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I. INTRODUCTION

1

.

Scope of the Paper.—In this paper it is shown how the theory

of dimensions may be used in a differential form; a procedure

which appears fruitful particularly in investigating the effect of

given sources of error on the performance of measuring instru-

ments.

The examples which led to the necessity for developing this

method are discussed at the end of the paper and illustrated by
experimental data.

2. Statement of the Problem.—Given the fact that some relation

of unknown form

0.-/(0., ft, • • • ft-.) (1)

subsists between N physical quantities Q , Q lt Q2 , . . . <2n—i>

no others being involved, it is required to deduce a relation of

known form

i'=
F(S,a,e" ft

' • • •
2n-) (2)

1 This work was done at the Jefferson Physical Laboratory, Harvard University, in 1916, and presented

as an interesting application of Buckingham's II theorem during a series of four lectures on Dimensional

Reasoning given at the Friday evening conferences. It was first published in the Journal Wash. Acad.

Sci., 6, pp. 620-629, 1916, and is reprinted here to provide the mathematical basis for a forthcoming paper

on the effect of temperature on bodies of constant shape.
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such that at any point whose generalized coordinates, Q , Qif Q2 ,

etc., are given, the value of any one of the N-i partial deriva-

tives of Q can be computed from some other one. Thus, it is

required to calculate one of the component slopes of the gen-

eralized surface (1) from a knowledge of another, although the

equation of the surface is not available. The interest of the

problem to the physicist lies in the fact that he may wish to learn

the value of a derivative not readily accessible to experiment, in

a case where some other derivative of the same quantity can

easily be observed. It will be shown that a definite solution can

always be obtained, provided certain dimensionless products of

the N quantities are held constant.

3. Other Classes of Relations Among Derivatives.—The proposi-

tion, that relations may be found connecting the derivatives of

quantities in the absence of a primitive equation, is not new.

There are two other classes of such relations. One consists of

mathematical identities, applicable to any set of related quantities,

whether physical or not. To this class belongs the identity

as well as the triple product relation

^Go &0! &0

(3)

&& <>& ?>Q- * (4)

The other class comprises relations requiring the explicit use of

physical laws, such as the two laws of thermodynamics, or

Hamilton's principle. To this class belong Maxwell's four ther-

modynamic relations, and the reciprocal relations of generalized

dynamics. 2 The relations to be presented here are of a nature

intermediate between the other two classes, in that they require

a knowledge only of the dimensions of the quantities.

II. THEORETICAL DISCUSSION.

1 . Derivation of the New Relation.—The present result depends

upon and is a corollary to Buckingham's II-theorem, 3 according

to which any complete physical equation is reducible to the

form

funct. (nlf n 2 , . . . n*)=o (5)

8
J. J. Thomson, Applications of dynamics to physics and chemistry, Chap. 5.

3 Journal Wash. Acad. Sci., 4, pp. 347-353. 1914; Phys. Rev., 4, pp. 345-376, 1914; Trans. Am. Soc. Mech.

Engs., 87, pp. 263-296; 1915. Anyone who can sufficiently visualize the meaning of the II-theorem will

be able to treat each concrete problem by itself, dispensing with the formulas of the present paper save

as a check.
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in which the ITs are all the independent dimensionless products

which can be built up by combining in any way the N physical

quantities involved. Further, the total number of such prod-

ucts, or dimensionless arguments, will always be the same, no

matter how the quantities are grouped. This number will be

i =N-k (6)

if k is the number of fundamental units needed for measuring

the N quantities. 4

Let II and II designate any two of the i products in (5) which

contain between them the three quantities Q , Qu and Q 2 in which

we are interested. Let Q appear to the first power in II and

not at all in any other product, which can always be done, for

Buckingham has shown that a certain standard arrangement is

possible in which each product contains to the first power some

one quantity of type P which occurs nowhere else. 5 We shall

then have

no-erGf..0z.0o (7)

and
n«jKGJ..Gl.Gk+i (8)

The exponents are abstract numbers fixed by the dimensions of

the N quantities; in any particular problem some of them may
be zero. If we now agree to keep the remaining i — 2 products

constant, (5) becomes

n =</>(n)
(9)

in which the form of <f>
is unknown. The restriction to constant

products can always be fulfilled in theory, but it may lead to

difficulties in practice; it will be discussed in a later section.

Differentiating (9) and then (8) gives in succession

dno_cT0 511 _d4>aIL

bQ
x
-dU bQ'dTlQ,

From (7)

do)

Comparing (10) and (11)

4 The question of the number of fundamental units needed has been discussed by Riabouchinsky,
Rayleigh, and Buckingham; see Nature, 96, pp. 396-397; 1915.

5 Trans. Am. Soc. Mech. Engs., 37, pp. 291-292; note equation (11) and its discussion.
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Similarly

nm-^r\Q bQ,
+
Qj

(I3)

Comparing (12) and (13)

dQr\f°-
a
°h +eQM, (I4)

Hence the desired relation (2) has the linear form

*&= a +b^ <«>

in which the coefficients

and
H&*- (16)

'o-CaR n \ I

a d l0g £<> (tR\

involve none of the N quantities save Q , Qlf and Q2 .

Evidently (14) can be written also

d log go
a log a

in which the coefficients are independent of the coordinates.

Thus the relation connecting the logarithmic derivatives is the

same all over the generalized surface.

If no two independent products can be found which do contain

between them the three quantities Q , Qlf and Q2 , either a or £
will vanish, showing that the derivatives are independent. Thus,

while it is always possible to find a relation connecting any deriva-

tive with some other, it is not always possible to find a relation

connecting a given derivative with any other desired.

2. Extension to Higher Derivatives.—Differentiating (14) with

respect to Qx
and using the identity (3) gives

in which the coefficients are

and

C

A=Q^(Pa
~ a°)(j^~ a"~ 1

)
(2o)

B =iXf- I

)
(l+2a») (2I)
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Thus the curvature with respect to Q x
can be calculated from

the slope and the curvature with respect to Q2 .

3. Integral Form of the Relation*—Integrating (14) at the point

(Qo=q<>, Qi=qu Qz =q2) over an interval so short that ^~ may be

treated as constant, and denoting its value by the symbol J^*

gives for the primitive equation of an element of the surface

t-(!)'

»-K*& +fc)- <*>

in which

The use of (23) would permit a direct comparison of any new
results obtained by the present method with empirical results

previously published in one-term, constant-exponent formulas.

4. Discussion of the Constant-Product Restriction.—Let IIC denote

any one of the i — 2 arguments which we have agreed to hold con-

stant, and let Q stand for either Q1
or Q2 . Then, unless IIC can

be so chosen that it does not contain Q, it must be so chosen

that it will contain some additional quantity Qc not occurring

in any other product. The rule for keeping nc constant will

then be: Vary QG simultaneously in such a manner as to com-

pensate the changes due to Q.

If Q enters IIC to the nth power and Qc enters it to the first,

the derivatives in (15) and elsewhere are subject to one or more
conditions of the type Qc

oc Q~n
. For such a derivative let us

adopt from now on the notation (-4k) • There are two

experimentally independent methods for getting its numerical

value: First, by directly observing the change in Q with Q
while simultaneously changing Qc in the prescribed manner;

second, by calculating it from separate observations on the

change in Q with Q at constant Qc , and the change in Q with
,

6 If instead of an isolated value ofw we were furnished with the entire curve Q»=/a {(h), the direct

use of the Il-theorem would be preferable, and would give the whole curve Qo=fi (Qi). If successively

furnished with additional curves, Qa=h{Qz) and so on, we could gradually build up generalized cross

sections of the surface (i) until, when N-k independent curves had been given, we should have the whole

of it. The problem of developing empirical equations synthetically has not been treated in the available

papers. That problem is a general one, of which the problem of the present paper is a special case; this

situation is illustrated by the fact that our final result (23) applies only to an infinitesimal piece of the curve
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Qc at constant Q. Expanding the conditioned derivative into

the form (^§A +(^A ^ and taking account of the fixed

relation between Qc and Q leads to the working formula

(*Q*\ Jm -n&rm (25)

for the second method. In the most general case where there

are i — 2 arguments to be kept constant, the second term on the

right of (25) will be replaced by — ~ times the summation of

i — 2 terms of the type nQc { J~ j
•

While the procedure outlined in this section is always possible

and sufficient, it is not always necessary or even desirable. For

example: if the number of quantities, N, does not exceed the

number of fundamental units, k, by more than 2, there will be

no other arguments than II and II ; again, if the remaining i — 2

arguments do not involve Q (i. e., Qx
or Q2), their constancy will

not be disturbed at all by the fact that Qx
and Q2 do vary. Further

expedients for simplifying the work will suggest themselves upon
examining each particular case by itself.

III. SOME ILLUSTRATIVE EXAMPLES

For reference in solving problems it is convenient to rewrite

(5) in the form

Q?Qi° - ^ - 6.- hinct. (&Qi ' • • & • fin-i, and other n's) (26)

The values of a, (3, etc., can now be read off directly by identi-

fying them with the corresponding numerical exponents in the

equation, of type (26), afforded by the particular example in

hand.

1. Variation of Journal Friction with Size of Bearing.—In the

case of a journal bearing, under certain restrictions, we may
expect a relation of type (1) to connect the coefficient of friction /,

with the viscosity of the lubricant jjl, the revolutions per unit

time n, the bearing pressure p, the journal diameter D, and the

volume of oil V forced through the bearing in unit time. Let it

be required to calculate the effect of altering the size of the machine

from a test in which nothing is varied but the rate of pumping
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oil through the bearing. It may be shown by the Il-theorem that

/ = funct. f-y?, ~f shape
J

(27)

Let now /, D, and V serve, respectively, as Q0i Qu and g 2 . Com-
paring (27) with (26), a = o, j8 = o, a = 3, 0= -1; hence, by (16)

V
and (17), a= o and b= — 3ry or

df - £& (2 z)dD-~ 3DbV (28)

V /V\2

Also, by (20) and (22), A = o, B=i2jj
2
, and C = g ( n)> there-

fore

dD>=
12D>dV+ 9\D)dV> (29)

Equations (28) and (29) enable us to predict the bearing losses

of any slightly larger or smaller machine in the same geometri-

cally similar series. This requirement of geometrical similarity is

an instance of the constant-product restriction. The products

in this case are the length ratios fixing the shape. The first of

the two results in this example, namely, equation (28), follows

readily enough from equation (27) without calling in the aid of

the present . theorem at all. For in differentiating / first with

respect to D and then with respect to V the same unknown occurs

both times and can be eliminated, leaving the desired relation

between srk and
yi7*

^e contemplation of this example, which

can be solved by inspection because the left-hand member of

equation (27) has only one quantity in it, reveals instructively the

meaning of the theorem and shows that it is simple when under-

stood.

2. Effect of Gravity on a Rolling-Ball Viscosimeter.—Let it be

required to find the effect of- gravity on a rolling-ball viscosimeter

in terms of the effect produced by changing the size of the instru-

ment. Let D, I, and 6 denote, respectively, the diameter and

length of the tube and its angle of inclination to the horizontal,

d and p the diameter and density of the ball, p and fi the density

and viscosity of the liquid, and t the roll-time7 in a locality 8 of

7 That is, the time required for the ball to roll down. This instrument, proposed by Flowers (Proc.

Am. Soc. Test. Mat., 14, pp. 565; 1914). is further discussed by the writer in Journal Wash. Acad. Sci.,

6, pp. 527; 1916.
8 Having set up such a viscosimeter in Cambridge, the question arose whether there would be any

sensible change upon taking it to Washington, where gravity is 0.3 per cent less. The conclusion is that

the roll-time in a very viscous liquid will be 0.3 per cent greater in Washington; and that the effect of

gravity diminishes when the fluidity of the liquid increases, falling to 0.2 per cent for water.
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gravity g. Assuming that a complete relation does subsist among
these quantities, the ii-theorem shows that any equation describing

that relation, whether obtained theoretically or experimentally,

must be reducible to the form

-^ t = funct. (*,^, shape) fcfajr

the shape, in turn, being fixed by the arguments yy yy and 0.

Taking /, g, and D, respectively, for Q , Qu and Q2 gives a =o,

/3 = —2, a = i, and £ = 3; so that by (18)

gbt 2 1 D bt

tbg~~3 + 3 t bD (3I)

An interesting check on (31) is afforded by differentiating the

empirical equation for such an instrument. 9 The equation has

been presented in the form y = a + bx, in which x denotes

t~JDgl — — 1 j and y denotes v /* D 3g( — — 1 1» r being the roll-

time per unit length y v the kinematic viscosity -> and a and

b particular numerical values fixed by a particular choice of -^

and 6. Recast in the form (30) it becomes

P^ r
b pj A

1

V7~ Y~7Ap^
l

D C3»)

or

l=~(i+BjJD>) (33)

in which yl and 5 (both intrinsically positive) do not involve ^

at all, nor Z? except in a shape factor. The values of ~ x— and

— K-yz found by differentiating (33) do satisfy (31).

3. Effect of High Pressure on Accuracy of a Rolling-Ball Vis-

cosimeter.—Without knowing the empirical equation let it be

required to predict the change in roll-time due to any small change

in liquid density, such as would occur upon using the tube under

pressure, by reference to an observation on the effect of changing

the ball density. Since an expression for •>— in terms of >-— is

9 Journal Wash. Acad, Sci., 6, pp. 528, eq. (6); 1916.
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sought, t, p, and p are selected for Q , Qu and Q2 , respectively.

If (30) were to be used as it stands, there would be a restriction

on the derivative ^-1 which is hardly to be desired. An equiva-

lent result in a more convenient form can evidently be obtained

by confining p to a smaller number of arguments. This is done by
replacing (30) by one of the alternative forms provided by the

II-theorem, such as

^ = fUnct.(^^, shape) (34)

Comparing this with (26), a =o, ft, =0, a = 1, /3= — 1; hence by (14)

dp- p\dPolo^
l35J

or by (25)

dt 1 / bt
,

dt\ . ,.

ft—-pV*t.
+**) (36)

In the last transformation \x took the part of Q c and p of Q,

while n had the value — i

.

The following observations afford an experimental illustration

of (36). They were made with a tube 59 cm long and 1 cm in

diameter, containing a one-fourth inch (0.635 cm) ball, ordinarily

of steel (p .
= 7.7 g/cm3

). The tube was filled with lard oil

On = 0.74 cgs units, p = 0.92 g/cm3
). The slope ^- was found to

be 31 cgs units. Substituting now a brass ball (p = 8.6 g/cm3
)

for the steel one, the roll-time dropped from 27.9 to 24.7 seconds,

making y~ equal to —3.6 cgs units. From these data, in

conjunction with (36), the value ^- = 5.2 cgs units would be

predicted. From (32), the actual value is found to be 5.7 cgs

units. Since jr is itself a correction term, the agreement is

sufficient.

Washington, September 23, 191 8.


