefficients Ga^ and Cnk where n^Jc are

coefficients of leakage and capacitance, respectively. The coefficients

Gnil and CnD do not occur in the form (28) and may be regarded

simply as the negative of the sum of all the other coefficients 6rnk

and CBk , respectively.

If the frequency is very low, or if the entire dielectric region is

homogeneous, or more generally whenever the functions 4> n are real,

6rnk and 6"nk will not be functions of the frequency and will have their

ordinary electrostatic significance since they are then defined by

It is evident that, in general, the formula (27) may be put in a form

similar to (28), namely,

T/D=S« nk (ck -cN) for w=l, 2, 3, N. (30)
t=i
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IV. THE COMPLEX VECTOR POTENTIAL A

1. EXISTENCE AND PROPERTIES OF A MAGNETIC FLUX FUNCTION M
Let s (xy) be any point on the boundary between materials of

different permeability. Let £77 and ^1 ?j 1
be two other points not on

this curve. Consider the vector potential function whose x and y
components are zero, but whose z component has at the point £77

the value given by the logarithmic potential

M failVl) = M (1*7) [
- 2 log r (toi) - 2JV (*)

dkg^sy^
j ds (31)

where the direction of ds along the curve may be taken at pleasure,

but that of dn is that of the normal drawn toward the curve in the

medium on the left side. The integral represents the value at £77 of

the logarithmic potential of a double distribution of strength a (s)

upon the boundary curves where ^ is discontinuous. This is har-

monic and has continuous normal derivatives [(£77) being the variable

point] at all points. It also vanishes when £17 moves off to infinity.

It may also be written in the form

-2Ja(s)
d lQg^> ds= -2

J ff (g)g^) ds
-

where 6 (xy&) is the angle between the positive direction of the

x axis and the line drawn from s (xy) to £77.

Regarding ^^ as the fixed point and £77 variable; it is evident that

(whatever the function <r(s) so long as the integral is convergent), the

/ d2 d2 \
function Jf^^) satisfies ( p+T-J M (£t7£

1 77 1
)=0 and takes the

1
-\

form —2n(j-ii) log rfaLr).) when £77 goes to infinity, and that —nr\ -tt
M£*?) dn

M (£77^7?^ is continuous everywhere. The integral, however, is

discontinuous at the boundary curves, but if <r(s) can be so chosen

as to keep Mfa^ri^ continuous there, then it is evident that

^(iv^iVi) will represent a (s-component of) vector potential function

at £77 due to a steady unit current filament at £1
i7
1

parallel to z, in

the presence of all magnetic materials.

This is evident since the normal component of the magnetic

induction derived from it is just -^— and this is continuous if M is so.

The tangential component o' B divided by (x, that is of H, is »

—

and this will also be continuous. If we compute the line integral

around an infinitesimal circle with center at ^77, the result is 4tt.
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To determine the density a(s) we must express the fact that

-3/(£'7£i'?1 ) approaches the same value when the point £77 approaches

a point s' (x'y') on the boundary curve first from the left and then

from the right. In the first case the equation gives, if ju
x
(s') is

the value on the eft, n2 (s') on the right of the curve at s'

2/t (si) g r (s €i>?i) +tt<t(s')+ \ <r(s) —^— ds.

In the second case

—
2M (gV g r (8 toJ -tto-(s') +

J
o-(s) —^— ds.

Eliminating Mis'J-tfJ gives the integral equation

*(s>) + 1 ((^) , ^ <r{s) ds=- 1-(^±^) , log r(s'U)(32)
^J VM1 + M2/S #S 7TVMX-M2/S 6 1X

to determine the density of the double distribution <r(s). The
nucleus of this equation becomes infinite when s= s', but is in-

tegrable, and the equation may be reduced to one with a finite and
continuous nucleus by multiplying by this nucleus and integrating

over the range. This equation uniquely determines the function <r

provided the Fredholm determinant is not zero.

That this can not be the case may be proven from the known fact

that when this determinant vanishes there is at least one solution

<r (s), not identically zero, of the homogeneous equation obtained

by placing the right side of the above equation equal to zero. With
this function a (s) we could then form the potential v (£ri) for every

point fa by the formula

v (M = -2^v)J*o(s)
dlOS

d

r^ds

(33)

This function v would satisfy ( ^ + r—
2

\ v = at all points, and

- ^-° would be continuous everywhere and would vanish at infinity.

In addition, v itself would be continuous because of the assumed

property of the function <r (s) . Moreover, v could not be identically

zero in all sections of the plane. It is easy to show that in this case

by transformations similar to those previously used that

M(tMt)>=°
the integral being taken over the entire plane, and since n is a real

positive value everywhere, and v is real, it is evident that v must
be a constant everywhere, and hence zero since it vanishes at infinity.
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Therefore, the Fredholm determinant does not vanish and there is a

unique solution <r (s) and the function M i^tVi) rnay be uniquely-

determined.

By applying Green's theorem to the two functions M (xy^-q) and

M (xy^rjj we find that M is a symmetrical function of the two
points xy and £?i in whatever magnetic media the two points may
be; That is

M(xyZT,) = M(toxy). (34)

In the special case where all 'the materials in space have the same
magnetic permeability M (xyfr) reduces to — 2/x log r(xy£r]).

2. INTEGRAL EQUATIONS FOR A AND E

By means of the function M we may formulate the conditions (8)

for A as an integral equation involving surface integrals over the

conducting sections, but free from boundary terms.

To do this apply Green's theorem to the two functions A(xy) and
M(xy£f)) where |ij is some point within the section S

s
which may be

either a dielectric or conducting section. This point £77 being

excluded by an infinitesimal circle, the theorem gives

= A(£r)) if £17 is within Sj

= for all other sections.

Adding together all such expressions corresponding to the entire

xy plane, the line integrals over both sides of all boundaries between

different magnetic media cancel, because of the continuity of

A, M, — it— and r— The integral over the infinite circle gives the
' ' ju dn m dn fe &

term A(oo). (However, it is important to notice at this point that

the same result would have been obtained if A were assumed to take

the asymptotic form A = A(co)+A' log r at infinity.) Replacing

V2A— -t— by its value — \(ipA — y<f>) from (8a) of Section II, gives, after

interchanging the notation of the points xy and £77

A(xy)+ipJj M(xy^r
l
)\(^A(^)-^M'j <fc&7=4(«o). (35)

Or since E=y<f> — ipA by (6)

E (xy) +ipffM (xyh) X (£77) E (£77) d^dr, = y<t> (xy) -ipA(^)

=F(xy)=y[(j>(xy)-4>(co)] + E(co) (36)

[Since E(oo) =7^(00) —ipA(os)]

where the integration extends over all conducting sections. The
equation must hold whether (xy) is a point in a conductor or in a
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dielectric. Hence, after the value of E has been determined for all

points in conducting sections, this equation becomes an explicit

formula giving the value of E at any other point. As a matter of

fact, the value of E at outside points is seldom of practical interest,

and the value of E in conductors may be found without reference to

its value in dielectrics. All of the conditions (8) except the last

have been assumed in the derivation of (35) and (36), and it is

easy to show from the properties of M that if this equation is

satisfied all of these conditions will be fulfilled with the exception of

the last one, which requires that r -r-f or r— \ shall vanish canonically

N
at infinity, a condition which is reciprocal with the relation 2 In = 0.

i

This condition will, therefore, determine the value of A (» ) or E( oo )

.

The integral equation (36) has a unique solution given in the form of

a definite integral when the second member F(xy) is any function

given in all conducting sections which makes this integral convergent,

so that the undetermined constant E(co) which made its appearance

in (36) must be so chosen as a linear function of the N constants

cv c2) cN that 2 -^n (where In is defined by (11) Section II)

shall be zero whatever the values of cv c
3 , . . . . cN . These constants

may then all be considered as arbitrarily assignable. It may be

noted that in case the Nth conductor extends to infinity the value of

E(co) must be zero since 7N is assumed to be finite. Also, in this

case <£N (» ) = 1 and n ( oo ) = when n^N. Consequently, the second

member of (36), namely F(xy), which has different constant values

on each conducting group, will have the value zero when xy is on

the Nth conductor, since

7[<H%yN)-4>N(°=)]+#(«)=Y[i-i]+o=o.

On any other conducting section S n it has the value yc a if n=4 N.

3. EXISTENCE AND UNIQUENESS OF A SOLUTION OF (36)

Multi; lying the expression (36)

[E{x'y')+ipffM{x'y'^) X (£„) E(fy,) d£ dv-F (x'y>)] =

by ipM (xy x'y') X {x'y') dx' dy' and integrating with respect of x'y'

over the entire range shows that if E satisfies (36) it must also satisfy

the equation

ip ff x oy) M (xv x'y') dx ' dy'-

(37)

[E {x'y') +ip fSMix'y'fr) X (£„) E (ft) # dv -F(x'y')] = 0.
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Conversely, if this equation is satisfied, we may show that the bracket

must be identically zero and, therefore, (36) will also be satisfied.

To prove this let the bracket be represented by h'(xy) +ih"(xy).

Then h'(xy) must be a real function such that

ffM(xyx'y') V (x'y') dx'dy' =

identically for all values of xy, and similarly for h". Denoting

this integral by V (xy) , it is evident that if V (xy) = identically then

V2 V (xy) = everywhere in the range. But V2 V (xy) = Airn (xy) h (xy)

as is seen by differentiation of the integral, and from the properties

of M. Consequently, h (xy) must be zero everywhere if h is such

that ff~h2dxdy exists. Therefore, the equations (36) and (37) are

reciprocal.

By making use of (36) the equation (37) may be written

E(xy) +fffdx'dy' M(xyx'y') X (x'y')ff M(x'y'fr) X (£„) E(fr) dtfr,

= F(xy) -ipffM(xy^) X (£„) F (fr) ^dV -

The second member of this equation will be finite even if the Ntb

conducting section extends to infinity, since F(xy) will vanish on

this section.

We may for the present limit the discussion to the case where aU

conducting sections are finite. The form thus obtained for the

solution then suggests methods of dealing with the equation with

open sections. With finite range the order of integration in the

preceding integral may be interchanged and the equation takes the

form

E(xy)+fffN(xyZv)M$v) Efo) d^dv =f(xy)

= F(xy)-ipffM(xyx'y') X (x'y') F(x'y') dx'dy f
(39)

where the new nucleus

N (xyfr) = N (frxy) =ff M(xyx'y') M(frx'y')\(x'y')dx'dy' (40)

is not only symmetrical in the two points, but is everywhere finite

—

a property not possessed by M, which becomes logarithmically

infinite when the two points approach each other. The theorems of

Fredholm are applicable to this equation and show that if p is not a

root of the characteristic determinant, there is one and only one

solution.

E(xy)=F(xy) -ipffft (xyfrip) F(^) d£dr, (41)

where yi(xy£r)ip) = V ,. f is the resolving nucleus of the primitive

39058°—25 4
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equation and is given by Fredholm's formula. It satisfies the two
integral equations

Mixyx'y') X {x'y') — SSlixyx'y'ip)

=ipff Mixyfr) X (|t;) ft (itvx'y'ip) d^dv

=ipffM(frx'y') X (x'y'm (xyknip) d^dv . (42)

It is evident that N (xy,xy) is finite since

N(xy,xy)=ff[M(x'y'^)]2 ^(x'y')dx'dy'

and the surface element when x'y' is near the point £tj may be

written in the form

I dd I rdr\ - 2/z logr =87tm2
(£'?)

J
r(logr) 2 dr

= 4717? (£»?)

e

2 log2 e-loge +
2

and this vanishes with e, showing that the element of the surface

integral near the point £77 contributes an infinitesimal amount to the

integral.

If p were a root of Ds{ip) = 0, then N would become infinite and

the solution impossible in general. But it is shown that in this case

there must be at least one solution E (xy), which is not identically

zero, of the homogeneous equation obtained by placing the second

member of (9) equal to zero. This solution E (xy) would also satisfy

E (xy) +ipSfM(xytr,)Uto)Eo (frj)d&r, = 0. (43)

If we write E (a;?/) = E' (xy) + iE" (xy) where E' and E" are real

functions, and multiply this equation by

[E' (xy) -iE" (xy)]\(xy)dxdy

and integrate over the entire range, we obtain

SfHxy) [E' *(xy)+E>' (?(xy)] dxdy

+ pffdxdyffd^dv M(xy^)\(xy)\(^) [E' (^)E" (xy)-E' (^)E

(xy)l = -ipffdxdyffd^dv M(xytr,)\(xy)\(mE' ^v)E' (xy)

+ E" (^)E" (xy)]. (44)

The second member of this equation is a pure imaginary, the first

member real, hence each side must vanish. The second integral on

the left vanishes because of the symmetrical property M(xy^) = M
faxy). Hence we must have

ff\(E'<? + E" ')ds = or E'o=E"o=Eo (xy)=0

and, therefore, no real value of p can be a characteristic constant for

the primitive integral equation. A unique solution exists for all real

values of p.
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4. OTHER METHODS OF SOLVING THE INTEGRAL EQUATION (36)

(a) By Normal Functions.—It is worth while to examine the

equation from the point of view of normal functions. The nucleus

N(xyx'y') is not only symmetrical and finite but it is definite, by
which it is meant that there is no real function Ti(xy) whose square is

integrable (that is, such thatJ*J"h
2 (xy)dxdy exists and is not zero),

which will make the integr&lJ'J'dxdy ffdx'dy' N(xyx'y')h (xy)h(x'y
f

)

vanish. This may be proven by noting that

ffdxdyffdx'dy' N(xyx'y') h{xy) Wy')
= ff\{kv)d^dy]ffM{xy^)Mxy)dxdyffM{x'y'^)Mx'y')dx'dy'

=ff X (&) d£ dr, [ffM (xyfr) h (xy) dxdyf

which is always >0 unless there is a function h for whichffM(x y^-q)

h(xy) dxdy = identically for all points £?? in the range. We have

just shown that no such function exists.

From this " definiteness " of N it is known that its characteristic

constants are infinite in number, real, and positive, and form a

denumberable ensemble of isolated points. To each such constant

rn
2 there corresponds a normal function un {xy) which is a funda-

mental solution of the equation.

uD (xy)-Tn
2J'fN (xy£rj) un (fr) d£ ^ =

The set of functions u^xy) ,u2 (xy) are infinite in number and

constitute a closed set of normal functions such that

Sfun(xy)um (xy)dxdy = if n^m
= 1 if n = m

and the nucleus N(xy&) is equal to the uniformly convergent

series

iVW^*^'' (46)

An arbitrary function f{xy) may be developed in a uniformly con-

vergent series of these functions in the form

f(xy)=Sfnun (xy) (47)
71=1

where the Fourier coefficient /„ is given by

fn =ff F{xy) un (xy) dxdy) (48)

00

provided, the series S/2
n is convergent. Since the set of normal
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functions is "closed" there is no function which is normal to all of

them; that is, orthogonal to N(xy^rf). The equation (39) may then

be written

E(xy)+f^^^-Jju D{^)M^)mv)d^drj ^f(xy) (49)

oo

= ^2fnUn (xy).
71=1

In the simplest case, where X has the same value in all materials,
oo

assume E{xy) = 2 Enun (xy) and substitute in (49). This gives
i

S «b (xy) [~£n +^En -fj\ =
m=l |_ T n J

giving

E = ^
i+x£

and the solution is

j-,, ^Fnun (xy) _ C Cm . , , ^ un (xy)un (£r])

v =STT^" J J
F(Mm ST^7~ (so)

T n T n

In the general case, where X has different constant values in dif-

ferent conductors, if we write

00

\(xy)E(xy)=52 b aun (xy)
71=1

and
00

E(xy) =2 Enun (xy)
71=1

and substitute in the equation, we find

71=1 L T n J

which will be satisfied if we may make

Now

or

where

^ED + b a =
T-^ for 71 = 1,2, 3 oo.

p2 P
2

b n = I

J

u n (xy)\(xy) E(xy)dxdy

=
1 I u n(xy)Mxy)ibEku k (xy)dxdy

oo

k=l

gnk=g kn- C I

x(Xy)u n (xy)u ]! (xy)dxdy.
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Hence, the constants En will be the solution of an infinite set of

linear equations

T2 °° T2 f^ Ea + ^2 gnk E* =
T-^ for n = 1,2,3 N

or

(j2+9n) El + g12 E2 + g 13 E3 «£j&

J2

P
29u Ei + fy+ff22j E2 + g23 E.

g31
E,+g32 E2 + (^+ g33^j E3

=^J-

This set may be solved because its determinant can not vanish for

any real value of p.

In case X has the same constant value on all conductors

grnk = if n^Tc

#nn = X

and we obtain the previous formula.

In the case where a conductor extends to infinity, the range of

integration is no longer finite and the characteristic values of a finite

symmetrical nucleus would no longer constitute a set of isolated points,

but would become uniformly distributed along the real axis every-

where equally dense. The representation of an arbitrary function

in an infinite series of normal functions, over a definite range, would
then give place to its representation over the infinite range by a

definite integral of which Fourier's integral is an example. Instead

of a solution in an infinite series of normal functions, one may expect

a solution in the form of a definite integral.

(&) Method of Successive Integration at Low Frequen-
cies.—It may be noted that the method of iterated integrations,

which is always applicable to Volterra's type of equation, may be

successfully applied to the present problem if the frequency is small.

This gives the solution in ascending powers of ip and is only applicable

for values of p less than the modulus of the first characteristic con-

stant of the primitive equation. The solution will be identical with

that obtained from the Maclaurin development of

in ascending powers of p. Although no real value of p can be a

root of D-x(ip) =0, nevertheless the Maclaurin development is

limited to the circle in the complex p plane, whose radius is less than

the modulus of the smallest complex root.
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(c) Method of Harmonic Analysis.—It seems probable that in

the majority of cases there will be less labor involved in solving the

differential equation with its boundary conditions by some sort of

series of harmonic functions, such as Fourier-Bessel expansions, than

in solving the integral equation for A (or E)

.

The differential equation for A suggests certain types of expansions

for A as a series of appropriate functions in each conductor or group

of conductors which will be normal functions for that section. If

there are groups of conductors in contact for which X or n have
1 dA

different values, the continuity of A and of — -^— at such internal

boundaries will lead to certain relations between the coefficients.

The mutual influence which the conducting groups exert upon each

other across the intervening dielectrics may then be found by assum-

ing certain forms of expansion for A in the dielectric and by then

1 dA
making A and - r— continuous at every boundary between con-

ductors and dielectric. This step may, however, be replaced by
the following process which avoids any reference to the dielectric.

id) Mixed Method.—Let xy be a point within any conducting

section, and with £17 as the variable of integration apply Green's

theorem to the two functions A (£17) and log r(xy^rj) for the entire

dielectric region. This gives

4(»)4/[^(h)ii5i«-,„g K*)^>=0
where the integration is taken in the dielectric just outside the

conductors and around the complete boundary of all conductors.

1 dA
Since A and - -r— are continuous at such boundaries, this necessary

condition which A must satisfy becomes

where the integration is taken around the complete boundary of all

conducting groups as before but just inside the conductors. The

internal normal ni points toward the boundary. If the series for the

internal values of A at each conducting group be introduced into this

integral, the result must be identically true in whatever conducting

section the point xy may be. By expressing this fact, when xy is

in each group in succession, the required number of equations be-

tween the coefficients are obtained. This method is illustrated in

the case of two circular cylinders at the end of this paper.
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5. FORM AND PROPERTIES OF THE SOLUTION

The n functions o}
t
(xy), to2 (xy), coN (xy), which are defined as

the solutions of integral equations of type

wk (xy) + ifffM (xyfri) X (£77) cok (fri) d^dt\ = fa (xy) (52)

are all linearly independent, for if there were a relation of the form
N2 ^k^k (xy) = the above equation, on being multiplied by h^, and

the sum taken for all values of Tc leads to

N N N
2 frkWk (xy) +ifffM (xyfyi) X (&;)27W (to) d^dy =2 Mk (xy) .

fc=l fe=l s=i

y
The hypothesis leads to the conclusion that 2 hkfa (xy) = for all

values of xy in the range. But since fa(xy) =1 when xy is on con-

ducting section #k and equals when xy is on Su where n^Tt, it

follows that 7^ — h
2

=^n = 0.

It is also evident that the only solution of

u (xy) + ifffM (xyfri) X (£77) a (£77) dJ&q = 1

is
TV-

CO (xy)=2wk (xy).

The solution for E is therefore

iV

E (xy) =2 [YCk- ifA ( 00 ) ] Wk (xy) (53)
fe=i

and

/n = 2[7Ck-ip^(»)&DiJ (54)

where
bn* = ff\o>kdSa (55)

the integration being taken over the section Sa of the nth conducting

group. The array of complex constants &nk is symmetrical; that is,

&Dk = frkn- (56)

To show this, multiply the equation for wk by \(xy)wn (xy)dxdy and

integrate over the entire range. This gives

ff X (xy) con (xy) cok (xy) <Zxdy

+ifff dxdyff d^drjM (xyfri) X (xy) con (xy) X (£77) cok (£7?)

= /*y X (xy) wn (xy) </>k (xy) dxdy =ff\wa dS* = 6kn -
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If we multiply the equation for ua by \uk dxdy and integrate, the

right-hand side is &nk and the left side is easily seen to be identical with

the above on account of the symmetrical property M(xy£r)) = Mifrxy).

The constant A(<x>) must be so chosen that the sum of all the

currents In will vanish. If the expression (53) for E be multiplied

by \{xy)dxdy and the integration taken over all conductors, this gives

\Edxdy=2ln = =72ck \{xy)w ]L {xy)dxy
J J n=l k=l J J

—ip A(co) X 2 uk (xy)dxdy

or
JV JV

7 2 2 &nkCk

= 7 2*k(»)ck (57)

(58)

ipjx (,<»;— Hj{<x> ) -\- yep { <x> j — jy-

jv

2 2&nk
71=1 fc=l

where
JV

2&nk
Or Ccol

M=1
^klWJ jv JV

2 2&ns
w=l s=l

which shows that

S*k(°=) = l.
)t=i

In order that it shall always be possible to thus choose the constant

yl(») as in (57), so as to make 2 ^n = 0, the denominator in the

above formula for SJ'kX 00 ), namely,

jv jv r r
2 2 J«k or US^k (xy)dxdy
m=l fc=l J J

must never be zero. To prove that this can never vanish let

JV

"(a*/) = 2 uk (xy)=u(xy) + iv(xy)
fc=i

where w and v are real functions satisfying

u(xy)-pff M(xy£ri) X (f q)v (£17) <?{<Zq = 1

v (scy) +p/y M(xy£r,) \{£v)u (£17) cr

7
^/?? = 0.

Multiply the first of these by \(xy)u{xy)dxdy , the second by
\(xy)v(xy)dxdy, add the results, and integrate over the range.

This gives on account of the symmetry of M
ff X (xy) [u2 (xy) +v2 (xy)]dx dy = ff X (xy)u(xy) dxdy

Now, if the sum in question were zero, then

ffkudxdy = ff\vdxdy =
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and in this case the above relation would require that u and v and

hence
N

«= S wk (xy)

be identically zero at all points of the range, which is never the

case since the functions cok (xy) are not linearly dependent. This

shows not only that the double sum in the denominator of (58)

never vanishes, but that its real part is always positive. Conse-

quently, it will always be possible to choose A(oo) by (57) and (58),

so that the sum of the currents will vanish. A similar treatment of

wk (xy) shows that the real part of 6 kk is positive and less than p ,n .
•

Inserting the value of ipA(co) in the expression (53) for E{xy)

gives
N N N

E(xy)=y 23 c kw k(xy)-7S <»s(xy) S^k(°=)c k
ft=l s=l fc=l

n r iv -|

=7S«k wk(sy)-*k(«>) S«8 (sy) •

t=i L »-i J

If we define the new set of functions Qv Q2,
• .• • • fin fiN by

Mzy)=w k (xy)-*k(co)S ws (xy),£ = l, 2, • • • N (59)

then

£(xj/)=7SckQk (x2/). (60)

From this definition it follows that

ff\(xy)^(xy)dxdy = 0, Tc = l, 2, 3 • •- •. -N. (61)

Substituting
iV

wk (xy) =flk (xy) +^k (co) S ws (xy)
s= l

in the integral equation (52) for w k gives

Qk(xy)+ip/yjf(xy^)X(^)Qk (^)^^+^k (co) s o>s (xy)
5 = 1

+ ipffM(xyZr,) X (I,) Ws (^) <Z|cZi7] = k (xy).

The bracket in the equation is just </>s (xy) and S <£s (zy) = 1.
s= l

Hence, Qk (xy) is the solution of the integral equation

Ok(xy)+^yyJ/(xy€)?)X(^)fik(«'7)^J7 = *k(xy)-^ k (oo). (62)
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This equation suffices to uniquely determine each function Q k (xy)

at all points in conductors. However, the N functions thus deter-

mined will not all be independent for since

S* k («)=l
fc=i

it follows from the definition of fik that

N
2fik0n/)=0. (63)
h=l

If we define the coefficient /3nk by

|8nk==//XQk<Zffn. (64)

Then the array of coefficients /3nk is symmetrical.

0nk = /?kn. (65)

This is proven in a manner precisely similar to that used in proving

ink = &kn- The constants /3nk also possess the property corresponding

to equation (31)

20nk = O fc = l, 2, 3 N. (66)
71=1

The equation of definition of current for each conducting group

takes the form

N N
4 = 7Si8nkCk = 7S^nk(c k -cN) for 71 = 1, 2, 3 . . . N. (67)

fc=i fc=i

From some points of view it is more simple to introduce in place of

the function flk the functions ^(xy) ^n(xy) defined by

^k (xy) = <£k (xy) - Qk (xy), (68)

Each must be the solution of an integral equation of the type

¥ k (xy) +ipffM(xy^)\^r,) [*k (fr) .-**(&»)] <&&? =¥k ( » ) . (69)

This equation suffices to uniquely determine V(xy) at all points in

conductors and serves as a definition of ty k (xy) when the point xy

is in a dielectric. The vector potential A(xy) is given at any point

xy by

A(xy)=^^2cMxy) (70)
* P fc=l

which presents a certain formal analogy to the expression for the

scalar potential
N

<t>(xy) = 2ck <j>k(xy).
fc-i
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The set of functions ^^(xy) and faixy) present a close analogy, for

the symmetrical set of complex coefficients /3nk are analogous to the

set ank . In fact, the previous definition of /8nk may be reduced to a

form precisely similar to that of ank , namely,

(3nk = -

k~l^ ^ (71)

(72)

4:Trip

where the integration is taken around any closed curve in the dielec-

tric region which encircles the nth conducting group only, and where
the normal points toward this conduction. This is evident since

SI^i; is harmonic in the dielectric, from its definition. Also since

/yXQkdxdy =S y/XQ kdSn = ff\* kdxdy = S/3nk=

it follows that ^(xy) approaches the finite constant value ^k (o3)

when the point xy moves off to infinity. The r-^ = 0. Bv

differentiating the integral it is seen that

V*&t(xy) = if xy is in a dielectric

= 4irip/jiK'^k(xy) if xy is in a conductor section

Sn and n^h
= 4irip/A [^k(xy) — 1] if n = Tc

The analogy to S 4>k(xy) =1 is the relation
k-l

S*k(sy)=l (73)

It is also evident from the properties of M that ^(xy) and —r-^

li an
are everywhere continuous. The integral equation for ^k will

determine its value in conductors without reference to the dielectric.

However, it may be more convenient in practice to determine these

functions by the methods of harmonic analysis. The foregoing

differential equations and boundary conditions suffice to uniquely

determine them at all points. Only TV— 1 of them need be com-
puted, the remaining one being given by (73), which holds at all

points. The condition that _ (r -^ j
= will (together with the

other conditions) determine the value of ^k (oo).

It is evident from this point of view that the case where a conduc-
tor extends to infinity presents no exception to the general form of

solution or the properties of these functions. The foregoing method
of determining the N function of SE^, only N— 1 of which are inde-

pendent, amounts to a determination of the constant of integration

A(co) at the outset so as to satisfy the condition S -^n = for all

values of y, cu c2 ,
cN .
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The following alternative procedure amounts to an elimination of

this constant A(<x>) and leads immediately to a value of y and the

reactance of the system; in fact, to all information of practical value.

While not as symmetrical as the first method, it is essentially the same
and possesses the advantage of leading naturally to a notation which
reduces to a familiar one when the conductors are linear or the fre-

quency low. It consists in finding the N independent functions

oi
1
(xy)co2 (xy) uN (xy), or what is the same thing, the TV

independent functions which will be donated by the small letters

rp
1 (xy)\l/2 (xy) .... fa(xy) and defined by

<Ak (xy) = <£k (xy) - wk (xy) (74)

The integral equation for wk (xy) shows that \{/k (xy) is the solution

of the integral equation

Mxy) +ipSS M{xyb)\to)ih(fr)a&n
-ipffMixytoMMfciMd&T, (75)

This serves to uniquely determine fa(xy) at all points in conductors

and thence to define its value at all dielectric points. For the

practical evaluation of \^ k (xy) by harmonic analysis, as the solution

of a differential equation with certain boundary conditions, we may
derive the following equations and conditions which $k (xy) must

satisfy from a consideration of this integral equation.

By differentiation under the integral sign one finds from the prop-

erties of M that

(a) V2
r/'k(x?/) =0 if xy is in a dielectric

= <±iripiA[ip k (xy) — q>k (xy)] if in a conductor

Co) 4/k and - -tt- are continuous

(c) ^ k (xy) =Dk log r(00xy) at infinity, where Dk is a determinate

constant not assignable.

These conditions are easily seen to be reciprocal with the integral

equation, which may, in fact, be derived from them just as the equa-

tion for A and E was derived. Since

N
Eixy) = y<j>(xy) -ipA(xy) = y^2c k 4> k (xy) -ipA(xy)

k=l

the vector potential A(xy) at any point in the plane will be given by

N
ipACzy) =ipA(<x>) +^[yCk -ipA(co)]t k (xy) (77)

k=l

and

/n = 2[7Ck-*P-4 (»)]&„* (78)
k=l



snow] A. C. Distribution in Cylindrical Conductors 311

The definition of & nk already given is easily seen to be equivalent to

^-M^*** (79)

taken around any closed curve in the dielectric which encircles

the nth group of conductors only.

6. COEFFICIENTS OF RESISTANCE AND INDUCTANCE

If it can be shown that the determinant
|

Z> nk |
formed with the

array of constants & nk is never zero, then the equations (78) may be

solved giving the forms

7Cs-^(co)=S2sk/k fors = l,2,3 N (80)
k=l

where
zsk = Rsk + ip Lsk (81)

and the real constants Rsk and Lsk are coefficients of resistance and

inductance, respectively. Since they are derived from a system of

equations with a symmetrical determinant, the coefficients 2nk are

symmetrical.

Rnk = R\tn

2nk=2knOr (82)

i'nk = -L<kn

The determinant |&nk |
can not vanish for any finite value of p with

finite conductivities. For we have shown that it is always possible

to so choose the constant A(co), without making each current In

vanish, that the sum of the currents 2 ^n shall be zero for every
n=\

possible assignment of values to the N constants cv c
2 ,

• • • • cN , and a

direct contradiction to this fact may be obtained by assuming the

determinant |& nk
J

to vanish. For in that event, it would be possible

to choose the constants cv c2 ,
• • • • cN not all zero, such that

S&nkC k = for 71=1, 2, 3 N

in which case each current In would be given by

N
In = -ipA(co) 2&nk

fc=l

and if

N N N
22ln = 0=-ipA (oo)S 2&nk

this will require that A(<x>)=0, since it has been shown that the

double sum can never vanish. Consequently, this would require

that each current I
x
= I

2
• • • • = 7N = 0.
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Therefore, the equations (78) may always be solved and the coef-

ficients -Rnk and Znk found. This being done, it will appear that the

value of 7 and the reactance of the line may be found without the

necessity of computing the value of A ( co )

.

In case the frequency is very small, the function a> k (xy) is almost

identical with <£k (xy) so that & nk approaches zero with vanishing

frequency if n^Jc, and &kk approaches p ,„v where Rk (0) is the direct

current resistance per unit length of the Tc
th conducting group. The

determinant |& nk [
approaches

^(0)
u

1

fl2 (0)

RN (0)

(83)

The current distribution is practically uniform over the section of

each conductor and RQn approaches Rn (0) while i?nk becomes negli-

gible if n^ \ with vanishing frequency.

This approximation neglects ^ k because of the smallness of p, but

the next approximation gives

\l/^(xy)=ipffM(xy^rii)\(^rik ) dS*

which gives

&nk= -ipff dSn ff dS*\(xn yn) M(x n yn ^7}k) X (£k ??k)

ink
- ^ Rn (o) R*(0)

And when n = Tc

1

if n^lc.

L =
fln(0)

ipffdSnffdSyX (x Dy a) M (xny n£ B ri n) X (£ Dr)u)

~R n (0)
%v RAO) 2

'

The equations of definition of current (78) become

, \cn -ipA(ca) . * \c^-ipA(co)Lak
la ~ R D (0) ~ %V h fik(O) ff„(0)

(84)

for n=l, 2, 3 N.
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The first approximation to a solution is

#k(0) ~' k

and placing this value in the above summation gives

ycn -ipA (oo) = R n (0) In + ip~E} ink4

313

(85)

T _•

which shows that for low frequencies RnQ =En (0) and i?nk = 0, w^fc

while

£nk = £kn = Sn (0)£k (0) ff\(x ny n)dS n .

yyX(€k17k)^kM Un^/n^k)

yy X (a; nyn) <Zfln yy x (£k?7k) ^^(znyngkqk)
yy x dnyj ^n yy x (^ k) <zs k

If X is constant over Sn and Sk then

ffM(x ny n^ D7i n)dxndynd^dvk

SnSk

If, further, there are no ferromagnetic materials in the system Znk

reduces to twice the negative of the geometric mean distance of the

sections Sn and $k . The approximations have been carried far

enough to show, therefore, that the functions of frequency i?nk and
ink reduce (for low frequencies) to their ordinary values, which are

familiar in the discussion of linear circuits.

V. THE PROPAGATION CONSTANT y. ATTENUATION AND
PHASE VELOCITY

1. DETERMINANTAL EQUATION FOR y

The attenuation o and phase velocity V are determined by the

equation (1) when the complex propagation constant y is known.
This must be so chosen as to render compatible the two systems of

equations (30) and (67).

N-l
"J

7-7n = 2<*nk (ck— cN) for w= 1,2,3 N

N-l
/n = 7S/3nk (Ck -CN)

k=l

for n=l, 2, 3 • • • •

N
„where ank = akn,S«nk =

N
/Snk = |8nk, S/3nk =

fc=l

Eliminating 7n gives N-l linear homogeneous relations of the type

N-l
2(ank-72

/3nk)(ck -cN)=0™=l, 2, 3 N-l (86)
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They will be compatible if and only if y
2

is a root of the algebraic

equation of degree iV—1 in y
2

, obtained by placing the determinant of

their coefficients equal to zero. That is, if

then y
2 must be a root of

5nk=ank — 7
2
/3nk (87)

°11 5
12 ' '

"21 "22

• • • &t N-i

"2 N—

1

"N— 1> N—

1

= (88)

JV

Since S 5 nk = 0, one may, by adding all the other rows to the
fc=i

first row, and all the other columns to the first column, show that the

equation is the same as if ct , or any other cn had been taken as a

reference potential instead of cN . Another form of this equation

will be obtained if one makes all of the JV equations (80), namely,

JV

ycB -ipA(co) = 23 2sk Ik-
fc=i

s = l, 2, 3 N

compatible with all of the JV equations (20), Section III.

JV

7
2
-7n =2 <* aaycB

Since
s=l

JV

S «nS = for n=l, 2, 3 JV
s=l

this may be multiplied by ipA(oo) and subtracted from the above

giving

n=l, 2, 3 • • • JV (89)

JV

7
2 /n =S a ns [yca -ipA(co)]

s=l

Substituting in these equations the value of yca — ipA(<x>) from the

above gives JV linear homogeneous relations that must exist between

the JV currents, namely,

where

JV

7
2
In =S Znklk • • •

fc=l

JV JV

n = l, 2, 3 JV (90)

Znk==2an8 2SkSo that S Zn*= for fc= 1, 2, 3 JV (91)
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These equations will be compatible if and only if y
2 is a root of

Z„-

'21 T
'IN

'2N

= -T

^11 ~72 Z12
-

•7j

'IN

y
21

Z22 -72

'N-1, 1 'N—1. 2

1 1

Zn-i, n

1

-7 2SAk =
fc=l

(92)

where Ak is the minor formed from A by suppressing the Tc
th column

and last row.

The second form of determinant is obtained by adding all the first

N
N— 1 rows ofA to the last one and noting that22^ = 0, & = 1,2,3- • • - N.

71=1

The row whose elements are unity could thus be placed in any hori-

zontal line of A. Thus, A = is the same equation as that obtained
N

by combining the relation S ^n = with any N—l of the relations
i

(4). There will be N—l values of y
2 in addition to the value 72 = 0,

which are roots of this equation. The latter leads to no possible

solution ; that is, a zero field everywhere.

If 72 is a root of A = and any N— 1 of the equations be solved

for N—l of the currents in terms of one of them, this leads to the

relation

or

In = DAn n = l, 2, 3 N
where D is an arbitrary constant. The set of equations

N N
7Cn-'£M-( 00

)
==2ZnkJk = #SZnkAk 71 = 1, 2, 3

ft=l Jfc=l

(93)

(94)

N

gives any potential difference

N
7 (Cn - CN) = DS (Znk - ZNk ) A k = D

fc=l

7
2 Z

Z
2 1

7 _"N 1> 1

12 'IK

' ^N—1> N
'Zn^— ZNN

(95)
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which shows that y and the reactance of the line may be found with-

out computing A ( co ) . Its value, however, may be found in terms
of 0(00) by multiplying each equation of type (80) by <j>s

(<x>) and
summing with respect to s, noting that

N N
S</>sO) = 1 and720s (c»)cs = 7^(cB)

This gives
N N

E(co) =74>(co) -^(»)=SS0n(«>)Znk/k
JV N

= ^22^(<»)2nkAk (96)
71=1 fc=l

Except for the fact that the terms Znk are functions of the frequency,

the equation (92) for 7 is the same as in the case of linear circuits,

and it reduces to the same form with vanishing frequency.

2. DETERMINATION OF CONSTANTS TO FIT TERMINAL CONDITIONS

For each value of y
2 which is a root of A = 0, there are two values

±7 corresponding to a forward and backward wave, each con-

taining an arbitrary constant D. In general, there will be 2N— 2

wave types and this number of constants D. It is evident that if the

circuit equations involving the currents, potential differences and
impedances of the terminal apparatus are written for all the inde-

pendent modes of connection of the cylinders at the terminal z= 0,

and z = I, these with (94) and (95) will afford the necessary and suffi-

cient number of relations to determine the 2N—2 constants of type

D and hence to completely determine the field. There are N—l
independent modes of connecting the terminals of iV cylinders at

each end.
3. SPECIAL CASES

(a) Case of Two Conductors—
«11 = «22 ~ — «12 = —OC21 = G12 +ipC12

_ f R12
= R2l

212
— 221 \ T _T

\ I^12 — I^21

Zu= -Z21 = an zn + a12 z21 =(G12 + ipC12) (zn -z12)

^22= — ^12 :=Q:
21 212+«22 222 = (^12 + *P^ll) (222

—^
y
2 = Z ll -Z l2 =(G12 + ipC12 ) (zn +z22 -2z12)

yc
1
-ipA(«>)=z11 I1

+z12 I2
= (zn -z 12)Ii

yc2
-ipA(co)=z

21 Ii
+z22I2 =(z12 -z22)I1

y(c1 -c2)
= (z11 +z22 -2z12)I1

=(R+ipL)I
1

(97)

where R and L denote resistance and inductance of the line per unit

length and are defined by

R=Rn + R22
— 2 R

12

Lt I <n + -t>22 ~~ ^ -^12

y>=(G12 + ipC12
)(R + ipL) (98)

p- and C12 are the insulation resistance and capacity, respectively,
"12

between the two conductors per unit length.
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(&) Uniform Proximity Effect.—If the sections of the con-

ductors are all small compared to their distance apart, the general

equation (36), Section IV, breaks up into N independent integral

equations of the type.

E(x Dy n ) +ipffM (xnyD^n Tf]n)\(^ n ri n ) E(£ nVn) d£ ndri n

= -ipS /

-3sf(*nyn£k'7k)yyM£k»fk)#(£k'?k)$k*?k

+ ycn — ipA(<x>) (99)

where 2' denotes that the term corresponding to Tc = n is omitted
k

from the summation. These terms may be written ipy^'L^^K
k

where

Znk =Xkn = if (a;nyn^ k 77k) = a real constant

= — 2 log r(ai n ?/ n£ k ?7k ) if all materials are nonmagnetic (100)

The integral on the left side of (99) is taken over the section of the

nth conductor, the effect of the proximity of other conductors being

uniform over this section and represented by the summation on the

right side. The entire second member of (99) is constant, say Dn ,

over the section S a . This equation may be called the "skin effect

equation," since the proximity of other conductors does not affect

the relative distribution of current in any one. Its solution will be

of the form

E(x nyn)=D nFn (xnynip) (101)

Multiplying by y ndxndy n and integrating over the section Sa gives

In = Dnffy(xnyn)Fn (xByQip)dxndy a (102)

Since this integral can never vanish (equation 58) , the real functions

of frequency Rnn and LRQ may be defined by

Rnn + ipLan =sfKFa (Xay aip)dSn
(103)

If we also define i?nk to be zero if n^Jc and replace D n in (101) by its

value

ycD -ipA(<x>) -ipS'-knki'k
k

it reduces to the general form (80) Section IV

N N
yc2- ipA ( » ) = 23 CSnk

+

ipLDk) Ik =2 2nkh (104)
ft=l k=l

The completion of the problem is the same as that outlined in general

in this section; the coefficients of leakage and capacity must be
found in order to write out the determinant for y

2
.
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VI. ENERGY RELATIONS AND MEAN VALUES

Suppose 4>, A, and E have been found in the form qS'+'i^",

A' + iA", E' -\-iE" where 4>' 4>", etc., are real functions of xy and p.

The instantaneous value of any of the above quantities is found by

supplying the. exponential factor e ivt~yZ = e~'bz.e iv{t-j) and then

taking the real part.

If P = P' + iP" and Q = Q' +iQ" are any two typical quantities

of this kind, the time average of the product of the instantaneous

(real) values of P and Q is found to be

j—2 bz

(

P' Q'+P"Q"
)

The time averages which will be dealt with in this section presuppose

a single type of wave corresponding to one value of y only, and

obviously do not apply when more than one type of waves coexist

since it is the field components and not the energies that are additive.

Consider the medium between two planes perpendicular to the z

axis at z and z+dz. Denote the time average of the rate of flow of

energy through the plane z = constant, in the positive z direction

by e~ 2 bz F. There is no flow of energy in this direction in conduc-

tors, it is all in the dielectric and flows laterally into the conductors.

Denote the mean rate of heating in all the conductors between these

two planes by e~ 2 bz dz W , that in the dielectric by e~2 bz dz W^.

Also let e~2 bz dz U and e~2 bz dz T denote, respectively, the time

average of the electrical energy in the dielectric, and of the electro-

kinetic energy between these two planes. The former is localized

in the dielectric only.

The definitions of these quantities lead to the forms

F i_ f rw
SttJ J l_d*

dA'
,

d<t>' dA'
,

dcj>" dA"
,
34>" dA"

dx

W d =y/X

dy dy dx dx dy dy ]
dS

dS

U
SttJ J c

2 _

va^'Y
,

/5<A 2

, fd^"\\ fd <t>"\
2

dS

where the integration is over all dielectric sections in the plane.

Wc yyx(
'2

±vi)ds

over all conducting sections.
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VfdA
'"

=
8^J j M

319

dx

V
,
/dA'\ 2

,

fdA"\ 2
,

/dA"\ 2

<zs

over the entire plane

4//=
Fi' + Fi"\

;
<ZS

over all conducting sections.

The justification of these expressions of Wd and U lies in the fact

that (^+42) E 2
is infinitesimal compared to

ipTc\r/d^\ 2 (d4>\n

hmii4:irC
2
J \_\dxj \dy/ J

The formula is correct to first approximations even in those cases

where the constant E(co) is not zero, for a second approximation

would make E vanish at infinity without affecting the first approxima-

tion to current distribution in conductors, or to xy components of

leakage and capacity current in dielectrics.

The differential equations and boundary conditions which <j> and A
satisfy lead, by simple transformations of the above integrals, to the

following values, (if y=b 4- -£

j

F=\^{c\I\ + c\I\)

Wd =l^[c' k (G'k -pQ" k)+c\(G" k + pQ
f

k)]^ fc=i

U=^-£[c' k (G" k + pQ' k)-c\(G' k -pQ\)]
^-P ft=i

— l N

fc=i L
i(c\I\ + c\I" k ) + ^(c\I\-c\r k)'j

Since

T = ~^£[(c' kI\ + c\I\)-b(c\I\-c\r k)]

lh = 9k + ipqk

{

-^I'k + bI"k = G" k +pQ\

so that the above expressions for Wd and U may be put in the form

wd=l^b(c'k i> k +c'' k r'k)-^(c'k i''k -c'' kr k)']

ud=^p[j/ (c' kr k +c'\r\) + b(c\r\-c'\rk)'j
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From these expressions it is evident that

and

Wc-Wd^(U-T)

— w _L w. — —
F= w

°2
b

Wd =V(U+T)

That is, the mean flow of energy e~2hzF through the plane z =
constant is equal to the phase velocity V, multiplied by the density

per unit length along z of the total electric and magnetic energy

e
-2bz( j7_j_ j^ The iast equation may also be put in the form

which states that the excess of mean energy flow into the medium
between the planes z and z + dz is equal to the mean rate of dissipa-

tion of energy between these planes.

It may be noted that the dissipation of energy Wd in the dielectric

may be of the same order of magnitude as that in conductors Wd .

If these two should be equal, then the mean electrical and magnetic

energies would be equal as in the case of homogeneous waves.

The relation
N

7Ck—£pA(a>)=S (^nk+ii>ink)/n
n=l

enables us to write

w.-s j:bJ d k+
9 )

71=1 fc=l \ I /

— 1 N N /I' I'^A-I" I"Ar4ssu n t+
;

n k

)6 n=l 4=1 \ ^ /
The relation

yh=gk+ipqk= 2 (G^+ipCn^ic^-cJ
n=l

leads to

n=l k=l
D
L 2 J

V_l£™ c
r(c\-c'v)(c'x-c\) + (c'\-c"J(c"„-c ,

\) -l

2 »=i t=i |_ 2 J

If the new real quantities RD and Ln be defined by the equation

N N
S^nkAk 2 (#nk+'ip£nk)Ak

B^pLa= An
= —
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Then
yen -ipA(co) = (Rn + ipLn)In ='^2 (RD k + ipLnk)Ib

and this gives the simpler forms

jv r/7 2i j" 2-i

Such expressions may, however, be misleading on account of their

simplicity. For example, the heating in the nth conductor is not

-7V+7'V
Ri

in general, but is

rzv+z",'!

ff\(E" + E"*)dS n

VII. EXAMPLES AND APPLICATIONS

1. CASE OF TWO CONDUCTORS WITH CIRCULAR SYMMETRY

The only interest that can be attached here to such a well-known
problem is to show that the integral equation for say u

l
does uniquely

determine w
1
and hence

\f/ l
= 4>1

— u
1
without reference to any boundary

conditions. Hence, the simplest case is taken of a circular cylinder

of radius rx
with a return conductor in the shape of a concentric

shell of inner and outer radii r2
and r3 , respectively, both conductors

being nonmagnetic and having the same conductivity, and the

dielectric being air.

In this case if h2 = — 4 ir ip X

n>r£0 ri>r>Ti n>r>n T>r,

*i=l
log-L

log
rT

*i-l+ CiMhr) Cj+Cjlogr CtJ<,(hr)+CiK (tir) Ct log r

These forms are required by the differential equation for ^x (76a).

Writing out the equations, the boundary conditions for \p (76b) and
(76c) , and eliminating the constants C2 , C3 , and C6 , which correspond

to the dielectric regions, letting

P(x)=J (x)-(logfyxJ' (x)

Q(x)=K (x)-(logfyxK'(x)

gives the three equations

-P (Xl) C. +P (x
2) C, + Q (x

2 )
Cs =l

*-x
1
J' (xj) C± + x2 J ' (x2) Ct + x

2
E' (x2) C3

=
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The determinant of these three equations can not vanish for any

real value of the frequency, hence they determine Glf C4 , and C5
.

To show that the integral equation for w
t
leads to the same values

of these three constants directly, express M(rr') in the form

M {r r') = -2\og R {r r') = -2

Where

, „ » . ,. cos n{0-6')l
a (rr')-^2an {rr')

n=i n J

a (rr') =logr if r'<r
= logr'if r'>r

an (rr')=C-\ D \ir'<r

= (^)
nifr ' >r

Since w, is a function of r only and not of 8 in both conductors, the

integral equation for co
t
reduces to

to, (r) +Kfa {rr') . r'^ {r') dr' =^ (r)J
Jjjj"^

1

where the integral is taken over both conductors. This equation

has one solution and one only, and if we assume the form

"i (r) = - C
t
J (hr) r<r

t

= — (74 J (hr) — <75 K {hr) when r
2
<r<r

3

and substitute this form in the above equation, it requires that

-P («0 Ci + [P (x.) -P (a3)] C4 + [£ {x
2)-Q (x3)] tf8 = 1

- a5
x
J (Xj) C

t + z2 J' o (x2 ) <74 + x2
K' {x2 ) C5

=
P(x3)C4 + £(x 3)<75 =

By adding the third of these to the first the same set of equations

for Gv C4 , and (75 is obtained as was found by satisfying the differ-

ential equations and boundary conditions. This shows that the inte-

gral equation will uniquely determine the field without any reference

to boundary conditions.

It may be noted that E{<x>) =yct>{co) — ipA {co) can not vanish in

this problem.

In evaluating the integrals to obtain these equations, use may be

made of the fact that

xdx^
xJ

°^ + Jo ^ = ° X J°^ =
~dx ^-

xJ '°^
and

x\ogxJ {x) = --^[xlogxJ' {x)] +—j~
with similar formulas for K {x).
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2. CASE OF TWO CIRCULAR, CYLINDRICAL CONDUCTORS OF
DIFFERENT CONDUCTIVITY, PERMEABILITY, AND RADIUS, SUR-
ROUNDED BY A HOMOGENEOUS, SLIGHTLY CONDUCTING DIE-
LECTRIC. MIXED METHOD

In this example the mixed method of Section IV will be employed.

0, o t «s

Fig. 2.

—

Sections of two unequal cylinders

7i,=V27rpMiX1
(l-i) and x

1
= y^

1
a

1
=y^^(l -i)

^2=V2irpM2
X2(l-i) and x2

= Ji
2a2

= Jj^j£(l-i)

(106)

Assume the form

J C J Qi
1r1 .

) +^CnJn (h1
r

l) cos nd
71=1

,]if P{rA) iis in No. 1

A =-& ~ d^VoCVa) +2Wn(W cos nd2
lif P(rA) is in No. 2

(107)

The equation which must be identically true when the point P is

within either circle is (51).

*-) -£)*{>w.)A iog EiP Pg-!^^(M)W]

+ i

(108)
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In case 1, P is inside circle No. 1

^/r^r./N i ^/r,\k cos £(0.-0',)
log R(P P\) = log a

t
-S^j f—L

log R(PP>2)= log ft-g(2) T1-^

In case 2, P is within circle No. 2.

bg BV P\) = log Pl
- S(fj

COS *»',-«,)

log fl(P P',) -log «,-g(*)'
C°st ^- 9

'

J

If the expressions (107) for ^4 be used in (108) and the terms be

written out for case 1, the corresponding equation for case 2 may be

formed from this by a permutation of the subscripts 1 and 2 and of

the constants Ca and DB . In case 1, the equation (108) becomes

^L(co) = ^fd0\ {[g00(/ W -£j CnJQ {x x)
cos n

0'J

+^[GU'o(*l)+S Cn/'»(x,) cos n 0\].

+ gjTV, { [^ -D J (x2) -S OnJn (x2) cos n 0'
2]-

+-2 TzVoOr,) +S DvJ'vix,) cos n0' 2l.
A*2 L »=1 -I

r. » /a
2V cos fc(0' 2

-<*
2)1 1t^^sy

—

e
—

j /

Or, after integrating with respect to 0', and 0'
2

i(.)-f-l.ft[j.W-^^]

-is^W+i-^J^Jcos^, (109)
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Introducing into (109) the expansions of the triangle

acosn0
1

325

logP, = log S-!!^)°(^ n

(#-*-(#{ 1 +2 l*+fc-i /o,y/r;
71=1 n Tc- K?)"©"~»M

gives, after inverting the order of summation of the double sum

0= yc
1
-i

?
A(co)_rjM _ XJ>M log oT

|
+/>Po xJ^A log

W L Mi J Ma

+ 2- 2 A. [AW ^F-JW

-MS)'~"M*-w +^]XjJ nV^i) I |

L^L) X2J o\X2 ) /(^i\

-^m^rni/^
Mi W J M2™

x2Jk (x2)

(?)"

M2 fc 2

Since this must be identically true whatever the values of r
l
6V the

coefficient of r\ must vanish for every value of n = 0, 1, 2, 3 • • • • oo.

If for brevity one writes

Qn=~~ (j
2

)

D

[m2nJn (x2)
- x2

<7' n (x2)]

and
4mj V

for 7i=0, 1,2, 3 --oo (110)

Pn=~j^ (jjj [MinJ„ (xj - XlJ' n (x
t)]

this identity gives the set of equations

-/, g$+ 2V. [log *-$&]- -2% log .-fi=f£<=>
(111)

r ^ lE+Azl « _/AVn MinJ
r

n (x
1
)+X

1
J /

p ( a; i)

for 7i= l, 2, 3- • • • oo

The corresponding set

-^|^+« [loga2-^)]=-2/1PJogS-^^
'

(112)
„

\

n + Jc-l _ AsVn
M2
nJn (x2)+x2

J'n (x2)

^felw-llJk-^ W ^n(x2
)-x2J^(z2

)^--^oi *

for n=l, 2, 3 • • • • oo
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are obtained from this identity in case 2 where the point P is within

the second circle, by permuting the subscripts and constants.

Since E=yc
1
— ipA in cylinder No. 1

or

Similarly

T
1
=ipI1C 2ir\J\j (h1r) dr=

IlCoXJ'o{Xl) =2lt

2P =+1

lPn

C a* ID x ,T (r )

I2 =ipI2D 2Tr\2

j o

rJ Qi
2
r) dr=

l^oX^oKx2) = +^
Hence

2P = 2# =+1
Placing these values of P and Q in (111) and (112), and placing

k=-h gives

\n + Tc-»
\

n + Jc-l /s\n
lllnJn (x

1
)+x1

J'n (x
1) p

&\n-l\k ^k+W ^nJnixJ-xJ'Axj^-

fc=l n- riF Pk+GQ\/ lx2n" n (^2) — ^2"

for n=l, 2, 3 00

Qn=~l

(113)

(114)

The two equations for n = become

Or, by subtraction

y(ct
-c2) =2iplH^+^A +log^-Sr^^l (H5)TV 1 2) f i\

Xij'o (Xi ) x2J (x2 )
&a,a2 t= i[_ Tc J

The second member of this equation will be known when Pfc and Q*
for fc= l, 2, 3 • • • • =0 have been found as solutions of the equa-

tions (113). The equation of conservation of electricity is

yI
x ={G12 +ip Oa) i.cx

-c2 ) (116)

where 77— and Cn are, respectively, the insulation resistanoe and
^12

capacity between the two cylinders per unit length. The value of y
(c —c)

found by eliminating
1

T
2 between (115) and (116) is

M «

=(G 12 + ip Cn ) 2 ip(^f^- +-^^-+log—
[X^J o\^i) X2J o\X2 ) <^i^2

^rgk+QjE
"

Elri^l (117)
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The resistance R and inductance L per unit length of the line are

then given by equation (98).

^2ivl filJ°^
1

^Jo^ Hog f srPn + ^°
"H (118)

The insulation resistance 77 and capacity C between the two wires per

unit length are given by

G= 4^d

1
, C= —T t c = 3(10) 10 (H9)

2 log p- 2c? log p-

in electromagnetic cgs units, Xd being the conductivity of the dielec-

tric in these units and 1c its dielectric constant in cgs electrostatic

units. The pure numbers b
t
and b2 are both positive and less than

1 and satisfy the equations

a
1
b

1
(s-a

2
b2)=a2

l]

(120)
a2b2(s-a1

b
1
)=a2

2 \

s being the distance between the centers of the circles. The distance

of the image point in No. 1 from its center is a
t
b

t and a2 b2 is the

distance of the image point in No. 2 from the center of the second

circle. The explicit formulas for b
x and b2 are

, _ s
2 + a2

1
— a2

2 Z/^ + a2
! —

a

2A 2
.

°1_
2sa

t \\ 2so; )~

, _s2 + a2
2
— a

2sa
2

\_ lfs2 + a\-a\y_.
\V 2sa2 J

(121)

which are both real, positive, and less than 1 (when the circles are

external to each other), but 6
t
and b2 both approach the value 1

when the cylinders approach contact, and both approach the value

zero when they are widely separated. In case a
t
= a

2
then b

t
= b

2 .

If the plus sign were taken in front of the radical, this would give the

reciprocal of the value of b
l
given above, which is the other root of

the quadratic equation to determine bv namely,

p,- (*
+
%
+*')*»+i-o (122 )

The equation for b 2 is obtained by interchange of subscripts.

In abandoning the strict method of integral equations and assum-

ing that the solution of the problem may be found in the form of a
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series (the Fourier-Bessel expansion) one can not be sure of the

existence of a solution of this form, or if a solution is found, there is

no assurance that it is unique. Curiously enough, the infinite set

of equations (113) which have been obtained for the coefficients

Px
P2 .... Qt Q2 ... . admit of two solutions, and that one must be

rejected as unphysical which does not satisfy the integral equation.

This fact is brought out in the following derivation of asymptotic

or high-frequency formulas for the alternating current resistance and

inductance.

In case the two cylinders have the same radius, conductivity,

and permeability b
1
= b2 , and QD =Pn. This is a problem in current

distribution which has been treated by a number of mathematicians,

the earliest being Mie. 3 It has been successfully solved for low fre-

quencies by Curtis, 4 using a Fourier-Maclaurin expansion. The
regular methods of integral equations has also been used in a paper

by Maneback, 5 whose results are also limited in their application.

The most thorough treatment, however, is that of Carson, 6 who has

made arithmetical computations from the infinite set of linear equa-

tions, and whose results are quite unrestricted as to spacing of the

wires or frequency. The problem having circular symmetry has

also been solved in a general manner by Carson and Gilbert. 7

The remainder of this paper will be devoted to the derivation of

high-frequency formulas for the alternating current resistance R,

inductance L, and the attenuation b and phase velocity v, which hold

for any dimensions or spacing of the two unequal cylinders.

(a) First and Second Approximations at High Frequency.
Asymptotic Formulas for R, L, and y With any Spacing.—
For high frequency

^nJ^Xj) + x
1
J' D (x1 ) ,

2i/i!
,

, . , ,1—

—

T , \ T f / \ ^ —H—— n +higher powers of -
pJU/nixJ -XX

J n (Zi) X,
to r X

H*x (0)

and

H i+(i - i,nV 2?

y2nJD (x2
)+x

2
J' n (x2) _, L

(1 i)n
L

2R2 (0) 1

The equations (113) become

l + S
k=l tt-1 \k'

l+SllfiM^^W^H
(123)

» G. Mie, Annalen der Phys., 2, 1900, pp. 201-249.

« H. L. Curtis, B. S. Sci. Paper No. 374.

» Charles Maneback, Jour, of Math. & Phys., Mass. Inst, of Tech., 1, No. 3, April, 1922; pp. 123-124.

'John R. Carson, Phil .Mag. 41, April, 1921.

' J. R. Carson and J. J. Gilbert, Transmission characteristics of the submarine cable, Jour, of the Frank.

Inst., December, 1921; pp. 705-735.
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P =P (0) + —±— p (1)n
" V2p

n

329

«--«-w+^5«-w
(124)

Substituting these forms in the above set of equations and equating

like powers of —j= gives

CO

1 + 2
CO

1 + 2
It

n = l, 2, 3 co (125)

and

"+=4 w»-(£f ^»-»(0°p B<»»(i-i)V^(o)
oo

2
(126)

The equations (125) can be solved exactly, and the values of Pn
(0)

and <2n
(0) then substituted in (126) and the resulting equations solved

exactly as follows:

Since

Exact solution of the first system of equations {125)

°° In + Jc— 1 , 1

k=l ro-1 \k (l-2) n ifUKl

the equations (125) for Pn
(0) and Q n

(0) suggest the forms

P^=Z\ Qn (0) =2D
2 where kl<i

kl<i

and where 2X
and s2 are to be determined. Substituting in the

equations (125) gives

o= \n+ Tc — 1
, i /s\2n

J=l n-\ \lc
1 (l-^)" \a

2/
2

^|W-1 1 -^'W^gl>-l|)T g
' (l-z

2 )
n \aj Z

\

n=l, 2, 3- • • • oo
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which shows that the 2oo equations will all be satisfied if z
x
and z2

can be found each numerically less than 1, satisfying the two equa-

tions

(f)H(?)]-

(?)[-*®H
(127)

By reference to the equations (120) which determine b
t
and b2 it is

evident that

Si=-J-i and1
s

a2b2

where bx
and b2 are roots of the corresponding quadratic equations.

In order that z
x
and z2

shall be less than 1, 6 t
and b2 must both be

less than 1, or both greater than 1. Since the product of the two

roots of each equation is 1, it follows that there are two solutions for

the above system of equations (125) given by

or

n w
(128)

It will appear presently that the set corresponding to b
t
and 6,

both less than unity leads to positive expressions for the resistance

and inductance, while the other set lead to the same numerical

values, but a negative sign. Using these values of P n
(0) and Q n

(0)

in (126) leads to the following equations for the P n
(1) and Q n

(1)

Exact solution of the second system of equations {126)

To find Pn
W and Q n

W as solutions of

°° \n-\-Tc

£1 \n

Assume

(129)

Pn(" = anzn
l

and Q n
(1) = /3ft2

n
2 where

22|<1

and substitute in above equations (129).

oo [n + lc — 1

This gives

i-c^r«*.-(t')"a-«-fi5OT'
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Or, since by the binominal theorem
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co
\

n + Tc — 1

S|w |fc-l
;

k-l_.
(l-2x) n+1

^-<tHt)" (i-*™*
l-«2 (1

If these equations are to hold for every positive integral value of n,

this requires that a and /3 have certain values, and that

a2
Z>
2 _

2? — m
1-0,

MY
2,=^-v =

1-2,

(130)

where zu z2 , b
t
and &2 must be the same as in the preceding case.

Since

aj>ib2 and
q2&A

\-z2 at1-Zi a2

the constants a and /3 must be so chosen as to satisfy

— a
x
a + afijbji = (1 — i) a

x Vmi-^i (0)
|

aj>xl2a -a2P=(l-i) a2VVA (0) J

which being solved, give

(1— £)
a

i
a= ~

(i _ 52^) fa V^i(0) + \ha2 ^fji2R2 (0)]

(1— i)
a20= ~ (l-&2i6

2
2)
[^MlVMACO) +O.VMA (0)]

(131)

(132)

Introducing the results of the first and second stages of the approxi-

mation, namely,

e.-«.» +-^«.m -(*A)-(. +$)
(133)
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into the equation (118) for R and L leads to two infinite series which

are summable. For

fe a
x an & a

t
5ji\s/ ^J2p £5. \ * /

:W ^ "--#!

Similarly

and

log£-S&-log-^---2-SM

Substituting in (118) gives

+
(1-l4l% la,

*&® +
l *&&> ^

+ bj>2 (VmA(6) + VmA(6T)]]

But to the same degree of approximation as used in obtaining Pn

and Qn ; that is, neglecting - compared t© —p=

MiJofci) _ ^Mi _ (1 — i) //figi(0)

a^/'oCXi) ^ 2 V 2p
and

M2/ (a;2) (1-i) /m2^2 (0)

V^x2
J'(x

2)
2 \ 2p

Using these expressions in the preceding equation (134) gives,

upon equating reals and imaginaries,

g °
2(l-Ws) [(

1 + 2iA| +^'.)V^A(0)+(l+2M,^

+

w

)vraos]^ (i+i)^ if{-:--

1 R e'C.R
L-21°eW+j-r+i <138 >
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The attenuation b and phase velocity V are given by

y=b + i^ = ^(R + ipL))(G + ipG

2&3 = VCR2 + P
2i2

) (G* + p2C2
) + (RG-fLQ

2 1^= tJ(R2 + p
2L2

) (CP + ptC2
) - (RG-p'LC)
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or

(137)

The ratio —W, that is,
v

-? is generally negligible, so that (137)

reduces to

F= RCV
TD (138)

The positive quantity b t b2 which appears in these formulas may
be found as the root of the quadratic equation

<^KS-^^> &
'
+ 1 =° (139)

which is less than 1. The other root, being the reciprocal of this,

will be greater than 1, and if used in these formulas would give

the same numerical value of R and L, but both negative in sign.

Special Case.—The circles have equal radii, b2
= b

x

R Vm^^o) + VmA (o)

y-
2p

m
5

6, p
where b

t
is that root of

b2
t
-

(
—

Jb t + 1 = which is less than 1

(140)

(141)

(142)

or

61~i VW "

The asymptotic expressions for alternating current resistance and

inductance of two cylinders here given are believed to be new. They
have proven useful in the radio section of this bureau for investi-

gating the precision of measurements of short waves on wires, corre-

sponding to a frequency of (10)
7 cycles per second. 8

(&) Special Case. Circular Cylinder Parallel to Semi-

infinite Plane of Finite Conductivity.—If we plaoe s = d+ a2

and holding d fixed let a2 become infinite, this approaches the case

•A. Hund, B. S. Sci. Paper No. 491
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of a cylinder of radius av whose center is a distance d from the plane

boundary of a semi-infinite solid of finite conductivity. This is the

case of a single cylinder a height d above the earth, the latter being

the return conductor. In this case

i t. d— Jd2 — a2
,

&1&2 =
a

t

Formulas (135) to (138) then simplify, and they show the manner
in which the conductivity of the ground X2 affects the propagation

along a horizontal antenna at radio frequencies. In case M1
= /i2

= l>

formula (135) gives for the resistance per unit length of the circuit

made of a horizontal antenna and the ground, where d is large com-

pared to ax

-fck
+
57x;)V7 (143>

where/ is the frequency, a1
and \ the radius and conductivity of the

antenna, and d and X2 its height above ground and the conductivity

of the latter, respectively.

As a numerical example of the use of (135) to (139) consider a

two-conductor cable of copper wires of radii a 1
= 0.3 cm, a2

= 0.5 cm,

with a distance s = 1 cm between centers and surrounded by a large

amount of insulating material whose dielectric constant is Jc=4

electrostatic cgs units. Suppose that the electrical conductivity of

this material Xd is less than about 10-20 electromagnetic cgs units,

and the frequency /is 105 cycles per second. For this value of the

frequency (or higher values) the insulation leakage G has no appre-

ciable effect, for

47rc2Xd 47rX3 2 Xl020 XlQ-20

pC~2irfJc~ 2ttX4x105
4 X 1U

which is negligible compared to unity and this indicates the error

involved by neglecting G.

The direct-current resistance of the wires per unit length in

electromagnetic cgs units is (since X = 0.0006 for copper)

The direct current resistence of the line per unit length is

£1(0)+£a(0)--8XlO
a

=-Xl.3xl04

V2PS0)-|^/{-|xl.3X10"
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The equation (135) for the alternating current resistance of the line

per unit length is

(electromagnetic cgs units)

The numerical value of & x&2
is found as that root of the quadratic

equation (139)

(W 2- 1

~/x75
'52

(w +1=-°

which is less than 1. The two roots are &26 1 = .24 or 4.16. The
former value must be used, and it gives

R = 6.93 (^)x 104 = 113 X 103
/1.24X iA .

(^6-) Xl°

as the alternating current resistance of the line per unit length in

electromagnetic cgs units. This is 14 times the direct current

resistance. After R has been computed, the alternating current

inductances L of the line per unit length may be computed by (136).

L= 2loge -^+
2
°^

Q5
=2.85 + .18 = 3.03

(electromagnetic cgs units per cm)

The capacity of the line per unit length is given by (119)

4
<7=

32 X1020 X2.85
=L56X10 21

(electromagnetic cgs units)

The phase velocity V is next found by means of (138)

F==
VIC'

=
V3.03X1.56X10-

21= L45 X 1Q1°

which is about half the velocity of light in space. However, the

velocity of light in the medium which is assumed to have a dielectric

capacity fc = 4 is

7 =4f= -T= X10
10 = 1.50X1010

V« V4

which shows that V is very nearly V . In this problem the dielectric

whose specific inductive capacity is 4 electrostatic cgs units is as-

sumed to fill the space external to the wires.
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Finally the attenuation constant b is found by (137)

, RGV 113 X103 X 1.56 X10-21 X 1.45 X 1010

100v, in_e= n ~
~~R

= l.^O X 1U

The current / is of the form

/= I e-bz cos 2ir/ ft - y\

and the wave length is

V 1.45 X 1010
, . __ ,

-2? = rjFjs
= 1,450 meters

VIII. SUMMARY

In a single type of wave the field components are proportional to

eipt-7z where the propagation constant y is b+~£' the real constants

b and V being the attenuation and phase velocity, respectively. They
are functions of the frequency. There are N— 1 possible values of y

2

and 2N—2 values of y or types of waves for a system of N cylindrical

conductors. The electromagnetic field is, in general, the superposition

of the fields corresponding to each type and these are derivable from

a complex scalar potential 4>, and a vector potential A. On account

of the vast difference in the order of magnitude of the electrical con-

ductivities of a conductor and of a dielectric, certain approximations

can be made in general which are valid from the lowest to the highest

or radio frequencies. These lead to the conclusion that the x — and

y— components of the vector potential are negligible.

Beginning with the differential equations and boundary con-

ditions which 4> and A must satisfy, the existence of a solution 4>

has been proven, and an integral representation of it obtained and

its properties studied by constructing a symmetrical auxiliary function

of two points G(xy^ri), which may be regarded as a generalization

of Green's function. By its means the unknown charges on the

boundaries between different dielectrics are eliminated from con-

sideration and
<f>

is determined at all points in terms of its values on

the conducting sections. Certain constants (?nk and Cnk are derived

which in general are complex functions of the frequency, and are

coefficients of leakage and capacity, respectively. The conservation

of electricity for each conductor takes the form, for n = 1, 2, 3 * • • • N.

A'
[
6r

nk = "kn
7^n = 2(£nk + ^Cnk)ck where]^ \Cnk=Ckn

and
N N
S"nk =S Cnk =
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In a similar manner an integral equation has been obtained for

the vector potential A by devising a symmetrical function of two

points M{xy%i\) which may be called a magnetic flux function.

The existence and uniqueness of a solution of this equation has been

proven and methods of solving it discussed. The form and properties

of the solution are studied. Its value at all points in conductors

may be found without reference to the dielectric. The function M
thus eliminates from consideration the dielectric as well as the surface

distribution of magnetism existing at the boundaries between different

magnetic materials. The real coefficients of resistance and inductance

i?nk and i n k are derived which have the symmetrical property

Rnk = Rkn, ink = ikn, and in terms of these the definition of current

leads to the form
N

yc n -ipA(co)=^(Rnk +ipLDb)Ik for n=l, 2, 3 . . . . N

These equations are rendered compatible with those for the conserva-

tion of electricity by choosing y a root of a certain determinant which

leads to an algebraic equation of degree N— 1 in y
2

. It is shown that

there is but one arbitrary constant for each type of propagation, and

all these may be determined when the terminal apparatus at both

ends of the line are given. Thus, the attenuation, phase velocity,

and reactance of the line may be found. Formulas are also developed

for the heating in conductors, and in dielectric, and for the mean
electrical and electrokinetic energy of the system in terms of the

coefficients above mentioned. Application is made to a pair of

circular cylindrical conductors of unequal radii, conductivity, and
permeability, and high-frequency formulas derived for the resistance

R and inductance L of the line per unit length, as well as for the atten-

uation b and phase velocity V. These are believed to be new.

IX. INDEX OF PRINCIPAL SYMBOLS

E {E^, Ey , Ez) = electric vector.

E (flx, fly, Hz) = magnetic vector.

B CBX , B7 , Bz) = magnetic induction.

/= frequency.

7 = propagation constant=&+p i=-y — 1

b = attenuation constant.

F= phase velocity.

c = 3(10)
10 = the ratio of the two cgs electrical units.

H = magnetic permeability.

Tc = dielectric constant.

X= electrical conductivity.
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All constants and vectors measured in cgs electromagnetic units

except fc which is measured in electrostatic cgs units so that

Tc— 1 to 5 for most dielectrics.

H= 1 for nonmagnetic metals.

<f>
= complex scalar potential. »

A (Ax , A7 , Az ,) = complex vector potential.

Note.—Since A z is the principal component considered Az is

written as A where this can be done without misunderstanding.

Similarly, E is used for Ez where the meaning is plain.

cv c2
,' • • • c r = complex constant values of <£ upon conducting sections

Nos. 1, 2, 3, • • • • N.

aj=\$ + f\= complex conductivity of
;
th material.

dsj = element of arc of natural boundary of section Sj of homogeneous
material (conductor or dielectric).

7ij = normal to this boundary curve, see Figure 1.

Qn = complex free charge per unit length upon n th conducting group.

Ga = leakage current (complex) from n th conducting group per unit

length,

(xnk and Cnk = real coefficients of leakage and capacity, respectively,

defined by (26).

7n = z — component of total conduction current through the section

Sn of the 7i
th conducting group.

G(xy^rf) = a generalized Green's function 1 defined where intro-

M(xy£ii) = a magnetic flux function J duced.

jffnk and Lnk = coefficients of resistance and inductance; defined by
(81).

R and L = the alternating current resistance and inductance per unit

length, respectively, for a simple return circuit of two conductors.

(Equations (135) and (136).)

Washington, January 15, 1925.


