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On the Theory of Fading Properties of a Fluctuating Signal 
Imposed on a Constant Signal 

H. Bremmer* 

This paper deals with a theoretical investigation of the fading properties of a signal 
composed of a fluctuating contribution, and another steady contribution with fixed ampli¬ 
tude and phase. It is assumed that the central-limit theorem may be applied to two proper 
quantities describing the fading signal as a quasi-monochromatic function of the time. 
The results are applicable to any autocorrelation function for the fluctuating contribution. 

The first part of the paper (sections 1 to 16) is mainly restricted to the idealized case in 
which any two components of the fluctuating part of the complete signal that are in quad¬ 
rature with respect to their phase do have identical statistical properties; the fluctuating 
part is then termed a “random” signal. This idealized case is shown to constitute but an 
approximation if applied to the fluctuating field due to first order scattering in a turbulent 
atmosphere. Therefore, in the second part of the paper (sections 17 to 26) the theory has 
been extended to fluctuating contributions (then termed “quasi-random” contributions) 
not satisfying the above condition of isotropy. All results then depend on two complex 
correlation functions a(r) and 6(r) instead of on the single function o(x) governing the simpli¬ 
fied theory. In contrast to a{r), the function fo(r) does not exclusively depend on the energy 
spectrum of the fluctuating contribution. 

The fading properties investigated for the composed signal are the distribution func¬ 
tions of both the amplitude and phase, as well as the average number of crossings of each 
of them (per unit time interval) through any given level. The complicated general formulas 
reduce to simple expressions in the two extreme cases of (a) absence of the steady signal 
(e. g., tropospheric scatter propagation to distances far beyond the transmitter’s horizon), 
and (b) predominance of the steady signal (e. g., line of sight propagation to distances well 
within the horizon). The first limiting case leads, when neglecting the influence of 6(x) 
(then being very small), to the well-known Rayleigh distribution for the amplitude, to a 
homogeneous distribution for the phase, and to a fading rapidity (defined as the average 
number of crossings per unit time interval through the level most frequently passed) which 
is for the amplitude faster than for the phase by a factor of 3.04. The second limiting case 
amounts to normal distributions for both amplitude and phase, and to fading rapidities of 
these quantities which are only identical insofar as the different behaviour of the in-phase 
and in-quadrature component (with respect to the steady signal) does have no numerical 
importance. On the other hand, measurements of the difference in the amplitude-fading 
rapidity and the phase-fading rapidity will reveal the effect of the asymmetry with respect 
to the two mentioned components of the scattered signal. 

1. Introduction 

The simplest statistical property of a fluctuating quantity is its distribution function F(a). It is 

defined as follows in the case of the amplitude a of a hf signal 

P(a’>ao)=F(a0). 

The left-hand side represents the probability for an amplitude af>a0. The total range of amplitudes 

being 0-\a0<i 00 , we have the extreme values T1(0) = 1 and F( oo)=0. The derivative of F(a) amounts 

to the 'probability density p(a)=F'(a); the quantity p(a) da then constitutes the probability for an 

amplitude situated in the interval between a and a-fda. 

Neither F(a) nor p{a) yields any information about the rapidity of fading. The latter is char¬ 

acterized, e. g., by the average number of crossings per second, N(a) say, of the amplitude through a 

specified level a. Such a quantity is more complicated since a time interval enters as a new parameter. 

Other yet more intricate quantities, e. g., the average number of extreme values per second, will not be 

considered in this paper. Moreover, our analysis will be restricted to cases involving the two following 

idealized circumstances: 

(A) Signals the amplitude of which satisfies a Rayleigh distribution (random signal). The latter is 

given by 

2 

g(ffl)=<v> a exp { <a2> }■ (1) 

where the symbol < (> henceforth denotes average values; in the case under consideration we have 

dap(a) a2. 

•Guest researcher from the N. V. Philips Research Laboratories, Eindhoven, Netherlands. 
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The Rayleigh distribution constitutes the asymptotic approximation of the distribution for the 

distance from the starting point in the two-dimensional random-walk problem. It is therefore to be 

expected, if the field originates from the incoherent addition of individual contributions having well- 

defined amplitudes, but mutual phase differences )>)>2t which may be considered as random. In 

fact, each individual (monochromatic) contribution can here be represented in a plane by an arrow the 

length and orientation of which correspond to its modulus and phase, respectively. The distribution 

of the modulus of the sum of n contributions (represented by n arrows of fixed lengths but random direc¬ 

tions) then approaches (1) for large values of n. 

Practical realizations of this model are: 

(Al) Tropospheric signals over distances well beyond the transmitter’s horizon that can be 

ascribed to forward scattering by turbulent atmospheric blobs. The nonfluctuating background signal 

due to diffraction is negligible here. The contributions from the various incoherently scattering blobs 

here constitute the elements having random phases; 

(A2) Ionospheric signals at frequencies above the muf (frequencies not propagated by ordinary 

reflections). The field to be considered originates exclusively from forward scattering by turbulent 

blobs in the ionosphere; 

(B) Signals composed of the sum of a steady component and another quasi-random component 

the distribution of which (see eq 92) constitutes an extension of a Rayleigh distribution. We mention 

the following practical realizations: 

(Bl) Tropospheric line-of-sight propagation. The steady component results from the ideally 

stratified troposphere, and usually consists of the vectorial sum of the fields associated with the direct 

ray and a ray reflected against the earth. The quasi-random component arises from the extra amount 

produced by the scattering turbulent blobs, this amount being the only one present in the above case (Al); 

(B2) Single-mode ionospheric one-hop transmission. The steady signal is produced by ordinary 

reflection against an ideally stratified ionosphere, the Rayleigh-distributed signal by the additional 

scattering due to ionospheric turbulence. 

List of Symbols 

<a)> = average value of a 

P(a^>a0) =probability for a signal a to surpass a level a0, 

p (a) = probability density of variable a, 

h(t)— fluctuating signal, 

w0=angular frequency of carrier, 

x (t) = component of fluctuating signal in phase with cos (w0t), 

y(t) = component of fluctuating signal in quadrature with cos (co0<), 

j(xi, . . . , xn)= joint probability density for orthogonal variables, 

F(w) = Fourier transform of fluctuating signal hit), 

R7(w)= energy spectrum of fluctuating signal h(t), 

t==t2—1\ -== separation in time between two moments of observation and t2, 

A=matrix of the coefficients of the bilinear form in exponent of central-limit theorem, 

A = covariance matrix, 

A-1=reciprocal matrix of A, 

|A|=determinant of matrix A, 

a(r) =complex correlation function defined by second term of (12), or by (69), 

6(r)=complex correlation function defined by first term of (12), or by (69), 

z=modulus of quantity represented by (17), 

\p=phase of quantity represented by (17), 

I?o=amplitude of steady signal proportional to cos (a>0i), 

G(R, R, <$, . . ,)=joint probability density for polar variables (i?=amplitude; <£=phase), 

« = average frequency with respect to energy spectrum of the fluctuating signal, 

(r„=rms value of frequency with respect to energy spectrum of the fluctuating signal, 

x, R, etc. = time derivatives of x, R, etc., 

70=Bessel function of order zero and imaginary argument, 
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Na (a) = average number of crossings (per unit time interval) of amplitude through level a, 

IV* (<p)= average number of crossings (per unit time interval) of phase through level tp, 

TQ, QP, TP=mutual distances between T (transmitter), Q (arbitrary, scattering point) and P 

(receiver), 

Sn(Q, t) = deviation of refractive index at point Q and at the time t, 

1=scale of turbulence, 

Mi)t=cofactor of A with respect to its element Aik, 

lik—coefficient of r2 term in expansion of Mik with respect to r, 

mik=coefficient of r4 term in expansion of Mik with respect to r, 

H2— <(h2)>=variance of fluctuating signal, 

Hit) — sum of steady signal and fluctuating signal. 

2. Representation of a Quasi-Monochromatic Signal 

The scattering effects described above produce, if energized by an originally monochromatic hf 

signal, a quasi-monochromatic signal. The latter can be represented as follows, 

h(t) = x(t) cos (u0t)+y(t) sin (w0£) = K,e[{x(£)+M/(£)} exp (—iu0t)], (2) 

in which x(t) and y(t) change little over 1 cycle of duration 27r/co0. 

We introduce the Fourier transform F(u) of h(t) according to 

dw F(w) eiat. (3) 

The main statistical properties to be derived are connected with the so-called energy spectrum given by 

lF(w) = \F(u)\2=F(co)F* (a) = F(a) F(-u). (4) 

The fluctuating signal h(t) constitutes the complete fluctuating function in case A which itself is 

characterized moreover, by the absence of any significant difference between the statistical properties 

of xit) and y(t); the corresponding function hit) is henceforth termed random. On the other hand, the 

function h(t) only constitutes a fluctuating component imposed on another steady component in caseB; 

the anisotropy with respect to x{t) and y(t), which may exist in this latter case, leads to a quasi-random 

function h(t) which is more general than the corresponding random function of case A. 

The negative frequencies occurring in the Fourier synthesis (3) can be reduced to positive ones 

by the substitution w= — a/ for «<0. The contribution from the negative frequencies then proves 

to be the complex conjugate of that from the originally positive ones. This results in the following 

alternative representations of our fluctuating component: 

:)=2 Re{ J“daF*(a)e-toty 

= Re 2 J duF* («) e~4 ‘-e~1 "o‘ 

A comparison of the last expression and (2) shows that the two real functions x(t) and y(t) could be 

defined by the real and imaginary part of the following complex relation, 

x{t)-\-iy{t)=2^ duF*(co)e~Ho’~0’oU. (5) 

This leads to reasonable definitions (to be maintained henceforth) for x{t) and y(t), though not to 

the only possible ones. In fact, the single original function h(t) can not involve unique definitions for 

both x(t) and y{t) without introducing additional conditions. 

At any frequency &>, the time t being fixed, we consider the ensemble of configurations that differ 

only with respect to the phase of F(u>). We then obtain zero values for the ensemble averages <£> 

and^<(i/>, provided we merely assume equal probabilities for any two transforms F(w) for which arg 

F(a) differs by t. 
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3. Application of the Central-Limit Theorem 

The “orthogonal” quantities x(t) and y{t) may be compared with the corresponding “polar” quan¬ 

tities p{t) and $/) connected with the former according to 

x(t)+iy(t)= p(t)-explicit)}. 

The relation (2) then transforms into 

AOO=Re[p exp{— i(w0t—<f>)}]. (6) 

The amplitude pit) and the phase <f>/) have direct practical importance. However, our analysis 

will be worked out for x and y first, since these quantities are simpler and have zero averages (as men¬ 

tioned above) at any time t, both for the random and the quasi-random fluctuating component. 

All four quantities 

Xi x{ti), X2 %iti) U71 ~1 7"), 

yi=y(ti), y2=yit2)=y(ti+T) f 

therefore also have zero averages, which is important when applying the so-called central limit theorem 

to the probability density of the quantities in question. This theorem presumes a normal law for the 

distribution of each of the above quantities (7). This normal law is known to hold, under very general 

conditions, for limits obtained from the addition of a large number of independent random vectors; 

in our case the latter may be realized by the two-dimensional vectors formed by the real and imaginary 

parts of those contributions to (5) that result from narrow frequency intervals. The applicability 

of the central limit theorem then is justified by assuming independent phases of Fiu) in the various 

w intervals. We further point to the analogy existing between the quasi-monochromatic signal h(t) 

under consideration and that describing white noise which has passed through a filter with a frequency 

characteristic given by the energy spectrum //w). In view of this analogy, Booker, Ratcliffe, and 

Shinn [1] 1 could deduce fading properties, such as discussed in this article, from Rice’s [2] theory for 

white noise; the latter theory also uses the central limit theorem. 

All fading properties to be discussed can be derived from the joint probability density /(xi, x2, x3, x4) 

defined such that / dxx dx2 dx3 dx4 represents the probability of finding Xi, x2, x3, x4 in prescribed in¬ 

finitesimal intervals dxu dx2, dx3, dx4. The central limit theorem, assumed to hold for the above reasons, 

then states that / should be proportional to an exponential the exponent of which is a bilinear form in 

the four mentioned variables. 

The coefficients of the bilinear form determining/ can be connected with the so-called second-order 

moments or covariance elements <CxiX2^>, <CxiX3)>, etc. This connection will be indicated in the next 

section for an arbitrary number of variables, instead of the four variables associated with our fading 

problem. 

4. Evaluation of the Coefficients in the Central-Limit Theorem in Terms of the 
Covariance Elements 

Let xu x2, . . ., xn be n real random variables with zero mean values and a joint probability density 

satisfying the central-limit theorem. The probability/dx 1 dx2 . . . dxn of having xu . . ., xn in specified 

infinitesimal intervals then depends, under very general conditions, on a function of the form 

{n n ^ 
—y- (8) 

i=l/c=l J 

It is well known that both Land the coefficients Aik can be expressed in terms of the second-order 

moments 

Aik=<CXiXk> = fdxifdx2 . . . fdxn-fixu . . . ,xn)XiXk. (9) 

1 Figures in brackets indicate tbe literature references at the end of this Circular. 
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These averages, the existence of which is to be assumed in view of the applicability of the central- 

limit theorem, constitute the elements of the so-called covariance matrix A. The evaluation of (9), 

together with that of the normalization condition 

J'dx1J'dx2 . . . fdxn-f(xu . . . ,xn) = l, 

leads to relations from which C and all coefficients Aik can be derived. The final explicit formula [3] for 

the probability density (8) then proves to read 

{n n 

— iS (A)TkXiXk V 
»=* _J . 

(2x)n/2|A|^ 
(10) 

in which (A)^1 represents the ik element of the reciprocal A 1 of the covariance matrix, and |A| the de¬ 

terminant of the original matrix A. 

5. Covariance Matrix of the Variables (7) for a Random Signal Expressed in 
Terms of the Energy Spectrum W(w) 

The matrix elements referring to the signal (2), such as <C.X\X2^> and <£iyi)>, can be connected 

with the Fourier transform F{<S) of (3). It is sufficient to investigate the quantity <^Xi{x2-\-ij2)^>. In 

fact, its real and imaginary part yield at once <^XixA> and <C^iy2>, while the other relevant elements 

can be obtained by interchanging the roles of the subscripts 1 and 2, or by letting x2, y2 approach xu yu 

The evaluation of <Cxi(x2-\-iy2)^> will be based on the assumption that our ensemble associated 

with the various possible functions for the phase of F(w) should be ergodic. This leads to the following 

representation of the mentioned quantity as the limit of a time average over a large interval 2 T 

1 rT 
<x1(x2+iy2)>=Lim ^ dt x(t) {x(t+r)+iy(t+T)}. 

T-> 00 XI J _y 

The limit exists since our definitions of x(t) and y(t) according to (5) involve a well defined asymptot¬ 

ically linear increase of the integral itself with T if F{u>) has been given. As a matter of fact, the 

integral proves (see eq 12) to depend linearly on the product of two factors F(cS) each of which increases 

porportional to T* if we assume a well defined variance <Ji2^>=IF, say. The latter proportionality 

follows from Parseval’s theorem to be deduced from (3) which reads in the case under consideration 

J ^ tf(t) dt=2jm duF(co) J” do/FV) Sm 
for large values of T this tends to 

f fdit) dt—2ir r du>F(u>)F* (w). 
J-T J-co 

The left-hand side can be approximated by 2 T H2 which involves the mentioned proportionality of 

F (w) with T\ In view of these remarks we arrive at the following approximation for large T 

<Xi(x2-f-M/2)>=2^ f dtx(t){x(t+T)+iy(t+T)}. (11) 

However, we emphasize that the explicit dependence on T does drop out in all ratios of averages 

of the type (11), while our results will be expressed in terms of such very ratios. The T values occurring 

in the numerator and denominator of the latter should then be identical before passing to the limit 
for T—> co. 

486596—59-2 5 



We can substitute half the sum of (5) and of the corresponding conjugated complex quantity for 

the first factor of the integrand of (11), whereas the second factor is obtained by replacing t in (5) by 

Hence 

<Cxi(x2Jriy2)'^>==7p J dt £J* dcoN*(w)e-1("-“°u +J* daaF(<J* du'F*(c«/)e-i(‘‘/-"o)(<+T), 

or, after changing the orders of integration (which should not affect the result) 

<Cxi(x2Jriy2)y>=7j=, do>F*((S)J do)'F*(w')e~Ha'~a°)Tj d£e-i(“+"'-2"°>* 

«.)J cfa'F*(c/)e_4("'_"o)TJ~ dtei<-a~u')t. 

In view of the large value of T we replace the integration limits ± T by ± 00 while applying the relation 

co 

I dteiat=2tt8(o). 

We thus obtain 

<Xi(a?2+iy2))>—duF*(u)J da)'F*(o>')e~i(a'~u°)T 8(w'-}-w—2w0) 

duF(a)J” do>'F*(o>')e-i(“’-“°)r «(«-»'). +- 

The singular point of the delta function in the first term, that is w' = 2m0-w, is situated inside the 

integration interval 0<Cw< °° only if w<^2w0. Therefore, the first integral in this term reduces to the 

interval 0<w<(2coo. No such reduction of the integration interval occurs for the second term. Hence 

the integrations with respect to a/ yield 

o n2u0 o_ f co 

<Zi(*2+i3fc)>~yJ dcoN*(co) ^(2«0-«)«-<<“»-“)r+yJ dcoFH^*(co)e-^“-“o)r (!2) 

According to (4) we can substitute W(w) for the nonexponential part of the integrand of the second 

term. This term is completely independent of the phases of F(co). As to the first term, our assumption 

of phases of F{co) that are random for the most part, involves a very low correlation between the phases 

of F*(a>) and F*(2w0—w), provided the arguments co and 2co0—co are not almost equal. The latter 

only occurs at co near co0 and we therefore expect a value of the first term which is lower according as 

the randomness of the phases of F(co) becomes more complete. A perfect randomness would exclude, 

according to (5), any discrimination between the statistical properties of x(t) and those of y{t). The 

impossibility of such discrimination applies to our previous concept of a random fluctuating component 

for which, therefore, we assume the vanishing of the first term of (12). As a matter of fact, our later 

treatment (in section 18) of quasi-random fluctuating components, which also accounts for this first 

term, will show how the in general existing anisotropy with respect to the properties of x{t) and y(t) 

only disappears for a vanishing value of the first term of (12). 

Restricting ourselves provisionally to random fluctuations, we put 

O ir rm 
<Zi(z2+M/2)>=y I d«IP(«)e-*<"--0>'. (13) 

Obviously, an interchange of the indices 1 and 2 should correspond to replacing r by — r. This 

substitution changes (13) into its conjugated complex value. Hence 

< ar2 (xi+ iyt) >={<*! (x2+iy2) >} *, 

so as to have 

<x2yi>= — <xiy2>. 
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Moreover, taking x2 = Xi and y2 = y\ has to correspond to r=0. We then infer from the real and 

imaginary part of (13), W(a>) being real 

<x?^<x2*>=^§~d<*W(u), 

<x1y1>=0. 

Both moments tx and t2 being arbitrary, we also have <Cx2y2y = 0. The symmetry relations here 

derived are understandable. The slow change of x(t) and y(t) over a quarter cycle involves the following 

relation when replacing t in (2) by f+7r/(2w0): 

hit+io)==~x 0+2^o) sin M+y(t+idcos ^sin cos 

Comparing this representation with the original (2), we infer that the statistical properties should 

be invariant (in our case of statistical isotropy) with respect to the combined substitutions x-^y and 

y-^—x. Therefore, e. g., <^xy^> = <^y (—x)^>; this implies the property <zy)> = 0, that is, the sta¬ 

tistical independence of the value of h(t) at two moments separated by a quarter cycle. Moreover, the 

invariance with respect to the substitution x->y involves the other relation <^Xi x2y~<iyi y2^> for 

the random fluctuating component. All these symmetry relations could also be derived, assuming the 

existence of ensemble averages such as x2y, from the condition that the resulting average 

<^h(t)h(t-\-T)^> should be independent of the time (condition of stationariness). 

6. Explicit Form of the Central-Limit Theorem for the Variables xu x2, yu y2 in the 

Case of a Random Signal 

For the variables in question the elements of the covariance matrix are given by 

Aik=<CXiXk> (i=l,2,3,4; £=1,2,3,4), 

in which x3 and xi are to be identified with yx and y2 respectively. Hence all matrix elements are repre¬ 

sented in the following scheme: 

A= 

An A12 A13 A14 <r?> <XlX2> Od/i> <xiy2> 

A2i a22 A23 A24 <X2Xi> OI> <x2yi> <x2y2> 

A31 A 32 A33 A34 <y\Xi> <yi*2> <y\> <yiy2> 

A 41 A42 A43 A44 <y2xi> <y2x2> <y2yi> <yl> 

(14) 

In this section we further consider a random signal (the corresponding evaluation for a quasi¬ 

random signal is given in section 19). According to the symmetry relations of the previous section, the 

elements of (14) either prove to be zero or can be reduced to one of the three following quantities: 

(a) <z?> = <*2>=<y?>=<yl>, to be marked <r2>; (b) <a:1r2>=<y1y2>; or (c) <xxy2>. 

We thus obtain: 

A= 

<r2> <XiX2> 0 Oll/2> 

<XlX2> <*2> -Od/2> 0 

0 — <xiy2> <x2> <xix2y 

<xiy2> 0 <aqz2> 02> 

(15) 

The corresponding reciprocal matrix reads as follows: 

<r2> -<xi x2y 0 —<xiy2y 

— <Zl x2> 02> Ol?/2> 0 

0 <xiy2> <X2> — <Xir2> 

—<xiy2> 0 —<xix2y o2> 

«z2»2— «ziz2»2— «zd/2»2 
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This can be verified by determining the i j element of A A-1 from a multiplication of the terms of the 

fth row of A by the corresponding terms of the jth column of A-1; the addition of the four products 

thus foi'med for each ij set then yields (while taking into account also the denominator of A-1) zero for 

i^j and 1 for i—j. Hence we arrive at AA_1 = 1, as should be. 

All relevant matrices prove to be symmetric in the case under consideration, so as to have, e. g., 

(A-1) 2*= (A-1) The bilinear form in (10) thus amounts to 

4 4 

S S (A-1)ikXtxk= «x2>-x\— <X!X2>-XiX2+0 — Oa/2>-Xiy2— <x1x2>-x2x1 
i=l k = 1 

+ <x2>-x^+<Xi?/2>-Xi?/1+0 + 0 + <x1y2>-?/1x2+<x2>-?/21—<x,x2>-?/1y2 

— <Xiyi>‘y&l + 0 — <XiX2>-?/27/1+<X2>-2/1)[«X2»2— «X1X2»2-«X1?/2»2]-1 

< X2 > ■ {x\+y\+x| ■+yi) — 2<xtx2> • (X!X2+yxy2) — 2 <x1y2y-(x1y2—x2yl) 
«x2»2-(<x1x2»2_«x1?/2»2 

Moreover, the evaluation of the determinant of (15) yields 

|A|={«x2»2—«x1x2»2—«X!?/2»2}2. 

The final form of (10) then results, in the case under consideration, in the following expression 

(taking into account that n=4): 

<x2> 
—2-(a'i2+2/i2+:E22+2/22) + <XiX2>-(x1x2+?/iy2) + <x1y2>-(x1?/2—x^) 

__(<x2»2-«xix2»2-«x1y2»2_ 

47r2{«x2»2-«x1x2»2-(<x1y2»2} 

We observe the dependence of the exponent only on expressions which are invariant with respect 

to a “rotation” of the rectangular axes x and y that are connected with the definition of Xj, yx and of 

x2, y2- In fact, introducing (for both times tx and t2) polar coordinates according to x-\-iy=r e<$, the 

quantities occurring in (16) prove to be given by 

Xi2jryi2Jrx22-\-y22=rl2Jrr22, 

XiX2+yxy2=rxr2 cos (<p2—<px), 

xxy2—x2y1=r1r2 sin (^>2—<pi); 

each of these expressions is independent of the special position of the axes. 

7. Probability Density/(#i, x2, yu y2) for a Random Signal Expressed in Terms of 

the Energy Spectrum 

According to (13) all averages < )> occurring in (16) depend only on the form of the energy 

spectrum W(u), the dependence on T being apparent (compare section 5). Moreover, the explicit occur¬ 

rence of T is eliminated by introducing, apart from the simplest average <(x2>, only the ratios <(xiX*)>/ 

<x2>, in which T should be identical in the numerator and denominator. In fact, these ratios then 

follow from a division of (13) by its value for r=0; the latter value amounts to <C(x2i + fx12/1))> = 

<x2>+0. Hence 

<x1(x2+fy2> 
<x2> 

(17) 
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Obviously, the real quantities z and yp are completely determined by the energy spectrum IT(a>), 

w0 and r being given. The real and imaginary part of (17) yield 

<^XiX2^> = <Cx2^>z cos yp, 

<zd/2> = <z2> 2 sin ip, 

which involves the further relation 

«£2»2~ (<^i^2>)2— «2;12/2>)2= «£2»2-(1—22). 

The substitution of the three latter relations into (16) leads to the following alternative form for the 

joint probability density of xu yu x2, and y2 for a random signal: 

(x12+y12+x22+y22)—2z cos pjx^+y^)— 2z sin yp(x1y2—x2y1) 

2<^x2P>-(l —z2) 

47r2«r2>)2. (1 —22) 

We observe the connection of z and yp with correlation properties, as expressed by the dependence 

of z and yp on the time interval T—t2—ti. On the other hand, the third parameter <(x2)> is directly 

associated with the variance (that is, the square of the rms value) of the quasi-monochromatic signal (2). 

In fact, we derive from (2), by considering the smallness of the change of x(t) and yit) over one cycle of 

27t/w0 time units, the following variance: 

<h2>=<x\t). cos2(w0f)>+<2/2(£)• sin2(w0i)>+2<;£(%(0 cos (u>0t) sin (w0£)> 

~<x2>^+<y2>i+2<xy>-0=h<x2> + ±<x2>, 

or 
H2=<h2>^<x2>- (19) 

8. Probability Density for a Random Signal Imposed on a Constant Signal 

The constant signal can be described by h0(t) = R0 cos (u0t), R0 being independent of time. The 

superposition of the random component h(t) given by (2), considered so far, leads to a final signal 

represented by 
H(t)=R0 cos (u0t)+h(t) = {R0+x(t)} cos (a0t)+y(t) sin (w0<). (20) 

The phase has been fixed so that t—0 does correspond to a maximum of the background signal. 

We introduce new polar coordinates according to 

RQJrx(t) = R(t) cos 3>(f); y{t) — R{t) sin $(<). (21) 

The representation (20) then transforms into 

H(t)=R(t) {cos $(£) cos (w0t)+ sin <h(t) sin (w0t)} 

= R(t) cos{w0t—$(t)}. (22) 

In other words, R(t) and 4>(^) are the amplitude and phase of the envelope of the complete signal H(t). 

This amplitude and phase being measurable quantities, we are interested in the probability dis¬ 

tribution that is obtained from (18) by passing to the values of the amplitude and phase at the two 

times in question, that is for t=tu and t=t2. The four new variables to be considered therefore are 
represented by 

Ri=R(ti); R2=R(t2,); $i=$(«0; 4>2=<f>fe). 

According to (21) the complete transformation formulas read as follows 

Xi=Ri cos cpi—R0; x2=R2 cos 4>2—Ro', 

yi=Ri sin y2=R2 sin <p2. 

9 



The probability of finding the original variables xu x2, yi, y2 within specified infinitesimal intervals 

becomes as follows when passing to the new variables, while taking into account the theory of Jacobi’s 

functional determinant: 

fdxxdx2dyidy2=fX 

ctai bxi daq daq 

dR[ c)R2 d4>i d<f>2 

~dx2 dx2 dx2 bx2 
bRi dR2 d$i d<f>2 

dyi dyi fyi 
dRi dR2 d4>2 

dy2 dy2 <yy2 dy2 
dRi dR 2 c)4>i d<f>2 

dRxdR2d$ld,i>2 

—GdRidR2d^\d^2, say. 

In view of (23) the determinant becomes 

cos $1 0 — Ri sin 4>! 0 

0 cos <f>2 0 —R2 sin <f>; 

sin <f>i 0 Ri cos4>i 0 

0 sin 4>2 0 R2 cos 4>2 

Hence, the joint probability with respect to the new variables is given by G=RiR2f. The former 

expression (18) for/next has to be transformed with the aid of the substitutions (23). The corresponding 

evaluation of the three relevant quantities occurring in (18) yield 

Xi2+yi2+x22jry22—2R02+R12+R22—2R0(R1 cos ^>i + i?2 cos $2); 

XiX2+yiy2=R02—Ro(Ri cos <E>! + i?2 cos $2)JrR1R2 cos (4>2—$1); 

x1y2—x2yi=R0(Ri sin $1 — R2 sin d>2) + i?i52 sin (<f>2—$1). 

Some further elementary reduction of the linear combination of these quantities that occurs in the 

exponent of (18) finally leads to the following formula for the new probability density G= RiR2f (replacing 

<a:2)>by H2, in accordance with eq 19): 

G- 
R\R2 

:47t2#4(1-z2) 
exp 

— [2i?o+R\-\-R22—2Rlz cos \J/—2R0(R1 cos ^x-{-R2 cos 4>2) 

-\-2R0Rlz cos (<£>!+^)+2R0R2z cos (4>2—^)—2RxR2z cos ($2—$1—<A)1 

[2i?2(l —s2)]-1. 

(24) 

9. Expansions of z(r) and ^(r) for Small r 

As an introduction to the limiting procedure to be applied in the next section, we investigate the 

behaviour of z(r) and \p(r) for small r. The quantity represented by (17) reduces to unity at r=0, 

so as to have 3(0) = 1, \J/{0)=0. Further, the following series results when expanding the exponential in 

(17): 

f* 00 

I do)TT(w) (w—w0) 
- 

J du JF(w) 

2J duW{w)(<j>—o)0)2 

2 J” daW(p) 

(25) 
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The successive quotients of two integrals represent the averages co—co0, (co—co0)2, (co—co0)3 etc., 

of co — co0, (co — co0)2, (co — co0)3 etc., provided we define by IF(co) dec the probability that co shall lie in the 

interval between co and co+dco. This definition implies the following average of the frequency itself: 

e/coW(co)co 

- 
J dcolF(co) 

(26) 

We next assume co = co0. In other words, the random component hit), which may originate from 

scattering effects influencing the original background signal, has an average frequency (defined by the 

energy spectrum) equaling that of this latter signal. The second term of (25) then drops out and the 

relation in question can be put in the form; 

g(Ty*Cr) = l_.L (co-co0)2 + ^L (co_Wo)3+ .... 

The real and imaginary parts start as follows: 

2(r) COS ^(r)=l—(co—co0)2+ . . . , 

V 

z(r) sin iA(t)—(co—co0)3+ . . . , 

whereas an addition of the squares of these latter expansions will lead to: 

2t*(T) = 1-T*(co-(oo)2+ .... 

(27) 

(28) 

We shall mark the frequency variance (co —co0)2 by cr2, au then being the rms deviation (relative to 

the energy spectrum) of the frequency from its average value co = co0. The relation (28) is then 

equivalent to 
l_22(r) = r2(Tu2+ . . . . (29) 

It shows how the expression (24) for the probability density G of amplitudes and phases degenerates 

at r=0. At the same time, the fraction constituting the exponent of (24) proves to have a well defined 

limit for r—>0, this limit being of great importance for the analysis in the next section. 

10. Probability Density for the Amplitude, the Phase and Their Time Derivatives 
for a Random Signal Imposed on a Constant Signal 

This probability density enables the derivation of the most elementary properties of fading 

rapidity, namely the average numbers of crossings of either the amplitude or the phase through a 

prescribed level. The probability in question follows from the probability (24) for the amplitude and 

phase at two different moments by letting their separation r tend to zero. This limiting procedure 

can be worked out by substituting the two following Taylor expansions into (24): 

R2—R(t2)— ■ • • 

*2=$(fe) = $(*l) + T£«)+y £(<!)+ • • • • 

- 

- 

(30) 

Henceforth we shall omit the subscript 1, tx being the only time to be considered so far. The 

differentials dR2 and d<f>2 can now be represented as follows provided we consider Rlt <t>u and r as fixed 

quantities,; 

dR2=rdR-\—^ dR-f~. » ♦ , 

► 
. t-2 .. 

d<f>2=rd4>+-^-d<f>+. . . . 

(31) 
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These values imply that in any double integration concerning, e. g., Rx and R2, the integration with 

respect to R2 should be performed first. 

In (24) the function G can be considered as depending explicitly on R1} R2, 4>i, 4>2, r, the dependence 

on r being contained in the occurrence of z(t) and ^(t). The probability of finding Ru R2, <f>i, $2 within 

prescribed infinitesimal intervals thus leads to the following expression when substituting (30) and (31): 

G(RU R2,$i,$2, T)dRidR2d$id$2=G (^R,R-{-tR-\-~ R . . . ,<h,4>+r$+^-4> . .., 

dR ^ rdRdR-1-. . d'h ^rdd>-\-— d<$>-\-. . .^* 

For small r the right-hand side can be represented by 

rHRdRdM^G (•R,R+tR+j R . . ., <f>,<f>+r<f>+^ . . ., Ty 

so that the joint probability density G for R, R, 4>, <f> does result from the limit, if any, 

6r(i?,^,4>,<h)=Lim t2G (^R,R-\-tR-\-~ R , <f>,4>+r<f>+-^- <f>. . ., T^)^‘ (32) 

The evaluation of (32) with the aid of (24) amounts to the following expression if the numerator 

in the exponent of (24) is represented by E (R1,R2,$1,$2,t) : 

G(R,R,Z,<i>)= 
y- r ^r_E(R1,R2,*h*2,T)'\-] 

^Ll-22(r)‘exp \ 2H2{l-z2(r)} f J 

In view of (29) we can apply the limit 

\Rl—)R', $1——^R~\~TR'\"^ R • • • • J $2~ 

(33) 

T • 1-2 1 mm -- 
r-^0 1—22(t) <J2a 

with the aid of which (33) can be transformed into: 

, -A2 
47 

exp r 1 • Lim - 
T—>0 

f E(R1,R2,$1,$2,t) \ I L 2 H2ai X. J Ri—)R‘, $1—Ri—)R-\-tR-R ... 
• r2 .. !i 

,.; $2<£_1 (34) 

In the r limit yet to be determined, we can omit all terms of E that are proportional to 2 sin \p; 

in fact, these terms being of the order of r3 [compare (27)], their contribution will be zero after the division 

by t2. An ordering of the remaining terms of E leads to the following representation of the r limit in 

question: 

Lim 
T—>0 

’{I—z(t) cos>A(t)} {2i?o—2Ro(Ri cos <S>i+7?2 cos <b2)} 

+i?2-)-/?|—2RxR2z(t) cos ip(j) cos (<f>2—4>0 

'flu's; R2-^R+tE+— R . 
(35) 

According to (27) the ratio (1—z cos i^)/r2 tends to J(w — u0)2=a2u/2, whereas the factor 

2R20—2R0(R1 cos 4>!-j-I?2 cos <f>2) approaches the limiting value 2R%—4:R0R cos <f>. Moreover, the sub¬ 

stitutions indicated for <f>i and <f>2 yield the following value for cos (<f>2 — 4*0 up to second-order terms: 

cos ($2—4)1) = cos 
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We perform the necessary substitutions in the remaining terms while applying, moreover, the relation 

z cos ^=1 — jr2cri . . . [see (27)]. The limit (35) can then further be reduced to 

Y (2Rl—4:R0R cos 4>) 

4-Lim 
T—>0 

£2 + ( -2jR(^R-\-tR-\—R 

The elementary evaluation of the second term leads to the final expression 

<rl(Rl—2R0R cos ^)+R2+R2((72uJt-i2), 

which thus constitutes the value of the limit occurring in (34). Hence, the joint probability density of 

the amplitude, phase, and the corresponding time derivatives reads explicitly 

G(R, R,$,$)-- 
R2 f 

=4tr2ff4 eXP V 

R2-2R0R cos 4>+R2+(R2+R2$2)/, 

2 H2 
(36) 

11. Distribution of the Amplitude and its Time Derivative for a Random Signal 

Imposed on a Constant Signal 

The function G(R,R) will be defined such that G{R,R)dRdR represents the probability of findiug 

R and R in prescribed infinitesimal intervals. Obviously, G(R,R) is obtained by integrating 

G(R,R,$,$) over all possible values of <f> and 4>, that is, over the intervals 0<4><27r and —00 <4><co. 

Hence 

G(R,R) - 
R2 

4tt 2HVu 
exp { 

R20+R2+R2/, 

2 H2 
R2$2 \ 

'2 izvj' (37) 

The first integral equals 2w I0(R0R/H2), I0(x) being the zero-order Bessel function for imaginary 

argument. The second integral transforms by the substitution 

u= 
R 

-\j2auH 
4> 

into a Poisson integral yielding the value (2it)* H <rJR. Taking into account the values of both integrals, 

we obtain by working out (37), 

exp (~as+m 

This probability function enables the determination of the rapidity of the amplitude fading (see the 

theory of section 13). 

The distribution of the amplitude R is given by the probability G(R)dR of finding an amplitude 

between R and R-\-dR. This new distribution is found by integrating (38) over all possible values 

of R, that is by determining the following integral which is again of the Poisson type: 

£®exp(-2-^)=(2,)»H, 

The resulting distribution function reads 

486596—59-3 13 



This function should satisfy the normalization conditionJ dRG(R) = 1. The latter is easily 

verified with the aid of the following integral property of Bessel functions [4]: 

J* drrl0(ar)e~irt=^ ea2/(46). 

We consider the two limiting cases of: 

(a) absence of the background signal (R0=0). The distribution (39) simplifies to 

(40) 

G(R.)~2e-R2'™2), (41) 

which is the well-known Rayleigh distribution. The latter is characterized by the variance 

<CR2^>=2<^h2^> = 2H2; this relation is in accordance with the respresentation (22) for the complete 

signal; 

(b) predominance of the background signal (R0^>^>II2/R). A substitution of the asymptotic 

approximation for I0 leads to the following approximation of (39): 

ff(JJ)~dkl(42) 

12. Distribution of the Phase and its Time Derivative for a Random Signal 
Imposed on a Constant Signal 

The function G(d?, 4>) defining the probability G($, <f>) d<f> d4> of finding <f> and 4> in prescribed 

infinitesimal intervals is obtained by integrating G(R, R, 4>, 4>) over all possible values of R and R. 
The range of R contains all positive numbers, that of R also the negative numbers. Hence, 

tr(4>,4>)= f dR f dRG(R,R,$>,$)) 
*) 0 — CD 

or, in view of (3&), 

g($,t)=ex }f 
R cos <f>— R2—i?24>2/i 

2H2 

The second integral, once again of the Poisson type, amounts to (2-ir)yi a Jl. The substitution yields 

£($,$) = 

exp 
\ 2 H2 J 

(2tr)3'2auH3 
J* dRR2 expJ^ 

R0R cos<f> R2(l-}-$2/a2) 
H2 2 H2 }■ (43) 

which expression might also be reduced to error functions. However, formula (43) can be applied 

straightforwardly for the derivation of the rapidity of phase fading (see section 15). 

The distribution of the phase $ itself, characterized by the probability G{(i>) d<f> of finding <f> in a 

prescribed infinitesimal interval, is obtained by integrating (43) over all values of 4>. This integration 

amounts to the further Poisson integral, 

The new probability density 

R2h2 1 (2v)*<tuH 

2H2^2 J R 

then proves to be given, after a simple reduction, by the formula 

G(*)- 

exp 
1 l 

sin2<f> 

2H2 J 
2tH2 

J dRR exp-^ 
(R—R0 cos<f>)2 

2H2 }• 
(44) 
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J2tt 
G!,(<i>)d<f> = l, is easily verified by apply- 

o 
ing, once again, the Bessel function property (40); in this case the I0 function results from the integration 

of (44) over <f>, the ultimate exponent of (44) being proportional to cos <f>. Further, by splitting the 

nonexponential factor R of (44) into (R—R0 cos 4>) + i?0 cos <f> and by introducing the new integration 

variable s—R—R0 cos <f>, the formula (44) breaks up into the sum of an exponential and an error 

function, viz, 

1_f Ro 1 , Ro cos<f> f Rl sin2<f> t f R0cos$\ . 

G “2tv exp \ 2RR J + pmH 6XP \ 2H2 J erfc \ 2J ’ 

the error function erfc introduced here is defined in the conventional way by 

erfc (X)=jp2fxe s2ds• 

(45) 

The phase density (45) is symmetric with respect to the phase <f>=:0 of the constant component 

R0cos(a>0t) [see (22)]. We therefore restrict ourselves when considering the corresponding integrated 

distribution, to the quantity 

P(*>$o) = JJ <te <7($). (0<<f>0<7r). 

It has been discussed numerically by Norton, Schultz, and Yarbrough [5] and also by Norton, Vogler, 

Mansfield, and Short [6]. 

We consider once more the two limiting cases mentioned at the end of the previous section: 

(a) absence of the background signal. The substitution R0—0 reduces (45) to the constant 1/(2t). 
In other words, the phases are homogeneously distributed for a pure random signal. As a matter of fact, 

this randomness of the phases constitutes the well known basis of the Rayleigh distribution (41) for 

the corresponding amplitudes; 

(b) predominance of the background signal. The argument of erfc in (45) becomes large and 

negative for the most important phases, viz, acute angles not near 7r/2. We can then apply the cor¬ 

responding approximation 

1 e~“2 
erfc (—a)=2 —erfc (a) ~2—-=-> 

\TT a 

the substitution of which into (45) leads to 

R0 cos <f> 

~(2tt)*H 
•exp { Rl sin2 $ ^ 

2H2 J 

For the dominating small values of <f>, the second term can be neglected, whereas sin <f> and cos <f> ma}^ be 

replaced by <i> and 1, respectively. This leads to the final approximation 

<?(*) (46) 

which is simply Gaussian and satisfies the usual normalization condition for — °° <C$<[ 00 • 

13. Number of Crossings Through a Specific Level 

In order to fix our ideas we consider the amplitude, though the following considerations may just 

as well be applied, mutatis mutandis, to the phase. We ask for the average number N(a) of crossings 

per unit time interval of the amplitude through a specific level a. Any crossing through a, from below 

and within the time interval f0<£<[(fo+At), is characterized by the inequalities: 

R(t0)<Ca<CR(t0+At). 
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The following approximation holds for small At: 

R(t0)<a<R(t0)+At-R(t0), 
from which we derive 

a—At-R(to)<^R(t0)<Ca- 

According to the probability density G(R,R) (applied to the moment to) the over-all probability of 

crossings from below through a within At therefore is given by the following expression if we limit our¬ 

selves to R values within a specified infinitesimal interval: 

dR f dRG(R,R)~dR-At-R{td)-G(a,R). 
J 0-At‘Rl.t^) 

All crossings from below are connected with a positive value of R(t0). Hence then' total number 

during the time interval At is given by 

dR-R-G(a,R). 

Obviously, an equal number of crossings occurs on the average in the opposite direction, that is, from 

above. The total average number of any crossings (per unit time interval) through a therefore results 

after a multiplication of the last quantity by 2/Ah Hence we obtain 

dR-R-G(a,R). (47) 

This quantity is characteristic for the rapidity of the fading and was first derived by S. O. Rice [2]. Its 

maximum (as a function of a) can be compared with Ratcliffe’s [7] definition of fading rate. The 

latter can be represented as follows, 

Lim |i2(i+r)—-R(£)| <|i?00|>. 
r-R(t) “<R(t)>’ 

(48) 

it may yield significantly differing results (see section 16). 

14. Number of Crossings of the Amplitude Through a Specific Level for a Random 
Signal Imposed on a Constant Signal 

An application of (47) to the joint probability density (38) for the amplitude and its time derivative 

yields the following quantity for the number in question: 

at < \ a r fK0a\ ( Rl+tf+Rz/a2^ 
Na (a) Jo dRR (2t) yiH3ffJro H2 )■ exp 2#2 / 

The necessary integration reduces to 

/.-***“ p(-J^)=HV“- 
and yields the following well-known expression 2 

nm=qt (§“> “p(-w)- <49) 

> This expression'is equivalent to eq (4.8) on page 125 in reference 2. 
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This function proves to be proportional to the probability density (39) for the amplitude at R=a. 
We immediately verify the relation 

NA(a)=(^j H<raG(a). (50) 

Hence the number of crossings through a specific level increases in proportion to the probability of 

finding an amplitude near that level. 

A substitution into (50) of the two limiting expressions (41) and (42) leads to the following ap¬ 

proximations for the level-crossing numbers: 

(a) Small background signal 

NA(a) <TU .. _ / a2 V 

\7T/ eXP l 2 H2) (51) 

(b) predominant background signal 

iv-w~v(i/-exp{ 
(a—R0)2\ 

2 H2 J ' 
(52) 

15. Number of Crossings of the Phase Through a Specific Level for a Random 
Signal Imposed on a Constant Signal 

A further application of (47) to the joint probability density (43) of the phase and its time 

derivative yields the following double integral for the average number of level crossings (per unit time 

interval) for the phase: 

N*(fp)=2 

-2 rdRR2 exp f RoR C0S W_^2(1+$2K) \ , 
—Jo (2Tv)^aaHz Jo P \ H2 2H2 J 

We can invert the order of integration and next evaluate the 4> integral according to 

J diiexp 
R2 

2H2cl <h: 

The remaining integral over R yields 

A7$ (<p) = 

H2al 
'' R2 ' 

(R2—2RR0 cosV) 

2 H2 

This result reads as follows in terms of an error function 

Ro sin2 <p 
A $ {<p) - exp 

( Rp sin2 <p\ ,f_RoCOsj>\ 
\ 2 H2 \ 2 »H J 

(53) 

(54) 

Here again, there exists a simple connection with the corresponding probability density, that is 

the function (45) for the special value p of the phase <f>. In fact, a comparison of (54) and (45) shows 

the validity of the following linear relation between cos <pN$(<p) and G(<p): 

cos rNtM =(?)’’ g ff {<?(„) exp (—2§i)} • (55) 

The two previous limiting cases are investigated most conveniently with the aid of (54). We find: 

(a) small background signal. The substitution R0 = 0 yields the approximation 

N$(<p) 
(y co 

(56) 

17 



which is a number of level crossings independent of the level under consideration. Such a result had 

to be expected in view of the complete randomness of the phases for the random signal constituting the 

limiting case i?0=0; 

(b) predominant background signal. The substitution R0— °° in the error function of (54) here 

leads to the approximation 

N*(<p) exp 
7T 

for the most important domain in which cos <p>0. 

{R20 sin2 (p'l 

2H2 J (57) 

16. Comparison of the Amplitude Fading and the Phase Fading for a Random 
Signal Imposed on a Constant Signal 

The rapidity of fading is characterized in a representative way by the number of crossings (per unit time 

interval) of the level that is traversed most frequently. The latter level, <pmax say, is very simple in the 

case of phase fading, the function (54) being maximum at ^=0; the phase value <pmax=0 crossed most 

frequently thus coincides with that of the background signal. The substitution <p= 0 in (54) thereupon 

yields the following value for the rapidity of phase fading as defined above: 

N^(<pm&x)=Ni{0)=7r^- erfc 
2tt 

/_AA, 
\ 2 »H J (58) 

In the case of the amplitude, however, the determination of the level most crossed, amax say, be¬ 

comes much more complicated. In fact, the evaluation of this level with the aid of (49), by working 

out the relation NA(amax)=0, leads to the transcendental equation 

d 
d\ {(X)o/X} H2 

X2/0(X) Rl (59) 

for the quantity \=RQamaJH2. Therefore, the number of crossings NA (amax) through the amplitude 

level most frequently traversed can only be determined numerically. However, this number becomes 

very simple in the two limiting cases discussed previously; a comparison of the rapidities of the amplitude 

fading and the phase fading can then be made at once. In fact, we have: 

(a) small background signal. According to (51) amax is to be derived from the equation 

d_ 
da '{a’exp( 2H2)}'~1 

yielding amax—H. Hence we find, again in view of (51), 

’2\X / 2 \A 
Na(&max)" ^ w* (60) 

This quantity can be compared with the fading rate according to Ratcliffe’s definition (48). The 

latter can be evaluated by determining the probability density of R from an integration of (38) with 

respect to R, while applying (40). The fading rate thus found, viz, (2/tt) au, differs from (60) merely 

by a factor of the order of unity. 

A comparison of (60) with the corresponding quantity (56) for the phase yields 

Na (aD ru-{2/(Tre)}y2 
N$ (<p max) aj(2^) 

A (ttmax) 

; or 

$ (<Pn ■Cfr- 
(61) 

3-04- 
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Hence, the rapidity of the amplitude fading proves to be about three times larger than that of the 
phase fading in the case of a pure random signal. This result is completely independent of the special 
form of the energy spectrum; 

(b) predominant background signal. According to (52) the most frequently traversed amplitude 
level (amax) has to be determined, in this case, from the equation 

d_ 
da 

a/2 
{a—R0Y 

2 H2 

In view of the assumption Rl'XX’H2, the only root is given by amax~i?0- 
once again, 

EA (®mas) ~ ' 7T 

Hence we find, applying (52) 

(62) 

Ratcliffe’s definition (48) here leads to a fading rate (2/Tr)hHaa/R0, which might have a very different 
value. On the other hand, we conclude from (57) 

#*(*»«) =i\r*(0)=^. (63) 
7r 

We thus arrive at the very simple property that the rapidities of both amplitude fading and phase 
fading tend to one and the same quantity in this second limiting case. 

17. An Extension of the Preceding Theory in View of a Rigorous Treatment of 
Scatter Propagation 

The main physical assumption introduced so far concerned the hardly correlated phases of the 
Fourier transform F(u>) at different frequencies; the corresponding fluctuating component h(t) was 
termed random. The assumption involved a zero value of the first term of (12); in its turn, this property 
led to the symmetry relations mentioned at the end of section 5. However, the latter only hold approxi¬ 
mately if h(t) represents a signal due to (tropospheric or ionospheric) scatter propagation. This can be 
shown as follows. 

The so-called Born approximation (characterized physically by the neglect of the effects of multiple 
scattering) for the scattered field ESC(P) due to a primary field EPr(P) reads as follows if we assume (a) 
both fields to be proportional to exp (—icot), (b) the terms of the wave equation that depend explicitly 
on the gradient or on the time derivative of the refractive index n to be negligible, (c) the refractive 
index to be given by n(P,t) = 1 -{-bn (P,t): 

Eac(P,t)=Evt(P,t) ^JJJdrQ 8jQ^Qp,CI ett»crcp-rp). (64) 

V 

In this formula T represents the position of the transmitter, P that of the receiver, Q an arbitrary point 
inside the scattering volume V, drQ a volume element of the latter, while TP, TQ, QP, and TQP= TQ+QP 
are the distances referring to the separations of these points; moreover 

&0=cd/c=27r/A. 

The basic expression (64) can be derived as follows. The relevant approximative wave equation 
for the electric field reads 

(A-\rk20n)E=0. 

This can be put in the form 

(A+&o) E= —JcldnEpr, (65) 
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if the actual field is replaced by the primary field in the correction term proportional to 8n, such in ac¬ 

cordance with the Born approximation. The well known method for solving inhomogeneous wave 

equations leads to a solution of (65) that consists of the sum of the primary field Epr (satisfying the 

homogeneous equation) and of the additional scattered field. The expression (64) is obtained for the 

latter from the retarded potential solution of (65) when taking into account the proportionality of 

Ept(Q,t) to exp (ik0TQ)/TQ. 
The field corresponding to (64) for a time factor exp (iost) is obtained by replacing w by-w or by 

—lc0. According to the principal of linear combination the real primary field 

Epr(P,t)—E0(P) cos e^'+^jP 

then produces a scattered field given by 

Esc(P,t)=E0(P) 8n{^Qp,C) cos {k0(TQP-TP)-ut}. 

V 

This field is of the form (2) for .h(t)=EaC (P,t) provided x{t) and y(t) are defined as the real and 

imaginary part of the relation 

x(t)+iy(t)=E0 5n(Qp^p/C)- exp {ikn(TQP-TP)}. (66) 

V 

However, relations such as <x2> = <Cy2^> then at best hold approximately, as will be discussed 

in the next section. 

18. Basic Correlation Functions of the Extended Theory 

We drop the assumption of hardly correlated phases for the Fourier transform F(u>) of h(t) which 

led to the symmetry relations of section 5. The only hypotheses left for the fluctuating component 

h(t), now termed a quasi-random signal, concern the applicability of the ergodic relations of the type (11) 

and of the central limit theorem. The latter concerns the joint distribution of x(ti), y(h), x(t2), and 

y(t) 2) which quantities constituted the values of x(t) and y(t) at two times separated by an interval 

T=t2—ti. Both terms of (12) are now to be accounted for. The substitution co=co0 + co' transforms the 

first term of (12) into an integral over the interval — a>0<co'<c<>o; the new integrand being an even 

function of u>', the a/ interval can further be reduced to CX^co'Owo. We thus obtain the following 

complex correlation function 

97T C 00 r r*0 
<xt(x2-\-iy2)'^>=-p \ dwF(w)F*(w)e-i<a,-“(>)T+Yj0 dwF*{u0-\-u)F*(u0—w) cos (wr) 

=a(T)+6(r), say. (67) 

As a matter of fact, a(r) and 6(r) thus defined are independent of T since F*(oj) increases in proportion 

with T'A (see section 5) for the large values of T under consideration. 

A derivation completely analogous to that of (12) and (67) leads to the alternative complex correla¬ 

tion function 

<yi(2a+^*)>=^r^TO^*(«)«-,(“"“0)T-^:J^W°dwF*(a>0+co)F*(w0 co) cos (cor), 

so as to have 

<yi(x2+iy2)'>=ia(T)—ib{r). (68) 

An analogous computation yields = (2t/T)F*(u0) ; hence <x> = <2/> = 0 still holds provided 

the phase of F(«0) may be considered as random. 
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The statistical properties to be derived hereafter depend on both a(r) and b(r). According to 

(67) and (68) these basic functions of r can be expressed in terms of the two complex correlation functions 

considered here. We find 

a(r) = i<C(x1—iy1)(x2+iy2)'>; b(T)=i<(x1+iy1)(x2+iy2)>. (69) 

The special value r—0 corresponds to xi = x2 and yi=y2) it leads to the expressions 

a (0)=i {<x2>+<y2>}; 6 (0) = i {<x2> - <y2> }+i<xy>, (70) 

which clearly show the dependence of the anisotropy <x2> <i/2)> on the function b(r). We further 

mention the connection of a(r) with the original correlation function of h(t) which proves to read 

<Ch(t)h(tJrT)^>=~Re{e~iuTa(T)}. 

According to (69) the complete functions a(r) and b(r) can be deduced from averages concerning 

the quantities and x2-\-iy2. In the scatter propagation theory these quantities follow from (66) 

by substituting tx and t2 respectively for t. The products (xi^fiyi) (x2Jriy2) can then be represented by 

six-fold integrals in which each pair of three integrations refers to either of two independent integration 

points Q and Q'. In these integrals the average procedure indicated by the symbol O affects only 

products of the t}rpe 8n(Q;ti) 8n(Q';t2), the average <^8n(Q;ti) 8n(Q';t2)^> of which constitutes a correla¬ 

tion function with respect to both space and time; its value depends on the physical model to be intro¬ 

duced. The evaluation of a(r) and b{r), outlined here, results in the expressions 

aW=«ig_7Y^ ^^.<Sn(Q;t1-QPIc)-Sn(Q';t2-Q'Plc)>-e'VT‘‘'p-T‘‘p\ (71) 

and 

J^p-<^(Q;h-QPIc)-Sn(Q';h-Q'Plc)>-e‘Vp<‘'ppp<‘p-"p'. (72) 

The simplified theory of sections 1 through 16 amounts to taking b(r) — 0. As a matter of fact, 

b(r) will be much smaller than a(r) in very general circumstances, as may be explained as follows. The 

correlation function occurring in (71) and (72) is maximum for Q = Qr. Hence sets of neighbouring points 

Q and Q' will provide the main contribution to these two 6-fold integrals. For each such set the expo¬ 

nential phase in (71) is near the value zero corresponding to Q=Q'; in other words, the contributions 

from the sets in question are almost in phase. On the other hand, the corresponding exponential phase 

in (72) approaches for Q'-^Q to the value 2k0(TQP—TP) which may be widely different for sets Q~Q' 
situated in various parts of the scattering volume V; the resulting interference will reduce (72) to a very 

low value, compared to that of (71), especially in the case of large distances TP and a small value of the 

scale of turbulence l. 

At small distances, however, the interference effects in (72) are no longer as pronounced as those in 

(71), and a(r) and b(r) may become of equal order of magnitude. This is shown numerically in an 

investigation by Fannin [8] which is based on the Gaussian correlation function 

<5n(Q;^)5w(Q';^)>=<5w2>- exp (—^jj—p2), 

in which 

, (*q—Xq—tvx)2-\- (yQ’—yQ—TVy)2+ {zq>—zq—tvz)2. 
p l2 

the parameter u occurring here can be interpreted as the rms value of a wind velocity with random 

direction, vx, vy, v2 as the components of the mean wind velocity v= (v2x-\-v2v-\-vl)^, l as a scale of turbulence 

(assumed as isotropic). The quantity q=\TP/(4irl2) proves to be the decisive parameter, large values 

of which lead to limiting conditions characterized by <ix2^> = <Cy2^>, that is, to the conditions of our 
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simplified theory for b(r) = 0. The asymmetry <:r2)> 5^ <iy2^> is shown numerically by Fannin3. The 

relation </a:2/> = <y2/> only holds at q= °° while the sum <V/> + <y2/> proves to be independent of g. 

Similar results have been derived by Rice [9] for the other correlation function 

<Sn(Q;t1)8n(Q';t2)>=<.Sniy-pK1(p). 

19. Joint Probability Density of Amplitude, Phase and Their Time Derivatives 
for a Quasi-Random Signal Imposed on a Constant Signal 

The simplifications inherent to the simplified theory (6 = 0) enabled the explicit derivation of the 

joint probability density (24) for the amplitudes Ri and R2 and the phases <f>! and <t>2 at two times 

separated by a finite interval r. The fading properties were obtained thereafter by passing (with the 

aid of a limiting procedure at t=0) to the joint probability density for the amplitude R, phase <f> and 

their time derivatives R and at one and the same moment. However, the former probability density 

becomes very complicated in the extended theory, but the much simpler expression for the latter density 

may then be arrived at as discussed in this section; another simpler derivation (using the central-limit 

theorem for the distribution of x, y, x, y) will be indicated in the next section. The relation (32) expressing 

the limiting procedure still holds, as well as the connection (see section 8) between the probability densities 

in polar and cartesian coordinates, viz, 

G(R1,R2,$i,$2) = RlR2f(xl,X2,X3,XA). 

A combination of both these connections yields 

6r(R,R,$,4>)=Lim [r2G{R(t),R(t+r),cl>(t+T),t}] 
T“> 0 

= R2 Lim [T2f{x(t),x(t+T),y(t),y(t+T)}]. 
r—>0 

In view of (23) we further have, 

Xi = x(t) = R(t) cos <$(£) — R0, 

x2=x(tJrT) = R(tJrT) cos <f>(it-\-r) — R0=R cos <f>—R0-\-t(R cos <f>— R sin $$) + . . ., 

Xz=y(t) = R(t) sin 4>(£), 

x4=2/(f+r) = R(i5+T) sin 4>(i5+r) = R sin 4>+r(I? sin 4>+R cos <f>4>)+ . . ., 

(73) 

so as to arrive finally at 

G(R,R,$,$) = R2 Lim {r2f[R cos <f>—R0,R cos 4>—R0+r(I2 cos <f>—R sin <f>i)+ . . . , 
T—>0 

R sin sin $ + r(R sin 4>+I? cos <!>$)+ . . . ]}. (74) 

The function/is given explicitly by (10) in which (A))/ can be replaced by Mik/\A\ if Mtk repre¬ 

sents the cofactor of A that corresponds to the matrix element labeled ik. A substitution of (10) into (74) 

thereupon yields 

exp {- 
1 

2a(t) itiU 2S Mik(T)Xi(T)Xk(T) (75) 

3 Figure 1 in both references [8]; the two ordinates of this diagram can be interpreted as representing the parameters 

<y2>! (<y2>) tp=oo and <j2>/(<^2>)tp-co 
as functions of g. 
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The functions Mik(r) are the cofactors of the matrix (14), the elements of which can be represented 

as follows in terms of a(r) and 6(r), applying (69) and (70): 

a(0)+Re 6(0) Re{a(r)+6(r)} Im 6(0) Im{a(r)+6(r)} 

Re{a(r) + 6(r)} a(0)+Re 6(0) -Im{a(r)-6(r)} Im 6 (0) 

Im 6(0) -Im{fl(r)-6(r)} a(0)—Re 6(0) Re{a(r) — 6(r)} 

Im{a(r) + 6(r)} Im 6(0) Re{o(r) — 6(t) } a(0)—Re 6(0) 

The limit (75) now proves to depend on the four lowest-order terms of the expansions of a(r) and 

6(r) with respect to r. These expansions are simplified when assuming, once again, c3 = w0 (see section 

9); we then have, applying the definition of a(r) in (67), 

a'(0) = “^J" dUF(a})F*(co)(u-a,0) = -~J° da,W(co) («-«„) = — (Z3—cu0). 

Hence our assumption involves a'(0) = 0. Moreover, both Re a(r) and 6(t) are recognized as even 

functions of r, and Im a(r) as an odd function of r. According to these properties special r powers do 

not occur in the expansions of a(r) and 6(t). The remaining terms can be represented as follows, 

restricting ourselves to terms up to the fourth order: 

Re a(r)=a(0)+7>- a"(0)+^ a""(0)-j- . . . , 

Im air)—^ Im a"'(0)+ . . . =—i^a"'(0)+ . . . , 

Re6(r)=Re 6(0)+^ Re 6"(0)+^Re 6""(0) + . . . , 

Im6(r)=Im6(0)+^Im6"(0)+^Im6",,(0)+ .... 

The substitution of these expressions into the cofactors of (76) shows that the r expansion of any Mik 

does start as follows: 

Mik(T) = likT2-\-mikTi-\- . . . , 

whereas the lowest order term of A (r) proves to be proportional to t4. Hence (75) may be replaced by, 

exp [-1 Lim t - | 
t—I A(r) | 

T* Xi(r)xk(r) , 
A SS hk Lim 
h i=lk=l i->0 i=lk=l }} 

(78) 

All coefficients lik=lki are to be determined individually, each of them being connected with a 

different product Xi(T)xk(r). The substitution of (77) into the various cofactors of (76), and a reduc¬ 

tion of the dominating r contributions of the latter with the aid of elementary properties of determinants, 

leads to values for lik that can be represented by the following matrix scheme: 

— Re{a"(0) — &"(0)) Re{a"(0) —fe"(0)) Im 6"(0) — Im b”(0) 

Re(a"(0) — 6"(0)) — Re{a"(0) — 6"(0)} -Im b"{0) Im &"(0) 

Im &"(0) -Im 6"(0) — Reja"(0) +6"(0)} Re{a"(0) + &"(0)} 

— Im 6"(0) Im b"(0) Re{a"(0)+6"(0)} — Re{a"(0) + b"(0)) 
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The resulting expression for the first bilinear form in (78) can be put in the form, 

4 4 

S S likXi(r)xk(T) = {a2(0) —16(0) |2}•[— Re{a"(0) — 6"(0)}-(:r1—x2)2 
i=l k=1 

Re{a" (0) + b" (0)} • (x3—xt)2+2lm 6 " (0) • (xx—a:2) (x3—z4)] 

The corresponding limit 

LimZ)Z)*« Z<(t)^(t) 
t->o r'1 

is next obtained by applying the following relations resulting from (73): 

Lim ———=—R cos <f>+72 sin 4><f>; Lim ——- — —R sin <f>—R cos 
r—>0 T r—>0 T 

We next consider the second bilinear form occurring in (78). The rather simple values of the 

quantities x1(0)=a:2(0) = i? cos <3>—R0 and xz(0) = xi(0) = R sin $ involve the following reduction: 

4 4 
SE®i*(0)^(0)=(wn+2mI2+m22)(S cos <f>—R0)2 
i= 1 k= 1 

+ (w33+2m34+m44)^2 sin2 $+2(m13+m14+m23+™24)||R cos <f>—i?o)J? sin 4>. 

The new coefficients occurring here can be determined by first adding the relevant cofactors Mik, and 

by reducing their sum to a simplest form with the aid of elementary rules for determinants; the deter¬ 

minant then obtained for each of these coefficients proves to be of the order of t4 when applying (77). 

The coefficient of the dominating term (proportional to r4) thus obtained involves the expressions 

mn+2m12+ m22= {a(0) — Re b(0)}• {a" (0)'2— |b" (0) |2}, 

m33+2 m34+ mu= {a (0)+Re b (0)} • (a" (0)2— | b'' (0) |'2}, and 

mi3+ m14+ m23+ m24=—Im b(0)• {a''(0)2— \b"(0)|2}. 

Finally, another reduction with the aid of elementary rules for determinants converts the complete 

determinant |A(r)| into a form most suitable for a direct substitution of the expansions (77). In this 

form all elements referring to r = 0 are replaced by differences between the values of the corresponding 

elements at an arbitrary r and those at r=0. The proportionality of the lowest order approximation 

for |A(r)| to t4 is then recognized at once; the evaluation of the corresponding determinant leads to 

the limit, 

Lim ^^={a2(0)-|6(0)|2}.{a"2(0)-|6"(0)|2}. 
r-> 0 T 

The final substitution of all these results into (78) yields the following explicit expression for the 

joint probability density under consideration: 

G(R,R,*,*) 
R2 

•exp 
[' 

47r2{a2(0)-|6(0)|2}^{o"2(0)-|6,,(0)|2}^ 

(a(0)— Re 6(0)} (R cos $—R0)2—2 Im 6(0) (R cos <f>—R0)R sin <f>+{a(0)+Re 6(0) }R2 sin2 <i>" 
2 {<z2 (0) — 16 (0) |2} 

file (a"(0)— b"(0)}(R cos <i>—R sin <f><f>)2—2 Im6"(0)(I2 cos 4>—R sin <i><i>) 

(R sin cos f»j>)-|-Re {a//(0)+6//(0) }{R sin 4>+-R cos 4>4>)2 
•exp 

2{a/,2(0)-|6"(0)|2} 
(79) 
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20. Preceding Probability Density in Terms of the Orthogonal Parameters x(t) 
and y(t) 

The intricacy of (79) is partly due to the fact that the amplitude R(t) and the phase <£(£), though 

being the most directly observable quantities, do not represent the most convenient parameters for a 

description of the complete signal Hit) of (20). In this respect x(t) and y(t) constitute simpler elements; 

they can be considered as those components of the quasi-random contribution h{t) that are in phase 

and in quadrature respectively, with the steady signal R0 cos (cc0t). The relations between the amplitude, 

the phase and the latter orthogonal components are illustrated geometrically by figure 1. 

We next investigate the equivalent of (79) in terms of x(t), y{t), and their time derivatives x{t), y{t). 
The connection between these new variables and the former set R, <f>, R, <i> is given by (compare eq 21), 

x=R cos <f>—R0] x=R cos <f>—R sin $ <j>, 

y=R sin <f>; y=R sin $+1? cos $ <i>. 
(80) 

The evaluation of the corresponding Jacobi determinant involves the relation, 

dx dy dx dy=R2 dR d'i> dR dA. 

Hence the former probability density G(R, R, d>, <f>) and the new one g (x, x, y, y) are connected as 

follows: 

R2g(x,x,y,y) = G(R,R,$, i). 

Therefore, the function g is obtained by dividing (79) by R2 while introducing the new variables x, x, 
y, y in accordance with (80). The result reads 

(a(0)—Re&(0)}x2—2 Im &(0)x?/+{a(0)+Re 6(0) }y2 
2{a2(0) —16(0) |2} 

4tt2 (a2(0) —16(0)|2}^ 

exp 

X- [ 
— {a"(0)—Re b"(0)}x2+2 Im b"(0)xy — {a"(0)+Re b"(0)}y2' 

2{a"(0)2-|6"(0)|2} . 

{a"(0)2-|6"(0)|2}^ 
(81) 
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The derivation of this result and the equivalent expression (79) is essentially based on a heuristic 

method deducing, with the aid of a limiting procedure, the distribution of R, R, <f>, <j> from that of Ru 
R2, ‘hi, and <f>2. The same result can also be arrived at in a simpler way as follows. We assume the 

applicability of the central-limit theorem when deriving the probability density of the orthogonal 

quantities x, x, y, y. We then have to consider the matrix 

<Z2> <xy> <^xx~^> <xy> 

<yx> <y2> <yx> <yy> 

<^xx^> <xy> <i2> <xy> 

<yx> <yy> <yx> <y2> 

all elements of which can be connected with a(r) and 6(r). In fact, we first derive by differentiating 

(69), remembering that £2=£i+t, 

a'0) = §<(zi—iyi)(&a+iy»)>', b' (T) = i<C(x1+iy1)(x2+iy2)>- (83) 

We next replace r by — r which corresponds to interchanging the subscripts 1 and 2. Next, a further 

differentiation yields, 

<*"(—t) =—i<(xi+M/i) (x2—iy2)>; b"(—t) =—i<(ii+iy1)(±a+iy2)>. (84) 

The substitution r=0 in (S3) and (84) leads to the other relations, 

a' (0) = h< (x—iy) {x + iy) >; b' (0) = \< (z-j-iy) (x+iy) >, 

a"=—|<(i2+y2)>; 6"(0) =—h<(x+iy)2>. 

(85) 

(86) 

On the other hand, we have a'(0) = 6'(0) = 0 [see (77)]. The real and imaginary parts of (85) therefore 

involve the properties <C.xx^> = <^yy^> = <Cxy^> = <^xy^> = 0. The remaining elements of (82) follow 

from the real and imaginary parts of (70) and (86). The evaluation of (82) thus yields the final form 

a(0) 4-Rg b (0) Im b (0) 0 0 

Im b (0) a(0)— Re 6(0) 0 0 

0 0 —a"(0)—Re b"(0) —Im b" (0) 

0 0 —Im b" (0) —a"(0)+Re b" (0) 

The evaluation of the corresponding reciprocal matrix Ar 1 leads to (81) when applying the general for¬ 

mula (10). 

The expression (81), which has thus been derived in two different ways, is of special interest for large 

background signals. The following expansions with respect to Rq1 are then applicable: 

R(t) = {(Ro+x)2'i-y2}y2=RoJrx+-^jy-\-. .., 

<b(f)=arctan 
y _y xy x2y—(%)y3 

R0+x R0 Ry R\ 

We infer that y/R0 and x represent approximately the phase, and the deviation of the amplitude from 

its approximate average value R0 for those signals. It turns out that the statistical properties of the 

limiting case in question can be derived much more conveniently from (81) than from (79). 
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21. Elimination of the Time Derivatives for a Quasi-Random Signal Imposed on 
a Constant Signal 

We return to the probability density (79) expressed in terms of the amplitude and the phase. All 

distribution functions become much more complicated than in the simplified case in which 6(r) = 0 

(random signal superimposed on a constant signal). We first derive the probability density G(R,$) 
defined such that G{R,&)d,Rd$ constitutes the joint probability of finding R and <f> in prescribed 

infinitesimal intervals. The function G(R,$) is arrived at by integrating (79) over both R and <j>. 

The integration over 6 (from— oo to + oo) is simplest; it only concerns the second exponential factor of 

(79), the exponent of which is a polynomial of second degree in 4>. Hence this integration over 4> amounts, 

after a shift of the integration variable, to the evaluation of a Poisson integral. Obviously, the ex¬ 

pression resulting from this first integration represents the three-dimensional joint probability density 

G(R,R,$) for R,R, and <f>; we obtain 

G(R,R, <t>): 
R 

(2ir)3/i{a2(0) — 16(0)\2YA {— a"(0) — Re 6"(0) - cos (2$)— Im b"(0) -sin (2<f>)}^ 

R2 "I 
exp 

[ 2 {—a" i 

exp 
[■ 

(0)—Re 6"(0) • cos (2<t>) — 1m 6"(0) • sin (2<t>) }J 

fa(0) —Re b(0)} (R cos <b—R0)2—2 Im 6(0) (R cos <t>—R0)R sin <f>+ (a(0) +Re 6(0) }R2 sin2 <f> 

2 (u2(0) — 16 (0) |2) ) 
(87) 

The further integration over R (also from — co to + °°) involves another Poisson integral. The 

two dimensional probability density G (R, <f>), then obtained, reads 

G(R,*) 

r 7?5{g(0)—Re 6(0) }~| 
'PL 2{a-2(0) 16(0)|2} J 

27r{a2(0)-|6(0)|2P 

(a(0)—Re6(0)-cos (2$)—Im 6(0)-sin (2$)} R2—2[{a(0) — Re6(0) }cos<i>—Im6(0) sin $>]R0R 
2 {a2 (0) — 16 (0) |2} 

The individual distribution functions G (R) and G (<f>) for the amplitude and phase can now be 

derived by integrating this expression with respect to and R, respectively (see the next two sections). 

We also mention the joint probability density g(x,y) for x and y, which is obtained by eliminating 

x and y from (81). This elimination is performed by integrating the second exponential of (81) over 

x and y (from — oo to + <=); it amounts to the evaluation of a two-dimensional Poisson integral of the 

type 

- (a{2+26{i)+ci;2) 7T 

(ac—62)^ 
(89) 

The application of this formula to the second exponential of (81) yields the required probability density, 

viz, 

exp 
I- (a(0)— Re6(0) }r2—2Im6(0)a:y-t-{a(0)+Re6(0) }y2~I 

L ~ 2 {a.2 (0) — 16 (0) |2} "J 
27t- {<x2 (0) — 16 (0) |2}5,2 

(90) 

The probability density of a quasi-random signal thus appears as the product of two Gaussian dis¬ 

tributions for two properly chosen rectangular components. Further, the distribution given by (90) 

amounts to a Rayleigh distribution for the amplitude (x2Jry2)^ only if there exists complete symmetry 

with respect to x and y (see also the next section). 
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22. Distribution of the Amplitude for a Quasi-Random Signal Imposed on a 

Constant Signal 

The relevant distribution function is obtained at once by integrating (88) over <f>, so as to have, 

exp 

G(R)=- 

r Re 6(0) }~| 

L 2{q,2(0) -— 16 (0) |2} J 
27r-{a2(0)-|6(0)|2}^ 

•R exp [ 
a(0) 

2{a2(0) —16 (0) |2} 

N/ f27r /''7j>2{ReA(0)-cos (2<f>)+Im&(0)-sin (2<f>) }+2/?0l?[{a(0)—Rc6(0)}cos<f>—Im6(0)sin$]\ 

XJ. expf 2{«=<0) —|6(0)iU r9- 
(91) 

The expression in front of the integral has the form of a Rayleigh distribution; unfortunately, the 

integral cannot be reduced to elementary functions in the most general case. However, simple results 

are obtained in the two well-known limiting cases, viz. 

(a) absence of the background signal (2?0=0). The integral of (91) reduces to that for a Bessel 

function 70 of imaginary argument. We obtain, 

G(R) 
R -exp i?2_1 / 16C0)| pf| 

L 2{a2(0) —16(0)|2} U Jiu |2{a2(0) —1&(0)|2} U J 
{<x2(0) —16 (0) |2 ■ Vi 

In the simplified case 6(r)=0 this reduces to, 

6(R) 

(92) 

(93) 

The assumption 6(r)= 0 involves <V> = <y2)> and a(0) = <a:2)> (see eq 70); it shows the required 

equality of (93) with the former expression (41). A comparison of (92) and (93) demonstrates how the 

Rayleigh distribution of the simplified theory (fluctuating component random) is modified in the extended 

theory (fluctuating component quasi-random) by both a change of its parameter and by the addition of a 

correction factor given by a zero-order Bessel function; however, for this case, 6(r) usually is very small 

and the distribution is almost of the Rayleigh type. 

(b) predominance of the background signal. Instead of considering the limiting behaviour of (91) 

for large R0, we apply the approximation x~R—R0 (see section 21) and derive the distribution for R 
from that of x. The latter is obtained by integrating (90) with respect to y (from— co to+ °°); we find, 

00*0=- 

exp 
[ 2 {a (0) -}- Re b (0) 

[2x{a(0) -j-Rs b (0) }]^ 
(94) 

We arrive at the corresponding distribution for R by replacing x by R—R0 so as to obtain 

G{R)- 

V (R-Ro)2 

eXpL~2Ta(0)+Re6(0); ] 
[2ir {a (0)+Re 6 (0)} ] ^ 

This function reduces for b = 0 to (42) (neglecting the difference between R/R0 and 1), as it should. 

(95) 
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23. Distribution of the Phase for a Quasi-Random Signal Imposed on a Constant 
Signal 

The function in question is obtained by integrating (88) over R from 0 to ». The integral in the 

resulting formula, viz, 

<?(*) 

f i?g{a(0)-Rc6(0)}~] 
CXP L 2{a2(0) — 16(0) |2} J 

2tt-{<x2(0) —|6(0) |2}^ 

•JT.exp[. 
a(0) — Re 6(0) cos (2$)—Im 6(0) sin (2<J>) p2 

2 {a.2 (0) — 16 (0) |2} ‘ ' 
{a(0)—Re 6(0)} cos <f>—Im 6(0) sin $ 

a2(0) —16(0) I2 
RqR \dR, 

(96) 

could be expressed in terms of an error function, if needed. 

We again discuss the two limiting cases: 

(a) absence of the background signal (i?0 = 0). The integral becomes elementary and leads to the 

following result, 

{a2(0) —16(0) \2YA 
Ofr) = 

27r{a(0) — Re 6(0) cos (2<f>)—Im 6(0) sin (2<f>)} 
(97) 

The complete randomness of phases, expressed by the constant value of G (<f>) in the simplified 

theory, isjremoved if 6 (0) t^0. The most probable $ value occurs at <f> = § arg 6 (0); 

(b) predominance of the background signal. In view of the approximation $~y/R0 the distribu¬ 

tion of the phase can be derived from that of y. The latter is given by a formula similar to (94) in 

which Re 6 (0) has to be replaced by—-Re 6(0). When replacing y by i?04> in the formula for g(y), we 

get the approximate phase distribution, 

<?($) = i?o 

exp r _R* 
2{a(0)— Re 6(0)} J 

27r{a(0)—Re 6(0)}]** 
(98) 

24. Number of Crossings of the Amplitude Through a Specific Level for a Quasi- 
Random Signal Imposed on a Constant Signal 

This number is obtained by an application of (47). The probability density G(R,R), then to be 

known, follows from an integration of the other probability density G(R,R,§) of (87) over <f>, viz, 

. r2?r 
G(R,R) = j G(R,R,$)d$. 

Hence the number in question is given by the double integral, 

p co 

Na(R)=2 dRR d$G(R,R,<f>). (99) 
Jo Jo 

If the order of integration is inverted, the integral over R becomes elementary. The remaining 

integral leads to the expression, 

NA(R): 
R-ex p 

[‘ 

a(0)i?2+{a(0)—Re 6(0) }R0 
2 {a.2 (0) — 16 (0) |2} ;] 2tt 

J {— a"(0)—Re 6"(0)-cos (2<f>)—Im 6"(0)-sin (2<f>)}! 

•exp ( 

2*V^{a2(0)-|6(0)|2P 

i?2{Re 6(0)-cos (2<t>)+Im 6(0)-sin (2<f>)}+2i?07i[{a(0)—Re 6(0)}cos <f>—Im 6(0) sin <b] 

2{a2(0) —16(0) |2} ) d<f>. (100) 
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Discussion of the two limiting cases, 

(a) absence of the background signal (R0=0). Even in this simplest case the integral in (100) does 

not reduce to an elementary function. However, neglecting b" (0) with respect to a" (0), we get the 

approximation, 

Na(R) ( 2 V4 f -a"(0) 

W V. <x2 (0) — 16 (0) | 
• 72-exp Q 

a(0) 
2{a2(0) —16(0) |2} 

|6(0)| 
2{a2(0)-|6(0)|2} 

A2]; (101) 

(b) predominance of the background signal. According to the approximation x~R—R0, the number 

of crossings of the amplitude through R can be reduced to that of x through R—R0. From (47) we 

deduce, 

NX(R—R0)— 2J dxxg(R—R0,x), (102) 

in which the joint probability density g(x,x) for x and x results from an integration of g(x,x,y,y), 
represented by (81), over both y and y. The result reads, 

g{x,x)=- 
exp 

[' 2{a(0)+Re 6(0)} 1 2{q//(0)+Re 6"(0)} ] 
2tt- {a(0) +Re 6 (0)} {-a'' (0) - Re b'' (0)} * 

(103) 

When substituting this function into (102), the evaluation of Nx becomes elementary, 

formula reads, 

Na(R) 
{-q"(0)-Re6//(0)}^ . [~ (R-R0)2 

7r-{q(0)+Re6(0)}^ exP [_ 2{a(0)+Re 6(0)} 

The final 

(104) 

25. Number of Crossings of the Phase Through a Specific Level for a Quasi-Random 
Signal Imposed on a Constant Signal 

The application of (47) here requires the knowledge of the probability density fj(<f,,4>) for and 4>. 

It results from an integration of the expression (79) for G(R,R,$,&) over both R (from 0 to 00) and 

R (from — oo to 0°). The integration over R, though tedious, is elementary. It leads to the inter¬ 

mediate probability density, 

G(R,$,i) = j G(R,R,$,$)dR 

r A2{q(0) —Re 6(0) }~| 

L 2{a2(0) 16(0)|2} J exp 

'(27r)^{a2(0)-|6(0)|2}^{X(4>)}^ 
A2-exp [-{ 

f <f>2 q(0) — Re6(0)-cos (2<f>) — Im 6(0)-sin (2$) 

H 2X(<t>) ~ 2{a-2(0) — 16 (0) |2} 

r{a(0)—Re 6(0)}cos 4>—Im 6(0) sin <f> „ 
XeXPL-a*'(0)-iWP- 

in which 

X(<f>) s —a"(0) + Re 6"(0)-cos (24>)+Im 6"(0)-sin (24>). 

The further integration over R yields the required probability density, 

(105) 

(?(<!>,i) 

exp 
r 7?2{q(0)—Re 6(0)}“] 

L 2{q2(0) —16(0)|2} J 
(2ttP (a2(0) —[6(0) |2}^{X(<1>) YA 

r 
w I P2 f &R2 a(0)-Re 6(0) cos (2$)—Im 6(0) sin (2$) 
X| au-u-exp|^ 2X((J)) 2{oc.2(0) — 16(0)|2} 

a(0)— Re 6(0)} cos 4>—Im6(0) sin$ „ . 
-ffi!(0)_-|^0-yTi-(106) 
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which might also be expressed in terms of an error function. The application of (47) according to 

di $£(<?,$) (107) 

yields the average number of crossings (per unit time) of the phase through a specific level <p. By 

substituting (106) into (107) we get a double integral which can be integrated at once with respect to 6 

after inverting the order of the integrations. The remaining integral over R can be transformed, 

applying a shift of the integration variable, into an error function. The final result reads, 

(<P) = 
(x(«>)}x exp 

r A02{a(0)-Re 6(0) H 

1 .„u2(o) r L 2 {<x2 (0) — 16 (0) |2} J 
n3/i (a(0)—Re 6(0) cos (24>)—Im 6(0) sin (24>)}^ (0) 

2ds, (108) 

in which X(^) is defined by (105) and u by 

s _i?o[{q(0)—Re6(0)} cos <p—Im 6(0) sin <p]_ 

uvp) 2^{a2(0) — 16(0)|2}^{a.(0) — Re 6(0) cos (2.?)—Im 6(0) sin (2<p)}1A 
(109) 

Discussion of the two limiting cases, 

(a) absence of the background signal (R0=0). In view of the value u=0, applying here, (108) 

reduces to 

pr , s {•—a" (0) TRe 6//(0) cos (2y)-f-Im 6//(0) sin (2<p) M 

0 ^ 2ir-{a(0) — Re 6(0) cos (2<p)— Im 6(0) sin (2<p) ’ 
(HO) 

(b) predominance of the background signal. The approximation 4>~?//A>o (see section 20) enables a 

reduction to the number of crossings of y through the level i?0<p. This number is given by 

/■» co 

Ny(R0<p)=2j^ dyyg(R0<p,y). (Ill) 

The distribution function g (y, y) can be derived along the same lines as the function g (x, x) of (103). 

The formula for g (y, y) is obtained by replacing x, x, Re 6 (0), Re b" (0) by?/, y,—Re 6 (0),—Re 6"(0) 

respectively, in g (x, x). Substituting this formula in (111) for y=R0<p, we find 

N*(<p) {-q"(0)+Re6"(0)P _ T_R20 
7r-{a(0)— Re 6(0)YA eX^L 2{a(0)—Re 6(0)} 

(112) 

26. General Conclusions 

All statistical properties derived depend on two complex correlation functions a(r) and 6(r). The 

analysis has been based, apart from reasonable mathematical assumptions (e. g., integrations inter¬ 

changeable in double integrals), on the applicability of the central limit theorem when deriving the 

distribution of orthogonal quantities connected with the fluctuating component, on the ergodic hypoth¬ 

esis in order to reduce ensemble averages to time averages, and on the symmetry of the energy spec¬ 

trum as expressed by the relation u — u0 (see section 9). According to its definition (see eq 67), the 

function a (r) is proportional to the Fourier transform of the energy spectrum W (co) of the fluctuating 

part of the signal, whereas 6 (r) is also connected with the influence of the phase in the Fourier syn¬ 

thesis of the fluctuating part. In the case of scatter propagation <l(t) and 6(r) are completely deter¬ 

mined by the autocorrelation function (with respect to both space and time) for the refractive index 

(see eq 71 and 72). For a scattered signal superimposed on a constant background signal (being the 

ordinary signal in the case of line-of-sight propagation), 6(r) characterizes the asymmetries between 

the components x (t) and y (t) of the scattered signal that are in phase and in quadrature with the 

background signal. This is in particular obvious from the relation (see eq 70) 

<^>-<y2> = 2Re6(0). 
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The circumstances are simplest in the two following limiting cases: 

(a) Absence of the background signal, occurring approximately for propagation over distances well 

beyond the transmitter’s horizon. The amplitude of the scattered signal satisfies a Rayleigh distribu¬ 

tion, and that of its phase a homogeneous distribution, provided b(r) may be neglected altogether 

(see eq 93 and 97). Fortunately, the numerical evaluation of special models for the correlation co¬ 

efficient of the refractive index shows that b(r) approaches zero at the large distances connected with 

this limiting case. The simplified theory (sections 1 through 16) based on 6(r)=0 then constitutes a 

fair approximation. A striking result of this theory concerns the ratio of the fading rates of the amplitude 

and of the phase; this ratio should be 3.04, independent of the special correlation function introduced 

for the refractive index (see eq 61); 

(b) predominance of the background signal, as occurring for line of sight propagation at distances 

well within the transmitter’s horizon. In this case the influence of the function b(r) is largest; the 

distribution properties depend on the quantities (see eq 70): 

a(0)+Re b(0) = <x1 2 3 4 5)> 

a(0)-Re 6(0) = <2/2>, 
(113) 

the fading rates also on the other quantities: 

-a"(0)-Re 6,/(0) = <*2>, 

— a/'(0)+Re b"(0) = <y2>. 
(114) 

The two latter relations follow from (86). Applying (113), the distribution functions of the ampli¬ 

tude and of the phase, both of which are normal (see eq 95 and 98), can be put in the form. 

G(R)-- 

f (R-R0)2\ exn i 
(27r<z2>F)^ ' 

G(<p)—R0 
(27r<y2»^ 

Similarly, applying both (113) and (114), the average numbers of crossings per unit time through the 

levels most frequently passed (R=R0 for the amplitude, <p=0 for the phase) can then be represented by 

(see eq 104 and 112) 

l/<x2>Y2 
~A<x2>) ’ N*. W<y2>\A 

A<y2>) ' 
Therefore, the fading rates of the amplitude and of the phase differ only insofar as asymmetries do exist 

with respect to the in-phase and the in-quadrature component of the scattered field (relative to the 

background field). Observations comparing these fading rates may therefore decide whether such 

asymmetries play an important role. 

This work was done at the United States National Bureau of Standards, while the author was on 

leave from Philips Research Laboratories (Eindhoven, Netherlands). He is indebted to the Radio 

Propagation Engineering Division of the National Bureau of Standards for providing him with the 

opportunity to work in Boulder, and to E. L. Crow whose critical remarks led to an improved representa¬ 

tion of the results. 
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