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ABSTRACT.

When a radiation, regularly repeated, is received by a simple circuit possessing

inductance, capacity, and resistance there is induced in it an electric ctu-rent whose

efFectiive value may be measiu-ed by a hot wire ammeter, provided the signal is re-

peated for a suflBcient time to take readings of the instrument, and provided that the

time between the signals is very small compared to the period of the ammeter.

If, while the radiation continues, the circuit be tuned to various frequencies in a cer-

tain range, and the current observed in each case, then these ciurent readings may be

plotted against resonance frequency of the circuit. If the latter has a relatively

high resolving power compared to the spectral structure of the wave, such a curve

will be proportional to the spectral distribution of energy in the radiation. As a

matter of fact this is not usually the case, and to derive the energy distribution of

the wave requires that a certain integral equation be solved in which the above-

mentioned curve is the known function. Several methods of obtaining a practicable

solution of this equation are developed here and applied to experimental observations.

The function of this paper is to develop a method of spectrum analysis which may be

applied to the study of the interference-producing quality of a given sending station.
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I. INTRODUCTION—DERIVATION OF FUNDAMENTAL
EQUATION.

The question as to what constitutes interference quality in a

radio wave is one of such importance as to deserve both experi-

mental and theoretical study. Undoubtedly a thoroughgoing

spectrum analysis of the radiation when properly interpreted

ought to furnish a logical basis for rating the interference-producing

qualities of a sending station. It must be confessed that, in spite

231
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of the urgency of the need of it, no satisfactory meaning for the

term "coefficient of interference of a sending station" has yet

been arrived at, either from a scientific or a legal aspect. The
accepted notion of "decrement" seems to have been considerably

overworked, and it is hoped that the somewhat larger conception

of this article may prove useful.

Some time ago R. T. Cox, of this bureau, began an experimental

analysis of certain simple types of radiation with the object of devel-

oping a method by which the interference-producing quality of the

wave might be characterized. In interpreting the results obtained,

it immediately became evident that, even with a circuit of the

finest attainable resolving power, the record partakes of the

nature of the receiving circuit as well as of that of the incoming

wave. To disentangle the latter from the former requires the

solution of a certain integral equation, and this constitutes the

aim of this article.

If the radiation from a given sending radio station is received

simultaneously by a set of simple circuits whose constants are

properly chosen, the arrangement constitutes a spectroscope.

From measurements of the effective current induced in each cir-

cuit, the spectral distribution of energy in the wave may be found.

Or if the message can be repeated, a single circuit may be used

and its constants varied, the effective square of the cmrrent being

measured for each value of the constant which characterizes the

circuit.

When the circuit possesses very high selectivity so that it may
be considered to respond to a definite frequency only, then if it

be tuned successively to various frequencies and the mean square

of the current be measured for each, this will be proportional to

the spectral distribution of intensity in the radiation. Such an

ideal case is not always attainable in practice. The observed

current as a function of frequency is often profoundly affected by

the character of the receiving circuit. The resonance curve of

every circuit possess a finite width, due to the fact that there is a

dissipation of energy in the circuit. A spectral structure in the

radiation, which is fine compared to the resonance curve of the

circuit, may be entirely masked. The problem which then pre-

sents itself is to find how the circuit impresses its character upon

the record in order to make corrections for it, and draw inferences

as to the character of the radiation which may be, at first glance,

entirely hidden in the observations. It is analogous to attempt-
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ing to resolve a light source by means of a spectroscope of insuffi-

cient resolving power, where one makes up for lack of resolving

power by a quantitative study of the energy distribution in the

record, a procedure which is feasible in the range of radio

frequencies.

The current in a circuit possessing resistance, inductance, and

capacity, R, L, and C, respectively, oscillating freely, is of the

form Ae-^'^^^ sin 27r3(; (t + y)

Where

R . I n. w . .

The quantity 5 = is usually called the logarithmic decre-

ment of the circuit. If the capacity only is varied, the damping

coefficient, 27ra, remains constant, and the characteristic fre-

quency, X, may be given any value, real or imaginary. It will

become evident that if a radiation is examined for all real values of

X, this is sufficient to determine its energy distribution.

The wave produces in the circuit an electromotive force @(f) =

En sin 27r x^ (^H-an) where E^ is referred to in the following

as the Fourier component of the radiation. It is proportional

to the electromagnetic field in the case where the receiving circuit

consists of antenna with capacitative coupling to earth, but in the

case of coil aerials E^ will be proportional to the time derivative

of the field and hence contains the frequency as a factor. This

will maintain in the circuit the current 3 (0 = /n sin 2 tt a^n (f + ^^
whose mean square is

"* ~ 2 ~2

\ 27rrCnC/

E^^

'8.^L^[4a^H-(..-fJ]

where X =—
-%/7^ = the resonance frequency of the circuit, or

the frequency which would elicit the greatest response from the

circuit. It is connected with the characteristic frequency, x, by the

relation

x^ =X^-a' (2)
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There is very little difference between these two frequencies

for a good receiving circuit, but the exact relations which follow

are more simple when expressed in terms of x. The frequency,

X, is the one given by wave-meter measurements.

If for brevity we let

f (x) ==8RL ixW') (3)

then

( a" -frc^V
4a'

+

for a simple harmonic wave of frequency x^. and amplitude (of

emf) £n-

A similar formula holds, however, if the electromotive force is

expressed as a finite or infinite number of such components, if 3^

denotes the time average of current squared over a large number
of periods. Making the usual assumption that it holds when
there are present all frequencies from x' =0 to x' = «> gives the

integral equation

/(:

CO

E^ {x') dx'

^4^'+(.'-^-i±^; (4'

to determine E^ {x) in terms of the function / {x) which is given by
observations.

The proof in the case of a Fourier's series

2'wn
S (/) = S /„ sin -Tj^ (t +^n)

n=i •'

is effected by squaring the series and noting that the integral

NT

NT j
^ŝm -^ {t +/5m) sm -tjt- (t +/3n) dt

taken over a large number of periods, NT, is practically zero if m
is not equal to n and is one-half if m =n. This gives

NTin Pi F^

NT
R^+(2TXnL—^-^)

\ . 2TrXnC/
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and holds no matter how large the finite value of T which measures

the range of convergence of the series. It is assumed to hold even

when the range of convergence is infinite and the series passes into

a Fourier integral.

The integral in equation (4) involves x^ as a parameter under

the integral sign, so that - f(x) is really a function of x^ (and of a).

Therefore, E^ will be determined as a function of x^, and E^

{—x') =E^{x'). Since E^{x') is an even function of x' the equa-

tion (4) may be written

E\x')dx'

-00 -00

(^'-^-^7IT I 4a^ +1 x' 7— I 27r

x'E\x')dx'^

4a^ +

^ a C x'E\x')dx' a r x'E\x')dx'

~2irJ a^+(x'-xy 2TrJ a^+{x' +xy
—00 —00

If the variable of integration be changed in the second integral,

letting x' = —n, it becomes

+ •

27r

a^ rixE\-fi)dfjL ^ a C x'E\x')dx'

27rJ a='+(M-ic2)~27rJ a" +{x' -xY
—<x> —00

Hence, if we let u(x) =x E^{x) the fundamental equation becomes

'^^' irja^+{x'-xy ^5;

—QO

where it is known that fix) and u{x) are odd functions of x. The
equation (5) formulates the problem here undertaken, which is to

find the unknown fimction u{x) in terms of the observed or given

function f{x). The remainder of this paper consists in the de-

velopment of several forms of solutions of this equation, together

with illustrative examples and applications to experimental

results.
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II. FIRST FORM OF SOLUTION—FOURIER'S INTEGRAL
METHOD.

It may be verified by direct integration that

00

o
,

. / -Tk = I
e'^"" cos a ix' — x) da ii a > o

o? -\-{x —xy J
^ '

Hence, the equation (5) may be written

00 CO

/ (x) =M w (xO dx'
I

e-^« cos a {x' -x) da (6)

—00

Comparing this with the Fourier integral identities for / {x) and
u ix)

00 00

/ W =^ )/ («0 ^^' fcos a {x' -X) da (7)

—00

00 00

u {x) =-
I

u {x') dx' I cos a i:x' — x) da (8)

—00

leads to the inference that

00 00

w W =-
I
/ (^0 d^'

I

^^^ cos a {x' -x) da (9)

—OD

or
00 00

u {x)=-\f (m) dy. I e^" sin aii sin ajcJa (10)

The latter form is a consequence of the fact that f{x) is an odd
function of x. That the formula (10) does give the solution of (5)

may be verified by making use of Laplace's integrals ^

00 00

J
cos a t,. Ct sin a t,. -^„ -c ^ / \-^^dt

=J
-^rj^dt =r .- If a «>o (11)

— CO —CO

Replacing x by x' in (10) and substituting in the right hand side

of (5) gives

CO CO CO

-00

' Meyer, Bestimmte integrale, p. 198.
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To perform the integration first with respect to x' let x' - x =t.

Then
CO 00

J a^+(x'-xy J a^+f
—00 —00

00

, V COS a t,. T e^" .

=sin a X I
-^^—5

—

T^dt = sm a x
+r a

The triple integral last written then reduces to

00 00

—
I
/ (m) ^ M I

sin a fx sin a x d a

which is identically equal to f(x) and therefore (10) is the solution

of (5). The tmderstanding in (10) is that the integration is to be

performed first with respect to x', otherwise it is meaningless.

This form of solution has the advantage that it is applicable when

f(x) has any finite number of finite discontinuities. When the

observed function f(x) is given by a curve, the formal solution (9)

is unsatisfactory. It is desirable to work out a method whereby

the function u(x) may be derived from the curve for f(x) by the

use of graphical or mechanical methods. This is done in the

following.

III. SECOND FORM OF SOLUTION—ADAPTATION FOR
EVALUATION WITH A HARMONIC ANALYZER.

In practice we are usually concerned with a relatively small

range of high frequencies, to which the observations are confined.

As far as these observations are concerned, we may assume that

u(x') =0 outside this range Xi<x' <X2. It is to be noticed that in

the original equation (5) the nucleus involves {x — x'), the differ-

ence of frequencies, and therefore we may take the origin of x

an5Awhere, and the form of (5) and of the solution (10) will be

unaltered. Let us take it at the middle of the observation range,

which is supposed to extend a distance ± T from this origin. The
curve f{x) having been plotted according to its definition f{x) =

S R L xQ^ where x is actual frequency, we shall denote it by
F{x), where x now represents frequency difference from the new
origin. Similarly, we shall use v(s) instead of u{x') for the func-

tion which determines the energy of the wave as a function of

this frequency difference.

58954°—23 2
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Since v(s) is zero, if s< —T or s>T, the fundamental equation

to determine energy 'z;(^) when the observed ctu-ve F(x) has been

plotted is

^a C f)ds (^,)
TTj a^ +{s — xy
-T

where 7; (re) and F{x) are no longer known to be either even or

odd functions of x. The assumption that v{s) is zero outside the

range Xi<x' < x^ is contradictory to the fact already noted that

E^{x') is an even function of x' . In keeping with this fact there

should be added to the right side of equation (12) the corre-

sponding "image " of the term there present corresponding to

a C u(x') dx'

Tj a^+{x'-xy

which may be put in the form

T
i(s) dsa C vj

ttJ a^+{s+xy
-T

which is utterly negligible when x is large and positive compared

to the term retained in (12). The nucleus of the integral in (12)

may be written K(x x') where

K(xy)=l
T a^ + {x—yy

This has a sharp maximum— at :jj =y, reduces to half this value^ ira
-^

when x—y=a (the "half width of the resonance peak") and

rapidly decreases when {x—y) becomes large compared to a.

This shows that the fraction

T a^ +{x +yy

must be negligible. If the wave is undamped, its spectrtun is a

single line at the frequency Xy say. The corresponding observed

fimction is

a A
IT a^ -\-{x—x^^
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A
which has the maximum value — at the resonance frequency

ira

x=Xi and reduces to half this value when x=Xi±a. Hence a

is called the half width of the resonance curve. If the spectrum

consists of two equal lines separated by the distance Ax, in

frequency, the observed curve would be the sum of two such terms

r^, . A a A a

TT a'' +(x~Xiy IT a^ +(x— X2y

and if |^i— ^2|> (^ this curve would have two visible peaks, which

would coalesce (practically) into one peak if Ax or \x2 — Xj\-^a.

Therefore, a measures the limit of resolution of the receiving

circuit as an analyzer and — = - =— is the resolving power of
:>; X 27r

the circuit as a spectroscope. In the notation immediately

following the limits will not be written, but it is understood that

the integrals are all definite integrals over the range from s = —T
tos = +T.
The general theory of integral equations shows that the solution

of the integral equation

F{x)=J'K{xs)v{s) ds (13)

rriay be found in terms of the normal functions ^n (x), and the

associated fimctions \pn (x) and the characterisitc constants Xn

where

y 0n (x) 0m (x) dx =0 if nT^m, =1 if w =m (14)

and 0n (x) and ^n (x) axe solutions of the pair of simultaneous

homogeneous integral equations.

^n (x) -\nfK (xy) <f)n (y) dy =0
(15)

«/>n {x) -KfKiyx) yf/n (y) dy =0

and where the constants Xn are the roots of the characteristic

determinant D (X) =0 which is found when K (x y) is known by
Fredhokn's formula.

If the nucleusK {xy) is a symmetric function of x and y, so that

K {x y) =K iy x) , then i/'n {x) becomes identical with ^n (x)

.

If the roots of D (X) =0 are infinite in number, there are an

infinite number of normal fimctions ^n ix) and the associated ones
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xpn (x) . In this case any ftmction v (x) may be developed in a series

of these normal functions, analogous to Fourier's series.

V (x) =XVa </)n (x) (l6)

provided "Sv^n is convergent. The constant coefficient Vn is found

by multiplying this equation by <^n (x) dx and integrating over the

complete range. This gives

^n =fv (x) <t>n (x) dx.
. (17)

Multiplying the first of the equations (15) by ^m (x) dx and integrat

ing gives

f ^n ix) ^m ix) dx =Xn f 0n {y) djfK {x y) \^m (x) dx

=/ <^n iy) <t>m (y) dy by (15)

which shows that the ^^ (x) themselves constitute a set of normal

functions. Consequently

F (x) =S F, ^^ (x) where Fr^^fF (x) »An (x) dx (18)
n

The work of Hilbert and Schmidt has shown that the nucleus

may be expressed in terms of these functions by the formula

K(xy)-^x't^^^^ (19*)

To solve the original integral equation, assume that the un-

known function, which is to be found, may be expressed by a

convergent series of the form

v(x) ="2 Vk(})k(x) (20)
k

The solution consists in finding the coefficients v^. To do this

substitute this series for v{x) in the integral equation, substituting

at the same time the series for F{x) in terms of the associated

functions i/'n (a;). Kquation (13) becomes

F{x) =SFn,AnW=S^S^k (<t>n{s)c|>:,(s)ds = Z^^|yn(x)

This equation will be satisfied if ^ = Fn or

Vn=KFn='KnfF{s)Ms)ds (by 18)
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Hence, the solution is

v(x) =S KFnMx) =SKMx) CF(s)yf^n{s) ds (21)
n J

provided this series is convergent. The coefficients Fn must

first be found and then the sum of the series taken. An exceed-

ingly great gain in convenience would be made if it were possible

to interchange the order of limits in (21) so that we could sum the

integrand first and then integrate with respect to x giving

v{x)=fF (s) ds S X„ «A„ (x) lAn (s)=fF (s) N (x s) ds
n

(22)

where
A^(^y)=SX,0„ (jc)iAn {y)

for this function N could be computed once for all for a given

receiving circuit and a given range of integration, and the work
of applying it to various observed functions F {s) by (22) would

involve considerably less j-outine work than in applying (21).

However, it is to be noticed that this series for A^ {x y) can sel-

dom converge, for Xn increases with order, n, and if

2 '/'° (^) ^° (y)

n Xn

converges it is not to be expected that S Xn </>n (x) ^^ (y) will con-

verge in general.

In order that the preceding developments shall be valid, it is

necessary that the system of normal functions be "closed," which

will be the case if no function, h {x) , exists such that f K {xs) h {s)

ds = o. The normal functions are then infinite in number.

The above form of solution is of no practical use for computing

unless one can find the set of constantsW •••• s^^d the correspond-

ing normal functions.

However, in case the nucleus is a function of x— y or oi x+ y, or

is the sum of such functions, the normal functions are trigonomet-

ric functions. The harmonic analysis of the nucleus (either

mechanically or analytically) then amounts to a determination of

the characteristic constants. In the present case K (x y) is an
even function of (x — y) and may be resolved as follows

:

K (xy)=lKo+:2K^ cos "LJLi^
2 n 1
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^-^^tFT

n T u ,

a I cos —T^ d fx

then
-T

T
a'^ + H^

I/- I \ ^ T^ , ^ T^ n T X n IT y^ {xy)=--Ko+l^Kn cos —„- cos -^

2 M -t I

,
„ „ . n IT X . nir y+2 iCn sm ^ sm „-^

« ^ i

Also F (a;) may be developed in a Fourier's series ....

T<x<T
TT f \ ^7-.v>r- nirx^^^i.n'wxF {x) = - Fo +S Fn cos —7f^ +2 Fn' sin -^fr-

where

and

Fn =^ j
F (m) cos ^^^^ d M

-r

J.

^^'^^\P (m) sin ^^-^ d n
-T

(23)

h(24)

If a value of x^(x) is sought in the form

if

v{x) =-^0 +2% cos -^^+ 2z;fe' sm -^^
2 fe

T k T

-T<x<T

(25)

the coefficients -z^o, z^n, and v^' may be found by substituting all these

series in the equation

F(.x) =fK{x y)v{y) dy
-T

which gives the equation

I

-Fo +2Fn cos -^^+ 2F' sm -7^-

KoVo^
, ^ ^j^ nirx , . mrx
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This will be satisfied if we take

"i^o -' o •» u /
•» n

2 2K0T " KnT "^ KnT

and the solution is

^(^) = TL2 :^ +?^ ^^^ 1^ + !:^ '^^ T^j ^^^\

if this series is convergent.

The formula (26) gives a practical method of solving the

problem. The coefiicients Kn may be evaluated once for all for

a given circuit (a given) and a given range 2 T. However, this

must be done by approximate methods, or mechanically, since

the integral which defines Kj, can not be integrated in finite

terms if T is finite. While it would be very convenient to reverse

the order of limits in (26) and write

v(x) = fF{s) N (x-s) ds
-T

where

mrx

it is easy to see that such a procedure is, in general, not allowable,

since this series will not converge in general. It is easy to show

by means of Laplace's integrals that the limit of

KnT = 7re ^ when T= <x>

TV 'Vh'TC

and if we let dx = ijfx = -ijr the solution (26) approaches as a limit

when T = 00

CO 00

v{x) =-
I
F{s)ds I e^" cos a(s — x)da

which has a meaning only if the integration is performed first

with respect to s. This is identical with the solution previously

obtained (9).
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IV. THIRD FORM OF SOLUTION—OPERATION WITH
cos a Z>x.

By multiplying the identity

00

If
g-aa j,Qg a (x' —x) da =-

Ta'+ix'-xy

by f{x') dx' and integrating one obtains the identity

00 00 00

Ijf (.')

&'
J.-" cos .(.'-.) d a -2

J
Ji^*l =0 (.7)

— cx) —00

Adding this identically zero quantity to the right side of (9) gives

00 00

«*(*)=-
I
f{x') dx'

I

(e^ +e-*") cos a {x'-x)da

(28)

a r f{x') dx'

ttJ a'+{x'-xy
—00

The last integral in this expression may be evaluated graphi-

cally or mechanically. It is desirable to find a method of evalu-

ating the first integral. For this purpose it may be noticed that

{- lYa^-^D^''' {aay^
' cos a X =——— cos a x

\2n \2n

and hence if we symbohze the infinite series of differential opera-

tions

I r-^ + -r-^ •... or S ^^ -, ^bycosaI>:c (29)
[2_ [4 „=o |2n

•'

then

2 cos a D^ = (e'^^^ + e^^^)

,

and

2 cos a D^ cos a (x-x') =(e^" +6"^") cos a (x-x')

With this in mind, the form of the first integral in (28) suggests

that it is the result of applying the above operator to the Fourier

double integral for f(x), equation (7), applying the infinite series of

differentiations with respect to x inside the sign of integration, a

process not always allowable even with differentiations of a
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finite order. Nevertheless this suggests the second important

form of solution.

u{x) = 2 cos a D,f {%) ~
-J J\_^!^,_^y

(30)

—00

This form, if correct, may often be more convenient to evaluate

than the first form of solution (9), since the operations on the

right of (30) may all be performed mechanically. By applying

Leibnitz's theorem for the derivative of a product, one finds that

_p 2n n 2n
_D2°-

X ^\x) = X -. 3== {x) + -. 3'^ ix)
\2n ^ ^ ' \2n ^ ' \2n-1 ^ ^

^

so that

- cos aD^xQ^ (x) =2 cos a D^ 3' (x) -— sin a D^ 3=* (x)

Also it may be noted that for large positive values of x' and x

the term

a'+ix' +xy

is utterly negligible compared to

a

a'+{x'-xy

and, therefore, for any actual range of frequencies encountered

in practice the energy distribution will be given by

-g^ = 2 cos a L>^ 32 (^) -— sin a Z?^ 32 (x)

or

E'{x)

SRL

00

__^ Cx' 3' (^0 dx'

TTxj a^+(x'-xy

-—[«^x 3' W——3' W +
J

00

a_ Cx' 3^ {x') dx'

irxj a'+(x'-xy

(31)

(32)

TX q̂
58954°—23-
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provided, of course, that (30) is correct. In some cases one or

two terms of the series are sufficient.

Having arrived by intuitive reasoning at a form of operation

which will simplify the solution of the original equation, we may
now inquire more carefully as to the result of applying the operator

2 cos h Dj to the original equation (5) where o<&<a. Since

t a J T

J

= real part of —

r

IT a^ -{-{x' —xY ^
iri x'—x — ia

the equation (5) may be written in the form

00

,, .
, , . I Cu (x') dx'

fix) = real part of —r I —r^—-—-
' ^ TTij X —x — ia

Assume that at the point x, 2 cos b D^ f{x) has a meaning; that

is, the result of applying the real operator 2 cos h D^^ to f{x) gives

a single valued finite result, though not necessarily a continuous

function of x and h.

Regarding f{x) as defined by the integral in the above equation,

2 cos h Z?x fix) is the value of 2 cos h D^ applied to the integral,

and this operation may be performed inside the integral sign

when it leads to finite integrand and a uniformly convergent

integral. Since

cos 6 Z?x or S ^^ ^-
n=o

I

2n

is a real operator, the result of applying it to the real part of a com-

plex function must be equal to the real part of the result of the

operation upon the complex function. It is easily seen that

( - i)°&^"D^°,

\2n \x' —x — iaj (x'—x — ia)^'

Hence,

2 , ^ I 2 - (ib)'-
.cosoD:^—, - = —. 2

wi ^ x' —X— ia Tt „=o (x' —X — m)^°+^

provided this series is convergent. The series will converge if b

is less than the modulus of {x' -x — ia) ; that is, :\Ja^ +(x' —x)^ and

the least value of this is a (when x=x'). Hence, if 6<a, the
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series will converge for every positive value of x and x'. It is a

geometrical series and is readily seen to be the expansion of

2

iri X' —x~ta
\x' —x — ia/ _

or

+ ::tTrt\_x' —x—i (a — b) x'—x — i{a+b)

the real part of which is

]

a — b
;.+

a + b

T {a-by+{x'~xy' It {a+by + {x'-xy

consequently
00

b D^f (x) -^;—J ^a-by + ix'-:
2 cos

X)

(33)

+

00

a + b r u{x')dx'

^^J {a + byn^'-x

Now it is possible to prove by direct integration (and it will be

proven later as an easy special case) that

ab C ds

'^'J[a'+(x'-sy][l

a + b

[b' + (s-xy] TT {a + by + ix'-xy (34)

Hence, if we change ic to j in (5) and multiply the equation by

and integrate, we get

/ (s) ds

b ds

wb^ + is-xy

b^ r f (s) ds _^ r ds C u {x') dx'

rj ¥{+s-xy~'^} b^+{s-xyj a^ + {x'-sy

ds
00 00

=
^J

U(x')dx'j
J^2^^_^y^^^2^^^r_^y^

—00 — CX3

00

_ a + b f u {x') dx'

—IT) {a+by+{x'-xy ^^^ 34)
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and this is the last integral on the right side of (33) . Its value is

therefore
00

b r f(s)ds

Trjb' + {s-xy
—00

or changing the name of the variable of integration

00

b r f{x')dx'

TtJ b^^-ipc'-xf
—00

Therefore, the result of operating upon (5) by 2 cos 6Z?i where

o<b<a gives by means of (33)

00 00

(a-b) r u{x')dx' ur^f.s b r f{x')dx' , ,^^

I / ,,n , , r^=2 COS bDJ(x) ~- ,/\ , ^ (35)
TT J (a-by+(x'-xy '^ ^ ttj ¥-\-{x'-xy ^^^'

—00 —00

By letting x' —x={a — b) t in the left side of this equation, it

becomes

I Cu[x + (a.^'

and by taking 6 sufficiently close in value to a, this may be made

to approach as closely as we please to —^^ ^^ or u{x)

if u is continous at x.

The integral on the right side of (35) is easily proven to be a

continous function of b and x even if f(x) has finite discontinuities

at certain points.

The value of , 2 cos bD^fix) is assumed to exist, in general,
b-^a ' o y

but it may not exist at certain points. It need not, in general,

be continuous either as a function of :t; or 6.

We may, therefore, conclude from (35) that: Whenever 2 cos

aDx exists and is a continuous function of x, then the solution

u{x) is a continuous function of x, and is given by equation (30).

At particular values of x, where the function f(x) or its a;-derivatives

of any order have a finite discontinuity, 2 cos aDxf(x) has a
finite discontinuity, and this is also the discontinuity of the

function u(x). For example, suppose that in the neighborhood

of the point x^, the function f{x) is given by the equation

f(x)=^{x) when xKx^ and f(x) =(t)(x) :\-A +B{x — Xiy
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when x>Xi where (t>{x) is continuous with all its derivatives at x^.

Then f(x) jumps by an amount A as we pass through the point x,

and its fourth derivativejumps an amotmt [^.B. Hence, u{x) jumps

by an amount 2 (A —a^B). If B equals zero, the jump in u{x) is

twice that in / {x) , and, in general, the discontinuity in u(x) is greater

than that in f{x), although in this case if B =a^A there would be no

discontinuity in u{x). The function f(x) would, however, be con-

tinuous if A =0, together with its first three derivatives, and yet

u{x) would have a discontinuity of —2a^B. The ordinates of

the curve f{x) , its slope and its curvature would all be continuous

at Xi and there would be nothing in its appearance to suggest the

discontinmty in the spectrum.

Example illustrating this method: Suppose for example that the

observed curve is given by

/W=^[tan-^-tan-^]

^2>%>o and 6>a

/^ ^\
tan"^ I

~—
j =imaginary part of log [b +i(x2—x)]

where

Now

Hence if a < &

2 cos a Djr tan"
'

(^y^) =(^'^°^ +e-'«».) tan-i (\^)

=imaginary part of (e^^^^ +e~^^^x) log [b +*fe — x)]

=imaginary part of \og[b +i{x2—x — ia)]+ log [b +i (X2 — x +ia)]

=imaginary part of log [6 +a +i{x2 — x)] +log [b—a +i(.X2 — x)]

i,./W=4[tan-.(|^)-ta„-.(^^)]
_

=tan"

Hence

2 cos a
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This gives the first term on the right side of (30). The second

term on the right side of (30) is the integral.

A
TT

CX)

aC dx' V^ _, a;,— ^' ^ _, a;,— xH-

^J a^ Hx' -xy \}^'' b
1^^ -^J

It is next necessary to evaluate these integrals. To do this note

that the following is identically true

:

l[,„-.(^')_ta„-.(^)]=^J
ds

b'+(s-xy

An dx^
Multiplying this identity by ^ ,

,
r- and integrating from

%' = — ca tonc'=+oo gives the term desired as the double integral

dsAah C dx' C
TT^ J a^-V{x'-xy] b'+{s-x')

—00 XI

[b' +(x' -sy][a' +(x' -xy]
Xl — CX)

_A (a+b) r ds ,

~~
TT J ia+by+(s-xy <^^>'34;

XI

Hence, the formal solution (30) gives the spectral distribution

of energy u (x) by

, ,
' n ^. ^ « f f{x')dx'

U (x)=2 COS a DJix) o , . , r
^ ' '^ '

TT J a^ +{x' -x)

A
h-Cfc-:)-'--'(H)]

when the observed function is

/ (^) =4 ftan-^ (\^) - tan-^ (^V^)l where b>a
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These two curves are of the same type and are somewhat similar

to the curve showing the magnetic field along the axis of a solenoid.

The observed curve is broader than the energy curve. The latter

becomes infinitely sharp at the edges x^ and X2 when b approaches a.

In this case, the energy distribution is zero outside the range

Xi<x<X2 and has the constant value A within that range. The
observed curve, however, approaches a limiting curve which is

continuous. The parameter b — a which occurs in the energy

curve is vaguely analogous to what is called the decrement of the

wave. This must be increased by the damping coefficient, a, of

the receiving circuit in order to obtain the observed curve. This

enlargement of what is usually called decrement is dealt with in

more general fashion later. In many simple types of waves it

represents a quantity in the wave, which is augmented by a

when received by the circuit.

This third form of solution (30) Hke the two previous forms has

the advantage that it may be applied to cases where the function

f{x) is represented by different analytical expressions, in different

parts of its range, which may or may not fit on to each other

smoothly. It involves graphical differentiation and integration.

To apply the second form of solution requires harmonic analysis

which may be affected mechanically. However, it is sometimes

the case that less labor is involved by representing the observed

function by an empirical equation so as to gain the advantages

which analytical tools often possess over mechanical ones. In

order to find what types of elementary solutions might be most
appropriate for empirical representation of the observed fxmction,

a few simple types of elementary solutions will be considered.

V. FOURTH FORM OF SOLUTION—EMPIRICAL FORMULA
FOR THE OBSERVED FUNCTION.

A very simple expression for the energy distribution results

when the observed function f{x) is of the simple type

r/ \ ^ A fln

^^""^'na^+ix^-xr

where an>a and Xn is any constant. The solution u(x) is given

by simply replacing a^. by the positive quantity Oa — a to. this

equation, a form which is generalized later. This result follows

as a special case of the solution (9) . If we place

/ {x') = A a„ -x—-7 jT
' ^ ' a\ +{Xn-x')
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in (9) it gives
00 00

^(^)=^J^vT^^.p^" cos a ix'-x)da

—00

where the integration must be performed first with respect to x'

in order that this may have a meaning. To do this let x' =Xn +t.

Then
CO CO

Tcos a(Xn—x+t) dt- . A ar^ C , Tcos a (Xr.

30

COS a t= \e^" da. cos « (rJCn -ic) I
-

—CO

dt

^ <^n r P„ J • / . r sin a ^

\e^ da sm a (jCn -ic) I -^——5

1

—00

00 00

But {^^dt =0 and f^?^ c/i =^.—
—CO —00

(Laplace's integral) . Hence

00

u{x) =Afe^'^ d a e"^"" cos a ixj,-x)

=^y*e-(^-'-^)" COS a ix^-x) da

A (an -a)

(an-ay+ixn-xy

= meaningless if an < a

if On> a

It is easy to see that if a pair of functions f{x) and u(x) are

known, such as

f(x) = ^° ^°
'^^ a'+ixn-xy

and (36)

u(x)^ ,

A (an -a)
, .

(an-a)'+(xn-rc)'

which satisfy the original equation (5), then other pairs of

functions which will satisfy (5) may be obtained by differentiating

this pair with respect to an, Xn, or x ; or by integrating with respect

to these quantities. Also, by making any linear combinations of

these simple solutions, other simple solutions may be found.
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The simple type of solution here given is, perhaps, the one of

most practical value for empirical representation of the observed

function.

It might be noticed that this type of solution is not strictly

compatible with the fact previously noted that f(x) and u(x)

are both odd functions of x, whereas the pair just exhibited are

neither even nor odd fxmctions. By changing the sign of Xn

and subtracting, however, we get an odd function

f(x) =^-[^2^ +(^° _xy~a\+{x^ +xr]

= 4XnA

= 4Xn An

anX

[X^ +Xn +a\ - 2XnX] [X^ +X^a +a\ +2XnX]

a^x
' {x^ ^rx^ +a\) ^ -^\^

which is an odd function of x, and, therefore, corresponds to a

physical solution. However, as we have seen, the extra term

here added, namely,

I

a^ -^{x^^xf

is utterly negligible compared to the term

I

a^ + (%a - x)
^

when we are concerned only with a narrow range of high positive

values of the frequency, and, therefore, the simpler type of solution

is the more practicable.

By dififerentiation and integration of the fundamental types

(36) many other simple types are obtainable, such as

A an

II/(.)=A[tan-(^) + tan-(^)]
(37)
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where
an>a

or more generally

_ hx-x')A(x')+a^B(x')

XI

where A and B are any functions of x'. Other forms involving

any power of the denominator may also be obtained. The corre-

sponding solution u(x) for all of the above types (or of sums and

linear combinations of them) is foimd by substituting a^ — a for

an in these expressions for f{x).

This rule is a generalization of the principle which forms the

basis of all decrement measurements. It corresponds to the fact

that peaks in the curve f(x) correspond to peaks in the u{x) curve,

which are narrower by 2 a, the breadth of the resonance peak of

the receiving circuit.

The physical meaning of these types may be illustrated by con-

sidering the radiation produced by another simple circuit at a

distance, oscillating freely and sending out a radiation which is

given by d (t) =Ce~^'^'^^ cos i-Kx't. The development of this

function of the time in a Fourier integral for all values of the time

from — 00 to -I- 00 shows that the amplitude of each harmonic com-

ponent of frequency x is given by

p,, . O x' +x'^ +b'
^ ^^^ 2w'[{x-x'y+b'][(x+x'y+b']

=B
[(^_J).+p

+
(^^J),^^,]

exactly

Bb

where
[^x-x'Y+b']

^^^ approximately

B =
4ir*b

Since u {x)^x E^ {x) this gives

Bbx Bbx

{x-xy+^^ix+xy+b-"

Bb {x - x') +x' Bb Bb{x+x')-x' Bb
" {x~x'y+b' ^ (x+x'Y+b'

*
A jx-x') +x'Bb A {x+x')-x'Bb

" (x-x'Y+b'
"^ (x+x'Y+b'.

where A =Bb
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According to the rule above given, the observed function, when

the radiation for the simple circuit is received by one whose damp-

ing constant is a, would then be given by

fix) -8RLx ^Hx)
A{x-x')WB(b+a) Ajx+x^ -x' B(b +a)

exactly

A{x-x')+x'B{h+a) _ (^ +^) +-^(V^

)

{x-x'y+h+aY -^^ {x-x'y+iJb+aY

approximately

=^'^
{x-xrV^b+aY ^ ^^" "^Se^^ is small.

This is a combination of the types (37), I and III. Therefore

the oscillations of a distant simple circuit which produces an

effective current in the receiving circuit of the form

x'B "^"^C^)^
8RLx {x-x'Y+a\

or approximately

B an
8 i? L 3fM^) =

[{x-x'y-^a\-\

when the range ^^ is small, must have a spectral energy dis-

tribution

B (an — a)8RLE' (x)==
(x-xy+ia^-ay

The width of the peak of this curve is 2 (a^ — o) ; that is, it is

narrower than the peak of the observed current by 20, the width

of the resonance peak of the receiving circuit. The receiving cir-

cuit adds its own decrement to that of the radiation.

The symmetrical simple solution of the type (37), I, is therefore

seen to correspond to one of the most important physical types

of radiation to be met with, namely, damped oscillations. It is

readily seen to contain the case of luidamped oscillations as a

limiting case, for if an is but very slightly greater than a, the

solution ,

a^ — a

{x — x^y +{aa — ay
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is very small for all values of x, except x=Xa, which corresponds

to a single spectrum line of frequency ^ni that is, an undamped
wave. The unsymmetrical form (37), III, which changes sign at

x=Xji is also seen to possess a similar property. It approaches

zero in general, but becomes + or — co when x approaches x^ from

opposite sides, when an approaches a as a limit. Although simple

solutions which change sign do not coiTcspond to any physical

case when considered alone, yet a number of them together may
readily be compounded into a function which is everywhere posi-

tive inside a given range, just as in the case of sines and cosines.

This type of solution is therefore useful in representing the ob-

served function. The form (37), IV, also changes sign half way
between x^ and X2. The form (37), II, is very useful in some
cases. It is easily seen that if an approaches a as a limit, the

solution u{x) is zero everywhere outside the range between x^ and

X2, and is constant inside this range.

VI. GENERAL RELATION BY MEANS OF COMPLEX
INTEGRATION.

All of these special cases are included in a very general relation

which may be derived from (30) , and which gives an elegant solu-

tion in case the function f{x) has been represented by an analytical

expression. If the poles of f{z) all lie at a distance from the real

axis (in the complex 2:-plane) , which is greater than a, then 2 cos

aD-^ fix) or (e^^^^ +e~^^^==) f{x) represents f{x+ia) +f(x — ia) since

the expression e^^^^ fix) is just the symbolic form of Taylor's

theorem, and in this case the expansion is valid about the point x,

which is any point on the real axis. Equation (32) is therefore

/ s r/ • X r/ s CL C fix')dx'^W =f\x-\^a) +f{x-ia) I ^ ,
, , ^.

If /i(2) represents that part of f{z) whose poles are in the upper

half plane and f^iz) that part whose poles are below the real axis,

and if f{z) is finite or zero at infinity, then by deforming the path

of integration indefinitely upward in the one case and downward
in the other case, and evaluating the integrals aroimd the poles

of the nucleus by Cauchy's theorem of residues, one easily arrives

at a foiurth form of solution

«W =/l (^ +*'«) +/2 (^ - "i^a) (38)
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This means that if a new function is formed from f{x) by placing

all its poles nearer to the real axis by an amount a, the new func-

tion is u{x). By similarly treating the original equation (5) one

finds

f{x) =Ui(x — ia) — U2 (x +ia)

which means that if a new function is formed from u(x) by

moving all its poles a distance a farther from the real axis, this

new function is f(x).

VII. APPLICATION OF FOURTH METHOD TO
EXPERIMENTAL CURVES.

In the analysis of a given radiation one is usually only concerned

with relative values of the induced current. When the frequency

range studied is not large compared to the mean frequency, one

may obtain correct relative values by identifying f{x) with ^'(x)

and u{x) with E^{x), for multiplying Q^(x) by x distorts the curve

in a manner which is practically all compensated for when we
divide u{x) by x to obtain E^{x).

When the capacity of the circuit is varied, a wave meter may be

used to find the corresponding resonance frequency X, which is

practically the same as the characteristic frequency x = ^JX^ — a^.

This method then gives the true frequency which depends not

only upon the capacity of the condenser, but upon the inherent

distributed capacity of the coil.

R X
The constant a = =- (

=— 8 where 8 is the decrement of
4 TT L 27r

the circuit) must be determined at a value of the frequency near

which it is to be used. Since the resistance and inductance of the

circuit will change with frequency, due to eddy currents, the value

of a will not be strictly constant, but may be considered so for

relatively small ranges of frequency. If an unmodulated (simple

harmonic) wave of frequency x^ be studied with the circuit, the

current curve should be of the form

S'(x) =
A

(x-x'y+a^
so that

(x-xr+a^=^^
If {x — x'y be plotted against ^^ ( y and the result is a straight
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line, the intercept of this line gives the value of a^ to be used in the

neighborhood of the frequency x'.

Figure i illustrates the use of an empirical formtila of the simple

type:

f(x)='f^ix)+fAx)+fs(x)
where

M.)=A.[tan-(^-^^) + tan-^(^)]

^2
J
VX-^CzV

/sW=-
^3

J
Y^-^aV

/(X)=XS^(X) IN ARBITRARY UNITS(oBSEFeVEO FUNCTION)

1800 1900 2000 —-X
X»FREqUENCV IN KILOCYCLES PER SECOND

Fig. I .

—

Energy distrihvtion in a condenser modulated wave.

The observed values are represented by circles where, as in the

previous notation, f{x) is x ^"^(x), and 3^ is the effective current

produced in the circuit, as indicated by a hot-wire ammeter.

The tuiits of current are entirely arbitrary, since only relative

values are desired. The radiation in this case was a "condenser

modulated," one caused by the rotation of the plates of an air

condenser in a sending circuit in which there is a sustained simple

harmonic wave. The experiments were performed by R. T. Cox

and Miss F. Kenyon, of the Bureau of Standards radio laboratory.
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The numerical value of the constants which were used to fit the

observed curve were:

Ai =0.672(10)', x'l =1857.5 kilocycles per sec. a^ =12.5 lo^ sec.~^

Xi =1982.5 kilocycles per sec.

A2 =2,56(10)', X2 =1882.0 kilocycles per sec. a2 =16 10* sec."^

A3 = — i.io(io)^ X3 =1948.0 kilocycles per sec. a^ =22 10' sec."^

The circuit constant a =10.7 10' see."* was determined, as

explained above, from the curve obtained on the unmodulated

wave. The inductance L was 56.8 microhenrys.

The empirical formula in this case fits the observed curve with

no more error than those of experiment.

The energy distribution was computed from u{x) where u(x)

was obtained by decreasing each On by a in the empirical formula

for f(x). It is represented by the dotted curve, and shows that

the spectrum of the radiation consisted of a wide band of nearly

umiform intensity.

The representation of a function which has well-defined peaks

by an empirical equation of the type

2^n I

is generally fairly easy provided that each a^ is greater than a.

If the peaks are no wider than 2a, this would indicate the presence

of a line spectrum. This was the conclusion drawn from an

attempt to represent the curves of Figure 2 by terms of the above
type. The two curves are drawn through the observed values for

two different values of the resistance of the receiving circuit, the

radiation being the same in both cases. It was produced by inter-

rupting a simple harmonic wave with a chopper whose frequency

was 612 cycles per second. The frequency of the wave which was
modulated was 53 kilocycles per second. One would expect that,

if the amplitude of a pure harmonic vibration were varied harmoni-

cally with a frequency of 612 cycles per second, the frequency of

the original note would be absent from the spectrum, and there

would appear frequencies of this value plus and minus multiples

of the 612, so that the spectrum would consist of lines separated

by 1,224 cycles. The separation of the lines is about 1,200

cycles, but the amplitudes are not symmetrical, showing that the

action of the chopper was not so simple as this.
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The crosses in Figure 2 represent the computed currents on the

assumption that the spectrum consisted of three monochromatic

9 (X)=ZFrECTiVE. CURRENT

53 54 55 56 57
X=FREQUENCY IN KIUOCVCUES PER SECOND

Fig. 2.

—

Curr-'.nt in two different circuits produced by the same wave.

lines at 52.5, 53.7, and 54.9 kilocycles per second, respectively.

The equation used was
'

I
«=3 A

»7=T Li /x-XnV

Where

Ai= 94
A2 =202

As= 30.6

a =0.206 10 ^ in lower curve

a =0.65 10 ^ in upper ctirve

The agreement of computed values with observed values in the

case of the circuit which had the higher resolving power justifies

the inference as to a line spectrum. The deviations of computed

values from observed values in the case of the upper curve might

be accounted for by a slight underestimate of the resistance of

this circuit. The resistances in both cases were determined from

decrement measurements. All three curves were obtained by the

same observers in a preliminary study, the object of which was the

development of a method by which the interference-producing

quality of a wave might be characterized.
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VIII. CONCLUSION.

Four different methods have been shown for finding the energy-

spectrum of a radiation in terms of the mean current it produces

in a receiving circuit, this current being observed for all real

values of the characteristic frequency of the circuit. The problem

consists essentially in finding practicable methods of solving the

integral equation for u{x)
(XI

—CO

when f(x) is given as an odd function of x.

It is obvious that other applications of resonance theory may
involve solving this equation, which may be quite different from

the purely electrical problem with which it is here associated.

The first method gives the solution of this equation in terms of

a double integral analogous to Fourier's (equation 10). This

form is only of value for computing when f(x).is given analytically,

but is useful as a basis for deriving other forms.

The second method is based upon the fact that when the nucleus

of an integral equation is an even function of the sum or difference

of the two variables its corresponding normal functions are

trigonometric functions. Harmonic analysis of the nucleus

(mechanically or graphically) amounts to a determination of the

characteristic constants. A similar analysis of the observed

function has been shown to be sufficient to lead to a series solution

(equation 26).

The third form gives the solution in terms of differentiations

and integrations of the given function f(x). I^ike the first two
forms of solution, it is applicable to cases where the functions

f{x) or u{x) possess finite discontinuities, and has the additional

advantage that the operations may be performed graphically

(equation 30).

The fourth method consists in representing the observed

function by empirical equations of certain simple types (37), the

solution corresponding being easily obtained by subtracting the

damping coefficient of the circuit from certain analogous para-

meters in the simple types of solutions used. This m.ethod is

applicable to the limiting case of line spectra. It is applied to

three different experimental curves.

Washington, July 3, 1923.
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