

NBS CIRCULAR 577

Energy Loss and Range of Electrons and Positrons

UNITED STATES DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

Data on Radiation Physics

Graphs of the Compton Energy-Angle Relationship and the Klein-Nishina Formula from 10 Kev to 500 Mev NBS Circular 542

The Compton energy versus angle relationship and the differential and integral Klein-Nishina cross sections are presented graphically as functions of the energy and direction of the scattered photon and of the recoil electron. These graphs are intended to serve the purpose of tables. Unpolarized primary gamma rays in an energy range from 10 Kev to 500 Mev are considered. The accuracy of all curves is estimated at 1 percent. The advantage of this form of presentation is the convenience and accuracy of two-way interpolation. In general, interpolated values may be obtained with an accuracy of 2 percent.

National Bureau of Standards Circular 542, 89 pages, 81 graphs. Available by purchase from the Superintendent of Documents, Government Printing Office, Washington 25, D. C., price 55 cents.

Energy Loss and Range of Electrons and Positrons

Ann T. Nelms

National Bureau of Standards Circular 577 Issued July 26, 1956

For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Price 30 cents

Contents

-

		TUE
1.	Introduction	1
2.	General formulation	1
3.	Evaluation of I	5
4.	Limitations of the data	6
5.	Preparation of tables and graphs	8
6.	Comparison with experimental data	8
7.	References	9
	Tables	10
	Figures	26
	ii	

Ann T. Nelms

Tabulations of the mean energy loss due to ionization and excitation and the range derived from this quantity are given for electrons and positrons in several materials.

1. INTRODUCTION

This Circular belongs to a series of surveys and tabulations of data on radiation physics that are being carried out with the support of the Biophysics Branch of the Atomic Energy Commission. Other reports of this series are listed on the inside cover.

The material in this Circular is designed to serve as input for recently developed calculations of electron penetration, which take into account both elastic scattering and slowing down. Most of the earlier reports on stopping powers of matter and ranges of charged particles pertain to heavier particles, for which the penetration process is simpler and the knowledge of basic processes somewhat more advanced than for electrons. The present data gives the energy loss resulting from ionization and excitation. The range is derived from this quantity and represents the actual path length rather than an extrapolated range.

This Circular is presented as a regular publication even though much of its material is in fact preliminary and incomplete, and should be improved and revised at an early date. The main limitations to the completeness and accuracy of the data presented here arise from the following circumstances: a) uncertainty of the value of the constant I for different materials, about which new evidence is being accummulated (see Sect. 3); b) failure to apply "density corrections" in the high energy range, for which standardized procedures of calculation and presentation have not yet been established in this laboratory; c) lack of a theory of inelastic collisions for lower energy electrons, with velocity comparable to those of atomic electrons; and d) limited significance of the very concepts of stopping power and range, in the presence of the straggling that results from occasional extremely large energy loss by an electron in a single process. This last consideration has limited the tabulation to energies at which bremsstrahlung losses are unimportant. In the future, data on stopping powers and ranges might be replaced with data on other parameters of an energy-pathlength distribution (e.g. most probable instead of mean energy losses), which is an extension of the Landau distribution. The inaccuracy arising from item a) is not too large, no more than a few percent under most circumstances and may well be reduced in the next few years. The limitation b) ought to be largely removed at an early date, but c) is of a more fundamental nature, even though it concerns only the lower energy range (below 10 kev), and its removal cannot be easily forecast.

2. GENERAL FORMULATION

The differential cross section for inelastic collisions of an electron with an atomic electron considered free is given by the Rutherford non-relativistic theory [1] as

$$d\sigma = 2\pi r_0^2 - \frac{mc^2}{\beta^2} - \frac{dQ}{Q^2}, \qquad (1)$$

1

Figures in brackets indicate literature references at end of this paper.

where $r_0 = e^2/mc^2$, $\beta = v/c$, e and m are the charge and mass of an electron, v is the velocity of the incident particle, c is the velocity of light and Q is the recoil energy of the free atomic electron, which is related to the momentum transfer, $\hbar \vec{q}$, by

$$Q = \hbar^2 |\vec{q}|^2/2m.$$

Because atomic electrons are bound within matter, the momentum, \vec{q} , received in a collision does not fix the final state, n, of excitation or ionization of the electrons; that is, the actual energy received, W_n , is not unique. The probability that the momentum transfer \vec{q} will send an atom to the state n is given by $|F_n(\vec{q})|^2$, the square of the generalized form factor,

$$F_{n}(\vec{q}) = \int \psi_{n}^{*} \psi_{o} \sum_{i} e^{i\vec{q}_{o}\cdot\vec{r}_{i}} d\tau , \qquad (2)$$

where ψ_0 and ψ_n are respectively the wave functions of the ground state and the excited state n, \vec{r}_1 is the position vector of the i-th electron with respect to the nucleus and $d\tau = d\vec{r}_1 d\vec{r}_2 \dots d\vec{r}_2$ is the volume element of the configuration of electrons in the atom. If the atom has spherical symmetry and $|F_n(\vec{q})|^2$ is regarded as a sum over all states of equal energy W_n and different orientation, $|F_n(\vec{q})|^2$ is independent of the direction of \vec{q} . For small momentum transfer, $\vec{q} << a$, where a is the size of an electron's orbit,

$$|\mathbf{F}_{n}(\vec{q})|^{2} \sim \frac{Q|\mathbf{x}_{n}|^{2}}{\hbar^{2}/2m}$$

where $x_n = / \Psi_n^* \Psi_0 \stackrel{\Sigma}{i} x_i d\tau$ is the electric dipole matrix element. For large momentum transfer, q >> 1/a, the electron recoils almost freely and

$$\left| \mathbb{F}_{n}(\vec{q}) \right|^{2} \sim \mathbb{Z} \delta (W_{n}-Q).$$

The differential cross section for a collision that gives the atom an energy W_n is therefore

$$d\sigma_{n} = 2\pi r_{0}^{2} \frac{mc^{2}}{\beta} \frac{dQ}{Q^{2}} |F_{n}(\vec{q})|^{2}.$$
(3)

For a given W_n , the values of Q are limited by conservation of energy and momentum (see below) and the total cross section may be expressed as

$$\tau_{n} = 2\pi r_{o}^{2} - \frac{mc^{2}}{\beta^{2}} \int \frac{Q_{max}}{Q_{q}^{2}} \left| F_{n}(\vec{q}) \right|^{2}.$$
(4)

This basic formula of collision theory is derived analytically using the Born approximation [2] or the impulse approximation, both of which assume that the incident electron has a velocity much higher than the initial velocity v_{at} of the atomic electrons,

$$v > v_{at}$$
 (5)

The expression for the mean energy loss per unit surface density is then

$$\left(-\frac{dE}{dx}\right) = N_{A} \sum_{n} W_{n} \sigma_{n} / A = 2C \frac{mc^{2}}{\beta^{2}} \frac{1}{Z} \sum_{n} W_{n} \sqrt{\frac{dQ}{q_{min}Q^{2}}} \left|F_{n}(\vec{q})\right|^{2}, \quad (6)$$

where N_A is Avagadro's number, Z and A are respectively the atomic number and weight of the material. $C = \pi N_A r_0^2(Z/A) = 0.15(Z/A) [g^{-1}cm^2]$ is an atomic constant that may be interpreted as

the total "area" covered by the electrons contained in one gram, each considered as a sphere of radius r_0 . Assume for a moment that the summation in eq (6) can be performed under the integral even though the limits depend upon the excited state n. Since

$$\sum_{n} W_{n} \left| F_{n}\left(\overrightarrow{q} \right) \right|^{2} = ZQ, [3]^{\frac{1}{2}}$$

eq (6) may be expressed

$$\left(-\frac{dE}{dx}\right) = 2C - \frac{mc^2}{\beta^2} \int_{Q_{\min}Q^2}^{Q_{\max}} Q = 2C - \frac{mc^2}{\beta^2} \ln \frac{Q_{\max}}{Q_{\min}}$$
(7)

l This sum rule holds for a many-electron atom, provided only that the initial bound state wave function ψ_0 is real. Setting $W_n = E_n \sum_{i=1}^{n} E_0$, where E_n and E_0 are eigenvalues of the energy operator H, one can write $W_n F_n(\vec{q}) = \int \psi_n \psi_n \sum_{i=1}^{n} \left[H \exp(i\vec{q}\cdot\vec{r}_i) - \exp(i\vec{q}\cdot\vec{r}_i)H \right] \psi_0 d\tau$ The potential energy part of H commutes with the exponential, the kinetic energy part yields

$$\left[\mathbb{H} \exp\left(i\vec{q}\cdot\vec{r}_{i}\right) - \exp\left(i\vec{q}\cdot\vec{r}_{i}\right)\mathbb{H} \right] = \exp\left(i\vec{q}\cdot\vec{r}_{i}\right) \left(\left| \vec{p}_{i} \times \vec{h}\vec{q} \right|^{2} - \vec{p}_{i}^{2}\right) / 2m = \exp\left(i\vec{q}\cdot\vec{r}_{i}\right) Q(1 - 2\vec{q}\cdot\vec{p}_{i} / \hbar q^{2}) \right)$$

where \vec{p}_i is the momentum operator of the i-th electron. Application of the closure theorem yields now

$$\sum_{n} W_{n} |F_{n}(\vec{q})|^{2} = \sum_{n} \int \psi_{0}^{*} \sum_{j} e^{-i\vec{q}\cdot\vec{r}_{j}} \psi_{n} d\tau \int \psi_{n}^{*} \sum_{i} e^{i\vec{q}\cdot\vec{r}_{i}} Q(1-2\frac{\vec{q}\cdot\vec{p}_{i}}{\hbar q^{2}}) \psi_{0} d\tau$$

$$= Q \sum_{ji} \int \Psi_{o}^{*} e^{i\vec{q}_{o}(\vec{r}_{i} - \vec{r}_{j})} (1 - 2 - \frac{\vec{q}_{o} \vec{p}_{i}}{\hbar q}) \Psi_{o} d\tau \qquad (*)$$

The term containing $\vec{p}_i = (\hbar/i) \ \vec{grad}_i$ can be transformed provided $\Psi_0^* = \Psi_0$ since partial integration shows that

$$\int \Psi_{o}(\vec{r}_{1}\cdots\vec{r}_{Z})f(\vec{r}_{1}\cdots\vec{r}_{Z}) \frac{\partial \Psi_{o}(\vec{r}_{1}\cdots\vec{r}_{Z})}{\partial x_{1}} d\vec{r}_{1}\cdots d\vec{r}_{Z}$$
$$= -\frac{1}{2} \int \left[\Psi_{o}(\vec{r}_{1}\cdots\vec{r}_{Z}) \right]^{2} \frac{\partial f^{(\vec{r}_{1}\cdots\vec{r}_{Z})}}{\partial x_{1}} d\vec{r}_{1}\cdots d\vec{r}_{Z} \quad (**)$$

Because grad_i exp[$i\vec{q} \cdot (\vec{r_i} - \vec{r_j})$] equals $i\vec{q} \exp[i\vec{q} \cdot (\vec{r_i} - \vec{r_j})]$ for $i \neq j$ and vanishes for i = j, the second term in the parentheses of (*) cancels the first except for i = j, in which case the integral equals 1 and $\sum_{ij} = Z$.

The result (**) is a special case of a time-parity theorem stating that the product of a time-even operator A (f in this case) and of a time-odd B (\vec{p}_1 in this case), averaged over a time-even state, equals the average of (AB-BA)/2. The condition that Ψ is real means indeed that the initial state contains no net current, i.e. that it is time-even.

The ratio

$$B = (-dE/dx)/2C(mc^{2}/\beta^{2}),$$
 (8)

is equal to the effective value of $\ln(Q_{max}/Q_{min})$ and may be called the "stopping number".^{2/}

To make allowance for the dependence of the limits of integration in (6) upon W_n , one must enter into (7) suitable average values for Q_{\min} and Q_{\max} . In practice, one can set

$$Q_{\min} = W_n^2 / 2mv^2 < W_n^3$$

so that, eq (7) applies for $Q \sim Q_{\min}$. Calculation (ref. [2], p. 520) shows that the correct average for $\ln Q_{\min}$ is obtained by taking as weights the dipole oscillator strength f_n , which represents the fraction of atomic electrons capable of oscillating with natural frequency W_n/h ,

$$\left\langle \ln Q_{\min} \right\rangle = \left\langle \ln \frac{W_n^2}{2mv^2} \right\rangle = \sum_n f_n \ln \frac{W_n^2}{2mv^2} = \ln \frac{I^2}{2mv^2}$$
,

where

$$I = \prod_{n \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} \prod_{n \in \mathbb{N}} (9)$$

The value of this atomic constant is discussed in section 3.

The upper limit Q_{max} of the integral in (7) is effectively infinity, because $|F_n(\vec{q})|^2$ decreases rapidly for large \vec{q} , unless W_n is comparable to the energy of the incident electron. For large W_n the equations (1) through (7) need modification because of exchange effects. Detailed calculations (ref. [2], p. 521) shows that the effective value of Q_{max} to be entered in (7) is

$$(Q_{max})_{eff} = \frac{2.7182...}{16} mv^2$$
.

Eq (7) is now written

$$\left(-\frac{dE}{dx}\right) = 2C \frac{mc^2}{\beta^2} 2 \ln\left(-\frac{mv^2}{2I}\sqrt{\frac{2.7182}{2}}\right)$$
(10)

This formula requires some modification when the velocity of the incident electron approaches the light velocity c. Basically, the Rutherford cross section (1) must be replaced with the corresponding Møller relativistic expression [4] for electrons and Bhabha cross section for positrons.

2 The term stopping number and the symbol B are often defined so as to be only half as large as in this Circular.

3 The equation $Q_{\min} = W_n^2/2mv^2$ holds for $W_n << T$ where $T = mv^2/2$ is the incident electron energy. When both T and W_n are much larger than the binding energy of the atomic electrons, $|F_n(\vec{q})|^2$ vanishes for $Q \sim Q_{\min}$ and the actual value of Q_{\min} is immaterial. When T is comparable to this binding energy, the condition (5) no longer holds and the whole theory breaks down anyhow.

The resulting formula for the energy loss was obtained by Bethe (ref. [2] p. 273) for electrons and by Rohrlich and Carlson [5] for positrons. These expressions may be combined and written as a function of $\tau = (1-\beta^2)^{-1/2}-1$, which is the initial kinetic energy in units of mc²:

$$\left(\frac{dE}{dx}\right)^{\pm} = 2C - \frac{mc^2}{\beta^2} \left\{ B_0^{\pm} - 2(\ln Z + \ln \frac{I/10}{Z}) \right\}, \qquad (11)$$

where I is expressed in e.v. and the expressions

$$B_{0}^{-} = 19.683 + \ln \tau^{2} (\tau + 2) - (1 + \frac{2\tau + 1}{(\tau + 1)^{2}}) \ln 2 + \frac{1}{(\tau + 1)^{2}} + 1/8 \left(\frac{\tau}{(\tau + 1)}\right)^{2} (12)$$

$$B_0^{+} = 19.683 + \ln \tau^2(\tau+2) + \ln 2 - \frac{\beta^2}{12} \left(23 + \frac{14}{(\tau+2)} + \frac{10}{(\tau+2)^2} + \frac{4}{(\tau+2)^3}\right) (13)$$

are the same for all materials. The tabulations given in this Circular were obtained from this equation.

The mean energy loss for compounds and mixtures is approximately an average of the mean energy loss of the constituent elements, weighted in proportion to the fraction by weight of each element. For example, for water,

$$\left(-\frac{dE}{dx}\right)^{T} = \frac{1}{9} \left(-\frac{dE}{dx}\right)^{\frac{1}{2}} + \frac{8}{9} \left(-\frac{dE}{dx}\right)^{\frac{1}{2}} \cdot (14)$$

This additivity rule derives from the circumstance that the chemical aggregation of atoms influences only the valence electrons in a way that does not affect their spectrum of oscillator strengths very profoundly. Therefore, the value of $\ln I = \sum_{n} f_n \ln W_n$ for a whole atom is not sensitive to changes of chemical binding.

Thompson [6] made an experimental study to determine the validity of the additivity rule. He detected small deviations from strict additivity that were within 1 percent except for hydrogenous compounds where the deviations were larger (up to about 2 percent). He noted also that these departures decreased rapidly with increasing atomic number.

3. EVALUATION OF I

The theoretical evaluation of the mean energy I according to eq (9) requires a knowledge of oscillator strengths, f_n . For atomic hydrogen, the f_n 's are well known; and Bethe (ref. [2], p. 442) has determined I_H and I for hydrogen-like atoms. Williams [7] obtained the mean energy I for molecular hydrogen by assuming that the ratio of I to the ionization potential is the same for H₂ as for H. He also evaluated I_{He} using data for the oscillator strength obtained from Wheeler [8]². A theoretical value of the ratio of the energy loss in H₂ to that in He, 1.18, given by Williams is in excellent agreement with an experimental determination of 1.19 by Gurney [9].

The energy I for many-electron atoms is difficult to determine theoretically because of the scarcity of information on the oscillator strengths. For this reason, approximation procedures are required.⁴/Bloch [10], using a Fermi-Thomas model of the atom, found the mean excitation energy I to be directly proportional to Z with the proportionality constant assuming a value equal to the ionization potential of atomic hydrogen, I = 13.6 Z.

4 For general reviews see E. A. Uehling, Penetration of heavy charged particles in matter, Annual Review of Nuclear Science, J. B. Beckerley, editor, Annual Reviews, Inc., Stanford, Calif., (1954) and W. Paul and H. Steinwedel, Interaction of electrons with matter, Beta- and Gamma-Ray Spectroscopy, K. Siegbahn, editor, North-Holland Publishing Co., Amsterdam (1955). The most useful data concerning the evaluation and variation of I with Z have been obtained experimentally. For compounds, all evidence is derived from experimental data.

Experiments to determine I using incident electrons are quite difficult due to straggling and multiple scattering. The best evidence on I comes from experiments on the slowing down of proton beams. It is desirable to have data for high energy protons to minimize the correction for departures from eq (5). The experiments have been designed to measure either the energy loss, from which I may be obtained using an equation alalogous to eq (10), or the range obtained from reciprocal

$$R = \int_{0}^{E} \left(-\frac{dE'}{dx}\right)^{-1} dE', \qquad (15)$$

)

where E is the initial energy of the incident particle.

The values of I used in this Circular are taken from a plot of data, Fig. 1, from Mather and Segre [11] . These authors measured, absolutely, the mean range of 340 Mev protons in several materials. Although it is more difficult to obtain I from range data than from energy loss data, this work gave I for more elements than previously available in an energy interval where corrections are minimized. The values of $I_{\rm H_2}$ and $I_{\rm He}$ used in the present report are Williams' theoretical values.

Since the present tabulations were made, Caldwell [12] re-examined the old experimental data together with previously unused and new data. In his treatment, more accurate corrections for multiple scattering were made where applicable; and better corrections from Walske [13] for the non-contribution of K and L shell electrons to the energy loss at low energies which reflect departures from (5) were employed. The results of this study for Al, Cu and emulsions show that data on stopping power at different energies can be fitted with a single value of I with the exception of the Mather-Segre data.

Because of the present uncertainty in the choice of I, auxiliary tabulations are presented here which will simplify incorporating new and more adequate data on I. The log-log variation of the range R with I,

$$\frac{\mathrm{dlnR}}{\mathrm{dlnI}} = \frac{2}{\mathrm{R-r}} \int_{r}^{\mathrm{R}} \mathrm{B(r')}^{\mathrm{l}} \mathrm{dr'} , \qquad (16)$$

is tabulated in Table 1. B(r') is the stopping number, evaluated for the energy corresponding to the residual range r', and r is a cut-off range corresponding to a residual energy equal to 10 Kev or the K absorption energy, whichever is larger.

4. LIMITATIONS OF THE DATA

As pointed out in the introduction the formulas presented in Sect. 2 have a range of validity limited by various circumstances.

4.1 Density effect. The rate of energy loss of charged particles depends to some extent on the density of the material traversed. One part of this effect persists at moderate and low energies of the incident particle and is taken into account automatically by the use of an experimental value for the constant I. The other and larger part is important only for relativistic energies. However, no provision is made in this Circular to take it into account, except for reproducing in Fig. 2 the results of reference [14] which provide the best data for this purpose available at this time. These results are expressed as a correction δ to the stopping number B plotted as a function of the electron energy represented by $(1/2) \ln_{10} [\tau \ (\tau + 2)]$. This correction remains of the order of 10% within the energy limits allowed by the other considerations mentioned below.

4.2 Radiation losses. For electrons of very high energy, the energy losses incurred during bremsstrahlung (X-ray emission) processes become large compared to the losses due to inelastic collisions which are considered in Sect. 2. The radiation losses are subject to large statistical fluctuations. Therefore, since data on the average radiation loss per unit distance traveled is not informative, it has not been included in the data presented here on the average loss in inelastic collisions. As indicated in Sect. 1, it would be desirable to present data adequate to describe the entire statistical distribution of energy losses in a given length of path, including radiation as well as collision losses. Pending this development, the tabulations presented in this Circular are limited to the energy range where radiation losses constitute a minor effect, less than 5%. For purpose of orientation, a few data on the relative importance of radiation and collision losses are presented in Table 2.

4.3 Low energy limitation. The theoretical formulation of Sect. 2 is limited, for low energies of the incident electron, by the condition (5), that the incident electron be much faster than the atomic electrons with which it interacts. This condition is fulfilled adequately for collisions against external electrons of atoms provided the incident electron has an energy of the order of 1 kev or more. On the other hand, there are internal electrons whose kinetic energy ranges in heavy atoms up to the order of 100 kev. Thus there is an important range of materials and of incident energies where the theoretical basis of calculations is insecure. Experimental data do not provide any firm basis either. This difficulty is made less severe by the circumstance that even in high-Z atoms only a small fraction of the electrons has a high velocity (e.g. in Fo only 2 out of 82 electrons have a kinetic energy approaching 100 kev, and 8 more of the order of 20 kev).

When the condition (5), $v >> v_{at}$, fails to hold, the cross section formula (4) is no longer justified by the Born or the impulse approximation. Nevertheless this formula has been shown to predict correctly the probability of ejecting K electrons from atoms by the impact of electrons with energy barely sufficient to produce this effect [15]. The reason for this is unknown at present.

In this connection the situation is quite different for heavy charged particles for which Mott [16] has shown that the cross section formula (λ) is justified irrespective of the condition $v >> v_{at}$. The formulation of Sect. 2 can then be utilized throughout, except that a more elaborate procedure is required to evaluate the effective average $\langle \ln(Q_{max}/Q_{min}) \rangle$. (The equation $Q_{min} \sim W_n^2/2mv^2$ also holds for heavy particles, but not for electrons, irrespective of $v >> v_{at}$.) The results of these more elaborate calculations are usually represented by adding to the left side of (8) corrective terms, called $C_K, C_L \dots$, which allow for the failure of $v >> v_{at}$ with respect to the K,L... electrons of the materials (see ref [13]). These corrections have been occasionally applied also with regard to incident electrons, but this application has no theoretical basis.

Qualitatively, as the energy of incident electrons decreases and the condition $v >> v_{at}$ begins to fail, the average energy loss should decrease a little below the value given by (11), because electrons presumably behave in this respect like heavier particles. As the incident electron energy decreases further to the point where it is no longer sufficient to excite internal electrons, the value given by (11) must represent an overestimate. This is seen by considering the structure of the expression (8)

$$B = \left\langle \ln \frac{Q_{max}}{Q_{min}} \right\rangle = 2 \ln \left(\frac{mv^2}{2I} \sqrt{\frac{2.7182}{2}} \right)$$

$$= 2 \sum_{n} f_{n} \ln \left(\frac{mv^{2}}{2W_{n}} \sqrt{\frac{2.7182}{2}} \right)$$

$$(17)$$

Here internal electrons, whose values of W_n are large, yield a negative contribution to B when v is sufficiently small, whereas their actual contribution is zero. Therefore, the corrections are never very large and become effective only at low energies.

5. PREPARATION OF TABLES AND GRAPHS

Tabulations of the energy loss and RSP range of electrons and positrons in several materials are given in Table 3. The data were calculated from eqs (11) and (15); values of I were taken from Fig. 1.

The maximum energy selected for each material is the value at which radiation effects contribute about 5 percent to the total energy loss.

At low energies when condition (5) is no longer fulfilled, the use of eq (11) is not strictly valid. For protons, the corrections C_K , C_L ... (see ref.[13]) are applicable. These corrections are initially small and positive. As the energy decreases, they become negative and larger in magnitude. A correction of approximately 1-2 percent for $C_K + C_L$ is attained in the region of 10 Mev for different elements. If a comparison is made between protons and electrons of equal velocity this 1-2 percent contribution corresponds to electron energies of 5 kev. Hence the error should not exceed 5 percent at the low energy limit of 10 kev used in the present tabulation.

Calculations of the RSP range, eq (15) were made by integrating numerically according to Simpson's rule. The function $(-dE/dx)^{-1}$ becomes infinite as $E \rightarrow 0$; however, to evaluate the integral, $(-dE/dx)^{-1}$ was taken as zero at E = 0 and interpolated linearly between zero and a calculated value at E = 5 kev (see Fig. 3). This procedure was adopted somewhat arbitrarily for expediency. In fact the concept of end of an electron track is ambiguous since the action of an electron on the material it traverses tapers off gradually. Any definition of range which one adopts is necessarily somewhat arbitrary. Of the various reasonable definitions most would probably give range values somewhat larger than those obtained by the procedure adopted here, but the difference would be negligible at energies of the order of 50 kev or more.

Representative graphs of the tabulations are given in Figs. 4, 5, 6 and 7 for H₂O, Al and Cu.

Several tables have been included to facilitate future tabulations of eq (11) as more reliable data for I become available. Table 4 gives values of Z/A and lnZ for several elements and a few compounds. Table 5 contains data for β^2 and B_0^{\pm} , which are independent of Z, in the energy range 10 kev to 10 Mev. A graph (Fig. 8) of B_0^{\pm} is given to aid in interpolation and to show the difference in electron-positron energy loss. It is seen that positrons lose energy more rapidly than electrons at low energies, the energy losses become comparable near 1 Mev, and at higher energies electrons lose energy faster. A detailed discussion of this difference is given by Rohrlich and Carlson (see Ref. 5).

6. COMPARISON WITH EXPERIMENTAL DATA

Only a few experiments are available that can be compared directly with the present tabulations. The basic difficulties in making absolute measurements are the contributions of elastic scattering and range straggling. For the most part, measurements are made of the most probable rather than the mean energy loss. The most probable energy loss is less than the mean energy loss and obtaining one from the other requires a theory whose accuracy is comparable to the accuracy of this formulation.

Paul and Reich [17] measured both the most probable and the mean energy loss in several materials at 2.8 and 4.7 Mev. They evaluated a correction for polarization of the medium from data of Halpern and Hall [18] . A contribution to the energy loss from the radiative effect was determined from Heitler [19] . Their corrected results are compared with the present tabulations in Table 6 and show good agreement.

The actual pathlength, which is measured by either photographic plates or cloud chambers, includes range straggling. The tabulated (RSP) ranges for H₂ and He are compared in Figs. 9 and 10 with the cloud chamber measurements of 0'Neil and Scott [20]. The scatter of the points gives an estimate of the width of the electron range straggling distribution. Theoretical calculations [21] indicate that the width of this distribution is about that shown by Figs. 9 and 10.

Earlier range data from Klemperer [22] for several gases are given in Table 7. These results in the region of 25 kev show 2-15 percent agreement with the tabulations except for air. Here the erratic variation of range with energy suggests that the data is unreliable. Additional data for air by Buchmann [23] is given in Table 8. The error of his data is difficult to determine since they are derived from energy loss measurements by a method that contains input data of questionable

210-12

accuracy. In contrast to the Klemperer data, the general trend is a continuous variation with energy. In this low energy region, 10-25 kev, a comparison of values is not realistic due to the error introduced by the method of extrapolating to zero in the range computation.

A survey of data for emulsions has not been included in this report since it would require a major effort of evaluation. The composition of an emulsion varies with its humidity, which is not often controlled in a vigorous and standard manner, as evidenced by inconsistencies in the density values reported by different laboratories. Calculations for emulsions may be made, using data from Table 3 which contains the energy loss and RSP range separately for "dry" Ilford emulsion and for water.

The author thanks U. Fano for helpful guidance and others who made contributions through discussions and correspondence.

7. References

- [1] B. Rossi, High energy particles, p. 20, Prentice-Hall, Inc., N.Y. (1952).
- [2] H. Bethe, Handbuch der Physik (Julius Springer, Berlin) 24, 491 (1933).
- [3] H. Bethe, Ann. Physik 5, 325 (1930).
- [4] C. Møller, Ann. Physik 14, 531 (1932).
- [5] F. Rohrlich and B. C. Carlson, Phys. Rev. <u>93</u>, 38 (1954).
- [6] T. J. Thompson, thesis, Effect of chemical structure on stopping powers for high energy protons, UCRL-1910 (1952) (unpublished).
- [7] E. J. Williams, Proc. Cambridge Phil. Soc. 33, 179 (1937).
- [8] J. Wheeler, Phys. Rev. 43, 258 (1933).
- [9] R. W. Gurney, Proc. Roy. Soc. (London) 107, 340 (1925).
- [10] F. Bloch, Z. Physik 81, 363 (1933).
- [11] R. Mather and E. Segre, Phys. Rev. 84, 191 (1951).
- [12] D. O. Caldwell, Phys. Rev. 100, 291 (1955).
- [13] M. C. Walske, Phys. Rev. <u>88</u>, 1283 (1952); <u>101</u>, 940 (1956).
- [14] R. M. Sternheimer, Phys. Rev. <u>91</u>, 256 (1953).
- [15] L. T. Pockman et al., Phys. Rev. <u>71</u>, 330 (1947).
- [16] N. F. Mott, Proc. Cambridge Phil. Soc. 27, 553 (1931).
- [17] W. Paul and H. Reich, Z. Physik 127, 429 (1950).
- [18] O. Halpern and H. Hall, Phys. Rev. 73, 477 (1948).
- [19] H. Bethe and W. Heitler, Proc. Roy. Soc. (London) A <u>146</u>, 83 (1934); W. Heitler, The quantum theory of radiation, (Oxford, 1944).
- [20] G. F. O'Neill and W. T. Scott, Phys. Rev. 80, 473 (1950).
- [21] L. V. Spencer (Private communication).
- [22] O. Klemperer, Eifuhrung in die Elektronik, p. 272 (Berlin, 1933).
- [23] E. Buchmann, Ann. Phys. <u>87</u>, 509 (1928).

TABLE 1. Percentage change of R for 1 percent change of I

						d(ln	R ⁻)/d(ln	I)						
z	2	4	6	7	8	11	13	14	16	17	18	19	20	26
R-r r	0.0003	0.0003	0.0003	0.0004	0.0003	0.0004	0.0003	0.0005	0.0005	0.0005	0.0004	0.0005	0.0005	0.0005
0.0002 .0004 .0006 .0008 .001	0.226 .213 .206 .201 .197	0.214 .208 .205 .203 .200	0.221 .216 .212 .210 .207	0.230 .226 .224 .220 .218	0.229 .225 .221 .218 .216	0.248 .244 .240 .236 .234	0.262 .255 .250 .245 .243	0.260 .256 .252 .248 .245	0.269 .263 .260 .256 .253	0.274 .269 .265 .261 .257	0.277 .273 .267 .263 .260	0.282 .277 .273 .268 .265	0.284 .280 .275 .271 .267	0.308 .302 .297 .292 .288
.002 .004 .006 .008 .01	.188 .179 .174 .170 .168	.193 .185 .180 .176 .174	.199 .191 .186 .182 .180	.210 .200 .195 .190 .187	.208 .199 .194 .190 .187	.225 .214 .207 .202 .198	.230 .218 .212 .206 .203	. 235 . 224 . 217 . 212 . 208	. 243 . 230 . 223 . 217 . 214	.246 .233 .226 .220 .216	. 247 . 234 . 226 . 220 . 216	• 253 • 239 • 230 • 224 • 220	• 255 • 242 • 233 • 226 • 222	• 274 • 258 • 248 • 242 • 237
.02 .04 .06 .08 .1	.159 .151 .147 .144 .142	.165 .157 .153 .150 .147	.171 .162 .157 .153 .150	.176 .167 .162 .158 .155	.177 .168 .163 .159 .156	.188 .178 .172 .168 .164	.192 .180 .174 .170 .166	.196 .184 .178 .174 .174	.202 .190 .183 .177 .175	.203 .191 .184 .179 .175	.203 .191 .184 .180 .176	.207 .195 .188 .183 .180	.207 .195 .187 .183 .180	.222 .207 .199 .193 .188
.4 .6 .8 1.0	.135 .127 .123 .120 .117	.139 .131 .1% .123 .120	.142 .133 .128 .125 .122	.146 .138 .133 .130 .127	.147 .138 .133 .129 .126	.155 .146 .140 .136 .134	.156 .145 .140 .136 .133	.161 .151 .146 .141 .139	.164 .153 .147 .142 .138	.164 .153 .147 .143 .140	.165 .154 .147 .143 .140	.167 .158 .152 .147 .144	.168 .157 .151 .147 .143	.176 .164 .157 .152 .148
2 14 6	.109 .101	.113 .104 .0999	.114 .105 .0999	.118 .108 .103	.117 .108 .103	.124 .114 .108	.123 .113 .108	.134 .131 .129	.127 .117 .112	.130 .118 .112	.130 .118 .112	.133 .121 .114	.133 .122 .114	.137 .125 .117
						d(ln	R [†])/d(ln	I)						
z	2	4	6	7	8	11	13	14	16	17	18	19	20	26
R-r r	0.0003	0.0003	0.0003	0.0003	0.0003	0.0004	0.0003	0.0004	0.0004	0.0004	0.0003	0.0004	0.0004	0.0005
0.0002 .0004 .0006 .0008 .001	0.187 .184 .182 .180 .178	0.195 .191 .188 .186 .184	0.203 .199 .196 .194 .192	0.213 .209 .206 .204 .201	0.212 .208 .204 .202 .200	0.226 .222 .219 .216 .214	0.233 .228 .224 .220 .218	0.238 .233 .230 .227 .224	0.243 .238 .235 .232 .229	0.246 242 238 235 235 232	0.251 .245 .240 .236 .234	0.252 .248 .244 .244 .241 .238	0.255 .250 .245 .243 .239	0.275 .268 .259 .255 .253
.002 .004 .006 .008 .01	.173 .166 .162 .160 .158	.178 .172 .168 .165 .163	.185 .177 .173 .170 .168	.194 .185 .180 .176 .174	.193 .185 .181 .178 .176	.206 .198 .193 .189 .186	.209 .200 .194 .191 .188	.215 .205 .199 .195 .192	.220 .210 .204 .200 .197	.223 .212 .206 .202 .199	. 224 . 213 . 207 . 203 . 200	.228 .217 .210 .206 .203	.230 .219 .213 .208 .205	• 243 • 231 • 224 • 219 • 215
.02 .04 .06 .08 .1	.152 .146 .143 .141 .139	.156 .150 .147 .145 .143	.161 .157 .153 .149 .147	.166 .159 .155 .153 .151	.168 .161 .157 .154 .152	.178 .171 .167 .164 .162	.180 .172 .167 .164 .162	.184 .175 .171 .168 .166	.187 .178 .174 .174 .171 .168	.189 .181 .176 .173 .170	.190 .181 .176 .172 .170	.193 .184 .179 .176 .174	.195 .185 .180 .177 .175	.204 .194 .189 .185 .183
.2 .4 .6 .8 1.0	.133 .127 .123 .120 .118	.137 .131 .127 .124 .122	.141 .134 .130 .126 .124	.145 .138 .134 .131 .128	.145 .138 .134 .131 .128	.154 .146 .142 .138 .135	.154 .147 .142 .139 .136	.158 .150 .145 .141 .138	.161 .153 .148 .144 .141	.163 .154 .149 .145 .142	.162 .154 .148 .145 .142	.165 .157 .152 .148 .144	.166 .158 .152 .148 .144	.174 .164 .158 .154 .150
2 4 6	.111 .104 .0990	.114 .106 .101	.116 .108 .102	.120 .113 .111	.120 .111 .105	.126 .116 .111	.127 .117 .111	.128 .119 .113	.131 .121 .115	.132 .122 .116	.132 .1 <i>2</i> 1 .116	.134 .123 .117	.134 .124 .117	.140 .130 .122

		111214		moage of			P. CL SOLIO						
					d(ln R)/d(ln]	E)						
Z	29	30	3 5	42	47	50	53	74	78	79	80	82	92
R-r r	0.0005	0.0005	0.001	0.001	0.003	0.004	0.006	0.02	0.03	0.02	0.03	0.03	0.06
0.0002 .0004 .0006 .0008 .001	0.307 .299 .293 .288 .285	0.310 .303 .297 .292 .288											
.002 .004 .006 .008 .01	• 27 2 • 257 • 248 • 24 2 • 2 3 7	. 274 . 258 . 249 . 243 . 238	0.284 .270 .260 .254 .249	0.285 .273 .264 .258 .253	0.269 .263 .257 .253 .249	0.270 .268 .264 .260 .257	0.258 .254 .250 .247 .245						
.02 .04 .06 .08 .1	.222 .207 .200 .194 .190	.223 .208 .201 .195 .192	. 234 . 219 . 210 . 204 . 200	. 238 . 222 . 214 . 208 . 204	. 237 . 223 . 216 . 210 . 205	. 245 . 232 . 224 . 218 . 214	. 236 . 225 . 219 . 214 . 210	0.235 .228 .222 .218 .214	0.233 .227 .222 .218 .216	0.237 .228 .223 .219 .215	0.230 .225 .220 .217 .214	0.232 .226 .223 .219 .216	0.224 .221 .218 .216 .213
.2 .4 .6 .8 1.0	.177 .165 .158 .152 .148	.178 .166 .158 .153 .149	.186 .174 .166 .161 .157	.189 .175 .167 .162 .158	.192 .177 .169 .164 .160	.200 .185 .176 .170 .166	.196 .181 .173 .167 .163	.202 .190 .182 .176 .172	.205 .194 .186 .180 .176	.203 .190 .182 .176 .171	.204 .191 .183 .178 .173	.205 .193 .185 .179 .174	.204 .193 .186 .180 .176
2 4 6 8	.137 .124 .117	.137 .125 .118	.144 .131 .124	.145 .132 .124	.146 .133 .125	.152 .137 .130 .125	.149 .136 .128 .123	.156 .141 .133 .128	.161 .146 .138 .132	.156 .142 .133 .128	.158 .143 .134 .129	.158 .143 .134 .128	.161 .146 .138 .132
					d(ln R	⁺)/d(ln	I)						
z	29	30	35	42	47	50	53	74	78	79	80	82	92
R-r r	0.0004	0.0004	0.002	0.001	0.003	0.004	0.005	0.02	0.02	0.02	0.02	0.02	0.06
0.0002 .0004 .0006 .0008 .001	0,272 ,266 ,262 ,258 ,255	0.275 .270 .265 .261 .258											
.002 .004 .006 .008 .01	.245 .233 .226 .221 .217	.247 .235 .228 .223 .218	0.239 .232 .228 .224 .221	0 • 253 • 244 • 237 • 233 • 229	0.240 .236 .232 .228 .226	0.244 .240 .236 .233 .231	0.237 .234 .231 .229 .227						
.02 .04 .06 .08 .1	.206 .195 .189 .186 .183	.208 .197 .192 .187 .184	.212 .202 .197 .193 .190	.218 .207 .202 .198 .194	.217 .208 .203 .200 .196	. 223 . 214 . 209 . 205 . 202	. 220 . 212 . 207 . 203 . 200	0.221 216 .213 .210 .208	0.227 .222 .218 .215 .213	0.223 .219 .215 .212 .210	0.224 .220 .216 .213 .210	0.225 .220 .217 .214 .212	0.215 .213 .211 .210 .208
.2 .4 .6 .8 1.0	.175 .165 .158 .154 .151	.175 .166 .160 .156 .152	.181 .172 .166 .162 .158	.184 .173 .167 .162 .159	.187 .176 .170 .166 .162	.192 .182 .176 .171 .167	.190 .180 .174 .169 .165	.199 .189 .183 .178 .174	. 204 .193 .187 .182 .178	.201 .191 .184 .180 .176	.201 .191 .184 .180 .176	.203 .193 .186 .181 .177	.202 .193 .187 .183 .179
2 4 6 8	.140 .128 .122	.142 .129 .122	.146 .134 .127 .122	.147 .135 .128 .122	.149 .136 .129 .124	.154 .141 .133 .128	.152 .139 .132 .126	.160 .146 .138 .132	.164 .150 .142 .136	.162 .148 .139 .134	.162 .148 .139 .134	.163 .149 .140 .134	.165 .151 .143 .137

MABLE 1. Percentage change of R for 1 percent change of I-Continued

TABLE 2. Average fraction (f) of energy lost by radiation from electrons with kinetic energy $\rm T_{\rm O}$ (in units of mc²)

			To		
f	н ₂ о	Al	Fe	Cu	Ръ
1.02	6.6	5.0	2.4	2.1	0.5
1.04	13.0	9.7	4.8	4.3	1.3
1.06	19.0	15.0	7.3	6.6	2.1

TABLE	3.	Energy	loss	and	range	of	electrons	and
posi	tro	ns.						

		Hydrogen			
	Z	= 1, I = 17.5	ev		
Energy	-dE ⁻ /dx	R ⁻	-dE ⁺ /dx	R ⁺	
Mev	Mev cm ² /g	g/cm ²	Mev cm ² /g	g/cm ²	
0.01	52.0	0.000105	56.1	0.0000965	
.02	29.5	.000369	31.5	.000344	
.03	21.4	.000776	22.6	.000726	
.04	17.1	.00130	18.0	.00122	
.05	14.4	.00194	15.1	.00184	
.06	12.6	.00269	13.2	.00255	
.07	11.3	.00353	11.7	.00335	
.08	10.3	.00446	10.6	.00425	
.09	9.47	.00548	9.80	.00523	
.10	8.83	.00657	9.12	.00629	
•15	6.89	.0131	7.04	.0126	
•20	5.91	.0210	5.99	.0204	
•25	5.33	.0299	5.37	.0292	
•30	4.95	.0397	4.96	.0389	
•35	4.68	.0501	4.68	.0493	
.40	4.49	.0610	4.47	.0603	
.45	4.34	.0723	4.31	.0717	
.50	4.23	.0840	4.20	.0834	
.55	4.15	.0959	4.10	.0955	
.60	4.08	.108	4.03	.108	
•65	4.02	.120	3.97	.120	
•70	3.98	.133	3.92	.133	
•75	3.95	.146	3.89	.146	
•80	3.92	.158	3.86	.159	
•85	3.89	.171	3.83	.172	
.90 .95 1.0 1.2 1.4	3.88 3.86 3.85 3.82 3.82 3.82	.184 .197 .210 .262 .314	3.81 3.79 3.78 3.75 3.74	.185 .198 .211 .264 .318	1
1.6 1.8 2.0 2.2 2.4	3.82 3.84 3.85 3.87 3.87 3.89	.367 .419 .471 .523 .574	3.74 3.75 3.77 3.79 3.81	•371 •425 •478 •531 •583	
2.6	3.91	.626	3.83	.636	
2.8	3.93	.677	3.84	.688	
3.0	3.95	.727	3.86	.740	
4.0	4.05	.977	3.96	.996	
5.0	4.13	1.22	4.04	1.25	
6.0	4.20	1.46	4.11	1.49	
8.0	4.32	1.93	4.23	1.97	
10.0	4.42	2.39	4.32	2.44	

2

		Helium $Z = 2, I = 1$	uu ev	
Energy	-dE /dx	R	-dE ⁺ /dx	R ⁺
Mev	Mev cm ² /g	g/cm ²	Mev cm ² /g	g/cm ²
0.01	22.5	0.000246	24.5	0.000223
.02	13.0	.000851	14.0	.000783
.03	9.45	.00178	10.1	.00165
.04	7.59	.00296	8.04	.00276
.05	6.43	.00440	6.78	.00412
.06	5.63	.00606	5.91	.00570
.07	5.05	.00795	5.28	.00750
.08	4.61	.0100	4.80	.00949
.09	4.26	.0123	4.43	.0117
.10	3.98	.0147	4.12	.0140
.15	3.12	.0291	3.19	.0280
.20	2.68	.0465	2.72	.0450
.25	2.143	.0662	2.14	.0645
.30	2.26	.0876	2.26	.0858
.35	2.114	.110	2.14	.109
.40	2.05	.134	2.04	.133
.45	1.99	.159	1.98	.157
.50	1.94	.184	1.92	.183
.55	1.90	.210	1.88	.209
.60	1.87	.237	1.85	.236
.65	1.85	.264	1.83	.264
.70	1.83	.291	1.80	.291
.75	1.82	.318	1.79	.319
.80	1.81	.346	1.77	.347
.85	1.80	.374	1.76	.347
.90	1.79	.402	1.76	.404
.95	1.78	.430	1.75	.432
1.0	1.78	.458	1.74	.461
1.2	1.77	.571	1.73	.576
1.4	1.77	.684	1.73	.691
1.6	1.78	.796	1.73	.807
1.8	1.78	.909	1.74	.922
2.0	1.79	1.02	1.75	1.04
2.2	1.80	1.13	1.76	1.15
2.4	1.81	1.24	1.77	1.26
2.6	1.83	1.35	1.78	1.38
2.8	1.84	1.46	1.79	1.49
3.0	1.85	1.57	1.80	1.60
4.0	1.90	2.10	1.85	2.15
5.0	1.94	2.63	1.89	2.68
6.0	1.98	3.14	1.93	3.21
8.0	2.04	4.13	1.99	4.23
10.0	2.08	5.10	2.04	5.22
	Z	Beryllium = 4, I = 59 e	v	
0.01	18.9	0.000294	20.7	0.000265
.02	11.0	.00101	11.8	.000925
.03	8.02	.00210	8.58	.00194
.04	6.45	.00349	6.86	.00325
.05	5.47	.00519	5.78	.00485
.06	4.80	.00714	5.05	.00670
.07	4.31	.00936	4.51	.00881
.08	3.93	.0118	4.10	.0111
.09	3.64	.0144	3.78	.0137
.10	3.40	.0173	3.52	.0164

TA BLE	3.	Energy	loss	and	range	of	electrons	and
posi	tror	ıs – Cont	inue	1				

TABLE 3.	Energy	loss	and	range	of	electrons	and
positro	ons – Con	tinue	f				

 $-dE^{+}/dx$

Mev cm²/g

1.66 1.66 1.65 1.64

1.64

1.65 1.66

1.67

1.68

1.69

1.70

1.71

1.72 1.77 1.81

1.85 1.91

21.7

9.11 7.29 6.16

5.38 4.82

4.02 4.39 4.04

3.77

2.93 2.51 2.25

2.09

1.97

1.89

1.83

1.75

1.72

1.69 1.68

1.66

1.65

1.64

1.63 1.63 1.62 1.62

1.62

1.62 1.63 1.64

1.65

1.66

R⁺

g/cm²

.428 .458 .488

.610

.731

.853 .974

1.09

1.21

1.33 1.45

1.57

1.69 2.26 2.82

3.36

0.000254

.000879

.00181 .00307 .00454

.00631

.0105

.0128

.0154

.0306 .0492

.0703

.0934

.118

.144

.171 .199 .227

.256

.285 ·315 ·345 ·375

.405 .436

.467

.497 . 621

.745

.868

.991 1.11

1.23

1.36

1		Bery	llium - Conti	inued			Ca	rbon - Conti	nued
		Z	= 4, I = 59 e	ev			Z	= 6, I = 77.	4 ev
	Energy	-dE /dx	R	-dE ⁺ /dx	R ⁺	Energy	-dE ⁻ /dx	R	
1	Mev	Mev cm ² /g	g/cm ²	Mev cm ² /g	g/cm ²	Mev	Mev cm ² /g	g/cm ²	ŀ
	.15 .20 .25 .30 .35	2.67 2.30 2.08 1.94 1.84	.0341 .0544 .0774 .102 .129	2.73 2.34 2.10 1.94 1.83	.0327 .0526 .0753 .100 .127	.90 .95 1.0 1.2 1.4	1.70 1.69 1.69 1.68 1.68	.426 .455 .485 .604 .723	
	.40 .45 .50 .55 .60	1.76 1.71 1.67 1.64 1.61	•157 •185 •215 •245 •276	1.76 1.70 1.65 1.62 1.59	.155 .184 .213 .214 .275	1.6 1.8 2.0 2.2 2.4	1.69 1.70 1.71 1.72 1.73	.841 .960 1.08 1.19 1.31	
	.65 .70 .75 .80 .85	1.59 1.58 1.57 1.56 1.55	•307 •339 •371 •403 •435	1.57 1.55 1.54 1.53 1.52	.307 .339 .371 .404 .437	2.6 2.8 3.0 4.0 5.0	1.74 1.75 1.76 1.81 1.86	1.42 1.54 1.65 2.21 2.76	
	.90 .95 1.0 1.2	1.54 1.54 1.53 1.53	.467 .500 .532 .663	1.51 1.51 1.50 1.49	.470 .503 .536 .669	6.0 8.0	1.89 1.95	3.29 4.33	
	1.4	1.53	.794	1.49	.803			Nitrogen	
	1.6 1.8 2.0	1.53 1.54 1.55	.925 1.05 1.18	1.50 1.50 1.51	•937 1.07 1.20		Z =	7, I = 87.5	5 ev
	2.2	1.56 1.57	1.31 1.44	1.52 1.53	1.34	0.01	19.7	0.000283	
	2.6 2.8 3.0	1.58 1.59 1.60	1.57 1.69 1.82	1.54 1.55 1.56	1.60 1.73 1.85	.03 .04 .05	8.47 6.83 5.81	.000988 .00200 .00332 .00492	
	4.0 5.0	0 1.64 2.44 0 1.68 3.04		1.60 1.64	2.49 3.10	.06 .07	5.10 4.58	.00675 .00883	
	6.0 8.0	1.71 1.77	3.63 4.78	1.67 1.72	3.71 4.89	.08 .09 .10	4.19 3.88 3.63	.0111 .0136 .0163	
			Carbon			.15	2.86	.0320	
-		Z	6, I = 77.4 e	₽V		25	2.23	.0723 .0956	
	0.01 .02 .03 .04	20.3 11.9 8.70 7.01	0.000274 .000936 .00194 .00322	22.4 12.9 9.34 7.47	0.000246 .000855 .00179 .00299	.35 .40 .45	1.98 1.90 1.84	.120 .146 .173	
	•05 • 06	5.22	.00479	6.31 5.51	.00446	.50	1.80 1.77	.200 .228 257	
	.07 .08 .09 .10	4.69 4.29 3.97 3.71	.00861 .0108 .0133 .0159	4.93 4.48 4.13 3.85	.00809 .0102 .0125 .0150	.65 .70 .75	1.72 1.70 1.69	•286 •315 •344	
	.15 .2	2.92 2.52	.0313 .0500	2.99 2.56	.0300 .0482	.85	1.67	.404	
	• 25 • 30 • 35	2.28 2.12 2.01	.0709 .0937 .118	2.30 2.13 2.01	.0689 .0915 .116	.90 .95 1.0 1.2	1.67 1.66 1.66 1.65	.434 .464 .494	
	.40 .45	0 1.94 .143 1.93 5 1.88 .169 1.86		1.93 1.86	.141 .168	1.4	1.66	.736	
	•50 •55 •60	1.83 1.80 1.77	.196 .224 .252	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.6 1.8 2.0 2.2	1.66 1.67 1.68 1.69	.856 .976 1.10 1.21	
	.65 .70 .75 .80 .85	1.75 1.73 1.72 1.71 1.70	.280 .309 .338 .367 .396	1.72 1.71 1.69 1.68 1.67	• 280 •309 •338 •368 •398	2.4	1.71	1.33	

TA BLE	3.	Energy	loss	and	range	of	electrons	and
posi	tror	ns - Con	tinue	f				

TABLE 3.	Energy	loss	and	range	oſ	electrons	and
positro	ns — Cont	inue	1				

		Nit	rogen - Conti	nued		Sodium					
		Z	= 7, I = 87.5	e⊽			Z	= 11, I = 12	8 ev		
	Energy	-dE /dx	R	-dE ⁺ /dx	R ⁺	Energy	-dE ⁻ /dx	R	-dE ⁺ /dx	R ⁺	
	Mev	Mev cm ² /g	g/cm ²	Mev cm ² /g	g/cm ²	Mev	Mev cm^2/g	g/cm ²	Mev cm ² /g	g/cm^2	
	2.6 2.8 3.0 4.0	1.72 1.73 1.74 1.79 1.83	1.45 1.56 1.68 2.25 2.80	1.67 1.68 1.69 1.74 1.79	1.48 1.59 1.71 2.29 2.86	0.01 .02 .03 .04 .05	17.4 10.3 7.60 6.14 5.23	0.000325 .00109 .00225 .00371 .00550	19.3 11.2 8.20 6.58 5.57	0.000288 .000986 .00205 .00341 .00508	
-	6.0 8.0	1.87 1.93	3.34 4.39	1.82 1.88	3.42 4.50	.06 .07 .08 .09	4.60 4.14 3.79 3.51	.00753 .00983 .0123 .0151	4.87 4.37 3.98 3.67	.00700 .00918 .0116 .0142	
			Oxygen			.10	3.29	.0180	3.42	.0170	
		Z	= 8, I = 97.8	3 ev		. 15 . 20 . 25	2.60 2.25 2.04	.0354 .0562 .0797	2.67 2.28 2.06	.0338 .0542 .0773	
	0.01	19.3 11.3	0.000292 .000987	21.3 12.3	0.000260	.30 .35	1.90 1.81	•105 •132	1.91 1.80	.103	
	.05 .04 .05	6.72 5.71	.00204 .00338 .00501	0.95 7.17 6.06	.00167 .00312 .00465	.40 .45 .50 .55	1.74 1.69 1.65 1.62	.160 .190 .220 .250	1.73 1.67 1.63 1.60	.158 .187 .218 .219	
	.07	4.51 4.13	.00899	4.75	.00842	.60	1.60	.281	1.57	.280	
	.09 .10 .15	3.82 3.57 2.82	.0138 .0165 .0325	3.99 3.72 2.89	.0130 .0156 .0311	.65 .70 .75 .80	1.58 1.56 1.55 1.54	•313 •345 •377 •409	1.55 1.54 1.52 1.51	.312 .344 .377 .410	
	. 20 . 25	2.43 2.20	.0517 .0734	2.47	.0499 .0713	.85	1.54	.1 <u>4</u> 2	1.51	. 443	
	.30 .35	2.05 1.95	.0969 .122	2.06 1.95	.0947 .120	.90 .95 1.0	1.53 1.53 1.53	.474 .507 .540	1.51 1.50 1.49	.476 .510 .543	
	.40	1.88 1.82	.148 .175 203	1.87 1.81 1.76	.146 .173	1.4	1.53	.802	1.43	.814	
	.55	1.75	.231 .260	1.72 1.70	. 230 . 259	1.6 1.8 2.0	1.53 1.54 1.55	.933 1.06 1.19	1.49 1.50 1.51	.953 1.08 1.22	
	.65 .70	1.70 1.68	.289 .319	1.67 1.66	.288 .319	2.2 2.4	1.56 1.58	1.32 1.45	1.52 1.53	1.35 1.48	
	•75 •80 •85	1.67 1.66 1.65	•349 •379 •409	1.64 1.63 1.62	.348 .380 .410	2.6 2.8 3.0	1.59 1.60 1.61	1.57 1.70 1.82	1.54 1.55 1.57	1.61 1.74 1.83	
	.90 .95	1.65 1.64	.439 .470	1.62 1.61	.472	4.0 5.0	1.66 1.70	2.44 3.03	1.61 1.65	2.50 3.07	
	1.0 1.2 1.4	1.64 1.64 1.64	.500 .622 .744	1.61 1.60 1.60	•503 •628 •753	6.0	1.73	3.62	1.69	3.71	
	1.6	1.65	.866	1.61	.878			Aluminu	m		
	1.0 2.0 2.2	1.66 1.67	•987 1.11 1.23	1.61 1.62 1.63	1.13		10 0	Z = 13, I = :	148 ev	0.000005	
	2.4	1.69 1.70	1.35	1.65	1.37	.02 .03 .04	10.1 7.45 6.04	.00112 .00230 .00379	10.9 11.0 8.06 6.118	.00101 .00209 .003b8	
	2.8	1.71 1.72	1.58 1.70	1.67	1.61 1.73	.05	5.14	.00561	5.49	.00517	
	4.0 5.0	1.77 1.82	2.27 2.83	1.73 1.77	2.32 2.89	.06	4.53 4.08	.00767 .0100	4.80 4.30	.00712	
	6.0 8.0	1.85 1.91	3.37 4.43	1.81 1.37	3.45 4.54	.09	3.46 3.24	.0120 .0154 .0183	3.62 3.38	.01/4 .01/4	
						.15 .20 .25 .30 .35	2.56 2.22 2.01 1.88 1.79	.0359 .0570 .0808 .107 .134	2.63 2.26 2.03 1.89 1.78	.0343 .0549 .0783 .104 .131	

TABLE	3.	Energy	loss	and	range	of	electrons	and		
positrons - Continued										

,

TABLE 3.	Energy	loss	and	range	of	electrons	and		
positrons - Continued									

	Alur	uinum - Contin	nued		Silicon - Continued					
	Z m	:13, I = 148	e▼			Z =	14, I = 158	ev		
Energy	-dE ⁻ /dx	R	-dE ⁺ /dx	R ⁺	Energy	-dE /dx	R	-dE ⁺ /dx	R ⁺	
Mev	Mev cm^2/g	g/cm^2	Mev cm ² /g	g/cm^2	Mev	Mev cm ² /g	g/cm^2	Mev cm ² /g	g/cm ²	
.40 .45 .50 .55 .60	1.72 1.67 1.63 1.60 1.58	.162 .192 .222 .253 .285	1.71 1.66 1.61 1.58 1.56	.160 .190 .220 .252 .233	1.6 1.8 2.0 2.2 2.4	1.56 1.57 1.58 1.60 1.61	.917 1.04 1.17 1.30 1.42	1.52 1.53 1.54 1.55 1.56	.931 1.06 1.19 1.32 1.45	
.65 .70 .75 .80 .85	1.56 1.55 1.54 1.53 1.52	.316 .3և9 .381 .և1և .ևև6	1.54 1.52 1.51 1.50 1.49	.316 .348 .381 .415 .448	2.6 2.8 3.0 4.0 5.0	1.62 1.63 1.64 1.69 1.74	1.55 1.67 1.79 2.39 2.97	1.58 1.59 1.60 1.65 1.69	1.58 1.70 1.83 2.44 3.04	
.90 .95	1.52 1.52	.479 .512	1.49 1.48	.482 .515	6.0	1.77	3.54	1.73	3.62	
1.0 1.2 1.4	1.51 1.51 1.51	.545 .678 .810	1.48 1.47 1.48	.549 .685 .820			Sulphur			
1.6	1.52	.942	1.48	. 955		Z	= 16, I = 178	8.7 ev		
1.0 2.0 2.2 2.4	1.55 1.55 1.55 1.57	1.07 1.20 1.33 1.46	1.49 1.50 1.51 1.52	1.09 1.22 1.36 1.49	0.01 .02 .03 .04 .05	16.8 10.0 7.ևկ 6.0կ 5.16	0.000340 .00113 .00231 .00380 .00562	18.8 11.0 8.08 6.50 5.51	0.000298 .00101 .00210 .00348 .00517	
2.8 3.0 4.0 5.0	1.59 1.60 1.65 1.69	1.71 1.84 2.46 3.05	1.54 1.55 1.60 1.64	1.75 1.88 2.52 3.13	.06 .07 .08 .09	4.54 4.09 3.75 3.48	.00767 .0100 .0126 .0153	4.83 4.33 3.95 3.64	.00710 .00930 .0117 .0114	
6.0	1.72	3.64	1.68	3.74	.10	3.26	.0183	3.40	.0172	
		Silicon			.20	2.20 2.24 2.03	.0567	2.05 2.28 2.05	.0545	
	Z =	= 14, I = 158	ev		.30 .35	1.90 1.80	.106 .133	1.90 1.80	.103 .130	
0.01 .02 .03 .04 .05	17.3 10.3 7.61 6.17 5.26	0.000330 .00110 .00226 .00371 .00549	19.3 11.3 8.24 6.63 5.61	0.000330 .000986 .00209 .00340 .00510	.40 .45 .50 .55 .60	1.74 1.69 1.65 1.62 1.60	.161 .190 .220 .251 .282	1.73 1.67 1.63 1.60 1.58	.159 .188 .218 .249 .281	
.06 .07 .08 .09 .10	4.63 4.17 3.82 3.54 3.32	.00751 .00980 .0123 .0150 .0179	4.92 4.41 4.02 3.71 3.46	.00696 .00916 .0115 .0141 .0169	.65 .70 .75 .80	1.58 1.57 1.56 1.55 1.55	.313 .345 .377 .409	1.56 1.54 1.53 1.52 1.51	.313 .345 .377 .410	
.15 .20 .25 .30 .35	2.63 2.27 2.06 1.93 1.83	.0351 .0557 .0789 .104 .131	2.70 2.31 2.08 1.93 1.83	.0335 .0536 .0765 .101 .128	.90 .95 1.0 1.2 1.4	1.54 1.54 1.53 1.53 1.53	. 474 .507 .539 .670	1.51 1.50 1.50 1.49 1.50	.476 .510 .543 .677	
.40 .45 .50 .55 .60	1.79 1.71 1.67 1.64 1.62	. 158 . 187 . 217 . 240 . 277	1.75 1.70 1.66 1.62 1.60	.156 .185 .215 .245 .276	1.6 1.8 2.0 2.2 2.4	1.54 1.56 1.57 1.58 1.59	.930 1.06 1.19 1.31 1.44	1.50 1.51 1.52 1.54 1.55	.944 1.08 1.21 1.34 1.47	
.65 .70 .75 .80 .85	1.60 1.59 1.58 1.57 1.56	.301 .340 .364 .403 .428	1.58 1.56 1.55 1.54 1.53	. 308 . 340 . 372 . 404 . 437	2.6 2.8 3.0 4.0	1.60 1.61 1.62 1.68	1.57 1.69 1.81 2.42	1.56 1.57 1.58 1.63	1.60 1.73 1.85 2.48	
.90 .95 1.0 1.2 1.4	1.56 1.56 1.55 1.55 1.55	.467 .492 .531 .660 .789	1.53 1.52 1.52 1.51 1.52	.470 .502 .535 .667 .799	5.0	1.72	01.5	1.67	3.08	

TABLE 3. Energy loss and range of electrons and positrons - Continued

		Chlorine			- Argon - Continued					
	Z	= 17, I = 189	ev			Z	= 18, I - 19	9 ev		
Energy	-dE /dx	R	-dE ⁺ /dx	R [‡]	Energy	-dE /dx	R	-dE ⁻ /dx	R	
Mev	Mev cm ² /g	g/cm ²	Mev cm ² /g	g/cm^2	Mev	Mev cm ² /g	g/cm ²	Mev cm ² /g	g/cm ²	
0.01 .02 .03 .04 .05	15.9 9.55 7.08 5.75 4.91	0.000360 .00119 .00244 .00400 .00591	17.9 10.5 7.69 6.19 5.25	0.000311 .00104 .00219 .00363 .00542	.40 .45 .50 .55 .60	1.55 1.50 1.47 1.45 1.43	.181 .211, .217 .282 .317	1.54 1.49 1.45 1.43 1.40	.178 .211 .245 .280 .315	
.06 .07 .08 .09 .10	4.33 3.90 3.57 3.31 3.10	.00806 .0105 .0132 .0161 .0192	4.60 4.12 3.76 3.47 3.22	.00743 .00976 .0123 .0151 .0180	.65 .70 .75 .80 .85	1.41 1.40 1.39 1.38 1.38	•352 •387 •1423 •1459 •1496	1.39 1.37 1.36 1.35 1.35	.351 .387 .424 .461 .498	
•15 •20 •25 •30 •35	2.46 2.13 1.94 1.81 1.72	.0376 .0595 .0842 .111 .139	2.53 2.17 1.96 1.82 1.72	.0359 .0572 .0817 .108 .137	.90 .95 1.0 1.2 1.4	1.37 1.37 1.37 1.37 1.37	.532 .569 .605 .751 .897	1.34 1.34 1.34 1.33 1.34	•535 •572 •609 •759 •909	
.1;0 .15 .50 .55 .60	1.66 1.61 1.58 1.55 1.53	.169 .200 .231 .263 .296	1.65 1.60 1.56 1.53 1.50	.166 .197 .229 .261 .294	1.6 1.8 2.0 2.2 2.4	1.38 1.39 1.40 1.41 1.42	1.04 1.19 1.33 1.47 1.61	1.34 1.35 1.36 1.37 1.38	1.06 1.21 1.35 1.50 1.65	
•65 •70 •75 •80 •85	1.51 1.50 1.49 1.48 1.47	.328 .362 .395 .429 .463	1.49 1.47 1.46 1.45 1.44	.328 .361 .396 .430 .465	2.6 2.8 3.0 4.0 5.0	1.43 1.44 1.45 1.50 1.54	1.75 1.89 2.03 2.71 3.37	1.39 1.10 1.11 1.14 1.16 1.50	1.79 1.93 2.08 2.77 3.45	
.90 .95 1.0 1.2	1.47 1.47 1.46 1.46	.497 .565 .702	1.44 1.43 1.43 1.43	.499 .534 .569 .709		Z	Potassium = 19, I = 209	e⊽		
1.6 1.8 2.0 2.2 2.4	1.47 1.48 1.49 1.50 1.51 1.52	.838 .974 1.11 1.24 1.38 1.51	1.43 1.14 1.45 1.46 1.17 1.48	.849 .989 1.13 1.27 1.40 1.54	0.01 .02 .03 .04 .05	15.7 9.47 7.04 5.72 4.89	0.000365 .00120 .00216 .00103 .00595	17.7 10.4 7.65 6.16 5.23	0.000318 .00107 .00222 .00367 .00546	
2.6 2.8 3.0 4.0	1.53 1.54 1.55 1.60	1.64 1.77 1.90 2.53	1.49 1.50 1.51 1.56	1.67 1.81 1.94 2.59	.08 .07 .08 .09 .10	4.31 3.89 3.56 3.30 3.10	.00811 .0106 .0133 .0162 .0193	4.58 4.11 3.75 3.47 2.35	.00749 .00981 .0124 .0151 .0181	
	2.04	Argon 2 = 18, I = 199	9 ev		.15 .20 .25 .30 .35	2.46 2.13 1.94 1.81 1.72	0377 0597 0844 111 140	2.53 2.17 1.96 1.82 1.72	.0358 .0573 .0817 .108 .137	
0.01 .02 .03 .04 .05	14.8 8.87 6.59 5.35 4.57	0.000388 .00128 .00262 .00130 .00635	16.6 9.76 7.16 5.76 4.89	0.000339 .001114 .00237 .00393 .00583	.40 .45 .50 .55 .60	1.66 1.61 1.58 1.55 1.53	.169 .200 .231 .263 .296	1.65 1.60 1.56 1.53 1.51	.166 .197 .229 .261 .294	
.06 .07 .08 .09 .10	4.03 3.63 3.60 3.09 2.89	.00867 .0113 .01141 .0170 .0205	4.28 3.84 3.50 3.24 3.02	.00801 .0105 .0132 .0162 .0194	.65 .70 .75 .80 .85	1.51 1.50 1.49 1.48 1.48	.329 .362 .395 .429 .463	1.49 1.47 1.46 1.45 1.45	• 328 • 361 • 396 • 430 • 464	
.15 .20 .25 .30 .35	2.29 1.99 1.81 1.69 1.61	.0403 .0637 .0903 .119 .149	2.36 2.03 1.83 1.69 1.60	.0384 .0614 .0875 .116 .146	.90 .95 1.0 1.2 1.4	1.47 1.47 1.47 1.47 1.47	.497 .531 .565 .701 .837	1.44 1.44 1.43 1.43 1.43 1.43	. 499 . 534 . 569 . 708 . 848	

TABLE 3. Energy loss and range of electrons and positrons - Continued

	Pot	assium - Cont:	inued		Iron - Continued					
	Z	= 19, I = 209	ev			Z =	26, I = 280	ev		
Energy	-dE ⁻ /dx	R	-dE ⁺ /dx	R ⁺	Energy	-dE ⁻ /dx	R	-dE ⁺ /dx	R ⁺	
Mev	Mev cm ² /g	g/cm ²	Mev cm ² /g	g/cm ²	Mev	Mev cm ² /g	g/cm ²	Mev cm ² /g	g/cm ²	
1.6 1.8 2.0 2.2 2.4	1.48 1.49 1.50 1.51 1.52	•973 1.11 1.24 1.37 1.51	1.44; 1.45 1.46 1.47 1.48	.988 1.13 1.26 1.40 1.54	.06 .07 .08 .09 .10	3.92 3.54 3.25 3.02 2.83	.00898 .0117 .0146 .0178 .0212	4.18 3.76 3.43 3.17 2.96	.00830 .0109 .0136 .0167 .0199	
2.6 2.8 3.0 4.0	1.54 1.55 1.56 1.61	1.64 1.77 1.89 2.39	1.49 1.50 1.51 1.56	1.67 1.80 1.94 2.58	.15 .20 .25 .30 .35	2.25 1.95 1.78 1.66 1.58	.0413 .0653 .0922 .121 .152	2.32 1.99 1.80 1.67 1.58	.0393 .0627 .0893 .118 .149	
		Calcium			.40	1.53	.184	1.52	.181	
	Z = 2	20, I = 220 ev			.45 .50 .55	1.49 1.45 1.43	.218 .252 .286	1.47 1.44 1.44	.215 .249 .284	
0.01 .02 .03 .04 .05	16.0 9.63 7.16 5.82 4.98	0.000360 .00118 .00242 .00396 .00584	18.0 10.6 7.80 6.28 5.33	0.000313 .00105 .00218 .00361 .00536	.60 .65 .70 .75 .80	1.41 1.40 1.39 1.38 1.37	.321 .357 .393 .429 .466 .502	1.39 1.37 1.36 1.35 1.34 1.34	.320 .356 .393 .429 .467 .504	
.06 .07 .08 .09 .10	4.39 3.96 3.63 3.37 3.16	.00797 .0104 .0130 .0159 .0190	4.67 4.19 3.82 3.53 3.30	.00736 .00963 .0121 .0149 .0178	.90 .95 1.0 1.2 1.4	1.36 1.36 1.36 1.36 1.36 1.36	.539 .575 .612 .759 .906	1.33 1.33 1.33 1.32 1.33	.541 .579 .617 .768	
.15 .20 .25 .30 .35	2.50 2.17 1.98 1.85 1.76	.0370 .0585 .0827 .109 .137	2.58 2.21 2.00 1.85 1.75	.0352 .0562 .0801 .106 .134	1.6 1.8 2.0 2.2	1.37 1.38 1.40 1.41	1.05 1.20 1.34 1.48	1.34 1.35 1.36 1.37	1.07 1.22 1.37 1.51	
.40 .45 .50 .55 .60	1.69 1.64 1.61 1.58 1.56	.166 .196 .227 .258 .290	1.68 1.63 1.59 1.56 1.54	.163 .193 .224 .256 .288	2.6 2.8 3.0	1.43 1.44 1.45	1.77 1.91 2.04	1.39 1.40 1.41	1.80 1.95 2.09	
•65 •70 •75	1.54 1.53 1.52	-322 -354 -387	1.52 1.50 1.49	.321 .354 .388		Z	Copper = 29, I = 310	ev		
.80 .85 .90 .95 1.0	1.51 1.51 1.50 1.50 1.50	.420 .453 .486 .520 .533	1.48 1.48 1.47 1.47 1.46	.421 .455 .523 .557	0.01 .02 .03 .04 .05	13.3 8.14 6.09 4.97 4.26	0.000439 .00141 .00287 .00468 .00689	15.2 9.04 6.67 5.39 4.58	0.000376 .00125 .00257 .00423 .00627	
1.6 1.8 2.0	1.50 1.51 1.52 1.53 1.55	.953 1.08 1.22	1.40 1.46 1.47 1.48 1.49 1.50	.094 .831 .967 1.10 1.24	.06 .07 .08 .09 .10	3.77 3.40 3.12 2.90 2.72	.00936 .0122 .0152 .0186 .0221	4.03 3.62 3.30 3.05 2.85	.00859 .0112 .0141 .0173 .0207	
2.4 2.6 2.8 3.0 4.0	1.56 1.57 1.58 1.59 1.64	1.47 1.60 1.73 1.85 2.47	1.49 1.53 1.54 1.55 1.60	1.50 1.64 1.77 1.90 2.53	.15 .20 .25 .30 .35	2.17 1.88 1.72 1.61 1.53	.0430 .0678 .0957 .126 .158	2.24 1.92 1.73 1.61 1.53	.0407 .0650 .0925 .122 .154	
	Z	Iron = 26, I = 280	ev		.40 .45 .50 .55 .60	1.48 1.44 1.41 1.38 1.36	.191 .226 .261 .297 .333	1.47 1.42 1.39 1.36 1.34	.188 .222 .258 .294 .331	
0.01 .02 .03 .04 .05	14.0 8.51 6.36 5.18 4.44	0.000416 .00134 .00274 .00448 .00659	15.9 9.43 6.95 5.37 4.77	0.000358 .00119 .00246 .00409 .00612	.65 .70 .75 .80 .85	1.35 1.34 1.33 1.33 1.32	.370 .407 .444 .482 .520	1.33 1.31 1.31 1.30 1.29	.369 .407 .445 .483 .522	

TABLE 3	3. Energy itrons — C	loss ontin	and ued	range	of	electrons	and

TABLE 3.	Energy	loss	and	range	of	electrons	and
positr	ons — Co	ontin	ued				

	Cop	oper - Continue	ed			Bron	n ine - Continu	led	
	Z =	= 29, I = 310 e	ēν			Z =	35, I = 368 e	v	
Energy	-dE /dx	R	-dE ⁺ /dx	R ⁺	Energy	-dE /dx	R	-dE ⁺ /dx	R ⁺
Mev	Mev cm ² /g	g/cm ²	Mev cm ² /g	g/cm ²	Mev	Mev cm ² /g	g/cm ²	Mev cm ² /g	g/cm ²
.90 .95 1.0 1.2 1.4	1.32 1.32 1.31 1.32 1.32	.558 .596 .634 .786 .938	1.29 1.29 1.28 1.28 1.28	.561 .599 .638 .794 .950	.06 .07 .08 .09 .10	3.50 3.16 2.91 2.70 2.54	.0101 .0132 .0164 .0200 .0238	3.75 3.37 3.08 2.85 2.66	.00926 .0120 .0152 .0185 .0222
1.6 1.8 2.0 2.2 2.4	1.33 1.34 1.35 1.36 1.37	1.09 1.24 1.39 1.53 1.68	1.29 1.30 1.31 1.32 1.33	1.11 1.26 1.41 1.56 1.71	.15 .20 .25 .30 .35	2.02 1.76 1.61 1.50 1.43	.0462 .0728 .103 .135 .169	2.09 1.80 1.62 1.51 1.43	.0437 .0697 .0990 .131 .165
2.6 2.8	1.39 1.40	1.83 1.97	1.34 1.36	1.86 2.01	.40 .45	1.38 1.35	.205 .241 279	1.37 1.33	.201 .238 276
		Zinc			•55 •60	1.30 1.28	• 317 • 356	1.28 1.26	· 314 · 354
	Ζ =	= 30, I = 320	ev		.65	1.27	. 395	1.25	• 394
0.01 .02 .03 .04	13.3 8.13 6.09 4.97	0.000441 .00141 .00288 .00469	15.2 9.03 6.67 5.39	0.000377 .00125 .00257 .00424	.70 .75 .80 .85	1.26 1.25 1.25 1.24	.435 .475 .515 .555	1.23 1.23 1.22 1.21	.434 .475 .516 .5 57
.05 .06 .07 .08 .09	4.26 3.77 3.40 3.12 2.90	.00689 .00937 .0122 .0152 .0186	4.58 4.03 3.62 3.30 3.06	.00627 .00859 .0112 .0141 .0173	.90 .95 1.0 1.2 1.4	1.24 1.24 1.24 1.24 1.24	.595 .636 .676 .838 .999	1.21 1.21 1.21 1.20 1.21	.598 .640 .681 .847 1.01
.10	2.72	.0221	2.85	.0207	1.6 1.8	1.25	1.16 1.32	1.22 1.23	1.18 1.34
.20	1.89 1.72	.0678 .0957	1.92	.0650 .0924		1.21	1.40	1.24	1.50
.30 .35	1.61 1.53	.126 .158	1.61 1.53	.122 .154		z	1 = 42, I = 43	3 ev	
.40 .45 .50 .55 .60	1.48 1.44 1.41 1.38 1.37	.191 .225 .260 .296 .333	1.47 1.42 1.39 1.36 1.34	.188 .222 .258 .294 .331	0.01 .02 .03	11.6 7.20 5.43	0.000513 .00161 .00327 .00528	13.4 8.06 5.98 5.07	0.000432 .00141 .00289
.65 •70	1.35 1.34	.369 .407	1.33 1.32	.368 .406	.05	3.82	.00775	4.13	.00689
•75 •80 •85	1.33 1.33 1.32	.444 .481 .519	1.31 1.30 1.29	.483 .521	.06 .07 .08	3.39 3.07 2.82	.0105 .0136 .0170	3.63 3.27 2.99	.00951 .0124 .0156
•90 •95	1.32 1.32	•557 •595	1.29 1.29	.560 .599	.10	2.62	.0246	2.59	.0228
1.0 1.2 1.4	1.32 1.32 1.32	.633 .785 .936	1.29 1.28 1.29	•637 •793 •949	.15 .20 .25 .30	1.97 1.72 1.56 1.17	.0477 .0750 .106 .139	2.03 1.75 1.58 1.47	.0449 .0716 .102 .135
1.6 1.8	1.33 1.34	1.09 1.24	1.30 1.31	1.10	.35	1.40	.174	1.40	.169
2.0 2.2 2.4	1.36 1.37 1.38	1.38 1.53 1.68	1.32 1.33 1.34	1.41 1.56 1.71	.40 .45 .50	1.35 1.31 1.29	.210 .248 .286	1.34 1.30 1.27	.206 .244 .283
2.6	1.39	1.82	1.35	1.86	.60	1.27	•325 •365	1.25	•363
Bromine					.65 .70	1.24 1.23	.405 .446	1.22 1.21	.404 .445
	7 =	= 35, I = 368 e	€V		.75 .80	1.22 1.22	.486 .527	1.20 1.19	.486 .528
0.01 .02 .03 .04 .05	12.2 7.50 5.63 4.61 3.95	0.000484 .00154 .00313 .00508 .00746	14.0 8.36 6.19 5.01 4.26	0.000353 .00135 .00272 .00457 .00671	.85	1.22	.568	1.19	.570

TABLE	3.	Energy	loss	and	range	of	electrons	and
pos	sitro	ons — Co	ntin	led				

	Molvk	denum - Contir	nued		Tin - Continued						
	Z	: 42, I = 433 e				Ζ =	= 50. I = 508	ev			
Energy	-dE /dx	R	-dE ⁺ /dx	R ⁺	Energy	-dE /dx	R	-dE ⁺ /dx	R ⁺		
Mev .90 .95 1.0 1.2 1.4	Mev cm ² /g 1.21 1.21 1.21 1.21 1.21 1.22	g/cm ² .610 .651 .692 .857 1.02	Mev cm ² /g 1.18 1.18 1.18 1.18 1.18 1.18	g/cm ² .613 .655 .697 .867 1.04	Me v .40 .45 .50 .55 .60	Mev cm ² /g 1.27 1.23 1.21 1.19 1.18	g/cm ² .225 .265 .306 .347 .389	Mev cm ² /g 1.26 1.22 1.19 1.17 1.16	g/cm ² .220 .261 .302 .3111 .387		
1.6	1.23	1.19	1.19	1.20	.65	1.17	.432	1.14	.431		
		Silver Z = h7, I = h8	0 e v		•70 •75 •80 •85	1.10 1.15 1.15 1.14	• 475 • 519 • 562 • 606	1.13 1.12 1.12	.474 .519 .563 .608		
0.01 .02 .03 .04	11.2 6.98 5.27 4.33	0.000535 .00167 .00337 .005144	13.0 7.84 5.83 4.73	0.000447 .00145 .00298 .00487	.90 .95 1.0 1.2	1.14 1.14 1.14 1.14 1.14	.649 .693 .737 .912	1.11 1.11 1.11 1.00	.653 .698 .7143 .923		
.05	3.73	.00798	4.03	.00719	Iodine						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00982 .0128		Z =	= 53, I = 536	eγ			
.08 .09 .10	2.75 2.56 2.40 1.92	.0175 .0212 .0253 .0489	2.92 2.70 2.53 1.99	.0161 .0197 .0235 .0461	0.01 .02 .03 .04	10.3 6.50 4.92 4.05	0.000582 .00180 .00363 .00585	12.1 7.33 5.45 4.43	0.000484 .00156 .00319 .00521		
. 20 . 25 .30 .35	1.68 1.53 1.14 1.37	.0768 .108 .11,2 .178	1.71 1.55 1.կկ 1.37	.0733 .104 .138 .173	.05 .06 .07 .08	3.10 2.80 2.58	.00856 .0116 .0150 .0187	3.78 3.33 3.00 2.74	.00769 .0105 .0137 .0172		
.40 .45	1.32 1.29	.215 .253	1.32 1.28	.210 .249	.09 .10	2.40 2.26	.0228 .0270	2.54 2.38	.0210 .0250		
.50 .55 .60	1.26 1.24 1.23	•292 •332 •372	1.25 1.23 1.21	.289 .329 .370	.15 .20 .25 .30	1.81 1.58 1.44 1.35	.0521 .0818 .115 .151	1.87 1.61 1.46 1.36	.0490 .0780 .111 .146		
.70 .75 .80 .85	1.21 1.20 1.20 1.19	.455 .496 .538 .580	1.12 1.18 1.18 1.17 1.17	.454 .496 .539 .582	.35 .40 .45 .50	1.29 1.25 1.22 1.19	.189 .228 .269 .310	1.29 1.24 1.20 1.18	.184 .224 .265 .307		
•90 •95	1.19	.621	1.16	.625	•55 •60	1.17 1.16	•353 •395	1.16 1.14	•349 •393		
1.0 1.2 1.4	1.19 1.19 1.20	.705 .873 1.04	1.16 1.16 1.16 1.16	.711 .883 1.06	.65 .70 .75	1.15 1.14 1.14	.439 .482 .526	1.13 1.12 1.11	.437 .482 .526		
		Tin			.85	1.13	.615	1.10	.617		
0.01	Z 10.6	= 50, I = 508 0.000568	ev 12.3	0.000473	.90 .95 1.0 1.2	1.13 1.12 1.12 1.13	.659 .703 .748 .926	1.10 1.10 1.10 1.10	.662 .708 .754 .936		
.02 .03	6.63 5.02	.00176	7.46	.00153 .00313			Tungsten				
.04	4.12 3.55	.00573	4.51 3.85	.00512 .00756		Z	= 74, I = 734	ev			
.06 .07 .08 .09 .10	3.15 2.85 2.62 2.44 2.29	.0114 .0147 .0184 .0224 .0265	3.39 3.05 2.79 2.58 2.42	.0103 .0135 .0169 .0206 .0246	0.01 .02 .03 .04 .05	8.94 5.74 4.38 3.62 3.13	0.000690 .00207 .00h15 .00661 .00965	10.6 6.53 4.90 3.99 3.42	0.000559 .00177 .00360 .00584 .00859		
.15 .20 .25 .30 .35	1.84 1.60 1.47 1.37 1.31	.0512 .0805 .113 .148 .186	1.90 1.64 1.48 1.38 1.31	.0483 .0767 .109 .1ևկ .181	.06 .07 .08 .09	2.79 2.53 2.33 2.17 2.05	.0130 .0168 .0209 .0254	3.02 2.72 2.49 2.31 2.16	.0117 .0152 .0190 .0232		

TABLE 3.	Energy	loss	and	range	οf	electrons	and
positr	ons - Co	ontin	ued				

=

	Tung	sten - Continu	ied			Go	ld - Continue	ed.	
	Z =	74. I = 734 e	ŶV			Ζ =	79, I'= 782	ev	
Energy	-dE ⁻ /dx	R	-dE ⁺ /dx	R ⁺	Energy	-dE /dx	- R	-dE ⁺ /dx	R ⁺
Mev	Mev cm ² /g	g/cm ²	Mev cm ² /g	g/cm ²	Mev	Mev cm ² /g	g/cm ²	Mev cm ² /g	g/cm ²
.15 .20 .25 .30 .35	1.65 1.44 1.32 1.24 1.19	.0577 .0902 .127 .166 .207	1.71 1.47 1.34 1.25 1.18	.0541 .0858 .122 .160 .202	.06 .07 .08 .09 .10	2.74 2.49 2.29 2.14 2.01	.0133 .0172 .0213 .0259 .0306	. 2.96 2.67 2.45 2.27 2.13	.0119 .0155 .0194 .0237 .0282
.40 .45 .50 .55 .60	1.15 1.12 1.10 1.08 1.07	.250 .294 .339 .385 .432	1.14 1.11 1.08 1.06 1.05	.245 .289 .335 .382 .429	•15 •20 •25 •30 •35	1.62 1.42 1.30 1.22 1.17	.0587 .0918 .129 .168 .210	1.68 1.45 1.32 1.23 1.17	.0550 .0872 .124 .163 .205
•65 •70 •75 •80 •85	1.06 1.05 1.05 1.04 1.04	.479 .526 .574 .622 .670	1.04 1.03 1.02 1.02 1.02	•477 •525 •574 •623 •672	.40 .45 .50 .55 .60	1.13 1.10 1.08 1.07 1.05	•254 •299 •345 •391 •438	1.12 1.09 1.07 1.05 1.03	. 248 . 294 . 340 . 387 . 435
.90 .95 1.0	1.04 1.04 1.04	.718 .766 .804	1.01 1.01 1.01	.721 .771 .820	.65 .70 .75 .80	1.05 1.04 1.03 1.03	.486 .534 .582 .631	1.02 1.02 1.01 1.01	.484 .533 .582 .632
	7 =	Platinum			.90	1.03	•679 •728	1.00	•002 •732
0.01	8 7]	0 000712		0.000571			Mercury		
.02 .03	5.61 4.29	.00213 .00425	6.40 4.80	.00181 .00367		Z, =	80, I = 792	ev	
.04 .05	3.55 3.07	.00676	3.92 3.35	.00596 .00877	0.01	8.62	0.000721	10.3	0.000580
.06 .07 .08 .09	2.73 2.48 2.29 2.14	.0133 .0172 .0213 .0259	2.96 2.67 2.45 2.27	.0119 .0155 .0194 .0237	.02 .03 .04 .05	5.56 4.26 3.53 3.05	.00215 .00429 .00682 .00995	6.35 4.77 3.89 3.33	.00183 .00371 .00601 .00883
.10 .15 .20 .25 .30	1.62 1.42 1.30 1.22	.0588 .0919 .129 .169	1.68 1.45 1.31 1.23	.0550 .0872 .124 .163	.06 .07 .08 .09 .10	2.72 2.47 2.27 2.12 2.00	.0134 .0173 .0215 .0261 .0309	2.94 2.65 2.43 2.25 2.11	.0120 .0156 .0195 .0238 .0284
.35 .40 .45 .50	1.17 1.13 1.10 1.08	.211 .254 .299 .345 .392	1.17 1.12 1.09 1.07	.205 .249 .294 .340 .388	.15 .20 .25 .30 .35	1.61 1.41 1.29 1.21 1.16	.0592 .0925 .130 .170 .212	1.67 1.44 1.31 1.22 1.16	.0554 .0878 .124 .164 .206
.60 .65 .70 .75	1.05 1.04 1.04 1.03	.439 .487 .535 .583 .631	1.03 1.02 1.01 1.01	.436 .485 .534 .583	.40 .45 .50 .55 .60	1.12 1.09 1.07 1.06 1.05	.256 .301 .347 .394 .441	1.12 1.08 1.06 1.04 1.03	.250 .296 .342 .390 .438
.85	1.03	.680	1.00	.683	.65 .70	1.04 1.03	.489 .538	1.02	.487 .537
.90	1.03	.729	•999	.733	.75 .80	1.03 1.02	•586 •635	1.00 .999	•586 •636
	Z =	Gold 79. I = 782 e	v		.90	1.02	•004	•990 •994	.737
0.01	8.70	0.000714	10.3	0.000575			Lead		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						Z	= 82, I = 8	ll ev	
.05	3.07	.00987	3.36	.00596	0.01 .02 .03 .04 .05	8.48 5.48 4.20 3.48 3.01	0.000735 .00218 .00435 .00692 .0101	10.1 6.26 4.70 3.84 3.29	0.000590 .00185 .00376 .00609 .00895

TABLE 3.	Energy	loss	and	range	of	electrons	and
posit:	rons — Co	ontin	ued				

	Le	ead - Continue	ed				Air - Continu	led	
	Z =	= 82, I = 811	ev			0.755	5 N, 0.232 O,	0.013 A	
Energy	-dE /dx	R	$-dE^{+}/dx$	R ⁺	Energy	-dE /dx	R	-dE ⁺ /dx	R ⁺
Mev	Mev cm ² /g	g/cm ²	Mev cm ² /g	g/cm ²	Mev	Mev cm ² /g	g/cm ²	Mev cm ² /g	g/cm ²
.06 .07 .08 .09 .10	2.68 2.111 2.25 2.10 1.97	.0136 .0175 .0218 .0264 .0313	2.90 2.62 2.40 2.23 2.09	.0122 .0158 .0198 .0242 .0288	.15 .20 .25 .30 .35	2.84 2.45 2.22 2.07 1.97	.0322 .0513 .0728 .0961 .121	2.91 2.49 2.24 2.08 1.96	.0308 .0495 .0707 .0940 .119
.15 .20 .25 .30 .35	1.59 1.39 1.28 1.20 1.15	.0599 .0936 .131 .172 .214	1.65 1.43 1.29 1.21 1.15	.0561 .0889 .126 .166 .209	.40 .45 .50 .55 .60	1.89 1.83 1.79 1.76 1.73	.147 .174 .201 .230 .258	1.88 1.82 1.77 1.74 1.71	.145 .172 .200 .228 .257
.40 .45 .50 .55 .60	1.11 1.08 1.06 1.05 1.04	.259 .305 .351 .399 .44r7	1.10 1.07 1.05 1.03 1.02	•253 •299 •346 •395 •443	.65 .70 .75 .80 .35	1.71 1.70 1.68 1.67 1.67	.287 .317 .346 .376 .406	1.69 1.67 1.65 1.64 1.63	.287 .317 .347 .377 .408
.65 .70 .75 .80	1.03 1.02 1.02 1.01	.495 .544 .593 .642	1.01 .998 .393 .988	.493 .543 .593 .643	.90 .95 1.0 1.2 1.4	1.66 1.65 1.65 1.65 1.65	.436 .466 .497 .618 .739	1.63 1.62 1.61 1.61	.438 .469 .498 .624 .747
	Z =	Uranium 92, I = 907 e	ν		1.6 1.8 2.0 2.2	1.66 1.67 1.68 1.69	.860 .981 1.10 1.22	1.62 1.62 1.63 1.64	.872 .994 1.12 1.24
0.01 .02 .03 .04 .05	7.93 5.17 3.98 3.30 2.86	0.000795 .00233 .00463 .00733 .0107	9.51 5.93 4.47 3.65 3.13	0.000631 .00196 .00398 .00642 .00943	2.6 2.8 3.0 4.0	1.71 1.72 1.73 1.78	1.46 1.57 1.69 2.26	1.67 1.68 1.69 1.74	1.48 1.60 1.72 2.31
.06 .07 .08 .09 .10	2.55 2.32 2.14 2.00 1.88	.0143 .0185 .0229 .0278 .0329	2.77 2.50 2.29 2.13 1.99	.0128 .0166 .0208 .0254 .0302	5.0 6.0 8.0	1.82 1.86 1.92	2.81 3.35 4.41	1.78 1.81 1.87	2.87 3.43 4.52
.15 .20	1.52 1.33	.0629 .0982	1.58 1.36	.0588 .0931			Water H ₂ O		
.20 .30 .35 .40 .45	1.15 1.10 1.06 1.04	.180 .224 .271 .318	1.15 1.10 1.06 1.03	.174 .218 .265 .313	0.01 .02 .03 .04 .05	23.1 13.5 9.85 7.93 6.73	0.000241 .000824 .00171 .00285 .00423	25.4 14.6 10.6 8.44 7.12	0.000217 .000754 .00158 .00264 .00394
•55 •60	1.00 .994	.416 .466	.988 .976	.412 .463	.06 .07	5.90 5.30	.00581 .00761	6.22 5.56 5.06	.00545 .00716 .00904
.65 .70 .75	•986 •980 •976	.517 .568 .619	•966 •959 •953	.514 .566 .619	.09 .10	4.48 4.19	.0117 .0140	4.66 4.34	.0111 .0133
.80	•973	.670 Air	•949	.671	.15 .20	3.29 2.84 2.57	.0277 .0442 .0628	3.37 2.88 2.59	.0266 .0427 .0611
	0.755	N, 0.232 0, 0	.013 A		.30 .35	2.39 2.27	.0830 .105	2.40 2.26	.0812 .103
0.01 .02 .03 .04 .05	19.5 11.5 8.41 6.79 5.77	0.000286 .000974 .00202 .00334 .00496	21.6 12.4 9.05 7.24 6.12	0.000256 .000886 .00185 .00309 .00460	.40 .45 .50 .55 .60	2.18 2.11 2.06 2.02 1.99	.127 .150 .174 .199 .224	2.17 2.10 2.04 2.00 1.97	.125 .149 .173 .198 .223
.06 .07 .08 .09 .10	5.07 4.56 4.17 3.86 3.60	.00680 .00890 .0112 .0137 .0164	5.35 4.79 4.36 4.02 3.75	.00635 .00834 .0105 .0129 .0155	•65 •70 •75 •80 •85	1.97 1.95 1.94 1.92 1.91	.249 .274 .300 .326 .352	1.94 1.92 1.90 1.89 1.88	. 248 . 274 . 301 . 327 . 354

TABLE 3. Energy loss and range of electrons and positrons - Continued

TABLE 3.	Energy	loss	and	range	of	electrons	and
positro	ons — Co	ontinu	led				

	Wat	ter - Continued	1			Carbo	n Monoxide - O	Continued	
		H20					CO		
Energy	-dE /dx	R	-dE ⁺ /dx	R ⁺	Energy	-dE ⁻ /dx	· R	$-dE^+/dx$	R ⁺
Mev	Mev cm ² /g	g/cm ²	Mev cm ² /g	g/cm ²	Mev	Mev cm ² /g	g/cm ²	Mev cm ² /g	g/cm ²
.90 .95 1.0	1.91 1.90 1.90	.378 .405 .431	1.87 1.86 1.86	.380 .407 .434	6.0 8.0	1.87 1.93	3.34 4.39	1.82 1.88	3.41 4.49
1.2 1.4	1.89 1.89	.537 .643	1.85 1.85	.542 .650			Carbon Dioxid	e	
1.6 1.8	1.90 1.91	.748 .853	1.85 1.86	.758 .866		10.6	0.000287	07 (0.000256
2.0 2.2 2.4	1.92 1.93 1.94	.958 1.06 1.17	1.87 1.88 1.89	.973 1.08 1.19	.02 .03 .04	19.8 11.5 8.42 6.80	.000287 .000972 .00202 .00334	21.6 12.5 9.06 7.26	.000256 .000885 .00185 .00308
2.6 2.8	1.96	1.27 1.37	1.91	1.29 1.40	.05	5.70	.00495	0.13 F 34	.00400
3.0 4.0 5.0	1.98 2.04 2.08	1.47 1.97 2.45	1.93 1.98 2.03	1.50 2.01 2.51	.07 .08 .09	4.56 4.17 3.86	.00879 .00888 .0112 .0137	4.79 4.37 4.03	.00833 .0105 .0129
6.0 8.0	2.12 2.19	2.93 3.86	2.07	3.00 3.95	.10	3.61 2.84	.0163	3.75	.0155
	Ca	arbon Monoxide			.20 .25	2.46	.0512 .0727	2.50	.0494 .0706
		CO			.30 .35	2.07 1.97	.0960 .121	2.08 1.97	.0938 .119
0.01	19.7	0.000284	21.8	0.000254	.40 .45	1.89 1.8h	.147	1.88	.145
.03 .04	8.48 6.84	.00200	9.12 7.30	.00184 .00306	.50 .55	1.79 1.76	.201	1.78 1.74	.199
.05	5.81	.00491	6.17	.00457	.60	1.73	.258	1.71	.257
.08	5.11 4.59 h.19	.00882	5.39 4.82	.00630 .00827	.05 .70 .75	1.70 1.69	.287 .316 316	1.67 1.66	.286 .316 346
.09	3.88 3.63	.0136	4.05 3.77	.0104 .0128 .0154	.80	1.68 1.67	.376 .405	1.64 1.64	.376 .407
.15	2.86	.0320	2.93	.0306	.90	1.66	.435	1.63	.438
.25	2.24 2.24 2.08	.0509 .0723	2.26	.0492 .0703	•95 1.0 1.2	1.65 1.65	.400 .496 .617	1.62	.400 .499 .623
.35	1.98	.120	1.98	.118	1.4	1.65	.738	1.61	.747
.40 .45	1.90 1.84	.146 .173	1.89 1.83	.144 .171	1.6 1.8	1.66 1.67	.859 .979	1.62 1.63	.871 .995
•55 •60	1.77 1.74	.200 .228 257	1.78 1.75 1.72	·198 ·227	2.2	1.60 1.69 1.70	1.10	1.64 1.65 1.66	1.12 1.24 1.36
.65	1.72	.285	1.70	.285	2.6	1.71	1.45	1.67	1.48
.70 •75	1.71 1.69	.315 .344	1.68 1.66	.315 .344	2.8 3.0	1.72 1.73	1.57 1.69	1.68 1.69	1.60 1.72
.85	1.68	. 374 . 403	1.64	•375 •405	5.0	1.83	2.25 2.81	1.74	2.87
.90 .95	1.67 1.66	.433 .463	1.64 1.63	.435 .466	6.0 8.0	1.86 1.92	3.35 4.40	1.82 1.88	3.43 4.51
1.2 1.4	1.66 1.66	.493 .614 .735	1.63 1.62 1.62	. 497 . 620 . 7)/h		S	ilver Bromide		
1.6	1.66	.855	1:62	.867			Ag Br		
1.8 2.0	1.67	.975 1.09	1.63 1.64	.990 1.11	0.01	11.6 7.20	0.000512 .00161	13.4 8.07	0.000400
2.4	1.71	1.21 1.33	1.65	1.23 1.35	.03 .04	5.43 4.45 3.82	.00326 .00528	5.98 4.85 4.13	.00286 .00474 .00697
2.6 2.8	1.72 1.73	1.45 1.56	1.67 1.68	1.47	.06	3.39	.0105	3.63	.00957
3.0 4.0	1.74	1.68	1.70 1.74	1.71 2.29	.07 .08	3.06 2.82	.0136 .0170	3.27	.0125 .0157
9.0	ر0∙⊤	2.80	1.79	2.86	.10	2.02	.0207 .0246	2.77 2.59	.0192 .0229

TABLE 3.	Energy	loss	and	range	of	electrons	and
positr	ons - Co	ontinu	led				

TABLE 3.	Energy	loss	and	range	of	electrons	and
positr	ons — Co	ontinu	ued				

	Silver	Bromide - Con	tinued				Sodium Todide		
		Ag Br					NaI		
Energy	-dE ⁻ /dx	R-	$-dE^+/dx$	R+	Energy	-dE ⁻ /dx	R	-dE ⁺ /dx	R ⁺
Mev	Nev cm ² /g	g/cm ²	Mev cm ² /g	g/cm ²	Mev	Mev cm ² /g	g/cm ²	Mev cm ² /g	g/cm ²
.15 .20 .25 .30 .35	1.97 1.71 1.56 1.47 1.40	.0477 .0750 .106 .139 .174	2.03 1.75 1.58 1.47 1.40	.0450 .0717 .102 .135 .170	0.01 .02 .03 .04 .05	11.6 7.15 5.38 4.41 3.79	0.000513 .00162 .00328 .00532 .00781	13.3 8.00 5.93 4.80 4.09	0.000433 .00142 .00292 .00478 .00707
.40 .45 .50 .55 .60	1.35 1.31 1.29 1.27 1.25	.210 .248 .286 .325 .365	1.34 1.30 1.27 1.25 1.23	.206 .244 .283 .323 .363	.06 .07 .08 .09 .10	3.35 3.03 2.79 2.59 2.43	.0106 .0138 .0172 .0243 .0249	3.60 3.23 2.96 2.74 2.56	.00966 .0126 .0158 .0194 .0231
.65 .70 .75 .80 .85	1.24 1.23 1.22 1.22 1.21	. Ц05 . ЦЦ6 . Ц87 . 528 . 569	1.22 1.21 1.20 1.19 1.19	.404 .445 .487 .529 .571	.15 .20 .25 .30 .35	1.95 1.69 1.55 1.45 1.38	.0482 .0759 .107 .140 .176	2.01 1.73 1.56 1.45 1.38	.0455 .0725 .103 .136 .172
.90 .95 1.0 1.2 1.4	1.21 1.21 1.21 1.21 1.21	.610 .651 .693 .858 1.02	1.18 1.18 1.18 1.18 1.18	.613 .6~5 .698 .868 1.04	.40 .45 .50 .55 .60	1.33 1.30 1.27 1.25 1.23	.213 .251 .290 .329 .370	1.32 1.29 1.26 1.23 1.21	.209 .247 .286 .327 .368
1.6 1.8 2.0	1.23 1.24 1.25	1.19 1.35 1.51	1.19 1.20 1.21	1.2 1 1.37 1.54	.65 .70 .75	1.22 1.21 1.21	.410 .451 .493	1.20 1.19 1.18	.409 .451 .493
	Dr	y Ilford Emuls	sion		.85	1.20	.576	1.10	•578
.01	I, .45 Ag, .	33 Br, .07 O,	.02 N, .09 C,	.03 H	.90 .95	1.20	.618 .660	1.17 1.17	.621 .664
0.01 .02 .03 .04	14.3 8.66 6.46 5.26	0.000407 .00132 .00270 .00440	16.2 9.58 7.05 5.69	0.000334 .00117 .00240 .00400	1.0	1.19	.869 Styrene	1.10	.879
.05	4.50	.00649	4.83	.00591			с ₈ н ₈		
.06 .07 .08 .09 .10	3.97 3.59 3.29 3.05 2.86	.00884 .0115 .0144 .0176 .0210	4.24 3.80 3.47 3.21 3.00	.00813 .0106 .0134 .0164 .0164	0.01 .02 .03 .04	23.0 13.3 9.74 7.84	0.000242 .000831 .00173 .00288	25.2 14.4 10.4 8.32	0.000218 .000762 .00160 .00267
.15 .20 .25 .30 .35	2.28 1.98 1.80 1.68 1.60	.0408 .0645 .0911 .120 .150	2.35 2.01 1.82 1.69 1.60	.0387 .0619 .0881 .117 .147	.05 .06 .07 .08 .09	5.82 5.23 4.77 4.42	.00428 .00588 .00771 .00970 .0119	7.02 6.13 5.48 4.98 4.59	.00399 .00552 .00725 .00916 .0113
.40 .45 .50 .55 .60	1.54 1.50 1.47 1.44 1.42	.182 .215 .249 .283 .318	1.53 1.49 1.45 1.42 1.40	.179 .212 .246 .281 .317	.10 .15 .20 .25	4.13 3.24 2.79 2.53 2.35	.0142 .0281 .0448 .0637 .0843	4.28 3.32 2.84 2.55 2.36	.0135 .0270 .0434 .0620
.65 .70 .75 .80 .85	1.41 1.40 1.39 1.38 1.38	.353 .389 .425 .461 .497	1.39 1.37 1.36 1.35 1.35	•352 •389 •425 •462 •499	.40 .45 .50	2.23 2.14 2.08 2.03	.106 .129 .153 .177	2.23 2.13 2.06 2.01	.104 .127 .151 .176
.90 .95 1.0 1.2 1.4	1.37 1.37 1.37 1.37 1.38	. 534 .570 .607 .753 .898	1.34 1.34 1.34 1.33 1.34	.536 .574 .611 .761 .910	.65 .60 .70 .75	1.99 1.96 1.93 1.92 1.90	.202 .227 .253 .279 .305	1.97 1.93 1.91 1.89 1.87	.201 .227 .253 .279 .306
1.6 1.8 2.0	1.38 1.39	1.04 1.19 1.33	1.34 1.36	1.06 1.21	.80 .85	1.88	• 332 • 358	1.84	•333 •359

TABLE 3. Energy loss and range of electrons and positrons - Continued

	Styr	ene - Contin	ued	
		C ₈ H ₈		
Energy	-dE /dx	R	-dE ⁺ /dx	R^+
Mev	Mev cm ² /g	g/cm	Mev cm ² /g	g/cm ²
.90	1.87	.385	1.84	• 387
.95	1.87	.412	1.83	• 414
1.0	1.86	.439	1.82	• 441
1.2	1.85	.546	1.81	• 552
1.4	1.85	.654	1.81	• 662
1.6	1.86	.762	1.82	.772
1.8	1.87	.869	1.83	.882
2.0	1.88	.976	1.84	.991
2.2	1.89	1.08	1.85	1.10
2.4	1.90	1.19	1.86	1.21
2.6	1.92	1.29	1.87	1.32
2.8	1.93	1.40	1.88	1.42
3.0	1.94	1.50	1.89	1.53
4.0	1.99	2.01	1.94	2.05
5.0	2.04	2.50	1.99	2.56
6.0	2.08	2.99	2.03	3.06
8.0	2.14	3.94	2.09	4.03
10.0	2.20	4.86	2.14	4.97

TABLE 4. Table of ln Z and Z/A.^a

Z	lnZ	Z/A	Z	lnZ	Z/A	
1	0.0000	0.99206	37	3.6109	.43285	
2	.6932	.49963	38	3.6376	.43364	
3	1.0986	.43228	39	3.6636	.43860	
4	1.3863	.44380	40	3.6889	.43850	
5	1.6094	.46211	41	3.7136	0.44129	
6	1.7918	.49954	42	3.7377	.43773	
7	1.9459	.49971	43	3.7612	.43434	
8	2.0794	.50000	44	3.7842	.43521	
9	2.1972	.47368	45	3.8067	.43728	
10	2.3026	.49547	46	3.8286	.43112	
11	2.3979	.47845	47	3.8502	.43567	
12	2.4849	.49342	48	3.8712	.42701	
13	2.5650	.48184	49	3.8918	.42698	
14	2.6391	.49840	50	3.9120	.42123	
15	2.7081	.48426	51	3.9318	.41886	
16	2.7726	.49897	52	3.9512	.40749	
17	2.8332	.47945	53	3.9703	.41762	
18	2.8904	.45063	54	3.9890	.41127	
19	2.9444	.48593	55	4.0073	.41381	
20	2.9957	.49900	56	4.0254	.40769	
21	3.0445	.46708	57	4.0431	.41031	
22	3.0910	.45929	72	4.2767	.40314	
2 3	3.1355	.45142	73	4.2905	.4034 3	
24	3.1781	.46145	74	4.3041	.40235	
25	3.2189	.45504	75	4.3175	.40255	
26	3.2581	.46553	76	4.3307	.39958	
27	3.2958	.45809	77	4.3438	.40062	
28	3.3322	.47708	78	4.3567	.39953	
29	3.3673	.45641	79	4.3695	.40102	
30	3.4012	.45886	80	4.3820	.39878	
31	3.4340	.44464	81	4.3945	.39630	
32	3.4657	.44077	82	4.4067	.39573	
33	3.4965	.44053	83	4.4188	.39713	
34	3.5264	.43060	84	4.4308	.40000	
35	3.5554	.43796	85	4.4427	.40284	
36	3.5835	.42959	86	4.4544	.37739	

TABLE 4. Table of $\ln Z$ and Z/A.^a - Continued

1

 1.01		14010	01 1		<i>ω/ κ</i> .	- oonornueu	_
Z	lnZ	Z/	'A	Z	lnZ	Z/A	
8 7 88	4.4659 4.4773	•3 •3	901 3 3929	89 92	4.4886 4.5218	.39207 .38644	

^a Compiled from William F. Meggers' Key to a periodic chart of the atoms No. 4858, W. M. Welsh Manufacturing Company, Chicago, Illinois, 1954.

TABLE	5.	Energy	dependent	component	of	the
sto	oppir	ig numbe	er.			

 Energy	B _o	₿ ₀ +	β^{2}^{a}	
 Mev				
0.01 .02 .03 .04	14.0946 15.4552 16.2431 16.7977	15.1074 16.4057 17.1348 17.6338	0.038025 .073924 .107847 .139943	
.05 .06 .07 .08	17.2252 17.5729 17.3658 18.1191	18.0088 18.3070 18.5531 18.7621	. 170330 . 199148 . 22646 . 25244	
.09 .10 .15 .20	18.3425 18.5421 19.3150 19.3737	18.9433 19.1031 19.7042 20.1272	.27708 .300589 .40231 .483512	
. 25 .30 .35 .40	20.3181 20.6911 21.0149 21.3026	20.4628 20.7472 20.9979 21.2244	.549155 .603045 .647816 .685418	
•45 •50 •55 •56	21.5626 21.3001 22.0194 22.2231	21.4327 21.6261 21.8072 21.9780	.717307 .744579 .768077 .788491	
•65 •70 •75 •80	22.4135 22.5925 22.7612 22.9223	22.1394 22.2931 22.4393 22.579 3	.806314 .821978 .835816 .848112	
.85 .90 .95 1.0	23 . 07 24 23 . 2177 23 . 3556 23 . 4879	22.7130 22.8416 22.9650 23.0841	.859069 .868866 .877688 .885650	**
1.2 1.4 1.6 1.8	23.9655 24.3790 24.7434 25.0691	23.5194 23.9023 24.2437 24.5516	.910822 .928525 .941424 .95111 3	
2.0 2.2 2.4 2.6	25.3635 25.6322 25.8791 26.1074	24.8317 25.0888 25.3260 25.5463	.958598 .964481 .969201 .973024	
2.8 3.0 4.0 5.0	26.3198 26.5185 27.3535 28.0073	25.7518 25.9444 26.7587 27.4002	•976184 •978833 •987131 •991399	
6.0 8.0 10.0	28.5445 29.3959 30.0589	27.9293 28.7704 29.4278	•993849 •996403 •997641	

^a Derived from Tables for the analysis of Beta spectra, NES Applied mathematics series -13, June 2, 1952.

TABLE	6.	Comparison	of	calculated	and	experimental	energy
los	s of	f electrons					

	Z	(-dE ⁻ /dx) x 10 ²⁴		Corrections	
Energy		Measured ^a	Calculated	Radiative	Density
Mev		Mev/el/cm ²	Mev/el/cm ²		
	Be	5.44 ±0.25	5.94	0.06	0
	С	5.09 ± .26	5.81	.08	0.64
2.8 ±3% ≺	H20	5.48 ± .30	5.88	.14	.25
	Fe	5.09 ± .36	5.14	.36	.11
	Pb	5.52 ± .42	4.58	1.15	.04
4.7 ±3%≺	Be	6.46 ± .44	6.23	.11	0
	с	6.28 ± .53	6.11	.17	.75
	H20	7.27 ± .61	6.20	. 28	.40
	Fe	6.92 ± .66	5.35	.72	. 20
	Ρb	8.55 ± .91	4.91	2.21	.08

^a W. Paul and H. Reich, Z. Phys. <u>127</u>, 429 (1950).

TABLE 7. Comparison of calculated and experimental range of electrons

F	Range O ⁰ , 760 mm Hg					
DUGLEA	Measured ^a	Calculated				
Oxygen						
Kev	cm	cm				
16.91 19.59 22.13	0.19 .67 .87	0.489 .661 .819				
Nitrogen						
19.7 22.24	0.77 1.01	0.976 1.18				
Argon						
17.22 19.76 27.19	0.48 .65 1.20	0.544 .701 1.22				
	Air					
21.7 24.6 30.3 42.6	1.1 1.5 0.8 1.58	0.870 1.09 1.58 2.89				

a O. Klemperer, Einführung in die Electronik, S. 272 (Berlin, 1933).

Tanbo of offortions in dif				
Fronza	Range 0°, 760 mm Hg			
Life i gy	Measured ^a	Calculated		
Kev	cm	cm		
10	0.193	.219		
12	.261	.302		
15	.391	.452		
20	.701	.758		
25	1.12	1.12		

TABLE 8. Comparison of calculated and experimental range of electrons in air

^a E. Buchmann, Ann. Phys., <u>87</u>, 509 (1928).

- Mather-Segrè, [see reference 11].
- O Aron, UCRL-1325 (1951) unpublished.
- Δ Caldwell, see reference 12].

FIGURE 3. Qualitative diagram regarding range calculation.

FIGURE 2. Density effect correction. (R.M. Sternheimer, 1953).

FIGURE 4. Energy loss of electrons and positrons.

27

FIGURE 6. Range of electrons and positrons in Al.

FIGURE 8. Electron-positron difference in energy loss.

29

FIGURE 9. Comparison of calculated and experimental range of electrons in ${\rm H}_2.$

FIGURE 10. Comparison of calculated and experimental range of electrons in He.

WASHINGTON, January 26, 1956.

PERIODICALS OF THE NATIONAL BUREAU OF STANDARDS

(Published monthly)

The National Bureau of Standards is engaged in fundamental and applied research in physics, chemistry, mathematics, and engineering. Projects are conducted in fifteen fields: electricity and electronics, optics and metrology, heat and power, atomic and radiation physics, chemistry, mechanics, organic and fibrous materials, metallurgy, mineral products, building technology, applied mathematics, data processing systems, cryogenic engineering, radio propagation, and radio standards. The Bureau has custody of the national standards of measurement and conducts research leading to the improvement of scientific and engineering standards and of techniques and methods of measurement. Testing methods and instruments are developed; physical constants and properties of materials are determined; and technical processes are investigated.

Journal of Research

The Journal presents research papers by authorities in the specialized fields of physics, mathematics, chemistry, and engineering. Complete details of the work are presented, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Annual subscription: domestic, \$4.00; \$1.25 additional for foreign mailing.

Technical News Bulletin

Summaries of current research at the National Bureau of Standards are published each month in the Technical News Bulletin. The articles are brief, with emphasis on the results of research, chosen on the basis of their scientific or technologic importance. Lists of all Bureau publications during the preceding month are given, including Research Papers, Handbooks, Applied Mathematics Series, Building Materials and Structures Reports, Miscellaneous Publications, and Circulars. Each issue contains 12 or more two-column pages; illustrated. Annual subscription: domestic, \$1.00; 35 cents additional for foreign mailing.

Basic Radio Propagation Predictions

The Predictions provide the information necessary for calculating the best frequencies for communication between any two points in the world at any time during the given month. The data are important to all users of long-range radio communications and navigation, including broadcasting, airline, steamship, and wireless services, as well as to investigators of radio propagation and ionosphere. Each issue, covering a period of one month, is released three months in advance and contains 16 large pages, including pertinent charts, drawings, and tables. Annual subscription: domestic, \$1.00; 25 cents additional for foreign mailing.

CATALOG OF NBS PUBLICATIONS

National Bureau of Standards Circular 460 and its Supplement list all Bureau publications from 1901 through June 1952, including Applied Mathematics Series, Building Materials and Structures Reports, Circulars, Handbooks, Research Papers, and Miscellaneous Publications. Brief abstracts for the publications issued after January 1, 1942, are also included.

National Bureau of Standards Circular 460, 375 pages, \$1.25. Supplement to Circular 460, 223 pages, 75 cents. (A free mimeographed list of publications issued since June 1952 is available on request to the National Bureau of Standards.)

SUPPLEMENT TO NBS CIRCULAR 577

Energy Loss and Range of Electrons and Positrons

UNITED STATES DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other Government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers. These papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.25) and its Supplement (\$1.50), available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.

Energy Loss and Range of Electrons and Positrons

Ann T. Nelms

Supplement to National Bureau of Standards Circular 577

Issued July 30, 1958

For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Price 30 cents

Contents

	rage
1. Introduction	 1
2. References	 2
Figures	 3
Tables	 5

Ann T. Nelms

Tabulations of the mean energy loss due to ionization and excitation which include the density effect and the range derived from this quantity are given for electrons and positrons in several materials.

1. INTRODUCTION

The material in this publication extends the data in NBS Circular 577 [1]¹ by including the effect of the polarization of the medium (density effect) on the mean energy loss and range of incident electrons and positrons. The characteristics of the material are reflected in this correction through values of the density ρ and the mean excitation energy I. Due to the uncertainty in the values of I to be used, data are presented based on two alternative sets of values, namely the Bakker-Segre [2] and the Caldwell [3] values.

Sternheimer [4, 5] has derived a theoretical approximation for the density effect that contains parameters based on either set of I values. Figures 1 to 4 show the correction δ to the stopping number B_0^{\pm} (reference 1, eq (12) for electrons and eq (13) for positrons) for several materials. The expression for the mean energy loss now becomes

 $\left(-\frac{dE}{dx}\right)^{\pm} = 2C \frac{mc^2}{\beta^2} \left\{ B_0^{\pm} - 2(l_n Z_+ l_n \frac{I/10}{Z}) - \delta \right\}, (1)$

where the notation is the same as in reference 1. The data in these figures were calculated from reference 5^2 , eq (13), which is based on Caldwell's evaluation of I. The low energy region of each curve is the least accurate; however, the contribution to the energy loss is small, less than 1 percent, in this region. In the energy range of these figures the density effect is negligible for gases.

The correction given in fig. 1 to $\frac{1}{4}$ along with Caldwell's values of I has been entered in eq (11) and (15) of reference 1 to revise the tabulation of the mean energy loss and "RSP" range for electrons

- 1 Figures in brackets indicate literature references at end of this paper.
- 2 The density for carbon quoted in this reference ($\rho = 1.58 \text{ g/cc}$) appeared to be too low. R. M. Sternheimer has informed the author that this value should be 1.66 g/cc; he expects to include this correction in a forthcoming publication. Data derived from $\rho = 1.66 \text{ g/cc}$ were used in the present Circular.

and positrons. These results appear in table 1. The maximum energy for each material lies in the region in which bremsstrahlung absorption would contribute an additional 5 percent energy loss.

The difference in the range with and without the density effect is tabulated in tables 2 and 3 from the expression

$$\Delta R = \int_{0}^{E} dE' \frac{\delta}{BS} ,$$

where B is the stopping number reference 1, eq (8) and S is the mean energy loss.

Sternheimer's $\begin{bmatrix} 4 \end{bmatrix}$ 1952 correction δ that is based on Bakker-Segre I values appears in table 4 for selected materials. The data can be utilized to improve the tabulations in reference 1. The corresponding electron range data for these materials are given in table 5.

The additional calculation of ranges with the two sets of I data affords an estimate of the accuracy of table 1 in reference 1. From the data given here the following expression was evaluated:

$$\frac{R_{C} - R_{B-S}}{R_{C}} \cdot \frac{I_{C}}{I_{C} - I_{B-S}}$$

This expression may be compared with the estimate based on table 1 of reference 1 namely dlog R/dlog I. The general agreement was within 10 percent even though the percent departures $(I_C - I_{B-S})/I_C$ were by no means small.

2. **REFERENCES**

- A. T. Nelms, "Energy Loss and Range of Electrons and Positrons" NBS Circular 577 (1956).
- 2 C. J. Bakker and E. Segre, Phys. Rev. <u>81</u>, 489 (1951).
- 3 D. O. Caldwell, Phys. Rev. <u>100</u>, 291 (1955).
- 4 R. M. Sternheimer, Phys. Rev. <u>88</u>, 851 (1952); <u>91</u>, 256 (1953).
- 5 R. M. Sternheimer, Phys. Rev. 103, 511 (1956).

FIGURE 1. The density correction δ_{C} to the stopping number for energy ≤ 1 Mev. 1, Beryllium; 2, graphite; 3, lithium; 4, aluminum; 5, iron; 6 magnesium; 7, copper; 8, tin; 9, silver.

FIGURE 2. The density correction $\delta_{\rm C}$ to the stopping number for energy \leq 10 Mev.

1, Beryllium:, 2, lithium; 3, graphite; 4, aluminum; 5, iron; 6, magnesium; 7, copper; 8, silver; 9, tungsten; 10, gold; 11, tin; 12, uranium; 13, lead.

FIGURE 4. The density effect correction $\delta_{\rm C}$ to the stopping number for energy \leq 10 Mev.

1, Polyethylene; 2, anthracene, 3, stilbene; 4, polystyrene; 5, lucite; 6, xylene; 7, toluene; 8, water; 9, emulsion; 10, silver chloride; 11, silver bromide; 12, sodium iodide; 13, lithium iodide.

			*œ	g/cm ²	0,000223 000783 00165	.00276 .00413	0110 0120 0120 0120 0110	0280 0151 0615 0858 109	133 158 183 209 236	264 291 319 317 375	1,01 1,32 161 576 692	. 807 . 923 1. 15 1. 15 1. 26	4440 6466 8460 8760 8760 8760 8760 8760 8760 8760 87	3.21 1.23 5.22
			-dE ⁺ /dx	Mev cm ² /g	24.5 13.9 10.1	10°8	2220881 5520881 5520881 5720800000000000000000000000000000000000	2.2.2.2.2 2.13 2.13 2.13 2.13 2.13 2.13	00 00 00 00 00 00 00 00 00 00 00 00 00	1.82 1.82 1.77 1.77	1-75 1-75 1-73 1-73 1-73	1,773 1,775 1,775 1,775 1,775 1,775	1,478 1,679 1,685 1,885 995	1,93 1,99 2,03
crection)	Helium	= 2, I = lili.1 ev	R-	g/cm ²	0.000246 000851 00178	00296 00441	000607 001796 01100 01123 0117	.0308 .0466 .0677 .0877 .112	.131 161 2185 212 237	.266 .291 .320 .316 .376	. 102 1,32 1,53 6,57 1,57 6,81 1,02 6,81 1,02 1,02 1,02 1,02 1,02 1,02 1,02 1,0	•797 •909 1•02 1•13 1•24	2.53 2.17 2.17 2.53 2.17 2.63	مالد. مالد. م
luding density cor		2	-dE-/dx	Mev cm ² /g	22.h 13.0 9.hh	7.58 6.112	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.000 0.000000	11-90 11-90 1-90 1-87	900234 8888 889234 88934	1,77 1,78 1,77 1,77	1,77 1,78 1,78 1,80	500000 000000 000000 00000000000000000	1,97 2,03 2,08
and positrons (inc			Energy	Mev	0°01	05	00 00 10 00 00 00 00 00 00 00 00	220 2020 2020	60%05%0	8897 897 897	, , , , , , , , , , , , , , , , , , ,	00000 00000 0000	ల ల ల ల ల ల ల ల ల ల ల ల ల ల ల ల ల	6,0 8,0 10,0
range of electrons			R+	g/cm ²	0,0000918 0000318 000731	00186	•00257 •00339 •00129 •00528 •00538	.0127 .0206 .0393 .0198	•0608 •0723 •0963 •109	.121 .134 .147 .160 .173	.186 200 266 320	。374 128 5535 888 888	.601 .693 .715 1.25	1.50 2.15 2.15
Energy loss and			-dE ⁺ /dx	Mev cm ² /g	55. 31.2 22.1 22.1	15.0	13.0 11.6 9.71 9.71 0.3	6,98 ,98 ,922 ,928 ,928 ,928 ,928 ,928 ,9	L. L		3,78 3,76 3,776 3,778 1,728 1,	3.72 3.74 3.74 .78 .78	1.033 1.033	L. 09 L. 20
TABLE 1.	Hydrogen	Z = 1, I = 19,0 ev	' 😅	g/cm ²	0.000106 .000371 .000785	26100°	•00272 •00151 •00151 •00551	0132 0212 0100 01000	0615 0730 0847 0968 109	.121 .131 .117 .160 .172	.185 .198 .212 .317	. 370 . 475 . 572 . 579	• 630 • 681 • 732 • 732 • 732 • 732	1.117 1.911 2.110
		R 2	-dE_/dx	Mev cm ² /g	229 229 229 229 229 229 229 200 200 200	16.9 11.3	12.57 10.2 9.38 8.33 77	ະະທູທູ ເຈີຍ ເຊິ່	ь. ь. ъ. ъ. ъ. о. г. о. г.	6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	998389 • • • • • • • • • • • • • • • • • • •	မမ္မာမ္ရမ္က စမ္မာမ္ရမ္ရ စမ္မာမ္ရမ္ရ စမ္မာမ္မရ စမ္မာမ္းမ္းမ္းမ္းမ္းမ္းမ္းမ္းမ္းမ္းမ္းမ္းမ္းမ	102 102 112 112 112 122 122 122 122 122	1, 18 1, 30 1, 10
			Energy	Mev	0.01 .02 .03	00 05	00 00 10 00 00 00 00 00 00	33330 33370 250 260 200 200 200 200 200 200 200 200 20		66 80 80 80 80 80 80 80 80 80 80 80 80 80		440°4 980°4 980°4	ູ ຈັດເວັດ ອີມັນ	000 •00 •00

ge of electrons and positrons (including density correction) pue 1000 Eno

			ъ.	g/cm ²	0,000263 .000907 .00189 .00315 .00170	.00648 .00850 .0107 .0131	•0311 •0504 •0719 •0955	.147 .175 .203 .232 .232	.291 .321 .352 .383	1115 1776 507 633	1.01 1.01 1.13 1.33 1.38 1.38	1,650 1,650 2,333 2,911 2,911	3.47 4.57
			-dE ⁺ /dx	Mev cm ² /g	21,1 12,2 8,87 7,11 6,01	.28 .28 .68 .68 .68 .68 .68 .68 .68 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	2,83 2,15 2,05 1,93 3,05	1,85 1,75 1,75 1,68 1,68	61 65 1 66 63 65 63 65 63 65 63 65 63 65 63 64 63 64 64 64 64 64 64 64 64 64 64 64 64 64	1,660 1,660 1,59 1,59	1,60 1,60 1,61 1,61 1,61	1,65 1,66 1,67 1,72 1,76	1_80 1_86
- Continued		Z = 8, I = 104 ev	н-	g/cm ²	0,000296 ,000999 ,00207 ,003U2 ,00507	.00695 .00110 .0110 .0167	。0328 。0522 。0710 。0978	.1149 .205 .233 .262	292 321 351 112	,1142 ,504 ,504 ,750	.872 .994 1.12 1.35	л. 55 1. 52 8 8 8 8 8 8	3 . 39 1.16
density correction)			-de ⁷ /dx	Mev cm ² /g	19.0 11.2 8.23 65 65	1, 97 1, 17 3, 79 3, 54	2,79 2,111 2,19 1,91	1.86 1.81 1.77 1.773 1.773 1.773	1,66 1,67 1,665 1,665 1,665	1,63 1,63 1,63 1,63 1,63	1,64 1,655 1,667 1,668 1,688	1,69 1,70 1,71 1,71 1,81	1_81/ 1_90
sitrons (including			Energy	Mev	0,01 02 03 04 05	06 07 08 10	25 30 30 30 57 57 57 57 57 57 57 57 57 57 57 57 57	0,00 500 60 60		•95 •95 1•05 1•10 1•10	2°,0 8°,0 8°,0 11,80 11,00 11,00 11,00 11,00 11,00 11,00 11,00 11,00 11,00 11,00 11,00 11,00 11,00 11,00 11,00 11,00 11,00 10,00 11,00 10,000 10,0000 10,0000 10,0000 10,00000000	ง ๙ ๙ ๙ ๙ ๙ ๙ ๙ ๙ ๙ ๙ ๙	0°0 8°0
electrons and po			• R+	g/cm^2	0,000256 .000885 .00185 .00308 .00160	.00634 .00833 .0105 .0129 .0155	0308 0194 0706 119	.115 .172 .199 .228	.286 .316 .316 .376	438 168 623 717	.871 .995 1.22 1.36	1,08 1,60 2,30 2,87 2,87	3.43 4.51
oss and range of			-dE⁺/dx	Mev cm^2/g	21.6 9.06 6.13 6.13	лагел 20069 2006 2006 2006 2006 2006 2006 200	2.92 2.92 1.97	1,88 1,88 1,71 1,71 1,71	1.66 1.66 1.66 1.66	1,662 1,662 1,662 1,661	1.65 661 1.65 1.65 1.65	1.67 1.68 1.74 1.74	1,82 1,88
TABLE 1. Energy 1	-	Z = 7, I = 91,0 ev	R	g/cm^2	0_000287 000073 00202 00334 001255	•00679 •00889 •0112 •0137	.0322 .0512 .0727 .0960 .121	.117 .171 .201 .229 .258	287 316 316 376	.135 .166 .196 .617 .738	•859 •979 1.10 1.22 1.34	1,15 1,57 1,69 2,81 2,81	3,35 1,,10
			=dE ⁷ /dx	Mev cm ² /g	118 118 108 108 108 108 108 108	99557 9957 995777 9957777 995777 995777 995777 995777 995777 995777 995777 995777 995777 995777 995777 9957777 9957777 995777 9957777 99577777 99577777777	2.84 2.16 2.22 2.07 1.97	89 84 1-79 1-76 76 73	1.71 1.69 1.68 1.68	 % % % % % % % % % % % % % % % %	с 666 688 709 689 709 689 709 709 709 709 709 709 709 70	т 77 77 77 77 77 73 78 93 3	1 . 86 1 . 93
			Energy	Mev	0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01	00 008 008 008	2020 2020 2020 2020	01-1-02200 27-22-0200 02-02-000			0000 000 000 000 00	ຑຑຆຌຑ ຉຬ໐໐໐	6°0 8

1 o ludin (:) 1

		R*	g/cm ²	0,000351 ,00118 ,00214 ,00000	.00821 .0108 .0135 .0156	.0392 .0627 .118 .114 .149	182 215 250 321	.358 .395 .1432 .507	.545 .621 .773 .925	1,08 1,23 1,38 1,53 8 73 8 73	1.82 1.97 2.11 3.50 3.50	
	Δθ	-dE*/dx	Mev cm ² /g	16,1 9,50 6,98 1,.77	4.19 3.15 3.13 2.96 2.96	2,31 1,99 1,66 1,66	1.51 1.61 1.16 1.33 1.33	1, 33 1, 331	1,32 1,32 1,31 1,31 1,32	1.33 	1,37 1,38 1,16 1,16 1,16	
on) - Continued	Z = 18, I = 228	R-	g/cm ²	0,000404 00132 00271 00443 00653	.00891 .0116 .0115 .0178 .0212	.0413 .0653 .0923 .122 .153	.185 .218 .253 .323		542 579 616 913		1.78 2.06 3.175 3.155	
g density correcti		-dE-/dx	Mev cm ² /g	11, 30, 50, 30, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1		2.25 1.95 1.66 1.58	1.152 1.168 1.112 1.12 1.12	н		1,36 1,37 1,38 1,10 1,00	1,41 1,42 1,48 1,48	
ositrons (includin		Energy	Mev	00.00 00.00 00.00	00 00 10 00 00 00	1020 2020 2020 2020 2020 2020 2020 2020	อ <u>้</u> รัง ทั้งจั	80.770 80.750 8750 8750 8750 8750 8750 8750 8750 8	т. 500 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	тоо 2005 1005	000000 NN N	
of electrons and p		R ⁺	g/cm ²	0,000279 000955 00199 00331	.00678 .00889 .0112 .0138 .0165	.0327 .0524 .0748 .0993 .125	211 211 211 211 271		.161 .526 .556 .786	_916 1,01 1,17 1,130 1,130	3.01 3.01 3.01 3.01	3.58 1.71
rgy loss and range	еv	-dE ⁺ /dx	Mev cm ² /g	20.0 8.47 8.47 5.80 7.480 75	2415 2415 2415 24	2.36 2.12 1.97 1.97 86	6693 6693 66738 6693 66738	11111 1000 1000 1000 1000 1000 1000 10	ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት ት		1.60 1.61 1.62 1.67 1.71	1.81 1.81
IABLE 1. Ener Neon	Z = 10, I = 130	гл	g/cm ²	0,000315 ,00106 ,00218 ,00360 ,00532	.00729 .00952 .0120 .0116 .0175	•03l,3 •05l,l •0771 •102 •128	.155 .184 .213 .2122 .272	.303 .330 .365 .396 .127	.459 .450 .522 .776	1,10,00 1,10,00 1,10,00 1,10,00 1,00	2.93 2.93 2.93 2.93	3.50 11.59
		-dE_/dx	Mev cm ² /g	17.9 10.6 7.84 6.34 5.40	4.75 1.28 3.92 3.63 3.63	2,68 2,32 1,96 1,87	1.80 1.70 1.65 1.65	1,60 1,60 1,50 1,50	885 887 887 887 887 87 87 87 87 87 87 87 87	, , , , , , , , , , , , , , , , , , ,	1.765 1.765 1.77 1.77	1.79 1.85
		Energy	Мөт	0.02 000 000 000 000	00000000000000000000000000000000000000	10,0°°°° 707000	orono	88 77 88 87 70 70 70 70 70 70 70 70 70 70 70 70 70	0202 • • • • • • • • • • • • • • • • • • •	00000 	ດວວວສູນ ທີ່ພື້ນທີ່	

		R+	g/cm ²	0,000179 ,000628 ,00132 ,00132	00458 00602 00761 00936	.022b .0361 .0517 .0688 .0688	.106 .1117 .1117 .1168	211 233 256 278 301	.324 .346 .162 .162	.647 .739 .831 .922 1.01	2,10 2,10 2,10 2,10 2,10 2,10 2,10 2,10	2.57 3.39 4.19
		=dE ⁺ /dx	Mev cm ² /g	30.5 17.6 12.6 10.0 8.615	2,52 2,52 2,52 2,52 2,52 2,52 2,52 2,52	6 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.55 2.16 2.10 2.35 31 2.31 2.31	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	2.17 2.18 2.20 2.20 2.21	% % % % % % % % % % % % % % % % % % %	2.40 2.48 2.54
) - Continued	·CH _l I = lılı5 ev	L.	g/cm ²	0,000197 000683 00142 00237 00353	•00487 •00638 •00804 •00986 •0118	0233 0373 0531 0885	001 128 148 169 190	212 233 255 277	.322 .344 .157 .157	639 729 908 996	1,08 1,17 1,26 1,69 2,11	2,52 3,31 1,09
J density correction		-dE-/dx	Mev cm^2/g	28.0 16.2 9.16 8.01		60.00 60.00 60.00 60.00 60 60 60 70 80 80 80 80 80 80 80 80 80 80 80 80 80	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23	2,2,2,2,3 2,2,2,2,3 2,2,2,2,3 2,2,2,3,3 2,2,2,3,3 2,2,3,3,3 2,3,3,3,3	, 83 , 83 , 83 , 83 , 85 , 85 , 85 , 85 , 85 , 85 , 85 , 85	2.28 2.33 2.23 2.53 2.53 2.53 2.53 2.53 2.53	2_16 2_511 2_60
ositrons (including		Energy	Mev	0,02 0320 054	0,00 08 00 08 00 08	200 30 30 30 30 30	لال 200 200 200 200	65 75 80 85		88004 	ຯຬ໐໐໐ ໙໙ຓ <u></u> ຠຑ	6,0 8,0 10,0
of electrons and p		+ H	g/cm ²	0.000457 00146 00303 00733	.0100 .0131 .0164 .0200	01469 .07146 .0714.0 .0110.0 .176	211 253 291 335 376	.119 .505 .518 .592	.635 .679 .722 .098 1.07	1.25 1.59 1.59		
ergy loss and range	٨	dE ⁺ /dx	Mev cm ² /g	12.7 7.72 3.96 3.96	9887 116 2887 289 299 299 299 299 299 209 209 200 200 20	1.1.53 96 1.1.53 1.1.2 37 37 37 37	1.28 26 1.28 1.23 1.19	1,13 1,13 1,14 1,14 1,14 1,14 1,14 1,14		1,15 1,16 1,17		
TABLE 1. En	Krypton Z = 36, I = 494 •	L.	g/cm ²	0.000547 00171 0.00355 00314 00555 00314	0110 0113 0217 0217 0258	0097 1870 1411 181.	218 257 297 338	4120 1162 504 5117	.632 .671 .717 .888 1.06	1,23 1,39 1,56		
		-dE ⁻ /dx	Mev cm ² /g	0 6.09 6.09 0.09 0.09 0.09 0.09 0.00 0.00	2.22 2.52 2.52 2.52 2.52 2.52 2.52 2.52	1.88 	1.30 1.21 1.22 1.22	1,20 1,19 1,18 1,18 1,18	2 	1,19 1,20 1,21		
		Energy	Mev	0_01 02 04 05	00 008 009 10	нологи	07070 07070 07070	66 80 80 80 80 80 80 80 80 80 80 80 80 80	111 10080 111	080 080		

			R*	g/cm ² 0.000222 .000773 .00162 .00271	.00559 .00734 .00728 .0114 .0137	0273 01439 0627 0834	129 153 203 229	255 282 336 336	391 1418 1446 557	,779 ,8900 1,11,11	2.07 2.07 2.07 2.07 2.07	3_08 14_06 5_01
-	2	8 ev	-dE ⁺ /dx	Mev cm ² /g 21,8 11,2 10,3 8,23 6,91	6,06 1,51 1,51 1,23	203322 203322 203322	2,01 1,99 1,95	1,887 1,885 1,887 1,885	1,82 1,81 1,80 1,80 1,80	1,000 1,0000 1,0000 1,0000 1,0000 1,00000000	1,85 1,85 1,88 1,93 1,93	2.01 2.08 2.13
UHJ/		I = 63.	2	g/cm ² 0,000217 0000415 000176 00176 00292	.00596 .00781 .00983 .0120 .0144	0284 0453 0644 0644 0852 107	.130 .174 .179 .204	. 256 . 308 . 335 . 362 . 362	.389 1116 11113 .551 .660	•769 •877 •984 1.09 1.20	1,30 1,61 2,02 2,52	3_01 3_97 4_89
ATTOD ATTSHAD BUT			-dE ⁻ /dx	Mev cm ² /g 22.6 13.1 9.60 7.73 6.55	4-4-72 28 08 88 28 28 28 28 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	2,22 2,576 2,333 21	2,12 2,06 2,00 1,97 1,97	92 98 98 98 98 98 97 98 97 98 97 98 97 98 97 98 97 98 98 98 98 98 98 98 98 98 98 98 98 98	1,855 1,855 1,855 1,855 1,111 1,855 1,111 1,855 1,1111 1,1111 1,1111 1,11111 1,111111	1,885 9865 1,8865 8887 89887 89887	1,91 1,93 1,93 1,98 2,02 2,02	2,06 2,13 2,18
DOTOUT SUDITIES			Energy	Me∀ 0.01 0.03 03 03 05	00000000000000000000000000000000000000	ភ្លំខ្លះខ្លះ ភូទំខ្លះខ្លះ	៰៲ ៷៷ ៷៷	807.70% 807.0%	95 11,20 11,20 11,10 111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00000 000000	6.0 8.0 10.0
ā.												
NUP SUCITORIA IO		-	в*	g/cm ² 0.000204 000711 00149 00250	00516 00678 00857 0105	0252 0406 0581 0772 0977	ولل 142 165 188 212	.237 .261 .311 .337	.362 .388 .517 .620	723 826 929 1.03 1.13	1,23 1,33 2,40 2,40	2.86 3.78 1.66
by toss and range of erections and		A	∞dE ⁺ /dx R ⁺	Mev cm ² /g g/cm ² 27.0 0.000204 15.4 0.000711 11.2 00119 8.91 0.00250 7.51 0.00373	6.55 .00516 5.86 .00678 5.33 .00857 1.91 .00057 1.57 .00857	3,55 0252 2,03 0106 2,72 0581 2,52 00781 2,53 00777	2,28 .119 2,20 .112 2,10 .165 2,10 .1065 2,06 .212	2,04 .237 2,01 .251 1,99 .286 1,98 .311 1,97 .317	1,96 .362 1,95 .388 1,95 .113 1,93 .517 1,93 .620	1,94 .723 1,95 .826 1,97 .2929 1,97 1.03 1,98 1.13	1,99 1.23 2,01 1.33 2,02 1.43 2,07 1.94 2,12 2.40	2,16 2,86 2,23 3,78 2,28 1,,66
IABLE 1. ENERgy LOSS and Fange Of Electrons and	(CH2)2	I = 54,9 ev	R	E/cm ² Mev cm ² /E E/cm ² 0.000255 27,0 0.000201 0.00175 15,1 000711 0.00161 11,2 00119 0.00259 3,91 00250 0.00399 7,51 00373	.0054.9 6.55 .00516 .00720 5.86 .00578 .00907 5.33 .00857 .0111 1.91 .01057 .0133 1.57 .0126	.0263 3.55 .0252 .0596 5.72 .0581 .0788 2.72 .0581 .0788 2.52 .0772 .0993 2.38 .0777	121 2,28 119 143 2,20 142 166 2,14 165 109 2,10 165 100 2,10 2,12 2,10 2,12	.237 2.04 .237 2.04 .237 .261 .261 .261 .261 .261 .261 .261 .261	.360 1,96 362 .366 1,95 .362 .111 1,95 .113 .512 1,93 .517 .613 1,93 .620	.714 1.94 .723 .814 1.95 .886 .914 1.95 .886 1.01 1.97 1.03 1.11 1.98 1.03	1,21 1,31 1,31 1,41 1,86 1,86 2,07 2,35 2,35 2,12 2,10 2,10	2.80 2.16 2.86 3.69 2.23 3.78 1.56 2.28 1.66
IABLE 1. ENERGY LOSS and fange of electrons and	(CH2)2	$I = 5 l_4 \cdot 9 ev$	$-dE^-/dx$ $R^ -dE^*/dx$ R^+	Mev cm ² /g g/cm ² Mev cm ² /g g/cm ² 21, 6 0,000225 27, 0 0,000201 11, 3 000175 15, 1 000711 12, 4 000161 11, 2 000119 10, 4 000561 15, 1 000150 11, 3 000161 11, 2 00119 12, 4 000259 15, 1 000250 11, 1 000359 7, 51 00373	6.23 .00549 6.55 .00516 5.59 .00720 5.86 .00578 5.11 .00907 5.33 .00678 1.12 .0111 .0133 .00657 1.011 .0133 1.57 .0126	3. Ji6 .0263 3.55 .0252 2.98 .0119 3.03 .0106 2.70 .0596 2.72 .0581 2.71 .0788 2.72 .0781 2.51 .0783 2.52 .0772 2.38 .0993 2.38 .0771	2,29 ,112 2,28 ,119 2,22 ,113 2,20 ,112 2,16 ,166 2,11 ,165 2,10 ,109 2,00 ,116 2,09 ,213 2,06 ,212	2.06 .237 2.0L .237 2.0L .261 .261 .261 2.01 .266 .286 1.99 .286 2.03 .311 1.99 .286 .313 2.01 .335 1.97 .337	2,00 .360 1,96 .362 1,99 .3186 1,95 .388 1,99 .111 1,95 .388 1,99 .512 1,93 .517 1,98 .513 1,93 .517	1,99 .714 1.94 .723 2,00 .614 1.95 .826 2,01 .01 1.95 .826 2,03 1.01 1.97 1.03 2,03 1.11 1.96 1.13	2.04 1.21 1.99 1.23 2.06 1.31 2.01 1.33 2.07 1.11 2.02 1.41 2.17 2.35 2.12 2.40 2.17 2.35 2.12 2.40	2,22 2,80 2,16 2,86 2,28 3,69 2,23 3,78 2,31 1,56 2,28 1,66

Energy loss and range of electrons and positrons (including density correction) .

			*æ	g/cm ²	0.000252 .000888 .00187 .00313 .00313	.00648 .00853 .0108 .0133	.0329 .0511 .0716 .0716 .125	.151 .181 .209 .210 .210	.303 .334 .367 .1328 .132	464 198 531 865 801	.938 1.07 1.21 1.35 1.48	3,568 3,568 3,2689 2,2699 2,26999 2,26999 2,26999 2,26999 2,26999 2,26999 2,26999 2,26999 2,269999 2,269999 2,269999 2,2699999 2,2699999 2,269999999999	3.88 5.17 6.15
			=dE*/dx	Mev cm ² /g	21.6 12.3 8.87 7.07 5.96	3,62 3,89 3,62 3,89 89 62	2,39 2,31 1,98 1,98	1,72 1,72 1,67 1,64 1,64	44444 88848 88848 8884 8884 8884 8884	1111 200 140 140	1.47 1.47 1.47 1.47 1.47	1,148 1,18 1,50 1,50 1,50	1,553 1,553 1,555
n) – Continued	Li thium	Z = 3, I = 39,0 eV	ы	g/cm ²	0,000278 000965 00202 00336	.00690 00305 01110 0140 0168	.0332 .0531 .0756 .100 .126	,154 ,182 ,211 ,272		.163 .196 .528 .660 .794	1,057 1,106 1,133 1,16	1.59 1.88 3.51 3.16	3.79 5.06 6.31
density correctic			-dE ⁷ /dx	Mev cm ² /g	9 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40° 10° 3° 2° 2° 2° 2° 2° 2° 2° 2° 2° 2°	2.72 2.35 2.12 1.97 1.87	1,02 1,03 1,05 1,05 1,05 1,05 1,05 1,05 1,05 1,05		 8.8.8.8.8 8.8.8.8	4444 88884	ጚጜጜጚ ጞ	1.57 1.59 1.61
sitrons (including			Energy	Mev	0 0020 004 004	.06 .09 .09 .09 .09	, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20	01. 07. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20		00000 000000 000000	980041 2000	ດ ແ ແ ແ ແ ແ ທີ່ເຊັ່ນ	6.0 8.0 0.0
je of electrons and po			*	g/cm ²	0,000259 000894 00187 00311 00311	.00640 .00840 .0106 .0130 .0136	.0310 .0198 .0712 .0945 .119	116 201 2390 259	•288 •318 •319 •379 •110	4111 172 502 .527		л.61 1.61 2.32 2.89	3 . 45 4.53
cnergy loss and rang			-dE*/dx	Mev cm ² /g	21 th 12.3 8.98 7.19 6.08	32 12 32 33 33 50 33 50 33 50 50 50 50 50 50 50 50 50 50 50 50 50	95 97 97 97 97 97 97 97 97 97 97 97 97 97	1,87 1,81 1,76 1,73 1,70	ттт 8,6,6,6 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6	00011.00 00011.00 00011		1.66 1.67 1.73 1.73	1,81 1,87
TABLE 1. E	c0 ₂	I = 96 _• 3 ev	R"	g/cm ²	0,000291 000984 00204 00337 00500	.00686 .00897 .0113 .0113 .0158	.0324 .0516 .0732 .0732 .0967	1148 175 203 231 260	289 318 348 178 108	.1138 1169 621 .7113	.865 .986 1.11 1.23 1.31	446 2,558 2,155 2,255 2,255 2,255 2,255 2,255 2,255 2,255 2,255 2,255 2,255 2,255 2,555 2,	3.25 l4.31
			-dE ⁻ /dx	Mev cm ² /g	72 8,94 7,073 73 73 8,94 73 8,94 73 8,04 73 8,04 73 8,04 73 8,04 73 8,04 73 8,04 73 8,04 74 74 74 74 74 74 74 74 74 74 74 74 74	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2,08 2,04 1,06 2,02 1,06 1,06 1,07 1,07 1,07 1,07 1,07 1,07 1,07 1,07	1,88 1,88 1,75 1,75	1.70 1.68 1.68 1.68	, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	1,68 1,68 1,68 68 1,68 7,68 7,68 7,68 7,68 7,68 7,68 7,68 7	1.70 1.71 1.73 1.78 1.78	1,86 1,92
			Energy	Mev	0,00 0,00 0,00 0,00 0,00	00 00 00 00 00 00 00	ಸಂಸ್ಥೆ ಸಂಸಂಸ್ಥೆ	៰៷៷៷៰	2027.08 2027.08 20	90 1,100 1,100 1,100 1,100 1,0000 1,0000 1,0000 1,0000 1,00000000	98004 • •	ຈະວວວ ຈໍ້ຈໍ່ຈຳກັນ	6 .0

			R*	g/cm ² g/cm ² 0.000861 .00180 .00301 .00449	.00619 .00814 .0103 .0126	.0302 .0485 .0694 .0922 .117	.169 .197 .225 .255	281, 311, 371, 105	, 436 , 167 , 198 , 621 , 750	,877 1,00 1,26 1,38	2,99 2,99 2,99	3.59 L.78
		Δ	-dE+/dx	Mev cm ² /E 22,2 12,8 9,28 7,42 6,27	5,48 4,90 1,16 1,11 3,83	2,98 2,53 2,11 2,11 2,11	1,90 1,83 1,78 1,71 1,71	10,65 10,55 10,55	1,60 1,60 1,58 1,58 1,58	23888 25883 258888 25888 2588888 258888 258888 258888 258888 2588888 258888 258888 258888 258888 2588888 258888 258888 258888 2588888 2588888 258888 258888 2588888 2588888 258888 258888 2588888 2588888 2588888 2588888 2588888 2588888 2588888 2588888888	22 20 20 20 20 20 20 20 20 20 20 20 20 2	1.67 1.69
n) – Continued	Graphite	Z = 6, I = 78, I e	R ⁻	E./cm ² 0.000277 0.000245 00196 00325 00483	.00663 .00868 .0109 .0134 .0160	0315 0502 0711 0914	.145 .171 .199 .227 .255	285 344 344 374 1.00	.134 .161 .195 .195 .712	.866 .990 1.21 1.36	ы. 1.608 1.73 2.33 2.33 2.92 2.92	3.51 L.67
ig density correctic			-dE" /dx	Mev cm ² /£ 12.8 11.8 8.63 6.65 5.91	5, 19 1, 66 3, 91 3, 68 3, 68	2,60 2,69 2,25 10 1,99	1,85 1,85 1,76 1,76	1,65 1,68 1,66 1,66	1.65 1.65 1.63 1.62 1.62	1,61 1,62 1,62 1,62 1,63	1,63 1,64 1,65 1,67 1,67	1.71 1.71
oositrons (includin			Energy	Mev 0,01 03 03 04 04	06 07 09 10	25 30 30 30 55	60 555 60 555 60 555	65 880 850 850 850	90 90 90 90 90 90 90 90 90 90 90 90 90 9		ల బ ౦ ౦ ౦ ని ని గా హిగ్	00 98
p			1									
f electrons an			н,	g/cm ² 0.000270 .000939 .00194 .00329 .00489	.00678 .00889 .0113 .0138 .0166	.0331 .0533 .0763 .102 .122	157 187 217 219 281	.313 .317 .380 .114 .414	.482 .517 .551 .691 .832	974 1,12 1,26 1,00 1,010	3.058 3.058 3.0555 3.0555 3.0555 3.0555 3.0555 3.0555 3.0555 3.05555 3.05555 3.05555 3.0555555 3.05555555555	4_01 5_35
loss and range of electrons a			-dE ⁺ /dx R ⁺	Mev cm ² /g g/cm ² 20.1 0.000270 11.7 0.00039 6.77 0.00329 5.77 0.00329	1,.99 .00678 1,.16 .00889 1,.06 .013 3,71 .0138 3,19 .0166	2,71 0331 2,30 0533 2,06 0053 1,91 ,006 1,80 ,129	1,72 157 1,66 187 1,61 217 1,57 211 1,55 211 1,55 281	1,52	1,45 ,462 1,45 ,517 1,412 ,551 1,412 ,691 1,412 ,632	1,411	1,42 1,68 1,43 1,68 1,43 1,82 1,45 2,65 1,47 3,34	1,418 4,01 1,51 5,35
TABLE 1. Energy loss and range of electrons a	Beryllium 7 - 1. r - 61.1	$\Delta \Theta T^{\bullet} T = 0 T^{\bullet} T = 7$	R" -dE ⁺ /dx R ⁺	g/cm ² Mev cm ² /g g/cm ² 0.000300 20.11 0.000270 0.00103 11.7 0.000379 0.00213 8.17 0.00329 0.00556 6.77 0.00189 0.00527 5.72 0.00489	.00725 h.99 .00678 .009h9 h.06 .00869 .0119 h.06 .0138 .0116 .0138 .0175 3.49 .0166	.0345 2.71 0331 0551 2.30 0533 .0785 2.30 0533 .0763 1.91 .076 .104 1.91 .026 .131 1.80 .129	159 1.72 1.57 189 1.66 1.87 221 2.51 1.61 2.17 221 1.57 2.19 282 1.57 2.01 282 1.55 2.01	.311 1.52 .313 .317 1.50 .317 .318 1.50 1.19 .316 .131 1.10 1.19 .310 .111 1.11 1.11 1.11 1.11 1.11 1.11 1.	. 1480 1.415 1.462 . 514 1.415 1.462 . 518 1.412 . 551 . 518 1.412 . 551 . 655 1.412 . 651 . 632 1.412 . 632	.961 1.441	1.65 1.79 1.79 1.79 1.82 1.68 1.43 1.82 1.82 1.95 1	3.92 1.48 4.01 5.22 1.51 5.35
TABLE 1. Energy loss and range of electrons a	Beryllium 7 - 1. 1 - 2.	$A = T^{\circ} C = T^{\circ} C = 7$	-dE ⁺ /dx R ⁺ -dE ⁺ /dx R ⁺	$ \begin{array}{ccccc} \mbox{Mev} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	h.73 .00725 h.99 .00678 h.25 .00949 0.00649 0.00689 1.26 .00949 1.06 .00869 3.88 .0116 .0138 .0138 3.59 .0116 3.74 .0138 3.36 .0175 3.49 .0166	2.64 .0345 2.71 .0331 2.26 .0551 2.70 .0533 2.01 .0785 2.06 .0763 1.90 .014 1.91 .0331 1.90 .104 1.91 .129	1.72 159 1.72 157 1.67 189 1.72 157 1.62 2219 1.61 217 1.59 221 1.57 217 1.56 221 1.57 219	1.51 .311 1.52 .313 1.53 .317 1.52 .313 1.51 .380 1.99 .380 1.50 .113 1.16 .148	1,448 ,480 1,415 ,462 1,415 ,462 1,417 ,511 1,417 ,511 1,417 ,511 1,412 ,511 1,412 ,511 1,412 ,651 1,412 ,651 1,412 ,631 1,412 ,631 1,412 ,631 1,412 ,632 1,411 ,632 1,411 ,632	1,45 ,961 1,41 ,974 1,41 ,974 1,41 ,974 1,41 1,41 1,42 1,12 1,42 1,41 1,42 1,42	1,46 1.66 1.66 1.66 1.68 1.48 1.68 1.48 1.68 1.68 1.79 1.49 1.49 1.49 1.40 1.40 1.68 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	1_{55}^{-52} 3_{22}^{-92} 1_{9}^{-18} 1_{9}^{-01} 1_{151}^{-535} 5_{35}^{-35}

			н+	g/cm ² 0,000302 00213 00213 00354	00724 00949 0120 0147	0348 0557 0795 105	.162 .193 .221 .256	.321 .354 .388 .122 .156	.491 .525 .700 .840	980 1122 1540 154	а 868 2,63 2,63 2,63 2,63 2,95 2,95 2,95 2,95 2,95 2,95 2,95 2,95	3 . 95
			-dE*/dx	Mev cm ² /g 18.5 10.8 7.93 5.93 5.10	9995 9995 9995 9995 9995 9995 9995 999	ч-2°2°0 2°2°0 1°2°2°0 1°4°	55 55 55 55 55 55 55 55 55 55 55 55 55	1,51 1,61 1,61 1,61 1,64 1,66	, און חון ר ב ג ג ג ג ג ג ג ג ג ג ג ג ג ג ג ג ג ג ג	1,013 1,13 1,143 1,145 1,145 1,145	1,015 1,615 1,016 1,09 1,99 1,952	1 . 53
- Continued	Aluminum	Z = 13, I = 163 ev	R"	g/am ² 0.0003lili 0.0011li 0.00235 0.00386	.00781 .0102 .0128 .0156 .0157	.0365 0579 .0820 .108 .136	.165 .226 .227 .289	.322 355 388 1421 155	.1488 .552 .5556 .692 .829		л. 76 1. 91 3. 21 3. 21	3.85
density correction)			-dE"/dx	Mev cm ² /g 16.6 9.88 7.31 7.93 5.93 5.06	4,415 1,01 3,67 3,41 3,19	2,53 2,19 1,99 1,85	60 60 1,57 2,57 2,57	1,52 1,52 1,50 1,50	1.18 1.18 1.17 1.16 1.16 1.16	1,47 1,47 1,48 1,48 1,48	11111 2001 2001 2001 2001 2001 2001 200	1 . 58
sitrons (including o			Energy	Mev 0,01 002 014 014	00,00,00,00,00,00,00,00,00,00,00,00,00,	<u>, , , , , , , , , , , , , , , , , , , </u>	570%°	20 27 0 28 20 27 0 28	90 95 112 4	тоо 000 1000 1000	0,0,0,-3,77 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	و•0
of electrons and po			R*	g/cm ² 0,000292 000994 00207 00313	.00702 .00920 .0116 .0112 .0170	.0338 .0511 .0771 .102 .129	.158 .187 .217 .21,8 .279	2111 2112 2115 2114	175 508 539 677 809	947 108 125 1_35 1_48	2.55 2.53 3.55 3.16 3.16	3_80
'gy loss and range			-dE*/dx	Mev cm ² /g 19.2 11.2 8.18 6.57 5.57	4.87 1.37 3.98 3.68 3.68 3.68	2,68 2,29 2,07 1,92 1,81	1,73 66 1,66 1,58 1,58	11111 2223 2225 2225 2225 2225 2225 2225	1,1,50 1,1,50 1,1,8 1,1,8 1,1,8 1,1,8 1,1,8 1,1,9 1,1,9 1,1,9 1,1,9 1,1,9 1,1,9 1,1,9 1,1,9 1,1,9 1,1,9 1,1,1,9 1,1,1,9 1,1,1,9 1,1,1,1,	10 10 10 10 10 10 10 10 10 10 10 10 10 1	ተተተተ ዋሪያሪያዊ	1.60
TABLE 1. Ener	Magnesium	Z = 12, I = 156 ev	¹ ۲.,	g/cm ² 0,000333 00228 00228 00375	.00758 .00990 .0121 .0152 .0181	.0355 .0563 .0797 .105	.160 .220 .250 .281	.313 1416 .376 .001 .1414	4714 507 539 671 803	.935 1.07 1.20 1.33 1.16	1,59 1,72 1,84 2,48 3,10	3.71
			-dE_/dx	Mev cm ² /g 17.1 10.2 7.53 6.11 5.21		001 1100 001 001 001 001 001 001 001 00	1-05 1-65 1-65 1-65	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	1,523 5,523 5,525	1,52 51 51 51 71 71 72	, 55 , 56 , 56 , 60 , 60 , 60 , 60 , 60 , 70 , 70 , 70 , 70 , 70 , 70 , 70 , 7	1 . 6l4

			н + н	g/cm ²	0,000397 00131 00268 001411 001411 00652	00892 0117 0116 0179 0214	0415 0671 0949 126	193 228 303 341	379 1119 1158 1198 198	65178 6617 819 9819	1,15 1,15 1,62 1,62	1.94 2.10
			-dE+/dx	Mev cm ² /g	۲۰. ۵. ۵. ۵. ۲۵. ۲۵. ۲۵. ۲۵. ۲۵. ۲۵. ۲۵. ۲	3,89 3,50 3,19 2,76 2,76	2,17 1,87 1,69 1,69 1,49	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	1,25 1,28 1,26 1,25 25	25-1-2-3 -2-1-2-2-1- -2-1-1-1-1-1-2-2-1-2-2-2-2-	-25 -25 -25 -25 -25 -27 -25 -27 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25	1,27 1,28
n) – Continued	Copper	Z = 29, $I = 377$ ev	' 22	g/cm ²	0.0001468 .00119 .00302 .001490 .00719	.00976 .0127 .0158 .0193 .0230	.0445 .0702 .0989 .130 .163	.197 .232 .269 .306 .313	.381 .4158 .458 .535	.575 .611 .653 .968	1,228 1,228 1,643 1,559 1,74	1 <u>*</u> 90 2 <u>*</u> 04
density correctio			-dE [/] /dx	Mev cm ² /g	12.6 7.77 5.84 1.78 1.78 1.0	690289 690289 69799 6979 6979 6979 6979 6979 6979 6	2,10 1,67 1,56 1,9	11.14 88.94 97.94 97.940	1.31 1.32 1.29 28	1,28 1,28 1,27 1,27 1,27	1,28 1,28 1,30 31 31	1,31 1,32
sitrons (including			Energy	Mev	0 000 00 00 10	.109 109 109	H00000	57000 00000	889700 20000 20000	990 2005 2005 2005	0000 	2°66
of electrons and po			ъ*	g/cm ²	0,000377 00125 00257 00122 00122	•00856 •0112 •0111 •0172 •0172	.0405 .0646 .0919 .122 .153	.187 .221 .256 .293 .330	.367 .1105 .1113 .181 .520	559 598 637 794	1,11 26 1,26 1,42 1,58 1,73	1.88 2.04 2.19
yy loss and range o			-dE ⁺ /dx	Mev cm ² /g	15, 2 9, 06 0, 69 1, 1, 1 0, 1 1, 0, 1 1, 0, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	2332 232 2332 2332 2332 2332 2332 2332	л 1,95 33 33 33 33 3 3 3 3 3 3 3 3 3 3 3 3 3	1, ⁴² 1, ⁴³ 1,33 1,35	1,333 1,331 1,331 29	1,27 1,27 1,27 1,27	1,28 1,29 1,29	1,31 1,31 1,32
TABLE 1. Energ	Iron	Z = 26, I = 337 ev	R	g/cm ²	0, 000lll2 001l11 00288 00168	.00934 0122 0152 0185 .0220	.0428 .0675 .0952 .125 .157	.190 .224 .2143 .295 .315	.368 388 1412 163 518	539 5594 6615 768 921	1,07 1,23 1,53 1,53 1,68	1.83 1.97 2.12
			-dE_/dx	Mev cm ² /g	13.3 8.11 6.10 4.28	2.74 2.72 2.92 2.92 2.92	2,18 1,008 1,073 1,073 1,073 1,074	1,48 1,011 1,011 1,39 1,37	1-33 1-33 1-33 1-33 1-33 1-33 1-33 1-33	1,32 1,31 1,31 1,31 1,31	1,32 1,32 1,33 1,33 1,34	н 36 36.67 36.67
			Energy	Mev	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	006 007 008 008 008	2020 2020 2020 2020 2020 2020 2020 202	44 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	66 80 80 80 80 80 80 80 80 80 80 80 80 80	тт» • • • • • • • •	98004 ••••• 00011	ง ๛ ๐ ๛ ๛ ๛ ๛ ๛ ๛

			R*	g/cm ²	0,000528 00167 00340 00553 00814	1110 14/10 0180 0220 0220	.0513 .0814 .116 .152	232 275 318 363	451 1999 5916 6410	686 .734 .770 .770
			=dE ⁺ /dx	Mev cm ² /g	н 66,00 34,01 66,11 66,11 70,00 86,010 86,010 86,010 86,010 86,010 86,010 86,010 86,010 86,010 86,010 86,010 86,010 86,010 86,010 86,010 86,010 86,010 86,010 86,0000000000	0,0,0,0 0,0,0,0 0,0,0,0,0 0,0,0,0,0,0,0	 8.2.4.5.8 8.2.4.5.8 8.2.4.5.8 8.5.5.8 8.5.5.7.8 8.5.5.7.8 8.5.5.7.8 8.5.5.7.8 8.5.5.7.8 8.5.5.7.7.8 8.5.5.7.8 8.5.5.7.8 8.5.5.7.8 8.5.5.7.8 8.5.5.7.8 8.5.5.7.8 8.5.5.7.8 8.5.5.7.8 8.5.5.7.8 8.5.5.7.8 8.5.5.7.8 8.5.5.7.8 8.5.5.7.8 8.5.5.7.7.7.8 8.5.5.7.8 8.5.5.7.7.8 8.5.5.7.7.7.8 8.5.5.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.		00 1,00 1,00 1,07 1,07	00°11 00°11 00°11 00°11
) - Continued	цП	Z = 50, I = 709 ev	цщ	g/cm ²	0,000650 00196 00393 00627 00915	0123 0160 0198 0241 0285	0548 0858 120 158 197	238 238 323 4112	456 552 5517 593 639	. 685 . 777 . 961
g density correction			-dE ⁷ /dx	Mev cm ² /g	9,16 6,06 3,82 3,82 3,30	2,93 2,66 2,115 2,29 2,29 2,15	1,52 1,52 1,30 1,30 1,25	1,20 1,17 1,15 1,12	11,1 01,1 00,1 00,1	1,09 1,09 1,09
ositrons (including		-	Energy	Mev	0,01 002 004 004	.06 .076 .09 10	300500 300500 30050050	0.000 0.000000	80 80 87 87 87	ь 1 2 2 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
of electrons and p			R*	g/cm ²	0.000497 .00159 .00323 .00525 .00740	.0105 .0134 .0172 .0207 .0250	.0486 .0776 .110 .182	222 262 316 386	-1133 -1177 -566 -566 -610	.656 .700 .716 .927 1.11
rgy loss and range			-dE+/dx	Mev cm ² /g	р. 8 26 3 с. 8 2 с. 6 2 с. 6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1,688 1,688 1,643 3037 30 30 30 30 30 30 30 30 30 430 50 50 50 50 50 50 50 50 50 50 50 50 50	1,25 1,25 1,19 1,17 1,15	الا. 21,13 21,13 21,12	
TABLE I. Ener	SILVER	Z = 47, I = 660 ev	- 22	g/cm^2	0,000210 00185 00332 00594	0117 0148 0188 0225 0272	.0518 .0818 .114 .150 .158	.227 .267 .309 .350	,436 ,479 ,522 ,566	.651 .698 .712 .918 1.09
			-dE_/dx	Mev cm ² /g	10,0 6,38 1,87 1,02 3,47	3,08 2,80 2,10 2,10 2,26	1,82 1,59 1,36 1,30 1,30	1,26 1,22 1,18 1,18	89.111 89.111 89.111	

			н +	g/cm ²	0,000628 ,00194 ,00392 ,00632 ,00927	.0126 .0163 .0204 .0249 .0296	.0575 .0910 .129 .170	.258 .335 .402	. 501 . 552 . 651 . 705	. 757 . 809 . 860
			-dE*/dx	Mev cm ² /g	9,61 6,03 3,73 3,73 20	2.53 2.55 2.17 2.17 2.01	1,16 1,16 1,18 1,13 1,13	н 1.08 1.03 0023358 0022358	• 992 • 985 • 975 • 973	.966 .966
) - Continued	Tungsten	$Z = 7h_s I = 991 ev$	∎. 21 /	g/cm ²	0,000800 00231 00160 00725 0105	1,1,10° 2810° 10220° 1027°	.0618 .0959 .135 .176	.264 .311 .107 .155	2000 2000 2000 2000 2000 2000 2000 200	.756 .806 .856
density correction			-dE ⁻ /dx	Mev cm ² /g	2973 2973 2973 2973 2973 2973 2973 2973	20 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18		1,000 1,000 1,001 0,000000	1.01 1.00 .997 .995 .993	.992 .992
sitrons (including a			Energy	Mev	0,01 032 001 05	.06 .08 .09 .10	20 20 30 30	10 50 60 60	65 80 80 80 80	.90 .95 1.0
of electrons and po			R+	g/cm ²	0,000553 00175 00355 00575 008147	0115 0150 0187 0229	0532 0844 120 158 198	2211 2294 375 1122	.1469 .516 .564 .612 .660	.709 .757 1.006
gy loss and range (-dE ⁺ /dx	Mev cm ² /g	10.7 6.63 1.97 1.06 3.17	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	77. 	1,16 1,13 1,08 1,07	03 00 01 01 01 01 01 01 01 01 01 01 01 01	1,03 1,03 1,03
TABLE 1. Ener	Xenon	$z = 5l_{1}$, $I = 758 ev$	 2	g/cm ²	0,000685 00205 00410 00653 00552	.0128 .0166 .0206 .0250 .0256	0568 08888 125 201	_216 _289 _331 _379 _257	. 517 . 517 . 5611 . 6513 . 658	705 800 988
			-dE ⁻ /dx	Mev cm^2/g	9,01 15,81 3,68 3,18 3,18	2,83 2,57 2,37 2,21 2,08	1,67 1,17 1,34 1,26 1,26	1,17 11,11 1,12 1,12 1,09	1,08 1,07 1,06 1,06	90°0°0°1
			lergy	лəj	0,01 .02 .01 .05 .05	06 07 09 10	1.0.0.0. NONON	070550	66 80 80 80 80 80 80 80 80 80 80 80 80 80	

466367 O - 58 - 3

			R*	g/cm ²	0,000688 00209 001/20 00671	.0133 .0173 .0216 .0263 .0313	.0607 .0958 .178 .224	.2271 .320 .421 .473	526 578 6832 6832	
		0 ev	-dE ⁺ /dx	Mev cm ² /g	0,22,8,50 0,22,8,50 0,28,550 0,28,550 0,28,550	2.68 2.12 2.22 1.93 1.93	1,13 21 21 21 21 21 21 21 21 21 21 21 21 21	1.04 1.01 .987 .971 .959	.950 .943 .938	
n) - Continued	Lead	z = 82, I = 118	" 2	g/cm ²	0.000893 .00251 .00497 .0178 .0113	.0151 .0194 .0240 .0291	.0652 .101 .185 .230	.277 .326 .176 .176	.528 .579 .631 .683	
density correction			-dE ⁻ /dx	Mev cm ² /g	2.216 2.716 2.716 2.716	2.5 2.5 1.83 82 83 82 82 82 82 82 82 82 82 82 82 82 82 82	1,48 1,30 1,19 1,08 1,08	1,04 1,02 .989 .979	.972 .966 .963	
sitrons (including			Energy	Mev	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.00 .07 .09 .09	1.20 20 20 20 20 20 20 20 20 20 20 20 20 2	0 7 7 7 7 7 7 7 6 7 7 6 7 6 7 6 7 6 7 6		
of electrons and pc			R+	g/cm ²	0,000669 ,00201, ,001100 ,00659 ,00966	.0130 .0170 .0212 .0258 .0307	.0595 .0940 .133 .175 .220	266 311 111 165	.516 568 620 673 723	.778
rgy loss and range		6 ev	-dE*/dx	Mev cm ² /g	9.09 9.09 9.09 9.09	2.273 2.17 2.210 1.97	1,157 236 21,153 21,09 21,09	1.06 1.03 .988 .976	.960 .955 .951 .948	°945°
TABLE 1. Ener	Gold	Z = 79, I = 113	'æ	g/cm ²	0.000865 00245 00485 00761	.0117 .0190 .0235 .0285 .0336	.0640 .0995 .139 .226	273 320 119 119	519 570 621 673 724	. 776
			-dE_/dx	Mev cm ² /g	7_148 3_968 3_868 3_22 80 2_80	2,50 2,28 1,97 1,86	10,12,23 10,14,12,23 10,14,12,12,12,12,12,12,12,12,12,12,12,12,12,	1.00 1.00 1.00 1.00 .995	.984 .979 .975 .973 .973	-971
			Energy	Mev	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,00,00,00,00,00,00,00,00,00,00,00,00,0	ઌૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	<i>ځಸ್</i> ರೇಸಂತಿ	65 80 80 80 80 80 80	06*

and positrons (including density correction) - Continued electrons of

			н <mark>н</mark>	g/cm ²	0,000229 ,000796 ,00167 ,00279 ,00279	04/L0 52200 52200 1/L0	.0280 .0450 .0644 .0856 .108	.132 .157 .209 .236	.263 .290 .318 .318 .3175	.404 .432 .461 .578 .696	. 814 . 932 1.05 1.29 1.29	1.40 1.52 2.21 2.79 2.79	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5
			-dE*/dx	Mev cm ² /g	24.1 13.8 8.00 6.75	12.20 12.00 12.10 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.0000 12.0000 12.0000 12.0000 12.00000 10.0000000000	0.02.03 0.03.03 0.03.0300000000	90 90 88 88 88 88 88 88 88 88 88 88 88 88 88	1,82 1,80 1,76 1,75	1,774 1,773 1,772 1,700 1,700	1,69 1,69 1,70 1,70	1, 71 1, 72 1, 72 1, 76 1, 76	1,81 1,81 1,83
/ - Continued	Anthracene	$I = 67_{\bullet}2 ev$	۲ _н	g/cm^2	0,000254 00181 00300 00300 00300	.00613 .00802 .0101 .0121 .0118	.0292 .01466 .0662 .0875 .110	.134 .159 .210 .236	.263 .290 .318 .316 .371	.1402 .1438 .572 .687	.803 .918 1.15 1.26	1,38 1,49 2,17 2,17 2,72	3.27 11.35 5.42
density correction			-dE ⁷ /dx	Mev cm ² /g	21_9 12_8 9_31 7_52 6_38	5,60 4,59 3,97	3, 12 2,69 2,111 2,27 2,15	2,06 2,006 1,95 1,91	1,85 1,81 1,80 1,79	1,78 1,77 1,76 1,74 1,74	1, 74 1, 74 1, 74 1, 74 1, 75 75	1,75 1,76 1,77 1,79 1,81	1-1-88 08 08
burnniour) suoins			Energy	Mev	0,021 032 004 054	.06 .076 .08 .09	20 25 25 25 25 25 25 25	1,			8.00 8.00 1.000 1.000	ດ. ເດີດ ເດີດ ເດີດ ເດີດ ເດີດ ເດີດ ເດີດ ເດ	6.0 10.0
and nue subtracted to a			R ⁺	g/cm ²	0,000712 .00223 .00147 .0104. .0104.	.0183 .0183 .0228 .0277 .0329	.0638 .101 .112 .187 .234	. 284 . 335 . 1411 . 1495	. 660 . 660 . 715				
oss and rang			×										
Energy 10	-	325 ev	-dE⁺/d	Mev cm ² /g	8,333 4,06 3,314 2,87 2,87	2,555 2,330 1,917 1,814	1,47 1,27 1,16 1,08 1,03	.992 .966 .9166 .931	. 126 . 905 . 897				
IABLE 1. ENErgy IC	Uranium	Z = 92, I = 1325 ev	R ⁻ -dE ⁴ /d	g/cm^2 Mev cm^2/g	0.000984 8.33 00271 5.33 00524 1.06 00522 3.31 00221 2.87	.0160 2,55 .0207 2,30 .0255 2,12 .0309 1,97 .0364 1,84	.0689 1.47 .107 1.27 .1195 1.28 .195 1.08	. 292 . 343 . 343 . 926 . 147 . 147 . 931 . 500	.542				
IABLE 1. ENErgy 10	Uranium	z = 92, $I = 1325$ ev	-dE [*] /dx R [*] -dE [*] /d	Mev ${\rm cm^2/g}$ ${\rm g/cm^2}$ ${\rm Mev}~{\rm cm^2/g}$	6.73 0.00084 8.33 1.55 0.0271 5.33 3.55 0.0534 1.006 2.97 0.00532 3.34 2.59 0.0121 2.87	2.32 .0160 2.55 2.12 .0207 2.30 1.96 .0255 2.12 1.63 .0309 1.97 1.73 .0364 1.84	1.440 .0689 1.47 1.24 .107 1.27 1.14 .119 1.27 1.07 .195 1.08 1.03 .242 1.03	.996 .292 .992 .974 .313 .966 .957 .394 .966 .914 .1417 .931 .935 .500 .919	.925 .554				
IABLE 1. ENERGY 10	Uranu	Z = 92, I = 1325 ev	Energy -dE [*] /dx R [*] -dB [*] /d	Mev Mev m^2/g g/cm^2 Mev cm^2/g	0.01 6.73 0.00084 8.33 .02 1.55 0.00271 5.33 .03 3.55 0.00534 1.006 .04 2.97 0.00532 3.34 .05 2.59 .0121 2.87	.06 2.32 .0160 2.55 .07 2.12 .0207 2.50 .08 1.96 .0255 2.12 .09 1.83 .0399 1.97 .10 1.73 .0364 1.84	.15 1.40 .0689 1.47 .20 1.24 .107 1.27 .25 1.14 .119 1.27 .30 1.07 .125 1.08 .35 1.03 .242 1.03	40	.65 .925 .554 .911 .911 .911 .911 .911 .911 .918 .928 .928 .918 .668 .918 .662 .900 .905 .916 .662 .900 .916 .915 .117 .916 .997				

		R*	g/cm ²	0,000222 000773 00162 002162 00205	.00559 .00734 .0028 .0114 .0137	.0273 .0439 .0627 .0834	129 153 178 203 230	.256 .3310 .365 .3310 .365		.793 .008 11.11 .25	2,148 2,148 2,159 2,159 2,159 2,150	3.26 7.42 422
		-dE+/dx	Mev cm ² /g	24.08 14.08 10.3 8.22 6.94	6.06 1.05 1.03 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.03 1.98 1.93 003	0013373 0013373		2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	200 200 200 200 200 200 200 200 200 200	н н 886 8868
) - Continued	Polystyrene T = 63 8 ew		g/cm ²	0,00021,7 00081,5 00176 00292 001,31,	.00596 .00781 .00983 .0120 .0120	.0284 .0453 .06141 .0652 .107	130 151 205 205	. 257 . 310 . 337 . 364	.391 1,119 .1,117 .558 .670	• 782 • 894 1• 01 1• 12 1• 23	2.65 65 65 2.11 65 65	3.19 1.24 5.29
density correction		-dE"/dx	Nev an ² /g	22.6 13.1 9.60 7.73 6.56	77. 16.73 1.336 1.038 1.038	3.20 2.76 2.50 2.33	2,12 2,005 1,96 1,92	л. 90 1.88 1.86 1.84 1.83 1.83	д. 82 1, 81 1, 81 1, 81 1, 79 1, 78	1,78 1,79 1,79 1,79 1,80	88,1 88,1 88,1 88,1 88,1 86,1 1 86,1 1 86,1 1 86,1 1 1 86,1 1 1 86,1 86,	д. 88 1.91 1.93
ssitrons (including		Energy	Mev	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 00 00 00 00 00 00 00 00 00 00 00	ភ <u>ុ</u> ទំភទំខំខំ	57.000 57.000 5	977.08 202002	90 111 111 111	±0030 00055	అజరంరం నినిణ చేసు	0°0 10°0
of electrons and p		*	g/cm ²	0,000225 000784 00164 00275 00275	.00567 .007141 .00940 .0116 .0139	.0276 .01444 .0635 .08455 .107	.130 .155 .180 .206 .233	.259 .287 .3142 .3142 .370	.399 .427 .456 .571	.804 .920 1.04 1.15 1.27	1,39 1,50 2,19 2,19 2,75	3.31 1.011 5.119 5.119
rgy loss and range		_dE, ⁺ /dx	Mev cm ² /g	24. 11 11. 0 10. 1 10. 1 6. 84	2882 2882 2882 2882 2882 2882 2882 288	2.21 2.19 2.19 2.30 2.18	2.08 2.01 1.95 1.91	1, 81 1, 82 1, 80 1, 79 1, 77	н 1, 73 2, 73 2, 73 2, 73 2, 73 2, 72 2, 72 2, 72 2, 72 2, 72 2, 72 2, 73 2, 73 2, 73 2, 73 2, 73 7,	1,72 1,72 1,72 1,72 1,72	1-73 1-74 1-76 1-78	н 1,80 1,833 1,833 1,833
TABLE 1. Ener	. Stilbene I = 65.4 ev	- E	g/cm ²	0,000250 000357 000357 00178 00296 001400	.00605 .00792 .00977 .0122 .0122	.0288 .0159 .0653 .0863	.132 .157 .182 .207 .233	.260 .311/ .311/ .369	.397 .121, .565 .579		90 20 20 20 20 20 20 20 20 20 20 20 20 20	3,23 5,30 5,36
		_dF"/dx	Mev cm ² /g	22.2 12.9 9.117 7.62 6.117	222250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 2500 25000 25000 25000 25000 25000 25000 25000 2500	2.16 2.15 2.30 2.30 2.18	2.03 1.93 1.93 2.03 1.93	1112 933 1283 1283 1283 1283 1283 1283 1283 12	1, 80 1, 79 1, 77 1, 77	1, 76 1, 76 1, 77 1, 77 1, 77	1,78 1,79 1,81	н. 85 1. 88 1. 90
		The Autor	Mev	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80,80,9,	70%ev	944 0 70 70 00 0 70 00 00	8027 800 770 800 770 800 800 800 800 800 80	90 97 97 97 97 97 97 97 97 97 97 97 97 97	, , , , , , , , , , , , , , , , , , ,	v v v v z v	6.0 8.0 10.0

		*#	g/cm ² 0.000224 .000781	00273 00408	00563 00740 00935 0115 0138	0275 01412 0631 0839	129 151 179 205 231	.257 .284 .312 .339 .357	.395 1121 1526 681	. 797 . 912 1. 03 1. 1.	1,37 1,68 2,17 2,17 2,72	3.27 5.44
		-dE ⁺ /dx	Mev cm ² /g 24.5 11.1 10.2	0°10 0°38 0°39	25739 2779 2779 2779 2779 2779 2779 2779 2		2,10 2,02 1,97 1,92 89	86 11-86 1-1-82 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			н н н ч ч ч 277 808 808 00	л_82 1_85 1_88
n) - Continued	Lucite I = 69 _e l ev	*e:	g/an ² 0.000250 000854 00178	• 00295 • 00438	.00602 .00788 .00992 .0121 .0115	.0286 .0457 .0649 .0858 .108	131 155 206 232	.258 285 339 366	.393 121 9449 560 673	,786 ,898 1,12 1,23	2,035 1,035 2,12 2,66 2,12 2,66	50 50 50 50 50 50 50 50 50 50 50 50 50 5
density correctio		-dE"/dx	Mev cm ² /g 22.3 13.0 9.51	6°50	7.5.4.4 6.0.3 6.0.3 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	3,18 2,18 2,18 2,18 2,19 2,19	2°,04 10°,04 2°,05	84 84 84 84 84 84 84 84 84 84 84 84 84 8		л. 77 1. 78 1. 78 1. 78 1. 78	н, 80 983 833 833 833 833 833 833 833 833 833	1,87 1,90 1,93
sitrons (including		Energy	Mev 0.01 03	.05	.06 .008 1098876	, 25, 25, 5 20, 25, 5 20, 25, 5 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,	0,1,1,0,0,0 0,7,0,0,0 0,0,0,0,0	677.0 807.070 807.072	чтг. • • 0 050 • • • • • • • • • • • • • • • • • • •	ЧНООО •••• •••• •••• •••• •••• ••••• ••••••	ನೆ ಬೆ ಬ ಎ ವೆ ಗ್ ನೆ ಬ ಬ ವೆ ಗ್ ನೆ ಬ ಬ ವೆ ಗ್	6,0 9,0 10,0
of electrons and pc		# +	g/cm ² 0.000204 LELOO2	00250	.00516 .00678 .00857 .0105 .0126	0252 00406 00772 0777	911- 165 189 213 213	2883 2883 2116 3314			224438 224438 254458 25444	3,05 1,05 08 08
rgy loss and range		-dE ⁺ /dx	Mev cm ² /g 27.0 15.1	8,91 7,51	500 50 50 50 50 50 50 50 50 50 50 50 50	985289 999 999 999 999 999 999 999 999 999	2,014 2,013 2,013 2,014 2,014 2,014	2,001 1,968 1,91 1,91 1,93	92 91 92 86 86 86	98 986 986 97 97 97 97 97	1,91 88 91 91 93	2,95 2,98 2,00
TABLE 1. Ene	Polyethylene I = 54.9 ev	R	g/cm ² 0.000255 000775 00161	.00269 .00399	00549 00720 00907 0111 0133	0263 0119 0596 0788 0993	121. 1643 1661. 1900.	238 2883 313 338	.364 .1115 .519 .5219	-728 -833 -938 -04 1-15	2,416 2,416 2,418 2,418	2,98 3,97 14,95
		-dE ⁷ /dx	Mev cm ² /g 24.6 14.3 10.14	8,38 7,11	5,512% 5,	w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2,28 2,28 2,15 2,07 2,07 2,07 2,07	20,00 01,090 1,998 966 966	1,05 9,05 1,09 1,09 1,09 1,09 2,09 2,09	16,11 16,11 16,11 16,11 16,11	111,92 96,92 96,96 96	2.00 2.03 2.06
		Energy	Mev 0.01 03	.05 05	00 002 008 008	220 220 250 250 250	0717.000 07.000 000000	65 850 850 850	н. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	440044 ••••••• 000044	νττω αν	10°0 10°0 10°

		в+	g/cm ²	0,000217 000756 00158 00265 00265	,00547 00908 00908 0112	.0267 .0429 .0614 .0817 .103	.120 .150 .199 218	2571 2771 304 328	.379 .112 .134 .515 .657	.769 .882 .994 1.11	2.55 600 600 600 600 600 600 600 600 600 6	3,18 4,24 5,29
		-dE+/dx	Mev cm ² /g	25,3 11,55 10,55 8,40 7,09	6.19 5.03 1.60 1.32 1.32	25 25 25 25 25 25 25 25 25 25 25 25 25 2	2,15 2,08 2,02 1,98 1,94	1,85 1,85 1,85 1,85 1,85 1,85 1,85 1,85	1,83 1,82 1,81 1,79 1,79	,78 78 78. 1. 78. 78. 1. 78	79 1-80 1-80 1-83	1.87 1.90 1.92
Continued	Xylene I = 61_2ev	ц	g/cm ²	0,000241 ,000825 ,00172 ,00285 ,00124	.00583 .00764 .00962 .0118 .0118	0278 01/1/1 0631 0835 105	,128 ,175 ,200	. 251 . 277 . 303 . 356	.383 1437 555 6555	• 765 • 8755 • 984 1-09 1-09	2.2.4.4.8 50.03 50.05 50.05 50.05 50.05 50 50 50 50 50 50 50 50 50 50 50 50 5	3.12 1.15 5.17
density correction) -		=dE ⁻ /dx	Mev cm ² /g	23.1 9.41 7.90 6.70	1662388 1662388 1662388	, 887 887 89 89 89 89 89 89 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80		н 	82888888888888888888888888888888888888	88 88 97 97 97 97 97 97 97 97 97 97 97 97 97	1,85 1,85 1,85 1,85 1,90 1,90 1,90	1.95 1.95 1.98
ositrons (including o		Energy	Mev	0.00.00 0.00.00 0.00.00	06 06 10 08 09	ઌ૾ઙૺ૾૾ૢઙ૾ૡ૾૾ૡ૾	<i>៰៓៸៶៓</i> ፘ៷៓៰	888. 888. 888. 888. 888. 888. 888. 888	тт. тт. т.	2000 2000 2000 2000	0000 000000000000000000000000000000000	0°00 10°00 10°0
of electrons and p		R ⁺	g/cm ²	0,000219 ,000763 ,00160 ,00267 ,00267	.00552 .00725 .00113 .0113	.0269 .01,33 .0619 .0823 .101	,127 ,151 ,175 ,201 ,226	.253 .279 .306 .333 .333	.388 1415 .555 .668	.781 .894, 1,01 1.23 1.23	2.67	3,21 1, 2 8 5,33
rgy loss and range		-dE ⁺ /dx	Mev cm ² /g	25,1 11,11 10,11 8,33 7,03	6,13 5,49 4,60 4,60	2,23 2,55 2,55 2,36 2,23 2,23	2, 11, 2, 05 2, 01 2, 96 1, 93		1,81,1 1,81,1 1,80,1 1,78 1,77	1, 77 1, 77 1, 77 1, 77 1, 78	1,78 1,79 1,79 1,82	1,86 1,89 1,91
TABLE 1. Ene	Toluene I = 62.3 ev	-H	g/cm ²	0,00021;3 000833 00173 00288 00288	00588 00771 00970 0119 011/2	.0281 .01418 .0636 .0816 .1106	.129 .177 .202 .227	. 253 . 279 . 305 . 332 . 332	.386 6111 .555 .660	.770 .880 .991 1.210 1.21	1,32 1,13 1,51 2,08 2,61	3.13 1.17 5.20
		-dE /dx	Mev cm ² /g	22°9 13,3 9,73 6,64	5,83 5,83 1,12 1,12 1,12 1,13	ຉຬຬ ຬຉຬຬຉ ຬຉຬຬຬ	2,15 2,08 1,99 1,95	1,903 1,903 1,86 1,86	1,85 1,84 1,84 1,82	1,81 1,82 1,82 1,82 1,83	1, 83 1, 84 1, 84 1, 87 1, 87	1.91 1.91, 1.96
		Energy	Mev	0°00 000 000 000 000 000 000 000 000 00	06 07 08 10 08 10	1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5	014 720 720 720 720	65 70 85 85		ୢ ୧.୧.୦.୯.୮ ୧.୧.୦.୦.୦.୦.୦.୦.୦.୦.୦.୦.୦.୦.୦.୦.୦.୦.୦.୦	అలంంం నినిగానిగు	6.0 8.0 10.0

			R+	g/cm ² 0,000440 00292 00292	.00963 .0126 .0158 .0193 .0230	.0451 .0718 .102 .135 .170	. 206 2444 322 362	- 403 - 4144 - 1186 - 527 - 569	6511 6653 8656 1.03	1,20 1,53 1,53		
			-dE+/dx	liev cm2/g 13.2 8.00 5.65 1.4.83	4,14 3,62 2,98 2,98 2,58 2,58 2,58 2,58 2,58 2,58 2,58 2,5	2.03 7.03 1.058 1.058	н 23 25 25 23 25 25 23 25 23 25 23 25 23 25 23 25 25 25 25 25 25 25 25 25 25 25 25 25	1,822 1,821 1,820 1,820 1,920	1,19 1,19 1,18 1,18 1,19	1,20 1,20 1,21		
on) - Continued	AgCL	I = 491 ev	R -	E/cm ² 0,000526 00164 00331 00334	0100 010138 01710 0200 0208	.0481 .0753 .106 .139	210 2148 3255 3657	1105 1115 586 557	• 650 • 650 • 650 • 690 • 855	ч. ч. 31. 50		
density correcti			-dE ⁻ /dx	Mev cm ² /g 11.11 7.11 5.38 11.12 1.12 1.12	2, 37 2, 37 2, 61 2, 61 2, 113	л. 97 - 797 - 1. 577 - 1. 1. 1. - 1. 0. 1. 1.	26 26 29 28 26 29 26 20 20 20 20 20 20 20 20 20 20 20 20 20	22 22 23 23 23 23 23 23 23 23 23 23 23 2	5255555 555555555555555555555555555555	Р. 23 1. 22 1. 25 25		
sitrons (including			Energy	Mev 0,01 03 004	9000000 900000000000000000000000000000	H	รี	лохох 20202	117 117 117 117 117 117 117 117 117 117	0 8 0 0 8 0		
rons and po				2221 0768 161	10 10 10 10 10 10 10 10 10 10 10 10 10 1	د شوش ا	~ -120 0.00	0.0000		N0 0		
e of elect			R +	g/ cm, 00,000 000,000		1000000			8.44 <u>7</u> ,83	52 52 53 53 53 54 54 54 54 54 54 54 54 54 54 54 54 54	2000 2000 2000 2000	3 . 18 14,23
loss and rang			⊷dE+/dx	Mev cm ² /g 24:9 11:-3 10.41 8.31	28 28 28 28 28 28 28 28 28 28 28 28 28 2	54 537 537 537 537 537 537 537 537 537 537	2.07 2.07 2.02 1.97 1.94	10,000 0,000000	1-83 -83 -82 -79 -79 -79 -78	1, 78 1, 78 1, 79 1, 79		1,88 1,91
TABLE 1. Energy	H ₂ 0	$I = 7h_*I ev$	R**	الا / مسا ² 0,000217 1,0002175 0,00220 0,0220	16100. 17200. 17700. 1710. 1710.	1820. 8440. 6636. 1480.	,129 ,152 ,177 ,201	. 252 . 252 . 301 . 331 . 331	.3804 1113 556 556	• 766 • 8756 • 981 1• 09	2,58 2,53 2,58 2,58 2,58	3.10 4.13
			-dE /dx	Mev cm2/g 22.6 13.2 9.68 7.80	0.02 5.81 15.22 14.11 14.12	221 2,53 2,53 2,53 2,36 2,21 2,21	2,15 2,00 2,00 1,96	1,94 1,92 1,89 1,87	888888 4444	1,83 8,43 1,58 8,4 8,4 1,2 8,4 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	1,1,1,8,8,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	1.93 1.97
			Energy	Mev 001 001 001 001 001 001	06 06 09 09 09 00 01	ઌ <u>૾</u> ૾ૢૢૢૢૢૢૢૢઌૢૢૢૢૢૢૢઌૢૢૢૢૢૢૢૢૢ	57.000 07.0000	805 805 805	5002 5002 5002 5002 5002 5002 5002 5002	00001 00001	00000 00000 000	6°0 8

Fnar

		н ^н	g/ cm ²	0.000397 00131 00269 00142 00442	400800. 7LL0. 7LL0. 08L0. 0LL20.	0422 0673 0957 152	.194 .230 .306 .302		5778 618 658 819 980	1,16 1,30 1,16 1,16
		=dE ⁺ /dx	Mev cm ² /g	년 ** 80.0 년 년 년 년 년 년 년 (1 1 (1 1 (1 1 (1 1 (1 1 (1 (2,20 2,19 2,19 2,20 2,19 2,20 2,20 2,20 2,20 2,20 2,20 2,20 2,2	2. - 1. - 88 - 1. - 58 - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 1.	1.12 38 1.33 32 1.33 32 32 1.33 32 1.33 1.33 1.	288 288 286 286 286 286 286	255733 255733 25777	1,255 1,255 255
CONTINUED	Emulsion $I = 373 ev$	۲ ₆₂	g/cm ²	0,0001468 001149 00302 001490	.00978 .0127 .0159 .0194	.0146 .0703 .130 .163	197 233 306 313	.381 .420 .458 .497 .536	•575 •6514 •810 •810	1,12 1,28 1,13
inising correction		-dE_/dx	Mev an ² /g	12.6 7.75 5.83 1.,77	3,62 3,01 2,80 2,80 2,63 2,63	2,10 1,82 1,66 1,56	1,43 1,39 1,37 1,31 1,33	1,31 1,33 1,29 1,28	1,28 1,28 1,28 1,28 1,28	1,28 1,29 1,30
sitrons (including o		Energy	Mev	0,01 02 04 04	00 08 10 09 09	20 25 30 35	40 555 60		т. 500 т. 500 т. т. 500 т. т. 500 т. т. 500 т. 500	086 24.4
of electrons and po		R ⁺	g/cm ²	0,000471 00152 00310 00506 00747	.0102 0133 0166 0203 .0212	01755 00.07555 101.07 1708	.216 .256 .338 .380	-1122 -509 -552 -552	.6410 .6814 .728 .9014 1.08	1,26 1,33 1,60
rgy loss and range		-dE+/dx	Mev cm ² /g	12.44 7.544 3.57 3.90	2.444 2.414 2.63 2.63 2.463 2.466	10,07 10,070	1,28 1,25 1,18 1,18	1,15 1,15 1,15 1,15 1,15 1,15 1,15 1,15	ភាភាភាគ ភាភាភាគ	1,15 1,15 1,15
a l										
TABLE 1. En	Ag Br 574 ev	R.	g/cm ²	0,000572 ,00176 ,00354 ,00569 ,00832	2LI0. 3dL00. 1810. 2262.	.0505 .0792 .111 .116 .183	.221 .260 .300 .382	41211 1166 558 555	• 636 • 679 • 722 • 894 1.06	1,23 1,40 1,57
TABLE 1. En	Ag Br 574 ev	-dE ⁻ /dx R ⁻	Mev cm ² /g g/cm ²	10.6 0.000572 6.68 .00176 5.07 .00551 1.17 .00569 3.59 .00832	3.19 2.89 2.66 2.66 2.16 2.18 2.33 0222	1,87 1,63 1,63 1,149 1,149 1,140 1,146 1,34 1,34 1,34	1.29 .221 1.26 .260 1.23 .300 1.22 .311 1.20 .382	1,19 1,19 1,18 1,17 1,17 1,17 1,17 1,17 1,17 1,17	1,17 1,17 1,17 1,17 1,17 1,22 1,06 1,06	1,18 1,23 1,19 1,40 1,20 1,57

E 1. Energy loss and range of electrons and positrons (including density correction) - C

			+ 24	g/cm ²	0°700180 \$100 \$1500 \$1000 \$1000 \$1000 \$1000 \$1000\$1000	0104 0135 0169 0207 0207	0484 0769 1095 1181	. 220 . 261 . 302 . 314 . 387	1130 1174 518 563	. 652 . 7112 . 922
			-dE+/dx	Mev cm ² /g	12, 2 7,41 5,52 3,63 3,83	22233 2578 2578 2578 2578	1_90 1_64 1_148 1_338 1_338	1,22 1,22 1,17	21 1,12 1,12 1,12 1,12 1,12 1,12 1,12 1	1.12 11.1 11.1 11.1
n) - Continued	IaI	I = 562 ev	L.	g/cm ²	0,000580 00179 00360 00579 00579	41LL0. 1810 0225 0225	,0807 0807 04113 0411	225 265 3147 3147	-1132 -1175 -552 -562 -605	• 619 • 693 • 736 • 912
density correctio			-dE"/dx	Mev cm ² /g	10.tr 6.57 98 .53 .53 .53 .53 .53	2.2.8.13 2.6.11 2.2.6.1 2.2.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	1.84 1.60 1.16 1.37 1.37	1,27 1,24 1,21 1,19 1,18		
sitrons (including			Energy	Mev	0,01 02 01 05	06 08 10 00 00 00 00 00 00	202 2020 2020 2020 2020 2020 2020 2020	67.07.6 8.707.6 8.707.6	65 770 88 87 7500 75	• • • • • • • • • • • • • • • • • • •
e of electrons and p			+a	g/cm ²	0,000511 ,00163 ,00332 ,00542 ,00798	0109 011/2 01770 0217 0258	.0505 .0802 .111, .150 .189	,229 ,211 ,311, ,358 ,103	148 193 539 585 632	. 771 . 771 . 771
ergy loss and range			-dE+/dx	Mev cm ² /g	11. 204 3.204 3.205 204 204 205 205 205 205 205 205 205 205 205 205	2,23 2,47 2,31 2,31 2,31	1,17,18 1,17,17 1,17,17 26 26 26	1287241 1287241	0000 100000000000000000000000000000000	д. 08 1.07 1.07
IABLE I. EN	IFI	I = 636 ev	L	g/cm ²	0,000623 00190 00381 00611 00612	0120 0156 0194 0236	0538 0843 1118 155 194	234 276 318 362 105	.150 .1914 .539 .5814 .629	. 720 . 720 . 947
			-dE"/dx	Mev cm ² /g	330357 39057 39057 30050057 300057 300057 300057 300057 300057 300050000000000	0.0201 0.0201 19.0202 19.0202	н 1,514 1,611 1,32 26	386295 1917 1917 1917 1917 1957 1957 1957 19		1,10 1,10 1,10 1,10
			Energy	Mev	0,01 02 03 05 05	06 08 09 10	H.0.200 W.	077.0000 07.0000	9.5.7.8 20.20 20 20 20 20 20 20 20 20 20 20 20 20 2	р. 2005 Р. 2005

Energy loss and range of electrons and positrons (including density correctio

	Sn	0.00028 .00041 .00054 .00056 .00058 .00078 .00078	.0014 .0015 .0017 .0026 .0039 .0054 .0073 .0073 .012 .012 .018 .018 .012 .025 .072 .072
	Ag	0.00019 .00028 .00028 .00040 .00044 .00050 .00055	.00069 .00079 .00090 .0014 .0022 .0036 .0073 .0073 .0073 .015 .015 .018 .018 .018
	Cu	0.00018 .00030 .00042 .00042 .00073 .00073 .00011 .0011	.0016 .0020 .0023 .0039 .0086 .0086 .015 .015 .019 .019 .013 .013 .033 .033 .033 .033 .033 .033
- S	ы Ч	0.00021 .00035 .00050 .00067 .00087 .0014 .0016 .0020	.0027 .0031 .0036 .0058 .0085 .0085 .0029 .029 .029 .029 .029 .029 .029 .02
o dE	Al	0.00016 .00026 .00039 .00055 .00055 .00055 .00055 .0012 .0012 .0018 .0015	.0030 .0034 .0063 .0063 .0063 .013 .016 .016 .025 .035 .035 .035 .035 .0376 .041
	Mg	0.00017 .00026 .00034 .00065 .00053 .00053 .00053 .00053 .00033 .00011	.0015 .0018 .0020 .0033 .0051 .007 .019 .019 .019 .023 .023 .023 .023 .023 .023 .023 .023
	U	0.00014 .00028 .00045 .00068 .0013 .0016 .0016 .0021 .0021 .0036 .0036	.0056 .0064 .0072 .017 .015 .015 .019 .036 .048 .048 .048 .048 .048 .048 .048 .055 .14
	Be	0.00020 .00039 .00065 .00098 .0014 .0018 .0018 .0014 .0018 .0014 .0036 .0036 .0052	.0079 .0089 .0099 .015 .026 .040 .047 .047 .063 .063 .072 .081
	Li	0.000020 .000057 .000016 .00016 .00026 .00039 .00078 .0013 .0013 .0013 .0013 .0013 .0013 .0013 .0013 .0017	.0036 .0042 .0048 .0077 .011 .015 .015 .025 .036 .043 .043 .043 .043 .043 .043 .043 .043
	Energy Mev	0.20 .25 .35 .35 .40 .45 .65 .65 .75 .80 .85	.90 .00 .00 .00 .00 .00 .00 .00 .00 .00

.17

.18

.24 .34

.37

.35

.22

.30

.51

.30

8.0 10.0

The difference in range with and without the density correction for electrons - Continued TABLE 2.

	Lucite	0.000058 .00015 .00029 .00047	.00070 .00098 .0013 .0017	.0025 .0030 .0035 .0060	.013 .017 .021 .026 .031	.036 .042 .048 .081 .12	.16 .25 .36
	Polyethylene	0.000047 .00014 .00028 .00028 .00048	.0010 .0014 .0017 .0022 .0027	.0032 .0037 .0044 .0071 .010	.014 .019 .023 .028 .034	.039 .045 .051 .086	.17 .26 .36
	Polystyrene	0.000023 .000089 .00020 .00035 .00035	.00080 .0011 .0014 .0018 .0022	.0027 .0032 .0037 .0063 .0063	.013 .017 .021 .026 .031	.037 .043 .049 .082 .12	.16 .26 .36
$\int_{a}^{b} \frac{E}{b} \frac{i}{s} \frac{\delta}{s}$	Stilbene	0.000046 .00013 .00026 .00043 .00065	.00092 .0012 .0016 .0020	.0029 .0034 .0040 .0067	.014 .018 .022 .027 .032	.038 .044 .050 .085	.17 .26 .37
	Anthracene	0.00029 .00010 .00023 .00039 .00039	.00088 .0012 .0015 .0020 .0024	.0029 .0034 .0067 .010	.014 .017 .023 .023 .033	.038 .045 .087 .13	.17 .27 .37
	U		0.00033 .00051 .00067 .00085	.0010 .0012 .0013 .0021 .0031	.0045 .0061 .0082 .010	.016 .019 .023 .045	.11 .16 .28
	Pb			0,00029 .00048 .0012 .0019	.0027 .0038 .0050 .0065	.010 .012 .015 .030 .031	.077 .14 .21
	Au		0.00026 .00039 .00053 .00065	.00079 .00091 .0011 .0018	.0041 .0058 .0078 .010	.015 .020 .022 .046	.11 .19 .28
	M		0.00038 .00058 .00077 .00094	.0011 .0013 .0015 .0023	.0047 .0065 .0085 .011 .014	.017 .020 .046 .076	.11 .19 .29
	Energy Mev	0.40 .45 .50 .55	.65 .70 .80 .85	.90 .95 1.0 1.4	1.6 1.8 2.2 2.2	2.6 5.0 5.0	6.0 8.0 10.0

The difference in range with and without the density correction for electrons - Continued TABLE 2.

The difference in range with and without the density correction for electrons - Continued TABLE 2.

	NaI			0.000020 .000077 .000090	.00043 .0010 .0020 .0032	.0047 .0064 .0085	.013 .016 .033 .055	.080 .14 .21
	LiI			0.000027 .000067	.00036 .0011 .0020 .0034	.0050 .0070 .0091 .011	.014 .017 .035 .058	.084 .15 .22
	Emulsion		0.000046 .000087 .00014	.00021 .00030 .00041 .00053	.0013 .0024 .0039 .0058	.0080 .011 .014 .017	.020 .024 .047 .075	.11 .18 .27
د. د.	AgBr				0.00038 .00099 .0019	.0031 .0046 .0065 .0086	.011 .014 .031 .054	.082 .15 .23
	AgC1				0.00044 .0011	.0021 .0035 .0052 .0072	.0095 .012 .029 .051	.079 .14 .22
	Η2 ⁰	0.000062	.00023 .00037 .00055 .00076	.0010 .0013 .0016 .0020	.0038 .0061 .0089 .012	.016 .020 .024 .028	.033 .038 .067 .10	.14 .22 .31
	Xylene	0.000061 .00011 .00022 .00035	.00054 .00075 .0010 .0013	.0017 .0020 .0025 .0029	.0051 .0078 .011 .015	.019 .023 .028 .033	.038 .043 .075	.15 .24
	Toluene	0.000055 .00014 .00026	.00043 .00062 .00087 .0011	.0015 .0018 .0022 .0026	.0047 .0073 .010 .014	.018 .022 .027 .031	.037 .042 .073 .011	.15 .23 .33
	Energy Mev	0.45 .50 .60	.65 .70 .75 .80	.85 .90 .95 1.0	1.2 1.4 1.6	2.0 2.4 2.6	2.8 3.0 5.0	6.0 8.0 10.0

1	1	1						
	Sn		0.00022	.00048 .00062 .00076 .00092 .0011	.0013 .0015 .0025 .0038 .0054	.0074 .0097 .012 .015	.022 .026 .048 .076 .11	.18
	Ag			0.000084 .00014 .00020 .00027 .00035	.00044 .00056 .0012 .0022 .0036	.0054 .0075 .010 .013	.019 .023 .046 .075	.19
	Cu		0.00018 .00030 .00044 .00058	.00076 .00096 .0012 .0014	.0020 .0024 .0063 .0063	.012 .016 .020 .025	.035 .040 .073 .11	.25
ζ ^E <u>ε</u> dE' b B ⁺ S ⁺ dE'	Ъе	0.00021	.00036 .00051 .00068 .00089 .0011	.0014 .0017 .0020 .0024 .0028	.0033 .0037 .0061 .0089 .012	.016 .021 .025 .031	.042 .048 .084 .12 .17	.27 .39
	Al	0.00016 .00027	.00040 .00056 .00074 .00097 .0012	.0015 .0019 .0022 .0026	.0036 .0041 ⁷ .0064 .0095	.017 .021 .026 .031	.043 .049 .084 .12	.27
	Mg	0.00017	.00035 .00035 .00053 .00054	.00079 .0010 .0011 .0014 .0016	.0019 .0021 .0035 .0053	.010 .013 .017 .020	.029 .033 .060 .092 .13	.21 .30
	U	0.00014 .00027 .00045 .00067	.00095 .0013 .0017 .0021 .0026	.0031 .0037 .0044 .0050 .0058	.0065 .0074 .011 .015 .021	.026 .032 .038 .044 .051	.058 .065 .11 .15 .20	.31 .43
	Be	0.00019 .00038 .00064	.0014 .0018 .0024 .0030	.0044 .0053 .0061 .0071 .0081	.0091 .010 .015 .021 .027	.034 .041 .049 .058 .066	.075 .085 .14 .26	.39
	Li	0.000090 .00012 .00016 .00023 .00032	.00045 .00062 .00085 .0011 .0014	.0018 .0022 .0027 .0037	.0043 .0050 .0080 .012 .016	.021 .026 .032 .038 .045	.052 .059 .10 .15	.31 .44
	Energy Mev	0.20 .25 .30 .40	.45 .50 .60 .65	.70 .75 .80 .90	.95 1.0 1.2 1.6	1.8 2.2 642.6	0.000 6.000 0.000	8.0 10.0

The difference in the range with and without the density correction for positrons TABLE 3.

panuti		: Lucite	0.000058 .00015 .00029 .00048	.00072 .0010 .0013 .0017 .0021	.0026 .0031 .0028 .0063	.013 .017 .022 .032 .032	.037 .044 .049 .085 .12	.17 .27 .37
ILLUNS - CON	-	Polyethylene	0.000048 .00014 .00029 .00049 .00074	.0010 .0014 .0018 .0022	.0033 .0039 .0045 .0074 .011	.015 .019 .024 .030	.041 .047 .054 .050 .13	.18 .27 .38
sod ini unin		Polystyrene	0.000023 .000090 .00020 .00036 .00036	.00081 .0011 .0015 .0018	.0028 .0033 .0038 .0065 .0097	.013 .018 .022 .033	.039 .045 .051 .13	.17 .27 .38
HIST CALLE		Stilbene	0.000046 .00013 .00026 .00044	.00094 .0013 .0016 .0020 .0025	.0030 .0036 .0069 .010	.014 .019 .023 .029	.040 .046 .053 .089	.18 .28 .39
ו MT הזוטטור נוופ מפ	$\int_{0}^{E} \frac{\delta}{B^{+}S^{+}} dE^{+}$	Anthracene	0.000030 .00011 .00023 .00040 .00062	.00090 .0012 .0016 .0020	.0030 .0035 .0041 .0070	.014 .019 .024 .029	.041 .047 .054 .091	.18 .28 .39
ande withi ann		Ŋ			0.00028 .0013 .0022	.0038 .0054 .0078 .010 .013	.016 .020 .024 .048 .077	.11 .20 .29
ILCE TIL CILE I		Pb			0.00031 .00050 .0013 .0021	.0029 .0040 .0053 .0069 .0087	.011 .013 .016 .033	.082 .15 .23
ATATITN AUT		Au			0.00022 .00038 .0011 .0022	.0036 .0054 .0076 .010	.016 .020 .024 .049 .080	.12 .20 .30
IADLE J.		Μ			0.00031 .00050 .0014 .0025	.0040 .0058 .0080 .011	.017 .021 .025 .050	.12 .21 .31
		Energy Mev	0.40 .45 .50 .55	.65 .70 .80 .85	.90 .95 1.0 1.4	2.2088 4.2.088 2.2	2.6 5.0 6.0	6.0 8.0 10.0

۲. ۲ μ μ μ μ μ 7 H+ ;... 44 . 7 ĥ TARLF 3

5		NaI			0.000021 .000038 .000035	.00045 .0011 .0021 .0034	.0049 .0068 .0090 .011	.014 .017 .035 .058	.085 .15 .22
-		LiI			0.000029 .000071	.00046 .0012 .0033 .0037	.0054 .0075 .0098 .012	.015 .018 .038 .062	.090 .16 .23
		Emulsion		0.000048 .000090 .00015	.00022 .00031 .00042 .00056	.0013 .0025 .0041 .0061	.0085 .011 .014 .018	.022 .026 .050 .080	.11 .19 .29
		AgBr				0.00040 .0010 .0020	.0033 .0049 .0069 .0092	.012 .015 .033 .058	.087 .16 .24
	ر ۳+ ∞ ۳+ ∞	AgC1				0.00047 .0012	.0023 .0037 .0055 .0076	.010 .013 .031 .051	.084 .15 .24
)		H ₂ 0	0.000019	.00019 .00033 .00052 .00074	.0010 .0013 .0017 .0020	.0039 .0064 .0093 .013	.016 .021 .025 .030	.035 .040 .071 .11	.14 .23 .33
		Xylene	0.000018 .000079 .00018 .00018	.00051 .00074 .0010 .0013	.0017 .0021 .0025 .0030	.0053 .0081 .011 .015	.019 .024 .034	.040 .046 .078 .12	.16 .35
		Toluene	0.000056 .00014 .00026	.00043 .00064 .00089 .0012	.0015 .0019 .0023 .0027	.0049 .0076 .011 .015	.019 .023 .028 .033	.038 .044 .076	.15 .25 .35
		Energy Mev	0.45 .50 .55	.65 .70 .75 .80	.85 .90 .95 1.0	1.2 1.6 1.8	2.2 2.4 2.6	2.8 3.0 5.0	6.0 8.0 10.0

The difference in the range with and without the density correction for positrons - Continued TABLE 3.

	AgBr			0.00402	.00943 .0149 .0217 .0298	.0386 .0481 .0580 .0689	.115 .165 .217 .268	.320 .371 .422 .471	.519 .567 .789 .989	1.17 1.48 1.75
	H ₂ 0		0.00688 .0124	.0234 .0382 .0558 .0755	.0964 .118 .141 .165	.189 .214 .239 .264	.363 .462 .558 .651	742 829 913 994	1.07 1.15 1.49 1.79	2.05 2.49 2.86
	Poly- styrene		0.0256 .0591	.0930 .128 .163 .197	. 231 . 265 . 299 . 332	.365 .397 .429 .460	.581 .695 .803 .905	1.00 1.09 1.18 1.27	1.35 1.43 1.78 2.07	2.33 2.77 3.13
TAMIN	Anthracene		0.0004 <i>5</i> 8 .0365 .0733	.110 .147 .184 .221	.256 .292 .327 .361	.395 .428 .460 .492	.616 .731 .840 .943	1.04 1.13 1.22 1.31	1.39 1.47 1.82 2.11	2.38 2.81 3.17
nn fiitd	D			0.0156 .0175 .0204	.0255 .0310 .0377 .0377	.0537 .0623 .0711 .0804	.120 .162 .205	.291 .333 .375 .416	.455 .495 .679 .845	.995 1.26 1.49
	qd					0.0205 .0250 .0293 .0351	.0609 .0915 .125 .160	.196 .232 .268 .304	.340 .376 .545 .701	.844 1.10 1.32
S-G INTERCONTRACTOR AND AND A STREAM AND AND A STREAM AND	Sn			0.0021 3 .00499 .00959	.0156 .0226 .0306 .0396	.0489 .0592 .0693 .0805	.126 .174 .22 3 .271	.320 .367 .414 .459	504 548 752 934	1.10 1.39 1.64
	Ag			0.00377	.0291 .04.32 .0581 .0731	.0887 .105 .120 .137	. 203 . 268 . 333 . 395	.457 .516 .574 .629	.684 .737 .979 1.19	1.38 1.71 1.99
	ũ		0.0172 .0256 .0376 .0544	.0731 .0940 .1116 .138	.160 .184 .206	.253 .276 .299 .322	.412 .499 .582 .661	.738 .811 .882 .950	1.01 1.08 1.36 1.61	1.83 2.20 2.50
	Al					0.00232 .0170 .0367	.116 .197 .278 .358	.436 .511 .581 .656	.725 .792 1.10 1.37	1.60 2.00 2.34
	U		0.0137 .0365 .0647 .0959	.129 .163 .198	.268 .303 .338	.406 .440 .473 .506	.634 .754 .869 .978	1.08 1.18 1.27 1.36	1.45 1.53 1.90 2.22	2.49 2.95 3.32
	Be		0.0128 .0316 .0572 .0871	.119 .1 <i>53</i> .188 .224	.259 .295 .331	.401 .436 .471 .505	.637 .763 .882 .996	1.10 1.21 1.30 1.40	1.49 1.57 1.96 2.28	2.56 3.42 3.42
	Li		0.0381 .0697 .104 .141	.178 .215 .25 3 .290	.327 .363 .399 .435	.572 .572	.700 .821 .935 1.04	1.15 1.24 1.33 1.42	1.51 1.59 1.95 2.26	2.53 2.98 3.35
	ENERGY	MEV	. 25 	4 5 5 7 5 7 9	. 65 . 7 . 8 . 8	.85 .9 1.0	1.2 1.6 1.8	0 0 4 9 0 7 7 0	5.00 5.00 5.00	6.0 8.0 10.0

TABLE 4. The density correction $\delta_{D_{-C}}$ to the stopping number

AgBr	0.000512 .00161 .00327 .00528 .00528	.0105 .0136 .0170 .0207 .0246	.0477 .0750 .106 .139 .174	.210 .248 .286 .326 .365	.406 .446 .528 .528	.611 .652 .693 .860 1.03	1.19 1.36 1.5≥		
н ₂ 0	0.000241 .000824 .00171 .00285 .00423	.00581 .00761 .00958 .0117 .0140	.0277 .0442 .0628 .0830 .0830	.127 .150 .174 .199 .224	.249 .275 .301 .327 .353	. 380 406 . 433 . 540 . 549	.757 .865 .973 1.08 1.19	1.30 1.51 2.56	3.07 4.09
Poly- styrene	0.000242 .000831 .00173 .00288 .00428	.00588 .00771 .00970 .0119 .0142	.0281 .0448 .0637 .0843 .106	.129 .153 .177 .228	.254 .281 .307 .354 .361	.388 .416 .554 .665	.777 .888 1.00 1.11	1.33 1.44 1.55 2.10 2.64	3.17 4.22 5.26
Anthracene	0.000260 .000857 .00179 .00296 .00241	.00605 .00794 .0123 .0123	.0306 .0489 .0702 .0928 .117	.143 .170 .225 .253	.283 .312 .342 .371	.432 .463 .493 .617 .742	.867 .993 1.12 1.24 1.37	1.49 1.62 1.74 2.36 2.97	3.57 4.76 5.94
n	0.000795 .00232 .00463 .00720 .0107	.0142 .0185 .0228 .0278 .0278	.0629 .0980 .138 .180 .224	.270 .318 .416 .416	.517 .568 .619 .671				
Pb	0.000735 .00218 .00436 .00692 .0101	.0136 .0175 .0218 .0264 .0313	.0599 .0936 .131 .172 .215	.259 .305 .351 .447	. 495 . 544 . 593 . 642				
Sn	0.000568 .00176 .00356 .00573 .00840	.0114 .0137 .0184 .0214 .0265	.0512 .0805 .113 .148	. 225 . 265 . 347 . 432	.475 .519 .606 .650	.694 .738 .915 1.09			
Ag	0.000535 .00167 .00537 .005444 .00798	.0108 .0140 .0175 .0213 .0253	.0488 .0768 .108 .142 .177	.214 .253 .292 .332 .372	.413 .455 .538 .538	.622 .665 .707 .877 .05			
Cr	0.000438 .00141 .00287 .00468 .00468	.00936 .0122 .0152 .0186 .0221	.0430 .0678 .0957 .126 .158	.191 .226 .261 .257 .334	.371 .409 .447 .485	. 562 . 600 . 794 . 794	1.11 1.26 1.42 1.57 1.72	1.87 2.03	
Al	0.000335 .00112 .00250 .00279 .00579	.00767 .0100 .0126 .0154 .0183	.0359 .0570 .0808 .107 .134	.162 .192 .222 .253	.317 .349 .381 .414 .416	.479 .512 .545 .678 .812	.945 1.08 1.21 1.34 1.48	1.61 1.74 1.87 2.51 3.15	3.77
U	0.000274 .000356 .00194 .00323 .00479	.00658 .00861 .0108 .0133 .0159	.0313 .0498 .0708 .0936 .118	.143 .170 .225 .253	.282 .311 .341 .370 .400	.430 .461 .491 .613 .737	.860 .984 1.11 1.25 1.35	1.48 1.60 1.72 2.32 2.92	3.51 4.68
Be	0.000294 .00101 .00210 .00349 .00520	.00714 .00936 .0118 .0144 .0173	.0341 .0544 .0774 .102 .129	.157 .186 .216 .246 .277	.309 .34 1 .406 .439	.472 .505 .539 .673 .809	.945 1.08 1.22 1.49 1.49	1.62 1.76 2.56 3.22	3.87 5.16
Li	0.000270 .000941 .00197 .00329 .00490	.00675 .00886 .0112 .0137 .0164	.0325 .0520 .0741 .0982 .124	.151 .179 .208 .258	.298 .330 .361 .425	.457 .489 .522 .653 .785	.918 1.05 1.78 1.72 1.45	1.58 1.71 2.49 3.14	3.78 5.04 6.28
Energy Mev	.01 .02 .04 .05	06 08 09 10 09		44.00 00 00 00 00	.65 .75 .85 .85		1.0 0.0 4.0 0 4.0 0 4.0 0 1.0	000 2000	6. 8. 10.

TABLE 5. Range of electrons including $\delta_{\rm B-S}$

:

. .

· ·

,

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its headquarters in Washington, D. C., and its major laboratories in Boulder, Colo., is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside front cover.

WASHINGTON, D. C.

Electricity and Electronics. Resistance and Reactance. Electron Devices. Electrical Instruments. Magnetic Measurements. Dielectrics. Engineering Electronics. Electronic Instrumentation. Electrochemistry.

Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Engineering Metrology.

Heat. Temperature Physics. Thermodynamics. Cryogenic Physics. Rheology. Engine Fuels. Free Radicals Research.

Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Neutron Physics. Nuclear Physics. Radioactivity. X-rays. Betatron. Nucleonic Instrumentation. Radiological Equipment.

Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. try. Inorganic Chemistry. Electrodeposition. Molecular Structure and Properties of Gases. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.

Mechanics. Sound. Mechanical Instruments. Fluid Mechanics. Engineering Mechanics. Mass and Scale. Capacity, Density, and Fluid Meters. Combustion Controls.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion. Metal Physics.

Mineral Products. Engineering Ceramics. Glass. Refractories. Enameled Metals. Concreting Materials. Constitution and Microstructure.

Building Technology. Structural Engineering. Fire Protection. Air Conditioning, Heating, and Refrigeration. Floor, Roof, and Wall Coverings. Codes and Safety Standards. Heat Transfer.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics.

Data Processing Systems. SEAC Engineering Group. Components and Techniques. Digital Circuitry. Digital Systems. Analog Systems. Application Engineering.

Office of Basic Instrumentation.
Office of Weights and Measures.

BOULDER, COLORADO

Cryogenic Engineering. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Gas Liquefaction.

Radio Propagation Physics. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services. Sun-Earth Relationships. VHF Research.

Radio Propagation Engineering. Data Reduction Instrumentation. Modulation Systems. Navigation Systems. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Radio Systems Application Engineering. Radio Meteorology.

Radio Standards. High Frequency Electrical Standards. Radio Broadcast Service. High Frequency Impedance Standards. Electronic Calibration Center. Microwave Physics. Micro-wave Circuit Standards.

NATIONAL BUREAU OF STANDARDS PUBLICATIONS RELATING TO RADIATION PHYSICS

Graphs of the Compton Energy-Angle Relationship and the Klein-Nishina Formula From 10 Kev to 500 Mev

The Compton energy versus angle relationship and the differential and integral Klein-Nishina cross sections are presented graphically as functions of the energy and direction of the scattered photon and of the recoil electron. These graphs are intended to serve the purpose of tables. Unpolarized primary gamma rays in an energy range from 10 Kev to 500 Mev are considered. The accuracy of all curves is estimated at 1 percent. The advantage of this form of presentation is the convenience and accuracy of two-way interpolation. In general, interpolated values may be obtained with an accuracy of 2 percent.

National Bureau of Standards Circular 542, 89 pages, 81 graphs. Available by purchase from the Superintendent of Documents, Government Printing Office, Washington 25, D. C., price 55 cents.

Energy Loss and Range of Electrons and Positrons

Tabulations of the mean energy loss due to ionization and excitation and the range derived from this quantity are given for electrons and positrons in several materials.

National Bureau of Standards Circular 577, 30 pages, 10 graphs. Available by purchase from the Superintendent of Documents, Government Printing Office, Washington 25, D. C., price 30 cents.

X-Ray Attenuation Coefficients From 10 Kev to 100 Mev

A tabulation of attenuation coefficients of X-rays and gamma rays from 0.01 to 100 Mev for 29 materials is presented. A summary of information on the probability of the basic interaction processes of photons with matter and a detailed analysis of experimental and theoretical evidence are included. Present information on the basic processes is adequate for many applications; however, improved theory and additional experimenta₁ data are needed in certain areas. A comparison of calculated and experimental coefficients points up this need

National Bureau of Standards Circular 583, 54 pages, 7 figures, 41 tables. Available by purchase from the Superintendent of Documents, Government Printing Office, Washington 25, D. C., price 35 cents.