
NBS CIRCULAR 544 

Formulas for Computing 

Capacitance and Inductance 

UNITED STATES DEPARTMENT DF COMMERCE 

NATIONAL BUREAU OF STANDARDS 





UNITED STATES DEPAR'mENT OF COMMERCE • Sinclair Weeks, Secretary 

NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director 

Formulas for Computing 

Capacitance and Inductance 

Chester Snow 

National Bureau of Standards Circular 544 
Issued September 10, 1954 

For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. 

Price 40 cents 



Contents 

Page 

Introduction_ 1 

1. Capacitance_ 2 

1.1. Parallel Plates With Guard Planes_ 3 

a. Coplanar Guard and Electrode_ 3 

b. Electrode at Bottom of Hole in 

Guard_ 4 

1.2. %)heres or Cylinders_ 5 

a. Concentric Case_ 5 

b. Plane With %)here or Cylinder_ 6 

c. Eccentric Spheres or Cylinders 

(Internal Case, ^<h<a^-a^)_ 7 

d. Eccentric Spheres or Cylinders 

(External Case, 6>0^+02)_ 8 

1.3. %)heroids_ 8 

a. A Thin Circular Ehsk of Radius a__ 8 

b. Cfclate Spheroid_ 9 

c. Prolate Spheroid_ 9 

1.4. Toroidal Surface_ 9 

1.5. Conductor Bounded by Two Intersecting 

^heres..   10 

2. Inductance and Electromagnetic Force_ 13 

2.1. General Formulation_ 13 

a. Axially Symmetric Configurations__ 14 

b. Cylindrical Configurations_ 17 

2.2. Circular Filaments and Circular Turns 

of Wire_ 21 

a. Coaxial Circular Filaments_ 21 

b. Circles Whose Axes Intersect—— 22 

c. Two Concentric Circles (Not 

Coaxial).    23 

d. Two Parallel Circles_ 24 

e. Self-Inductance of a Circular Turn 

of Wire.   26 

f. Self-Inductance of a Circular Turn 

of Wire Near a Magnetic Medium_ 27 

g. Self-Inductance of a Wire_ 27 

h. Mutual Inductance of Two Parallel 

Wires Having the Same End-Planes 28 

1. Mutual Inductance of Two Parallel 

Wires not Co-terminous___ 28 

j. Mutual Inductance of Two Equal 

Rectangles Lying in Parallel 

Planes_   29 

k. Self-Inductance of a Rectangle_ 29 

2.3. Concentric Solenoids (current 

sheets)_ 30 

2.4. Self-Inductance of a Cylindrical 

Current Sheet_ 31 

Page 

2. Inductance and Electromagnetic Force—Con. 

2.5. Self-Inductance of a Helical Wire_ 32 

2.6. Bifilar Nfctual Inductor_ 32 

2.7. Coaxial Current Sheets_ 34 

2.8. Toroidal Current Sheets_ 35 

2.9. Endless Re turn-Circuits_ 36 

a. Concentric Cable_ 36 

b. Two Parallel Wires (nonmagnetic).. 37 

c. Two Parallel Wires of Magnetic 

Material_ 38 

d. Two Coaxial Tubes_ 39 

e. Two Equal Bars of Rectangular 

Section_ 40 

3. Frequency Effects_ 42 

3.1. Skin Effect in Concentric Cable_ 42 

3.2. Proximity Effect in Parallel 

Wires_ 44 

3.3. Single Wire Parallel to the Earth_ 45 

4. Legendre Functions That Occur in the 

Formulas_   45 

5. Derivation of Some Formulas_ 51 

5.1. Eccentric Spheres and Cylinders 

(Internal) Equations (1.11) and 

(1.12).   51 

5.2. Eccentric Spheres and Cylinders 

(external) Equations (1.14) and 

(1.15) .  54 

5.3. Derivation of Equations (1.17) and 

(1.16) for Cfclate Spheroid and 

Circular Disk_ 55 

5.4. Derivation of Equation (1.18) for 

Prolate Spheroid_ 56 

5.5. Derivation of Equation (1.19) for a 

Toroid_ 57 

5.6. Self-Inductance of a Single Turn of 

Wire, Equation (2.15)_ 59 

5.7. Derivation of Equation (2.16) for 

Self-inductance of a Single Turn of 

Wire Near a Magnetic Medium_ 63 

5.8. Derivation of Equations (2.40) and 

(2.41) for the Self-inductance of 

Toroidal Current Sheets (Tape 

Winding)_  64 

5.9. Derivation of Equation (2.45) for 

Self-inductance per Ikiit Length of 

Two Parallel Wires of Magnetic Ma¬ 

terial_ 64 

6. References_ 68 

(11) 



Formulas for Computing Capacitance 
and Inductance 

Chester Snow 

Explicit formulas are given for the confutation of (1) the capacitance 

between conductors having a great variety of geometrical configurations, (2) 

the inductance, both self- and mutual, of circuits of various shapes, and (3) 

the electrodynamic forces acting between coils when carrying current. Formu¬ 

las for skin effect and proximity effect in concentric cables and parallel 

wires are included. The formulas for the sinpler configurations are given in 

terras of the elementary functions, whereas more coirplex shapes involve the use 

of Legendre polynominals, Legendre functions, and elliptic functions. Ohe 

section is devoted to a discussion of the relation between the Legendre and 

the elliptic functions. 

Introduction 

This collection of formulas contains some that are commonly used in electrical work 

and some that have been specially developed for precision work at this Bureau. This is no 

attempt at completeness, for there is now available (since 1948) a revised third edition 

of the earlier compilation of formulas for inductance by Rosa and Grover [l]This may 

be consulted for references to original memoirs and also for discussion of the most suita¬ 

ble formula for a given configuration or relative dimensions. Reference may also be made 

to Dr. Grover's [2] additions to these formulas in 1918 and to his book "Inductance calcu¬ 

lations working formulas and tables." 

Formulas for capacitance may be found in the second edition, 1924, of a work by J. H. 

Dellinger, L. E. Whittemore, and R. S. Quid [3]. This contains formulas for inductance 

and a few for capacitance. It is possible that the aggregate of researches on capacitance 

up to this time might amount to a collection of capacitance formulas as comprehensive as 

that of Rosa and Grover for inductance. 

The formulas given here contain, in addition to elementary functions, the Legendre 

polynomials the Legendre functions and and elliptic functions. It is shown 

in section 4 how the latter two may be found by use of tables of the two complete elliptic 

integrals K and E. 

These, together with the incomplete integrals F{4>,k) and P(0,fe), and sn u, cn u, 

dn U, etc., may be readily found from the 1947 Smithsonian elliptic functions tables by 

G. W. and R. M. Spenceley [4]. One point of superiority of this work over that of R. L. 

Hippisley [5] is that it proceeds by increments of 1° in the modular angle instead of 5°. 

Another purely mathematical table of elliptic functions and theta functions that has 

been found very useful is table 1, (1922) by H. Nagaoka and S. Sakurai [61. The same au¬ 

thors in (1927) [7, table 2) produced a volume more directly applicable to the calculation 

^ Figures in brackets indicate the literature reference at the end of the paper. 
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of the force between coils and their self and mutual inductance. For the latter, Nagaoka 

[8] has also published three formulas that make use of the remarkable convergence rate of 

the series defining the theta functions in powers of the Jacobian parameter q. 

Short tables of theta functions are given by Jahnke and Emde [9]. Also short tables 

of F{4>, k) and E(cf^,k) were given by B. 0. Peirce [lO] . The recent work of W. Magnus and 

F. Oberhettinger [ll] is very useful. 

These volumes, especially the work of the Spenceleys put the computation of formulas 

with elliptic functions in quite a different light. Such formulas are not more difficult 

than those with sines, cosines, and logarithms. 

In section 5 are placed a few notes on methods of deriving some of the formulas given 

here that are not generally available, or perhaps are unpublished. Where space permits, 

it has been attempted to summarize the entire electric field, on which capacitance is i 
!l 

based, or the entire magnetic field underlying the inductance constants. Such a scheme 1] 

seems desirable on a larger scale than is possible here. Each formula for capacitance re¬ 

quires the evaluation of the electric potential or field at every point of space. For 

each inductance L or M, one must find the vector potential or magnetic field everywhere. 

The constants C, L, or M represent a small byproduct, since they are derived from the | 

fields by direct processes. A summary of the more important electric and magnetic fields 

that have been evaluated to date would probably fit present requirements better than fur¬ 

ther tabulation of capacitance and inductance. 

1. Capacitance 

The formulas for capacitance given in this paper are expressed in the centimeter- 

gram-second electrostatic system of units (unrationalized). If lengths in centimeters are 

substituted for the corresponding symbols in a formula, the resulting value of C will be 

the capacitance in cgs electrostatic units. This value should be multiplied by 10/9 (more 

precisely lO/c =1.11277) to obtain the capacitance in micromicrofarads. The formulas as¬ 

sume a dielectric constant of unity (in the cgs-esu system). If the space between elec¬ 

trodes is filled with a dielectric of permittivity relative to empty space, the value 

of capacitance as computed from the formula should be multiplied by 

Alternatively, when expressed in the rationalized meter-kilogram-second-ampere 

(Giorgi) system of units each formula for capacitance would have an additional factor of 

47t (by reason of the rationalization) and also a factor of 10^/Attc^ (by reason of the 

conventionally chosen permittivity of free space). The net result is that with the dimen¬ 

sions expressed in meters, and after multiplying by the combined factor 1.11277 xlO“^®, the ® 

resulting value of C is in farads. I 

The formulas for inductance and electromagnetic force given in this paper are ex- ^ 

pressed in the centimeter-gram-second electromagnetic system of units (unrationalized). | 

In using the formulas, lengths should be expressed in centimeters, currents in abamperes 

(i.e. , units of 10 amperes), and the permeability of space should be taken as unity. If A 

this is done, the inductances as computed are in units of 10"^ henry, forces are in dynes, si 

and torques in dyne-centimeters. 

Alternatively in the rationalized meter-kilogram-second-ampere system the formulas 

should be multiplied by I/Att (by reason of rationalization) and by 10 ^ (by reason of | 
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the conventionally chosen permeability of free space). Then if dimensions are expressed 

in meters, and currents in amperes, the inductances as computed will be in henries, the 

forces in newt.ons, and the torques in newton-meters. 

The first six figures illustrate two cases. In the axially symmetric cases the fig¬ 

ures represent plane sections through the axis of symmetry. In the cylindrical case they 

are plane sections perpendicular to the endless generators. In this case the formulas 

give the capacitance C/I per unit length perpendicular to the plane of the figure. 

1.1. Parallel Plates With Guard Planes 

The separation C between the parallel plates should be small compared to the radius 

of the disk. Also the radius A of the plates should be large compared to a^, so the 

field is practically uniform at some place between the edge of the disk and the outer edge 

of the plates (A>5ci2). 

a. Coplanar Guard and Electrode j^l3j 

■Axial sym: 

I 

ICyclindrical: 

Figure 1 

a=-( a ^-1-a ^) , and (a^-a^)/c is small 

a ^ rra /^2-^1 \ 

\ 27TC I 

2 na 
coth —. 

c 
(1.1) 

c/i= 
27TC 2 

1 /Oj-Oi\ 

2 ' 2wc ) 

2 na 
coth — 

c 
(1.2) 

This capacitance is between the plane at potential and the electrode, including its 

plane face and its sides. 

i 
i 
1 
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b. Electrode at Bottom of Hole in Guard fl3] 

(Capacitance Between the Plane at and the Face of Electrode at Bottom of Hole) 

As in the preceding case, a/A must be small ^ ^ . Also the hole is not very 

shallow, and the clearance between the electrode and its guard is ignored. 

d cl 
l</3- <00^ and . 

a a 5 

Axial sym; C ^ 
sinh asy 

(1.3) 

^sinh a^(’y6+'y) 

s=i 

where a =2.4048, a =5.5201, a =8.6537, a =11.7915, and J„(a„)=0. The first three terms 

are sufficient, with the conditions given above, for an accuracy of 1 in 200. (J^ is 

Bessel’s function). 

Cylinder: 

where 

C/l= 
4(7 '^^(-1 )^+ig2n.i s 

(2n-l)[l- 

'(_l)nn(j2n-l sin (2n~l)4, 

(<7 

(1.4) 

n=l 

(7=e-(^^v) [1+8 cos4 ^e-4(r^+r)] 

^=6'-8 sin (9 cos 6’e~4(ri9+y ^ 

9= tan“i ^1/7^ =tan'‘i ^ (9 in radians). 

In case the hole is very shallow {d/c small), a better formula than (1.4) for the cylin- 

drical case is 

/, a 1 
C/Z=-- 

2'jtc 27t^ ‘ ^ 

log — 

(_! )r.n "-((lir)’’] 

(1.4') 

& 

'iQl+di'”] 
n=l 
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where r and may be computed by 

log r 
ua 

log 

1-1- € coth 
ua 

€(1—€2"^ coth. {uia/c)) 

4 sinh {ma/c) 

log q =log 

er ^1 --coth (/7za/c ) 

2(l-r2) 

where e - d/c . 

Equation (1.4), like (1.4'), is exact with slot of any depth. Both ignore clearance 

between electrode and its guard. To take account of this (to first order) let 2(3^ denote 

the width of face of electrode; 2a^, the width of slot; and d, its depth. Then if 

a={a^^-a^)/2, 

a 1 / d \ d^ 4c sinh ug/c 1 

27rc'^ 2772 |^( c ) ^ (^2-0 j) 2 J (1.4") 

neglecting terms of order 

[d2f (a^-a^) 2]iog[d2^(Q^_a^) 2] 

Spheres: 

1.2. Spheres or Cylinders 

a. Concentric Case 

The capacity of one sphere alone is C=o^. 

Cylinders: C/l = 

2 log 

Figure 3 

(1.5) 

(1.6) 
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Equations (1.5) and (1.6) are limiting cases of (1.11) and (1.12). 

The potential between the spheres is 

V(r)=V 
1-a j/a 1 ’ 

that between the cylinders is 

V(r}=V 
log 03/^ 

log a 2/a j 

b. Plane With Sphere or Cylinder 

(This is a limiting case of equations 1.14 and 1.15.) 

Sphe re. 

Cylinder: 

axis Figure 4 

C=2 Vh^-a^ > -— 
-(n+/4)r 

C/Z=-= 
r 

2 log 
/!+ f/h^-a^ 

(1.7) 

(1.8) 

(1.9)i| 

When y-* log (4h^/a^) and (1.8) gives C—a, but (1.9) gives C/1 -0, as it should, 

since the logarithmic potential becomes infinite at spatial infinity for any finite charge 

except zero. 
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c. Eccentric Spheres or Cylinders (internal Case 0<b<a2-Oi) 

Spheres: 

Cylinders: 

Figure 5 

OiOg-b- the distance between centers (always positive) 

2bcs J/[{ a2 + “i(positive) 

a,- a?-b ^ +2 be 
fil= log ' 

^2 = log 

2a^b 

a\- a\-\b‘^ \2bc 

2 Oj & 

00 
-(2n+l);6j 

n=0 1-e 

c/i= 
2(/3 

af+a^-b^+2bc 

(1.10) 

(1.11) 

(1.12) 



d. Eccentric Spheres or Cylinders (External Case, h>a^ia2) 

Figure 6 

b =0,03 

Spheres: 

5=0i02 

2 be— V \_b^- { a a 2) i a i'- a 2) ^'2 (positive) 

fb^ ial-al +2 5c"| ■= ‘-‘L——J JB 

a,+02+25c"l 

"■= ‘°+ L,l J 

r=2(/3i+^,)=2 log 

(positive) 

(positive) 

b^- 01-02 +2 5c"] 

C=2c 

2 2 fl 2 j 
(positive) 

-(n+K)r 

Cylinders or ^ ^ 

parallel wires: C/ 1=—=^ 

(1.13) 

(1.14) 

(1.15) 
7 2(^^+/32)‘ 

Placing 5 = Oi+5 and Oj-oo, eq (1.14) and (1.15) go into eq (1.8 and (1.9), respectively. 

1.3. Spheroids 

a. A Thin Circular Disk of Radius o 

(1.16) 
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This is a limiting case b-0, of the following formula. 

b. Oblate Spheroid 

Major axis 2a, minor axis 2b: 

c. Prolate Spheroid 

Major axis 2a, minor axis 2b: 

1.4. Toroidal Surface 

(1.17) 

(1.18) 

Figure 7 

a-radius of generating circle 

^=OC>a 

cosh^j-- 

-so 0<fe<l 
A +a 

0„_^(cosh ) 

"P„.^(cosh^j) 

n=0 

if 7l/0). (1.19) 

P and Q are the two Legendre functions with the same argument A/a. A method of finding 

these functions from tables of elliptic functions is given in section 4. 
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1.5. Conductor Bounded by Two Intersecting Spheres El4] 

(Alone in space) 

Figure Q.—Axial section of 

intersecting spheres. 

a=radius of arc on the right, semiaperture=(9 

a sin 0 
a =1—:—;-—,=radius of arc on the left 

1 I sin(w-<9) I 

Wrangle at which the arcs intersect. 

All figures may be obtained with the restrictions 

O<0<7T and 6<h)<2Tr. 

The capacitance for general w and 6 is C^{6), where 

C{0)^. 
w 

a sin 6 

w 
sin (1.20) 

where xp denotes the psi-function, V/T, whose values may be taken from the tables of H. T. 

Davis, ’’Tables of the higher mathematical functions” (Principia Press, Bloomington, Ind., 

1933). 

The series (1.20) converges like SI/ti^. For a much more rapid series converging like 

see reference [21], where the cases are considered that have finite terms for ca* 

pacitance(w/tt rational). 

10 



The simplest of these is the limiting case W-2'tt, where the conductor is a thin shell 

with any aperture 2(9. 

radius a 

cu = 2 TT 

Figure 9 

C( 9 ) -a— ( 9-sin 6). 

2TT 

(1.21) 

For Q=i7t/2 this gives the capacitance of a hemispherical bowl 

C^^(TT/2) = a + i ) =.81830. 

Orthogonal Spheres: (External, w=:7t/2) 

11 



Orthogonal Spheres: (iLternal, w=^7r/2) 

^Hemisphere: {w-Z'tt/I and 6=7t/2) 

A Hemisphere 
(cu and 9 -]!/) 

Figure 12 

Placing 6-7t/2 in preceding case gives 

C3„/,(V2) = 2a 8453a. 

More generally, for W-rr/m, where /?I>1 , 

(1.23) 

(1.24) 

(1.25) 

and for it)—2'TT/jn, where m,>2. 

C{0)—a—((9-sin (9) f a sin 6 
277/W 7T 

t=l 

r T 9\ 1— (— f — ] 
\ m TT f \ mix 

• ! \ / IttI \ 1 
Sin 1 -f 6 ) sin [ - J 1 

_ \ m i ' V //I / J 

(1.26) 

C^{d)-a (complete sphere). 
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There are finite sums for capacitance when 

UJ= 
I 2^-1 

\ 2m 
where l<n^2m, 

and 

w--7T, where l<n<2m~l. 
2m-l 

2. Inductance and Electromagnetic Force 

2.1. General Formulation 

If the unit of length is the centimeter and the permeability of the conductors and 

the surrounding media are unity, the formulas below give inductances in cgs electromag¬ 

netic units, that is in 10“^ henry. If the electric currents and elec¬ 

tromagnetic units, one of which is 10 amperes, the electromagnetic force is in dynes and 

torque in dyne-centimeters. 

The vector B of magnetic induction is the curl of a vector potential A. If a wire of 

appreciable cross section, and in the form of a closed circuit, carries a unit current 

whose volume-density is the vector i^, the integral over the volume of the wire 

is a scalar quantity which is called either the self-inductance of this current distribu¬ 

tion, or its mutual inductance with the field, according as A is produced by this distri¬ 

bution alone, or entirely by currents other than itself. 

If the magnetic permeability /x is 1 everywhere, the vector potential A at any point 

due to a unit current in a wire No. 2, whose volume density of current at is the 

vector 

i 2dv 2 

integrated over the volume of wire No. 2, where 31 is the scalar distance from the fixed 

point P^ to the point of integration in the volume-element dv^. 

The mutual inductance B between the two current distributions is the repeated volume 

integral 

a. -io) 
dv. 

13 



When the wires shrink to mathematical, closed curves this becomes Neumann’s double line 

integral 

j ds ^ j cos ids as , 

taken completely around both curves. 

The self-inductance of a unit current distribution in a wire is 

dv 

In the case of long straight wires, the formulas below apply for the uniform current 

distribution. 

In the case of wires in the form of circular turns, or in form of helices, the few 

very accurate formulas given below apply to the "natural" current distribution (current 

density inversely proportional to the distance from the axis of symmetry). 

The distinction between uniform and natural distribution is only of interest for pre¬ 

cision measurements. 

In the formulas for L and M to be given for parts of a closed circuit (such as L for 

a long straight wire alone, or M for two parallel ones), these expressions must be under¬ 

stood to represent only such contributions to the multiple integrals for L and M as may be 

written without specifying the nature of the return circuit whose contribution is, of 

course, to be evaluated by the same type of integral. 

The majority of formulas for L and ^ that are given below fall into one or other of 

two classes, in each of which the above volume integrals are reduced to surface integrals 

over a plane section of the conductor. 

a. Axially Symmetric Configurations 

The first class is that of axially symmetric conductors for which the surface inte¬ 

grals are taken over a cross section in a plane through the axis of symmetry, say the 

X-axis, where {x,p,(p) are cylindrical coordinates. The only component of the current den¬ 

sity vector is i^=i{x,p), independent of longitude cf). The only component of the vector 

potential A is A^=A{x,p). The cylindrical components of the magnetic field are derived 

from A by curl A, so 

ApA(x, p)] 
^ P H 

pH^--D^A {x, p) and H^=0 . 

With /x=l everywhere 

(A) Z or ^ is 277 11 p' i{x',p') A {x ' , p ‘) dx ' dp ', // 
14 



where 

i{x, p)dxdp=l (unit current). 

The surface integrals are taken over an axial section in the (x,p) half-plane. The symbol 

has been used to denote the distance (in space) between two points P{x,p,4>) and 

P'{x',p',ci>'). We may designate by R this distance when the points are in the same axial 

plane ( ' ) 

R2={x-X')2+(p-p')2 

y{2={x-x')HpHp'^-2pp’ cos( ' )-2pp 
R 

2pp 
-cos ( 

There is the known Fourier series 

(B) 

n=0 

COS n{cf:-cb ' ) , 

where 6^ = ^/^ and ^^“1 of ^>0, and is a Legendre function of the second kind with 

parameter Its reduction to elliptic integrals is given in section 4. 

Equation (B) is equivalent to 

(B') I 
cos n (d)-4>') 

d4>' 
2 / ■AV 

2pp ) 

Since the only cylindrical component of current density is i^—i{x,p) independent of 

(h, the only component of vector potential will be A^-A{x,p) independent of 0. Hence, it 

would be sufficient to evaluate A for 4^-^ . 

However, the volume integral defining A is the vector equation 

111^,11 r i^(x',p‘)d4>‘ 

fR 

This integral is the sum of many vectors that are not parallel, so that we may use rec¬ 

tangular coordinates, y-p cos cb and z- p sin cb, and write 

i ^{x' , p' )sin4' and i ^{x ' , p ' ) cos 4>', 

15 



so 

Ay(X,p) //- i^{x',p')dp'dx I 
sin ' d(^ 

(.X,p) =JJ p' i^{x‘ , p' )dp' dx ' j 
COS (p' dcp' 

Ifence 

=A {x , p) =-A y{x , p) sin(p-\-A ^{x , p) cos p'i{x\p')dp'dx‘^ 

(C) 

A .= 

Consequently, by eq (B') with 71-1, 

A^=A{x.p}^^jj^ yp^nx'.p')Q^^(^ 

COS ((p—4>' ) d(p 

1 + 
2pp' 

dp 

so that A satisfies 

(C') 
-A:7T i{x , p) in S 

0 outside S 

The integral in (C) is taken over any plane axial section S of the conductor, which may be 

of any shape. Its self-inductance L is therefore 

(D) 
1-2^^ JJi(x,p)*pi(x, p)dxdp 

=477j J (x, p)dxdpJJ p''^i(x' , p' )(2i/2^1 + 
/ X 2' (x-x' ) ^ +(p-p' ) 

2^ 
dx'dp', 

where 

j ji(x,p)dxdp-l. 

Also from (C), the mutual inductance M between two coaxial wires with any shapes or 

size of axial sections and is 

(E) M= 
-X 2 ) H ( p 1 -p 2 ) 

^-477 JJ p'f i ^ (Xj ,Pj )dXidp^ JJp*^i2 (^2, P2 )<2i//^l+—--^» 
2PiP 
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where 

)dx^dp^-jj i,{X2 P2 )dX2dp2^l- 

Letting both sections shrink to points gives 

(F) M-ATrVa 
(x^-X2) n(a^-a2) 

2a a 2 

as the mutual inductance of two coaxial circular current filaments of radii and a^, in 

the planes X^ and X2 (eq (2.1), page 1). See section 4 for the evaluation of the func¬ 

tions Q^-y^ in terms of elliptic integrals. 

If the section S shrinks to a point, eq (C) gives the vector potential A{x, p) at any 

point P{x, p) in space, that is produced by unit circular current of radius a, in the 

plane x = 0, and coaxial with the X-axis 

A{x,p)=2 
+ (yO-a) 

2ap 

(K-E) 

k 

where 

fe2=_^_ 

x2+(p+0)2’ 

k is the modulus of the complete elliptic integrals K and E. 

The cylindrical components of the magnetic field are given by H ^ {x, p) =1/pD pA) 

and E ^{x , p) =-D ^A , so 

S ix.p) K-E+ 
Kx2 + (p+a)2l- x2+(a-p)2 

B 
[x2+(p+0)2]V2 

'] 

which apply for any point (x , p) . 

b. Cylindrical Configurations 

The other class of formulas may be described (with rectangular coordinates x,y,z) as 

applying to a unit current with uniform current density (independ¬ 

ent of z). The total current +1 flows in the first conductor with cross section S, its 

density being ij=l/S. The return current density in the second is i2“~l/'52* self¬ 

inductance "per unit length of the line" is denoted by L/I, which means the self-induct- 

17 



ance of two cylinders having the same two end planes, these planes being separated by one 

unit of length. 

where A is the potential of both distributions. When /jl—I everywhere, the value of A at 

any point XJJ in the plane is (where A denotes A^, the only component of A) 

j jlog MSj+|- IJ logfldSj, 

where R is the distance from a point of integration in dSj, (or from in dS^) to the 

general point P{x,l/) in the same xy plane. This gives 

The first two integrals are frequently designated by and L2, respectively, the third by 

separate integrals only have a meaning with reference to this equation of a 

"closed", or return, circuit. With this understanding, the self-inductance L/I per unit 

length of the line is written 

(G) 

where 

(H) 

L/ l = ~2 M 12/1 -\-L \L 2/1 —2 L2 log l^ii“log P22~^ ^ 

log RdS2 

log RdSj, 

and similarly for d22’ 

This I)j2 defined by the repeated surface integral over the two coplanar areas and 

^2 is called the g.m.d., or geometric-mean-distance, of the area Sj from and the 

geometric-mean-distance of the area from itself. The definition is consistent with the 

extension to the g.m.d. of one curve from another or of the g.m.d. of the line from itself. 

In the case of a return circuit of two parallel wires whose circular sections have 

radii and 02, it is easily found that 

(I) log Pjj^log y^, log Z)22 ^2"'%' 
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and 

(J) log where b is the distance between centers. 

The general formula (G) for the inductance L/I per unit length of the line, 

Z/Z=2[2 1og ^ii'log 1)22] gives eq (2.44). 

For a tubular conductor whose cross section is an cinnular area with inner radius 

and outer 4^, it is found without difficulty that 

(K) log Z), =log A,- 
2(4 j ^-a ) 

When the tube becomes infinitely thin and this approaches the finite limit 

log Z)jj = log 4j, so that 4^ is the g.m.d. of the perimeter of the circle from itself. 

Wdien the current in tube No. 1 returns in a larger tube, No. 2, coaxial with it, 

I whose annular section has inner radius and outer 42, it is relatively simple to find 

1 that the g.m.d. between the two annule is given for 0 <a <4 ^ <^2 2 

I (L) log log 42- al log 02] - V2 • 

I Formula (G), L/I-2\_2 log D ^2 ^22^ this case leads to eq (2.46) by 

1' (K) and (L). 

i In checking for numerical errors, it m.ay be noticed that the formula (G) for the 

self-inductance per unit length of a line (a return circuit) will be dimensionless. This 

is not true of the constituents log and log Z)^2> etc. , as they do not involve 

logarithms of the ratio of two lengths. 

In getting g.m.d., use may be made of any formal analogies to the logarithmic poten¬ 

tials of electrostatic distributions, for the same first integral occurs in both problems. 

j The logarithmic potential V of an endless cylinder of any cross section S with unit 

density per unit length perpendicular to the plane of S is 

F( X, r) =- 2 j j log Bdx ' dy ' 

For example, when the section S is a circular area, or an.annulus, V is the same at out¬ 

side points as if the charge were all concentrated at the center. At points inside, a 

^ simple law prevails. This may be used to check the g.m.d. given above for circles and 

^ annuli. 

V-hen the total charge Q per unit length in finite space is zero, the logarithmic 

potential (like L/1 for a return circuit) is dimensionless as to length. Hence the ca¬ 

pacitance per unit length of endless cylinders, as in eq (1.1) to (1.15), involves loga¬ 

rithms of the ratio of two lengths. But the potential of a circular cylinder with charge 

Q has the value 2Q log r at outside points. This is not dimensionless. 
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A final example [15] may be quoted, the g.m.d. of a rectangular area from itself. 

If the width of section is U) and breadth b, 

1 477 2 5 
=-jp(8)--_S.4 log w+—, 

382 3 3 

where S=h/h), and 

(N) ;?’(x) = --2x4 log (l-6x2-}-x^ )log (l + x2 )-8x( l-x2 )tan-ix. 

Since the expression for log is symnmetric in b and w, this suggests the identity 

in X that is easily verified. 

(O) «x) = X''/’^l^-12x2 logX-47TX(l-x2), 

so that, from a power series for F{x) in powers of x valid, when X<1, we get by this, the 

series for X>1. These equations, (M), (N), (0), are used in deriving eq (2.47). 

If two or more long parallel, cylindrical conductors all carry current in the same 

direction with the same uniform current density, they are effectively one conductor of 

cross section S. If the sections are the coplanar, nonoverlapping areas 8^,82,52, etc. 

then S=S j +jS 2 +3 • • • • example, with three such sections the g.m.d. of the compound 

area S from itself is given by 

(P) (S,+ 82+83)2 logflj J/ dS J J log RdS' 

^ If / I ‘'"J I + If dS, ff logBdS ^ 

- //-.// log RdS^+2 ff ds^ If log /?djSi 2-f- 2 // dS^ JJ log BdSj^ 

The generalization of this is not difficult, when each conductor carries a uniform but 

different current density. Weighting factors are introduced. 



2.2. Circular Filaments and Circular Turns of Wire 

a. Coaxial Circular Filaments [161 

’ 1 

—1~' 

CM
 

-o
 

Ql 
1 

t t 

— X- 

Figure 13 

Their mutual inductance M is 

»=4vr ^i-rrfar^ar^Qy^ ( A-1 ) . 

where the modulus k of the complete elliptic integrals is given by 

4010; 

x2+(ai+a2)2* 

Their force of attraction is X- ^'dM/'dx or 

T= 
11 

7^ E-2K 
]■ 

(2.1) 

(2.2) 

(2.3) 
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b. Circles Whose Axes Intersect [17] 

/a, = cos 

^2= cos oC^ 

fl = cos Q 

(0 ^ <7r) 

{Q < oC^^TT) 

iO<B ^TT) 

Figure 14 

CD_ + 1 

#=4772(1-^^2) (l-^P ^ 

n=i 

n+ 1 

= 47t2(1-mP(1-mP ^ 
n=i ^ 

fA(Mi)Pn(/72)fn(M) 

r!( n+1) 

n ( n+1) 

if r2<r^ 

if r^>rj 

(2.4) 

whatever the values of 02/^1* Legendre polynomial and P^{/j.)={d/dfi)P^{fi). 

In the special case where the center of circle 2 coincides with 0, becomes 

and becomes 7t/2, and (2.4) reduces to 

{=27T 
3/5 

(1-mP 

n=i 

(-1) •(^) 
2'*"' r(ni'A) 

( 71+ 1) ! ^ri+l 
(2.i‘ 

The torque T acting on either circle, tending to reduce the angle 9 between their axes is 

'dM- 'bM- 3/0 / a9 \ 

r=-_=3in0-=27T ^a^siae(l-^\) ^ ) 
„ /aj \ r(n+)i) 

( 1 ) I ^2n+i + i * * 

n=i 

These converge for all values of , if a^<a^, }i is positive when the currents circu¬ 

late in the same sense around their axes OC^ and OC^. 
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c. Two Concentric Circles (Not Coaxial) 

(Special case of eq (2.4 )) 

radius a, = 

a 
2" 

OA 
2 

/X =ccs ^ 

°2^°1 

Figure 15 

— 

2n r(rzf^)r(rzf^/2) 

n! (71+1)! 
(m). 

n=o 

477/1/202 
sin (9 

00 

°2\r(n+‘/2)r(n+%) ■ (^) 

aj n!(n+l)! 
n=0 

Axes Parallel (9—0,/x-l), /—0 

a 1 \ 01 

^2\2^ r( 7l + ^^)r(7Z+^/2) 

7Z! ( 77+ 1 ) ! 

Axes Perpendicular ((9-77/2 ,) }f-0 

^ /^yn r{nV/t) VrUj^l 
a 1 \^i/ (r7 + l)!L 77! J 

n=0 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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d. Two parallel circles ^18] 

Case where 0<r<aj^-(3 2* 

fJL = cos. 9 

r 

0,= ^ 

°2= OA 

Figure 16 

477 ®/2 a 5 2n r( 71+^2 ) 

n! 

n=G 

where .P( 7l+V2 , ^ +, 2; a %/a %) (hypergeometric series). 

If the circles are coplanar, (^=77/2 ,/i=0 ) and 

P (0) 
2n (-1) 

n! 

Case where r>aj + a2 

477 V2 

(-1) 
,n+l 

(v) 
r(n+!4) 
(n-D! " 

n=l 

where F^=F{-n, l-n, 2\ a]/a\) . 

(2.10) 

(2.11) 

24 



For equal radii a^=a2=ci and r>2a 

M=27ra 

n=l 

2n+l r(n+M)r(n+K) 
(n-D! 

(2.12) 

For two equal circles, coplanar and external, this becomes 

1) ! 7Z! ( 71 + 1) ! 
n=l 

(2.13) 

(The plus sign would apply when the currents circulate in opposite senses with respect to 

the normal to their pleine. ) The torque is zero. The force of repulsium along their line 

of centers is F=j-I 12'^M/dr, or 

F=i27Tlj^ 

00 

2nt2r(n+V2)r2(n+K) 

(n-1)!n!(n+1)! 
(2.14) 
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e. Self-Inductance of a Circular Turn of Wire 

/? = distance of o point from x oxis 

a=radius of generoting circle Figure 18 

A- OC 

Current density of the unit current is 

i i - \ (any 5), 

where 

^ ^ f-b 1-b a2 \ . b{b-l) a2 

i=4^^-[u(2Hl)^] logSJ. 84 7 (fe-l)(b-^4) a 

16 
~+ zero {PO- (2.15) 

For uniform current distribution h=0. 

For "natural" current distribution t)=~l. 

For b=-5/2, the magnetic field outside the wire is exactly the same as if the unit current 

were concentrated in a circular filament of radius )/ A^-a^ . 
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f. Self-Inductance of a Circular Turn of Wire Near a Magnetic Medium 

Figure 19 

L^L ■ +—4w^2i/ { —,-l') 
M+1 V j 

, , \2(R-E) 
(2.16) 

(modulus k) where 
^Aa 

4x2+(4+a) 2 

may be computed by preceding case, (2.15) on the basis /x=l everywhere, 

i In correcting the self- or mutual inductance of coils for the effect of thin lead-in 

wires, the diameter of the wire is important by affecting its self-inductance, but wires 

may be treated as linear conductors in estimating their mutual inductance. 

g. Self-Inductance of a Wire 

L=2 (2.17) 

where I is its length and a its radius. 
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h. Mutual Inductance of Two Parallel Wires Having the Same End-Planes 

T 
D 

± 
Figure 20 

#=2 [ Z log ( ^ ) - V^T^+Z) ] (2.18) 

where I is their length, and D the distance between centers. If the currents are in oppo¬ 

site directions, the sign of M is reversed. 

i. Mutual Inductance of Two Parallel Wires Not Co-terminous 

T k.-«-j 
1 !_^ 

^2 Figure 21 

K-'f,-H --H 

c =C|C2where and Cg are centers of the wires 

+ (2.19) 

where 

w(x)=|x|log + 1^1 j _ y x2 + Z)2, 

so that U){x) is an even function of x. 

This holds for collinear wires (Z)=0) if they do not overlap. The sign of M is re¬ 

versed if the currents have opposite directions. 
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•^
1 

j. Mutual Inductance of Two Equal Rectangles Lying in Parallel Planes 

(One is the perpendicular projection of the other.) The distance 

between their planes is d, the length and breath of each is a and 

b, respectively. 

Neumann’s formula is 

= a log 
(a+ Va^+d^) V 

a+ yaHbHdn 
j + b log ^ 

( b+Vb^ + d^) y 

(b+KoHbH^) d ] 
+ 2 yaHb^ + d^-V a^ + d^-Vb^ + d^ + d'^ 

k. Self-Inductance of a Rectangle 

z:-4 (z? + niog 

Figure 22 

a = radius of wire, i=length of rectangle, &=breadth 

V4( b + n +a 
J-b • log |_-p-J-Z log|_- 

+2Vbnz2 - I {b-^D-y^Viib + D 2+a 

(2.20) 

(2.21) 
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2.3. Concentric Solenoids (Current Sheets) L20j 

rf= rl = al-hbl 

/r, 

fJ =cos. 6 

NjOndN^are total numbers of turns 

Figure 23 

M-4:7T 
^ ^ ^ X ^ ^ 2s + l^^^ ^ 2s (^1 ^-^25+2 (^2^1 

^il^2 2s(2s+l) (2s+2) (2s+3) j 
5 = 1 

(2.22) 

The series is relatively small compared to jJL when a^/2b^ is small. is Legendre 

polynomial and ?^ (/x) =d ( ^i)]/d/x. 

If the coils carry currents of strength and (in cgs electromagnetic units of 

current, the torque on either coil, tending to decrease P, is T=-I-1^ sin 

or 

—S,I,7rali^^sin0{l-2-^ 
2*’i ^ \r,/ 2s( 2s(2s+l)(2s+2)(2s+3) 

(2.23) 

S = 1 

Case a. Axes perpendicular (P-77/2, M“0) 

M=0 

T-^7T 
2^r(s+)^)P'^(Mi)PL*2(Mj) 

r(s+2)(2s+2)(2s+3) 
(2.24) 

S=1 
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Case b. Axes parallel {0-0, /^ -1) 

f=0 

M=irr-—-( 1- 2h, ( M 1^2 

^ 2s ^^1 ^"^25 + 2 ^^2 ^ 

2s(2s+l)(2s+2)(2s+3 
(2.25) 

•5=1 

Dlls may be computed in finite terms. (See coaxial coils, eq (2.30).) 

2.4. Self-Inductance of a Cylindrical Current Sheet L2lll 

Figure 24 

K- I 

Tlie sheet consists of N complete circular turns of thin tape without insulating space 

between them. Their diameter is D; the total length of the cylinder is 1. 

(2.26) 

where il=D/Vl^ + D^ the modulus of the complete elliptic integral K and E. The compli 

tary modulus is k^-l/V I ^ . 
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2.5. Self-Inductance of a Helical Wire 122] 

IQQOOOQQ 
i j 
bOOOQO^ 
K-o- ^-*1 

Figure 25 

Centers of wire on a cylinder of diameter D 

N complete turns; diameter of wire is d. 

The length I of the equivalent sheet, is the distance from the center of the wire at 

start of first turn to center at end of last turn. 

L=L^il 

-I -'*)}■ 
This takes account of the relatively small axial component of current. is given by 

(2.26), moduli k,k', as in (2.26). 

2.6. Bifilar Mutual Inductor L23D 

Primary and secondary are helical wires identical in form, the turns of one midway 

between those of the other. Two cases are Mq and M^. Mq is their mutual inductance when 

the second helix is displaced axially from the first by one-half the pitch. When the 

second is displaced 180° in azimuth from the first, but with its extremities in the same 

end-plane as the first, their mutual inductance is designated by The principal part 

of either is given by (2.26), the self-inductance of the current sheet equivalent to 

primary or secondary. The moduli k and k' are the same as in (2.26). 

i— [ 1-Sin ^ ft I > 
2k\ h Jj 

(2.28) 
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[log^,+fe' log 4] 

( 1 /iND\ i/E AT, i, fU'^d.y 
-7rZ)|^ log4 + -log^—j+-(^--lj|^l+ /2[-YT) _ 

2 [k~e fell 1 r, 1 , A+*\l) 
"^sL ft ” 2 J’'^2ft L^~2ft ^°®\l-ftjj]' 

(2.29) 

j 

i 

I 
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2.7. Coaxial Current Sheets [24ll 

h—<2-^ 

K - f.->1 

I i 
I I 

0, r ''r”'*b. 
I I 

■T 

Total number of turns Nj and Ng 

Figure 26 

(2.30) 

TTie force of attraction (in dynes) is X= - I ^ 12^M/'dc 

X= 2'ttX il 1X2I2 (2.31) 

where 

li) {x)-xw ' (x) + 
8 (o, 1 Cl 2 )V2 

3k 
(2.32) 

This is an even function of x. Its derivatives w'{x) is an odd function of x, vanishing 

with X, and given by 

(x) = ?£T_^2£i ±|a|-a2 I \^KE{e,li')-{K-E)F{e,k')-'^'^ (2.33) 

the + sign is for x positive, for x negative. 

The complete elliptic integrals K and E have modulus k, where 

k^ 
4a ja 

(2.34) 

The incomplete integrals F{6,k') and E{9,k*) have the complementary modulus k'= Y 1-k^. 

Their amplitude 6 is computed by 
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The bracket with factor ia^-a^ vanishes when x=0. If the coils are also concentric (c=0), 

the force vanishes, and M becomes 

(2.36) 

Another special case is that in which the second sheet is replaced by a single turn of ra¬ 

dius 02 coaxial with the x-axis in the plane X-C. The mutual inductance between the cir¬ 

cle and sheet 1 is 

whe: 

W"(X): . 1/—— r 1 
4 L-f-tJ’ 

(2.37) 

(2.38) 

(2.39) 

so that the circle has mutual inductance with the nearest circular turn of the sheet, 

and ^2 with the farthest. 

2.8. Toroidal Current Sheets 

Current in tape winding of N turns circulates around the core in planes through its 

axis of symmetry. Permeability of core is /z. 

Case a. Core of Circular Section 

L = ATTO^p N ^ 

A + 

Figure 27 

(2.40) 
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Case b. Core of Rectangular Section 

H-w-H 

T 

I 

-r 
1 
J-1-axis Figure 28 

L= 2/X OJ N lOQ °2 (2.41) 

2.9, Endless Re turn-Circuits 

(Self-Inductance) 

a. Concentric Cable (Special Case of 2.46) 

Figure 29 

/Xj and /X2 are magnetic permeabilities. The current goes one way in the central wire 

and returns in the outer shell. The self-inductance of the line, per unit length, is, for 

low-frequency or direct current. 

L/l=^ 
2 

Z/Z=- 

(2.42) J 2 
if 42—^2 (2.43) 

Z/Z'^2log 02/^1 for high frequency (see (3.1)) 
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b. Two Parallel Wires (Nonmagnetic) 

Figure 30 

The self-inductance per unit length of the line when the unit current is in opposite 

directions in the two wires, and fj.-! everywhere, is given by the exact formula 

L/l=U2 log 
b 

(2.44) 

See (2.45) and (3.3). This is derived as in section 2, eq (I) and (J). 
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c. Two Parallel Wires of Magnetic Material 

Figure 31 

M1+M2 

L/l = —^ + 2 log 
2 

where 

+ 2 -1-_( e i {e -^2e 2) e 

n=i 

i\^€ ^i{e ^■j-2€ 2) e'^'^Je 

-2[€,+62+e,£2+^1^2^"''^] 

-2n^. 

-ny 
(2.45) 

^1 ^2 -1 

e 1 =-7 and e „ =-— 
1 ■■ +1 ^ M2 + I Ml 

and y=2(/3j+/32) 

The positive constants yS^, /S2> ^^id 7 are defined in eq (1.13). This 7 is the reciprocal 

of capacity (1.15). When ^ij=/i,2 = l, eq (2.45) reduces to (2.44). {See also (3.3) for high 

frequency in this circuit.) 
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d. Tvo Coaxial Tubes 

(See section 2, equations {K) and {L) 

Figure 32 

Current goes in opposite directions in the tubes. The inductance L/I per unit 

length of the line is 

^2 ^2 
L/ 1=2 log — +- 

•^1 /I 2 _ , 

(2.46) 

When the inner tube becomes a solid wire and this reduces to (2.42) with 

4 2 a[ 
When Z/Z = + log — + —— 

^ 1 4 j-aj 

«2 ^2 

4 ^ — G ^ ^ 1 ^1 

When a,-»4,, L/l--%i].og— + 

Al-a^ 
2 ^2 

24 

2 ^2 

log fe)- 

When ai“’4j and a2“*4 2, X/Z=log—. 
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Tvo Equal Bars of Rectangular Section [25ll 

metal 

insulator 

metal 

b 

9 
T'T 

b Figure 33 
Jl 

-cu- 

ond S = ^ 

Since (M))» the formula (b) for self-inductance L/l per unit 

length of line is L/1=4= 1 o g D ^2 ”4 log ^ ii» which leads to 

Vz-—2[i^(r+s)+i?’(S)-V2^(r+2S)-V2^(r)II+47T(r+2 8/3), 

where as in equation (N) 

F{x)--2x^ logx + (1- 6x^ +x^ ) log( l+x^ ) -8x( l-x^ ) tan"^ x. 

This satisfies the identical relation in x (eq (0)). 

J?’(x) “12x2 log X“477-x( 1-x2 ) . 

When X < I, we find 

F{x)=2x* log- -7x2+^^ + 48 ^ - <J 
®x 6 2n{2n-l) {2n 

n=3 

(-l)'^'-^x 2n 

2) (27i“3)(2ri-4) 

This is obtained by use of the series 

OP 

log(l+x2)= > (-l)^^l- 
^ n 

and X tan"^ x = 

00 

1) 
2n 

n+1 

n=l 
2n-l 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

n=l 

Equation (2.50) might be preferable to (2.48) for computation with thin flat, strips 

as in the figure, where 7, or 8, or both, are small, that is i, or b, or both, are small 

compared to the width h). 

In the other extreme {i or b or both large compared to w), the expansion of F{x) is 

required for X>1. This is obtained from (2.50) by use of the identity (2.49) which gives 

for X>1 

^(x)=2 (1-6x2 ) logx-7x2 + 
25 

00 

■477X( l-x2 ) -i-48x^ ;- 
2ni2n-l 

n=3 
)(2n-2)(2n-3)(2n-4) 

(2.51) 
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The derivation of (2.47) depends in part upon eq (M), which is 

-4 5 ) -y 8-41ogw+^. (2.52) 

With the same function F{x), it is found that Gray’s [26] formula for 4logZ)j2 may be 

written 

4 log[■^’(r + S ) “V2'^(r+2 5 )-^/2^(t)D + 477(7+5 ) +4 logw-y , (2.53) 

which, with (2.52), gives (2.47). 

The formula of Gray, corrected by Rosa [27] is 

logZ»j2”“'y ^ ^ + |^(l+2 & ) ^ --- log [wn(^+2 5 ) 2] 

“2 j^(^+5)2|w2-^^^y^j-yjlog[w2 + (^+b)2] + ^^2|j^2-y j~^log[w2+itf2^ 

minus the same terms with W —0, 

+^((I + 2Z?) ^ tan“^ (l+2b ) tan"^^—— 
3 I ^+2b w 

- 2 r(l + ^) ^ tan”^-^ +W^ (^+5 ) tan"^i-i^l +i ^ tan“^-^+w2| tan“i -). (2.54) 
L iib h) J i w) 

By use of log Xi/=log X+log and tan" ^ X =Tr/2-tan"^ l/x, this formula may be put in the 

form (2.53). 
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3. Frequency Effects [28] 

3.1. Skin Effect in Concentric Cable 

Figure 34 

The resistivities and are in electromagnetic cgs units, one of which is equal 

to (10“^) ohm-cm (for copper l//:i~0.0006 and for iron l//:>~0.0001). 

For frequency f, let and denote resistance and self-inductance of the line 

per centimeter length, when the current flows one way in the central wire and returns 

through the outer shell. (See eq (2.42) and (2.46) for low frequency.) For very high 

frequency 

log — 

^ 1 

(3.1) 

For any frequency f, the resistance and inductance may be computed by use of certain tabu¬ 

lated functions, vdiich are the real and imaginary parts of Bessels’ (and Hankels’ function 

of the first kind), these having parameters 0 and 1 and argument xVi, where X is a posi¬ 

tive real. 

The resistance and inductance are obtained by equating real and imaginary 

components in the complex equation 

^f/l =2 log—+-i--, 
L2rrfl a, X2 X, lyTJ^{x,VT)2 

(3.2) 
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where 

X ^ -2'rTa X 2=27Ta 

[V^Jj (Xj/DH • C/Tfi[ ^ ’ (Xj /I)]-[vTJj (XjV^)] • (XjI/T)] 

where 

J(, (xVT)=U3 (x)+iy J (x) and kTJj (xv^)=iij (x) + iUi (x) 

fl‘'){x/T) = ff„(x)+ir3{x) and V^fl['’(xKT)=i7j(x)+iFj(x) 

The eight real functions U^,v^, (^=0,1) are tabulated in Jahnke-Emde’s "Tables of 

functions," pages 246-258 (fourth edition,1945) for values of x from 0 to 5.99. For 

larger values the asymptotic expansions may be used and lead to the high-frequency formu¬ 

las given above. 
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3.2. Proximity Effect in Parallel Wires L29]] 

Figure 35 

Current goes one way in one of the wires and returns in the other. See (2.44) and 

(2.45) for low frequency. 

The resistance R/l and self-inductance L/I per unit length of the line (of both 

wires) for high frequency f, are given by 

where y is the reciprocal of the capacitance per unit length, so that by (1.15) 

^=r=2 log 

-2 log 

+V'[h^-(ai+a2) ) ^] 

2a ifljj 

20x0 2 

] 

] 
For equal wires of the same material, these become 

(3.4) 
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3.3. Single Wire Parallel to the Earth 

Figure 36 

(3. 5) 

4. Legendre Functions That Occur in the Formulas 

The Legendre polynomials P^ix) and their derivatives P^ix), (where n is a positive 

integer or zero), occur in formulas (2.4) to (2.12) and in (2.22) to (2.25). 

These satisfy the recurrence relations 

xP^ix) =nP^_j^ ix) i {nil) P^^^ (x), (4.1) 

(2^1+1) (1-x^ )P^(x) = n(;z+l)[P^_j(x)-P^+i (x)]. (4.2) 

They are even or odd functions of X, according as n is an even or odd integer 

Pjx) = 

s=o 

(sin)! 

s!s!(n-s)! 
(4.3) 

p;(x) 

5 = 0 

^ (s+n4l)l 

s! ( s + 1)! ( n-l-s) ! 
(4.4) 

or in powers of X, 

(-l)^x2^r(s+;4 + n) 

^ s! (r!-s)!r(s + )() 
3=0 

P„(x)=(-1)"^ (4.5) 

P (x)=(-l)'‘x y (-l)^x^^r(3fV.fn) 
^ ^ s! (n-s)!r(s+VO 

5=0 

(4.6) 
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The last two equations give 

P„(x)=l 

p,{x)=x 

P2(x) = V2(3x2-1) 

Pj (x) = V2 ( 5x’-3x) 

/’4(x)=V8(35x«-30x2 + 3) 

P5(x)=V8(63x = -70xH15x) 

P5(x)=Vi8(231x‘-315x'‘+ lOSx^-S) 

P,(x) = Vi6 (429x''-693x^+ SlSx^-SSx) 

Pj(x) = Vi28 (6435x®-12012x^ + 6930x'‘-1260x2+35). 

(See references Q5[] and Lll]-) 

Tlie Legendre functions and occur in the capacitance formula (1.19). Tlie 

function Qy appears in the general inductance formula (B) of section 2 and is the origin 

of the elliptic functions in (2.1) (2.16) (2.26) to (2.29). These are infinite series 

that occur frequently for real argument greater than 1, sometimes written cosh /3, where j8 

is a positive real quantity. 

Q^-i/jCcosh = eF( V2 , v +V2 , v+1; e~^^) 

= g r(s+M)r(s+v + ^) 

s!r(s+v+l) 

P^.i^(cosh (cosh /3)=P( V2, V2+1", 1; 1-' 

(4.7) 

^ (i.e~"^)^r(sf)()r(s+v+H) gj 

~l/^r{v^%) / , s! . s! 
5=0 

sinh^ (cosh (i)Pljy (cosh j3) ^ Ql_y (cosh /i) P^-y (cosh ^)]]=1, (4.9) 

where P ' { z) denotes dP{z)/dz, etc. 
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The hypergeometric functions in (4.7) (4.8) may be transformed, leading in the fol¬ 

lowing equivalent expressions; 

( cosh sech + sech^j (4.10) 

(cosh ^)=(sech /3/2)‘-2"/’( Vj-v, Vj-v, 1; tanh2/3/2) 

= (sech /3/2)i*2vy( tanh2/3/2) (4.11) 

The identity 

F{a, /3,y', z)={ F{y-a, y-fS, y; z) (4. 12) 

shows that 1/ is an even function of v. 

The recurrence relations (4.1) and (4.2) become 

2i^cosh/3P^_j^(cosh/3) = ( v+V2)P^^y^(cosh/3) + (v-V2)P^.,.^(cosh /S) (4.13) 

2vsinh2 ^P^_j^(cosh/3) = ( 1^2.1/^) [p^^^(cosh^)j_i^(cosh/S)] . (4.14) 

The same formulas are satisfied by 

In all these expressions v may be replaced by any integer n. The functions P^_y are 

even functions of v, but the functions are not, except when v = n. In that case eq 

(4.7) gives Q_^_y{z)= Q^_y{z), where n is any integer. 

For the formulas given above v is an integer n, so that it is not necessary to com¬ 

pute these functions by the series (4.7) or (4.8) in view of the many excellent tables of 

elliptic functions. If we find the two functions for n= 0 and ri-1, namely, 0_y and Qy, 

any other Q^_y may be computed by (4.13). 

Similarly, if P_y and Py are known, the recurrence relation (4.13) gives the for 

n>l. 

The complete elliptic integrals K{k) and E{k) with modulus k, where 0<ft<l, are 

given by 

V,,l:^n = I 
tt/2 d6 

]/l- sin2 6 
(4.15) 

rV2 
,l;ft^) = J Vl-k^ sin2 6 dS. (4.16) 

The same functions with complementary modulus k'= V1-k^ are denoted by R' and E', 

respectively. (These E\ K', etc. are not derivatives.) 

47 



Legendre’s relation between the four is 

Let 

cosh /3=—-1, 

sinh (i- 
2k' 

so that 

fe2=sech2 13/2 

k' 2 = tanh2 /3/2 

1-fe' 
e-^= 

1+fe' 

The equations to be derived are 

Q_y^{cos\i/S)-kK. 

(2i^(cosh (S)- 
/ K-E \ 

=M^ )- 
kK. 

■P _^(cosh l3)-kK' 

Placing 0 in eq (4.10) gives by reference to (4.15) and (4.18) 

Q_y (cosh 1;k2)=kK, 

which proves eq (4.19). 

Similarly, taking 0 in (4.11) gives 

^P.i/^(cosh fi) = kF(%.%,l,k'n = >iK' , 

which proves (4.21). 

The proof of the remaining two equations, (4.20) and (4.22), is not so simple, 

this we may place the notation of (4.18) in eq (B) and (B') of section 2, so that 

k fl 1 ^ 1 (x-x')^+{p-p )^- 2 
cosh ^=1 + --^=1+ ---;-=—-1 , 

2pp' 2pp' 

ft2 = 
ipp' 

(x-x')2+(p+^')2 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

For 

(4.23) 
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Equations (B) and (B') become (with a-4>~4)') 

1 

|/2(cosh /3-cos 
2)^ 

— «„!3„-^(cosh ^)cos na (4.24) 

COS — n=0 
2 

C„.j,(cosh^) = 0„.^ f A.i'j -cosnada cos2ne 
V2(cosh /3--COS a) 

(“D 
Jo y l-ft2sin2 e 

de. (4.25) 

Taking 1 in (4.25) gives 

^2 (2sin2 0-l) n / 2 \ , r-/2 C2 si 

/b2 sin2 e 

2 l-(l-ft2 sin2 0) 2 p/2 1^(1. 

Jo VIT 0 J/ 1- ^2 sin2 0 ^ ^ ^ 

^7t/2 

Jo FT^ 

d^ 

fe2sin2 0 

which proves (4.20). 

For the remaining eq (4.22) take v-\ in (4.11). This gives 

^P^,(cosh /S)=|fe*p(||l;fe'']=-^P(-V2,-Vs.ljft'M (4.12). 

By writing out the series for E' and Z' it is readily found that 

2E'-k^K'=^F{-%,-%, 1; ft'2). (4.26) 

Hence {rT/2)Py^ (cosh ^) = 2 Z' / feZ' , which is eq (4.22) to be proved. Hence the function 

Qn-Yi (cosh /3) and P^_^(cosh /3) may be evaluated by use of any of the tables referred to in 

section 6 that give the complete elliptic integrals Z and E as functions of the modulus k. 

This would apply to eq (1.19). 

In case of the mutual inductance M between two coaxial circles, the formula (2.2) 

gives M/ya^^2=A7rQy{2/k^-l), and this is tabulated against in table 2 of Nagoaoka and 

Sakurai [^7j]. 

It is found that the functions 

1 + 
ix-x' )U{p-p')^ 

2pp' 
)and 1 + 

(x-x')2+(^-p') 
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satisfy the partial differential equation 

(i),2+Z)'^+'^)G=0 (4.27) 

in the cylindrical coordinates (x^p), and also in {x' , p' ) . The canonical expansions in 

various systems of coordinates of 0 with this argument are obtained in reference [12]. 

From (4.27) it is found that if 

f ^ 2 x~x')^+(p-p') 
]dS', 

then 

^ , where {x,p) is outside S 

A^vp^ fix, p) , where ix,p) is inside S 

which may be written 

(1 2 
Z)^ +Dp+-Z)^-when ix,p) is outside S 

—ArrfiXtp) when {x,p) is inside 'S 

(4.28) 

(4.29) 

(4.30) 

For the case n — \, the ^-component of vector potential of a current distribution 

whose <?5>-component of current density is i^-f{x,p). Hiis is eq (C') of section 2. 

For the case 72=0, JJ^iXtp) is the axially syrranetric potential V, of a ring distribu¬ 

tion of charge whose density is f{x,p) in the ring of section S. Hence 

1 + 
(x~x')(p^p') 

2pp' 
\dx' dp (4.31) 

V=iD^^\dU-d.)V^^ 
^ p ^ 

outside S \ 

■~ATffix,p) inside S 

(4.32) 

Hence the potential at (x,p) due to a circular line charge ^ in the plane x' with radius 

p' and coaxial with the x-axis is 

F(x,p) 
jyfp' '■«( 

1+ 
(x. ) 2 + (p~^ ' ) 

2pp' 
(4.33) 

50 



5. Derivation of Some Formulas 

5.1. Eccentric Spheres and Cylinders (Internal) 

Equations (1.11) and (1.12) 

Equations (1.11) and (1.12) are derived by use of biaxial coordinates a and /3, de¬ 

fined by the transformation 

or 

x+ iy=ic cot where C>0 

c sinh /3 

cosh /3-cos a 
(5.1) 

C sin a 
y= 

cosh /3-cos a 

,—s-^ 1 /cosh B + cos a 
r- Vx2 + ,i/2=c 1/ —- 

f cosh /3 - cos a 

(5.2) 

(5.3) 

--- • 

cosh /3-cos a 

The family of circles, fi— constant, has the equation 

(x-c coth fi) y \7- I , or coth B- 
\sinh /3 / 

The orthogonal family of circular arcs, a= constant, is 

+C^ 

2cx 

(5.4) 

(5.5) 

X^+(^-C cot a)^-^—-\ , o 
\ sin aJ 

r cot a- 
2cy 

The two-dimensional potential satifys 

. „ /cosh /3-cos a\2 , „ ox ^ -j (Z)^2^Z)^2)F=0 

(5.6) 

(5.7) 

^ For the axially symmetric potential, Laplace's equation with cylindrical coordinates 

+ F=0 becomes 

^"F)=0. (5.8) 
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'Hie correspondence of the {x,y) half-plane (^>0) and the (a,/3) strip (0<a<77-), 

(_oo<^<oo) is shown by the lettering in figure 37. 

The three constants c, and are determined by eq (5.5) in terms of the given 

radii a^^c/sinha^-c/sinh.^^ and the distance between centers c(coth yS^'Coth/3^). 

The solution of these three equations for the case of internal circles as in figure 5 is 

given in (1.10). The inner circle of figure 5 is the dotted semicircle of figure 37. 

In the case of cylinders the two-dimensional potential between these cylinders is 

r(/3)= [-^1^ ] ^2 /32^/3^/Si- (5.9) 

The positive charge per unit length on cylinder 2 is Q^^0 ] the negative charge on 1 

is Q^, where 

52 



so that 

■ = 0/ cm- 

2(/S,-^2)’ 

which is eq (1.12). 

To derive (1.11) for eccentric spheres, one within the other, we find the axially 

symmetric potential between the spheres, satisfying Laplace’s equation in the form (5.8) 

for /32<yS<ySi 

r(a,/3) = F2 y 2 (coah.^- COS a) 

n=o 
sinh( ^+^) (/3j-/32 ) ” ^ 

(5.10) 

where /x^cosa and ^^(m) is the Legendre polynomial. This potential vanishes on the inner 

sphere yS=/3j. To show that it has the constant value on the outer sphere where 

the normal series 

r(M) 

OP 

{n->r^/2)Pn{y^) J f{ijL')P^{/jL')diJ,* for -1</X<1 

n=o 

may be used. Since /x= cos a, we find for 0</3, 

/. 
Pn(p) dll ■ {n+]4) ^ 

.j j/2(cosh ;6-/x) (n-yVz) 

which gives the normal series 

1 
y 2 (cosh /3-cos 

= = ^ for 

n=0 

(5.11) 

(5.12) 

(Equation (4.24) is the Fourier series for this same function.) 

Taking in (5.12) shows that V(a, ^62 )=V2» There is a positive charge 02 on 

sphere No. 2 and a negative charge on No. 1, where (since 1/ is now replaced by the cy¬ 

lindrical coordinate p) 

^ ^ sina -cr^/dV\ 

^ ^ 47r Jo 2 Jo (cosh/3j-cos a) 

dp 

(cosh -p) 

Hiis gives by use of (5.10) 

Q2=V2C 
y , r Pn(M)d/x 

^ sinh(n+‘/2)(,6, /Sj) J-i yiu^shjpjT) • 
n=o 
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or by (5.11) with 

CD 

g - (n+/4) (/Si +/S2 ) 
00 

sinh( n-\-y2) ) l.e/(2n+i ) (/Si-^2 ) ’ 

g- ( 2n+i )/ei 

where 0</32<yS2, which proves eq (1.11), 

When the circles become coaxial b^O, but c—®, and 2bc-*a^-a^. Hence eq (1.11) re¬ 

duces to the coaxial case (1.5) and eq (1.12) reduces to (1.6). 

5.2. Eccentric Spheres and Cylinders (External) 

Equations (1.14) and (1.15) 

In this case the circles are external. The circle No. 1 on the left is /6=/6j<0, and 

the derivation is made with J3j negative. At the end we then replace /Sj by '/3j, so that in 

figure 37 circle No. 1 is /3=-/3j, where y6j>0. This is done to keep the three constants 

C, /3j, and ^2 positive, as stated in the three equations (1.13), which have been de¬ 

termined by use of (5.5). 

Hence with ySj negative, the potential between the cylinders is 

(5.13) 

As before. 

so 

which becomes (1.15) on replacing -by /3^. 

For the cafee of spheres 

CD 

Via,/3)=V^y2{cosh/3-cos a. 

We now find 

or 

CO 

sinh ( n-^y2) ) 

e 
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Since is here negative, we must write eq (5.11) 

n+V2 )J 
V^2(cosh /5j-/x) 

_ -(n+^)|/3j_ +{n+y2)/3i 
— e —e for /3j<0, 

so that 

C=c 

CD 

2’ 
n=o 

sinh( + (/32-/3j ) 
= 2c 

00 

2 
n=0 

g-(n+/4)y 

1 _ g -(n+^ly’ 

where when /5j<0 andy32>0. 

On reversing the sign of this gives eq (1.14). For the limiting cases /3j-*0, in 

which the sphere or cylinder on the left of figure 6 or figure 37 has an infinite radius, 

we may place and a^-a^. When a-*oo/ g-* , /3 log {hiVh’^ - a"^) / a, so eq 

(1.14) and (1.15) become (1.8) and (1.9), respectively, The potential between cylinder 

and plane /3=0 (fig. 4) is 

j3 hi 
F(/3)=;^F2 for {)<(3<l3^=log- 

P o ^ 

Between the sphere and plane the potential is eq (5.14) with 0. 

5.3. Derivation of Equations (1.17) and (1.16) for Oblate Spheroid 

and Circular Disk 

With oblate spheroidal coordinates (a,/3) the (x,p) half-plane is represented on the 

/ 0 <a<7r\ 
(a./3) strip by 

or 

so 

or 

Xiip-ic sin(a+i;6) where c>0 

X--C cos CL sinh /3 and p—C sin a cosh /3 

r- Vx^ ip^-C Ksinh^ /S+sin^ a 

X ^ P 
i—-—=1 (confocal ellipses) 

sinh^ /3 cosh^ /3 

p2 
-+-= 1 (confocal hyperbolas). 

9 9 2-2 C COS a c sin a 
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Ttie equation for the axially symmetric potential 

1 

4 sin^ a 

---^ (/"F)=0 
4 cosh^ /3 / 

has solutions V=Q^ (i sinh /3)P^{cos a). The oblate spheroid /3—/3j has semiaxes a and b<a, 

where 

Va^- , sinh J3^= b/c and cosh /3^=a/c 

so 

iQ 
/ . , z l sinh yS+l 

,(l sinh ^)=-log-—^1 

iQ^ii sinh /3^) = sin ^ {c/ a) . 

The potential outside the conducting spheroid j3^ at potential with charge is (for 

/3i</3<oo) 

sinh yS) sin~^(sech (/3) 
y{j3)=y-=y -— 

* i0(,( i sinh ^j) ' sin'Mc/a) 

and limit[r7(/3)]] = limLc sinh /3F(/3)] = 
r-CD B-<D 

cV 

sin c a 

(5.15) 

which is eq (1.17). 

5.4. Derivation of Equation (1.18) for Prolate Spheroid 

With prolate spheroidal coordinates the (x,/o) half-plane is represented on the 

(a,/3) strip (0<a<7T), (0</3<oo) by 

X+i/0=-C cos(a+iyS), where C>0, or 

X=-(? cos a cosh /3 and p = c sin a sinh /3, so 

Hence 

yx^ cVsinh^jSi cos^a. 

2 2 

—-+---=1 (ellipses) 

cosh^ yS sinh^ j3 

cos^ a sin^ a 
1 (hyperbolas). 
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The equation for the axially symmetric potential 

("■ 
+ Z)|+ 

4 sin^ a 4 sinh^ /3 

{p^V)=0 

has solutions F—Q^Ccosh /3)P^(cos a). 

For the prolate spheroid with semiaxes a and b<a 

c= y a2_ ^2 and coshySjiza/c, 

S,(cosh /3) = l/2log^^i^=logcoth^=log (1^). 

0o(cosh /3i ) = log (a+c)/5. 

The potential outside the conducting spheroid /Sj at potential F^ with charge i/i is 

(for /Si</3<oo) 

and 

V(/3)-V ,0o(cosj^_ logcoth/3/2 

^ (3o(cosh ySj) Mog( a+c)/5’ 
(5.16) 

l2 = lim [ rF(/3) ] = 1 im [c Y sinh^ cos^ aF(/6) ] 
r-OD /S-OO 

cVi 

log(a+c)/5’ 

which is eq (1.18). 

5.5. Derivation of Equation (1.19) for a Toroid 

The strip {-7r<a<7T), {0</3<<^) of the toroidal (or "ring”) coordinates, represents 

the {x,p) half-plane, if this is cut from zero to c along the /:?-axis. The equation 

Xj- ip-~c cot (a+ i/3)/2 gives 

-C sin a 
X--—--and 

cosh p-cos a 
P- 

c sinh /3 

cosh /3-cos a 

r- y x'^\p'^-C 
cosh /3-I- cos a 

cosh yS - cos a 

y dx2+di/2= 
c y da^ + d/3^ 

cosh /5-cos a 

(5.17) 

(5.18) 
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The family of circles fi- constant, each member of which generates a toroidal surface 

by rotation around the X-axis, belongs to the equation 

X 2-1- ( yO-C coth (3) 2 = 
sinh2 yS * 

(5.19) 

The equation of the family of circular arcs, orthogonal to these circles, is 

( x-h C cot a) 2 -1- p 2 =— 
sin^ a 

(5.20) 

The equation for the axially symmetric potential 

(5.21) 

has solutions of the form 

V- }/ 2(cosh /3-cos a) (^4 cos na-\- B sin na) ( C?^_^(cosh /3) ^DQ ^_i^(cosh yS)). 

The third of eq (5.17) shows that spatial infinity, (r=®) corresponds to the point 

a=/3=0. The first two of these equations show that /3=-|-oo corresponds to x=0 and p-C- the 

radius of the focal circle. 

If the generating circle of figure 7 has the equation it is evident from 

(5.19) that 

C= V .4 2 -a 2 and cosh /?i=—. 
a 

(5.22) 

If the toroidal surface has a constant potential Vj and charge Bi, the Newtonian potential 

at outside points where 0<yS</3j is 

y 2 (cosh /3-cos •Pn-^(cosh/3)cos TZa, 
Pn_ 1^(cosh y^i) 

n=o 

(5.23) 

where Cq^Vo, e1 for 

This vanishes at r=<^ (i.e., when a=yS=0). On the surface /3j it becomes 

00 

V{a,/3j)=Vj V 2 (cosh ySj-cos a) *— 2" 

n=o 

Fj^constant by eq (4.24). 
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By a fundamental property of Newtonian potentials, the charge on the torus is 

i^i^limit(rF) = limit c 
r-*oo a-/S-o 

ish /3fcos a 

cosh yS-cos 
V(a,j6) 

4cV 

7T 
limit 
a = /S= 0 

A 

6 
Qn-y2{cosh (Si) 

”Pn-^/<(cosh /3i) 
P„_i//(cosh y6)cos n,oi. 

Since P„.i^(l)=l, this gives 

•^i_4c g^.i^Ccosh^^) 

Fi 77 P^_i4(cosh/3i)’ 
n=o 

which io eq (].19), since c= |/ and cosh /^i-A/a. The evaluation of these func¬ 

tions by elliptic integrals is discussed in section 4. 

5.6. Self-Inductance of a Single Turn of Wire 

Equation (2.15) 

With cylindrical coordinates {x,p) the vector potential A^-A {x, p) at any point 

{x,p) in space is by eq (C) of section 2. 

p''^i(x,p)=2|Jp'>"n(p')2i^^l+^jdS' (5.24) 

where D ^ -{x-x* ) ^ p-p' ^ and the integration is taken with respect to {x', p') over 

the upper circle of radius a in figure 18. 

Also by eq (P) of section 2 the self-inductance is given by 

(5.25) 

Since (x,p) and (x',p') 

L-2rr ji{p)‘ Pu[x,p)dS 

integrated with respect to {x,p) over the same circular section, 

are both points in this circle, we may use the expansion 

+ l y^/ -fl2 y r(s+M + n)r(3+K-n) 

^ \4pp7 277 S 1 

y^-n) r 

—I 
S=Q 

logj-^+0(S +V2+^ >+0(S +V2-^) “2s^(s+l ) 26) 

This is valid if P^/4pp'<l, which will be true for all positions of the points 

P{x,p) and P'{x' ,p') both within the circle, provided that a<A/2, which will be true here, 
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since it is assumed that a/A is so small that terms smaller than a^/8 >4 ^ log 8^/a may be 

neglected in comparison with 1. 

Hence for 71=1, eq (5.26) gives, to this approximation. 

2) + y, (1 -6 log 2) 
4pp' 

(5.27) 

Let y-p-A and y'-p’-A, so that x and y are rectangular coordinates with origin at 

the center of the circle. Then, to the second order in a/A, 

+ —j-|4 + 2log-- ^ 
^ y^y' ,y^-^y 

2A -w-hC}] 

For the assumed current density 

the total current is 1, which gives 

i=—(-V 
Tra^PUl ’ 

/bl~& a^\ 

Then 

P^n{p)^ 
ttq^F 

where 

This gives 

2p''''h(p 

C,=6 + V2 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

<S.33) 

To use this expression in the integral (5.24) it is better to use polar coordinates, plac¬ 

ing x =r cos P and ^/ = r sin <9, so that 

D^=r^-2rr' cos(9-9')+r'y (5.34) 

and 
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Log Z)-log r 
■m 

cos n (0-6 ' ) 
if r' 

n=l 

-logr 
COSn(0-9 ' ) 
- if r'^r 

n 

The result of integrating eq (5.24) is 

p^i(x,p)=-—[fj(r)+fj(r,5)+f2(r,e)] 

where 

f„(r)=3 

, ^ r ^ ^l^']rsin0 

8^2 [2 
+C, - 3 log — + ( 4-2C, ) sin^ 9 

^ a ^ h-^[ 
- +C2 +4C2 sin^ (9 ] 

With this, the integral (5.25) gives 

477-4 

pi 

Finally, multiplying by the factor, 

1 a ^ a ^ 

where 0^-2 5 (5-1), gives 

On substituting the expressions given above for Cj, Cj, and Cj, it is found that 

(6-1)(b-2/3)/a'2' 
-=4-.l([u(2bil)^]log(^)-I- 

16 

which is eq (2.15). 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

(5.40) 

(5.41) 

(5.42) 

(5.43) 
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Exact expressions for the magnetic field and inductance of any toroid with this cur¬ 

rent distribution may be found as normal series of ring functions, using the toroidal co¬ 

ordinates of reference [20]. It is thus found that for h=~5/2 the external magnetic 

field is the same as if the total current were concentrated in the focal circle. This is 

true for the more general case ^f{/3). 

To get an expression for the potential A {x, p) when the point P {x, p) is outside the 

circle of figure 18, the approximation (5.27) based on (5.26) cannot be used unless the 

distance of P from the center C is small compared to A. When this distance is of the or¬ 

der of magnitude of A or greater, while P{x' p' ) remains in the circle, it is sufficient 

to use Taylor’s series, with {x,p) fixed and the variables x'/A and U ' / A {={ p ' -A) / A) 

small. For brevity, let 

^—;---;- 
2pp 2pp 

_x ^ +p ^ ^ 

TTp 

so Q when Then, to the second order 

H^i)=QyMP^ix'Q^^y'Qp^%(x'^Q^^^y'^Qyynx'ij'Q^y), (5.44) 

where is the value of Dl,Qy^{i) when i =i ^ {x ' =y ' =0 ) and similarly, Q and 

From eq (4.27), with Jl—l and variables x' ,p', we find an exact expression when 

and p' -A . 

^xx'^^yy (5.45) 

By use of (5.44) with the current in (5.31) in eq (5.24), it is found th at 

(i> + V2)2AQy (5.46) 

where 

2AQ -2 (lo) = - (5.47) 

and 

10=1+ 
x^+{p-A)2 

2Ap 
(5.48) 
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Equation (5.46) is valid when iq-1 is not small. Hence there remains a gap, not here con¬ 

sidered, between the ranges of validity of the two equations (5.46) and (5.36), which 

could only be bridged by an equation more complicated than either. Applications of (5.46) 

that would require the retention of the second-order terms are exceedingly rare. It is 

generally sufficient to consider the total current concentrated in a filament with trace 

at center of the circular section of the wire. 

5,7. Derivation of Equation (2.16) for Self-Inductance of a Single 

Turn of Wire Near a Magnetic Medium 

Referring to figure 19 let Aaix,p) denote the value at any point P{x,p) in space due 

to any axially symmetric distribution of currents when p- 1 everywhere. These currents 

are all to the left of the boundary plane x=Xq. 

Similarly, let A2{x,p) denote the potential at any point to the left of X=Xo that 

would be produced (with p= 1 everywhere) by a fictitious distribution of currents that is 

the image of the existing distribution by reflection in the plane x=Xq. 

Then the potential A{x,p) due to the actual currents in the presence of the magnetic 

material with p^l, where Xq<X, is in the air, where - oo<x^X q, 

a — l 
A{x, p)=Aa{x, p)-\---A 2{x, p) , (5.49) 

Mb 1 

and in the material, where XQ<X<-f-oo, 

2p 
A{x,p)=--A^ix,p). 

1 
(5.50) 

By this definition of A ^{x ^ p) and A^{x,p) it is evident that at the plane X-Xq, 

A^ = A^, and Djf.A 2 ^-D^A ^ identically in p. 

Consequently, A is continuous, which makes continuous. Also the continuity of 

is assured by that of D^A/p. 

The inductance of the turn of wire near the material as figure 19 is by (5.49) 

i{x,p)pA{x,p)dS (5.51) 

integrated over a circular section of the wire. This integration could be effected for 

the form of current in eq (5.31) by use of eq (5.46), assuming that 2xq is not small com¬ 

pared to A. Formula (2.16) assumes that the fictitious current producing A^iXfp) is a 

filament of radius a coaxial with the x-axis in the plane x=:2Xq. 

For this approximation, we place in (5.51) 

L=L ■ +—2- ff V+1 JJ 

pA{x,p) = 2AQ% ( =2AQ^/, (^-l) = 24 
2{K-E) 

-kK 
]■ 

(5.52) 

whej 

^2; 
44a 

4x2-1- (A + a) 2 
(5.53) 
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Since Ji idS=l, this gives 

L=L ir+^^477^ 
M+1 

2{K-E) 

k 
-feZ ]• 

where L . is given by 5.43). 

(5.54) 

5.8. Derivation of Equations (2.40) and (2.41) for the Self- 

Inductance of Toroidal Current Sheets (Tape Winding) 

With ideal tape windings the current circulates as indicated by the arrow in figure 

27. There is no external field and the internal field of the unit current is Z0=2W/yD, 

where N is the number of turns, and p is the distance of a point from the axis of revolu¬ 

tion. The inductance L is equal to twice the integral defining total electrokinetic en¬ 

ergy T. 

T= pH^dv 

integrated over all space. Hence 

integrated over the axial section. For circular and rectangular axial sections shown in 

figure 27 and 28, this results in eq (2.40) and (2.41), respectively. 

5.9. Derivation of Equation (2.45) for Self-Inductance per Unit 

Length of Two Parallel Wires of Magnetic Material 

Referring to figure 31, the current +1 flows upward perpendicular to paper with uni¬ 

form current density in cylinder No. 1. The current density in cylinder No. 2 

is i ^--l/'rral . 

Tlie only components of current density and of vector potential are the ^-components 

where the z-axis is upward perpendicular to the paper. The general field equations 

B—pH=c\iTl A and curl E-Ani give 

B^=DyA, By=:-D^A, B^=0, 

where A{x , y)=A^ . Hence 

( Z)„^+Z)^^) 4 =-in cylinder 1 
X y n 

+- in cylinder 2 
a 2 

-0 in the air between them, 

(5.55) 
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The boundary conditions at the surface of each wire are: 

A is continuous (continuity of normal component of B), 

-is continuous (continuity of tangential E). 
/X 3 n 

With plane polar coordinates ( r ^, (9 ^ ) with origin at center 0^ of wire No. 1. 

(5.56) 

(5.57) 

1 / V 1 2 

Similarly, with polar coordinates (Tgi^g) with center at O2 

Hence let 

A. 
2 

At r j = a ^, 

in wire No. 

in wire No. 

= E in the air 

1 

2 

Then ( ^+Z)^, ^ ) Z7=0 everywhere. 
X y 

At T^-a^ 

and 

= and 

(5.58) 

(5.59) 

(5.60) 

(5.61) 

where means outside, U^ inside the wire. 
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The self-inductance of the line per centimeter length 

(5.62) 

The biaxial coordinates a,/S, see reference ^16]], are suitable for constructing the 

harmonic function U{a,/S) that satisfies the four boundary conditions in (5.56) and (5.57). 

We follow the procedure adopted in deriving the potential V in eq (5.14), that is, we take 

as the equation of circle No. 1 of figure 37 the equation /S=/3j, where /3^<0. In the end 

result we change the sign of to make all the constants C,/Sj, and positive, as given 

in the three eq (1.13). 

By (5.4) the surface element dS for integrating over a circular area bound by the 

circle /3= constant is 

dS=-, 
( cosh /S - cos a) ^ 

where da, d^>0. Now sinh /3^=^-c/a-^ and sinh /S^—c/a^- Hence after an expression for 

U{a,/3) is found, eq (5.62) becomes 

LA 
/Mi+M2\ 2 sinh^ U{ a, /3) da 

0 (cosh /3-cos a) 

2 sinh^ yS. 
_+ 00 

J 
*'/^2>0 •'g 

U{a, /3) da 

(cosh /3-cos a) 
(5.63) 

U{a,/3) will be found as a series in cos na, so the following integrals will be re¬ 

quired. 

cos nada e ^^(ri+coth x) 

^ Jo (cosh x-cos a)^ sinh^ x 

= ^ s ( s + n) -2(s+n)x (5.64) 

S = 1 

if 0<x. 

From this we find, when 0</3, 

2 sinh^ yS / e -2nx ( 7j+coth x) 

sinh^ X 
(5.65) 

The function n{a,/3) that satisfies the four boundary conditions in (5.60) and (5.61) is 
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In wire No. 1, where - j <0 : 

a,/3)=/2 j-CQ-2y5 j+ A cos na. 

n=l 

In wire No. 2, where 0</32</3^+®: 

00 

U(a,/3]=-pL2-C(,-2f\+ "y, cosna 

n=i 

In the air between them, where /3j<^</3. 

n, r. CO. V’ r ^nsinh n(^2”^) + ^nsinh ) 
Z7( a,yS) = -Co-2/3+ —-—v _ , ^ - I cos na, 

n=j 

where 

CD 

£ 
n=i 

sinh ni/S^-jS^) 

i4„sinh n/Sg-^^isinh n/3 

sinh n(/32-/3i) 

This makes U=A vanish at spatial infinity (a=/3=0). 

The boundary conditions require 

A ne’'^i= ^-~s [(U £, e -"r)e2"gi-( n- e,)e 
2i( 1-e I e 2® ’ 

Bn® 
-2(1+62) 

n{l-€i€2e-”y) 
[(1+61®-"’' )e-2’*^2-(l+e-'‘>)], 

where 

fJ-l-l , _M2-1 
^ 1 - ^ ^ ■ and y-2{fi2~^i ) * 

^ Mi+1’ 2 ^2+1 

Performing the integrations in (5.63) by use of (5.68) and (5.69) gives 

L/ cm =+-^-^+2 (^62-/3^)+ ^ (i4„e”^i -5ne"”^2 

j 

=^^4^+2(^2-/3i) 

+ 2 

00 

27 
n=i 

+ (l+62)(l+6je-"+)e-2"^2 

-2(1+6,Xl+e^le-"’'] / 

(5.66) 

(5.67) 

(5.68) 

(5.69) 

(5.70) 

(5.71) 

(5.72) 

(5.73) 
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To obtain positive constants for computing we next reverse the sign of so that 

r=2 (/3i+/32 ), as in eq (1.13), where /3j,yS2 ^ are all positive. After this change we 

find that when /Xj=/22 = 1 the formula reduces to the known correct expression, say Lq, that 

is given in (2.44), where 

ie-l=2 log-^=2(^, + ^2)+2 ^ i(e-2''^H-e-2"52-2e"‘r). (5.74) 
U j U 2 ^ 

n=i 

Subtracting this from the expression for L (with positive j3i) gives the eq (2.45). 
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