
ADJUSTMENT OF PARABOLIC AND LINEAR CURVES
TO OBSERVATIONS TAKEN AT EQUAL INTERVALS
OF THE INDEPENDENT VARIABLE

By Harry M. Roeser

Perhaps the two formulas which have the widest utility in

the representation of the variation between two mutually depen-

dent physical quantities X and Y are

Y=A+BX +CX 2 (i)

and Y =A+BX (2)

The best or most probable values of the constants A, B, and

C of equation (1), or A and B of equation (2) can only be deter-

mined by the method of least squares, which involves consider-

able computation, apparently superficial, and often too excessive

to warrant the application of that method. Recourse is often

had to various graphical or empirical methods. These usually

depend upon the skill of the experimenter in placing a line by
eye, or the arbitrary selection of certain of the observations as

having undue weight, and consequently the values obtained

bear the defect of personal judgment. A reduction, either

sufficiently approximate or absolutely correct, of the method of

least squares to utilitarian convenience is therefore desirable.

The author purposes to develop a scheme which leaves the

method of least squares without approximation as far as its

application in many special cases to forms (1) and (2) is con-

cerned. By following this scheme the major portion of the

quantities involved in the mathematical expressions for the

constants can be written down at once from inspection of the

observations or consulting Table 5 accompanying the paper.

The mathematical processes consist of the most fundamental

arithmetic operations.

The proposed scheme depends upon the simple expedient of

taking observations of Y at equal intervals of X. This is quite

generally done in practice either involuntarily or to secure a

desired continuity in a graphical representation. In such routine
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practice where least-square solutions are necessary, the proposed

scheme apparently has limited application on account of the

requirement that observations be taken at equal intervals of the

independent variable. However, the tedious arithmetical labor

of making the regular solutions is conspicuously reduced with

no ensuing loss in accuracy. Adapting the collection of routine

data to the conditions to which the scheme applies will generally

be found practicable and advantageous.

The method in its utmost simplicity applies to observations of

equal weight, although by following the general plan the reduction

of observations of unequal weight can be greatly expedited. The
analytical development is unessential to the practical application.

All necessary definitions and formulas are given in connection

with Table 5.

1. SOLUTION FOR Y=A+BX+CX2

Consider observations that fall along a curve of type (1).

The normal equations which are set up by the method of least

squares to determine <he most probable values of A, B, and C
from more than three observations are

—

nA+BVX +CVX 2 =2Y
A2X+BXX 2 +C2X *=XXY (3)

where n is the number of observations.

The general objection that the labor involved in a least-square

solution is excessive is forced upon the mind by a consideration of

equations (3) , especially if n is a large number and the X's contain

three or more significant figures. Aside from the labor of setting

up the normal equations that of merely solving them when the

coefficients are large is considerable.

Let the center of coordinates be transferred to the point

(Xm , Ym), and in the new system let equation (1) change to

y = a 4- bx + ex2
(4)

that is, let y = Y — Ym , and x =X -Xm

Then, as becomes apparent from simple substitution of these

values and reduction,

A = Ym +a-Xm (b-cXm) (5)

B=b-2cXm (6)

C=c (7)
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in which a, b, and c remain to be determined. Equations (3)

reduce to

—

na + bXx + cZx2 =zZy

a2x + b2x2 + c?;x3 =2xy > (8)

dZx2 + bXx3 + cZx4 = Hx2y .

Now it is a well-known property of the arithmetic mean of a

set of values, that the summation of the odd powers of differences

or "deviations" of the values from the arithmetic mean is zero.

Therefore in equations (8), Xx, Sy, and 2x3 are zero, since x and y
are, respectively, measured from the mean values of X and Y.

After dividing each of equations (8) by n, they reduce to

—

a

2x2

n

cZx2

n
=

bXx2 JZxy
n n

c2x4 2x2

y
n n

(9)

. If the observations are taken at equal intervals of X, equations

(9) may be further simplified by taking advantage of the fact that

H1X
2 2x4— and — may be made independent of x.

n n J r

Let i be the interval between successive values of X. Then

—

(n-i) .X x
=Xm .1 ; or , x

x

-A. 9 — -A- m 1 >l

,

X3 —X 1

2

(n ~ 5)

3
.1;

x (j^3l.i

&,= ^-.i

n-J^n-ti n-(2n-s) .

^(n-l) —^m ~
»5:> OI

> *(n-l)
= "

•*

^r ^ n — (2n — i) . n — {2n—\) .

J\. n =JL m .i\ or, xn = .1

Therefore

Xtf^j2

n 4n|

and

n

(n-i) 2 + (n-3) 2 + (n-5) 2 + • • + {n- (2»- i)} 21 (10)

4
i
4 r ~i

- = ^[(^-i) 4 +(^-3) 4 +(^-5) 4 + ' • ' +{n-(2n-i)y\ (11)
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After summing the terms within the brackets, (10) and (n),

reduce to

—

— =—(n — i)(n + i)
n i2

v (12)

— = (n - i) (n + i) (^n2 - j)n 240
v y J " (13)

The right-hand members of (12) and (13) are independent of x.

Write now

— (n — 1) (n + i) =i2u
12

(14)

t
4

i
2— (w-j-i) (w + i) ($ri -j) =iH = —(3Yi2 -i)u (15)

Equations (9) thus reduce to

a

i
2ub

i
lua + i*vc =

+ i
2uc = o

Xxy

n

n J

(16)

These equations yield for the required values of a, b, and c,

1 2x2y u
v n u2 — v

Let

Then

b = ^r-X
i 'Zxy

-u n

_ a

i
2u

o = y =— ,

-—— =20.
» n v—vr

T'wa= —

6 = -^ X-

a 1

i
2 w

(17)

(18)

(19)

(20)

(21)

(22)
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For convenience in writing down the solutions values of w and

- are tabulated in Table 5 for values of n from 5 to 31.

The computation of S' and T' from the observations on X and

Y will be greatly facilitated by use of the results obtained from

the following considerations:

s
,j:xyJ2{X-Xm)(Y-Ym) _

n n

Arrange the constituent parts of the summation in pairs as

follows: (1) First and last, (2) second and next to the last, (3) third

and third from the last, etc., thus:

ix*-xm ) (y1
-ym) = -i^^(y1-Ym)

(xn-xm) (yn-ym) = -^~ (2

2

n " l)
(Y:n-ym)

(X2-Xm)(Y2 -Yrn) = -i^^(Y2-Ym)

(Xn_ 1
-Xm)(Yn- 1-Ym) = -i

n ~ (2"~ 3) (Y^ 1-Ym)

, etc.

Now collect terms in the pairs of expressions connected by
brackets ; there results

:

S'=^ = ^[(n-i)(Yn-Y l) + (n- 3)(Yn- l-Y1)+---]=iS(23)

Similarly for T'

n 2n

n
Arrange the observations in pairs

:

(X.-X^iY,- Ym) =i2

(^-1
1J(Y1-Ym)

(X2-Xm)(Y2
- Ym)

=*^iz3j(y
1
_ Ym)

etc.
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Therefore,

-^2yJ (n-i) 2 + (n- 3 )
2 + • • •

-J

= ^[(n-i) 2(r
i + ym) +(n- 3 )

2(y2 + Yn_ 1) + • • • ]-*Wm

(24)

(25)

(26)

(27)

These last equations serve to determine completely the values

of A, B, and C, according to equations (5), (6), and (7).

To save mental effort in the summations, values are furnished

in Table 5 for the squares of the terms containing n. Thus if n is

an even number, say 18, (n-1) 2
is given in the table opposite 18;

(rc-3) 2
is the next preceding tabular value in that column; (n-5) 2

is the second preceding value, and so forth. The arrangement is

similar for n, an odd number.

A numerical example of the application of the above to a prac-

tical problem will now be given. Consider the problem of deter-

mining the depth-velocity curve discussed on page 131 of Merri-

man's "Method of Least Squares," eighth edition ; 191 3, Wiley &
Sons. The original data give observations on the velocity of

flow of the Mississippi River at different percentages of the total

depth. The values of velocity Y, plotted against depth X, follow

closely a smooth curve whose equation is assumed to be Y = A +
BX +CX2

. It is required to determine the most probable values

of A, B, and C from the observations. The observations follow:

= i
2T

Equations (20), (21), and {1\2) then reduce to

»

a— —Tw

l u

a

i
2u
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TABLE 1.—Velocities at Different Depths Below the Surface of the Mississippi River

[See Merriman, Method of least squares, p. 131, 8th ed.; 1913, Wiley & Sons.]

Observation No.

Depths
in

decimals
of total

depth

Velocity
(feet per
second)

Observation No.

Depths
in

decimals
of total

depth

Velocity
(feet per
second)

1 ' aO.O

.1

.2

.3

.4

3. 1950

3. 2299

3. 2532

3. 2611

3. 2516

6 0.5

.6

.7

.8

.9

3. 2282

2 7 3 1807

3 .. 8 3 1266

4 9 3 0594

5 10 2. 9759

a Surface.

For this set of observations, Xm = o.45; 1^ = 3.17616; n=io,
and i — o. 1 . Following is the detailed solution

:

TABLE 2.—Solution for the Constants of Y=A+BX+CX 2 from the Observations

Given in Table 1

Obser- Depth
X

Velocity
Y

I

Yn-Yn
Yn-l- Yi,

etc.

II

(n-1),
(»-3),

etc.

m
Yn+ Yu
Ya-l+ Y2,

etc.

IV
(n-l)«,
(«-3)2,

etc.

Products

Calculation
vation
No.

I XII inx iv
for T

1.*....

10

0.0

.9

3. 1950

2. 9759 }

-0. 2191 9 6. 1709 81 -1.9719 499. 8429

2

9

.1

.8

3. 2299

3. 0594 }

- .1705 7 6. 2893 49 -1. 1935 308. 1757

3

8

.2

.7

3. 2532

3. 1266 }

- .1266 5 6. 3798 25 - .6330 159. 4950

4

7

.3

.6

3.2611

3. 1807 }

- .0804 3 6.4418 9 - .2412 57. 9762

5

6

.4

.5

3. 2516

3. 2282 }

- .0234 1 6. 4798 1 - .0234 6. 4798

2nS= -4. 0630 1031. 9696-r 4n= 25. 79924

S= -0.20315 -ulfm= -26. 20332

T= -0.40408

From Table 5

Xm =o.45 ^ = 8.25

3^1 = 3.17616 1=0.121212
u

w = o. 15625

a= -Tw= +0.0631375 A = Ym +a-Xm(b-cXm) =3. 19513
b= S t= — o. 2462424 B = b — 2cXm =0.44253

i u
c= — a= -0.7652970 C=c =0.76530
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Therefore Y = 3 - 19513 +0. 44523X-0. 76530X2
.

This checks exactly with the equation given by Merriman.

2. SOLUTION FOR Y=A+BX.

The normal equations which yield the most probable values of

A and B from n observations of equal weight ofX and Y are,

nA+BXX =27 1

A.XX+BXX2 =2X7
J

(28)

If the observations are taken at equal intervals of X and after

plotting in a system of rectangular coordinates the center of

coordinates be transferred to X,Y =Xm,Ym , equations (28)

reduce to,

n. a.

bXx2 = i:xyZxy\ <2*>

in which x =X —Xm and Y = Ym

Therefore, a=o (30)

Hxy 5 1

b =
Xx^ = 7u <?',}

in which u is defined as in equation (14) and 5 as in equation (23).

In the old system of coordinates whose center is at X, Y = 0, o

B=b (32)

A = Ym -bXm (33)

As an example of the practical application of the above, a

solution is given of a problem adapted from page 74, Weld, Theory

of Errors and Least Squares, 19 16 (MacMillan).

To measure the total resistance of a Wheatstone bridge wire

and to calibrate the wire at the same time are desired. The

wire is 100 cm long. The resistance was measured of the first

10 cm, then of the first 20 cm, etc., and finally of the whole wire.

The resistance of the connections entered each time as a constant

term in the above resistances.

Let A be the resistance of the connections, B the unit resistance

of the bridge wire, X the length of wire for which the resistance

was observed, and Y the observed resistance; then,

Y=A+BX
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The observations follow:

TABLE 3.—Observations of Length and Resistance of a Wheatstone Bridge Wire

[See Weld, Theory of Errors and Least Squares, 1916, p. 76]

Observation No.
Length
meas-
ured X

Observed
resistance

Y
Observation No.

Length
meas-

ured X
Observed
resistance

Y

1

Cm
10

20

30

40

50

Ohm
0.116

.205

.295

.388

.503

6

Cm
60

70

80

90

100

Ohm
595

2 7 .675

3 8 760

4 9 850

5 10 926

TABLE 4.—Solution for the Constants of Y=A+BX from the Observations Given
in Table 3

Observation No.

>

Length
measured
X

Observed
resistances

Y

I

Yio- Yi,
Y9- Y2 ,

etc.

II

(rc-D,
(»-3),
etc.

Products
IXII

1

Cm
10

100

20

90

30

80

40

70

50

60

Ohm
0.116

.926

.205

.850

.295

.760

.388

.675

.503

.595

0.810

.645

.465

.287

.092

.9

7

5

3

1

10 7.290

2.

9 4.515

3

8 2.325

4

7 .861

5

6 .092

n=10

i=10

2kS=15.083

S= 0.75415

Vr

m =o.53i3

From Table 5, - = 0.12121
u

Therefore,

b=B = -—= 0.009141
1 u

A = Ym -BXm = 0.0285

Therefore, finally,

Y =0.0285 +0.009141X
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This equation is not the same as that obtained by Weld. There

is an error in his solution. The least-square solution gives values

for the constants which check with the above.

3. SOLUTION WHEN A OR B OR BOTH A AND B ARE ZERO.

Should any of the constants A, B, and C be zero, that is, if

the curve to be fitted to the observations is of one of the follow-

ing forms

—

V =CX2
(34)

Y=BX + CX> (35)

Y=A+CX> (36)

Y=BX (37)

the solutions given above for the constants do not hold. Such

curves are constrained to fulfill certain geometric conditions

independent of the observations themselves; namely, types (34),

(35), and (37) are constrained to pass through (X,Y)=(o,o);

and (34) and (36) must be parallel to the X at (X,Y)=(o,o).

When an observer decides to fit any of these curves to a set of

observations, the point (X,Y)=(o,o) is automatically assigned

an infinite weight, and therefore the development above can not

apply.

The least-square solutions for curves of these types can be

reduced so that Table 5 can be utilized for determining the con-

stants. The mathematical work is in all respects similar to that

above, except that the literal summations are made without first

shifting the origin to the point (X, Y)=. (Xm , Ym). The

final solutions are given in conjunction with Table 5.

4. SUMMARY

Least-square reductions of observations taken at equal intervals

of the independent variable that follow approximately a parabolic

or linear law frequently occur in physics and engineering practice.

Makeshift devices are often employed to avoid the arithmetical

work of determining the constants of curves which properly

represent such data.

In this paper the ordinary least-square formulas are subjected

to mathematical treatment and rigorous solutions are evolved

which require an ultimate minimum of arithmetical work. A table

is furnished from which a large portion of the solutions can be

written down from a mere inspection of the observations.
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Application of the solutions is made to typical problems and
an absolute check with the ordinary least-square ^ solutions^ is

shown.

__
(n-i)(n + i) (3n

2 -7) ___u , 2 s

240 20 Kd n

uW= ;

v —w

5 =^£ (re_l)
(y"-yJ + (»-3)(^-1

-ir
!)

+ («-5) (Ya.s-Y3)+

T =^JL
(n-iy(Yn+Y i ) + (n- 3y(Yn- 1+Y 2)

(n- 5y(Y^3+Y3)+ ."j-uY

U = Ĵ (n-inY» + Y1) + (.n- 3y{Y^+Y2)

(n- 5y(Y^+Yf)+ ...
-J

a= —Tw

1 u

a 1

I
2 u

5. DEFINITIONS AND FORMULAS

Let 11 = number of observations of equal weight entering into

the computations.

i = interval between successive values of the independent

variable.

Xm = arithmetic mean of the observed values of the inde-

pendent variable.

Ym = arithmetic mean of the observed values of the dependent

variable.

(n — i)(n + i)
u =

12
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Then for Y =A +BX + CX*

A = Ym +a-Xm(b-cXm)

B = b-2cXm

C = c

for Y=A-BX
A = Ym -bXm

B = b

for Y =CX2

XmYm + i2XmS + i
2U

Xm* + i
2 6 Xm

2u + i*v

for Y =BX +CX 2

[XmS + iU] [Xm2 - i
2u] - i 2 u[Xm2Ym - iU]

C

B =

i[Xm2 + i
2u] [Xm2u + i

2
v] - i* 4 Xm

2
u>

XmYm + iS-CXm[Xm2 + i
2
3 u]

Xm2 + i
2u

for Y=A+CX2

C = -
2 XmS + iT

i[ + Xm2u + i
2(v-u2

)

A = Ym -C[Xm2 + i
2u]

for Y=BX
XmYm + iSB = Xm2 + i

2u
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TABLE 5.—Values of Coefficients for Use in the Least Squares Solution of Parabolic

and Linear Equations

log u
, 1
log¥ W

9. 6989700-10 0. 71429

9. 5351132 .46875

9. 3979400 . 33333

9. 2798407 . 25000

9. 1760913 . 19481

9. 0835461 . 15625

9. 0000000 . 12821

8. 9238452 . 10714

8. 8538720 .090909

8. 7891466 . 078125

8. 7289333 . 067873

8. 6726410 . 059524

8. 6197888 . 052632

8. 5699787 . 046875

8. 5228787 . 042017

8. 4782084 .037879

8. 4357285 .034325

8. 3952341 .031250

8. 3565473 . 028571

8.3195134 . 026224

8. 2839967 . 024155

8. 2498775 . 022321

8. 2170499 . 020690

8. 1854195 .019231

8. 1549020 .017921

8. 1254215 . 016741

8. 0909700 . 015674

log w
n an
even
num-
ber

(n-l)«
wan
even
num-
ber

6. 8000

14. 736

28.000

48. 562

78. 667

120. 86

178.00

253. 26

350. 00

472. 06

623. 47

808. 56

1032.

1298. 8

1614.

1983. 4

2412. 7

2908.

1

3476.0

4123.

3

4856.

8

5684.1

6612.7

7650.

6

8806.

11504

2. 0000

2. 9167

4.0000

5.2500

6. 6667

8. 2500

10. 000

11.917

14.000

16. 250

18. 667

21. 250

24. 000

26. 917

30. 000

33. 250

36. 667

40. 250

44. 000

47.917

52. 000

56. 250

60. 667

65. 250

70. 000

74. 917

80. 000

0. 3010300

. 4648868

. 6020600

. 7201593

. 8239087

. 9164539

1. 0000000

1. 0761548

1. 1461280

1. 2108534

1. 2710667

1. 3273589

1. 3802112

1. 4300213

1. 4771213

1. 5217916

1. 5642715

1. 6047659

1. 6434527

1. 6804866

1. 7160033

1. 7501225

1. 7829501

1. 8145805

1. 8450980

1. 8745785

1. 9090300

0. 50000

. 34285

. 25000

.19048

. 15000

. 12121

. 10000

. 083916

. 071429

. 061538

. 053571

. 047059

. 041667

. 037152

. 033333

. 030075

. 027273

. 024845

. 022727

. 020870

. 019231

. 017778

. 016484

. 015326

. 014286

.013348

. 012500

8538720-10

6709413

5228787

3979400

2896006

1938200

1079054

0299633

9586074

8927900

8316990

7746908

7212464

6709413

6234231

5783961

5356099

4948500

4559320

4186953

3829997

3487220

3057533

2839967

2533658

2237833

1951798

16

25

36

49

64

81

100

121

144

169

196

225

256

289,

324

361

400

441

484

529

576

625

676

729

784

841

900

Washington, February 20, 1920.








