APR 2

They 1

NBS CIRCULAR 539 VOLUME 8

Standard X-ray Diffraction

Powder Patterns

UNITED STATES DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers. These papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.25) and its Supplement (\$1.50), available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.

Standard X-ray Diffraction Powder Patterns

Howard E. Swanson, Nancy T. Gilfrich, Marlene I. Cook, Roger Stinchfield, and Paul C. Parks

National Bureau of Standards Circular 539 Volume 8, Issued April 1, 1959

For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C.

•

Contents

Iı S

	Page		Page
ntroduction	1	Neodymium oxychloride, NdOCl	37
tandard X-ray powder patterns:		Nickel fluosilicate hexahydrate, NiSiF ₆ .6H ₂ O	- 38
Aluminum calcium sulfate hydrate (ettringite),		Niobium silicide, NbSi ₂	- 39
$Al_2O_3 \cdot 6CaO \cdot 3SO_3 \cdot 31H_2O$	3	Potassium bromoplatinate, K ₂ PtBr ₆	40
Ammonium bromoselenate, (NH ₄) ₂ SeBr ₆	4	Potassium bromoselenate, K ₂ SeBr ₆	41
Ammonium bromotellurate, (NH ₄) ₂ TeBr ₆	5	Potassium perrhenate, KReO ₄	41
Ammonium chloroiridate, (NH ₄) ₂ IrCl ₆	6	Potassium phosphomolybdate tetrahydrate,	
Ammonium chloropalladate, (NH ₄) ₂ PdCl ₆	7	$K_3PO_4(\hat{MoO_3})_{12} \cdot 4H_2O$	43
Ammonium chlorotellurate, (NH ₄) ₂ TeCl ₆	8	Potassium thiocyanate, KCNS	44
Ammonium metavanadate, NH4VO3	9	Rubidium bromate, RbBrO3	45
Ammonium phosphomolybdate tetrahydrate,		Rubidium bromotellurate, Rb ₂ TeBr ₆	46
$(NH_4)_3 PO_4 (MoO_3)_{12} \cdot 4H_2O_{$	10	Rubidium chlorate, RbClO ₃	47
Beryllium orthosilicate (phenacite), Be_2SiO_4	11	Rubidium chlorotellurate, Rb ₂ TeCl ₆	48
Bismuth oxybromide, BiOBr	14	Rubidium sulfate, Rb ₂ SO ₄	48
Calcium bromide hexahydrate, CaBr ₂ .6H ₂ O	15	Scandium phosphate, ScPO ₄	50
Calcium formate, Ca(HCO ₂) ₂	16	Silver iodide (iodyrite), AgI (hexagonal)	51
Cerium(III) fluoride, CeF ₃	17	Silver perrhenate, AgReO ₄	53
Cesium bromate, CsBrO ₃	18	Sodium carbonate monohydrate (thermonatrite),	
Cesium bromoplatinate, Cs ₂ PtBr ₆	19	$Na_2CO_3 \cdot H_2O_{$	54
Cesium bromoselenate, Cs ₂ SeBr ₆	20	Strontium formate, Sr(HCO ₂) ₂	55
Cesium chlorate, CsClO ₃	20	Strontium formate dihydrate, Sr(CHO ₂) ₂ ·2H ₂ O	56
Cesium chromium sulfate dodecahydrate,		Strontium iodide hexahydrate, SrI ₂ .6H ₂ O	58
$CsCr(SO_4)_2 \cdot 12H_2O$	21	Tantalum silicide, TaSi ₂	59
Cesium fluoborate, CsBF ₄	22	Thallium(I) bromate, TlBrO ₃	60
Cesium gallium sulfate dodecahydrate,		Thallium(I) chlorate, TlClO ₃	61
$CsGa(SO_4)_2 \cdot 12H_2O$	23	Thallium(I) iodate, TIIO ₃	62
Erbium sesquioxide, Er ₂ O ₃	25	Thallium(I) thiocyanate, TlCNS	63
Gallium phosphate (α -quartz type), GaPO ₄	27	Titanium silicide, Ti ₅ Si ₃	64
Germanium dioxide, GeO ₂ (tetragonal)	28	Tungsten sulfide (tungstenite), WS_{2}	65
Indium phosphate, InPO ₄	29	Vanadium (V) oxide, V_2O_5	66
Lead formate, Pb(HCO ₂) ₂	30	Yttrium phosphate (xenotime), YPO ₄	67
Lead(II, III) oxide (minium), Pb ₃ O ₄	32	Zinc carbonate (smithsonite), ZnCO ₃	69
Lead phosphate hydrate (lead hydroxyapatite),		Zinc fluosilicate hexahydrate, ZnSiF ₆ ·6H ₂ O	70
Pb ₅ (PO ₄) ₃ OH	33	Zinc sulfate heptahydrate (goslarite),	
Lithium perchlorate trihydrate, $LiClO_4 \cdot 3H_2O_{}$	34	$ZnSO_4 \cdot 7H_2O_{$	71
Neodymium fluoride, NdF ₃	36	Cumulative index to volumes 1, 2, 3, 4, 5, 6, 7, and 8	74

Errata

Vol. 7. Page ii, Errata Vol. 6 page 41, D³d should read D³_{3d}.

Page 50, under Structural data, should read calcium sulfate-type structure.

Standard X-ray Diffraction Powder Patterns

The seven previous volumes in this series are available from the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C., as follows:

NBS Circular 539, Volume 1, Standard X-ray Diffraction Powder Patterns (Data for 54 inorganic substances) 45 cents

NBS Circular 539, Volume 2, Standard X-ray Diffraction Powder Patterns (Data for 30 inorganic substances) 45 cents

NBS Circular 539, Volume 3, Standard X-ray Diffraction Powder Patterns (Data for 34 inorganic substances)

45 cents NBS Circular 539, Volume 4, Standard X-ray Diffraction Powder Patterns (Data for 42 inorganic substances)

45 cents NBS Circular 539, Volume 5, Standard X-ray Diffraction Powder Patterns (Data for 45 inorganic substances)

45 cents

NBS Circular 539, Volume 6, Standard X-ray Diffraction Powder Patterns (Data for 44 inorganic substances) 40 cents

NBS Circular 539, Volume 7, Standard X-ray Diffraction Powder Patterns (Data for 53 substances) 40 cents Send orders with remittance to: Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Remittances from foreign countries should include an additional one-fourth of the purchase price for postage.

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Vol. 8—Data for 61 Substances

Howard E. Swanson, Nancy T. Gilfrich,¹ Marlene I. Cook,¹ Roger Stinchfield,¹ and Paul C. Parks¹

Sixty-one standard X-ray diffraction powder patterns are presented. Thirty-three are to replace thirty-nine patterns already represented in the X-ray Powder Data File, and twentyeight are for substances not previously represented. The X-ray Powder Data File is a compilation of diffraction patterns from all sources and is used for the identification of unknown crystalline materials by matching spacing and intensity measurements. In this Circular, com-parison is made of all powder diffraction data available for each of the substances reported. The patterns were made with a Geiger counter X-ray diffractometer, using samples of high purity. The d-values were assigned Miller indices determined by comparison with calculated interplanar spacings and from space group considerations. The densities and lattice constants were calculated, and the refractive indices were measured whenever possible.

Included are X-ray data for the following sixty-one substances: Al₂O₃.6CaO.3SO₃.31H₂O, Included are X-ray data for the following sixty-one substances: Al₂O₃·6CaO·3SO₃·3IH₂O₁ (NH₄)₂SeBr₆, (NH₄)₂TeBr₆, (NH₄)₂IrCl₆, (NH₄)₂PdCl₆, (NH₄)₂TeCl₆, NH₄VO₃, (NH₄)₃PO₄-(MoO₃)₁₂·4H₂O₁ Be₂SiO₄, BioBr, CaBr₂·6H₂O₂, Ca(HCO₂)₂, CeF₃, CsBrO₃, Cs₂PtBr₆, Cs₂SeBr₆, CsClO₃, CsCr(SO₄)₂·12H₂O₁, CsBF₄, CsGa(SO₄)₂·12H₂O₂, Er₂O₃, GaPO₄ (α -quartz type), GeO₂ (tetragonal), InPO₄, Pb(HCO₂)₂, Pb₃O₄ (minimum), Pb₅(PO₄)₃OH (lead hydroxyapatite), LiClO₄· 3H₂O₁ NdF₃, NdOCl, NiSiF₆·6H₂O₂, NbSi₂, K₂PtBr₆, K₂SeBr₆, KReO₄, K₃PO₄(MoO₃)₁₂·4H₂O₂, KCNS, RbBrO₃, Rb₂TeBr₅, RbClO₃, Rb₂TeCl₆, Rb₂SO₄, ScPO₄, AgI (iodyrite), AgReO₄, Na₂CO₃·H₂O (thermonatrite), Sr(HCO₂)₂, Sr(CHO₂)₂·2H₂O, SrI₂·6H₂O, TaSi₂, TIBrO₃, TlClO₃, TlIO₃, TlCNS, Ti₅Si₃, WS₂, V₂O₅, YPO₄ (xenotime), ZnCO₃ (smithsonite), ZnSiF₆·6H₂O, and ZnSO₄·7H₂O (moslorite) $ZnSO_4 \cdot 7H_2O$ (goslarite).

INTRODUCTION

The National Bureau of Standards in its program² for the revision and evaluation of published X-ray data for the X-ray Powder Data File, presents data for 61 compounds. This paper is the eighth of the series of "Standard X-ray Diffraction Powder Patterns." These patterns are recommended to replace 39 cards now in the file. The patterns for 28 compounds not represented in the file have been added. These compounds are ammonium bromotellurate, ammonium chloroiridate, ammonium chloropalladate, ammonium chlorotellurate, cesium bromate, cesium bromoplatinate, cesium bromoselenate, cesium chlorate, cesium chromium sulfate dodecahydrate, cesium fluoborate, cesium gallium sulfate dodecahydrate, gallium phosphate (α -quartz type), indium phosphate, lithium perchlorate trihydrate, niobium silicide, potassium bromoplatinate, potassium bromoselenate, potassium phosphomolybdate tetrahydrate, rubidium bromate, rubidium bromotellurate, rubidium chlorate, rubidium chlorotellurate, scandium phosphate, tantalum silicide, thallium(I) bromate, thallium(I) chlorate, thallium(I) iodate, and titanium silicide.

The experimental procedure and general plan of these reports have not changed from that of the previous volumes of the NBS Circular.3 However, the basic technique is discussed, in this section, under the same headings that appear in the text of this volume.

¹ Fellow at the National Bureau of Standards sponsored by the Joint Committee on Chemical Analysis by Powder Diffraction Methods. ² This project is sponsored by the Joint Committee on Chemical Anal-ysis by Powder Diffraction Methods. This committee is composed of members from the American Society for Testing Materials, the American Crystallographic Association, and the British Institute of Physics. Finan-cial support is also provided by the National Bureau of Standards. ³ Other volumes were published as follows: Vol. 1 and Vol. 2, June 1953; Vol. 3, June 1954; Vol. 4, March 1955; Vol. 5, October 1955; Vol. 6, September 1956; and Vol. 7, September 1957.

ASTM cards. Each section of this Circular contains a table listing the ASTM file card numbers, the three strongest lines, the radiations used, and the literature references for each card. Cards listed in the 1956 index to the Powder Data File [1]⁴ are included in the table.

Additional published patterns. Literature references and radiation data for patterns that have not been published as ASTM cards are listed. These patterns are included in the tables of d-values and intensities.

NBS sample. Many of the samples used to make the NBS patterns were special preparations (of exceptionally high purity) obtained or prepared only in small quantities. The limit of detection for the alkali elements is 0.05 percent for the spectrographic analysis. Unless otherwise noted, the spectrographic analysis was done at NBS after recrystallization or heat treatment. A phase-purity check was made on the nonopaque materials during the refractive index determination. Another excellent check of phase-purity was provided by the X-ray pattern itself, since it was indexed by comparison with theoretical d-values. Treating the sample by appropriate annealing, recrystallizing, or heating in a hydrothermal bomb improved the quality of most of the patterns.

At least two intensity patterns were prepared to check reproducibility of measured values. Samples that give satisfactory intensity patterns usually have a particle-size average well within the range of 5 to 10 μ , as suggested by Alexander, Klug, and Kummer [2]. A special cell with one open end was

⁴ Figures in brackets indicate the literature references at the end of each section of this paper.

used for making intensity measurements. An intensity sample was prepared by clamping a flat piece of glass temporarily over the surface of this! holder, and while it was held in a vertical position, the sample was drifted in from the open end. The glass was then carefully removed so that the surface of the sample could be exposed to the X-ray beam. For a few powder samples that did not flow readily or were prone to orient excessively, approximately 50-volume percent of finely ground silica-gel was added as a diluent. The intensity values of each pattern were measured as peak height above background and are expressed as percentages of the strongest line. Additional patterns were obtained for *d*-value measurements. These specimens were prepared by packing, into a shallow holder, a sample containing an internal standard approximately 5-weight percent of tungsten powder. The lattice constant used for tungsten at 25°C is 3.1648 A, as determined by Jette and Foote [3]. All of the NBS patterns, unless otherwise noted, are made at 25°C with filtered copper radiation (K α_1) having a wavelength of 1.5405 A.

Interplanar spacings and intensity measure**ments.** Interplanar spacing data presented in the tables were converted to angstrom units as internationally defined in 1946 [4]. The conversions were from Bragg angle data, from d-values in kX units using the factor 1.00202, or from *d*-values based on wavelengths given in other than kX units. In each case, the type of conversion is indicated. The wavelength values in the tables of d-values and intensities are given in angstrom units, whereas the wavelengths listed under the first section of each report are the original values taken from the literature. The tables of patterns contain data based on the original work rather than that data reported on the ASTM cards.

Intensities taken from the literature, when not numerically evaluated, were given the following abbreviations: s, strong; m, medium; w, weak; D, diffuse; db, doublet; and v, very.

Structural data. Although the NBS lattice constants of cubic materials were calculated for each *d*-value, the constant reported is that obtained by averaging the last five lines because of the greater accuracy of measurement in the large-angle part of the pattern. The unit-cell values for each noncubic substance were determined by means of a leastsquares calculation made by the IBM 704 from the latter half of the pattern, using those d-values for which there was only one possible Miller index. The number of significant figures reported in the

NBS pattern is limited by the quality of each sample and by its structural symmetry.

Published unit-cell data were converted to angstrom units in the same manner as were the published *d*-values. When cell values based upon more than one cell configuration have been taken from the literature, corrections that were made to make them comparable have been indicated. The limits of error generally published with unit-cell data have not been included in the table because the number of determinations and their accuracy and variations were such that a statistical evaluation would be unjustified.

Starting with this volume 8 we have adopted a variation in our routine for presenting the space group. In place of both the Schoenflies symbol and the International symbol previously listed, we have dropped the Schoenflies symbol and added the space group number given in the International Tables for X-ray Crystallography. It is felt that this number has become useful in locating space group data, while the use of the Schoenflies symbol has diminished.

We have also decided to present orthorhombic cell dimensions only in the "standard" arrangement of a, b, c, as given in the International Tables, rather than with a permutation as is occasionally given in the literature.

The densities calculated from the NBS lattice constants are expressed in grams per cubic centimeter and are based upon atomic weights reported by E. Wichers [5] in 1956 and the Avogadro number (6.0240×10^{23}) reported by Straumanis [6] in The refractive index measurements were 1954.made by grain-immersion methods in white light using oils standardized in sodium light.

References

- [1] Cumulative alphabetical and grouped numerical index of X-ray diffraction data, American Society for Testing Materials, Philadelphia, Pa. (1956).
- [2] L. Alexander, H. P. Klug, and E. Kummer, Statistical factors affecting the intensity of X-rays diffracted by crystalline powders, J. Appl. Phys. 19, No. 8, 742-753 (1948).
- [3] E. R. Jette and F. Foote, Precision determination of
- lattice constants, J. Chem. Phys, **3**, 605–616 (1935). [4] Anonymous, The conversion factor for kX units to angstrom units, J. Sci. Inst. 24, 27 (1947).
- [5] E. Wichers, Report of the Committee on Atomic Weights of the American Chemical Society, J. Am. Chem. Soc. 78, 3235 (1956).
- [6] M. E. Straumanis, Remark concerning the absolute value of Avogadro's number, Phys. Rev. 95, 566 (1954).

Alumium Calcium Sulfate Hydrate (ettringite), Al₂O₃·6CaO·3SO₃·31H₂O (hexagonal)

ASTM cards

Card number 2–0059	Index lines 9.8 2.79 5.7	Radiation Molybdenum	Source Imperial Chemical Industries, Northwich, England, and British Museum.
			Museum.

Additional published patterns

Source	Radiation
Feitknecht and Buser [1] 1949	Copper

NBS sample. The sample of ettringite was prepared by Edwin S. Newman at NBS. His analysis shows the following chemical composition: 2.995 moles of CaO: 1 mole of Al_2O_3 : 2.915 moles of CaSO₄: 31.05 moles of H_2O . Spectrographic analysis shows the following impurities: 0.1 to 1.0 percent each of silicon and strontium; 0.01 to 0.1 percent each of silver, chromium, copper, magnesium, sodium, and lead; and 0.001 to 0.01 percent each of boron, barium, cesium, iron, manganese, nickel, tin, zinc, and zirconium.

The sample was colorless. The indices of refraction were not determined because the particle size was too small.

Interplanar spacings and intensity measurements. The d-values of the combined pattern reported by the Imperial Chemical Industries and the British Museum were converted from kX to angstrom units, and the d-values reported by Feitknecht and Buser were calculated from reported Bragg angle data. The indices of the three strongest lines for each pattern are as follows:

Pattern	1	2	3
Imperial Chemical Industries and the British Museum Feitknecht and Buser National Bureau of Standards_	$100 \\ 100 \\ 100$	$304 \\ 110 \\ 110$	$110 \\ 114 \\ 114 \\ 114$

Structural data. Bannister, Hey, and Bernal [2] in 1936 determined that ettringite has the space group $P6_3/mmc$ (No. 194) and $2(Al_2O_3 \cdot 6CaO \cdot 3SO_3 \cdot 31H_2O)$ per unit cell.

Two unit-cell measurements have been converted from kX to angstrom units for comparison with the NBS values.

hkl	Imperial Chemical Industries and British Museum Mo, 0.7107 A		1949 Feitknecht and Buser Cu,		1958 National Bureau of Standards Cu, 1.5405 A at 25°C	
	d	Ι	d	Ι	d	Ι
$100 \\ 101 \\ 110 \\ 112 \\ 200$	A 9.8 5.7 4.9	100 80 60	$\begin{array}{c} A \\ 9.62 \\ \overline{5.60} \\ 4.95 \\ \end{array}$	100 	$\begin{matrix} A \\ 9.73 \\ 8.86 \\ 5.61 \\ 4.98 \\ 4.86 \end{matrix}$	$100 \\ 12 \\ 81 \\ 24 \\ 6$
$104 \\ 314 \\ 203 \\ 114 \\ 210$	$ \begin{array}{r} 4.67 \\ 4.34 \\ \overline{3.87} \\ \\ \end{array} $	70 20 80	4.69	60 90 	$\begin{array}{r} 4.69 \\ 4.41 \\ 4.02 \\ 3.88 \\ 3.67 \end{array}$	$36 \\ 3 \\ 10 \\ 51 \\ 7$
$204 \\ 212 \\ 213 \\ 300 \\ 116$	$\left. \begin{array}{c} 3.60 \\ 3.45 \\ 3.26 \\ 3.02 \end{array} \right.$	30 60 40 30	$3.60 \\ 3.48 \\ 3.24 \\ 3.015$	$30 \\ 70 \\ 40 \\ 20$	$\left\{\begin{array}{c} 3.60\\ 3.48\\ 3.27\\ 3.240\\ 3.016\end{array}\right.$	$\begin{array}{c}14\\31\\4\\19\\6\end{array}$
$220 \\ 304 \\ 222 \\ 310 \\ 008$	$\left. \begin{array}{c} \bar{2.79} \\ \bar{2.67} \end{array} \right \left. \begin{array}{c} \bar{2.67} \end{array} \right $	90 30	2.772	 	$\begin{array}{c} 2.806 \\ 2.773 \\ 2.714 \\ \left\{ \begin{array}{c} 2.697 \\ 2.680 \end{array} \right. \end{array}$	$ \begin{array}{r} 6 \\ 38 \\ 6 \\ 12 \\ 7 \end{array} $
$312 \\ 216 \\ 313 \\ 224 \\ 400$	2.57	80	2.559	80	$2.616 \\ 2.564 \\ 2.524 \\ 2.487 \\ 2.434$	$21 \\ 45 \\ 4 \\ 3 \\ 2$
$ \begin{array}{r} 118 \\ 306 \\ 208 \\ 320 \\ 226 \end{array} $	$\begin{array}{c} 2.43 \\ 2.36 \\ \overline{2.20} \end{array}$	30 10 80	2.207	 90	$\left\{\begin{array}{c} 2.422\\ 2.401\\ 2.347\\ 2.230\\ 2.209\end{array}\right.$	$\begin{array}{c}2\\10\\4\\20\\43\end{array}$
$322 \\ 316 \\ 323 \\ 410 \\ 412$	2.14	60 	2.140		$2.185 \\ 2.154 \\ 2.130 \\ 2.124 \\ 2.081$	$\begin{array}{c}8\\23\\2\\5\\4\end{array}$
$324 \\ 413 \\ 317 \\ 325 \\ 414$	2.06	30			$2.062 \\ 2.033 \\ 2.027 \\ 1.979 \\ 1.975$	$5 \\ 1 \\ 2 \\ 3$
$500 \\ 407 \\ 503 \\ 2 \cdot 1 \cdot 10 \\ 332$	$\begin{array}{c} 1.94 \\ 1.89 \\ 1.84 \end{array}$	30 30 40			$ \left\{ \begin{array}{c} 1.946 \\ 1.905 \\ 1.875 \\ 1.853 \\ 1.845 \end{array} \right. $	$\begin{array}{c}10\\1\\2\\6\\8\end{array}$
$\begin{array}{c} 421 \\ 504 \\ 422 \\ 2 \cdot 0 \cdot 11 \\ 0 \cdot 0 \cdot 12 \\ 334 \end{array}$	$\left. \begin{array}{c}\\ 1.80\\ \overline{1.75}\\ {}_{(a)} \end{array} \right $	10 40			$\begin{cases} 1.829 \\ 1.812 \\ 1.809 \\ 1.786 \\ 1.768 \end{cases}$	$ \frac{4}{3} \frac{2}{4} $

^a Nine additional lines were omitted.

The density of ettringite calculated from the NBS lattice constants is 1.754 g/cm³ at 25° C.

References

- W. Feitknecht and H. Buser, Zur Kenntnis der nadeligen Calcium-Aluminum-hydroxysalze, Helv. Chim. Acta 32, 2298-2305 (1949).
- Acta 32, 2298-2305 (1949).
 [2] F. A. Bannister, M. H. Hey, and J. D. Bernal, Mineral. Mag. 24, 324-329 (1936).

Ammonium Bromoselenate, (NH₄)₂SeBr₆ (cubic)

ASTM cards

Card number	Index lines	Radiation	Source
2-1438	$1.17 \\ 3.03 \\ 2.62$	Chromium	Sieg [1] 1932.

Additional published patterns. None.

NBS sample. The sample of ammonium bromoselenate was prepared at NBS from selenium dioxide, ammonium bromide, and hydrobromic acid. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent each of iron, sodium, and silicon.

The color of the sample was orange-red. The index of refraction could not be determined by the usual liquid grain immersion method because it was too highly colored.

Interplanar spacings and intensity measurements. The *d*-values of the Sieg pattern were calculated from reported Bragg angle data. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Sieg National Bureau of Standards_	$\frac{840}{222}$	$\begin{array}{c} 222\\ 400 \end{array}$	$\begin{array}{c} 400\\ 200 \end{array}$

Structural data. Sieg [1] in 1932 determined that ammonium bromoselenate has potassium chloroplatinate-type structure, the space group Fm3m (No. 225), and 4[(NH_4)₂SeBr₆] per unit cell.

The unit-cell measurement reported by Sieg has been converted from kX to angstrom units for comparison with the NBS values.

hkl	C	1932 Sieg r, 2.291	А	1958 National Bureau of Standards Cu, 1.5405 A at 23		
	d	Ι	a	d	I	a
$ \begin{array}{r} 111 \\ 200 \\ 220 \\ 311 \\ 222 \\ \end{array} $	$\begin{array}{c} A \\ 6.08 \\ 5.29 \\ \hline 3.18 \\ 3.03 \end{array}$	VW W-VW VVW VS	$\begin{array}{c} A \\ 10.5 \\ 10.5 \\ \hline 10.5 \\ 10.5 \\ 10.5 \\ 10.5 \end{array}$	$\begin{array}{c} A \\ 6.06 \\ 5.24 \\ 3.71 \\ 3.160 \\ 3.027 \end{array}$	$31 \\ 64 \\ 3 \\ 12 \\ 100$	$\begin{array}{c} A \\ 10.49 \\ 10.49 \\ 10.49 \\ 10.49 \\ 10.48 \\ 10.49 \end{array}$

hkl	Ci	1932 Sieg r, 2.291	A	Natio of Cu, 1.5	1958 onal I Stand 405 A	3 Bureau lards at 25°C
	d	Ι	a	d	I	a
	A		A	A		A
$\begin{array}{c} 400 \\ 331 \\ 420 \\ 422 \\ 511 \end{array}$	$ \begin{array}{r} 2.63 \\ \overline{2.35} \\ \overline{2.03} \end{array} $	vs s 	$ \begin{array}{r} 10.5 \\ \overline{10.5} \\ \overline{10.5} \end{array} $	$2.621 \\ 2.406 \\ 2.344 \\ 2.137 \\ 2.017$		$10.48 \\ 10.48 \\ 10.48 \\ 10.47 \\ 10.48 \\ 10.4$
$\begin{array}{c} 440 \\ 531 \\ 600 \\ 620 \\ 533 \end{array}$	1.86 1.75	vs vvw	10.5 10.5	$1.853 \\ 1.771 \\ 1.746 \\ 1.658 \\ 1.5983$	$50 \\ 6 \\ 17 \\ <1 \\ <1 \\ <1$	$10.48 \\ 10.48 \\ 10.48 \\ 10.48 \\ 10.48 \\ 10.481$
$\begin{array}{c} 622 \\ 444 \\ 711 \\ 640 \\ 731 \end{array}$	$1.58 \\ 1.51 \\ 1.468 \\ 1.455 \\ 1.364$	s-vs s-w vvw vvw <vvw< th=""><th>$10.5 \\ 10.5 \\ 10.48$</th><th>$\begin{array}{r} 1.5800 \\ 1.5127 \\ 1.4679 \\ 1.4531 \\ 1.3640 \end{array}$</th><th>$\begin{array}{c c} 27\\14\\4\\4\\1\end{array}$</th><th>$10.480 \\ 10.480 \\ 10.483 \\ 10.478 \\ 10.477$</th></vvw<>	$10.5 \\ 10.5 \\ 10.48 $	$\begin{array}{r} 1.5800 \\ 1.5127 \\ 1.4679 \\ 1.4531 \\ 1.3640 \end{array}$	$\begin{array}{c c} 27\\14\\4\\4\\1\end{array}$	$10.480 \\ 10.480 \\ 10.483 \\ 10.478 \\ 10.477$
$\begin{array}{c} 800 \\ 820 \\ 751 \\ 662 \\ 840 \end{array}$	$1.309 \\ 1.270 \\ 1.210 \\ 1.201 \\ 1.170$	w-s s vvw vs vvs	$10.48 \\ 10.4$	$\begin{array}{c} 1.3100 \\ 1.2710 \\ 1.2097 \\ 1.2018 \\ 1.1715 \end{array}$		$\begin{array}{c} 10.480\\ 10.481\\ 10.476\\ 10.477\\ 10.478\end{array}$
$911 \\ 842 \\ 931 \\ 844 \\ 933$				$1.1498 \\ 1.1430 \\ 1.0982 \\ 1.0694 \\ 1.0532$	$ \begin{array}{c} 1 \\ 4 \\ < 1 \\ 7 \\ 1 \end{array} $	$10.475 \\ 10.476 \\ 10.476 \\ 10.478 \\ 10.479 \\ 10.479 \\$
$\begin{array}{c} 10 \cdot 0 \cdot 0 \\ 951 \\ 10 \cdot 2 \cdot 2 \\ 953 \\ 10 \cdot 4 \cdot 0 \end{array}$				$1.0475 \\ 1.0130 \\ 1.0085 \\ 0.9773 \\ .9730$		$\begin{array}{c} 10.475 \\ 10.479 \\ 10.481 \\ 10.480 \\ 10.480 \end{array}$
$\begin{array}{c} 880 \\ 11 \cdot 3 \cdot 1 \\ 10 \cdot 4 \cdot 4 \\ 10 \cdot 6 \cdot 2 \\ 12 \cdot 0 \cdot 0 \end{array}$.9262 .9157 .9121 .8856 .8733	$ \begin{array}{c} 1 \\ < 1 \\ 1 \\ 2 \\ 3 \end{array} $	$\begin{array}{c} 10.479 \\ 10.481 \\ 10.479 \\ 10.479 \\ 10.479 \\ 10.480 \end{array}$
$\begin{array}{c} 12 \cdot 2 \cdot 0 \\ 12 \cdot 4 \cdot 0 \\ 12 \cdot 4 \cdot 2 \\ 10 \cdot 6 \cdot 6 \\ 12 \cdot 4 \cdot 4 \\ 12 \cdot 6 \cdot 0 \end{array}$.8615 .8286 .8182 .7989 .7900 .7810	$< 1 \\ 3 \\ 1 \\ 2 \\ 1 \\ 1$	$\begin{array}{c} 10.481 \\ 10.481 \\ 10.478 \\ 10.477 \\ 10.480 \\ 10.478 \end{array}$
Average value of last five lines		last	10.48			10.478

Lattice constants

1932 1958	Sieg [1] National Bureau of Standards	A 10.48 10.478 at 25°C

The density of ammonium bromoselenate calculated from the NBS lattice constant is 3.431 g/cm³ at 25°C.

References

 L. Sieg, Die Kristallstruktur des Ammoniumhexabromoselenats, Z. anorg. u. allgem. Chem. 207, 93–96 (1932).

Ammonium Bromotellurate, (NH₄)₂TeBr₆ (cubic)

ASTM cards. None.

Additional published patterns. None.

NBS sample. The sample of ammonium bromotellurate was prepared at NBS from tellurium oxide, hydrobromic acid, and ammonium bromide. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent each of iron and sodium; and 0.0001 to 0.001 percent each of calcium and silicon.

The color of the sample was bright orange. The index of refraction was too high to be determined by the usual liquid grain-immersion method.

Interplanar spacings and intensity measurements. The indices of the three strongest lines of the NBS pattern are as follows:

Pattern	1	2	3
National Bureau of Standards_	400	200	222

Structural data. Although there are no references to the crystal structure of ammonium bromotellurate in the literature, it appears to have potassium chloroplatinate-type structure, the space group Fm3m (No. 225), and $4[(NH_4)_2TeBr_6]$ per unit cell. The NBS unit-cell measurement is as follows:

Lattice constant

1958	National Bureau of Standards	$\stackrel{A}{10.731 ext{ at } 26^{\circ} ext{C}}$

The density of ammonium bromotellurate calculated from NBS lattice constant is 3.456 at 26°C.

bkl	1958 National Bureau of Standards Cu, 1.5405 A at 26°C		
10100	d	Ι	a
$ \begin{array}{r} 111\\ 200\\ 311\\ 222\\ 400 \end{array} $	$\begin{matrix} A \\ 6.19 \\ 5.36 \\ 3.23 \\ 3.10 \\ 2.68 \end{matrix}$	$26 \\ 67 \\ 34 \\ 58 \\ 100$	$\begin{matrix} A \\ 10.72 \\ 10.73 \\ 10.72 \\ 10.73 \\ 10.73 \\ 10.72 \end{matrix}$
$331 \\ 420 \\ 511 \\ 440 \\ 531$	$2.460 \\ 2.398 \\ 2.064 \\ 1.897 \\ 1.813$	$16 \\ 54 \\ 14 \\ 44 \\ 19$	$\begin{array}{c} 10.724 \\ 10.722 \\ 10.724 \\ 10.730 \\ 10.726 \end{array}$
$600 \\ 533 \\ 622 \\ 444 \\ 711$	$1.788 \\ 1.635 \\ 1.618 \\ 1.548 \\ 1.502$	$28 \\ 9 \\ 14 \\ 14 \\ 8$	$\begin{array}{c} 10.725 \\ 10.723 \\ 10.730 \\ 10.721 \\ 10.730 \end{array}$
$640 \\ 731 \\ 800 \\ 733 \\ 820$	$1.4875 \\ 1.3966 \\ 1.3406 \\ 1.3111 \\ 1.3012$	6 8 7 7 9	$\begin{array}{c} 10.726 \\ 10.728 \\ 10.725 \\ 10.732 \\ 10.730 \end{array}$
$822 \\ 751 \\ 662 \\ 840 \\ 911$	$1.2644 \\ 1.2388 \\ 1.2303 \\ 1.1995 \\ 1.1780$	$\begin{array}{c}4\\6\\3\\12\\5\end{array}$	$\begin{array}{c} 10.728 \\ 10.728 \\ 10.726 \\ 10.729 \\ 10.732 \end{array}$
$842 \\931 \\844 \\933 \\10 \cdot 0 \cdot 0$	$1.1708\\1.1252\\1.0950\\1.0787\\1.0733$	$9 \\ 3 \\ 8 \\ 2 \\ 2 \\ 2$	$\begin{array}{c} 10.731 \\ 10.734 \\ 10.729 \\ 10.733 \\ 10.733 \end{array}$
$951 \\ 10 \cdot 2 \cdot 2 \\ 10 \cdot 4 \cdot 0 \\ 11 \cdot 1 \cdot 1 \\ 880$	$1.0376 \\ 1.0324 \\ 0.9966 \\ .9674 \\ .9483$	$2 \\ 2 \\ 4 \\ < 1 \\ 2$	$\begin{array}{c} 10.733 \\ 10.729 \\ 10.734 \\ 10.729 \\ 10.729 \\ 10.729 \end{array}$
$ \begin{array}{c} 11 \cdot 3 \cdot 1 \\ 10 \cdot 4 \cdot 4 \\ 10 \cdot 6 \cdot 2 \\ 12 \cdot 0 \cdot 0 \\ 11 \cdot 5 \cdot 3 \end{array} $	$.9375 \\ .9340 \\ .9070 \\ .8942 \\ .8617$	$<1 < 1 < 1 < 1 < 1 \\ < 1 & 2 \\ 1 & 1 \end{cases}$	$\begin{array}{c} 10.730 \\ 10.731 \\ 10.732 \\ 10.730 \\ 10.728 \end{array}$
$12 \cdot 4 \cdot 0 \\ 12 \cdot 4 \cdot 2 \\ 13 \cdot 1 \cdot 1 \\ 12 \cdot 4 \cdot 4 \\ 13 \cdot 3 \cdot 1 \\ 12 \cdot 6 \cdot 0$.8482 .8380 .8206 .8087 .8022 .7998	2 2 <1 <1 <1 <1 <1 <1	$\begin{array}{c} 10.729 \\ 10.732 \\ 10.731 \\ 10.729 \\ 10.733 \\ 10.733 \\ 10.730 \end{array}$
Average va	Average value of last five lines 10.731		

ASTM cards. None.

Additional published patterns. None.

NBS sample. The sample of ammonium chloroiridate was prepared at NBS by R. Gilchrist. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent of sodium; and 0.0001 to 0.001 percent of silicon.

The color of the sample was brown-black. The indices of refraction were not obtained because the sample was too highly colored.

Interplanar spacings and intensity measurements. The indices of the three strongest lines of the NBS pattern are as follows:

Pattern	1	2	3
National Bureau of Standards_	111	200	311

Structural data. Boky and Ussikov [1] in 1940 determined that ammonium chloroiridate has potassium chloroplatinate-type structure, the space group Fm3m (No. 225), and 4[(NH_4)₂IrCl₆] per unit cell.

The unit-cell measurement reported by Boky and Ussikov was converted from kX to angstrom units for comparison with the NBS value.

Lattice constants

1940 Boky and Ussikov [1] 1958 National Bureau of Standards	A 9.89 9.860 at 25°C
---	----------------------------

The density of ammonium chloroiridate calculated from the NBS lattice constant is 3.055 g/cm³ at 25° C.

hkl	National Cu, 1	1958 Bureau of Stai 1.5405 A at 25	ndards °C
	d	Ι	a
$111 \\ 200 \\ 220 \\ 311 \\ 222$	$\begin{matrix} A \\ 5.70 \\ 4.93 \\ 3.48 \\ 2.973 \\ 2.846 \end{matrix}$	$100 \\ 68 \\ 27 \\ 48 \\ 5$	$\begin{array}{c} A\\ 9.87\\ 9.87\\ 9.86\\ 9.861\\ 9.860\end{array}$
$\begin{array}{c} 400\\ 331\\ 420\\ 422\\ 511 \end{array}$	2.4652.2622.2052.0131.897	38 16 28 10 17	$9.859 \\ 9.859 \\ 9.862 \\ 9.861 \\ 9.859$
$\begin{array}{c} 440 \\ 531 \\ 600 \\ 620 \\ 533 \end{array}$	$\begin{array}{c} 1.743 \\ 1.666 \\ 1.643 \\ 1.559 \\ 1.504 \end{array}$	$ \begin{array}{c c} 19 \\ 14 \\ 12 \\ 3 \\ 6 \end{array} $	$9.859 \\ 9.859 \\ 9.857 \\ 9.857 \\ 9.859 \\ 9.860$
$\begin{array}{c} 444 \\ 711 \\ 640 \\ 642 \\ 731 \end{array}$	$\begin{array}{c} 1.423 \\ 1.381 \\ 1.3670 \\ 1.3180 \\ 1.2837 \end{array}$		9.860 9.860 9.860 9.863 9.863
800 733 820 822 751	$\begin{array}{c} 1.2327 \\ 1.2044 \\ 1.1954 \\ 1.1617 \\ 1.1384 \end{array}$	$\begin{array}{c c} 1 \\ 1 \\ 2 \\ < 1 \\ 2 \end{array}$	$9.862 \\ 9.858 \\ 9.858 \\ 9.858 \\ 9.857 \\ 9.858$
$840 \\911 \\842 \\664 \\931$	$\begin{array}{c} 1.1021 \\ 1.0820 \\ 1.0757 \\ 1.0510 \\ 1.0340 \end{array}$	$2 \\ 2 \\ 1 \\ -1 \\ < 1$	$9.859 \\ 9.858 \\ 9.859 \\ 9.859 \\ 9.859 \\ 9.860$
$\begin{array}{c} 844\\ 933\\ 10{\cdot}0{\cdot}0\\ 10{\cdot}2{\cdot}0\\ 951 \end{array}$	$\begin{array}{c} 1.0063 \\ 0.9911 \\ .9861 \\ .9668 \\ .9532 \end{array}$	$\begin{pmatrix} <1\\5\\<1\\1\\2 \end{pmatrix}$	$9.860 \\ 9.861 \\ 9.861 \\ 9.860 \\ 9.860 \\ 9.860$
$953 \\ 10 \cdot 4 \cdot 0 \\ 11 \cdot 1 \cdot 1 \\ 880 \\ 11 \cdot 3 \cdot 1$	$.9192 \\ .9153 \\ .8890 \\ .8715 \\ .8614$		9.857 9.858 9.860 9.860 9.859
$ \begin{array}{c} 10 \cdot 4 \cdot 4 \\ 10 \cdot 6 \cdot 0 \\ 11 \cdot 3 \cdot 3 \\ 12 \cdot 0 \cdot 0 \\ 12 \cdot 2 \cdot 2 \\ 11 \cdot 5 \cdot 3 \end{array} $.8582 .8455 .8364 .8217 .7997 .7920	1 <1 <1 <1 <1 <1 <1	9.860 9.860 9.861 9.860 9.859 9.860
Average val	ue of last five li	nes	9.860

References

[1] G. B. Boky and P. I. Ussikov, X-ray studies of the structure of (NH₄)₂IrCl₆, Compt. rend. acad. sci. U.R.S.S. 26, 782-784 (1940).

ASTM cards. None.

Additional published patterns. None.

NBS sample. The sample of ammonium chloropalladate was prepared at NBS by R. Gilchrist. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent each of silver, platinum, and silicon; and 0.0001 to 0.001 percent each of calcium, magnesium, and lead.

The color of the sample was deep red. The index of refraction was too high to be determined by the usual liquid grain immersion method.

Interplanar spacings and intensity measurements. The indices of the three strongest lines of the NBS pattern are as follows:

Pattern	1	2	3
National Bureau of Standards_	111	200	400

Structural data. Ketelaar and van Walsem [1] in 1938 determined that ammonium chloropalladate has potassium chlorostannate-type structure, the space group Fm3m (No. 225), and $4[(NH_4)_2PdCl_6]$ per unit cell.

The unit-cell measurement reported by Ketelaar and van Walsem has been converted from kX to angstrom units for comparison with the NBS values.

Lattice	constants
---------	-----------

1938 1953 1958	Ketelaar and van Walsem [1] Sharpe [2] National Bureau of Standards	$\begin{array}{c} A \\ 9.83 \\ 9.84 \\ 9.826 {\rm at} 26^{\circ}{\rm C} \end{array}$
----------------------	---	--

The density of ammonium chloropalladate calculated from the NBS lattice constant is 2.486 g/cm³ at 26°C.

References

- J. A. A. Ketelaar and J. F. van Walsem, Die Kristallstruktur des Ammonium-, Kalium-, Rubidium- und Cäsiumpalladiumhexachlorids und- Bromids, Rec. trav. chim. 57, 964–966 (1938).
- [2] A. G. Sharpe, Chemistry of the platinum metals. Part III. Lattice constants of some chloropalladates, bromopalladates, and bromoplatinates, J. Chem. Soc. 4177-4179 (1953).

Ammonium Chloropalladate, (NH₄)₂PdCl₆ (cubic)

hkl	1958 National Bureau of Standards Cu, 1.5405 A at 26°C		
	d	Ι	a
$ \begin{array}{r} 111\\ 200\\ 220\\ 311\\ 222 \end{array} $	$\begin{matrix} A \\ 5.68 \\ 4.91 \\ 3.47 \\ 2.962 \\ 2.836 \end{matrix}$	$100 \\ 73 \\ 19 \\ 40 \\ 24$	$\begin{array}{c} A\\ 9.84\\ 9.82\\ 9.82\\ 9.82\\ 9.822\\ 9.824\\ \end{array}$
$\begin{array}{c} 400 \\ 331 \\ 420 \\ 422 \\ 511 \end{array}$	$2.455 \\ 2.254 \\ 2.196 \\ 2.006 \\ 1.890$	$53 \\ 10 \\ 31 \\ 7 \\ 18$	$\begin{array}{c} 9.820 \\ 9.823 \\ 9.822 \\ 9.825 \\ 9.823 \end{array}$
$\begin{array}{c} 440 \\ 531 \\ 600 \\ 620 \\ 533 \end{array}$	$1.737 \\ 1.661 \\ 1.637 \\ 1.554 \\ 1.4984$	$27 \\ 15 \\ 13 \\ 1 \\ 4$	9.824 9.826 9.823 9.826 9.826
$\begin{array}{c} 622 \\ 444 \\ 711 \\ 640 \\ 642 \end{array}$	$1.4809\\1.4180\\1.3757\\1.3627\\1.3133$	3 9 7 6 2	9.823 9.824 9.824 9.827 9.828
731 800 820 822 751	$\begin{array}{c} 1.2790 \\ 1.2282 \\ 1.1914 \\ 1.1579 \\ 1.1342 \end{array}$	5 4 5 1 3	9.824 9.826 9.824 9.825 9.825 9.822
$\begin{array}{c} 840 \\ 911 \\ 842 \\ 664 \\ 931 \end{array}$	$1.0981 \\ 1.0786 \\ 1.0719 \\ 1.0471 \\ 1.0298$	5 2 1 2	9.822 9.826 9.824 9.823 9.823 9.824
$ \begin{array}{r} 844 \\ 933 \\ 10 \cdot 0 \cdot 0 \\ 10 \cdot 2 \cdot 0 \\ 951 \end{array} $	$\begin{array}{c} 1.0025 \\ 0.9874 \\ .9828 \\ .9633 \\ .9496 \end{array}$	${ < 1 \\ < 1 \\ < 1 \\ < 2 \\ 2 }$	9.822 9.824 9.828 9.824 9.824 9.823
$953 \\ 880 \\ 11 \cdot 3 \cdot 1 \\ 10 \cdot 4 \cdot 4 \\ 11 \cdot 3 \cdot 3$.9161 .8684 .8584 .8553 .8334	$2 < 1 \\ 1 < 1 \\ -1 \\ 1$	9.824 9.825 9.825 9.827 9.826
$12 \cdot 0 \cdot 0$ $12 \cdot 2 \cdot 0$ $11 \cdot 5 \cdot 3$.8188 .8077 .7892		$9.826 \\ 9.826 \\ 9.826 \\ 9.826$
Average of	last five lines		9.826

Ammonium Chlorotellurate, (NH₄)₂TeCl₆ (cubic)

ASTM cards. None.

Additional published patterns. None.

NBS sample. The ammonium chlorotellurate was prepared at NBS by dissolving TeO₂ in concentrated HCl. To the H_2 TeCl₆ a solution of NH₄Cl was added in stoichiometric proportions and the solution was crystallized on a steam bath. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent each of iron, sodium, and silicon; and 0.0001 to 0.001 percent each of boron and magnesium. The color of the sample was yellow. The index of refraction is 1.895.

Interplanar spacings and intensity measurements. The indices of the three strongest lines of the NBS pattern are as follows:

Pattern	1	2	3
National Bureau of Standards_	111	200	400

Structural data. Engel [1] in 1935 determined that ammonium chlorotellurate has potassium chloroplatinate-type structure, the space group Fm3m (No. 225), and 4[$(NH_4)_2$ TeCl₆] per unit cell.

The unit-cell measurement reported by Engel has been converted from kX to angstrom units for comparison with the NBS value.

Lattice constants

1935 Engel [1] 1958 National Bureau of Standards	$\begin{bmatrix} & A \\ 10.199 \\ 10.203 \text{ at } 25^{\circ}\text{C} \end{bmatrix}$
---	--

The density of ammonium chlorotellurate calculated from the NBS lattice constant is 2.353g/cm³ at 25°C.

hkl	1958 National Bureau of Standards Cu, 1.5405 [*] A at 25°C		
nne	d	Ι	a
$ \begin{array}{r} 111\\200\\220\\311\\222\end{array} $	$\begin{matrix} A \\ 5.90 \\ 5.12 \\ 3.61 \\ 3.080 \\ 2.948 \end{matrix}$	$ \begin{array}{r} 100 \\ 90 \\ 25 \\ 66 \\ 20 \end{array} $	$\begin{matrix} A \\ 10.22 \\ 10.20 \\ 10.21 \\ 10.22 \\ 10.21 \\ 10.21 \end{matrix}$
$\begin{array}{r} 400\\ 331\\ 420\\ 422\\ 511\end{array}$	$2.554 \\ 2.343 \\ 2.285 \\ 2.084 \\ 1.965$	74 28 47 13 21	$10.20 \\ 10.21 \\ 10.22 \\ 10.21 \\ 10.21 \\ 10.21$
$\begin{array}{r} 440 \\ 531 \\ 600 \\ 620 \\ 533 \end{array}$	$1.804 \\ 1.725 \\ 1.700 \\ 1.6133 \\ 1.5565$	$37 \\ 20 \\ 20 \\ 4 \\ 7$	$10.205 \\ 10.205 \\ 10.200 \\ 10.203 \\ 10.207$
$\begin{array}{r} 444 \\ 711 \\ 640 \\ 642 \\ 731 \end{array}$	$1.4731 \\ 1.4293 \\ 1.4152 \\ 1.3644 \\ 1.3289$		$10.206 \\ 10.207 \\ 10.205 \\ 10.210 \\ 10.207$
800 733 820 822 751	$1.2754 \\ 1.2468 \\ 1.2376 \\ 1.2023 \\ 1.1782$	5 5 9 5 4	$10.203 \\ 10.205 \\ 10.206 \\ 10.202 \\ 10.204$
$\begin{array}{c} 840 \\ 911 \\ 842 \\ 664 \\ 931 \end{array}$	$1.1411 \\ 1.1201 \\ 1.1137 \\ 1.0874 \\ 1.0697$	8 2 5 2 4	$10.206 \\ 10.205 \\ 10.207 \\ 10.201 \\ 10.204$
$ \begin{array}{c c} 844 \\ 933 \\ 10.0.0 \\ 10.2.0 \\ 951 \end{array} $	$\begin{array}{c} 1.0414\\ 1.0255\\ 1.0207\\ 1.0005\\ 0.9865\end{array}$	$ \begin{array}{c} 3 \\ 3 \\ 3 \\ 3 \\ 4 \end{array} $	$10.204 \\ 10.204 \\ 10.207 \\ 10.203 \\ 10.204$
$953 \\ 10 \cdot 4 \cdot 0 \\ 11 \cdot 1 \cdot 1 \\ 880 \\ 11 \cdot 3 \cdot 1$.9516 .9474 .9201 .9018 .8915	$\begin{array}{c}3\\4\\2\\3\end{array}$	$10.205 \\ 10.204 \\ 10.203 \\ 10.203 \\ 10.204$
$ \begin{array}{c} 10 \cdot 4 \cdot 4 \\ 10 \cdot 6 \cdot 0 \\ 11 \cdot 3 \cdot 3 \\ 12 \cdot 0 \cdot 0 \\ 11 \cdot 5 \cdot 1 \end{array} $	$\begin{array}{r} .8881\\ .8749\\ .8656\\ .8503\\ .8415\end{array}$	$\begin{array}{c} 4\\ 3\\ 3\\ 5\\ 3\end{array}$	$\begin{array}{c} 10.203 \\ 10.203 \\ 10.205 \\ 10.204 \\ 10.203 \end{array}$
$ \begin{array}{c} 12 \cdot 2 \cdot 0 \\ 12 \cdot 2 \cdot 2 \\ 11 \cdot 5 \cdot 3 \\ 12 \cdot 4 \cdot 0 \\ 991 \end{array} $.8388 .8276 .8195 .8066 .7991	4 5 7 6 3	$10.204 \\ 10.203 \\ 10.203 \\ 10.203 \\ 10.203 \\ 10.202$
$12 \cdot 4 \cdot 2 \\ 10 \cdot 8 \cdot 2$.7967 .7871	10 3	$\begin{array}{r}10.203\\10.202\end{array}$
Average value of last five lines 10.			10.203

References

 G. Engel, Die Kristallstrukturen einiger Hexachlorokomplexsalze, Z. Krist. 90, 341–373 (1935).

ASTM cards

Card number	Index lines	Radiation	Source
1-0762	$3.17 \\ 4.14 \\ 4.92$	Molybdenum	Hanawalt, Rinn, and Frevel [1] 1938.

Additional published patterns. None.

NBS sample. The sample of ammonium metavanadate was obtained from the Vanadium Corp. of America, New York, N. Y. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent each of aluminum, calcium, and silicon; and 0.0001 to 0.001 percent each of chromium and iron.

The sample was colorless and optically negative. The indices of refraction are $N_{\alpha} = 1.828$, $N_{\beta} = 1.90$, $N_{\gamma} = 1.925$, and $2V \approx 57^{\circ}$.

Interplanar spacings and intensity measurements. The *d*-values reported by Hanawalt, Rinn, and Frevel were converted from kX to angstrom units. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Hanawalt, Rinn, and Frevel National Bureau of Standards_	$\begin{array}{c} 121 \\ 121 \end{array}$	$\begin{array}{c} 021\\ 021 \end{array}$	$\begin{array}{c} 100 \\ 100 \end{array}$

Structural data. Lukesh [2] in 1950 determined that ammonium metavanadate has the space group Pbcm (No. 57) and $4(NH_4VO_3)$ per unit cell. The unit-cell measurements reported by Lukesh are compared with the NBS values.

hkl	1938 Hanawalt, Rinn, and Frevel Mo, 0.7107 A		195 National of Stan Cu, 1.5405	8 Bureau dards A at 25°C
	d	Ι	d	Ι
	A		A	
020	5.9	33	5.88	49
100	4.94	66	4.90	73
021	4.16	84	4.14	96
120	3.79	23	3.77	38
111			3.57	9
121	3.18	100	3.164	100
002	2.92	42	2.912	60
131	2.73	13	2.710	26
041	2.63	27	2.628	44
140			2.523	7
102			2,504	6
200	1 9.46		9.471	
112	2.40	23	2.451	32
141			2.318	2
220			2.263	1

Ammonium Metavanadate, NH₄VO₃ (orthorhombic)—Continued

hkl	1938 Hanawalt, Rinn, and Frevel Mo, 0.7107 A		195 National of Stan Cu, 1.5405	8 Bureau dards A at 25°C
	<i>d</i>	I	d	I
$211 \\ 150 \\ 132 \\ 042 \\ 060$	2.12	 	$\begin{array}{c} 2.\ 221 \\ 2.\ 125 \\ 2.\ 111 \\ 2.\ 073 \\ 1.\ 965 \end{array}$	$6 \\ 9 \\ 19 \\ 10 \\ 5$
$231 \\ 142 \\ 202 \\ 061 \\ 023$	1.86		$\begin{array}{c} 1.960 \\ 1.910 \\ 1.876 \\ 1.862 \\ 1.844 \end{array}$	2 2 9 6 10
$160 \\ 241 \\ 161 \\ 123 \\ 250$	1.79 1.72 	 3 	$1.823 \\ 1.793 \\ 1.740 \\ 1.727 \\ 1.700$	$ \begin{array}{c} 1 \\ 10 \\ 5 \\ 10 \\ 3 \end{array} $
$133 \\ 300 \\ 062 \\ 043 \\ 170$	1.63		$1.640 \\ 1.634 \\ 1.623 \\ 1.622 \\ 1.592$	$5 \\ 6 \\ 11 \\ 8 \\ < 1$
$242 \\ 311 \\ 162 \\ 260 \\ 321$	$\frac{1.55}{1.52}$		$1.583 \\ 1.558 \\ 1.546 \\ 1.534 \\ 1.520$	$egin{array}{c} 1 \\ < 1 \\ 11 \\ 3 \\ 6 \end{array}$
$330 \\ 261 \\ 223 \\ 080 \\ 331$	} 1.463	 3	$ \begin{array}{r} 1.508 \\ 1.482 \\ 1.474 \\ 1.461 \end{array} $	$<1 \\ 3 \\ 4 \\ 8$
$004 \\ 340 \\ 081 \\ 302 \\ 233$	} 1.423	3	$1.457 \\ 1.429 \\ 1.426 \\ 1.420$	
$312 \\ 024 \\ 104$	$\left. \begin{array}{c} & & \\ & & \\ & 1.393 \end{array} \right.$	 3	$1.415 \\ 1.396$	$\frac{4}{2}$
$270 \\ 341 \\ 114$	}		1.388	3
$322 \\ 181 \\ 124 \\ 262 \\ 243$			$1.385 \\ 1.371 \\ 1.358 \\ 1.357 \\ 1.353$	2 1 1 2 2
$350 \\ 163 \\ 082 \\ 182$			$1.343 \\ 1.330 \\ 1.315 \\ 1.270$	$2 < 1 \\ 3 \\ 2$

Lattice constants

		a	b	с
$1950 \\ 1958$	Lukesh [2] National	$egin{array}{c} A \\ 4.97 \end{array}$	$\stackrel{A}{11.84}$	$\begin{smallmatrix} A \\ 5.64 \end{smallmatrix}$
1000	Bureau of Standards	4.902	11.79	5.827 at 25°C

The density of ammonium metavanadate calculated from the NBS lattice constants is 2.307 g/cm^3 at 25°C .

References

- [1] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [2] J. S. Lukesh, The unit cell and space group of ammonium metavanadate, NH₄VO₃, Acta Cryst. 3, 476–477 (1950).

Ammonium Phosphomolybdate Tetrahydrate, (NH₄)₃PO₄ (MoO₃)₁₂·4H₂O (cubic)

ASTM cards.

Card number	Index lines	Radiation	Source
1-0636ª	$3.39 \\ 1.48 \\ 8.3$	Molybdenum	Hanawalt, Rinn, and Frevel [1] 1938.

^a This card is labeled ammonium phosphomolybdate trihydrate; diffraction data on this card is in agreement with the tetrahydrate.

Additional published patterns. None.

NBS sample. The sample of ammonium phosphomolybdate tetrahydrate was prepared at NBS by heating dilute solutions of ammonium molybdate and phosphoric acid at about 75°C. The salt was precipitated by slowly adding dilute nitric acid. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent of silicon; 0.001 to 0.01 percent each of aluminum, calcium, iron, and magnesium; and 0.0001 to 0.001 percent each of copper and manganese.

The color of the sample was deep yellow. The index of refraction is 1.977.

Interplanar spacings and intensity measurements. The *d*-values reported by Hanawalt, Rinn, and Frevel were converted from kX to angstrom units. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Hanawalt, Rinn, and Frevel National Bureau of Standards_	$\begin{array}{c} 222\\ 222 \end{array}$	732 110	$\begin{array}{c} 110\\ 400 \end{array}$

Structural data. Keggin [2] in 1934 determined the structure of 12-phosphotungstic acid. Ferrari and Nanni [3] in 1939 showed that ammonium phosphomolybdate tetrahydrate has this structure, the space group Pn3m (No. 224), and $2[(\mathrm{NH}_4)_3\mathrm{PO}_4(\mathrm{MoO}_3)_{12}\cdot4\mathrm{H}_2\mathrm{O}]$ per unit cell.

Lattice constant

1958	National Bureau of Standards	$\stackrel{A}{11.666}$ at 25°C

hkl	1938 Hanawalt, Rinn, and Frevel Mo, 0.7107 A			Nati of Cu, 1.8	1958 onal B Standa 5405 A	Sureau ards at 25°C
	d	I	a	d	I	a
$ \begin{array}{r} 110 \\ 111 \\ 200 \\ 211 \\ 220 \end{array} $	$\begin{array}{c c} A \\ 8.32 \\ \hline 5.81 \\ 4.83 \\ 4.19 \end{array}$	$50 \\ -25 \\ 10 \\ 25 \\ 25$	$\begin{array}{c} A \\ 11.8 \\ \hline 11.6 \\ 11.8 \\ 11.8 \\ 11.8 \end{array}$	$\begin{array}{c} A \\ 8.25 \\ 6.74 \\ 5.84 \\ 4.76 \\ 4.128 \end{array}$	$55 \\ 3 \\ 24 \\ 10 \\ 32$	$\begin{array}{c} A \\ 11.66 \\ 11.65 \\ 11.67 \\ 11.67 \\ 11.67 \\ 11.68 \end{array}$
$ \begin{array}{r} 310 \\ 222 \\ 321 \\ 400 \\ 411 \end{array} $	$ \begin{array}{r} 3.71 \\ 3.40 \\ \hline 2.93 \\ 2.76 \end{array} $	$ \begin{array}{c c} 14 \\ 100 \\ -\overline{50} \\ 16 \end{array} $	$ \begin{array}{c} 11.2\\ 11.1\\ \overline{11.7}\\ 11.7\\ 11.7 \end{array} $	$\begin{array}{r} 3.688\\ 3.364\\ 3.120\\ 2.914\\ 2.750\end{array}$	$ \begin{array}{c} 10 \\ 100 \\ 6 \\ 35 \\ 11 \end{array} $	$11.66 \\ 11.65 \\ 11.67 \\ 11.66 \\ 11.67 \\ 11.6$
$\begin{array}{r} 420 \\ 332 \\ 510 \\ 511 \\ 432 \end{array}$	2.50 2.29	50 30 	11.7 11.7 	$\begin{array}{c} 2.609 \\ 2.487 \\ 2.288 \\ 2.245 \\ 2.166 \end{array}$		$ \begin{array}{c} 11.67\\ 11.66\\ 11.67\\ 11.67\\ 11.66\\ \end{array} $
$521 \\ 440 \\ 522 \\ 600 \\ 611$	2.06 1.94 1.89	$\begin{bmatrix} -\overline{25} \\ -\overline{12} \\ 25 \end{bmatrix}$	$ \begin{array}{c} 11.6 \\ \overline{11.6} \\ 11.6 \\ 11.6 \end{array} $	$\begin{array}{c} 2.130 \\ 2.0624 \\ 2.0307 \\ 1.9442 \\ 1.8919 \end{array}$	$ \begin{array}{c} 6 \\ 15 \\ 2 \\ 7 \\ 13 \end{array} $	$11.67 \\ 11.667 \\ 11.665 \\ 11.665 \\ 11.662 \\ 11.662$
$620 \\ 621 \\ 541 \\ 622 \\ 444$	$ \begin{array}{r} 1.84 \\ \overline{1.80} \\ 1.76 \\ 1.69 \end{array} $	$ \begin{array}{r} 12 \\ \overline{20} \\ 20 \\ 12 \end{array} $	$ \begin{array}{c} 11.6\\ 11.7\\ 11.7\\ 11.7\\ 11.7\\ \end{array} $	$1.8444 \\ 1.8216 \\ 1.7997 \\ 1.7580 \\ 1.6842$	$5 \\ 3 \\ 11 \\ 10 \\ 6$	$\begin{array}{c} 11.665\\ 11.664\\ 11.663\\ 11.661\\ 11.668\end{array}$
$710 \\ 640 \\ 721 \\ 642 \\ 730$	1.65 1.59	$\begin{array}{c} 40\\ \overline{12}\\ \overline{}\\ \phantom$	11.7 11.7	$1.6493 \\ 1.6182 \\ 1.5878 \\ 1.5589 \\ 1.5317$	$22 \\ 2 \\ 7 \\ 1 \\ 2$	$\begin{array}{c} 11.662 \\ 11.669 \\ 11.668 \\ 11.666 \\ 11.665 \end{array}$
$732 \\811 \\820 \\653 \\822$	1.483 1.443 	60 30 	11.68 11.72	$\begin{array}{c} 1.4816 \\ 1.4359 \\ 1.4148 \\ 1.3942 \\ 1.3749 \end{array}$	$19 \\ 10 \\ 1 \\ 1 \\ 4$	$11.666 \\ 11.665 \\ 11.667 \\ 11.665 \\ 11.666 \\ 11.666$
$\begin{array}{c} 661 \\ 831 \\ 910 \\ 921 \\ 930 \end{array}$	$ \begin{array}{r} 1.363\\ \overline{1.293}\\ 1.263\\ 1.232 \end{array} $	$ \begin{array}{c} 12\\ \overline{8}\\ 4\\ 2 \end{array} $	$ \begin{array}{r} 11.64 \\ \overline{11.71} \\ 11.71 \\ 11.69 \\ \end{array} $	$\begin{array}{c} 1.3651 \\ 1.3562 \\ 1.2889 \\ 1.2577 \\ 1.2297 \end{array}$	$21\\1\\1<1<<1$	$\begin{array}{c} 11.663 \\ 11.666 \\ 11.663 \\ 11.663 \\ 11.663 \\ 11.666 \end{array}$
$932 \\ 941 \\ 10 \cdot 0 \cdot 0 \\ 10 \cdot 1 \cdot 1 \\ 10 \cdot 2 \cdot 0$	$ \begin{array}{c} 1.207 \\ 1.182 \\ \overline{1.158} \end{array} $	$\begin{array}{c} 12\\8\\-\overline{12}\end{array}$	$ \begin{array}{c} 11.70 \\ 11.70 \\ \overline{11.70} \\ \overline{11.70} \end{array} $	$\begin{array}{c} 1.2033 \\ 1.1781 \\ 1.1665 \\ 1.1549 \\ 1.1438 \end{array}$	6 3 5 6	$\begin{array}{c} 11.666\\ 11.663\\ 11.665\\ 11.664\\ 11.664\\ 11.664\end{array}$

Amm	onium	Phos	ohomolyk	odate 7	Fetrahydrate ,
(\mathbf{NH}_{4})	3PO4(I	MoO ₃)	12·4H2O	(cubic))—Continued

hkl	1938 Hanawalt, I and Frey Mo, 0.710		Rinn, ^{zel} 07 A	Natic of S Cu, 1.5	1958 onal Bu Standa 405 A	ureau rds at 25°C
	d	Ι	a	d	Ι	a
$950 \\ 10 \cdot 3 \cdot 1 \\ 871 \\ 10 \cdot 4 \cdot 0 \\ 11 \cdot 1 \cdot 0$	A 1.137 1.057	8 6	A 11.71 11.68	$\begin{matrix} A \\ 1.1330 \\ 1.1118 \\ 1.0924 \\ 1.0832 \\ 1.0562 \end{matrix}$	$5 < 1 \\ 2 \\ 2 \\ 4$	$\begin{array}{c} A \\ 11.665 \\ 11.661 \\ 11.664 \\ 11.666 \\ 11.666 \\ 11.666 \end{array}$
$\begin{array}{c} 11 \cdot 2 \cdot 1 \\ 11 \cdot 2 \cdot 2 \\ 10 \cdot 4 \cdot 4 \\ 11 \cdot 3 \cdot 2 \\ 883 \end{array}$	1.007	 4		$\begin{array}{c} 1.0394 \\ 1.0272 \\ 1.0154 \\ 1.0076 \\ 0.9965 \end{array}$	$2 < 1 < 1 < 1 \\ 3 & 2 \\ 2 \end{pmatrix}$	$\begin{array}{c} 11.667 \\ 11.667 \\ 11.666 \\ 11.664 \\ 11.664 \\ 11.664 \end{array}$
$\begin{array}{c} 12 \cdot 1 \cdot 1 \\ 11 \cdot 5 \cdot 2 \\ 12 \cdot 2 \cdot 2 \\ 12 \cdot 4 \cdot 1 \\ 12 \cdot 3 \cdot 3 \end{array}$.9652 .9526 .9463 .9195 .9166	$<1 < 1 < 1 \\ <1 < 1 < 1 < 2$	$11.663 \\ 11.667 \\ 11.667 \\ 11.667 \\ 11.667 \\ 11.666$
$\begin{array}{c} 11 \cdot 6 \cdot 3 \\ 13 \cdot 1 \cdot 0 \\ 13 \cdot 2 \cdot 1 \\ 13 \cdot 3 \cdot 0 \\ 13 \cdot 3 \cdot 1 \end{array}$.9052 .8949 .8844 .8745 .8715	$\begin{array}{c}1\\<1\\4\\3\\2\end{array}$	$11.663 \\ 11.668 \\ 11.666 \\ 11.667 \\ 11.660 \\ 1$
$\begin{array}{c} 12 \cdot 6 \cdot 1 \\ 13 \cdot 3 \cdot 2 \\ 12 \cdot 6 \cdot 2 \\ 10 \cdot 9 \cdot 3 \\ 13 \cdot 5 \cdot 0 \end{array}$.8667 .8649 .8599 .8460 .8374	$31 \\ 2 \\ <1 \\ 1$	$\begin{array}{c} 11.660\\ 11.668\\ 11.664\\ 11.661\\ 11.664\end{array}$
$\begin{array}{c} 14 \cdot 0 \cdot 0 \\ 14 \cdot 1 \cdot 1 \\ 12 \cdot 7 \cdot 3 \\ 14 \cdot 2 \cdot 2 \\ 14 \cdot 3 \cdot 1 \end{array}$			(.8332 .8290 .8205 .8166 .8129	$1 \\ 1 \\ 2 \\ 1 \\ 4$	$11.665 \\ 11.665 \\ 11.662 \\ 11.663 \\ 11.667$
$13 \cdot 5 \cdot 4 \\ 14 \cdot 4 \cdot 0 \\ 14 \cdot 4 \cdot 2 \\ 15 \cdot 5 \cdot 1$.8068 .8014 .7935 .7831	$2 \\ 1 \\ < 1 \\ 1 \\ 1$	$\begin{array}{c} 11.664 \\ 11.668 \\ 11.662 \\ 11.668 \\ 11.668 \end{array}$
Average five lin	value of nes	f last	11.69			11.666

The density of ammonium phosphomolybdate tetrahydrate calculated from the NBS lattice constant is 4.075 g/cm³ at 25°C.

References

- [1] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457–512 (1938).
- [2] J. F. Keggin, The structure and formula of 12-phosphotungstic acid, Proc. Roy. Soc. 144, 75–100 (1934).
 [3] A. Ferrari and O. Nanni, Richerche sui sali degli etero-
- [3] A. Ferrari and O. Nanni, Richerche sui sali degli eteropoliacidi, l. Structtura dei fosfo- e degli arsenidodecamolibdati e dei fosfo- e degli arsenidodecawolframati di ammonio, di potassio e di tallio, Gazz. chim. Ital. 69, 301–314 (1939).

Beryllium Orthosilicate (phenacite), Be₂SiO₄ (trigonal)

ASTM cards

Card numbers	Index lines	Radiation	Source
3-0538	$3.12 \\ 3.67 \\ 2.52$	Molybdenum	Co.
3–1171	$1.26 \\ 3.11 \\ 2.52$	Iron	Schütz [1] 1936ª.

Additional published patterns

Source	Radiation
Zachariasen [2] 1926	Iron, 1.934 A
Schütz [1] 1936 ^b	Iron, 1.936 A
Morgan and Hummel [3] 1949	Copper, 1.537 A

^b Natural phenacite.

NBS sample. The sample of phenacite was obtained from Minas Gerais, Brazil. A similar sample, from Kragerö, Norway, produced the same *d*-values

^a Synthetic phenacite.

within the limit of error of our equipment. Spectrographic analysis of the Brazil sample showed the following impurities: 0.1 to 1.0 percent aluminum; 0.01 to 0.1 percent each of calcium, iron, magnesium, sodium, nickel, tin, titanium, and zinc; and 0.001 to 0.01 percent each of boron, chromium, copper, germanium, manganese, lead, strontium, and zirconium.

The sample was colorless and optically positive. The refractive indices are $N_0=1.653$ and $N_e=1.669$.

Interplanar spacings and intensity measurements. The *d*-values reported by the Dow Chemical Co. were converted from kX to angstrom units and the *d*-values of the Schütz patterns and the Zachariasen pattern were calculated from reported Bragg angle data. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Zachariasen The Dow Chemical Co Schütz, synthetic Schütz, natural Morgan and Hummel National Bureau of Standards_	$713 \\ 220 \\ 713 \\ 713 \\ 220 \\ 220 \\ 220$	$220 \\ 211 \\ 220 \\ 220 \\ 113 \\ 211$	$113 \\ 113 \\ 113 \\ 113 \\ 211 \\ 113 \\ 211 \\ 113 $

Structural data. Bragg [4] in 1926 determined that phenacite has the space group $R\overline{3}$ (No. 148) and $18(Be_2SiO_4)$ per unit hexagonal cell or $6(Be_2SiO_4)$ per unit rhombohedral cell. Phenacite is used as a structure-type.

The "a" (7.19 kX) reported by Zachariasen was multiplied by the $\sqrt{3}$. Several unit-cell measurements have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants	Lattice	constants
-------------------	---------	-----------

1926 1926 1927 1927 1936 1936 1958	Zachariasen [2] Bragg [4] Gottfried [5] Gossner [6] Schütz [1] synthetic Schütz [1] natural National Bureau of Stand- ards	$\begin{array}{c} a \\ \hline A \\ 12.48 \\ 12.46 \\ 12.52 \\ 12.45 \\ 12.44 \\ 12.45 \\ 12.472 \end{array}$	$\begin{array}{c} c \\ \hline A \\ 8.25 \\ 8.24 \\ 8.28 \\ 8.23 \\ 8.25 \\ 8.26 \\ 8.252 \text{ at} \\ 25^{\circ}\text{C} \end{array}$
--	---	--	--

The density of phenacite calculated from the NBS lattice constants is 2.960 g/cm^3 at 25° C.

Beryllium Urthosilicate, (phenacite), Be	$e_2 SiO_4$ (trigonal)	l
--	------------------------	---

hkl	192 Zachar Fe, 1.9	26 riasen 934 A	The I Chem Mo, 0.7	Dow , Co. /107 A	193 Schi (natu Fe, 1.9	36 ütz ıral) 936 A	19: Seh (synth Fe, 1.	36 ütz netic) 936 A	194 Morga Hum Cu, 1.	50 n and mel 537 A	198 National of Stan Cu, 1.5 at 28	58 Bureau dards 5405 A 5°C
	d	I	d	Ι	d	I	d	I	d	Ι	d	Ι
110 021 012 211	A 3 65	 	$ \begin{array}{c} A \\ 6.40 \\ \hline 3.89 \\ 3.68 \\ \end{array} $	$ 38 \\ \\ \\ 15 \\ 75 $	A 3.86	 -10	A 3.85	 40	$\begin{matrix} A \\ 6.20 \\ 4.47 \\ 4.03 \\ 3.97 \\ 3.86 \\ 3.65 \end{matrix}$	$20 \\ 10 \\ 5 \\ 6 \\ 20 \\ 70$	$ \begin{array}{c} A \\ 6.24 \\ 4.52 \\ \hline 3.86 \\ 3.66 \\ \end{array} $	$41 \\ 3 \\ \\ -26 \\ 82$
	3.13	 S	3.13	 100	3.60 3.27 3.13	$\begin{bmatrix} -\overline{60} \\ -\overline{10} \\ 80 \end{bmatrix}$	3.60 3.12	20 - 80	3.60 3.58 3.10	30 30 100	3.601 $\overline{3.279}$ 3.119	30
$ \begin{array}{r} 122 \\ 131 \\ \overline{113} \\ 410 \\ \end{array} $	2.53 2.37	 S W-S	$2.93 \\ 2.83 \\ \overline{2.53} \\ 2.36 $	$15 \\ 10 \\ \overline{} $	$2.83 \\ 2.76 \\ 2.52 \\ 2.35$		2.52 2.35	 80 60	$2.90 \\ 2.81 \\ \hline 2.51 \\ 2.35 \\ \hline$	$15\\13\\\overline{100}\\35$	$2.903 \\ 2.817 \\ \overline{2.518} \\ 2.358 $	$ \begin{array}{r} 16 \\ 12 \\ \overline{73} \\ 70 \\ 7$
$\begin{array}{c} 042 \\ 303 \\ 330 \\ 104 \\ 241 \end{array}$	2.19 2.09	8 8 	$2.18 \\ 2.07 \\ 2.02 \\ 1.98$	$\begin{array}{r} 75\\50\\3\\3\end{array}$	2.19 2.08 1.98	$ \begin{array}{c} \overline{80} \\ 60 \\ \overline{10} \end{array} $	2.18 2.07	 60 	$2.18 \\ 2.08 \\ 1.98$	$\begin{array}{r} -47\\ 34\\\\ 4\end{array}$	$2.262 \\ 2.187 \\ 2.079 \\ 2.026 \\ 1.982$	$5 \\ 60 \\ 51 \\ 3 \\ 8$
$502 \\ 214 \\ 422 \\ 600 \\ 413$	1.79	 W	$1.91 \\ 1.84 \\ \\ 1.79$	$ \begin{array}{c} 10 \\ 3 \\ \\ -\overline{15} \end{array} $	$ \begin{array}{r} 1.92 \\ 1.84 \\ \\ \overline{1.80} \end{array} $	$ \begin{array}{c} 20 \\ 10 \\ \\ -\overline{40} \end{array} $	1.92 1.79	10 20	$1.91 \\ 1.84 \\ \\ 1.79$	5 3 8	$1.914 \\ 1.842 \\ 1.829 \\ 1.798 \\ 1.790$	$9\\3\\4\\15$

hkl hex.	192 Zachat Fe, 1.1	26 riasen 934 A	The Chem Mo, 0.7	Dow . Co. 7107 A	193 Schr (natu Fe, 1.9	36 ütz ıral) 936 A	193 Schi (synth Fe, 1.9	36 ütz netic) 936 A	195 Morgan Hum Cu, 1.	i0 n and mel 537 A	195 National of Stan Cu, 1.5 at 25	8 Bureau dards 405 A 5°C
	d	Ι	d	I	d	I	d	I	d	I	d	Ι
	A		A		A		A		A		A	
$152 \\ 431 \\ 520 \\ 333 \\ 404$	$\left. \begin{array}{c}\\ 1.74\\ 1.66\\ \end{array} \right.$	 w-s s	1.73 1.66	20 20 	$ \begin{array}{c}\\ 1.73\\ 1.64\\\end{array} $	40 60 	$1.72 \\ 1.64 \\$	20 40 	1.75 1.73 1.66	4 10 11 	$ \begin{smallmatrix} 1.755 \\ 1.735 \\ 1.730 \\ 1.6581 \\ 1.6391 \end{smallmatrix} $	$2 \\ 7 \\ 11 \\ 17 \\ 2$
$161 \\ 324 \\ 612 \\ 603 \\ 054$	 1.51	 S	 1.50		1.56 1.51 $$	- 10 - 20 	 1.51		$1.53 \\ 1.51 \\$	 3 5	$1.6154 \\ 1.5850 \\ 1.5297 \\ 1.5062 \\ 1.4916$	$\begin{array}{c}2\\1\\7\\24\\1\end{array}$
$\begin{array}{c} 621 \\ 315 \\ 072 \\ 710 \\ 514 \end{array}$	$\left. egin{array}{c} 1.47 \\ \\ 1.43 \\ \end{array} ight.$	VW S 	1.47 1.43	3 15 	1.44 1.43	 10 40	1.43	40	 1.43	13	$1.4732 \\ 1.4458 \\ 1.4306 \\ 1.4129$	$egin{array}{c} 7 \\ 1 \\ 25 \\ 1 \end{array}$
$\begin{array}{c} 045 \\ 262 \\ 006 \\ 235 \\ 630 \end{array}$	$ \left. \begin{array}{c} \\ 1.376 \\ 1.365 \end{array} \right. \right. \\$	s W	1.38		1.37 1.36	 40 10	1.37	40	1.37	1	$\begin{cases} 1.4080 \\ 1.3755 \\ 1.3737 \\ 1.3608 \end{cases}$	$ \begin{array}{c} 1 \\ 8 \\ 6 \\ 5 \end{array} $
$\begin{array}{c} 443 \\ 434 \\ 505 \\ 425 \\ 802 \end{array}$	1.344 }	w 	1.31		$\frac{1.34}{1.28}$	 10 10					$1.3566 \\ 1.3454 \\ 1.3113 \\ 1.2833$	5222 <1
$713 \\ 226 \\ 633 \\ 345 \\ 182$	$\left. \begin{array}{c} 1.271 \\ 1.258 \\ 1.222 \\ \end{array} \right\}$	VS W-VW S	1.27 $\overline{1.22}$	50 -18 	$1.259 \\ 1.246 \\ \\ 1.207$	$ \begin{array}{r} 100 \\ 10 \\ \\ 60 \end{array} $	1.275 1.206	100 60	$1.27 \\ 1.25 \\ 1.22 \\$	$\begin{array}{c} 24\\5\\10\\ \end{array}$	$1.2692 \\ 1.2584 \\ 1.2200 \\ 1.2094$	$36\\4\\11\\2$
$900 \\ 416 \\ 642 \\ 336 \\ 553$	1.201 1.189	s s 	$1.20\\1.19\\1.17\\1.15\\1.14$	8 8 3 5	$1.186 \\ 1.177 \\ 1.150 $	$\begin{array}{c}\\ 40\\ 40\\ 20\\\end{array}$	1.187 1.176 1.150	$\begin{array}{c} -40\\ 40\\ 20\\\end{array}$			$1.2005 \\ 1.1882 \\ 1.1852 \\ 1.1469 \\ 1.1358$	5 5 3 3 3
$\begin{array}{c} 084 \\ 265 \\ 562 \\ 823 \\ 526 \end{array}$			1.11 1.08	 5	$ \begin{array}{r} 1.118 \\ 1.097 \\ 1.091 \\ \overline{1.079} \end{array} $	$ \begin{array}{r} 40 \\ 20 \\ 20 \\ \\ 20 \end{array} $	1.117	20			$1.1296 \\ 1.1092 \\ 1.0916 \\ 1.0830 \\ 1.0760$	$\begin{array}{c}4\\2\\5\\1\\3\end{array}$
	}		 0.994	 5	1.063	20					1.0266 0.9915	 1 3

Beryllium Orthosilicate, (phenacite), Be2SiO4 (trigonal)-Continued

References

- [3] R. A. Morgan and F. A. Hummel, Reactions of BeO and SiO₂; Synthesis and decomposition of phenacite, J. Am. Ceram. Soc. **32**, 250–255 (1949).
- [1] W. Schütz, Die kristallchemische Verwandtschaft zwischen Germanium und Silicium, Z. physik, Chem. 31B,
 [4] W. L. Bragg, The structure of phenacite, Be₂SiO₄, Proc. Roy. Soc. A 113, 642–657 (1926).
 [5] C. Gottfried, Über die Struktur der Phenakit-Dioptas-
- (1) W. Schutz, Die Kristalhenemische Verwähltschaft zwischen Germanium und Silicium, Z. physik. Chem. 31B, 292–308 (1936).
 [2] W. Zachariasen, Notiz über die Kristallstruktur von Phenakit, Willemit und Verwandten Verbindungen, Norske Geol. Tidsskr. B9, 65–73 (1926).
 [5] C. Gottfried, gruppe, Net 55A, 392–400
 [6] B. Gossner, Ri katen, Cent
 - [5] C. Gottfried, Über die Struktur der Phenakit-Dioptasgruppe, Neues Jahrb. Mineral. Geol., Beilage Bd. 55Å, 392–400 (1927).
 - [6] B. Gossner, Röntgenographische Untersuchung von Silikaten, Centr. Mineral. Geol. No. 2A, 39-44 (1927).

ASTM cards

Card number	Index lines	Radiation	Source
30733	$2.81 \\ 8. \\ 1.79$	Copper	British Museum

Additional published patterns. None.

NBS sample. The sample of bismuth oxybromide was prepared by heating bismuth iodide with bromine water. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent silicon; 0.001 to 0.01 percent aluminum; and 0.0001- to 0.001-percent each of silver, boron, calcium, iron, magnesium, and lead.

The sample was colorless. The refractive indices are too high to be determined by the usual liquid grain immersion method.

Interplanar spacings and intensity measurements. The d-values reported by the British Museum were converted from kX to angstrom units. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
British Museum National Bureau of Standards_	$\begin{array}{c} 102 \\ 102 \end{array}$	$\begin{array}{c} 001 \\ 110 \end{array}$	$\begin{array}{c} 104 \\ 001 \end{array}$

Structural data. Bannister and Hey [1] in 1935 determined that bismuth oxybromide has lead fluorochloride-type structure, the space group P4/nmm (No. 129), and 2(BiOBr) per unit cell.

The unit-cell measurements reported by Bannister and Hey and by Sillén have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

		a	с
$1935 \\ 1941 \\ 1958$	Bannister and Hey [1] Sillén [2] National Bureau of Standards	$\begin{array}{c} A \\ 3.93 \\ 3.923 \\ 3.926 \end{array}$	$\begin{array}{c} A \\ 8.13 \\ 8.092 \\ 8.103 \text{ at} \\ 25^{\circ}\text{C} \end{array}$

The density of bismuth oxybromide calculated from the NBS lattice constants is 8.106 g/cm³ at 25° C.

hkl	Brit Muse Cu, 1.5	ish eum 5405 A	1958 National Bureau of Standards Cu, 1.5405 A at 25°C		
	d	Ι	d	Ι	
$\begin{array}{c} 001\\ 002\\ 101\\ 102\\ 110\\ 003\\ 111\\ \end{array}$	$\begin{array}{c} A \\ 8. & * \\ 4.05 \\ 3.50 \\ 2.82 \\ 2.77 \\ 2.71 \end{array}$		$\begin{array}{c} A\\ 8.11\\ 4.05\\ 3.537\\ 2.821\\ 2.776\\ 2.702\\ 2.629\end{array}$	$40 \\ 10 \\ 30 \\ 100 \\ 63 \\ 5 \\ 5$	
$ \begin{array}{c} 1112 \\ 103 \\ 004 \end{array} $	$\frac{\overline{2.28}}{\overline{2.02}}$	$\begin{array}{r} -\overline{40} \\ -\overline{60} \end{array}$	2.286 2.229 2.026	$\begin{array}{c} 14\\2\\7\end{array}$	
$200 \\ 113 \\ 201 \\ 104 \\ 211$	$ \begin{array}{r} 1.95 \\ 1.93 \\ \hline 1.79 \\ 1.71 \\ \end{array} $	$\begin{array}{r} 40\\ 40\\ \hline \overline{\overline{so}}\\ 40\\ \end{array}$	$1.963 \\ 1.937 \\ 1.907 \\ 1.800 \\ 1.715$	$27 \\ 10 \\ 5 \\ 13 \\ 9$	
$114 \\ 212 \\ 203 \\ 105 \\ 204$	$ \begin{array}{r} 1.64 \\ 1.60 \\ \overline{1.50} \\ 1.41 \end{array} $	$70\\80\\-\overline{60}\\50$	$1.6369 \\ 1.6113 \\ 1.5882 \\ 1.4977 \\ 1.4101$	$13 \\ 36 \\ 5 \\ 5 \\ 6$	
$220 \\ 006 \\ 214 \\ 106 \\ 302$	${}^{1.39}_{1.35}\\{}^{1.33}_{1.28}\\{}^{1.24}$	$40 \\ 50 \\ 60 \\ 40 \\ 50$	$1.3882 \\ 1.3505 \\ 1.3264 \\ 1.2770 \\ 1.2456$	$9 \\ 3 \\ 10 \\ 2 \\ 11$	
$\begin{array}{c} 310 \\ 311 \\ 116 \\ 215 \\ 007 \end{array}$		$\begin{array}{c} \overline{60} \\ \overline{40} \\ 20 \end{array}$	$\begin{array}{c} 1.2415\\ 1.2232\\ 1.2145\\ 1.1907\\ 1.1580\end{array}$	$\begin{array}{c}12\\6\\5\\5\\5\end{array}$	
$224 \\ 313 \\ 107$	1.13 1.11 (^a)	$\overline{\begin{array}{c}20\\60\end{array}}$	$1.1450 \\ 1.1282 \\ 1.1123$	$egin{array}{c} 6 \\ 4 \\ 4 \end{array}$	

^a Four additional lines are omitted.

References

- F. A. Bannister and M. H. Hey, The crystal structure of bismuth oxyhalides, Mineral. Mag. 24, 49-58 (1935).
- [2] L. G. Sillén, X-ray studies on BiOCl, BiOBr, and BiOI. Svensk Kemisk Tidskrift. 53, 39 (1941).

ASTM cards

Card number	Index lines	Radiation	Source
1-0349	$4.03 \\ 2.21 \\ 3.49$	Molybdenum	Hanawalt, Rinn, and Frevel [1] 1938.

A pattern for calcium bromide hexahydrate by Herrmann [2] on card number 2–0296 was deleted from the ASTM card file in the 1955 index.

Additional published patterns. None.

NBS sample. The sample of calcium bromide was obtained from the City Chemical Corp., New York as the anhydrous salt. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent of magnesium; 0.001 to 0.01 percent each of aluminum, barium, iron, potassium, manganese, silicon, and strontium; and 0.0001 to 0.001 percent each of copper and lithium.

The sample was colorless and optically negative. The indices of refraction could not be determined by the usual liquid grain immersion method because they were less than 1.41.

Interplanar spacings and intensity measurements. The *d*-values reported by Hanawalt, Rinn, and Frevel were converted from kX to angstrom units and the *d*-values of the Herrmann pattern were calculated from Bragg angle data. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Hanawalt, Rinn, and Frevel	110,001 110,001	$\begin{array}{c} 211\\ 200,101 \end{array}$	200,101 210,201
Standards	110	111	101

Structural data. Calcium bromide hexahydrate was found to be isostructural with strontium chloride hexahydrate by Herrmann [2] in 1931. The structure of strontium chloride-type substances was determined by Jensen [3] in 1940. Calcium bromide hexahydrate has the space group P321 (No. 150) with 1 (CaBr₂·6H₂O) per unit cell.

The unit-cell measurements reported by Herrmann have been converted from kX to angstrom units for comparison with the NBS values.

The density of calcium bromide hexahydrate calculated from the NBS lattice constants is 2.221 g/cm³ at 25° C.

	Lattice	constants
--	---------	-----------

i.				
			a	С
	1931	Herrmann [2]	$\stackrel{A}{7.99}$	$A \\ 3.98$
	1958	National Bureau of Standards	8,138	$4.015 \mathrm{~at}$ $25^{\circ}\mathrm{C}$

	1951		198	1938 Hanawalt		National	
	Horrm	ann	Binn	van,	Buroau	nai	
	incirin	ann	and F	revel	Standa	rds	
hkl	Cu, 1.54	Cu, 1.5418 A		Mo, 0.7107 A		Cu, 1.5405 A	
					at $25^{\circ}C$		
	d	Ι	d	Ι	d	Ι	
	A	-	A		A		
110	3 97	0	4 04	100	\$ 4.07	100	
001	{ 0.51	a	1.01	100	$\left.\right) 4.02$	14	
200	> 3.44	s	3.50	50	3.32	$\begin{bmatrix} 52\\52\end{bmatrix}$	
111	2.81	m	2.86	50	2.86	54	
910)				(2 663	4	
$\frac{210}{201}$	2.63	s	2.66	50	2.648	40	
300	2.32	m	2.34	50	2.350	35	
$\frac{211}{220}$	2.20	s	2.21	60	2.220 2.024	52	
220					2.004	19	
002	1.99	m	2.01	16	2.008	13	
$\frac{510}{102}$	1.91	m	1.92	$\overline{8}$	1.931		
221	1 70		1.80	16	f 1.814	$\frac{1}{2}$	
112	f 1.19	D	1.00	10	1.800	11	
311	1 73	m	1 75	94	∫ 1.758	16	
202	{ 1.75	m	1.70	24	1.744	7	
$\frac{401}{212}$	1.58	m	1.60	16	1.013 1 603	$\frac{4}{6}$	
410	1 51	5	1 52	94	1.538	14	
302	f 1.01	a	1.00	21	1.526	9	
321	1.47	m	1.498	8	1.500	8	
411			1,433	16	$\int 1.436$	7	
222 312	$1^{-}40$	 w	1 308	4	1.429 1 401	$\frac{4}{3}$	
330	$1.30 \\ 1.37$	W	1.358	8	1.357	3	
409					1 204	9	
$\frac{402}{103}$	1.30	m	1.315	$-\bar{4}$	1.324 1.315	3	
			1.288	4			
421			1.262	8	1.264	1	
203					1.201	1	
412	1.23	m	1.221	8	1.221	1	
511 912	1.20	m	1 102	~	1.207 1.1061	< 1	
$\frac{210}{600}$			1.152		1.1748	<1	
520	1.13	w			1.1286	<1	
431					1.1132	<1	
313	1.10	w			1.1042	<1	
$521 \\ 512$	1.09	s			1.0866	<1	
403	1.05	w			1.0653	<1	
611					1 0990	-1	
323					1.0380	<1	
440	$\bar{1.01}$	m			1.0171	$\langle 1$	
602					1.0138	<1	
104	~				0.9937	<1	
522					.9835	<1	
$\frac{701}{204}$.9762 9651	≤ 1	
621					.9496	$\langle 1$	
423					.9440	<1	
214					.9391	<1	
710					.9336	<1	
$\frac{304}{513}$.9230 .9194	<1	

References

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [2] Z. Herrmann, Über die Strukturen der Strontiumjodid-, Calciumchlorid-, und Calciumbromid- Hexahydrate, Z. anorg. u. allgem. Chem. 197, 212-218 (1931).
 [3] A. Tovbarg Jensen, On the structure of SrCl₂·6H₂O,
- [3] A. Tovbarg Jensen, On the structure of SrCl₂·6H₂O, Kgl. Danske Videnskab. selskab. Mat. fys. Medd. 17, no. 9 (1940).

Calcium Formate, Ca(HCO₂)₂ (orthorhombic)

ASTM cards

Card number	Index lines	Radiation	Source
1-0197	$5.6 \\ 3.43 \\ 2.99$	Molybdenum	Hanawalt, Rinn, and Frevel [1] 1938.

Additional published patterns. None.

NBS sample. The sample of calcium formate was obtained from the City Chemical Corp., New York. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent each of potassium, magnesium, sodium, silicon, and strontium; and 0.0001 to 0.001 percent each of aluminum, barium, copper, iron, and manganese.

The sample was colorless and optically positive with the indices of refraction $N_{\alpha}=1.509$, $N_{\beta}=1.522$, and $N_{\gamma}=1.556$. $2V \approx 15^{\circ}$.

Interplanar spacings and intensity measurements. The *d*-values reported by Hanawalt, Rinn, and Frevel have been converted from kX to angstrom units. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Hanawalt, Rinn, and Frevel National Bureau of Standards	210 210	311,221 321	012,321 221

Structural data. Nitta [2] in 1928 determined that calcium formate has the space group Pbca (No. 61) and $8[Ca(HCO_2)_2]$ per unit cell.

The unit-cell measurements reported by Nitta have been converted from kX to angstrom units for comparison with the NBS values.

Lattice	constants
---------	-----------

		a	ь	с
1928 1958	Nitta [2] National Bureau of Standards	$\begin{array}{c}A\\13.41\\13.40\end{array}$	A 10.18 10.18	A 6.30 6.282 at 25°C

hkl	1938 Hanawalt, Rinn, and Frevel Mo, 0.7107 A		National Burea of Standards Cu, 1.5405 A at 2	
	d	Ι	d	Ι
$200 \\ 210 \\ 111 \\ 021 \\ 121$	$ \begin{array}{c} A \\ 6.6 \\ 5.6 \\ 5.0 \\ \overline{3.83} \end{array} $		$\begin{matrix} A \\ 6.70 \\ 5.59 \\ 4.96 \\ 3.95 \\ 3.79 \end{matrix}$	$7 \\ 100 \\ 59 \\ <1 \\ 18$
$311 \\ 221 \\ 400 \\ 102 \\ 230 \\ 321$	<pre>3.44</pre>	100 - 16 - 80	$\left\{\begin{array}{c} 3.425\\ 3.403\\ 3.348\\ 3.058\\ \left\{\begin{array}{c} 3.005\\ 2.962\end{array}\right.\right.$	$46 \\ 88 \\ 6 \\ 20 \\ 3 \\ 92$
$112 \\ 131 \\ 202 \\ 212 \\ 022$	2.87 2.78	 25 8 	$2.931 \\ 2.917 \\ 2.841 \\ 2.739 \\ 2.675$	$9 \\ 7 \\ 28 \\ 19 \\ 6$
$\begin{array}{c} 421 \\ 040 \\ 312 \\ 222 \\ 511 \end{array}$	2.57 2.53 $\overline{2.41}$	6 20 6	$\begin{array}{c} 2.556 \\ 2.546 \\ 2.490 \\ 2.485 \\ 2.395 \end{array}$	$1\\3\\17\\20\\14$
$\begin{array}{c} 322 \\ 402 \\ 132 \\ 600 \\ 610 \end{array}$	$ \left. \begin{array}{c} 2.31 \\ 2.25 \\ 2.19 \end{array} \right. $	25 40 12	$\begin{cases} 2.292 \\ 2.272 \\ 2.232 \\ 2.181 \end{cases}$	21 2 29 18
$332 \\ 113 \\ 440 \\ 531 \\ 042$	} } 2.00	 25	$\begin{array}{c} 2.050 \\ 2.027 \\ \left\{ \begin{array}{c} 1.996 \\ 1.978 \end{array} \right. \end{array}$	6 8 15 18
$142 \\ 250 \\ 023 \\ 123 \\ 151$	1.94 }		$ \begin{array}{r} 1.957 \\ 1.949 \\ 1.938 \\ 1.918 \end{array} $	$5\\8\\4\\12$
$\begin{array}{c} 630 \\ 313 \\ 602 \\ 342 \\ 612 \end{array}$	$\left. \begin{array}{c} 1.88 \\ \\ \overline{1.79} \end{array} \right $	12 10	$1.866 \\ 1.820 \\ 1.808 \\ 1.791$	10 1 1 4
$133 \\ 532 \\ 721 \\ 233 \\ 442$	1.74	10 	$ \begin{array}{r} 1.767 \\ 1.747 \\ 1.724 \\ 1.703 \end{array} $	10 1 16 4
640 423 333 252 810	}		1.678 1.656 1.653	10 3 3

hkl	19 Hanawal and F Mo, 0.	1938 Hanawalt, Rinn, and Frevel Mo, 0.7107 A		1958 National Bureau of Standards Cu, 1.5405 A at 25°C	
	d	I	d	I	
519	A		A 1 620		
161			1.629 1.626	2 3	
043 811			$1.616 \\ 1.599$	<1	
352	3		1.593	3	
$\begin{array}{c} 542 \\ 433 \end{array}$)		1.573	<1	
004 361			$1.571 \\ 1.539$	$< 1 \\ 3$	

Calcium Formate, Ca(CHO₂)₂ (orthorhombic) —Continued

The density of calcium formate calculated from the NBS lattice constants is 2.016 g/cm³ at 25°C.

References

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [2] I. Nitta, The crystal structure of some rhombic formates, Sci. Papers Inst. Phys. Chem. Research Tokyo 9, 151-163 (1928).

Cerium(III) Fluoride, CeF₃ (hexagonal)

ASTM cards

Card number	Index lines	Radiation	Source
3-1054	$2.01 \\ 1.44 \\ 0.990$	Copper	Oftedal [1] 1929.

Additional published patterns. None.

NBS sample. The sample of cerous fluoride was obtained from the City Chemical Corp., New York. It was annealed at 1,000°C in an argon atmosphere. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of calcium and lanthanum; 0.001 to 0.01 percent each of magnesium and silicon; and 0.0001 to 0.001 percent of titanium.

The sample was colorless. The indices of refraction were not determined because the particle size is too small.

	192	9	1958	
	Ofter	dal	National Bureau	
	_		of Standards	
hkl	Cu, 1.5	Cu, 1.5418 A Cu, 1.5405 A		at 25°C
	d	I	d	Ι
	А		A	
002			3.64	40
110			3.55	34
111			3.195	100
112			2.545	12
211			2.219	-1
300	2.06	m	2.054	44
113	2.01	s	2.004	52
004			1.8202	5
302	1.78	m	1.7885	30
221	1.73	W	1.7275	18
114			1.6197	4
222			1.5975	3
214	} 1.44	s	1.4339	12
304	1.36	m	1.3616	9

	192 Ofteo	9 dal	1958 National B of Standa	ureau Irds	
hkl	Cu, 1.5	418 A	Cu, 1.5405 A	at 25°C	
	d	Ι	d	Ι	
$115 \\ 410 \\ 411 \\ 224 \\ 412$	$\left.\begin{array}{c}A\\1.35\\1.32\\\end{array}\right.$	m m 	$ \begin{vmatrix} A \\ 1.3473 \\ 1.3439 \\ 1.3216 \\ 1.2715 \\ 1.2612 \end{vmatrix} $	$8\\6\\14\\2\\2$	
$ \begin{array}{r} 006 \\ 330 \\ 404 \end{array} $			1.2012 1.2135 1.1854 1.1755	$\begin{vmatrix} 2\\ 2\\ 4\\ 19 \end{vmatrix}$	
$\begin{array}{c} 413 \\ 116 \end{array}$	<u>}</u>	~	1.1480	3	
$225 \\ 332 \\ 414 \\ 306 \\ 600$	$\left. \begin{array}{c} 1.13 \\ \overline{1.05} \end{array} \right $	s ⁻ m	1.1268 1.0810 1.0443 1.0264	10 3 5 3	
$226 \\ 117 \\ 334 \\ 415 \\ 521$	0.990	 S	$1.0021 \\ 0.9981 \\ .9932 \\ .9877 \\ .9774$	2 3 5 8 5	
$522 \\ 523 \\ 416 \\ 227$			$.9520 \\ .9136 \\ .9005 \\ .8976$	$ \begin{array}{c} 1 \\ 5 \\ 3 \\ 3 \end{array} $	
$604 \\ 441 \\ 524 \\ 336$.8942 .8825 .8670 .8478	3 3 2 4	

Interplanar spacings and intensity measurements. The *d*-values of the Oftedal pattern were calculated from Bragg angle data. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Oftedal National Bureau of Standards_	$\begin{array}{c} 113\\111\end{array}$	$223 \\ 113$	$\begin{array}{c} 415\\ 300 \end{array}$

Structural data. Oftedal [2] in 1931 determined that cerium fluoride has the space group $P6_3/mcm$ (No. 193) with $6(CeF_3)$ per unit cell. Cerium fluoride is used as a structure type.

The unit-cell measurements reported by Oftedal have been converted from kX to angstrom units for comparison with the NBS values.

Cesium Bromate, $CsBrO_3$ (trigonal)

ASTM cards. None.

Additional published patterns. Non

NBS sample. The sample of cesium was prepared at NBS by reaction of cesium bro-mide with silver bromate. Spectrographic analysis showed the following impurities: 0.1 to 1.0 percent of rubidium; 0.01 to 0.1 percent of potassium; 0.001 to 0.01 percent each of silver, aluminum, sodium, and silicon; and 0.0001 to 0.001 percent each of calcium, iron, lithium, and magnesium.

The sample was colorless and optically negative. The refractive indices are $N_0 = 1.684$ and $N_e = 1.601$.

Interplanar spacings and intensity measurements. The indices of the three strongest lines of the NBS pattern are as follows:

Pattern	1	2	3
National Bureau of Standards_	012	110	202

Structural data. The structure of cesium bromate has not been published but because of the similarity of the patterns, it is thought to have potassium bromate-type structure. The NBS pattern was indexed assuming the space group to be R3m (No. 160) with $1(CsBrO_3)$ per unit rhombohedral cell or 3(CsBrO₃) per unit hexagonal cell.

1958	National Bureau of Standards	a A 6.506	<i>c</i> <i>A</i> 8.230 at 25°C

The density of cesium bromate calculated from the NBS lattice constants is 4.306 g/cm³ at 25°C.

	Lattice	constants
--	---------	-----------

$1929 \\ 1958$	Oftedal [1] National Bureau of Standards	$ \begin{array}{c} a \\ \hline A \\ 7.128 \\ 7.112 \end{array} $	$\begin{array}{c} c\\ \hline A\\ 7.288\\ 7.279 \text{ at}\\ 25^{\circ}\text{C} \end{array}$
			$25^{\circ}\mathrm{C}$

The density of cerium fluoride calculated from the NBS lattice constants is 6.159 g/cm³ at 25°C.

References

- [1] I. Oftedal, Über die Kristallstruktur von Tysonit und einigen künstlich dargestellten Lanthanidenfluoriden, Z. physik. Chem. (B) 5, 272–291 (1929). [2] I. Oftedal, Zur Kristallstruktur von Tysonit (Ce, La,
- ...)F₃, Z. physik. Chem. (B) 13, 190-200 (1931).

1958

	1	
e.		National Bu
n bromate	1.1.1	Cu, 1.5
sium bro-	пкі _	

hhl	National Bureau of Cu, 1.5405 A a	f Standards at 25°C
hex.	d	Ι
101	A	0
101	4.65	8
110	0.02 9.95	100
002	0.20 9.744	90
005	2.144	12
021	2.000	10
202	2.329	38
113	2.096	5
211	2.060	3
104	1.9332	13
122	1.8915	23
300	1.8779	12
024	1.6614	8
220	1.6268	9
015	1.5805	2
303	1.5475	1
121	1 5265	1
214	1 4708	10
312	1 4611	0
205	1 4215	4
223	1.3992	$\hat{2}$
401	1 3807	1
006	1 3723	<1
042	1 3328	4
125	1 3028	1
116	1.2638	3
134	1 2443	4
232	1 2330	4
410	1.2330	6
404	1.4295	1
107	1.1511	1
101	1.1011	•
315	1.1341	<1
413	1.1212	<1
306	1.1075	1
324	1.0946	<1
027	1.0845	1

ASTM cards. None.

Additional published patterns. None.

NBS sample. The sample of cesium bromoplatinate was prepared at NBS from cesium bromide and bromoplatinic acid. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent of sodium; and 0.001 to 0.01 percent each of aluminum, barium, calcium, potassium, rubidium, silicon, and tin.

The color of the sample was orange. The index of refraction is 1.972.

Interplanar spacings and intensity measurements. The indices of the three strongest lines of the NBS pattern are as follows:

Pattern	1	2	3
National Bureau of Standards_	400	222	111

Structural data. The structure of cesium bromoplatinate has not been published. Because of the similarity of patterns, it is thought to be isostructural with cesium bromoselenate. The NBS pattern was indexed assuming the space group to be Fm3m (No. 225) with $4(Cs_2PtBr_6)$ per unit cell.

Lattice constants

-	$1953 \\ 1958$	Sharpe [1] National Bureau of Standards	$A \\ 10.63 \\ 10.643 ext{ at } 26^{\circ} ext{C}$
	1958	National Bureau of Standards	10.643 at 26°C

The density of cesium bromoplatinate calculated from the NBS lattice constant is 5.180 g/cm^3 at 26°C .

eferences		
	~	

R

 A. G. Sharpe, Chemistry of the platinum metals. Part III. Lattice constants of some chloropalladates, bromopalladates, and bromoplatinates, J. Chem. Soc. 4177-4179 (1953).

hkl _	Nationa Cu,	andards 6°C	
	d	Ι	a
$ \begin{array}{r} 111 \\ 200 \\ 220 \\ 311 \\ 222 \end{array} $	$\begin{matrix} A \\ 6.16 \\ 5.32 \\ 3.76 \\ 3.209 \\ 3.073 \end{matrix}$	$70 \\ 9 \\ 54 \\ 28 \\ 74$	$\begin{matrix} A \\ 10.65 \\ 10.65 \\ 10.65 \\ 10.65 \\ 10.64 \\ 10.65 \end{matrix}$
$\begin{array}{c} 400\\ 331\\ 420\\ 422\\ 511 \end{array}$	$2.661 \\ 2.443 \\ 2.381 \\ 2.173 \\ 2.049$	$100 \\ 4 \\ 3 \\ 24 \\ 25$	$10.64 \\ 10.65 \\ 10.65 \\ 10.64 \\ 10.65$
$ \begin{array}{c} 440 \\ 531 \\ 600 \\ 620 \\ 533 \end{array} $	$1.882 \\ 1.7987 \\ 1.7739 \\ 1.6828 \\ 1.6236$	$\begin{array}{c} 63\\18\\4\\12\\4\end{array}$	$10.65 \\ 10.641 \\ 10.643 \\ 10.643 \\ 10.646$
$622 \\ 444 \\ 711 \\ 642 \\ 731$	$\begin{array}{c} 1.6044 \\ 1.5363 \\ 1.4905 \\ 1.4221 \\ 1.3855 \end{array}$	$21 \\ 20 \\ 13 \\ 11 \\ 1$	$\begin{array}{c} 10.642 \\ 10.644 \\ 10.644 \\ 10.642 \\ 10.642 \\ 10.642 \end{array}$
$\begin{array}{c} 800 \\ 822 \\ 751 \\ 662 \\ 840 \end{array}$	$\begin{array}{c} 1.3303 \\ 1.2543 \\ 1.2289 \\ 1.2208 \\ 1.1899 \end{array}$	$9 \\ 6 \\ 6 \\ 7 \\ 15$	$\begin{array}{c} 10.642 \\ 10.643 \\ 10.643 \\ 10.643 \\ 10.643 \\ 10.643 \end{array}$
$911 \\ 664 \\ 931 \\ 844 \\ 933$	$1.1681 \\ 1.1346 \\ 1.1158 \\ 1.0864 \\ 1.0700$	$\begin{array}{c} 6\\ 5\\ 5\\ 12\\ 4\end{array}$	$10.642 \\ 10.643 \\ 10.644 \\ 10.644 \\ 10.644 \\ 10.644$
$ \begin{array}{c c} 10 \cdot 2 \cdot 0 \\ 951 \\ 953 \\ 10 \cdot 4 \cdot 2 \\ 880 \end{array} $	$\begin{array}{c} 1.0439 \\ 1.0290 \\ 0.9924 \\ .9716 \\ .9408 \end{array}$	7 8 16 17 17	$\begin{array}{c} 10.646\\ 10.644\\ 10.643\\ 10.643\\ 10.643\\ 10.643\end{array}$
$ \begin{array}{c} 11 \cdot 3 \cdot 1 \\ 10 \cdot 6 \cdot 0 \\ 11 \cdot 3 \cdot 3 \\ 10 \cdot 6 \cdot 2 \\ 12 \cdot 0 \cdot 0 \end{array} $.9299 .9127 .9028 .8994 .8869	$20 \\ 13 \\ 6 \\ 11 \\ 33$	$\begin{array}{c c} 10.643\\ 10.643\\ 10.644\\ 10.642\\ 10.643\end{array}$
$\begin{array}{c} 12 \cdot 2 \cdot 2 \\ 11 \cdot 5 \cdot 3 \\ 12 \cdot 4 \cdot 0 \\ 991 \\ 10 \cdot 8 \cdot 2 \end{array}$.8633 .8549 .8414 .8336 .8212	$15 \\ 9 \\ 22 \\ 9 \\ 10$	$10.644 \\ 10.643 \\ 10.643 \\ 10.643 \\ 10.643 \\ 10.643$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$.8139 \\ .8116 \\ .8022 \\ .7955 \\ .7846$	$15 \\ 6 \\ 20 \\ 13 \\ 5$	$\begin{array}{c c} 10.643 \\ 10.644 \\ 10.643 \\ 10.643 \\ 10.642 \end{array}$
Average v	alue of last five	lines	10.643

Cesium Bromoselenate, Cs_2SeBr_6 (cubic)

ASTM cards. None.

Additional published patterns. None.

NBS sample. The sample of cesium bromoselenate was prepared at NBS by dissolving SeO₂ in HBr and mixing with a solution of CsBr. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of iron and rubidium; and 0.001 to 0.01 percent each of aluminum, bismuth, chromium, sodium, nickel, and silicon.

The color of the sample was reddish-orange. The refractive index was too high to be determined by the usual liquid immersion technique.

Interplanar spacings and intensity measurements. The indices of the three strongest lines of the NBS pattern are as follows:

Pattern	1	2	3
National Bureau of Standards_	222	400	440

Structural data. The structure of cesium bromoselenate has not been published, but because of the similarity of patterns, it is thought to be isostructural with ammonium bromoselenate, $(NH_4)_2$ SeBr₆. The NBS pattern was indexed assuming the space group to be Fm3m (No. 225) and 4 (Cs₂SeBr₆) per unit cell.

Lattice constant

	1958	National Bureau of Standards	$\stackrel{A}{10.722}{ m at}25^{ m oC}$
Į			1

The density of cesium bromoselenate calculated from the NBS lattice constant is 4.440 g/cm^3 at 25°C .

Cesium Chlorate, CsClO₃ (trigonal)

ASTM cards. None.

Additional published patterns. None.

NBS sample. The sample of cesium chlorate was prepared at NBS by reaction of solutions of cesium bromide and silver chlorate. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of sodium and rubidium; 0.001 to 0.01 percent each of calcium and potassium; and 0.0001 to 0.001 percent each of silver, aluminum, barium, copper, iron, magnesium, silicon, and strontium.

The sample was colorless and optically negative. The refractive indices are $N_0=1.587$ and $N_c=1.508$.

1958 National Bureau of Standar Cu, 1.5405 A at 25°C			andards 25°C
	d	I	a
$ \begin{array}{r} 111\\ 200\\ 220\\ 311\\ 222 \end{array} $	$\begin{matrix} A \\ 6.19 \\ 5.36 \\ 3.79 \\ 3.231 \\ 3.095 \end{matrix}$	$17 \\ 2 \\ 23 \\ 9 \\ 100$	$\begin{matrix} A \\ 10.73 \\ 10.74 \\ 10.72 \\ 10.72 \\ 10.72 \\ 10.72 \end{matrix}$
$\begin{array}{c} 400\\ 331\\ 420\\ 422\\ 511\end{array}$	$\begin{array}{c} 2.679 \\ 2.462 \\ 2.398 \\ 2.188 \\ 2.063 \end{array}$	$\begin{array}{c} 74\\ 2\\ 1\\ 10\\ 6\end{array}$	$10.72 \\ 10.73 \\ 10.72 \\ 10.7$
$\begin{array}{c} 440 \\ 531 \\ 600 \\ 620 \\ 533 \end{array}$	$1.8949 \\ 1.8117 \\ 1.7878 \\ 1.6949 \\ 1.6348$	$ \begin{array}{c c} & 47 \\ & 4 \\ & <1 \\ & 4 \\ & <1 \end{array} $	$10.72 \\ 10.72 \\ 10.73 \\ 10.72 \\ 10.7$
$\begin{array}{c} 622 \\ 444 \\ 711 \\ 642 \\ 731 \end{array}$	$1.6160 \\ 1.5473 \\ 1.5014 \\ 1.4328 \\ 1.3950$	$\begin{array}{c} 31\\16\\3\\4\\2\end{array}$	$10.72 \\ 10.7$
$ \begin{array}{r} 800 \\ 820 \\ 822 \\ 662 \\ 840 \end{array} $	$1.3404 \\ 1.2999 \\ 1.2633 \\ 1.2300 \\ 1.1989$	$egin{array}{c} 6 \\ <1 \\ 2 \\ 10 \\ 12 \end{array}$	$10.72 \\ 10.7$
$ \begin{array}{r} 844 \\ 951 \\ 10 \cdot 2 \cdot 2 \\ 880 \\ 10 \cdot 6 \cdot 2 \end{array} $	$\begin{array}{c} 1.0946 \\ 1.0366 \\ 1.0318 \\ 0.9478 \\ .9061 \end{array}$	$8 \\ 2 \\ 5 \\ 2 \\ 4$	$10.72 \\ 10.722 \\ 10.723 \\ 10.723 \\ 10.723 \\ 10.722$
$ \begin{array}{c} 12 \cdot 0 \cdot 0 \\ 12 \cdot 2 \cdot 2 \\ 12 \cdot 4 \cdot 0 \\ 10 \cdot 6 \cdot 6 \\ 12 \cdot 4 \cdot 4 \end{array} $.8934 .8697 .8475 .8176 .8081	$5 < 1 \\ 2 \\ 1 \\ 1 \\ 1$	$\begin{array}{c} 10.721 \\ 10.723 \\ 10.721 \\ 10.723 \\ 10.723 \\ 10.721 \end{array}$
Average v	Average value of last five lines		

Interplanar spacings and intensity measurements. The indices of the three strongest lines of the NBS pattern are as follows:

Pattern	1	2	3
National Bureau of Standards_	012	110	101

Structural data. The structure of cesium chlorate has not been published but because of the similarity of the patterns, it is thought to have potassium bromate-type structure. The NBS pattern was indexed assuming the space group to be R3m (No. 160) with $1(\text{CsCIO}_3)$ per unit rhombohedral cell or $3(\text{CsCIO}_3)$ per unit hexagonal cell.

1958	National Bureau of Standards	$\begin{array}{c} a \\ \hline A \\ 6.424 \end{array}$	<u>с</u> А 8.254 at 25°С
------	---------------------------------	---	-----------------------------------

The density of cesium chlorate calculated from the NBS lattice constants is 3.653 g/cm³ at 25°C.

hkl hex.	1958 National B of Standa Cu, 1.5405 A	3 ureau ards at 25°C <i>hkl</i> hex.		1958 National Bureau of Standards Cu, 1.5405 A at 25' ex.	
	d	Ι		d	I
$\begin{array}{c} 101\\ 102\\ 110\\ 003\\ 021\\ 202\\ 113\\ 211\\ 104\\ 122\\ 300\\ 024\\ 220\\ 015\\ 303\\ 131\\ 214\\ 312\\ 205\\ 223\\ 205\\ 223\\ 202\\ 202\\ 202\\ 202\\ 202\\ 202\\ 202$	$\begin{array}{c} A\\ 4.61\\ 3.316\\ 3.215\\ 2.751\\ 2.636\\ \hline\\ 2.305\\ 2.091\\ 2.039\\ 1.9367\\ 1.8743\\ \hline\\ 1.8546\\ 1.6573\\ 1.6062\\ 1.5823\\ 1.5377\\ \hline\\ 1.5165\\ 1.4729\\ 1.4453\\ 1.4198\\ 1.3871\\ \hline\\ 1.9757\\ \hline\end{array}$	$\begin{array}{c} 45\\ 100\\ 82\\ 16\\ 35\\ 43\\ 18\\ 17\\ 11\\ 24\\ 13\\ 8\\ 8\\ 5\\ 5\\ 5\\ 6\\ 10\\ 12\\ 3\\ 4\\ 4\\ 1\end{array}$	$\begin{array}{c} 321\\ 134\\ 232\\ 410\\ 107\\ 404\\ \end{array}\\ \begin{array}{c} 315\\ 413\\ 306\\ 051\\ 027\\ 324\\ \end{array}\\ \begin{array}{c} 502\\ 330\\ 045\\ 226\\ 241\\ \end{array}\\ \begin{array}{c} 217\\ 422\\ 018\\ 235\\ \end{array}$	$\left.\begin{array}{c} A\\ 1.2615\\ 1.2357\\ 1.2195\\ 1.2195\\ 1.2143\\ 1.1534\\ \end{array}\right\} \\ 1.1534\\ 1.1534\\ 1.1072\\ 1.1106\\ 1.1048\\ 1.1023\\ 1.0851\\ 1.0743\\ 1.0706\\ 1.0638\\ 1.0488\\ 1.0430\\ 1.0284\\ 1.0430\\ 1.0284\\ 1.0190\\ 1.0143\\ 1.0097\\ 0.0552\\ 0.05$	$ \begin{array}{c} 2\\3\\6\\5\\2\\2\\3\\3\\2\\1\\1\\2\\2\\2\\2\\2\\1\\1\\1\\2\\2\\2\\1\\1\\1\\1$
$\begin{array}{c} 006 \\ 401 \\ 042 \\ 125 \\ 116 \end{array}$	$1.3757 \\ 1.3714 \\ 1.3177 \\ 1.2985 \\ 1.2647$	$\begin{array}{c}1\\2\\2\\3\\4\end{array}$	533 511 054 152 208	.9978 .9918 .9793 .9711 .9676	

Cesium Chromium Sulfate Dodecahydrate, CsCr(SO₄)₂·12H₂O (cubic)

ASTM cards. None.

Additional published patterns. None.

NBS sample. The sample of cesium chromium sulfate dodecahydrate was prepared at NBS from cesium nitrate and chromium sulfate. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent of nickel; 0.001 to 0.01 percent each of aluminum, calcium, cobalt, potassium, magnesium, and rubidium; and 0.0001 to 0.001 percent each of barium, copper, iron, manganese, and silicon.

The color of the sample was bright green. The index of refraction is 1.482.

Interplanar spacings and intensity measurements. The indices of the three strongest lines of the NBS pattern are as follows:

Pattern	1	2	3
National Bureau of Standards_	220	331	420

Structural data. Klug and Alexander [1] in 1940 determined that cesium chromium sulfate do-

hkl	1958 National Bureau of Standards Cu, 1.5405 A at 25°C		
	d	Ι	a
111		11	
111	(.Z	11	12.4
200	6.21	49	12.42
210	5.50	28	12.43
211	5.07	13	12.42
220	4.380	100	12.40
0.01	4 197	00	10 41
221	4.137	29	12.41
222	3.377	- 33 10	12.39
302	3.4410	10	12.400
321	3.3164	28	12.409
400	3.1014	63	12.406
410	2 0004	10	19.404
221	0.0084	18	12.404
331	2.8447	18	12.400
420	2.7730	09	12.404
421	2.7004	11	12.402
422	2.0027	47	12.408
511	2 3864	26	12 400
440	2.0004	10	12.400
003	2.1555	24	12.407
620	1 0608	47	12.407
522	1 2015	±7 19	12.401
000	1.0910	10	12,400

hkl	Nationa Cu,	1958 Il Bureau of St 1.5405 A at 2	andards 5°C
	d	Ι	a
$\begin{array}{c} 622 \\ 444 \\ 711 \\ 640 \\ 642 \end{array}$	$\begin{array}{c} A\\ 1.8700\\ 1.7898\\ 1.7366\\ 1.7196\\ 1.6573\end{array}$	$14 \\ 9 \\ 7 \\ 20 \\ 46$	$\begin{array}{r} A \\ 12.404 \\ 12.401 \\ 12.402 \\ 12.400 \\ 12.402 \\ 12.402 \end{array}$
$731 \\ 800 \\ 820 \\ 822 \\ 831$	$1.6151 \\ 1.5506 \\ 1.5041 \\ 1.4621 \\ 1.4421$	$9 \\ 7 \\ 23 \\ 6 \\ 18$	$12.406 \\ 12.405 \\ 12.403 \\ 12.406 \\ 12.405$
$751 \\ 662 \\ 832 \\ 840 \\ 911$	$1.4326 \\ 1.4230 \\ 1.4135 \\ 1.3864 \\ 1.3611$	$7 \\ 10 \\ 6 \\ 11 \\ 7$	$12.407 \\ 12.405 \\ 12.403 \\ 12.400 \\ 1$
$842 \\ 664 \\ 931 \\ 844 \\ 10 \cdot 0 \cdot 0$	$1.3536 \\ 1.3224 \\ 1.3004 \\ 1.2660 \\ 1.2405$	$ \begin{array}{c} 7 \\ 6 \\ 6 \\ 6 \\ 4 \end{array} $	12.40612.40512.40512.40412.40412.405
$\begin{array}{c} 10 \cdot 2 \cdot 0 \\ 10 \cdot 2 \cdot 2 \\ 953 \\ 10 \cdot 4 \cdot 0 \\ 10 \cdot 6 \cdot 0 \end{array}$	$1.2163 \\ 1.1936 \\ 1.1567 \\ 1.1519 \\ 1.0640$	$\begin{array}{c} 12\\ 3\\ 3\\ 6\\ 3\end{array}$	$12.404 \\ 12.404 \\ 12.404 \\ 12.406 \\ 12.408$
$11 \cdot 3 \cdot 3 \\ 10 \cdot 6 \cdot 2 \\ 12 \cdot 0 \cdot 0 \\ 12 \cdot 2 \cdot 2 \\ 12 \cdot 4 \cdot 2$	$1.0523 \\ 1.0483 \\ 1.0340 \\ 1.0060 \\ 0.9687$	$\begin{array}{c} 6\\ 2\\ 4\\ 3\\ 5\end{array}$	$12.406 \\ 12.404 \\ 12.408 \\ 12.403 \\ 12.406$
Average of last five lines 12.405			

decahydrate is a beta alum. Lipson [2] in 1935 had determined that the beta alums have methyl ethyl aluminum sulfate dodecahydrate-type structure, the space group Pa3 (No. 205), and $4[CsCr(SO_4)_2 \cdot 12H_2O]$ per unit cell.

The unit-cell measurement reported by Klug and Alexander has been converted from kX to angstrom units for comparison with the NBS value.

Lattice	constants
Laucouco	conscances

$\begin{array}{c} 1940 \\ 1958 \end{array}$	Klug and Alexander [1] National Bureau of Standards	$\begin{array}{c} A \\ 12.403 \text{ at } 25^{\circ}\text{C} \\ 12.405 \text{ at } 25^{\circ}\text{C} \end{array}$
2000		100 40 20 0

The density of cesium chromium sulfate dodecahydrate calculated from the NBS lattice constant is 2.063 g/cm^3 at 25° C.

References

- H. P. Klug and L. Alexander, Crystal-chemical studies of the alums. II. The purple chrome alums, J. Am. Chem. Soc. 62, 2992-2993 (1940).
- [2] H. Lipson, Existence of three alum structures, Nature 135, 912 (1935).

Cesium Fluoborate, **CsBF**₄ (orthorhombic)

ASTM cards. None.

Additional published patterns. None.

NBS sample. The sample of cesium fluoborate was prepared at NBS by precipitation from CsBr and HBF₄. Spectrographic analysis showed the following impurities: 0.1 to 1.0 percent of sodium; 0.01 to 0.1 percent each of calcium and rubidium; 0.001 to 0.01 percent each of potassium and strontium; and 0.0001 to 0.001 each of aluminum, barium, copper, iron, magnesium, and silicon.

The sample was colorless. The indices of refraction are too low to be determined by the usual liquid immersion methods.

Interplanar spacings and intensity measurements. The indices of the three strongest lines of the NBS pattern are as follows:

Pattern	1	2	3
National Bureau of Standards_	122	211	210

Structural data. Klinkenberg [1] in 1937 determined that cesium fluoborate is isomorphous with barium sulphate (BaSO₄). The space group is Pnma (No. 62), and $4(CsBF_4)$ per unit cell.

The unit-cell measurements reported by Klinkenberg have been converted from kX to angstrom units for comparison with the NBS values.

Lattice	constants
---------	-----------

1937 1958	Klinkenberg [1]_ National Bureau of Standards	$ \begin{array}{c} a\\ \hline A\\ 9.45\\ 9.658 \end{array} $	$\frac{b}{4}$ 5.84 5.895	<i>c</i> <i>A</i> 7.67 7.636 at 25°C
				$25^{\circ}\mathrm{C}$

The density of cesium fluoborate calculated from the NBS lattice constants is 3.355 g/cm³ at 25°C.

References

 L. J. Klinkenberg, The crystal structure of NaOH·BF₂ and of the alkali fluoborates and TIBF₄, Rec. Trav. Chim. Pays-Bas 56, 36-40 (1937).

hkl	195 National of Stand Cu, 1.5405	8 Bureau łards A at 25°C	hkl	195 National of Stand Cu, 1.5405	8 Bureau Iards A at 25°C	hkl	195 National of Stand Cu, 1.5405	8 Bureau łards A at 25°C
	d	Ι		d	Ι		d	Ι
$\begin{array}{c} 200\\ 011\\ 111\\ 201\\ 002\\ 210\\ 102\\ 211\\ 112\\ 301\\ 020\\ 212\\ 311\\ 220\\ 302\\ 103\\ 221\\ 401\\ 122\\ 410\\ 411\\ 222\\ 321\\ 303\\ \end{array}$	$\left.\begin{array}{c} A\\ 4.83\\ 4.66\\ 4.20\\ 4.08\\ 3.816\\ 3.734\\ 3.550\\ 3.353\\ 3.041\\ 2.962\\ 2.947\\ 2.670\\ 2.648\\ 2.515\\ \end{array}\right\}$	$\begin{array}{c} 23\\ 40\\ 47\\ 21\\ 33\\ 62\\ 53\\ 83\\ 25\\ 20\\ 34\\ 9\\ 6\\ 23\\ 27\\ 19\\ 26\\ 100\\ 26\\ 3\\ 10\\ 10\\ 12\\ \end{array}$	$\begin{array}{c} 412\\ 004\\ 031\\ 313\\ 501\\ 104\\ 421\\ 511\\ 114\\ 204\\ 231\\ 403\\ 132\\ 214\\ 512\\ 304\\ 331\\ 024\\ 314\\ 503\\ 610\\ 332\\ 430\\ 105\\ 513\\ 015\\ \end{array}$	$\left.\begin{array}{c} A\\ 1.928\\ 1.908\\ 1.903\\ 1.903\\ 1.890\\ 1.873\\ \end{array}\right\}$ $\left.\begin{array}{c} 1.873\\ 1.815\\ 1.785\\ 1.775\\ 1.770\\ 1.751\\ 1.720\\ 1.700\\ 1.654\\ 1.642\\ 1.642\\ 1.637\\ 1.6025\\ 1.5813\\ 1.5386\\ 1.5532\\ 1.5329\\ 1.5244\\ 1.5087\\ 1.4890\\ 1.4784\\ \end{array}\right.$	5 11 12 8 9 8 6 5 6 2 9 4 19 8 4 5 13 10 7 15 12 1 1 7	$\begin{array}{c} 115\\ 205\\ 414\\ 612\\ 432\\ \\ 215\\ 333\\ 621\\ 241\\ 523\\ \\ 622\\ 711\\ 514\\ 225\\ 702\\ \\ 532\\ 405\\ 006\\ 342\\ 143\\ \\ 415\\ 325\\ 630\\ 441\\ 631\\ 800\\ \end{array}$	$\left.\begin{array}{c} A\\ 1.4613\\ 1.4564\\ 1.4515\\ 1.4379\\ 1.4158\\ 1.4135\\ 1.4011\\ 1.3893\\ 1.3862\\ 1.3640\\ 1.3245\\ 1.3229\\ 1.3056\\ 1.2976\\ 1.2976\\ 1.2976\\ 1.2908\\ 1.2726\\ 1.2644\\ 1.2610\\ 1.2497\\ 1.2453\\ 1.2411\\ 1.2295\\ 1.2074\\ \end{array}\right.$	5 8 5 3 7 7 2 5 1 8 3 3 5 5 2 5 4 4 5 5 4 2 3 3

Cesium Fluoborate, CsBF₄ (orthorhombic)

Cesium Gallium Sulfate Dodecahydrate, $CsGa(SO_4)_2 \cdot 12H_2O$ (cubic)

ASTM cards. None.

Additional published patterns. None.

NBS sample. The sample of cesium gallium sulfate dodecahydrate was prepared at NBS from cesium chloride, gallium and sulfuric acid. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of aluminum, calcium, potassium, magnesium, nickel, and rubidium; 0.001 to 0.01 percent each of barium, iron, molybdenum, sodium, and silicon; and 0.0001 to 0.001 percent each of chromium and manganese. The sample was colorless. The index of refraction is 1.461.

Interplanar spacings and intensity measurements. The indices of the three strongest lines of the NBS pattern are as follows:

Pattern	1	2	3
National Bureau of Standards_	220	420	200

Structural data. Klug and Kieffer [1] in 1943 determined that cesium gallium sulfate dodecahydrate is a beta alum. Lipson [2] in 1935 had determined that the beta alums have methyl ethyl aluminum sulfate dodecahydrate-type structure, the space group Pa3 (No. 205), and $4[CsGa(SO_4)_2 \cdot 12H_2O]$ per unit cell.

The unit-cell measurement reported by Klug and Kieffer has been converted from kX to angstrom units for comparison with the NBS value.

Cesium Gallium Sulfate Dodecahydrate, CsGa(SO₄)₂·12H₂O (cubic)

hkl	Nationa Cu,	1958 Il Bureau of Sta 1.5405 A at 25	ndards °C
	d	I	a
$111 \\ 200 \\ 210 \\ 211 \\ 220$	$\begin{matrix} A \\ 7.17 \\ 6.21 \\ 5.56 \\ 5.07 \\ 4.39 \end{matrix}$	7 48 27 8 100	$\begin{matrix} A \\ 12.4 \\ 12.4 \\ 12.4 \\ 12.4 \\ 12.4 \\ 12.4 \\ 12.4 \end{matrix}$
$221 \\ 222 \\ 302 \\ 321 \\ 400$	$\begin{array}{c} 4.13\\ 3.578\\ 3.438\\ 3.315\\ 3.101 \end{array}$	$ \begin{array}{r} 19 \\ 31 \\ 5 \\ 20 \\ 35 \end{array} $	$12.4 \\ 12.40 \\ 12.40 \\ 12.40 \\ 12.40 \\ 12.41$
$\begin{array}{c} 410\\ 331\\ 420\\ 421\\ 422 \end{array}$	3.008 2.845 2.772 2.706 2.532	$12 \\ 45 \\ 50 \\ 8 \\ 32$	$12.40 \\ 12.4$
$511 \\ 432 \\ 440 \\ 531 \\ 600$	$\begin{array}{c} 2.386 \\ 2.304 \\ 2.1928 \\ 2.0961 \\ 2.0664 \end{array}$	$ \begin{array}{r} 10 \\ 4 \\ 15 \\ <1 \\ 20 \end{array} $	$12.40 \\ 12.41 \\ 12.404 \\ 12.401 \\ 12.398$
$\begin{array}{c} 611 \\ 620 \\ 621 \\ 533 \\ 622 \end{array}$	$\begin{array}{c} 2.0111 \\ 1.9612 \\ 1.9367 \\ 1.8912 \\ 1.8688 \end{array}$	$<1 \\ 24 \\ <1 \\ 5 \\ 8$	$12.397 \\12.404 \\12.401 \\12.401 \\12.396$
$630 \\ 631 \\ 444 \\ 711 \\ 640$	$1.8478 \\ 1.8284 \\ 1.7898 \\ 1.7360 \\ 1.7196$	$ \begin{array}{c} 1 \\ <1 \\ 3 \\ <1 \\ 13 \end{array} $	$12.396 \\ 12.401 \\ 12.400 \\ 12.398 \\ 12.400$
$721 \\ 642 \\ 722 \\ 731 \\ 800$	$1.6876 \\ 1.6570 \\ 1.6423 \\ 1.6146 \\ 1.5502$	$ \begin{array}{c} 1 \\ 9 \\ 1 \\ 1 \\ 3 \end{array} $	$12.401 \\ 12.400 \\ 12.399 \\ 12.402 \\ 1$
810 733 820 822 830	$1.5382 \\ 1.5147 \\ 1.5043 \\ 1.4619 \\ 1.4517$	$egin{array}{c} 1 \\ 1 \\ 13 \\ 9 \\ 1 \end{array}$	$12.401 \\ 12.398 \\ 12.405 \\ 12.405 \\ 12.403 \\ 1$
$\begin{array}{c} 831 \\ 751 \\ 662 \\ 832 \\ 840 \end{array}$	$1.4419\\1.4316\\1.4223\\1.4131\\1.3862$	$ \begin{array}{c} 1 \\ 1 \\ 4 \\ 1 \\ 5 \end{array} $	$12.404 \\ 12.401 \\ 12.399 \\ 12.400 \\ 12.399$
$911 \\ 842 \\ 664 \\ 931$	$1.3613 \\ 1.3530 \\ 1.3219 \\ 1.3000$	$\begin{array}{c}1\\4\\6\\2\end{array}$	$12.402 \\ 12.400 \\ 12.401 \\ 12.401 \\ 12.401$
Average	of last five lines		12.401

Lattice constants

$1943 \\ 1958$	Klug and Kieffer [1] National Bureau of Standards	A 12.402 at 25°C 12.401 at 25°C
----------------	--	---------------------------------------

The density of cesium gallium sulfate dodecahydrate calculated from the NBS lattice constant is 2.127 g/cm³ at 25°C.

References

H. P. Klug and G. L. Kieffer, Crystal-chemical studies of the alums. V. The gallium alums, J. Am. Chem. Soc. 65, 2071-2073 (1943).
 H. Lipson, Existence of three alum structures, Nature 135, 912 (1935).

ASTM cards

Card number	Index lines	Radiation	Source
1-0827	$3.06 \\ 1.87 \\ 1.59$	Molybdenum	Hanawalt, Rinn, and Frevel [1] 1938.

Additional published patterns

Souree	Radiation
Staritzky [2] 1956	Copper, K _a

NBS sample. The sample of erbium sequioxide was prepared at NBS by Ernest L. Weise. It was annealed at 1,000°C for 2 hr before using. Spectrographic analysis detected no impurities greater than 0.01 percent. The color of the sample was pink. The index of refraction is 1.932.

Interplanar spacings and intensity measurements. The *d*-values reported by Hanawalt, Rinn, and Frevel were converted from kX to angstrom units. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Hanawalt, Rinn, and Frevel Staritzky National Bureau of Standards_	$222 \\ 222 \\ 222 \\ 222$	$440 \\ 440 \\ 440$	$622 \\ 622 \\ 400$

Structural data. Zachariasen [3] in 1927 determined that erbium sesquioxide has the thallium oxide-type structure, the space group I2₁3 (No. 199) and 16 (Er_2O_3) per unit cell.

Several unit-cell measurements have been converted from kX to angstrom units for comparison with the NBS value.

Lattice constants

|--|

The density of erbium sesquioxide calculated from the NBS lattice constant is 8.654 g/cm³ at 25 °C.

hkl	1938 Hanawalt, Rinn, and Frevel Mo, 0.7107 A			1956 Staritzky Cu, 1.5418 A			1958 National Bureau of Standards Cu, 1.5405 A at 25°C		
	d	I	a	d	I	a	d	I	a
$211 \\ 222 \\ 321 \\ 400 \\ 411$	$\begin{array}{r} A \\ 4.32 \\ 3.07 \\ \hline 2.65 \\ 2.49 \end{array}$	$\begin{array}{r} 7\\100\\ \bar{2}\bar{7}\\3\end{array}$	$ \begin{array}{c} A \\ 10.6 \\ 10.6 \\ \overline{10.6} \\ 10.6 \\ 10.6 \end{array} $	$\begin{matrix} A \\ 4.29 \\ 3.04 \\ 2.810 \\ 2.631 \\ 2.481 \end{matrix}$	$ \begin{array}{r} 12 \\ 100 \\ 2 \\ 40 \\ 9 \end{array} $	$\begin{matrix} A \\ 10.51 \\ 10.53 \\ 10.51 \\ 10.52 \\ 10.55 \end{matrix}$	$\begin{matrix} A \\ 4.308 \\ 3.045 \\ 2.818 \\ 2.637 \\ 2.486 \end{matrix}$	$ \begin{array}{r} 15 \\ 100 \\ 3 \\ 40 \\ 8 \end{array} $	$\begin{array}{c} A \\ 10.552 \\ 10.550 \\ 10.546 \\ 10.550 \\ 10.549 \end{array}$
$\begin{array}{r} 420 \\ 332 \\ 422 \\ 510 \\ 521 \end{array}$	2.25	$\overline{\overline{3}}$ $\overline{13}$ 	$1\overline{0},\overline{6}$ $\overline{10},\overline{6}$	$2.352 \\ 2.243 \\ 2.148 \\ 2.064 \\ 1.922$	$\begin{vmatrix} 2\\10\\2\\16\\8 \end{vmatrix}$	$10.52 \\ 10.52 \\ 10.52 \\ 10.52 \\ 10.52 \\ 10.53$	$2.3575 \\ 2.2488 \\ 2.1532 \\ 2.0687 \\ 1.9258$	$ \begin{array}{c} 2 \\ 6 \\ 2 \\ 10 \\ 4 \end{array} $	$\begin{array}{c} 10.543 \\ 10.448 \\ 10.548 \\ 10.548 \\ 10.548 \\ 10.545 \end{array}$
$ \begin{array}{r} 440 \\ 530 \\ 600 \\ 611 \\ 620 \end{array} $	$ \begin{array}{r} 1.87 \\ 1.81 \\ \overline{1.71} \\ \end{array} $	50 7 -7 	$ \begin{array}{r} 10.6 \\ 10.6 \\ \overline{10.5} \\ \\ \end{array} $	$1.861 \\ 1.806 \\ 1.755 \\ 1.710 \\ 1.665$		$10.527 \\ 10.531 \\ 10.530 \\ 10.541 \\ 10.530$	$1.8645 \\ 1.8094 \\ 1.7590 \\ 1.7113 \\ 1.6681$	$\begin{array}{c} 44\\ 3\\ 1\\ 7\\ 1\end{array}$	$\begin{array}{c} 10.547 \\ 10.550 \\ 10.554 \\ 10.549 \\ 10.550 \end{array}$
$541 \\ 622 \\ 631 \\ 444 \\ 710$	1.59 1.52 $$	42 -7 	$\frac{10.6}{10.5}$	$1.626 \\ 1.589 \\ 1.553 \\ 1.521 \\ 1.490$	$ \begin{array}{r} 9 \\ 53 \\ 12 \\ 14 \\ 5 \end{array} $	$10.538 \\ 10.540 \\ 10.533 \\ 10.538 \\ 10.536$	$1.6276 \\ 1.5903 \\ 1.5558 \\ 1.5228 \\ 1.4918$		$10.548 \\ 10.549 \\ 10.552 \\ 10.550 \\ 10.549$
$\begin{array}{c} 640 \\ 721 \\ 642 \\ 732 \\ 800 \end{array}$	1.325	 -3	 10.60	1.462 1.434 1.409 (^a)	3 7 4 	$10.543 \\ 10.538 \\ 10.544 \\$	$1.4629 \\ 1.4359 \\ 1.4099 \\ 1.3398 \\ 1.3189$	$2 \\ 4 \\ 2 \\ 3 \\ 5$	$\begin{array}{c} 10.549 \\ 10.552 \\ 10.551 \\ 10.550 \\ 10.551 \end{array}$

hkl	1938 Hanawalt, Rinn, a Mo, 0.7107		nd Frevel A	C	1956 Staritzky Su, 1.5418	A	National Cu, 1	1958 Bureau of . 5405 A a	Standards t 25°C
	d	I	a	d	I	a	d	I	a
811	<u>A</u>		A	A		A	$A \\ 1.2988$	4	A 10.552
820							1.2795	2	10.551
653							1.2608	3	10.549
822							1.2430	2	10.552 10.552
001							1.2200	0	10.552
662	1.222	7	10.65				1.2102	8	10.550
840	1.187	3	10.62				1.1794	6	10.549
842	1 147		10_51				1.1000	$\frac{1}{2}$	10.550
921							1.1377	3	10.550 10.550
930	1-000		10 70		- ~		1.1119	3	10.548
932	1.089	1	10.56				1.0833		10.551
941		1					1.0708	3	10.550
10.0.0							1.0547	2	10.547
10.1.1							1.0444	1	10.548
10.2.0							1.0345	3	10.550 10.550
10.2.2							1 0150		10.550
10.3.1							1.0058	3	10.510 10.550
871							0.9881	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	10.550
10.4.0							. 9794	3	10.549 10.548
10.3.3							9630	2	10.548 10.549
11.1.0							.9551	ĩ	10.549
$11 \cdot 2 \cdot 1$.9398	3	10.549
880							.9322	$\frac{2}{2}$	10.547 10.540
11.3.2							.9182	$\frac{3}{2}$	10.549 10.548
10.6.0							.9045	<1	10.548
11.4.1						~	.8978		10.547
10.6.2							.8914	3	10.547 10.550
12.0.0							.8789	1	10.557
12.1.1							.8730	3	10.549
10.0.0							0.0=1		10 510
$12 \cdot 2 \cdot 0$					~ -		.8671	2	10.549 10.549
$11 \cdot 3 \cdot 2$ 12.2.2							.8013		10.549 10.547
$12 \cdot 2 \cdot 2$ $12 \cdot 3 \cdot 1$.84987	1	10.547
$11 \cdot 6 \cdot 1$.83921	2	10.548
10.10				C			00000		10 710
$12 \cdot 4 \cdot 0$ 12.2.2							.83389	2	10.548
12.3.3 12.4.2							.02011 82367	$\frac{1}{4}$	10.548 10.548
11.6.3							.81874	$\frac{1}{2}$	10.548
$10 \cdot 8 \cdot 2$		<u></u>					.81380	3	10.548
10.1.0				r		6	00000		10 117
$13 \cdot 1 \cdot 0$ $10 \cdot 6 \cdot 6$. 80893	2	10.547
13.2.1							.79963	1	10.5478
10 1 1								-	10.0110
$12 \cdot 4 \cdot 4$					1		.79507	1	10.5478
$13 \cdot 3 \cdot 0$.79062	1	10.5482
$12 \cdot 6 \cdot 0$ $13 \cdot 2 \cdot 9$.78622	4	10.5482
10.9.7							. 10109	2	10.0400
Average	value of last fiv	ve lines	10.59						10.5481

^a More than 50 additional lines were not published [2].

References

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [2] E. Staritzky, Erbium Sesquioxide, Er₂O₃, Anal. Chem.
 28, No. 12, 2023–2024 (1956).
- [3] W. Zachariasen, The crystal structure of the modification C of the sesquioxides of the rare earth metals, and of indium and thallium, Norsk Geol. Tidssk. 9. 310-316 (1927).
- [4] V. M. Goldschmidt, T. Barth, and G. Lunde, Isomorphie und Polymorphie der Sesquioxide, die Lanthaniden-

Gallium Phosphate, (α -quartz type) GaPO₄ (trigonal)

ASTM cards. None.

Additional published patterns. A pattern listing lines common to α -quartz was published by Shafer and Roy [1] in 1956.

NBS sample. The gallium phosphate was prepared by Alvin Perloff at NBS in a hydrothermal bomb using gallium metal and an excess of dilute phosphoric acid. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of aluminum, chromium, sodium, and nickel; 0.001 to 0.01 percent each of copper and silicon; and 0.0001 to 0.001 percent each of calcium, magnesium, manganese, molybdenum, lead, and tin.

The color of the sample was pale yellow and it was optically positive. The indices of refraction are $N_0=1.598$ and $N_e=1.593$.

Kontraktion und ihre Konsequenzen, Skrifter Norske Videnskaps-Akad. Oslo I. Mat. Naturv. Kl. No. 7, 1–59 (1925).

- [5] L. Pauling and M. D. Shappell, The crystal structure of Bixbyite and the C-modification of the sesquioxides, Z. Krist. 75, 128–142 (1930).
- [6] H. Bommer, Die Gitterkonstanten der C-Formen der Oxyde der seltenen Erdmetalle, Z. anorg. allgem. chem. 241, 273–280 (1939).
- [7] D. H. Templeton and C. H. Dauben, Lattice parameters of some rare earth compounds and a set of crystal radii, J. Am. Chem. Soc. 76, 5237–5239 (1954).

Interplanar spacings and intensity measurements. The indices of the three strongest lines of the NBS pattern are as follows:

Pattern	1	2	3
National Bureau of Standards_	102	100	104

Structural data. Perloff [2] in 1956 reported gallium phosphate (α -quartz type) as being isostructural with the berlinite form of aluminum phosphate, the space groups P3₁21 (No. 152) or P3₂21 (No. 154), and 1(GaPO₄) per unit cell. GaPO₄ is also reported to exist in the low and high cristobalite forms [1], [2], and [3].

hkl. hex.	1958 National I of Stand Cu, 1.5405	$ \begin{array}{c ccccc} & & & & & 1958 \\ \hline & & & & \\ & & & \\ ards & & & \\ at 25^{\circ}C & & \\ hex. & & Cu, 1.5405 \text{ A at } 25^{\circ}C & & \\ hex. \end{array} $		1958 National Bureau of Standards hex. Cu, 1.5405 A at 25°C		hkl. hex.	195 National of Stand Cu, 1.5405	8 Bureau lards A at 25°C
	d	Ι		d	Ι		d	Ι
$\begin{array}{c} 100\\ 101\\ 003\\ 102\\ 103\\ 110\\ 111\\ 104\\ 112\\ 200\\ 201\\ 113\\ 202\\ 105\\ 203\\ 114\\ 106\\ 204\\ 115\\ 210\\ \end{array}$	$\begin{array}{c} a\\ A\\ 4.24\\ 3.96\\ 3.68\\ 3.37\\ 2.783\\ 2.450\\ 2.393\\ 2.316\\ 2.240\\ 2.123\\ 2.085\\ 2.041\\ 1.982\\ 1.961\\ 1.839\\ 1.834\\ 1.690\\ 1.684\\ 1.6417\\ 1.6050\\ \end{array}$	$\begin{array}{c} 25\\ 8\\ 3\\ 100\\ 2\\ 11\\ 3\\ 19\\ 10\\ 15\\ 1\\ 2\\ 2\\ 4\\ 11\\ 12\\ 6\\ 6\\ 6\\ 3\\ \end{array}$	$\begin{array}{c} 214\\ 302\\ 108\\ 215\\ 304\\ 220\\ 221\\ 216\\ 118\\ 222\\ 310\\ 311\\ 312\\ 217\\ 313\\ 119\\ 314\\ 1\cdot0\cdot10\\ 400\\ \end{array}$	$\begin{array}{c} a\\ A\\ 1.3870\\ 1.3703\\ 1.3136\\ 1.2986\\ \hline \\ 1.2600\\ 1.2261\\ 1.2179\\ 1.2099\\ 1.2036\\ \hline \\ 1.1963\\ 1.1774\\ 1.1709\\ 1.1517\\ 1.1255\\ \hline \\ 1.1217\\ 1.0978\\ 1.0834\\ 1.0699\\ 1.0615\\ \hline \end{array}$	$ \begin{array}{c} 1 \\ 10 \\ 7 \\ 6 \\ 1 \\ 3 \\ 2 \\ 1 \\ 2 \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 $	$\begin{array}{c} 321\\ 322\\ 309\\ 410\\ 0\cdot0\cdot12\\ 406\\ 324\\ 412\\ 2\cdot1\cdot10\\ 1\cdot0\cdot12\\ 318\\ 414\\ 3\cdot0\cdot10\\ 1\cdot1\cdot12\\ 2\cdot0\cdot12\\ 408\\ 502\\ 416\\ 2\cdot2\cdot10\\ \end{array}$	$\begin{array}{c} & & \\ & A \\ .9702 \\ .9591 \\ .9271 \\ .9264 \\ .9206 \\ .9196 \\ .9185 \\ .9135 \\ .9135 \\ .9135 \\ .9135 \\ .9135 \\ .8783 \\ .8711 \\ .8623 \\ .8783 \\ .8711 \\ .8623 \\ .8449 \\ .8418 \\ .8395 \\ .8276 \\ \\ .8207 \end{array}$	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ < 1 \\ 1 \\ < 1 \\ 2 \\ 1 \\ < 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$
$ \begin{array}{c} 211 \\ 211 \\ 212 \\ 107 \\ 213 \\ 301 \\ 206 \\ \end{array} $	1.3030 1.5880 1.5405 1.4790 1.4713 1.4029 1.3908	$3 \\ 12 \\ 2 \\ 4 \\ 1 \\ 11$	$218 \\ 402 \\ 226 \\ 1 \cdot 1 \cdot 10 \\ 316 \\ 404 \\ 308$	$\begin{array}{c} 1.0471\\ 1.0423\\ 1.0205\\ 1.0076\\ 0.9921\\ .9909\\ .9888\end{array}$	2 1 1 3 4 1 <1 <1	$\begin{array}{c} 2 \cdot 2 \cdot 1 \\ 3 \cdot 3 0 \\ 5 0 4 \\ 3 \cdot 1 \cdot 1 0 \\ 4 2 0 \\ \end{array}$ $\begin{array}{c} 2 \cdot 1 \cdot 1 2 \\ 3 2 8 \\ 4 2 2 \\ \end{array}$.8170 $.8170$ $.8175$ $.8057$ $.8023$ $.7987$ $.7959$ $.7939$	$ \begin{array}{c} 2 \\ <1 \\ 1 \\ 1 \\ <1 \\ 2 \\ 1 \\ 1 \end{array} $

The unit-cell measurements reported by Perloff and Shafer and Roy are used for comparison with the NBS values.

Lattice constants

$1956 \\ 1956 \\ 1958 $	Perloff [2] Shafer and Roy [1] National Bureau of Standards	$ \begin{array}{c} a \\ 4.917 \\ 4.92 \\ 4.902 \end{array} $	$\begin{array}{c} c \\ A \\ 11.10 \\ 11.10 \\ 11.05 \text{ at} \\ 25^{\circ} C \end{array}$
			25°C

ASTM cards

Card number	Index lines	Radiation	Source
3-0552	$\begin{array}{c} 3.11\\ 1.62\\ 1.00\end{array}$	Copper	Goldschmidt [1] 1932.

Additional published patterns

Source	Radiation
Laubengayer and Morton [2] 1932	

NBS sample. The sample of germanium dioxide was prepared at NBS by Charles E. Weir. Tetragonal germanium dioxide was formed by heating hexagonal germanium dioxide hydrothermally at 800°C and 20,000 psi for two days. Spectrographic analysis showed the following impurities: 0.1 to 1.0 percent each of aluminum, calcium, iron, palladium, and platinum; and 0.01 to 0.1 percent each of magnesium, nickel, and tin.

The sample was colorless. The indices of refraction were too high to be determined by the usual liquid grain immersion method.

Interplanar spacings and intensity measurements. The d-values reported by Goldschmidt and those reported by Laubengayer and Morton have been converted from kX to angstrom units. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Goldschmidt Laubengayer and Morton National Bureau of Standards_	$110 \\ 110 \\ 110 \\ 110$	$211 \\ 101 \\ 101$	$411 \\ 211 \\ 211$

Structural data. van Arkel [3] in 1925 proposed that germanium dioxide had rutile-type structure. Goldschmidt [1] in 1932 verified this structure and gave the space group as P4mnm (No. 136), with $2(\text{GeO}_2)$ per unit cell. Laubengayer and

28

The density of gallium phosphate calculated from the NBS lattice constants is 3.567 g/cm³ at 25°C.

References

- E. Shafer and R. Roy, Studies of silica-structure phases: I, GaPO₄, GaAsO₄, and GaSbO₄, J. Am. Ceram. Soc. 39, No. 10, 330–336 (1956).
 A. Perloff, Temperature inversions of anhydrous gallium
- [2] A. Perloff, Temperature inversions of anhydrous gallium orthophosphate, J. Am. Ceram. Soc. 39, No. 3, 83–88 (1956).
- [3] R. C. L. Mooney, The crystal structure of aluminum phosphate and gallium phosphate, low-cristobalite type, Acta Cryst 9, 728-734 (1956).

Germanium Dioxide,	GeO ₂	(tetrag	onal)			
Source Goldschmidt [1] 1932.	hkl	193: Goldsch Cu, 1.54	2 midt 405 A	193: Laubeng and Mo	2 gayer orton	1958 Nation Bureau Standa Cu, 1.54 at 25°	al of rds 05 A C
		d	I	d	I	d	I
Radiation Badiation Badiation	$\begin{array}{c} 110\\ 101\\ 200\\ 111\\ 210\\ 211\\ 220\\ 002\\ 310\\ 301\\ 112\\ 311\\ 202\\ 212\\ 321\\ 400\\ 410\\ 222\\ 330\\ 411\\ 312\\ 420\\ 103\\ 113\\ 402\\ 510\\ 213\\ 501\\ 332\\ \end{array}$	$\begin{array}{c} A\\ 3.11\\ 2.40\\ 2.20\\ 2.11\\ 1.97\\ 1.62\\ 1.56\\ 1.43\\ 1.39\\ 1.31\\ 1.30\\ 1.25\\ 1.20\\ \hline 1.12\\ 1.10\\ 1.07\\ 1.05\\ 1.04\\ 1.00\\ \hline 0.984\\ .933\\ \hline .872\\ .863\\ .859\\ .841\\ \end{array}$	$ \begin{array}{c} 100\\60\\30\\20\\15\\100\\70\\30\\60\\80\\40\\5\\40\\-70\\50\\2\\60\\60\\90\\-60\\40\\-60\\60\\90\\-60\\60\\70\\90\end{array} $	$\begin{array}{c} A\\ 3.10\\ 2.390\\ 2.194\\ 2.104\\ 1.965\\ 1.618\\ 1.556\\ 1.424\\ 1.389\\\\ 1.299\\ 1.195\\ 1.117\\ 1.096\\$	100 61 21 9 2 61 15 7 11 44 	$\begin{array}{c} A\\ 3.108\\ 2.399\\ 2.199\\ 2.106\\ 1.967\\ 1.620\\ 1.5546\\ 1.4314\\ 1.3900\\ 1.3045\\ 1.3045\\ 1.3004\\ 1.2506\\ 1.1995\\ 1.1572\\ 1.1219\\ 1.0990\\ 1.0666\\ 1.0531\\ 1.0362\\ 0.9991\\ .9972\\ .9830\\ .9324\\ .9122\\ .8717\\ .8622\\ .8584\\ .8405\\ .8394\\ \end{array}$	$\begin{array}{c} 100 \\ 61 \\ 15 \\ 12 \\ 5 \\ 52 \\ 16 \\ 8 \\ 11 \\ 19 \\ 17 \\ 1 \\ 4 \\ 2 \\ 7 \\ 3 \\ 1 \\ 6 \\ 3 \\ 9 \\ 9 \\ 4 \\ 2 \\ < 1 \\ 4 \\ 5 \\ 8 \\ 11 \\ 6 \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 422 \\ 303 \\ 521 \end{array} $.811	70			.8103 .7996 .7851	8 6 8

Morton [2] reported that the insoluble tetragonal form of germanium dioxide inverts to the soluble hexagonal form at $1,033^{\circ}\pm10^{\circ}$ C. Several unit-cell measurements have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

		a	с
1932	Goldschmidt [1]	$\overset{A}{4.399}$	$\stackrel{A}{2.865}$
1952	Morton [2] Baur [4]	$4.404 \\ 4.395$	$2.857 \\ 2.860$
1958	National Bureau of Standards	4.3963	2.8626 at
			$25^{\circ}\mathrm{C}$

The density of germanium dioxide calculated from the NBS lattice constants is 6.277 g/cm³ at 25°C.

Indium Phosphate, InPO₄ (orthorhombic)

ASTM cards. None.

Additional published patterns. A calculated powder pattern with observed intensities has been published by Mooney [1].

The indium phosphate was pre-NBS sample. pared at NBS by Alvin Perloff. The crystals were obtained by heating in a hydrothermal bomb a mixture of indium oxide and dilute phosphoric acid for approximately a week at temperatures between 350°

References

- [1] V. M. Goldschmidt, Die Rutilmodifikation des germani-
- [1] J. M. Coldstand, Dysik. Chem 17B, 172-176 (1932).
 [2] A. W. Laubengayer and D. S. Morton, Germanium. XXXIX. The polymorphism of germanium dioxide, J. Am. Chem. Soc. 54, 2303-2320 (1932).
- [3] A. E. van Arkel, Kristalstructuur van magnesium-fluoride en andere verbindingen van hetzelfde kristaltype, Physica 5, 162–171 (1925).
- [4] W. H. Baur, Über die Verfeinerung der Kristallstrukturbestimmung einiger Vertreter des Rutiltyps; TiO₂, SnO₂, GeO₂, and MgF₂, Acta Cryst. 9, 515–520 (1956).

and 400°C. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of calcium and iron; and 0.001 to 0.01 percent each of aluminum, copper, magnesium, manganese, sodium, neodynium, titanium, and thallium; and 0.0001 to 0.001 percent each of silver, barium, chromium, gallium, molybdenum, silicon, and tin.

The sample was colorless and optically negative. The indices of refraction are $N\alpha = 1.608$, $N_{\beta} = 1.618$, and N_{γ}=1.623. 2V \approx 80°.

hkl	1958 National J of Stand Cu, 1.5405 J	1958 National Bureau of Standards Cu, 1.5405 A at 25°C		195 National of Stand Cu, 1.5405	8 Bureau lards A at 25°C	hkl	195 National of Stand Cu, 1.5405	8 Bureau Iards A at 25°C
	d	Ι		d	I		d	Ι
$\begin{array}{c} 110\\ 020\\ 111\\ 002\\ 112\\ 200\\ 022\\ 130\\ 220\\ 202\\ 040\\ 023\\ 132\\ 222\\ 310\\ 042\\ 004\\ 311\\ 133\\ 240\\ 114\\ 024\\ 312\\ \end{array}$	$\begin{array}{c} A\\ 4.43\\ 4.00\\ 3.71\\ 3.445\\ 3.394\\ 2.694\\ 2.660\\ 2.586\\ 2.382\\ 2.216\\ 2.094\\ 1.9993\\ 1.9697\\ 1.9505\\ 1.8546\\ 1.7311\\ 1.7220\\ 1.6975\\ 1.6774\\ 1.6409\\ 1.5970\\ 1.5846\\ 1.5618\\ 1.5414\\ \end{array}$	$\begin{array}{c} 81\\ 42\\ 22\\ 13\\ 14\\ 100\\ 30\\ 13\\ 34\\ 8\\ 22\\ 15\\ 6\\ 17\\ 26\\ 17\\ 26\\ 17\\ 14\\ 14\\ 9\\ 5\\ 5\\ 10\\ 9\\ 13\\ \end{array}$	$\begin{array}{c} 152\\ 134\\ 332\\ 224\\ 400\\ 044\\ 153\\ 420\\ 062\\ 402\\ 314\\ 260\\ 350\\ 422\\ 261\\ 351\\ 244\\ 154\\ 045\\ 352\\ 170\\ 334\\ 440\\ \end{array}$	$\begin{array}{c} A\\ 1.3952\\ 1.3822\\ 1.3822\\ 1.3532\\ 1.3471\\ 1.3297\\ 1.2934\\ 1.2671\\ 1.2671\\ 1.2614\\ 1.2399\\ 1.2376\\ 1.2115\\ 1.1901\\ 1.1870\\ 1.1831\\ 1.1722\\ 1.1695\\ 1.1625\\ 1.1625\\ 1.1357\\ 1.1225\\ 1.198\\ 1.1168\\ 1.1129\\ 1.1066\\ \end{array}$	$\begin{array}{c} 9\\13\\5\\2\\7\\5\\3\\5\\3\\4\\5\\5\\4\\3\\3\\7\\7\\3\\8\\6\\7\\7\\3\\8\\6\\7\end{array}$	$\begin{array}{c} 353\\ 404\\ 136\\ 424\\ 512\\ 008\\ 530\\ 264\\ 354\\ 082\\ 513\\ 532\\ 316\\ 460\\ 280\\ 444\\ 281\\ 246\\ 156\\ 462\\ 533\\ 282\\ 336\\ 265\\ \end{array}$	$\left.\begin{array}{c} A\\ 1.0517\\ 1.0456\\ 1.0212\\ 1.0117\\ 1.0062\\ 0.9981\\ .9874\\ .9739\\ .9720\\ .9586\\ .9573\\ .9481\\ .9462\\ .9405\\ .9344\\ \end{array}\right\}$	$ \begin{array}{c} 5\\ 3\\ 1\\ 1\\ 8\\ 9\\ 1\\ 3\\ 4\\ <1\\ <1\\ 3\\ 4\\ 3\\ 1\\ 9\\ 9\\ 4\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\$
$150 \\ 330 \\ 242 \\ 204$	$1.5305 \\ 1.4760 \\ 1.4453 \\ 1.4304$	7 9 20 9	$ \begin{array}{r} 116 \\ 026 \\ 172 \\ 263 \\ \end{array} $	$1.0955 \\ 1.0881 \\ 1.0598 \\ 1.0537$	7 7 4 3	$ \begin{array}{c} 600 \\ 550 \\ 373 \\ 190 \end{array} $	$\Big\}8858 \\8849 \\8751$	4 4 4

Interplanar spacings and intensity measurements. The indices of the three strongest lines of the NBS pattern are as follows:

Pattern	1	2	3
National Bureau of Standards_	112	110	020

Structural data. Mooney [1] in 1956 determined that indium phosphate has the space group Cmcm (No. 63) and $4(InPO_4)$ per unit cell.

The unit-cell measurements of the Mooney pattern have been converted from kX to angstrom units.

ASTM cards

Card number	Index lines	Radiation	Source
1-0231	$5.2 \\ 5.7 \\ 3.02$	Molybdenum	Hanawalt, Rinn, and Frevel [1] 1938.

Additional published patterns. None.

NBS sample. The sample of lead formate was obtained from the City Chemical Corp., New York. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of bismuth and calcium; 0.001 to 0.01 percent each of aluminum, chromium, magnesium, silicon, and zinc; and 0.0001 to 0.001 percent each of silver, boron, barium, copper, and iron.

The sample was colorless and optically negative with the refractive indices $N\alpha = 1.789$, $N\beta = 1.852$, and $N\gamma = 1.877$. $2V \cong 80^{\circ}$.

Interplanar spacings and intensity measurements. The *d*-values reported by Hanawalt, Rinn, and Frevel were converted from kX to angstrom units. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Hanawalt, Rinn, and Frevel_ National Bureau of Standards	110 110	011 200	210, 112 112

Structural data. Nitta [2] in 1928 determined that lead formate has the space group $P2_12_12_1$ (No. 19) and $4[Pb(HCO_2)_2]$ per unit cell.

Several unit-cell measurements have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

		a	Ь	c
1956	Mooney [1]	$\overset{A}{5.319}$	$\stackrel{A}{7.867}$	$\begin{smallmatrix} A \\ 6.781 \end{smallmatrix}$
1900	Standards	5.320	7.993	6.785 at 25°C

The density of the indium phosphate calculated from the NBS lattice constants is 4.828 g/cm³ at 25°C.

References

 R. C. Mooney, Crystal structure of anhydrous indium phosphate and thallic phosphate by X-ray diffraction, Acta Cryst. 9, 113-117 (1956).

Lead Formate, $Pb(HCO_2)_2$ (orthorhombic)

hkl	1938 Hanawalt, and Fre Mo, 0.710	Rinn, vel 07 A	1958 National Bureau of Standards Cu, 1.5405 A at 25°C		
	d	Ι	d	I	
$011 \\ 110 \\ 020 \\ 111 \\ 002$	$\begin{array}{c} A \\ 5.7 \\ 5.2 \\ 4.37 \\ \overline{3.71} \end{array}$		$\begin{array}{c} A \\ 5.66 \\ 5.24 \\ 4.38 \\ 4.28 \\ 3.71 \end{array}$	$ \begin{array}{r} 42 \\ 100 \\ 20 \\ 30 \\ 37 \\ \end{array} $	
$120 \\ 200 \\ 210 \\ 112 \\ 201$	$\left. \begin{array}{c} 3.26\\ 3.03\\ \end{array} \right\}$	-60 80 	$\begin{cases} 3.64 \\ 3.265 \\ 3.058 \\ 3.025 \\ 2.988 \end{cases}$	$14 \\ 69 \\ 25 \\ 59 \\ 36$	
$\begin{array}{c} 022 \\ 211 \\ 031 \\ 220 \\ 122 \end{array}$	$ \left. \begin{array}{c} 2.83 \\ 2.72 \\ 2.60 \end{array} \right. \right\} $	$\begin{array}{c} 20 \\ 40 \\ 20 \end{array}$	$\begin{cases} 2.827 \\ 2.717 \\ 2.617 \\ 2.597 \end{cases}$	$31 \\ 49 \\ 10 \\ 15$	
$221 \\ 202 \\ 013 \\ 212 \\ 113$	$ \left. \begin{array}{c} 2.45 \\ 2.36 \\ 2.22 \end{array} \right. \right. \\$	20 20 10	$\left\{\begin{array}{c} 2.469 \\ 2.449 \\ 2.380 \\ 2.3587 \\ 2.2344 \end{array}\right.$	$14 \\ 19 \\ 13 \\ 10 \\ 12$	
$\begin{array}{c} 040 \\ 230 \\ 222 \\ 231 \\ 301 \end{array}$	<pre>} 2.18</pre>	10 	$\left\{\begin{array}{c} 2.1897\\ 2.1761\\ 2.1382\\ 2.0882\end{array}\right.$	9 18 17 18	
$140 \\ 123 \\ 311 \\ 141 \\ 203$	2.07 2.02	10 40 	$\left\{\begin{array}{c} 2.0759\\ 2.0442\\ 2.0307\\ 1.9987\\ 1.9709\end{array}\right.$	$9 \\ 21 \\ 23 \\ 20 \\ 9$	
320 213 033 232 302	· }} 1.87	 30	$\left\{\begin{array}{c} 1.9485\\ 1.9236\\ 1.8867\\ 1.8771\end{array}\right.$	$14\\4\\15\\16$	
$004 \\ 240 \\ 014 \\ 133 \\ 223$	<pre></pre>	 10	$\begin{cases} 1.8538 \\ 1.8181 \\ 1.8127 \\ 1.7973 \end{cases}$	5 4 5 2	
Lead Formate, Pb(HCO₂)₂ (orthorhombic) —Continued

hkl	1938 Hanawalt, Rinn, and Frevel Mo, 0.7107 A		1958 National Bureau of Standards Cu, 1.5405 A at 25°C	
	d	I	d	Ι
$241 \\ 114 \\ 330 \\ 322 \\ 024 \\ 051$	$\left.\begin{array}{c} A \\ \hline \\ 1.74 \\ \end{array}\right\} 1.71$	 20 20	$\left\{\begin{array}{c} A \\ 1.7659 \\ 1.7474 \\ 1.7446 \\ 1.7250 \\ 1.7048 \end{array}\right.$	293115
$150 \\ 124 \\ 151 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $			$\begin{array}{c}1.6920\\1.6507\end{array}$	4 4
$233 \\ 303 \\ 242 \\ 204$		20	$\left\{\begin{array}{c}1.6332\\1.6122\end{array}\right.$	9 9
$313 \\ 410 \\ 401 \\ 143$	$\left.\begin{array}{c} & & \\ & & \\ & & 1.59 \end{array}\right $	 30	1.6055 $\begin{cases} 1.5935\\ 1.5901 \end{cases}$	$\begin{array}{c}10\\9\\12\end{array}$
$250 \\ 340 \\ 152$	$}$ 1.54	20	$\left\{egin{array}{c} 1.5433 \\ 1.5393 \end{array} ight.$	7 11
$\begin{array}{c} 251 \\ 341 \end{array}$	}		1.5114	2
$421 \\ 060 \\ 333, 160$)		$egin{array}{c} 1.4971 \\ 1.4605 \end{array}$	3 3
252, 430 342	}		1.4244	12
$044 \\ 234 \\ 304 \\ 125$	}		1.4148 1.4116 1.3733	6 3 3
403 062 324			$1.3616 \\ 1.3583 \\ 1.3419$	4 4 7
$351 \\ 162 \\ 432$			1.3298	3
$261 \\ 510 \\ 441 \\ 511 \\ 334$	}	~~~	$\begin{array}{c} 1.3115 \\ 1.2907 \\ 1.2882 \\ 1.2714 \end{array}$	$4 \\ 2 \\ 1 \\ 3$
$262 \\ 520 \\ 154 \\ 006 \\ 170 \\ 045$	}		1.2540 1.2505 1.2362 1.2284	3 2 3 1
$305 \\ 235 \\ 404 \\ 512$	}		1.2254 1.2190	3
$106, 315 \\ 414, 171 \\ 360 \\ 145 \\ 116$	}		1.2131 1.2071 1.2026	2

Lattice constants

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

The density of lead formate calculated from the NBS lattice constants is 4.656 g/cm^3 at 25° C.

References

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
 I. Nitta, The crystal structure of some rhombic formates, Sci. Pap. Inst. Phys. Chem. Res. Tokyo 9, 151-163 (1928)
- [3] F. Halla and L. Zimmermann, Zur struktur des Bleiformats Pb(HCO₂)₂, Z. Krist. **83**, 497–498 (1932).

Lead(II,III) Oxide (minium), Pb₃O₄ (tetragonal)

ASTM cards

Card number	Index lines	Radiation	Source
1-0654	$3.35 \\ 2.88 \\ 2.76$	Molybdenum	Hanawalt, Rinn, and Frevel [1] 1938.

hkl	1938 Hanawalt, and Fre Mo, 0.710	Rinn, vel 07 A	1958 National E of Stands Cu, 1.5405 A	Sureau ards . at 25°C
	d	Ι	d	I
$110 \\ 201 \\ 211 \\ 002 \\ 220$	A 3.36 	 100 	$\begin{matrix} A \\ 6.23 \\ 3.66 \\ 3.38 \\ 3.28 \\ 3.113 \end{matrix}$	$ \begin{array}{c} 11 \\ 3 \\ 100 \\ 7 \\ 19 \end{array} $
$112 \\ 310 \\ 202 \\ 320 \\ 321$	2.89 2.77 2.63	43 43 28 	$\begin{array}{c} 2.903 \\ 2.787 \\ 2.632 \\ 2.444 \\ 2.289 \end{array}$	$egin{array}{c} 48 \\ 45 \\ 30 \\ 2 \\ 4 \end{array}$
$222 \\ 400 \\ 330 \\ 411 \\ 420$	 1.95	 -14	$\begin{array}{c} 2.260 \\ 2.205 \\ 2.076 \\ 2.032 \\ 1.970 \end{array}$	$ \begin{array}{c c} 8 \\ 1 \\ 1 \\ 12 \\ 12 \\ 12 \\ \end{array} $
$213 \\ 421 \\ 402 \\ 332 \\ 510$	1.89 $\overline{1.82}$ 1.74	$ \begin{array}{c} 28 \\ \\ 28 \\ 43 \\ \end{array} $	$1.903 \\ 1.887 \\ 1.829 \\ 1.755 \\ 1.729$	$\begin{array}{c} 22 \\ <1 \\ 21 \\ 30 \\ 1 \end{array}$
$\begin{array}{c} 431 \\ 422 \\ 004 \\ 323 \end{array}$	1.62 	 14 	$1.7025 \\ 1.6897 \\ 1.6417 \\ 1.6302$	$2 \\ 2 \\ 8 \\ <1$
$521 \\ 114 \\ 440 \\ 512 \\ 413$	$\left. \begin{array}{c} 1.58 \\ \\ 1.51 \end{array} \right.$	14 14	1.5876 1.5580 1.5292	12 7 8
$530 \\ 531 \\ 600 \\ 224 \\ 611$	 1.405	 14	$1.5116 \\ 1.4744 \\ 1.4687 \\ 1.4521 \\ 1.4144$	$\begin{array}{c c} 2 \\ <1 \\ 4 \\ 2 \\ 13 \end{array}$
$314 \\ 620 \\ 532 \\ 541 \\ 523$			$1.3944 \\ 1.3728 \\ 1.3471 \\ 1.3109$	$<1 \\ 1 \\ 4 \\ 4 \\ 4$
$\begin{array}{r} 622 \\ 424 \\ 710 \\ 215 \\ 720 \end{array}$	}		$1.2830 \\ 1.2614 \\ 1.2461 \\ 1.2110$	

hkl	1938 Hanawalt, and Fre Mo, 0.710	Rinn, vel 07 A	1958 National B of Standa Cu, 1.5405 A	ureau irds at 25°C
	d	Ι	d	I
$\begin{array}{c} 613 \\ 641 \end{array}$	A 		$\begin{array}{c} A \\ 1.2088 \\ 1.2019 \end{array}$	1
$\frac{721}{514}$	}		1.1906	2
712 543	}		1.1654	4
730			1.1575	4
444			1.1457 1.1302	4
415			1.1190	1
$\begin{array}{c} 615 \\ 534 \end{array}$	}		1.1122	2
604			1.0948	3
$811 \\ 116$	}		1.0781	2
820			1.0682	<1
$\begin{array}{c} 652 \\ 643 \end{array}$	}		1.0671	<1
$\begin{array}{c} 624\\ 206\end{array}$	}		1.0621	2
660 226			1.0388 1.0324	<1
750	1		1.0245	
525 822	}		1.0245	2
844			1.0105	<1
$\begin{array}{c} 653 \\ 714 \end{array}$			$1.0034 \\ 0.9930$	<1 <1
644	}		.9800	4
752	}		.9781	3
010)			
336 426			.9682	5
545			.9502	$\frac{1}{2}$
$\begin{array}{c} 921 \\ 734 \end{array}$	}		.9460	7
851 516	}		.9249	4
931			.9198	<1
$217 \\ 932$.9126	3
502			.0940	4
$664 \\ 606$	}		.8777	3
327	,		.8756	2
$\frac{626}{722}$,		.8606	2
853	}		.8593	6
10.0.2 844			$.8513 \\ .8450$	$^{1}_{<1}$
871 716			.8224	2
008			.8206	2
646	*		.8153	4
527	}		.8136	1
228)		.7936	4
617	}		.7872	4

Additional published patterns. None.

NBS sample. The sample of lead oxide was prepared from PbO maintained at 470° for 30 hr at NBS by Robert S. Roth. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent bismuth; 0.001 to 0.01 percent each of silver, aluminum, sodium, and silicon; and 0.0001 to 0.001 percent each of barium, calcium, iron, and magnesium.

The color of the sample was bright orange-red. The indices of refraction could not be determined by the usual liquid grain immersion method because the sample was too fine-grained.

Interplanar spacings and intensity measurements. The *d*-values reported by Hanawalt, Rinn, and Frevel were converted from kX to angstrom units. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Hanawalt, Rinn, and Frevel National Bureau of Standards_	$\begin{array}{c} 211\\ 211 \end{array}$	$\begin{array}{c} 112\\112\end{array}$	$\begin{array}{c} 310\\ 310\end{array}$

Structural data. Gross [2] and Byström and Westgren [3] independently in 1943 determined that lead oxide has the space group P4₂/mbc (No. 135) and $4(Pb_3O_4)$ per unit cell. Pb_3O_4 has been used as a structure-type.

Several unit-cell measurements have been compared with the NBS values. The values reported by Gross [4] and Straumanis [5] were converted from kX to angstrom units.

1941 Gross [4] 1942 Straumanis [5] 1947 Bystrom [6] 1958 National Bure Standards	a A 8.88 8.89 8.806 8.815	$\begin{array}{c} c \\ A \\ 6.67 \\ 6.52 \\ 6.564 \\ 6.565 \text{ at} \\ 25^{\circ}\text{C} \end{array}$
--	--	--

The density of lead oxide calculated from the NBS lattice constants is 8.924 g/cm^3 at 25° C.

References

- [1] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [2] S. T. Gross, The crystal structure of Pb₃O₄, J. Am. Chem. Soc. 65, 1107-1110 (1943).
- [3] A. Byström and A. Westgren, The crystal structure of Pb₃O₄ and SnPb₂O₄, Arkiv Kemi 16, No. 14 (1943).
 [4] S. T. Gross, Unit cell measurements of Pb₃O₄, Pb₂O₃,
- and Tl₂SO₄ J. Am. Chem. Soc. 63, 1168 (1941).
- [5] M. Straumanis, Die Gitterkonstanten der Mennige, Z. physik. Chem. 52B, 127 (1942).
- [6] A. Byström, On the stereochemistry of lead and some metals with similar atomic structure, Arkiv. Kemi 25, No. 13 (1947).

Lead Phosphate Hydrate (lead hydroxyapatite), $Pb_5(PO_4)_3OH$ (hexagonal)

ASTM cards

Card numbers	Index lines	Radiation	Source
2-0700	$2.96 \\ 1.85 \\ 2.06$	Molybdenum	Klement [1] 1938.
1-0924	$2.91 \\ 4.03 \\ 3.61$	Molybdenum	Hanawalt, Rinn, and Frevel [2] 1938.

Additional published patterns. None.

NBS sample. The sample of lead hydroxyapatite was prepared by Alvin Perloff at NBS by heating stoichiometric proportions of lead acetate, $(NH_4)_2HPO_4$, and water in a hydrothermal bomb at 300° for one week [3]. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of boron, bismuth, and sodium; 0.001 to 0.01 percent each of aluminum, copper, molybdenum, silicon, and zinc; and 0.0001 to 0.001 percent each of silver, barium, calcium, iron, and magnesium.

The sample was colorless. The indices of refraction were too high, above 2.00, to be determined by the usual liquid grain immersion method.

Interplanar spacings and intensity measure**ments.** The *d*-values reported by Hanawalt, Rinn, and Frevel were converted from kX to angstrom units and the d-values of the Klement pattern were calculated from reported Bragg angle data. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Klement Hanawalt, Rinn, and Frevel National Bureau of Standards	$211 \\ 211 \\ 211 \\ 211$	$004 \\ 111 \\ 111$	$222 \\ 002 \\ 300$

Structural data. Klement [1] in 1938 found that lead hydroxyapatite has apatite-type structure. Mehmel [4] in 1930 determined that the apatites have the space group $P6_3/m$ (No. 176) and $2[Pb_5(PO_4)_3OH]$ per unit cell.

The unit-cell measurements reported by Klement have been converted from kX to angstrom units for comparison with the NBS values.

hkl	193 Klem Cu, 1.5	8 ent 418 A	193 Hanav Rinn, Frev Mo, 0.7	88 walt, and vel 7107 A	1958 Nation Bureau Standa Cu, 1.54 at 25°	nal of rds 05 A C
	d	Ι	d	Ι	d	Ι
$110 \\ 200 \\ 111 \\ 002 \\ 102$	A 4.30 4.14 3.37	W W W	$A \\ \\ 4.04 \\ 3.62 \\ 3.32 \\$	$\overline{24}$ 16 16	$\begin{matrix} A \\ 4.93 \\ 4.28 \\ 4.11 \\ 3.71 \\ 3.41 \end{matrix}$	$ \begin{array}{r} 18 \\ 26 \\ 40 \\ 10 \\ 22 \end{array} $
$\begin{array}{c} 210 \\ 211 \\ 300 \\ 202 \\ 220 \end{array}$	$3.23 \\ 2.96 \\ 2.85 \\ \\ $	W VS W	$3.19 \\ 2.92 \\ 2.83 \\ \\ $	16 100 8 	3.23 2.965 2.852 2.806 2.469	$32 \\ 100 \\ 38 \\ <1 \\ <1 \\ <1$
$\begin{array}{c} 310 \\ 302 \\ 113 \\ 400 \\ 222 \\ 312 \end{array}$	$\frac{1}{2.05}$	 m vw	$\left. \begin{array}{c} \\ \\ 2.15 \\ 2.02 \end{array} \right\}$	$\frac{1}{8}$	$\begin{array}{c} 2.371 \\ 2.261 \\ 2.214 \\ 2.138 \\ \left\{ \begin{array}{c} 2.056 \\ 2.000 \end{array} \right. \end{array}$	<1 3 9 6 18 13
$213 \\ 321 \\ 303 \\ 410 \\ 004$	$ \begin{array}{r} 1.96 \\ 1.90 \\ \\ \overline{1.85} \end{array} $	w w ms	$ \begin{array}{r} 1.96 \\ 1.91 \\ \overline{1.86} \\ 1.82 \\ \end{array} $	$8 \\ 16 \\ \overline{-8} \\ 16 $	$1.965 \\ 1.898 \\ 1.868 \\ 1.866 \\ 1.856$	18 16 10 13 20
$114 \\ 204 \\ 412 \\ 501 \\ 420$					$1.737 \\ 1.704 \\ 1.670 \\ 1.666 \\ 1.612$	<1 < 1 < 1 < 1 < 1 < 1 < 1 < 5
$214 \\ 304 \\ 502 \\ 510 \\ 511$	$\left.\begin{array}{c}1.60\\1.55\\1.53\\1.50\\(^{a})\end{array}\right.$	W W VW W	1.57 $\overline{1.51}$	$\overline{16}$	$\left\{\begin{array}{c} 1.610 \\ 1.555 \\ 1.553 \\ 1.536 \\ 1.503 \end{array}\right.$	7 6 7 6 9

Lead Phosphate Hydrate (lead hydroxyapatite), Pb₅(PO₄)₃OH (hexagonal)

^a Nine additional lines are omitted.

Lithium Perchlorate Trihydrate, LiClO₄·3H₂O (hexagonal)

ASTM cards. None.

Additional published patterns. None.

NBS sample. The sample of lithium perchlorate was obtained from the City Chemical Corp., New York, N. Y. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent of calcium; 0.001 to 0.01 percent each of aluminum, potassium, magnesium, sodium, and silicon; and 0.0001 to 0.001 percent each of silver, barium, chromium, copper, and iron.

The sample was colorless and optically negative. The indices of refraction are $N_0=1.482$ and $N_e=1.447$.

Interplanar spacings and intensity measurements. The indices of the three strongest lines of Lattice constants

$1938 \\ 1958$	Klement [1] National Bureau of Standards	a A 9.91 9.877	c A 7.30 7.427 at
1958	National Bureau of	9.91	7.427 at
	Standards	9.877	25°C

The density of lead hydroxyapatite calculated from the NBS lattice constants is 7.079 g/cm³ at 25° C.

References

- R. Klement, Basische Phosphate zweiwertiger Metalle II. Blei-Hydroxylapatit, Z. anorg. Chem. 237, 161– 171 (1938).
- [2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [3] A. S. Posner and A. Perloff, Apatites deficient in divalent cations, J. Research NBS 58, 279-286 (1957) RP 2761.
- [4] M. Mehmel, Über die Struktur des Apatits, I., Z. Krist. 75, 323–331 (1930).

the NBS pattern are as follows:

Pattern	1	2	3
National Bureau of Standards_	101	201	110

Structural data. West [1] in 1934 determined that lithium perchlorate trihydrate has the space group $P6_{3}mc$ (No. 186) and $2(\text{LiClO}_4\cdot 3H_2O)$ per unit cell. Lithium perchlorate trihydrate is used as a structure-type.

The unit-cell measurements reported by West have been converted from kX to angstrom units for comparison with the NBS values.

hkl	195 National 1 of Stanc Cu, 1.5405	8 Bureau lards A at 25°C	hkl	1958 National I of Stand Cu, 1.5405 A	3 3ureau lards A at 25°C	hkl	1958 National I of Stand Cu, 1.5405 A	Bureau ards A at 25°C
	d	Ι		d	Ι		d	Ι
100 101 110 200 201	$\begin{array}{c} A \\ 6.69 \\ 4.23 \\ 3.862 \\ 3.344 \\ 2.850 \end{array}$	19 100 74 6 89 0	$500 \\ 322 \\ 501 \\ 313 \\ 330 \\ 412$	$egin{array}{c} A \\ 1.3372 \\ 1.2988 \\ 1.2866 \end{array}$	<1 3 5	440 700 612 504 701	$\left. egin{array}{c} A \\ .9649 \\ .9548 \end{array} ight brace$	<1 <1
$\begin{array}{c} 002 \\ 210 \\ 102 \\ 211 \\ 300 \end{array}$	$\left.\begin{array}{c} 2.726\\ 2.528\\ 2.292\\ 2.292\\ 2.238\end{array}\right.$	27 32 17	$420 \\ 204 \\ 421 \\ 403$	$\left. \left. \left. \left. \begin{array}{c} 1.2632 \\ 1.2304 \end{array} \right. \right. \right. \right. \right.$	<1 2	$\begin{array}{r} 433 \\ 315 \\ 620 \\ 424 \end{array}$	$\left.\begin{array}{c} .9404\\ .9268\end{array}\right)$	2 <1
112 202	£ 113	3	$\begin{array}{c} 502\\214\end{array}$	$\Big\}$ 1.2000	1		.9136	<1
$ \begin{array}{r} 200 \\ 220 \\ 310 \\ 212 \end{array} $	$\left.\begin{array}{c} 2.062 \\ 1.930 \\ 1.854 \end{array}\right\}$	1 6 10	$511 \\ 323 \\ 332 \\ 304$	$ \left. \begin{array}{c} 1.1729 \\ 1.1637 \end{array} \right. $	$\frac{3}{2}$	$514 \\ 613 \\ 325$	$\left. \begin{array}{c} .9012 \\ .8888 \end{array} \right.$	<1
311	1.756	14	224	1.1136	1	710	}.8852	<1
$ \begin{array}{r} 103 \\ 302 \\ 400 \\ 401 \\ 203 \end{array} $	$\left.\begin{array}{c}1.725\\1.672\\1.598\end{array}\right\}$	1 3 7	$430 \\ 512 \\ 431 \\ 503 \\ 105$	$\left. \begin{array}{c} 1.0992 \\ 1.0772 \end{array} \right\}$	1		.8779	<1
$222 \\ 320 \\ 312 \\ 321$	$\left. \begin{array}{c} 1.575 \\ 1.5345 \end{array} \right\}$	<1 1	$520 \\ 521 \\ 423 \\ 205$	$\left. \begin{array}{c} 1.0703 \\ 1.0501 \\ \end{array} \right\} \\ 1.0374 \\ \end{array} \right\}$	<1 <1 <1	$703 \\ 505 \\ 712 \\ 630 \\ 524$	$\left.\begin{array}{c} .8452\\ .8422\end{array}\right.$	<1 <1
213 410	$\left.\right\} 1.4760$ 1.4588	4		} 1.0196	1	720, 542	.8164	<1
$402 \\ 411 \\ 202$	1.4000 1.4244 1.4097	$\frac{1}{2}$	611 513	1.0018	1	721 515	}.8075	<1
004	1.3640	1	$ \begin{array}{r} 213 \\ 522 \\ 414 \end{array} $	0.9961	<1			

Lithium Perchlorate Trihydrate, LiClO₄·3H₂O (hexagonal)

Lattice constants

		a	c
1934	West [1]	A 7.73	A 5.43
1958	Standards	7.719	5.455 at 25°C

The density of lithium perchlorate trihydrate calculated from the NBS lattice constants is 1.892 g/cm³ at 25° C.

References

 C. D. West, Crystal structures of some hydrated compounds, Z. Krist. 88, 193–204 (1934).

Neodymium Fluoride, NdF₃ (hexagonal)

ASTM cards

Card number	Index lines	Radiation	Source
3-1064	$1.99 \\ 1.77 \\ 2.03$	Copper	Oftedal [1] 1929.

Additional published patterns. None.

NBS sample. The sample of neodymium fluoride was prepared at NBS by reaction of ammonium bifluoride with neodymium chloride. It was annealed at 800°C. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of lead, silicon, calcium, and iron; 0.001 to 0.01 percent each of aluminum, magnesium, and manganese; and 0.0001 to 0.001 percent of nickel.

The color of the sample was light red-brown. The indices of refraction could not be determined because the particle size was too small.

Interplanar spacings and intensity measurements. The *d*-values of the Oftedal pattern were calculated from reported Bragg angle data. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Oftedal National Bureau of Standards_	$\begin{array}{c} 113\\111\end{array}$	$\begin{array}{c} 302\\113\end{array}$	$\begin{array}{c} 300\\002 \end{array}$

Structural data. Oftedal [2] in 1931 determined that neodymium fluoride has cerium fluoride-type structure, the space group $P6_3/mcm$ (No. 193), and $6(NdF_3)$ per unit cell.

The unit-cell measurements reported by Oftedal have been converted from kX to angstrom units for comparison with the NBS values.

|--|

1		a	С
$1929 \\ 1958$	Oftedal [1] National Bureau of Standards	$\begin{array}{c} A \\ 7.035 \\ 7.030 \end{array}$	A 7.211 7.199 at 25°C

The density of neodymium fluoride calculated from the NBS lattice constants is 6.506 g/cm³ at 25° C.

hkl	1929 Ofted Cu, 1.54) al 18 A	1958 National I of Stand Cu, 1.5405 A	3 Bureau lards A at 25°C
	d	Ι	d	I
$\begin{array}{c} 002\\ 110\\ 111\\ 112\\ 300 \end{array}$	A 2.03	 S	$\begin{matrix} A \\ 3.60 \\ 3.52 \\ 3.158 \\ 2.516 \\ 2.030 \end{matrix}$	$45 \\ 31 \\ 100 \\ 12 \\ 45$
$113 \\ 004 \\ 302 \\ 221 \\ 114$	$ \begin{array}{r} 1.98 \\ \overline{1.76} \\ 1.71 \\ \end{array} $	s+ s+ m	1.98191.79941.76781.70831.6016	$53 \\ 7 \\ 30 \\ 21 \\ 5$
$222 \\ 214 \\ 223 \\ 304 \\ 115$	$ \Big\} \begin{array}{c} 1.42 \\ 1.35 \\ 1.33 \end{array} \\$	m m- w+	$1.5788 \\ 1.4180 \\ 1.3462 \\ 1.3322$	$3 \\ 14 \\ 12 \\ 9$
$\begin{array}{c} 411 \\ 224 \\ 412 \\ 006 \\ 330 \end{array}$	1.30	m+	$1.3065 \\ 1.2572 \\ 1.2463 \\ 1.2002 \\ 1.1719$	$\begin{array}{c}15\\3\\3\\4\\4\end{array}$
$\begin{array}{c} 413 \\ 404 \\ 116 \\ 225 \\ 332 \end{array}$	$ \left. \begin{array}{c} 1.16 \\ \\ 1.11 \end{array} \right. \right\} $	s s	$1.1624 \\ 1.1354 \\ 1.1141$	10 3 11
$\begin{array}{c} 414 \\ 306 \\ 600 \\ 226 \end{array}$	1.03	S	$1.0690 \\ 1.0328 \\ 1.0147 \\ 0.9911$	$\begin{array}{c}2\\5\\2\\1\end{array}$
$117 \\ 334 \\ 415 \\ 521$	$\overline{0.975}$.965	m(D) m+	.9870 .9818 .9766 .9661	$\begin{array}{c}4\\5\\11\\5\end{array}$

References

- I. Oftedal, Über die Kristallstruktur von Tysonit und einigen künstlich dargestellten Lanthanidenfluoriden, Z. physik. Chem. B5, 272–291 (1929).
- Z. physik. Chem. B5, 272-291 (1929).
 [2] I. Oftedal, Zur Kriskallstruktur von Tysonit (Ce, La, . . .)F₃, Z. physik. Chem. B13, 190-200 (1931).

Neodymium Oxychloride, NdOCl (tetragonal)

ASTM cards

Card number	Index lines	Radiation	Source
1-1094	$2.59 \\ 3.47 \\ 2.85$	Molybdenum	Hanawalt, Rinn, and Frevel [1] 1938.

Additional published patterns. None.

NBS sample. The sample of neodymium oxychloride was prepared by heating neodymium chloride hydrate at a temperature sufficiently high to drive off the water. Further annealing at 1,000°C improved the diffraction pattern. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of aluminum and silicon; 0.001 to 0.01 percent each of calcium, iron, and magnesium; and 0.0001 to 0.001 percent each of chromium, manganese, and copper. The color of the sample was pale blue. The indices of refraction were not determined because the sample was too fine-grained.

Interplanar spacings and intensity measurements. The *d*-values of the Hanawalt, Rinn, and Frevel pattern were converted from kX to angstrom units. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Hanawalt, Rinn, and Frevel National Bureau of Standards_	$\begin{array}{c} 102 \\ 102 \end{array}$	$\begin{array}{c} 101 \\ 101 \end{array}$	$\begin{array}{c} 110\\110\end{array}$

Structural data. Zachariasen [2] in 1949 determined that neodymium oxychloride has lead fluoride-type structure, the space group P4/nmm (No. 129), and 2(NdOCl) per unit cell.

The unit-cell measurements of Zachariasen have been converted from kX to angstrom units for comparison with the NBS values.

Lattice	constants
---------	-----------

1			
		a	с
1949	Zachariasen [2]	$\stackrel{A}{4.04}$	$\begin{smallmatrix} A \\ 6.77 \end{smallmatrix}$
1900	Standards	4.025	6.775 at 25°C

The density of neodymium oxychloride calculated from the NBS lattice constants is 5.919 g/cm³ at 25°C.

References

t nod

riden.

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
 W. H. Zachariasen, Crystal chemical studies of the
 - [2] W. H. Zachariasen, Crystal chemical studies of the 5f-series of elements; XII, New compounds representing known structure types, Acta Cryst. 2, 388–390 (1949).

hkl	193 Hanawalt and Fr Mo, 0.7	8 t, Rinn, revel 107 A	1958 National 1 of Stand Cu, 1.5405 A	8 Bureau lards A at 25°C
	d	I	d	Ι
$\begin{array}{c} 001 \\ 101 \\ 002 \\ 110 \\ 111 \end{array}$	$ \begin{array}{c} A \\ 6.8 \\ 3.48 \\ \hline 2.86 \\ \hline \end{array} $	$\begin{array}{c} 20\\ 75\\ \overline{75}\\\end{array}$	$\begin{matrix} A \\ 6.77 \\ 3.46 \\ 3.384 \\ 2.844 \\ 2.620 \end{matrix}$	$31 \\ 94 \\ 11 \\ 77 \\ 6$
$ \begin{array}{r} 102 \\ 003 \\ 112 \\ 200 \\ 103 \end{array} $	$2.60 \\ 2.25 \\ 2.18 \\ 2.00 \\ 1.96$	$ \begin{array}{r} 100 \\ 4 \\ 30 \\ 50 \\ 1 \end{array} $	$\begin{array}{c} 2.592 \\ 2.258 \\ 2.179 \\ 2.012 \\ 1.9705 \end{array}$	$100 \\ 9 \\ 27 \\ 40 \\ 4$
$201 \\ 113 \\ 211 \\ 212 \\ 104$	$1.92 \\ 1.77 \\ 1.73 \\ 1.59 \\ 1.56$	$ \begin{array}{ } 7 \\ 25 \\ 30 \\ 50 \\ 15 \\ \end{array} $	$\begin{array}{c} 1.9290 \\ 1.7694 \\ 1.7397 \\ 1.5890 \\ 1.5610 \end{array}$	
$203 \\ 114 \\ 220 \\ 213 \\ 221$	$ \begin{array}{r} 1.50 \\ 1.456 \\ 1.423 \\ \hline 1.393 \end{array} $	$ \begin{array}{c} 10 \\ 6 \\ 13 \\ -\overline{1} \\ 1 \end{array} $	$\begin{array}{c} 1.5027\\ 1.4562\\ 1.4230\\ 1.4069\\ 1.3926\end{array}$	$\begin{array}{c}9\\8\\12\\4\\2\end{array}$
$301 \\ 222 \\ 204 \\ 105 \\ 310$	$ \begin{array}{r} 1.316 \\ \\ \overline{1.273} \end{array} $	7 8	$\begin{array}{c} 1.3161\\ 1.3125\\ 1.2958\\ 1.2840\\ 1.2725\end{array}$	$ \begin{array}{c} 6 \\ 5 \\ 2 \\ 10 \end{array} $
$311 \\ 302 \\ 214 \\ 115 \\ 223$	$ \begin{array}{r} 1.251 \\ \overline{1.232} \\ \overline{1.204} \end{array} $	$\begin{array}{c} 6\\ \bar{1}\bar{0}\\ -\bar{1} \end{array}$	$\begin{array}{c} 1.2503\\ 1.2474\\ 1.2333\\ 1.2231\\ 1.2041 \end{array}$	$\begin{array}{c}4\\11\\12\\5\\4\end{array}$
$312 \\ 205 \\ 313 \\ 321 \\ 215$	$\left. \begin{array}{c} 1.192 \\ 1.126 \\ 1.105 \\ 1.082 \end{array} \right\}$	6 4 7 3	$\begin{array}{c} 1.1913\\ 1.1237\\ 1.1089\\ 1.1015\\ 1.0826 \end{array}$	$ \begin{array}{c} 7 \\ 4 \\ 7 \\ 6 \\ 1 \end{array} $
$322 \\ 304 \\ 116 \\ 314 \\ 400$	$\left. \begin{array}{c} 1.062 \\ 1.052 \\ \\ \end{array} \right.$	7 7 	$ \left\{ \begin{array}{c} 1.0603 \\ 1.0518 \\ 1.0497 \\ 1.0178 \\ 1.0062 \end{array} \right. $	8 3 6 3 5
$206 \\ 225 \\ 411 \\ 330 \\ 107$			$\begin{array}{r} 0.9849 \\ .9815 \\ .9664 \\ .9488 \\ .9412 \end{array}$	
$412 \\ 324 \\ 315$.9382 .9322 .9277	$\begin{array}{c} 6\\7\\4\end{array}$
$403 \\ 420 \\ 226$			$\begin{array}{c} .9191 \\ .9002 \\ .8848 \end{array}$	$\begin{array}{c}1\\6\\7\end{array}$

ASTM cards

Card number	Index lines	Radiation	Source
1-0309	$4.67 \\ 4.16 \\ 2.58$	Molybdenum	Dow Chemical Co.

Additional published patterns. None.

NBS sample. The sample of nickel fluosilicate hexahydrate was obtained from the City Chemical Corp., New York. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of aluminum, calcium, cobalt, iron, and magnesium; 0.001 to 0.01 percent each of chromium, copper, manganese, titanium, and zinc; and 0.0001 to 0.001 percent each of barium and lead.

The color of the sample was green and it was optically positive. The indices of refraction were too low to be determined by the liquid grain immersion method.

Interplanar spacings and intensity measurements. The *d*-values reported by the Dow Chemical Co. were converted from kX to angstrom units. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Dow Chemical Co National Bureau of Standards_	$\begin{array}{c} 110\\110\end{array}$	$\begin{array}{c} 102 \\ 102 \end{array}$	$\begin{array}{c} 212\\ 212\end{array}$

Structural data. Hassel [1] in 1927 determined that nickel fluosilicate hexahydrate has nickel chlorostannate-type structure, the space group $R\overline{3}$ (No. 148), and 1(NiSiF₆·6H₂O) per unit rhombohedral cell and 3(NiSiF₆·6H₂O) per unit hexagonal cell.

The unit-cell measurements reported by Hassel and Salvesen [2] have been converted from kX to angstrom units for comparison with the NBS values.

Lattice	constants
---------	-----------

1927 1958	Hassel and Salvesen [2] National Bureau of Standards	$\begin{array}{c} a \\ \hline A \\ 9.28 \\ 9.310 \end{array}$	<i>c</i> <i>A</i> 9.524 9.618 at 25°C
--------------	--	---	---

The density of nickel fluosilicate hexahydrate calculated from the NBS lattice constants is 2.130 g/cm³ at 25° C.

hkl	Dow Che Co. Mo, 0.7	emical 107 A	195 National of Stand Cu, 1.5405	8 Bureau lards A at 25°C
hex.	d	Ι	d	Ι
$ \begin{array}{c} 110 \\ 012 \\ \\ \overline{202} \end{array} $	$\begin{matrix} A \\ 4.68 \\ 4.17 \\ 3.91 \\ 3.71 \\ 3.10 \end{matrix}$	$ \begin{array}{c} 100 \\ 50 \\ 2 \\ 1 \\ 8 \end{array} $	$\begin{array}{c} A \\ 4.65 \\ 4.13 \\ \\ 3.09 \end{array}$	$ \begin{array}{c} 100 \\ 62 \\ \\ -\overline{7} \\ 7 \end{array} $
$ \begin{array}{c} 211 \\ \overline{113} \\ 122 \\ \\ \end{array} $	$2.91 \\ 2.78 \\ 2.66 \\ 2.59 \\ 2.46$	$ \begin{array}{r} 18 \\ 1 \\ 5 \\ 40 \\ 1 \end{array} $	$2.905 \\ \hline 2.641 \\ 2.574 \\ \hline$	$ \begin{array}{c} 13\\ \overline{6}\\ 34\\ \end{array} $
$ \overline{104} \overline{131} 024 $	$2.36 \\ \overline{2.23} \\ 2.18 \\ 2.07$	$\begin{array}{c} 7\\ -\overline{1}\\ 3\\ 8\end{array}$	2.306 2.178 2.065	$\begin{array}{c} -\overline{3}\\ \overline{3}\\ \overline{3}\\ 8\end{array}$
$ \begin{array}{r} 312 \\ 401 \\ \bar{2}\bar{1}\bar{4} \\ 015 \\ \end{array} $	2.03 1.98 1.94 1.90		$2.028 \\ 1.973 \\ \overline{1.8878} \\ 1.8699$	$\begin{array}{c}3\\6\\\bar{1}\bar{2}\\2\end{array}$
$\begin{array}{c} 042 \\ 321 \\ 410 \\ 232 \\ \end{array}$	$1.87 \\ 1.82 \\ 1.77 \\ 1.73 \\ 1.68$	$2 \\ 3 \\ 3 \\ 5 \\ 1$	$1.8599 \\ 1.8164 \\ 1.7590 \\ 1.7266 \\$	$ \begin{array}{r} 7 \\ 3 \\ 4 \\ 6 \\ \end{array} $
$134 \\ 051 \\ 330 \\ 404 \\ 413$	$1.64 \\ 1.60 \\ 1.55 \\$	13 1 2 	$1.6371 \\ 1.5901 \\ 1.5518 \\ 1.5440 \\ 1.5424$	$ \begin{array}{c} 10 \\ 4 \\ 3 \\ <1 \\ 3 \end{array} $
$ \begin{array}{r} 116 \\ \overline{324} \\ 422 \\ 511 \end{array} $	$1.52 \\ 1.50 \\ 1.47 \\ 1.44 \\ 1.42$	2 1 2 2 1 1	$ \begin{array}{r} 1.5154\\ \overline{1.4654}\\ 1.4521\\ 1.4324 \end{array} $	$\begin{array}{c}2\\-\overline{3}\\1\\2\end{array}$
$ 152 \\ 306 \\ 600 \\ 226 \\ 342 $			$\begin{array}{c} 1.3868\\ 1.3776\\ 1.3442\\ 1.3200\\ 1.2784\end{array}$	3 3 2 3 3

References

- O. Hassel, Vorläufige Notiz über die Kristallstruktur einiger Verbindungen von der Zusammensetzung MG₆·LR₆, Z. physik. Chem. **126**, 118–126 (1927).
- [2] O. Hassel and J. R. Salvesen, Über den Kristallbau der trigonal kristallisierenden heteropolaren Verbindungen von der Zusammensetzung MG₆-LR₈, MG₅D-LR₆ und MG₄D₂LR₆, Z. physik. Chem. **128**, 345-361 (1927).

Niobium Silicide, NbSi₂ (hexagonal)

ASTM cards. None.

Additional published patterns

Source	Radiation
Wallbaum [1] 1941	Cobalt, K α

NBS sample. The sample of niobium silicide was prepared at NBS by Raymond Walker and Sylvanus Holley as a solid state reaction of the elements maintained in vacuum at 1,350°C for 1 hr. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of aluminum, iron, magnesium, titanium, and vanadium; 0.001 to 0.01 percent each of molybdenum, nickel, and zirconium, and 0.0001 to 0.001 percent each of boron, calcium, copper, and manganese. The sample was a gray metallic powder.

Interplanar spacings and intensity measurements. The d-values of the Wallbaum pattern were calculated from reported Bragg angle data. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Wallbaum National Bureau of Standards	114,301	111 101	302 112

Structural data. Wallbaum [1] in 1941 determined that niobium silicide has $CrSi_2$ -type structure, the space group $P6_222$ (No. 180), and 3 (NbSi₂) per unit cell. The unit-cell measurements reported by Wallbaum have been converted from kX to angstrom units for comparison with the NBS values.

Lattice	constants
	001000000000

1941 Wallbaum [1] 1958 National Bureau of Standards	$ \begin{array}{r} a \\ \hline A \\ 4.795 \\ 4.7971 \end{array} $	$\begin{array}{c} c \\ A \\ 6.589 \\ 6.592 \mathrm{at} \\ 25^{\circ}\mathrm{C} \end{array}$
---	---	--

The density of niobium silicide calculated from the NBS lattice constants is 5.652 g/cm³ at 25°C.

References

zung

u de mgel , un 1927

 H. J. Wallbaum, Disilizide des Niobs, Tantals, Vanadiums und Rheniums, Z. Metallkunde 33, 378-381 (1941).

hkl	1941 Wallbar Co, 1.79	um 02 A	1958 National Bureau of Standards Cu, 1.5405 A at 25°0	
	d	Ι	d	I
$ 100 \\ 101 \\ 102 \\ 110 \\ 111 $	$\begin{array}{c} A \\ \hline 3.51 \\ 2.58 \\ 2.40 \\ 2.25 \end{array}$	mw w w- m	$\begin{matrix} A \\ 4.17 \\ 3.52 \\ 2.587 \\ 2.401 \\ 2.255 \end{matrix}$	$ \begin{array}{r} 11 \\ 72 \\ 32 \\ 19 \\ 100 \end{array} $
$\begin{array}{c} 003 \\ 200 \\ 112 \\ 113 \\ 210 \end{array}$	$\begin{array}{c} 2.196 \\ 2.076 \\ 1.936 \\ 1.618 \\ \end{array}$	mw w m	$2.199 \\ 2.079 \\ 1.941 \\ 1.621 \\ 1.571$	$35 \\ 21 \\ 64 \\ 10 \\ 4$
$ \begin{array}{r} 104 \\ 211 \\ 203 \\ 212 \\ 300 \end{array} $	$ \begin{array}{c} 1.522\\ 1.506\\ 1.415\\\end{array} $	w+ w w	$1.532 \\ 1.528 \\ 1.509 \\ 1.418 \\ 1.384$	$10 \\ 14 \\ 12 \\ 8 \\ 4$
$114 \\ 301 \\ 204 \\ 302 \\ 105$	$\left. \begin{array}{c} 1.354 \\ \overline{1.274} \\ \end{array} \right.$	m+ 	$\left\{\begin{array}{c} 1.358 \\ 1.355 \\ 1.292 \\ 1.277 \\ 1.257 \end{array}\right.$	$22 \\ 25 \\ 1 \\ 13 \\ 5$
$220 \\ 303 \\ 115 \\ 214 \\ 311$	1.197 1.135	m — m —	$\left\{\begin{array}{c} 1.200\\ 1.171\\ 1.156\\ \{1.1363\\ 1.1347\end{array}\right.$	$\begin{array}{c}10\\3\\8\\4\\5\end{array}$
$\begin{array}{c} 006 \\ 312 \\ 304 \\ 223 \\ 400 \end{array}$	$ \begin{array}{c} 1.098 \\ 1.085 \\ 1.059 \\ 1.050 \\ \end{array} $	w- w w+ m+	$1.0989 \\ 1.0877 \\ 1.0600 \\ 1.0528 \\ 1.0387$	$2 \\ 2 \\ 7 \\ 16 \\ <1$
$116 \\ 206 \\ 305 \\ 314 \\ 321$			$\begin{array}{c} 0.9985 \\ .9711 \\ .9549 \\ .9442 \\ .9434 \end{array}$	$1 \\ 3 \\ 5 \\ 4 \\ 5 \\ 5$
$\begin{array}{c} 403 \\ 107 \\ 322 \\ 410 \\ 411 \end{array}$.9390 .9184 .9157 .9065 .8982	$^{4}_{11}_{<1}_{9}$
$117 \\ 412 \\ 315 \\ 306 \\ 413$.8766 .8741 .8676 .8608 .8380	$5 \\ 10 \\ 2 \\ <1 \\ 3 \end{bmatrix}$
$324 \\ 226 \\ 217$			$.8250 \\ .8100 \\ .8080$	$\begin{array}{c} 4\\9\\4\end{array}$
$414 \\ 331 \\ 420$.7943 .7937 .7851	$\begin{array}{c}12\\8\\4\end{array}$

ASTM cards. None.

Additional published patterns. None.

NBS sample. The sample of potassium bromoplatinate was prepared at NBS from bromoplatinic acid and potassium bromide. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent each of cesium, sodium, and rubidium; and 0.0001 to 0.001 percent each of barium, calcium, iron, magnesium, and silicon.

The color of the sample was red. The index of refraction was too high to be determined by the usual liquid immersion techniques.

Interplanar spacings and intensity measurements. The indices of the three strongest lines of the NBS pattern are as follows:

Pattern	1	2	3
National Bureau of Standards_	400	111	200

Structural data. Mathieu [1] in 1929 determined that potassium bromoplatinate has potassium chloroplatinate-type structure, the space group Fm3m (No. 225), and $4(K_2PtBr_6)$ per unit cell.

The unit-cell measurements reported by Mathieu have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

$ 1929 \\ 1953 \\ 1958 $	Mathieu [1] Sharpe [2] National Bureau of Standards	$\begin{matrix} A \\ 10.371 \\ 10.27 \\ 10.293 \text{ at} \\ 26^{\circ} \text{C} \end{matrix}$
--	---	--

The density of potassium bromoplatinate calculated from the NBS lattice constant is 4.584 g/cm³ at 26°C.

References

- M. Mathieu, Determination of the length of the cube edge of potassium bromoplatinate, Compt. Rend. 188, 1611 (1929).
- [2] A. G. Sharpe, Chemistry of the platinum metals. Part III. Lattice constants of some chloropalladates, bromopalladates, and bromoplatinates, J. Chem. Soc. 4177-4179 (1953).

hkl	Nation Cu	1958 al Bureau of St , 1.5405 A at 2	andards 26°C
	d	Ι	a
$ \begin{array}{c} 111\\ 200\\ 220\\ 311\\ 222 \end{array} $	$\begin{array}{c} A \\ 5.95 \\ 5.15 \\ 3.64 \\ 3.10 \\ 2.97 \end{array}$		$\begin{matrix} A \\ 10.30 \\ 10.29 \\ 10.30 \\ 10.29 \\ 10.29 \\ 10.29 \end{matrix}$
$ \begin{array}{r} 400 \\ 331 \\ 420 \\ 422 \\ 511 \end{array} $	$\begin{array}{c} 2.57 \\ 2.36 \\ 2.301 \\ 2.102 \\ 1.982 \end{array}$	$100 \\ 15 \\ 43 \\ 9 \\ 30$	$\begin{array}{c} 10.30 \\ 10.30 \\ 10.291 \\ 10.296 \\ 10.296 \\ 10.296 \end{array}$
$ \begin{array}{r} 440 \\ 531 \\ 600 \\ 620 \\ 533 \end{array} $	$1.820 \\ 1.740 \\ 1.716 \\ 1.628 \\ 1.570$	$58 \\ 26 \\ 20 \\ 4 \\ 7$	$10.294 \\ 10.296 \\ 10.294 \\ 10.294 \\ 10.294 \\ 10.296$
$\begin{array}{c} 622 \\ 444 \\ 711 \\ 640 \\ 642 \end{array}$	$1.552 \\ 1.4854 \\ 1.4409 \\ 1.4269 \\ 1.3755$	$10 \\ 17 \\ 13 \\ 6 \\ 4$	$\begin{array}{c} 10.294 \\ 10.291 \\ 10.290 \\ 10.290 \\ 10.290 \\ 10.293 \end{array}$
731 800 820 822 751	$\begin{array}{c} 1.3399 \\ 1.2861 \\ 1.2480 \\ 1.2127 \\ 1.1885 \end{array}$	8 6 9 3 6	$\begin{array}{c} 10.292 \\ 10.289 \\ 10.291 \\ 10.290 \\ 10.293 \end{array}$
$840 \\911 \\842 \\931 \\844$	$\begin{array}{c} 1.1504 \\ 1.1295 \\ 1.1231 \\ 1.0790 \\ 1.0506 \end{array}$	$ \begin{array}{c} 12 \\ 7 \\ 6 \\ 5 \\ 9 \end{array} $	$\begin{array}{c} 10.290 \\ 10.290 \\ 10.293 \\ 10.293 \\ 10.293 \\ 10.294 \end{array}$
$\begin{array}{c} 933\\ 10\cdot 0\cdot 0\\ 951\\ 953\\ 10\cdot 4\cdot 0\end{array}$	$\begin{array}{c} 1.0347 \\ 1.0291 \\ 0.9951 \\ .9597 \\ .9557 \end{array}$	$5 \\ 4 \\ 6 \\ 5 \\ 5 \\ 5$	$\begin{array}{c} 10.295 \\ 10.291 \\ 10.294 \\ 10.292 \\ 10.293 \end{array}$
$\begin{array}{c} 10 \cdot 4 \cdot 2 \\ 880 \\ 11 \cdot 3 \cdot 1 \\ 10 \cdot 4 \cdot 4 \\ 11 \cdot 3 \cdot 3 \end{array}$. 9396 . 9097 . 8992 . 8960 . 8731	$< 1 \\ 1 \\ 5 \\ 4 \\ 5 \end{bmatrix}$	$\begin{array}{c} 10.293 \\ 10.292 \\ 10.292 \\ 10.295 \\ 10.295 \\ 10.294 \end{array}$
$\begin{array}{c} 12 \cdot 0 \cdot 0 \\ 11 \cdot 5 \cdot 1 \\ 12 \cdot 2 \cdot 2 \\ 11 \cdot 5 \cdot 3 \end{array}$.8576 .8489 .8349 .8267	$\begin{array}{c}1\\2\\2\\2\end{array}$	$\begin{array}{c} 10.292 \\ 10.292 \\ 10.293 \\ 10.293 \\ 10.292 \end{array}$
$\begin{array}{c} 12 \cdot 4 \cdot 0 \\ 12 \cdot 4 \cdot 2 \\ 13 \cdot 1 \cdot 1 \end{array}$.8137 .8037 .7871	$\begin{array}{c} 3\\ 6\\ 6\end{array}$	$ \begin{array}{r} 10.293 \\ 10.293 \\ 10.293 \\ 10.293 \end{array} $
Average va	lue of last five	lines	10.293

ASTM cards. None.

Additional published patterns. None.

NBS sample. The sample of potassium bromoselenate was prepared at NBS from potassium iodide, selenium dioxide, and hydrobromic acid. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent of sodium, and 0.001 to 0.01 percent each of aluminum, calcium, iron, rubidium, and silicon.

The color of the sample was reddish-orange. The index of refraction could not be determined by the usual liquid grain immersion method because the sample was too highly colored.

Interplanar spacings and intensity measurements. The indices of the three strongest lines of the NBS pattern are as follows:

Pattern	1	2	3
National Bureau of Standards_	222	400	440

Structural data. Hoard and Dickinson [1] in 1933 determined that potassium bromoselenate has potassium chloroplatinate-type structure, the space group Fm3m (No. 225), and $4(K_2SeBr_6)$ per unit cell.

The unit-cell measurement reported by Hoard and Dickinson has been converted from kX to angstrom units for comparison with the NBS value.

Lattice constants

$1933 \\ 1958$

The density of potassium bromoselenate calculated from the NBS lattice constant is 3.738 g/cm³ at 25°C.

ASTM cards

Card number	Index lines	Radiation	Source
3-0417	$3.35 \\ 5.15 \\ 2.09$	Copper	Broch [1] 1929.

Additional published patterns. None.

NBS sample. The sample of potassium perrhenate was obtained from the City Chemical Corp., New York, N. Y. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent of silicon; and 0.0001 to 0.001 percent each of aluminum, barium, calcium, magnesium, lead, and rubidium.

The sample was colorless and optically positive.

hkl	Nationa Cu,	1958 Il Bureau of St 1.5405 A at 2	andards 5°C
	d	I	a
$111 \\ 200 \\ 311 \\ 222 \\ 400$	$\begin{matrix} A \\ 6.01 \\ 5.21 \\ 3.138 \\ 3.007 \\ 2.604 \end{matrix}$	$23 \\ 30 \\ 11 \\ 100 \\ 81$	$\begin{matrix} A \\ 10.41 \\ 10.42 \\ 10.41 \\ 10.42 \\ 10.42 \\ 10.42 \end{matrix}$
$331 \\ 420 \\ 511 \\ 440 \\ 531$	$2.391 \\ 2.331 \\ 2.006 \\ 1.842 \\ 1.7615$	$\begin{array}{c}4\\20\\6\\44\\6\end{array}$	$\begin{array}{c} 10.424 \\ 10.424 \\ 10.421 \\ 10.419 \\ 10.421 \end{array}$
$\begin{array}{c} 600 \\ 622 \\ 444 \\ 711 \\ 640 \end{array}$	$1.7366 \\ 1.5700 \\ 1.5034 \\ 1.4590 \\ 1.4449$	$\begin{array}{c}8\\18\\11\\2\\2\end{array}$	$10.420 \\ 10.414 \\ 10.416 \\ 10.419 \\ 10.419 \\ 10.419 \\ 10.419 \\ 10.419 \\ 10.19 \\ 10.10 \\ 10.40 \\ 10.40$
$731 \\ 800 \\ 820 \\ 751 \\ 662$	$\begin{array}{c} 1.3558 \\ 1.3023 \\ 1.2634 \\ 1.2026 \\ 1.1951 \end{array}$	$23 \\ 33 \\ <1 \\ 3$	$10.414 \\ 10.418 \\ 10.418 \\ 10.415 \\ 10.419$
$840 \\911 \\842 \\931 \\844$	$1.1647 \\ 1.1437 \\ 1.1369 \\ 1.0922 \\ 1.0634$	$\begin{array}{c} 6\\ 2\\ <1\\ <1\\ 6\end{array}$	$10.417 \\ 10.420 \\ 10.420 \\ 10.419 \\ 10.419 \\ 10.419$
Average	value of last five	lines	10.419

References

Potassium Perrhenate, KReO₄ (tetragonal)

The indices of refraction are $N_0 = 1.645$ and $N_e = 1.675$.

Interplanar spacings and intensity measurements. The *d*-values of the Broch pattern were calculated from reported Bragg angle data. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Broch	112, 103	101	204
Standards	112, 103	101	204

Structural data. Broch [1] in 1929 determined that potassium perrhenate has scheelite-type structure, the space group $I4_1/a$ (No. 88), and $4(\text{KReO}_4)$ per unit cell.

The unit-cell measurements reported by Broch

J. L. Hoard and B. N. Dickinson, The crystal structure of potassium bromoselenate, Z. Krist. 84, 436-441 (1933).

have been converted from kX to angstrom units for comparison with the NBS values.

or Potassium Perrhenate, KReO₄ (tetragonal)—Continued

Lattice constants

1929 Broch [1] 1958 National Bureau of Standards	$\begin{array}{c} a \\ \hline A \\ 5.626 \\ 5.675 \end{array}$	
---	--	--

The density of potassium perchanate calculated from the NBS lattice constants is 5.425 g/cm³ at 25° C.

rotassium rerrienate, Kneu ₄ (tetragonal	Potassium	Perrhenate,	KReO ₄	(tetragonal
---	-----------	-------------	-------------------	--------------

hkl	1929 Broch Cu, 1.5418 A		1958 National Bureau of Standards Cu, 1.5405 A at 25°C	
	d	Ι	d	Ι
$ \begin{array}{r} 101 \\ 112 \\ 103 \\ 004 \\ 200 \end{array} $	$\left.\begin{array}{c}A\\5.03\\3.30\\3.11\\2.78\end{array}\right.$	vs vvs m m	$\begin{matrix} A \\ 5.19 \\ 3.396 \\ 3.175 \\ 2.837 \end{matrix}$	$55 \\ 100 \\ 16 \\ 19$
$114 \\ 211 \\ 105 \\ 213 \\ 204$	$\left. \begin{array}{c} 2.43 \\ 2.28 \\ 2.13 \\ 2.07 \end{array} \right.$	m vw m vs	$2.491 \\ 2.318 \\ 2.177 \\ 2.118$	$\begin{array}{c}14\\2\\7\\22\end{array}$
$220 \\ 301 \\ 116 \\ 215$	$iggreen \left. iggreen {1.97 \\ 1.84 \\ 1.76 \end{array} ight.$	s vs s	$2.006 \\ 1.873 \\ 1.795$	8 12 7
$ \begin{array}{r} 107 \\ 303 \\ 312 \\ 206 \\ 224 \end{array} $	$\left. \begin{array}{c} 1.70 \\ 1.67 \end{array} \right $	vs s	1.727 1.697	18 8
$\begin{array}{c} 008\\ 314\\ 321\\ 305\\ 118\\ 217 \end{array}$	$ig egin{array}{c} 1.55 \\ 1.53 \\ 1.49 \\ 1.45 \end{array}$	VVW VW S S	1.587 1.562 1.517 1.476	1 2 2 4
$\begin{array}{c} 400 \\ 208 \\ 109 \\ 316 \\ 461 \end{array}$	$\left. \begin{array}{c} 1.40 \\ 1.36 \\ \end{array} \right\} 1.34 \\ \end{array} \right\}$	vw m vs	$1.419 \\ 1.386 \\ 1.369$	1 4 8
$325 \\ 307 \\ 413 \\ 332 \\ 404$	$\left. \begin{array}{c} 1.31 \\ 1.29 \\ 1.27 \end{array} \right $	vw m+ w	1.338 1.309 1.2952	<1 5 2
420 228 219 334 $1 \cdot 1 \cdot 10$	$\left. \begin{array}{c} 1.25 \\ 1.23 \\ 1.20 \\ 1.20 \end{array} \right\}$	w+ w vvw m	$1.2693 \\ 1.2450 \\ 1.2332 \\ 1.2108$	$2 \\ 2 \\ 1 \\ 1$

	192 Broo	9 eh	1958 National Bureau of Standards	
hkl	Cu, 1.5	418 A	Cu, 1. 5405 A	at 25°C
	d	I	<i>d</i>	I
100	A		A	
406 424	$} 1.16$	m+	1.1784	2
$1 \cdot 0 \cdot 11, 309$	} 1.11	m+	1.1310	2
$417, 503 \\ 512$	$ ight\} 1.08$	s	1.0967	<1
408			1.0577	<1
521, 329 514	}		1.0503	<1
$3 \cdot 1 \cdot 10 \\ 505$	}		1.0363	2
$338 \\ 523$	}		1.0227	<1
440 2.0.12,428)		1.0027	<1
442	}		0.9911	2
$3 \cdot 0 \cdot 11, 419$ 516	}		0.9854	2
525			.9735	<1
532	}		. 9622	3
444			.9568	1
600	}		.9462	<1
$2 \cdot 2 \cdot 12$ 3 · 2 · 11 611)		.9360	1
534	}		.9306	1
$3 \cdot 3 \cdot 10$ 3 · 1 · 12 2 · 1 · 13)		.9210	1
527, 518, 613	}		.9114	1
446 604	}		.9066	1
$\begin{array}{c c} 4 \cdot 2 \cdot 10 \\ 620 \end{array}$	}		.8976	<1
509, 536, 541	}		.8844	3
615			.8760	<1
$3 \cdot 0 \cdot 13$ 543	}		.8678	1
$2 \cdot 0 \cdot 14$ 606, 624	}		.8637	1
$\begin{array}{c} 4 \cdot 0 \cdot 12 \\ 448 \end{array}$	}		.8482	1
$1 \cdot 0 \cdot 15$ $5 \cdot 1 \cdot 10, 545$	}	-~	.8371	2
$3 \cdot 2 \cdot 13, 3 \cdot 3 \cdot 12$ 617, 538, 633	}		.8299	1
$4 \cdot 2 \cdot 12$	}		.8128	4
$3 \cdot 1 \cdot 14, 5 \cdot 0 \cdot 11$ 701	}		. 8095	3
712, 703	}		.7964	5
$4 \cdot 4 \cdot 10$ 640	}		.7871	2
040	D			

References

 E. Broch, Die Kristallstruktur von Kaliumperrhenat, Z. physik. Chem. 6, 22-26 (1929).

Potassium Phosphomolybdate Tetrahydrate, K₃PO₄(MoO₃)₁₂·4H₂O (cubic)

ASTM cards. None.

Additional published patterns. None.

NBS sample. The sample of potassium phosphomolybdate tetrahydrate was prepared at NBS by heating dilute solutions of potassium molybdate and phosphoric acid at about 75° C. The salt was precipitated by slowly adding dilute nitric acid. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent of cesium; 0.001 to 0.01 percent each of aluminum, sodium, rubidium, and silicon; and 0.0001 to 0.001 percent each of barium, calcium, magnesium, lead, and tin. The color of the sample was greenish-yellow. The index of refraction is 1.965.

Interplanar spacings and intensity measurements. The indices of the three strongest lines of the NBS pattern are as follows:

Pattern	_1	2	3
National Bureau of Standards_	222	110	400

Structural data. Keggin [1] in 1934 determined the structure of 12-phosphotungstic acid. Ferrari and Nanni [2] in 1939 showed that potassium phosphomolybdate tetrahydrate has this structure, the space group Pn3m (No. 224), and $2[K_3PO_4(MoO_3)_{12}:4(H_2O)]$ per unit cell.

Lattice	constants
---------	-----------

19 19	39 58	Ferrari and Nanni [2] National Bureau of Standards	A 11.72 11.596 at 25°C	
----------	----------	---	---------------------------------	--

The density of potassium phosphomolybdate tetrahydrate calculated from the NBS lattice constant is 4.277 g/cm³ at 25°C.

References

- J. F. Keggin, The structure and formula of 12-Phosphotungstic acid, Proc. Roy. Soc. 144, 75-100 (1934).
 A. Ferrari and O. Nanni, Richerche sui sali degli etero-
- [2] A. Ferrari and O. Nanni, Richerche sui sali degli eteropolacidi, l. Struttura dei fosfo- e degli arsenidodecamolibdati e dei fosfo- e degli arsenidodecawolframati di ammonio, di potassio e di talli, Gazz. chim. Ital. 69, 301–314 (1939).

bkl	Nationa Cu,	1958 al Bureau of St , 1.5405 A at 2	andards 5°C
	d	Ι	a
$ \begin{array}{c} 110 \\ 111 \\ 200 \\ 211 \\ 220 \end{array} $	$\begin{matrix} A \\ 8.21 \\ 6.70 \\ 5.79 \\ 4.73 \\ 4.10 \end{matrix}$	$39 \\ 2 \\ 15 \\ 12 \\ 20$	$\begin{array}{c} A \\ 11.61 \\ 11.60 \\ 11.58 \\ 11.59 \\ 11.60 \end{array}$
$310 \\ 222 \\ 321 \\ 400 \\ 411$	3.67 3.346 3.100 2.898 2.732	$10 \\ 100 \\ 4 \\ 36 \\ 10$	$\begin{array}{c} 11.606 \\ 11.591 \\ 11.599 \\ 11.599 \\ 11.592 \\ 11.591 \end{array}$
$\begin{array}{c} 420 \\ 332 \\ 510 \\ 432 \\ 521 \end{array}$	$\begin{array}{c} 2.593 \\ 2.473 \\ 2.274 \\ 2.153 \\ 2.117 \end{array}$	$2 \\ 22 \\ 16 \\ 2 \\ 5$	$\begin{array}{c} 11.596 \\ 11.599 \\ 11.595 \\ 11.594 \\ 11.594 \\ 11.595 \end{array}$
$\begin{array}{c} 440 \\ 522 \\ 600 \\ 611 \\ 620 \end{array}$	2.050 2.0187 1.9332 1.8812 1.8338	$16 \\ 2 \\ 5 \\ 13 \\ 2$	$11.597 \\ 11.597 \\ 11.599 \\ 11.596 \\ 11.598 \\ 11.598 \\$
$621 \\ 541 \\ 622 \\ 444 \\ 710$	$1.8104 \\ 1.7892 \\ 1.7486 \\ 1.6737 \\ 1.6396$	$\begin{array}{c}3\\9\\12\\7\\17\end{array}$	$\begin{array}{c} 11.592 \\ 11.595 \\ 11.599 \\ 11.596 \\ 11.596 \\ 11.594 \end{array}$
640 721 730 732 811	$\begin{array}{c} 1.6080 \\ 1.5786 \\ 1.5229 \\ 1.4725 \\ 1.4277 \end{array}$	$2 \\ 6 \\ 3 \\ 17 \\ 8$	$11.595 \\ 11.600 \\ 11.598 \\ 11.594 \\ 11.599$
$\begin{array}{c} 820 \\ 653 \\ 822 \\ 661 \\ 831 \end{array}$	$1.4067 \\ 1.3868 \\ 1.3663 \\ 1.3571 \\ 1.3479$	2 2 3 3 3	$11.600 \\ 11.603 \\ 11.593 \\ 11.595 \\ 11.595 \\ 11.595$
$662 \\ 752 \\ 910 \\ 921 \\ 930$	$1.3300 \\ 1.3133 \\ 1.2814 \\ 1.2500 \\ 1.2226$	$2 \\ 1 \\ 2 \\ 3 \\ < 1$	$11.595 \\ 11.599 \\ 11.603 \\ 11.592 \\ 11.599$
$932 \\ 941 \\ 10 \cdot 1 \cdot 1 \\ 10 \cdot 2 \cdot 0$	$1.1956\\1.1710\\1.1477\\1.1374$	$4 \\ 3 \\ 5 \\ <1$	$11.592 \\ 11.592 \\ 11.591 \\ 11.599 \\ 11.599$
$950 \\ 10 \cdot 2 \cdot 2 \\ 10 \cdot 3 \cdot 1$	$1.1260 \\ 1.1165 \\ 1.1055$	$4 \\ 1 \\ < 1$	${\begin{array}{c}11.593\\11.603\\11.594\end{array}}$
Average v	alue of last five	e lines	11.596

Potassium Thiocyanate, KCNS (orthorhombic)

ASTM cards

Card number	Index lines	Radiation	Source
1-0882	$2.97 \\ 2.79 \\ 2.51$	Mołybdenum	Hanawalt, Rinn, and Frevel [1] 1938.

Additional published patterns

Source	Radiation
Büssem, Günther, and Tubin [2] 1934	Copper, Ka

NBS sample. The sample of potassium thiocyanate was obtained from the City Chemical Corp., New York. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of aluminum, calcium, chromium, silicon, and tungsten; and 0.001 to 0.01 percent each of barium, magnesium, and rubidium. The sample was colorless and optically positive. The indices of refraction are N α =1.619, N β =1.665, N γ =1.74 and 2V=52°.

Interplanar spacings and intensity measurements. The d-values of the Büssem, Günther, and Tubin pattern were calculated from reported Bragg angle data. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Hanawalt, Rinn, and Frevel_ Büssem, Günther, and Tubin National Bureau of Standards	112 112 112	211, 121 211, 121 121	202, 022 200, 020 211

Structural data. Klug [3] in 1933 determined that potassium thiocyanate has the space group Pbcm (No. 57) and 4(KCNS) per unit cell. Potassium thiocyanate is used as a structure-type.

Several unit-cell measurements have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

1933 1934 1958	Klug [3] Büssem, Günther, and Tubin [2] National Bureau of Standards	$ \begin{array}{c} a \\ \hline A \\ 6.67 \\ 6.68 \\ 6.708 \end{array} $	$\frac{b}{6.647}$ 6.66 6.695	<i>c</i> <i>A</i> 7.60 7.56 7.616 at
	of Standards	6.708	6.695	7.616 at 25°C

	hkl	1938 Hanawalt, Rinn, and Frevel Mo, 0.7107 A		1934 Büssem, Günther, and Tubin Cu Ka		1958 National Bureau of Standards Cu, 1.5405 A at 52°C	
1		d	Ι	d	Ι	d	Ι
	$100 \\ 110 \\ 111 \\ 002 \\ 200 \\ 020$	$\begin{array}{c} A \\ \\ \\ \\ 3.35 \end{array}$	 35	A 3.35	 22	$\begin{cases} A \\ 6.71 \\ 4.74 \\ 4.02 \\ 3.81 \\ \left\{ \begin{array}{l} 3.354 \\ 3.346 \end{array} \right. \end{cases}$	$4 \\ 7 \\ 4 \\ 9 \\ 19 \\ 21$
	$102 \\ 021 \\ 210 \\ 120 \\ 112$	2.98	 100	2.96	 100	$3.316 \\ 3.066 \\ 3.000 \\ 2.995 \\ 2.966$	$14 \\ 6 \\ 6 \\ 22 \\ 100$
	$211 \\ 121 \\ 202 \\ 022 \\ 220$	$ \left. \begin{array}{c} 2.80 \\ 2.52 \\ 2.36 \end{array} \right. \right\} \\$	80 40 20	2.80 2.51 2.36	$\begin{array}{c} 24\\ 14\\ 6\end{array}$	$\left\{\begin{array}{l} 2.790\\ 2.784\\ 2.518\\ 2.512\\ 2.370\end{array}\right.$	$34 \\ 56 \\ 27 \\ 19 \\ 14$
	$221 \\ 113 \\ 300 \\ 310 \\ 130$	} 2.23	2	2.22 $\overline{2.11}$	 1 	$2.262 \\ 2.238 \\ 2.121 \\ 2.118$	$4 \\ 4 \\ 19 \\ 17$
	$\begin{array}{c} 311 \\ 023 \\ 222 \\ 123 \\ 302 \\ 004 \end{array}$	 1.94 }	25	 1.913	 11	$\begin{cases} 2.042\\ 2.024\\ 2.011\\ 1.936\\ 1.928\\ 1.905 \end{cases}$	4 6 17 19 14
	$230 \\ 132 \\ 104 \\ 231 \\ 114$					$1.857 \\ 1.850 \\ 1.831 \\ 1.805 \\ 1.767$	$ \begin{array}{c} 4 \\ 6 \\ 4 \\ 5 \\ 3 \end{array} $
	$223 \\ 232 \\ 024 \\ 133 \\ 214 \\ 124$	$\left. \begin{array}{c} & & & \\ & 1.66 \\ & & & \\ & 1.61 \end{array} \right.$	20 2	1.657 $\overline{1.609}$	 4 <u>3</u>	$\left\{\begin{array}{c}1.7323\\1.6687\\1.6546\\1.6268\\1.6070\end{array}\right.$	2 8 5 3 5
	$141 \\ 042 \\ 142 \\ 224 \\ 241$	$\left. \begin{array}{c} \bar{1}.\bar{53}\\ \bar{1}.490\\ \end{array} \right.$	-ī6 16 	1.531 1.488	 4 4	$\left\{\begin{array}{c}1.5883\\1.5326\\1.4946\\1.4839\\1.4700\end{array}\right.$	$2 \\ 8 \\ 11 \\ 8 \\ 10$
	$332 \\ 134 \\ 215 \\ 125 \\ 430 \\ 340$	$ \begin{array}{c} 1.460 \\ 1.415 \\ \\ \\ \end{array} $	16 12 	1.454 1.409 	3 3 	$1.4580 \\ 1.4161 \\ 1.3578 \\ 1.3399$	$\begin{array}{c} 6\\ 12\\ 3\\ 3\\ 3\end{array}$
	$106 \\ 414 \\ 135 \\ 116$	$\left. \left. \right\} \begin{array}{c}\\\\ 1.229 \end{array} \right.$	 8			$1.2471 \\ 1.2368 \\ 1.2262$	3 3 6
	$\begin{array}{c} 206 \\ 026 \end{array}$	}				1.1870	2

hkl	1938 Hanawa Rinn, a Freve Mo, 0.71	alt, nd el 07 A	1934 Büsser Günther, Tubii Cu K	n, and $n \alpha$	1958 Nation Bureau Standar Cu, 1.54(at 25°(58 onal u of lards 5405 A 5°C	
	d	Ι	d	Ι	d	Ι	
$\begin{array}{c} 522\\ 244\\ 344\\ 260\\ 542\\ 452\\ 444\\ 416\\ 146\\ 360\\ 361\\ 336\\ \end{array}$	A 1.181	8	A 		$\begin{array}{c} A\\ 1.1837\\ 1.1765\\ 1.0955\\ 1.0955\\ 1.0088\\ 1.0053\\ 1.0008\\ 0.9985\\ .9896\\ \end{array}$	$ \begin{array}{r} 3 \\ 3 \\ 5 \\ 2 \\ 3 \\ 1 \\ 5 \\ 3 \\ 2 \\ 2 \end{array} $	

Potassium Thiocyanate, KCNS (orthorhombic) —Continued

The density of potassium thiocyanate calculated from the NBS lattice constants is 1.887 g/cm³ at 25°C.

References

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457–512 (1938).
- Anal. Ed. 10, 457–512 (1938).
 W. Büssem, P. Günther, and R. Tubin, Die Struktur des Thallorhodanids und des Kaliumrhodanids, Z. phys. Chem. 24B, 1–21 (1934).
- [3] H. P. Klug, The crystal structure of potassium thiocyanate, Z. Krist. 85, 214–222 (1933).

Rubidium Bromate, RbBrO₃ (trigonal)

ASTM cards. None.

10

3

3

3 6 2

Additional published patterns

Source	Radiation
Asensio Amor [1] 1954	Copper K_{α}

NBS sample. The sample of rubidium bromate was prepared at NBS by crystallization from a solution of rubidium chlorate and sodium bromate. It was recrystallized several times before using. Spectrographic analysis showed the following impurities: 0.1 to 1.0 percent of potassium; 0.01 to 0.1 percent each of barium, calcium, cesium, nickel, strontium, and thallium.

The sample was colorless. The indices of refraction were not determined because the sample is too fine-grained.

Interplanar spacings and intensity measurements. The *d*-values of the Asensio Amor pattern were converted from kX to angstrom units. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Asensio Amor National Bureau of Standards_	$\begin{array}{c} 012\\012\end{array}$	$\begin{array}{c} 202 \\ 110 \end{array}$	$214 \\ 202$

hkl hex.	1954 Amo Cu, 1.54	r 18 A	1958 National I of Stand Cu, 1.5405 A	Bureau ards A at 25°C
	d	Ι	d	Ι
$ \begin{array}{r} 101 \\ 012 \\ 110 \\ \overline{002} \end{array} $	$\begin{matrix} A \\ 4.35 \\ 3.18 \\ 3.00 \\ 2.81 \\ 2.68 \end{matrix}$	$20 \\ 100 \\ 50 \\ 5 \\ 10$	$ \begin{array}{r} A \\ 4.48 \\ 3.23 \\ 3.108 \\ \hline 2.600 \\ \end{array} $	9 100 81 $-\overline{0}$
021 202 113 211	$2.41 \\ 2.19 \\ 2.01 \\ 1.95 \\ 1.91$	10 100 100 1 10 1	2.539 2.554 2.242 2.039 1.974	
$104 \\ 122 \\ 300 \\ 024 \\ 220$	$1.88 \\ 1.77 \\ 1.73 \\ 1.60 \\ 1.56$	$50 \\ 50 \\ 20 \\ 50 \\ 10$	$1.896 \\ 1.819 \\ 1.795 \\ 1.6181 \\ 1.5543$	$15 \\ 25 \\ 14 \\ 10 \\ 12$
$ \begin{array}{r} 015 \\ 303 \\ \bar{214} \\ 312 \end{array} $	$1.54 \\ 1.51 \\ 1.46 \\ 1.41 \\ 1.40$	$5 \\ 30 \\ 10 \\ 100 \\ 5$	$ \begin{array}{r} 1.5508 \\ 1.4957 \\ \hline 1.4351 \\ 1.4013 \\ \end{array} $	$5\\3\\\bar{1}\bar{3}\\13$
$205 \\ 006 \\ 223 \\ 401$	$1.39 \\ 1.37 \\ 1.36 \\ 1.31 \\ 1.30$	$5 \\ 20 \\ 20 \\ 10 \\ 5$	$\begin{array}{c c} 1.3879 \\ 1.3493 \\ 1.3471 \\ 1.3282 \end{array}$	$\begin{array}{c} 4\\ 3\\ 3\\ 3\\ 3\end{array}$

1954 Amo <i>hkl</i> Cu, 1.54 hex.		r 18 A	1958 National Bureau of Standards Cu, 1.5405 A at 25°C	
	d	Ι	d	Ι
$\begin{array}{r} 042\\ 125\\ 116\\ 321\\ 134\\ 232\\ 410\\ \end{array}$	$\begin{array}{c} A\\ 1.27\\ 1.25\\ 1.24\\ 1.23\\ 1.19\\ 1.17\\ 1.15 \end{array}$	$5 \\ 10 \\ 10 \\ 10 \\ 5 \\ 50 \\ 30$	$\begin{matrix} A \\ 1.2775 \\ 1.2678 \\ 1.2384 \\ 1.2213 \\ 1.2022 \\ 1.1816 \\ 1.1752 \end{matrix}$	
$\begin{array}{c}107\\404\\315\end{array}$	$1.14 \\ 1.13 \\ 1.10$	$\begin{array}{c}10\\10\\10\end{array}$	$1.1310 \\ 1.1205 \\ 1.0981$	$egin{array}{c} 3 \\ 4 \\ 2 \end{array}$
$306 \\ 051 \\ 027 \\ 324 \\ 502$	1.08 1.07	10 10 	$1.0792 \\ 1.0680 \\ 1.0631 \\ 1.0546 \\ 1.0407$	$3 < 1 \\ 2 \\ 3 \\ 1$
$330 \\ 226 \\ 217 \\ 018 \\ 422$			$1.0366 \\ 1.0192 \\ 1.0060 \\ 0.9951 \\ .9871$	$\begin{array}{c}2\\2\\1\\1\\2\end{array}$

Structural data. Asensio Amor [1] in 1954 determined that rubidium bromate has potassium bromate-type structure, the space group R3m (No. 160), and $1(RbBrO_3)$ per unit rhombohedral cell or $3(RbBrO_3)$ per unit hexagonal cell. The Asensio Amor pattern did not include lattice constants.

Lattice constants

			1
1958	National Bureau of Standards	<i>a</i> <i>A</i> 6.218	с А 8.099 at 25°С

The density of rubidium bromate calculated from the NBS lattice constants is 3.919 g/cm³ at 25°C.

References

 I. Asensio Amor, Contribución al estudio por rayos X del bromato de rubidio, Univ. Barcelona, Publs. dept. crist. y mineral. 1, 173-175 (1954).

Rubidium Bromotellurate, Rb₂TeBr₆ (cubic)

ASTM cards. None.

Additional published patterns. None.

NBS sample. The sample of rubidium bromotellurate was prepared at NBS from H_2 TeBr₆ and Rb₂SO₄. Spectrographic analysis showed the following impurities: 0.1 to 1.0 percent of potassium; 0.01 to 0.1 percent of sodium; and 0.001 to 0.01 percent each of calcium, chromium, cesium, copper, iron, nickel, silicon, and vanadium. The color of the sample was deep orange. The index of refraction was too high to be measured by the liquid immersion method.

Interplanar spacings and intensity measurements. The indices of the three strongest lines are as follows:

Pattern	1	2	3
National Bureau of Standards_	222	400	440

Structural data. The structure of rubidium bromotellurate has not been published. It is thought to have a potassium chloroplatinate-type structure because of similarity of patterns. The NBS pattern was indexed assuming the space group to be Fm3m (No. 225) with $4(\text{Rb}_{2}\text{TeBr}_{6})$ per unit cell.

Lat	tice	constants

		a
1958	National Bureau of Standards	10.771 at 26°C

The density of rubidium bromotellurate calculated from the NBS lattice constant is 4.134 g/cm^3 at 26° C.

hkl	1958 National Bureau of Standards Cu, 1.5405 A at 26°C			
	d	Ι	a	
	A		A	
111	6.22	32	10.77	
200	5.387	16	10.775	
220	3.809	19	10.775	
311	3.248	26	10.771	
222	3.109	100	10.770	
400	2.693	93	10.772	
331	2.472	11	10.775	
420	2.4092	10	10.774	
422	2.1999	11	10.777	
511	2.0728	10	10.771	
440	1 9038	52	10.770	
531	1 8205	õ	10.770	
600	1 7948	7	10 769	
622	1 6234	20	10.768	
444	1.5541	14	10.767	
711	1 5082	5	10.777	
721	1.0082	5	10.777	
101	1.4020	5	10.709	
840	1.0400	10	10.775	
841	1.2041	10	10.770	
12.0.0	0.8076	9	10.773	
12.0.0	0.0970	1	10.775	
Average v	value of last five	lines	10.771	

Rubidium Chlorate, RbClO₃ (trigonal)

ASTM cards. None. Additional published patterns

Source	Radaition
Gomis and García-Blanco [1] 1951	Copper $K\alpha_1$

NBS sample. The sample of rubidium chlorate was prepared at NBS by reaction of solutions of rubidium sulfate and barium chlorate. Spectrographic analysis showed the following impurities: 0.1 to 1.0 percent of potassium; 0.01 to 0.1 percent each of barium, calcium, cesium, sodium, nickel, strontium, and thallium; and 0.001 to 0.01 percent each of aluminum, chromium, magnesium, and silicon. The sample was colorless and optically negative. The refractive indices are $N_0=1.572$ and $N_e=1.484$.

Interplanar spacings and intensity measurements. The *d*-values of the Gomis and García-Blanco pattern were calculated from reported Bragg angle data. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Gomis and García-Blanco National Bureau of Standards_	$\begin{array}{c} 012\\012\end{array}$	$\begin{array}{c} 110\\110\end{array}$	$\begin{array}{c} 214\\ 202 \end{array}$

Structural data. Gomis and García-Blanco [1] in 1951 determined that rubidium chlorate has potassium bromate-type structure, the space group R3m (No. 160), and $1(\text{RbClO}_3)$ per unit rhombohedral cell or $3(\text{RbClO}_3)$ per unit hexagonal cell.

The unit-cell measurements reported by Gomis and García-Blanco in rhombohedral kX units were converted to hexagonal values in angstrom units for comparison with the NBS values.

1951 1958	Gomis and García-Blanco [1] National Bureau of Standards	$ \begin{array}{c} a\\ \hline A\\ 6.102\\ 6.089 \end{array} $	$ \begin{array}{c} c \\ $
--------------	---	---	--

The density of rubidium chlorate calculated from the NBS lattice constants is 3.206 g/cm³ at 25°C.

hkl hex.	195 Gomis García-J Cu, 1.5	1 1958 and National I Blanco of Stand 405 A Cu, 1.5405 A		19511958Gomis andNational BureauGareía-Blancoof StandardsCu, 1.5405 ACu, 1.5405 A at 25°C		Bureau ards A at 25°C
	d	Ι	d	Ι		
$101 \\ 012 \\ 110 \\ 003 \\ 021$	$\begin{matrix} A \\ 4.37 \\ 3.19 \\ 3.01 \\ 2.702 \\ 2.489 \end{matrix}$	w vs vs-s vw m	$\begin{matrix} A \\ 4.43 \\ 3.23 \\ 3.042 \\ 2.725 \\ 2.509 \end{matrix}$	$13 \\ 100 \\ 68 \\ 14 \\ 22$		
$202 \\ 113 \\ 211 \\ 104 \\ 122$	$2.199 \\ 2.016 \\ 1.931 \\ 1.897 \\ 1.785$	s m m-w s-m s-m	$2.216 \\ 2.030 \\ 1.9355 \\ 1.9049 \\ 1.7911$	$44 \\ 13 \\ 7 \\ 13 \\ 16$		
$300 \\ 024 \\ 015 \\ 220 \\ 303$	$\begin{array}{c} 1.754 \\ 1.606 \\ 1.553 \\ 1.519 \\ 1.473 \end{array}$	m m-w w-vw m w-vw	$1.7571 \\ 1.6145 \\ 1.5608 \\ 1.5217 \\ 1.4765$	$8\\7\\4\\6\\2$		
$131 \\ 214 \\ 205 \\ 312 \\ 006$	$1.437 \\ 1.424 \\ 1.389 \\ 1.377 \\ 1.354$	VW VS-S VW S-M VW	$1.4393 \\ 1.4263 \\ 1.3895 \\ 1.3769 \\ 1.3620$	$ \begin{array}{c} 3 \\ 9 \\ 2 \\ 9 \\ 2 \\ 2 \end{array} $		
$223 \\ 401 \\ 125 \\ 042 \\ 116$	$1.326 \\ 1.311 \\ 1.265 \\ 1.256 \\ 1.244$	W VW W S-m	$1.3290 \\ 1.3017 \\ 1.2634 \\ 1.2546 \\ 1.2433$	$egin{array}{c} 3\\ 2\\ 4\\ 3\\ 4\end{array}$		
$321 \\ 134 \\ 232 \\ 410 \\ 107$	$1.199\\1.189\\1.160\\1.151\\1.140$	VW s-m s-m s-m w-vW	$1.1968\\1.1894\\1.1599\\1.1507\\1.1405$	$< 1 \\ 4 \\ 4 \\ 3 \\ 1$		
$\begin{array}{c} 404 \\ 315 \\ 306 \\ 027 \\ 413 \end{array}$	1.109 1.090	W W	$\begin{array}{c} 1.1075\\ 1.0902\\ 1.0768\\ 1.0679\\ 1.0599\end{array}$	$egin{array}{c} 2 \\ 1 \\ 3 \\ 1 \\ 2 \end{array}$		
$324 \\ 045 \\ 502$			$1.0411 \\ 1.0263 \\ 1.0213$	$2 < 1 \\ 1 \\ 1$		

References

 V. Gomis and S. García-Blanco, La estructura del clorato de rubidio, Anales real soc. españ. fís y quím. (Madrid). Ser. A 47, 95–100 (1951). ASTM cards. None.

Additional published patterns. None.

NBS sample. The sample of rubidium chlorotellurate was prepared at NBS from chlorotelluric acid and rubidium sulfate. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of cesium and potassium; and 0.001 to 0.01 percent each of silver, aluminum, silicon, and thallium.

The color of the sample was chrome yellow. The index of refraction was 1.867.

Interplanar spacings and intensity measurements. The indices of the three strongest lines of the NBS pattern are as follows:

Pattern	1	2	3
National Bureau of Standards_	220	400	111

Structural data. Engel [1] in 1933 determined that rubidium chlorotellurate has potassium chloroplatinate-type structure, the space group Fm3m (No. 225), and $4(\text{Rb}_2\text{TeCl}_6)$ per unit cell.

The unit-cell measurement reported by Engel [2] has been converted from kX to angstrom units for comparison with the NBS value.

	Lattice	constants
--	---------	-----------

$1935 \\ 1958$	Engel [2] National Bureau of Standards	A 10.254 10.257 at 25°C

The density of rubidium chlorotellurate calculated from the NBS lattice constant is 3.086 g/cm^3 at 25° C.

References

- G. Engel, Die Kristallstrukturen einiger Verbindungen vom K₂PtCh-Typ, Naturwiss. 21, 704 (1933).
- [2] G. Engel, Die Kristallstrukturen einiger Hexachlorokomplexsalze, Z. Krist. (A)90, 341–373 (1935).

National Bureau of Standards Cu, 1.5405 A at 26°C hkl dΙ aA A 111 5.927010.252203.627 10010.26 311 3.0914210.25 2222.96110.25 56400 2.564384 10.256 331 2.352117 10.253422 2.09293710.2535111.97331510.253440 1.812740 10.2545311.733513 10.255620 1.621310.254105331.563210.251 6 6221.54567 10.252444 1.48041210.257711 1.4355 10.2527 642 121.370310.254 $10.252 \\ 10.255$ 7311.3347 $\mathbf{6}$ 822 1.20867 3 10.255751 1.1841 840 1.1468 $\mathbf{6}$ 10.2579111.125910.257 $\mathbf{5}$ 664 1.09314 10.2549311.07504 10.255844 1.04677 10.256 9331.0310 $\mathbf{2}$ $10.258 \\ 10.259$ $10 \cdot 2 \cdot 0$ 1.00604 10.2569510.9915 $\mathbf{2}$ Average value of last five lines____ 10.257

1958

Rubidium Sulfate, Rb₂SO₄ (orthorhombic)

ASTM cards

Card number	Index lines	Radiation	Source
1-0878	$2.98 \\ 3.10 \\ 2.16$	Molybdenum	Hanawalt, Rinn, and Frevel [1] 1938.

Additional published patterns. None.

NBS sample. The sample of rubidium sulfate was obtained from the City Chemical Corp., New York. Spectrographic analysis showed the following

impurities: 0.1 to 1.0 percent of potassium; 0.01 to 0.1 percent each of barium, calcium, cesium, and nickel; 0.001 to 0.01 percent each of sulfur, chromium, iron, sodium, silicon, and strontium; and 0.0001 to 0.001 percent each of silver, copper, magnesium, and manganese.

The sample was colorless. The indices of refraction are too close to one another to be determined by the usual liquid grain immersion method. They are in the range of 1.52.

Interplanar spacings and intensity measurements. The d-values reported by Hanawalt, Rinn, and Frevel were converted from kX to angstrom units. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Hanawalt, Rinn, and Frevel_ National Bureau of Standards	013, 020 211	211 013	204, 222 020

Structural data. Ogg [2] in 1928 determined that rubidium sulfate has the space group Pnma (No. 62), potassium sulfate-type structure, and $4(Rb_2SO_4)$ per unit cell.

Several unit-cell measurements have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

1916 Ogg and Hopwood [3]	a A 7.796 7.83 7.801	$ b \\ A \\ 5.961 \\ 5.92 \\ 5.965 $	$\begin{array}{c} c \\ A \\ 10.415 \\ 10.45 \\ 10.416 \\ at \\ 25^{\circ}C \end{array}$
--	----------------------------------	--	---

The density of rubidium sulfate calculated from the NBS lattice constants is 3.657 g/cm³ at 25°C.

References

10

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [2] A. Ogg, The crystal structure of the isomorphous sulfates of potassium, ammonium, rubidium, and cesium, Phil. Mag. 5, 354-367 (1928).
 [3] A. Ogg and F. L. Hopwood, A critical test of the crys-
- [3] A. Ogg and F. L. Hopwood, A critical test of the crystallographic law of valency volumes; a note on the crystalline structure of the alkali sulphates, Phil. Mag. 32, 518-525 (1916).
- [4] A. E. H. Tutton, Note by-, Phil. Mag. 9, 667-668 (1930).

Rubidium Sulfate, Rb₂SO₄ (orthorhombic)

hkl	1938 Hanawalt, and Fre Mo, 0.71	Rinn, vel 07 A	1958 National Bureau of Standards Cu, 1.5405 A at 25°C		
	d	Ι	d	Ι	
$200 \\ 201 \\ 112 \\ 210 \\ 103$	A 3.50 3.27	 20 5 	$\begin{matrix} A \\ 3.90 \\ 3.65 \\ 3.51 \\ 3.27 \\ 3.17 \end{matrix}$	$6 \\ 9 \\ 39 \\ 15 \\ 13$	
$211 \\ 013 \\ 020 \\ 212$	$\left.\begin{array}{c}3.11\\2.99\\\end{array}\right.$	75 100 	$\begin{cases} 3.117 \\ 3.000 \\ 2.984 \\ 2.768 \end{cases}$	$100 \\ 97 \\ 66 \\ 9$	
$\begin{array}{c} 004 \\ 203 \\ 301 \\ 104 \\ 122 \end{array}$	$ \left. \begin{array}{c} 2.61 \\ 2.52 \\ 2.46 \end{array} \right $	10 15 10	$\left\{\begin{array}{c} 2.603\\ 2.595\\ 2.522\\ (2.470\\ 2.457\end{array}\right.$	$14 \\ 18 \\ 36 \\ 13 \\ 17$	
$221 \\ 114 \\ 123 \\ 204 \\ 222$	$ \begin{array}{c} 2.29 \\ \\ 2.16 \end{array} $	15 50	$\begin{cases} 2.311 \\ 2.282 \\ 2.172 \\ \{ 2.165 \\ 2.156 \end{cases}$	$17 \\ 14 \\ 5 \\ 22 \\ 28$	
$303 \\ 214 \\ 105 \\ 223 \\ 400$	$ \begin{array}{c c} 2.07 \\ \overline{2.00} \\ 1.95 \end{array} $		$\begin{cases} 2.080 \\ 2.035 \\ 2.013 \\ \{ 1.957 \\ 1.952 \end{cases}$	$ \begin{array}{c} 11 \\ 8 \\ 11 \\ 12 \\ 13 \end{array} $	
$321 \\ 124 \\ 410 \\ 322 \\ 402 \\ 411$	$ \begin{array}{c} 1.91 \\ \\ \overline{1.83} \\ \end{array} $	8 -5 	$1.926 \\ 1.903 \\ 1.853 \\ 1.836 \\ 1.826$	$ \begin{array}{c} 10 \\ <1 \\ 1 \\ 1 \\ 2 \end{array} $	
$132 \\ 314 \\ 412 \\ 231$	1.75	15 	$1.808 \\ 1.758 \\ 1.746$	$1\\14\\8$	
$\begin{array}{c} 006 \\ 033 \\ 323 \\ 403 \\ 133 \end{array}$			$1.736 \\ 1.725 \\ 1.706 \\ 1.701 \\ 1.684$		
$125 \\ 413 \\ 116 \\ 421 \\ 422$	$ \left. \begin{array}{c} 1.66 \\ 1.63 \\ \overline{1.58} \end{array} \right. $	5 5 $\overline{5}$	$\left\{\begin{array}{c} 1.669\\ 1.635\\ 1.630\\ 1.612\\ 1.556\end{array}\right.$	$ \begin{array}{r} 4 \\ 7 \\ 6 \\ < 1 \\ < 1 \end{array} $	
$134 \\ 332 \\ 414$) (a)		$\begin{array}{c}1.547\\1.510\end{array}$	<1 <1	

* Four additional lines were omitted.

ASTM cards. None.

Additional published patterns. A calculated powder pattern with observed intensities has been published by Mooney [1].

NBS sample. The scandium phosphate was prepared at NBS by Alvin Perloff. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent each of aluminum, iron, magnesium, manganese, molybdenum, lead, and silicon.

The sample was colorless. The indices of refraction could not be determined because the particle size was too small.

Interplanar spacings and intensity measurements. The indices of the three strongest lines of the NBS pattern are as follows.

Pattern	1	2	3
National Bureau of Standards_	200	112	312

Structural data. Mooney [1] in 1956 determined that scandium phosphate has a zircon-type structure, the space group $I4_1/amd$ (No. 141), and $4(SePO_4)$ per unit cell.

$Lattice \ constants$

		a	с
$1956 \\ 1958$	Mooney [1] National Bureau of Standards	$\begin{matrix} A \\ 6.578 \\ 6.5772 \end{matrix}$	$\begin{array}{c} & A \\ 5.796 \\ 5.7937 \text{ at} \\ 25^{\circ}\text{C} \end{array}$

The density of scandium phosphate calculated from the NBS lattice constants is 3.707 g/cm^3 at 25°C .

References

[1] R. C. L. Mooney, The structure of anhydrous scandium phosphate, Acta Cryst. 9, 677 (1956).

hkl	1958 National Bureau of Standards Cu, 1.5405 A at 25°C		
	d	I	
$101 \\ 200 \\ 211 \\ 112 \\ 220$	$\begin{matrix} A \\ 4.022 \\ 3.287 \\ 2.624 \\ 2.4590 \\ 2.3252 \end{matrix}$	$5 \\ 100 \\ 6 \\ 41 \\ 7$	
$202 \\ 301 \\ 103 \\ 321 \\ 312$	$\begin{array}{c} 2.1746 \\ 2.0517 \\ 1.8538 \\ 1.7403 \\ 1.6888 \end{array}$	$17 \\ 18 \\ 8 \\ 12 \\ 36$	
$\begin{array}{c} 400 \\ 420 \\ 004 \\ 303 \\ 402 \end{array}$	$\left. \begin{array}{c} 1.6445 \\ 1.4708 \\ 1.4497 \\ 1.4300 \end{array} \right\}$	$12\\3\\4\\2$	
$332 \\ 323 \\ 204 \\ 501$	$\left. \begin{array}{c} 1.3668 \\ 1.3260 \\ 1.2816 \end{array} \right.$	$\begin{array}{c} 10 \\ 5 \\ 3 \end{array}$	
$\begin{array}{r} 413 \\ 224 \\ 521 \\ 314 \\ 512 \end{array}$	$ \left. \left. \begin{array}{c} 1.2299 \\ 1.1953 \\ 1.1783 \end{array} \right. \right. \right. \\ \left. \begin{array}{c} \end{array} \right. \\ \left. \end{array} \right. \\ \left. \begin{array}{c} \end{array} \right. \\ \left. \begin{array}{c} \end{array} \right. \\ \left. \begin{array}{c} \end{array} \right. \\ \left. \end{array} \right. \\ \left. \begin{array}{c} \end{array} \right. \\ \left. \begin{array}{c} \end{array} \right. \\ \left. \end{array} \right. \\ \left. \begin{array}{c} \end{array} \right. \\ \left. \begin{array}{c} \end{array} \right. \\ \left. \end{array} \right. \\ \left. \begin{array}{c} \end{array} \right. \\ \left. \end{array} \right. \\ \left. \left. \begin{array}{c} \end{array} \right. \\ \left. \end{array} \right. \\ \left. \begin{array}{c} \end{array} \right. \\ \left. \end{array} \right. \\ \left. \begin{array}{c} \end{array} \right. \\ \left. \end{array} \right. \\ \left. \left. \bigg \right. \\ \left. \left. \bigg \right. \\ \left. \bigg \right. \\ \left. \left. \bigg \right. \\ \left. \left. \bigg \right. \\ \left. \bigg \right. \\ \left. \left. \bigg \right. \\ \left. \bigg \right. \\ \left. \left. \bigg \right. \\ \left. \bigg \right. \\ \left. \bigg \right. \\ \left. \bigg \right. \\ \left. \left. \bigg \right. \\ \left. \bigg \right. \right. \\ \left. \bigg \right. \\ \left. \bigg \right. \\ \left. \bigg \right. \\ \left. \bigg \right. \right. \\ \left. \bigg \right. \left. \bigg \right. \right. \\ \left. \bigg \right. \\ \left. \bigg \right. \\ \left. \bigg \right. \\ \left. \bigg \right. \right. \\ \left. \bigg \right. \right. \\ \left. \left. \bigg$	9 2 6	
$\begin{array}{c} 440 \\ 600 \\ 503 \\ 404 \\ 215 \end{array}$	$\left. \begin{array}{c} 1.1628 \\ 1.0963 \\ 1.0869 \\ 1.0782 \end{array} \right\}$	2 3 2	
$532 \\ 620 \\ 523 \\ 424$	$\left. \begin{array}{c} 1.0511 \\ 1.0398 \\ 1.0312 \end{array} \right\}$	6 5 7	
$\begin{array}{c} 622\\ 325\\ 631\\ 116\\ 613 \end{array}$	$\left. \begin{array}{c} 0.9785 \\ .9668 \\ \end{array} \right\} \\ .9455 \end{array} \right\}$	$<1 \\ 2 \\ 5$	
$\begin{array}{c} 640 \\ 543 \\ 444 \\ 721 \\ 534 \end{array}$	$\left. \begin{array}{c} .9122 \\ .9067 \\ .8900 \end{array} \right.$	5 3 <1	
$712 \\ 316 \\ 633 \\ 604$	$\left. \begin{array}{c} .8857 \\ .8758 \\ \end{array} ight\} $	7 5 4	
$703 \\ 624 \\ 732$	<pre>} .8449 .8277</pre>	4 7	

ASTM cards

Card numbers	Index lines	Radiation	Source
1-0502	$3.74 \\ 2.29 \\ 1.96$	Molybdenum	Hanawalt, Rinn, and Frevel [1] 1938.
3-0851	$2.57 \\ 1.98 \\ 3.79$	Copper	Aminoff [2] 1922.
3-0940	$2.29 \\ 3.98 \\ 3.72$	Molybdenum	Dow Chemical Co.

Card number 1–0502 gives a pattern which is a mixture of the hexagonal and cubic forms of AgI.

The *d*-values on card number 3–0851 were apparently miscalculated since they do not agree with the data reported in the literature. This pattern was not included for comparison purposes since another more complete pattern was also prepared by Aminoff using iron radiation.

Additional published patterns

Source	Radiation
Aminoff [3] 1922	Iron
Wilsey [4] 1923	Molybdenum, K α
Barth and Lunde [5] 1926 ^a	Copper
Bloch and Möller [6] 1931	Copper
Wilman [7] 1940	Electron diffraction

^a No intensity data given.

NBS sample. The sample of silver iodide was prepared at NBS by precipitation from a silver nitrate solution with addition of an excess of sodium iodide. Care was necessary to prevent conversion of the hexagonal form to the cubic form through heating or abrasion. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent of silicon; 0.001 to 0.01 percent each of aluminum, barium, calcium, copper, iron, magnesium, and sodium; and 0.0001 to 0.001 percent of manganese. The color of the sample was yellow. The indices of refraction were not determined because the sample was too fine-grained. Interplanar spacings and intensity measurements. The *d*-values reported by the Dow Chemical Co., and Wilman were converted from kX to angstrom units, and the *d*-values of the Aminoff [3], Wilsey, and Bloch and Möller patterns were calculated from reported Bragg angle data. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Dow Chemical Co Aminoff [3] Wilsey Bloch and Möller Wilman National Bureau of Standards_	$110 \\ 002 \\ 110 \\ 110 \\ 002 \\ 002 \\ 002$	$100 \\ 110 \\ 112 \\ 103 \\ 110 \\ 110 \\ 110$	$\begin{array}{c} 002 \\ 112 \\ 100 \\ 112 \\ 100 \\ 100 \\ 100 \end{array}$

Structural data. Aminoff [3] in 1922 determined that hexagonal silver chloride has wurtzitetype structure, the space group P6₃mc (No. 186) and 2(AgI) per unit cell. Bloch and Möller [6] stated in 1931 that there are two other forms of silver iodide; a cubic form, alpha-AgI, having zincblende structure, usually in combination with the hexagonal form at room temperature, and a body centered cubic form which exists above 146°C.

Several unit-cell measurements have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

		a	с
		A	A
1922	Aminoff [2]	4.58	7.52
1922	Aminoff [3]	4.60	7.55
1923	Wilsey [4]	4.602	7.515
1931	Bloch and Möller [6]	4.60	7.55
1934	Kolkmeijer and van		
	Hengel [8]	4.59	7.51
1935	Helmholz [9]	4.60	7.54
1940	Wilman [7]	4.592	7.516
1949	Trillat and Laloeuf [10]	4.594	7.505
1956	Lieser [11]	4.584	7.489
1958	National Bureau of		
	Standards	4.5922	7.510 at
			$25^{\circ}C$

The density of silver iodide calculated from the NBS lattice constants is 5.683 g/cm^3 at 25° C.

hkl	Dow Chen Mo, 0.7	nical Co. 107 A	192 Amin Fe, 1.93	2 off 373 A	192 Wils Mo, 0.7	3 ey 107 A	193 Bloch and Cu, 1.54	1 Möller 418 A	194 Wilm Electror	0 an Diff.	1958 National Bu Standa Cu, 1.540 25°C	B ireau of rds 5 A at
	d	Ι	d	I	d	Ι	d	Ι	d	Ι	d	Ι
$100 \\ 002 \\ 101 \\ 102 \\ 110$	$\begin{matrix} A \\ 3.99 \\ 3.73 \\ 3.51 \\ 2.73 \\ 2.29 \end{matrix}$	$75 \\ 62 \\ 62 \\ 25 \\ 100$	$ \begin{array}{c} A\\ \overline{3.74}\\ \overline{3.53}\\ \overline{2.29}\end{array} $	s W	$\begin{matrix} A \\ 3.98 \\ 3.73 \\ 3.51 \\ 2.73 \\ 2.29 \end{matrix}$	$70 \\ 70 \\ 30 \\ 20 \\ 100$	$\begin{matrix} A \\ 3.98 \\ 3.75 \\ 3.52 \\ 2.731 \\ 2.298 \end{matrix}$	m m w s	$\begin{matrix} A \\ 3.97 \\ 3.74 \\ 3.52 \\ 2.733 \\ 2.295 \end{matrix}$	ms s m w s	$\begin{matrix} A \\ 3.98 \\ 3.75 \\ 3.51 \\ 2.731 \\ 2.296 \end{matrix}$	$61 \\ 100 \\ 38 \\ 16 \\ 83$
$103 \\ 200 \\ 112 \\ 201 \\ 202$	$2.11 \\ \overline{1.96} \\ 1.92 \\ 1.75$	$\begin{array}{c} 62\\ \overline{50}\\ 10\\ 7\end{array}$	2.16 $\overline{1.954}$	W S 	$\begin{array}{c} 2.11 \\ \overline{1.959} \\ \overline{} \end{array}$	60 80 	$\begin{array}{c} 2.118 \\ 1.992 \\ 1.961 \\ 1.924 \\ 1.759 \end{array}$	s vw s vw vw	$2.121 \\ 1.984 \\ 1.956 \\ 1.921 \\ 1.768$	mw mw ms vw vw	$2.119 \\ 1.989 \\ 1.959 \\ 1.9228 \\ 1.7574$	$31 \\ 6 \\ 51 \\ 5 \\ 7$
$203 \\ 210 \\ 211 \\ 114$	$1.55 \\ 1.51 \\ 1.47 \\$	17 5 5 	1.509	W 	1.554	20	$1.557 \\ 1.505 \\ 1.475 \\$	m vw vw	$1.557 \\ 1.497 \\ 1.482 \\$	mw m w	$1.5570 \\ 1.5031 \\ 1.4744 \\ 1.4535$	$5 \\ 4 \\ 3 \\ < 1$
$105 \\ 212 \\ 300 \\ 213 \\ 006 \\ 302$	$\left. \begin{array}{c} 1.40 \\ 1.37 \\ 1.33 \\ 1.29 \\ \end{array} \right\} \ 1.25$	$ \begin{array}{c} 12 \\ 3 \\ 10 \\ 17 \\ 7 \end{array} $	$ \begin{array}{r} 1.326 \\ 1.292 \\ 1.254 \end{array} $	w w ms	$ \begin{array}{r} 1.403 \\ \overline{1.321} \\ 1.285 \\ 1.246 \end{array} $	$ 10 \\ 10 \\ 10 \\ 10 \\ 10 $	$1.404 \\ 1.397 \\ 1.327 \\ 1.289 \\ 1.251$	<pre>} w m m m m</pre>	$1.399 \\ 1.326 \\ 1.290 \\ 1.250$	w m w m	$\left\{\begin{array}{c} 1.4052\\ 1.3957\\ 1.3258\\ 1.2888\\ 1.2515\\ 1.2500\end{array}\right.$	$ \begin{array}{c} 4 \\ 2 \\ 9 \\ 4 \\ 3 \\ 4 \end{array} $
$205 \\ 106 \\ 220 \\ 310 \\ 116 \\ 222$	1.20 1.17 }	5 3 	$ \begin{array}{r} 1.208 \\ \overline{1.145} \\ \overline{1.097} \end{array} $	vw w ms	$ \begin{array}{r} 1.192 \\ \overline{1.145} \\ \overline{1.095} \\ \end{array} $	7 1	$ \begin{array}{c} 1.199\\ \overline{1.149}\\\\ 1.098 \end{array} $	w w m	1.152 1.099	 mw m	$ \begin{array}{r} 1.1987\\ 1.1943\\ 1.1480\\ 1.1029\\ 1.0989 \end{array} $	2 1 2 1 2 2
$311 \\ 304 \\ 215$							1.062	 W			$ \begin{array}{r} 1.0916 \\ 1.0831 \\ 1.0626 \end{array} $	$<1 < 1 < 1 \\ 2$
206 312 313	}				1.059	5	1.059 1.010	w w			1.0589	1

Silver Iodide (iodyrite), AgI (hexagonal)

References

- [1] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [2] G. Aminoff, Über die Kristallstruktur von AgJ, Z. Krist. 57, 180–185 (1922).
- [3] G. Aminoff, Über die Kristallstruktur von Jodsilber, Marshit (CuJ) und Miersit (4AgJ·CuJ), Geol. Fören. i Stockholm Förh. 44, 444-481 (1922).
- R. B. Wilsey, The crystalline structures of silver iodide, Phil. Mag. 46, 487–496 (1923).
 T. Barth and G. Lunde, Beiträge zur Kenntnis der Mischkristalle, Z. physik. Chem. 122, 293–334 (1926).
- [6] R. Bloch and H. Möller, Über die Mokifikationen des Jodsilbers, Z. physik. Chem. 152, 245-268 (1931).

[7] H. Wilman, The structure and orientation of silver halides, Proc. Phys. Soc. London 52, 323-347 (1940). ł,

0.1 CO.

SH

m 177

st 4

d

R

- [8] N. H. Kolkmeijer and J. W. A. van Hengel, Über das reguläre und das hexagonale Silberjodid, Z. Krist. 88, 317-322 (1934).
- [9] L. Helmholz, The crystal structure of hexagonal silver iodide, J. Chem. Physics 3, 740-747 (1935).
- [10] J. J. Trillat and A. Laloeuf, Etude, par diffraction électronique, de la structure des fumées d'iodure d'argent et de chlorure d'ammonium, J. chim. phys. 46, 168–173 (1949).
- [11] K. H. Lieser, Über einige Untersuchunger am Silberjodid im Hinblick auf die Fehlordnung, Z. physik. Chem. 5, 125-153 (1956).

Silver Perrhenate, AgReO₄ (tetragonal)

ASTM cards

5

2

1 1 2

1

silver

1940).

er des Krist

silver

action iodure phys

Silberbysik

Card number	Index lines	Radiation	Source
4-0565	$3.20 \\ 1.63 \\ 1.29$	Copper	Buschendorf [1] 1933.

Additional published patterns. None.

NBS sample. The sample of silver perrhenate was prepared at NBS from silver nitrate and potassium perrhenate. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of platinum and silicon; 0.001 to 0.01 percent each of aluminum, chromium, and magnesium; and 0.0001 to 0.001 percent each of barium, calcium, copper, iron, manganese, and lead.

The color of the sample was light tan and it was optically positive. The indices of refraction could not be determined by the usual liquid grain immersion method because the sample reacted with the higher index liquids.

Interplanar spacings and intensity measurements. The *d*-values of the Buschendorf pattern were calculated from reported Bragg angle data. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Buschendorf National Bureau of Standards_	$\begin{array}{c} 112\\112\end{array}$	$\begin{array}{c} 312\\ 200 \end{array}$	$\begin{array}{c} 316 \\ 204 \end{array}$

Structural data. Buschendorf [1] in 1933 determined that silver perhenate has scheelite-type structure, the space group $I4_1/a$ (No. 88), and $4(AgReO_4)$ per unit cell.

The unit-cell measurements reported by Buschendorf have been converted from kX to angstrom units for comparison with the NBS values.

Lattice	constants
---------	-----------

1933 Buschendorf [1] 1958 National Bureau of Standards	$\begin{array}{c} a \\ \hline A \\ 5.360 \\ 5.378 \end{array}$	$\frac{c}{\begin{array}{c} A \\ 11.940 \\ 11.805 \text{ at} \\ 25^{\circ}\text{C} \end{array}}$
--	--	---

The density of silver perchanate calculated from the NBS lattice constants is 6.964 g/cm³ at 25°C.

References

 F. Buschendorf, Die Kristallstruktur des Silberperrhenats, Z. physik. Chem. 20, 237–244 (1933).

hkl	1933 Buschen Cu, 1.54	dorf 18 A	1958 National Bu Standa Cu, 1.5405 A	rdau of rds . at 25°C
-	d	Ι	d	Ι
$ \begin{array}{r} 101 \\ 112 \\ 004 \\ 200 \\ 202 \end{array} $	4 3.19 2.96 2.67	vvs m s	$\begin{matrix} A \\ 4.89 \\ 3.20 \\ 2.953 \\ 2.689 \\ 2.449 \end{matrix}$	$12 \\ 100 \\ 15 \\ 31 \\ 1$
$211 \\ 114 \\ 213 \\ 204 \\ 220$	$2.36 \\ \\ 1.987 \\ 1.893$	vw vs m	$2.358 \\ 2.332 \\ 2.053 \\ 1.987 \\ 1.901$	$4 \\ 1 \\ < 1 \\ 25 \\ 9$
$116 \\ 215 \\ 312 \\ 224 \\ 008$	$1.747 \\ 1.682 \\ 1.629 \\ 1.598 \\ 1.478$	vs vw vvs s W	$1.747 \\ 1.685 \\ 1.634 \\ 1.598 \\ 1.476$	$ \begin{array}{c} 12 \\ 1 \\ 16 \\ 8 \\ <1 \end{array} $
$305 \\ 323 \\ 400 \\ 208 \\ 316$	$1.426 \\ 1.389 \\ 1.342 \\ 1.291 \\ 1.286$	VW VW W W VVS	$1.428 \\ 1.3952 \\ 1.3462 \\ 1.2934 \\ 1.2862$	$<1 < 1 < 1 \\ 2 \\ 4 \\ 5$
$325 \\ 332 \\ 413 \\ 404 \\ 420$	$\frac{1.235}{1.204}$	 m m	$1.2612 \\ 1.2400 \\ 1.2394 \\ 1.2240 \\ 1.2031$	$<1 \\ 1 \\ 3 \\ 3 \\ 2$
$228 \\ 334 \\ 1 \cdot 1 \cdot 10 \\ 424$	$\left. \begin{array}{c} 1.201 \\ 1.164 \\ 1.125 \\ 1.111 \end{array} \right.$	m m w vs	$\left\{\begin{array}{c}1.1666\\1.1652\\1.1277\\1.1140\end{array}\right.$	$\begin{array}{c} \overline{3}\\ 2\\ 1\\ 2\end{array}$
$336 \\ 512 \\ 514 \\ 505 \\ 3 \cdot 1 \cdot 10$	$ \begin{array}{r} 1.064 \\ 1.036 \\ 0.9925 \\ \overline{.9670} \end{array} $	m vs w 	$1.0655 \\ 1.0383 \\ 0.9933 \\ .9788 \\ .9696$	$1 < 1 < 1 < 1 < 1 < 1 < 1 \\ 1 & 1 \end{pmatrix}$
$ \begin{array}{r} 440 \\ 428 \\ 516 \\ 2 \cdot 0 \cdot 12 \\ 532 \end{array} $.9296	 VS 	.9509 .9322 .9292 .9240 .9112	$<1 \\ 1 \\ <1 \\ 1 \\ 1$
$507 \\ 444 \\ 600 \\ 1 \cdot 0 \cdot 13 \\ 2 \cdot 2 \cdot 12$	}		. 9067 . 9047 . 8962 . 8737	<1 <1 <1 1
$3 \cdot 3 \cdot 10 \\ 604 \\ 620 \\ 536$			$. 8638 \\ . 8579 \\ . 8502 \\ . 8350 $	<1 <1 <1 ·<1
$624 \\ 448 \\ 5 \cdot 1 \cdot 10$.8169 .7990 .7863	

Sodium Carbonate Monohydrate (thermonatrite), Na₂CO₃·H₂O (orthorhombic)

ASTM cards

Card numbers	Index lines	Radiation	Source
1-1015	$2.76 \\ 2.37 \\ 2.67$	Molybdenum	Hanawalt, Rinn, and Frevel [1] 1938.
$2-0878 \\ 2-0879$	$2.73 \\ 2.82 \\ 2.63$	Copper	British Museum.

Additional published patterns. None.

NBS sample. The sample of sodium carbonate was obtained from the J. T. Baker Chemical Co., Phillipsburg, N. J. The monohydrate was obtained by crystallizing from solution and dehydrating at 40°C for 20 hr. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent each of aluminum, calcium, magnesium, and silicon; and 0.0001- to 0.001-percent iron.

The sample was colorless and optically negative. The indices of refraction are $N\alpha = 1.421$, $N\beta = 1.505$, and $N\gamma = 1.524$. 2V could not be determined because the particle size of the sample was too small.

Interplanar spacings and intensity measurements. The *d*-values reported by Hanawalt, Rinn, and Frevel and by the British Museum were converted from kX to angstrom units. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Hanawalt, Rinn, and Frevel British Museum National Bureau of Standards	$202, 012 \\ 202, 012 \\ 202$	410, 121 121	311, 400, 112 020 012

Structural data. Harper [2] in 1936 determined that sodium carbonate monohydrate has the space group $Pca2_1$ (No. 29) and $4(Na_2CO_3 \cdot H_2O)$ per unit cell. Sodium carbonate monohydrate is used as a structure-type.

The unit-cell measurements reported by Harper have been converted from kX to angstrom units for comparison with the NBS values.

Y	
Lattice	constants
2.0000000	00100000000

		a	<u>b</u>	с
$1936 \\ 1958$	Harper [2] National	$\begin{smallmatrix}A\\10.743\end{smallmatrix}$	$\stackrel{A}{5.254}$	$egin{array}{c} A \\ 6.453 \end{array}$
1000	Bureau of Standards	10.72	5.249	6.469 at 25°C

hkl	193 Hanav Rinn, Frey Mo, 0.7	88 walt, and vel '107 A	British Museum British Museum Cu,				
	d	I	d	Ι	d	Ι	
$200 \\ 010 \\ 110 \\ 201 \\ 211$	$\begin{vmatrix} A \\ 5.3 \\ \overline{4.16} \\ \end{vmatrix}$	31 	$\begin{matrix} A \\ 5.30 \\ 4.63 \\ 4.08 \\ 3.15 \end{matrix}$	$ \begin{array}{c} 60 \\ 40 \\ 40 \\ 40 \\ 40 \end{array} $	$\begin{cases} A \\ 5.35 \\ 5.24 \\ 4.72 \\ 4.12 \\ 3.24 \end{cases}$	$20 \\ 22 \\ 2 \\ 9 \\ 3$	
	$\left. \begin{array}{c} \\ \\ \\ 2.77 \end{array} \right\}$	 100	$3.02 \\ 2.96 \\ 2.82 \\ 2.74$		$\left\{\begin{array}{c}\\ 2.768\\ 2.753\end{array}\right.$	 100 61	
$\begin{array}{c} 311 \\ 400 \\ 112 \\ 020 \\ 120 \end{array}$	$\left.\begin{array}{c}2.68\\ \bar{2}.\bar{5}\bar{6}\end{array}\right $	44 -3	2.64	 80 	$\left\{\begin{array}{c} 2.684\\ 2.678\\ 2.667\\ 2.622\\ 2.550\end{array}\right.$	$50 \\ 53 \\ 8 \\ 8 \\ 2$	
$\begin{array}{c} 401 \\ 212 \\ 410 \\ 121 \\ 220 \end{array}$	$\left. \right\} \begin{array}{c} 2.47 \\ 2.37 \\ \end{array} \right.$	25 63 	$ \begin{array}{c} 2.47 \\ \left\{\begin{array}{c} 2.40 \\ 2.33 \\ \end{array}\right. $	70 70 80	$\left\{\begin{array}{l} 2.475\\ 2.448\\ 2.386\\ 2.372\\ 2.356\end{array}\right.$	$30 \\ 22 \\ 10 \\ 62 \\ <1$	
$ \begin{array}{r} 411 \\ 312 \\ 320 \\ 402 \end{array} $	$ \begin{array}{r} \overline{2.24} \\ 2.18 \\ 2.12 \\ 2.06 \end{array} $	$ar{20}{15}{3}{18}$	$\left. \begin{array}{c} 2.28 \\ 2.21 \\ 2.14 \\ \end{array} \right\} 2.09$	$ \begin{array}{r} 40 \\ 60 \\ 40 \\ 20 \end{array} $	$\begin{cases} 2.238 \\ 2.181 \\ \{ 2.114 \\ 2.065 \end{cases}$		
$\begin{array}{c} 022 \\ 321 \\ 122 \\ 510 \\ 113 \end{array}$	} 2.00	31 	2.04 1.98 	60 70 	$\begin{array}{c} 2.036 \\ \{ \begin{array}{c} 2.010 \\ 2.004 \\ 1.985 \\ 1.961 \end{array} \right.$	$egin{array}{c} 1 \\ 26 \\ 20 \\ 4 \\ 3 \end{array}$	
$\begin{array}{c} 412 \\ 222 \\ 511 \\ 420 \\ 213 \end{array}$	} 1.91	8 	 1.90 	 40 	$\left\{\begin{array}{c} 1.920 \\ 1.905 \\ 1.898 \\ 1.875 \\ 1.869 \end{array}\right.$	$\begin{array}{c} 7\\ 3\\ 4\\ 3\\ 2\end{array}$	
$\begin{array}{c} 600 \\ 322 \\ 030 \\ 313 \\ 130 \end{array}$	$\left.\begin{array}{c}1.78\\\\1.74\end{array}\right\rangle$	8 8	$\left\{\begin{array}{c} 1.80 \\ 1.76 \\ \overline{1.73} \end{array}\right.$	$\begin{array}{c} 20\\ 60\\ \bar{4}\bar{0}\end{array}$	$\begin{array}{c} 1.787 \\ 1.770 \\ 1.750 \\ \left\{ \begin{array}{c} 1.741 \\ 1.7262 \end{array} \right. \end{array}$	$ \begin{array}{c} 7 \\ 5 \\ 4 \\ 7 \\ 2 \end{array} $	
$\begin{array}{c} 601 \\ 512 \\ 610 \\ 403 \\ 230 \end{array}$	$\left. \begin{array}{c}\\\\ 1.67 \end{array} \right.$	 8B	 1.67	 50	$ \begin{array}{r} 1.7220 \\ 1.6926 \\ 1.6802 \\ 1.6639 \\ \end{array} $	$\begin{array}{c}1\\3\\6\\8\end{array}$	
$123 \\ 422 \\ 004 \\ 231 \\ 413$	1.65 } 1.61	8 25	1.63 1.60	50 80	$ \begin{array}{c} 1.6466\\ 1.6226\\ 1.6174\\ 1.6083 \end{array} $	$9 \\ 5 \\ 14 \\ 13$	

C

^a Six additional lines were omitted.

^b Twenty-two additional lines were omitted.

The density of sodium carbonate monohydrate calculated from the NBS lattice constants is 2.262 g/cm³ at 25° C.

References

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [2] J. P. Harper, Crystal structure of sodium carbonate monohydrate, Na₂CO₃·H₂O, Z. Krist. 95, 266–273 (1936).

Strontium Formate, Sr(HCO₂)₂ (orthorhombic)

ASTM cards

3 2

75472

Card number	Index lines	Radiation	Source
1-0221	$5.4 \\ 3.30 \\ 3.01$	Molybdenum	Hanawalt, Rinn, and Frevel [1] 1938.

Additional published patterns. None.

NBS sample. The sample of strontium formate was obtained from the City Chemical Corp., New York. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of barium and sodium; 0.001 to 0.01 percent each of calcium, iron, magnesium, and silicon; and 0.0001 to 0.001 percent each of aluminum, cesium, copper, potassium, and manganese.

The sample was colorless and optically positive with the indices of refraction of N α =1.552, N β =1.556, and N γ =1.571. 2V \cong 60°.

Interplanar spacings and intensity measurements. The *d*-values reported by Hanawalt, Rinn, and Frevel were converted from kX to angstrom units. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Hanawalt, Rinn, and Frevel National Bureau of Standards_	$\begin{array}{c} 110\\110\end{array}$	$\begin{array}{c} 121 \\ 121 \end{array}$	$\begin{array}{c} 031 \\ 112 \end{array}$

Structural data. Nitta [2] in 1928 determined that strontium formate has the space group $P2_12_12_1$ (No. 19) and $4[Sr(HCO_2)_2]$ per unit cell.

The unit-cell measurements reported by Nitta have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

1928 1958	Nitta [2] National Bureau of Standards	$\begin{array}{c} a \\ \hline A \\ 6.87 \\ \hline 6.872 \end{array}$	$\frac{b}{8.73}$ 8.754	$ \begin{array}{c} c\\ \hline A\\ 7.25\\ \hline 7.264 \text{ at}\\ 25^{\circ}\text{C} \end{array} $
--------------	--	--	------------------------	---

The density of strontium formate calculated from the NBS lattice constants is 2.700 g/cm³ at 25°C.

hkl	1938 Hanawalt, and Fre Mo, 0.71	Rinn, vel 07 A	1958 National Bureau of Standards Cu, 1.5405 A at 25°	
	d	Ι	d	Ι
 011 110	$ \begin{array}{r} A \\ 15.3 \\ 10.8 \\ 6.4 \\ \overline{5.5} \\ \end{array} $	$\begin{array}{r} 20\\ 40\\ 40\\ 1\overline{00} \end{array}$	A 5.60 5.42	 33 100
	$ \begin{array}{r} 4.61 \\ \overline{4.32} \\ 3.92 \\ \end{array} $	10 10 10 	$ \begin{array}{c} 4.38 \\ 4.33 \\ \overline{3.69} \end{array} $	$\overline{10}$ $\overline{5}$ $\overline{-4}$
$\begin{array}{c} 002 \\ 200 \\ 121 \\ 102 \\ 210 \end{array}$	3.66 3.31 	20 50 	$\begin{array}{r} 3.63 \\ 3.438 \\ 3.293 \\ 3.212 \\ 3.200 \end{array}$	$\begin{array}{c}14\\8\\65\\4\\6\end{array}$
$112 \\ 211 \\ 022 \\ 031 \\ 220$	2.91 2.71	20 50	$\begin{array}{r} 3.015 \\ 2.928 \\ 2.796 \\ 2.708 \\ 2.704 \end{array}$	$ \begin{array}{c} 63 \\ 42 \\ <1 \\ 48 \\ 5 \end{array} $
$202 \\ 013 \\ 310 \\ 040 \\ 222$	2.51 2.35 2.22	40 30 30 	$\begin{array}{c} 2.497 \\ 2.334 \\ 2.215 \\ 2.189 \\ 2.169 \end{array}$	$32 \\ 15 \\ 10 \\ 4 \\ 14$
$231 \\ 123 \\ 141 \\ 321 \\ 213$	2.12 2.02 $\overline{1.95}$		2.127 2.026 2.004 1.955 1.930	$25 \\ 28 \\ 18 \\ 23 \\ 2$
$312 \\ 042 \\ 033 \\ 240 \\ 004$	1.88	20	$\begin{array}{c} 1.8915 \\ 1.8746 \\ 1.8638 \\ 1.8468 \\ 1.8164 \end{array}$	$\begin{array}{c}15\\4\\8\\4\\1\end{array}$
$104 \\ 114 \\ 400 \\ 150 \\ 024$			$\begin{array}{c} 1.7558 \\ 1.7217 \\ 1.7175 \\ 1.6966 \\ 1.6777 \end{array}$	<1 11 1 3
$\begin{array}{c c} 242 \\ 233 \\ 204 \\ 420 \\ 143 \end{array}$	1.64	10 	$\begin{array}{c} 1.6450 \\ 1.6377 \\ 1.6050 \\ 1.5999 \\ 1.5810 \end{array}$	$\begin{bmatrix} 4\\11\\6\\4\\7 \end{bmatrix}$
$ \begin{array}{r} 402 \\ 341 \\ 152 \\ 251 \\ 224 \end{array} $	1.54	10 	$\begin{array}{c} 1.5524 \\ 1.5461 \\ 1.5374 \\ 1.5253 \\ 1.5078 \end{array}$	$\begin{array}{c} 6\\ 5\\ 4\\ 2\\ 1\end{array}$

Strontium Formate, Sr (HCO₂)₂ (orthorhombic) —Continued

hkl	1938 Hanawalt, and Fre Mo, 0.71	Rinn, evel 107 A	1958 National B of Standa Cu, 1.5405 A	Burcau ards . at 25°C
	d	I	d	Ι
	А		A	
243			1.4675	1
422			1.4636	1
060			1.4590	1
$\begin{array}{c} 431\\ 342\end{array}$	$\Big\}$ 1.460	15	1.4503	8
252 015	}		1.4332	1
314	1.403	10	1.4042	7
350			1.3906	4
510			1.3571	2
324	1.357	15	1.3536	6

References

- [1] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [2] I. Nitta, The crystal structure of some rhombic formates, Sci. Papers Inst. Phys. Chem. Research Tokyo 9, 151-163 (1928).

Strontium Formate Dihydrate, Sr(CHO₂) 2·2H₂O (orthorhombic)

ASTM cards

Card number	Index lines	Radiation	Source
7-756ª	$6.3 \\ 3.15 \\ 2.85$	Molybdenum	Hanawalt, Rinn, and Frevel [1] 1938.

 $^{\rm a}\,{\rm This}\,$ ASTM card is not listed in the alphabetical section of the index.

Additional published patterns. None.

NBS sample. The sample of strontium formate was obtained from the City Chemical Corp., New York. The dihydrate was formed by recrystallization from a water solution. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of barium and sodium; 0.001 to 0.01 percent each of calcium, iron, magnesium, and silicon; and 0.0001 to 0.001 percent each of aluminum, cesium, copper, potassium, and manganese. The sample was colorless and optically negative with the indices of refraction of N α =1.483, N β = 1.521, and N γ =1.536. 2V \cong 60°.

Interplanar spacings and intensity measurements. The *d*-values reported by Hanawalt, Rinn, and Frevel were converted from kX to angstrom units. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Hanawalt, Rinn, and Frevel National Bureau of Standards_	$\begin{array}{c} 110\\110\end{array}$	$\begin{array}{c} 131 \\ 122 \end{array}$	$221, 122 \\ 021$

Structural data. Nitta [2] in 1928 determined that strontium formate dihydrate has the space group $P2_12_12_1$ (No. 19) and $4[Sr(CHO_2)_2\cdot 2H_2O]$ per unit cell. The unit-cell measurements reported by Nitta have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

1928 1958	Nitta [2] National Bureau of Standards	<i>a</i> 7.31 7.327	$\frac{b}{12.02}$ 12.06	$ \begin{array}{c} c\\ \overline{}\\ \overline{}\\ \overline{}\\ 7.14\\ 7.154 \mathrm{at}\\ 25^{\circ}\mathrm{C}\\ \end{array} $
--------------	--	---------------------------	-------------------------	---

The density of strontium formate dihydrate calculated from the NBS lattice constants is 2.245 g/cm³ at 25° C.

hkl	1938 Hanawalt, and Fre Mo, 0.71	Rinn, evel 07 A	1958 National E of Stand Cu, 1.5405 A	Bureau ards . at 25°C
	d	Ι	d	Ι
110 011 020	$\begin{array}{c} A\\ 6.3\\ \hline 5.6\end{array}$	100 13	$\begin{matrix} A \\ 6.28 \\ 6.16 \\ 6.02 \end{matrix}$	100 14 40
$ \begin{array}{c c} 111\\ 021\\ \hline 121\\ 200\\ \end{array} $	$\left. \begin{array}{c} 4.69 \\ 4.26 \\ 3.92 \\ 3.68 \end{array} \right.$	$47 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13$	$\begin{cases} 4.72 \\ 4.61 \\ \overline{3.90} \\ 3.66 \end{cases}$	$\begin{array}{c}21\\50\\\bar{2}\bar{3}\\4\end{array}$
$\begin{array}{c} 002 \\ 210 \\ 031 \\ 012 \\ 201 \end{array}$	3.57	13	$3.58 \\ 3.50 \\ 3.44 \\ 3.26$	$\begin{array}{c} 16 \\ 1 \\ 2 \\ 6 \end{array}$
$ \begin{array}{r} 102 \\ 131 \\ 220 \\ 112 \\ 221 \\ 122 \end{array} $	$\left. \begin{array}{c} 3.16\\\\ 2.86 \end{array} \right\}$	83 67	$\begin{array}{c} 3.215\\ 3.160\\ 3.129\\ 3.106\\ \left\{\begin{array}{c} 2.868\\ 2.836\end{array}\right.\end{array}$	$ 38 \\ 43 \\ 44 \\ 46 \\ 48 \\ 53 $
$\begin{array}{c} 041 \\ 230 \\ 141 \\ 202 \end{array}$	2.62		$2.779 \\ 2.708 \\ 2.598 \\ 2.560$	30 < 1 9 7
$\begin{array}{c} 231 \\ 212 \\ 310 \\ 222 \\ 013 \end{array}$	$ \left. \begin{array}{c} 2.52 \\ \\ 2.35 \end{array} \right. \right\} $	13 $\overline{13}$	$\left\{\begin{array}{c} 2.533\\ 2.504\\ 2.394\\ \{ 2.355\\ 2.340\end{array}\right.$	$ \begin{array}{r} 9 \\ 11 \\ 4 \\ 27 \\ 11 \end{array} $
$240 \\ 150 \\ 051 \\ 311 \\ 113$	} 2.27	7	$\left\{\begin{array}{c} 2.327\\ 2.294\\ 2.289\\ 2.270\\ 2.223\end{array}\right.$	
$241 \\ 151 \\ 321 \\ 123 \\ 033$	2.20 2.12 	47 27 	$\begin{array}{c} 2.214 \\ 2.182 \\ 2.158 \\ 2.122 \\ 2.050 \end{array}$	$34 \\ 28 \\ 9 \\ 21 \\ 5$
$302 \\ 331 \\ 312 \\ 133 \\ 242$	} 1.99	 53 	$\begin{cases} 2.017 \\ 2.004 \\ 1.989 \\ 1.975 \\ 1.952 \end{cases}$	$ \begin{array}{c} 11 \\ 14 \\ 13 \\ 8 \\ 1 \end{array} $
$\begin{array}{c} 061 \\ 152 \\ 322 \\ 223 \\ 043 \end{array}$	1.91 	20 	1.9351.9301.9121.8971.871	$\begin{array}{c}4\\4\\5\\1\\6\end{array}$
$341 \\ 400 \\ 143 \\ 410 \\ 004$	<pre></pre>	27 7	$\begin{cases} 1.834 \\ 1.832 \\ 1.812 \\ 1.789 \end{cases}$	9 9 10 10

ned aee ,0] ted

'om

-

at C

eal-245

(orthorhombic)

Strontium Formate Dihydrate, Sr(CHO₂)₂·2H₂O Strontium Formate Dihydrate, Sr(CHO₂)₂·2H₂O (orthorhombic)—Continued

hkl	1938 Hanawalt, and Fre Mo, 0.71	Rinn, evel 07 A	1958 National E of Stand Cu, 1.5405 A	Bureau ards . at 25°C
	<i>d</i>	Ι	<i>d</i>	Ι
$\begin{array}{c} 014 \\ 260 \\ 420 \\ 062 \\ 104 \end{array}$	A } 1.75	 7 	$\begin{matrix} A \\ 1.768 \\ 1.762 \\ 1.752 \\ 1.737 \end{matrix}$	$5\\11\\6\\12$
$\begin{array}{c} 024 \\ 261 \\ 421 \\ 342 \\ 124 \\ 351 \end{array}$	1.70 } 1.67	 13 13	1.715 1.711 1.703 1.676 1.669	$3 \\ 5 \\ 12 \\ 5 \\ 5 \\ 5$
$153 \\ 402 \\ 412 \\ 214 \\ 262$	1.58	 -7	$1.652 \\ 1.640 \\ 1.616 \\ 1.593 \\ 1.580$	$ \begin{array}{r} 3 \\ 5 \\ 2 \\ 5 \\ 6 \end{array} $
$\begin{array}{c} 072 \\ 360 \\ 352 \\ 253 \\ 044 \end{array}$	} }		1.5518 1.5470 1.5384	$2 \\ 3 \\ 1$
$\begin{array}{r} 441 \\ 361 \\ 144 \\ 163 \\ 343 \end{array}$	1.52	7	$1.5288 \\ 1.5176 \\ 1.5060 \\ 1.5038 \\ 1.4844$	$ \begin{array}{c} 6 \\ 3 \\ 2 \\ 2 \\ 3 \end{array} $
$510 \\ 304 \\ 413 \\ 520 \\ 362$	}		$1.4542 \\ 1.4423 \\ 1.4244$	3 9 1
$\begin{array}{c} 324\\ 353\end{array}$			$\begin{array}{c}1.4031\\1.3930\end{array}$	$\frac{1}{3}$

References

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemi-cal analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
 I. Nitta, The crystal structure of some rhombic for-mates, Sci. Papers Inst. Phys. Chem. Research Tokyo 9, 151-163 (1928).
- - 57

Strontium Iodide Hexahydrate, SrI₂·6H₂O (trigonal)

ASTM cards

Card numbers	Index lines	Radiation	Source
2-0269	$\begin{array}{r} 4.21 \\ 3.71 \\ 2.79 \end{array}$	Copper	Herrmann [1] 1931.
10369	$4.34 \\ 3.85 \\ 2.38$	Molybdenum	Hanawalt, Rinn, and Frevel [2] 1938.

Additional published patterns. None.

NBS sample. The sample of strontium iodide was obtained from the City Chemical Corp., New York. The hexahydrate was prepared by crystallization from a water solution. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of barium, calcium, and sodium; 0.001 to 0.01 percent each of aluminum, iron, potassium, and lithium; and 0.0001 to 0.001 percent each of silver, copper, magnesium, manganese, and silicon. The sample was colorless and optically negative. The indices of refraction are $N_0 = 1.649$ and $N_e = 1.632.$

Interplanar spacings and intensity measurements. The d-values reported by Hanawalt, Rinn, and Frevel were converted from kX to angstrom units and the *d*-values of the Herrmann pattern were calculated from reported Bragg angle data. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Herrmann	110,001	101	2 10, 201
National Bureau of	110, 001	101	211
Standards	110	101	211

Structural data. Strontium iodide hexahydrate was found to be isostructural with strontium chloride hexahydrate by Herrmann [1] in 1931. The structure of strontium chloride-type substances was determined by Jensen [3] in 1940. Strontium iodidehexahydrate has the space group P321 (No. 150) with $1(SrI_2 \cdot 6H_2O)$ per unit cell.

The unit-cell measurements reported by Herrmann have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

$1931 \\ 1958$	Herrmann [1] National Bureau of	a A 8.52 8.604	$\frac{c}{4.29}$
1300	Standards	8.604	$\begin{array}{r} 4.268\mathrm{at}\ 25^\circ\mathrm{C} \end{array}$

The density of strontium iodide hexahydrate calculated from the NBS lattice constants is 2.727 g/cm^3 at 25°C.

References

[1] Z. Herrman, Über die Strukturen de Strontiumjodid-, Calciumchlorid-, und Calciumbromid-hexahydrate, Z.

hkl. hex.	193 Herrm Cu, 1.5	1931 19 Han Rint Herrmann Fr u, 1.5418 A Mo, 0		1938 Hanawalt, Rinn, and Frevel Mo, 0.7107 A		al of ds A at
	d	Ι	d	Ι	d	Ι
$ \begin{array}{r} 110 \\ 001 \\ 101 \\ 111 \\ 210 \\ 201 \end{array} $	$\begin{array}{c} A \\ \hline A \\ 2 \\ 4.21 \\ 3.71 \\ 3.03 \\ 2.79 \end{array}$	s s m s	$\begin{array}{c} A \\ 4.35 \\ 3.86 \\ 3.11 \\ 2.87 \end{array}$	$100 \\ 86 \\ 34 \\ 56$	$\begin{matrix} A \\ \{ \ 4.30 \\ 4.27 \\ 3.70 \\ 3.032 \\ \{ \ 2.818 \\ 2.808 \end{matrix} \end{matrix}$	$100 \\ 14 \\ 52 \\ 26 \\ 5 \\ 25$
$\begin{array}{c} 300 \\ 211 \\ 220 \\ 301 \\ 002 \end{array}$	$2.44 \\ 2.33 \\ \overline{2.14} \\$	m s m	2.492.382.232.15	$57 \\ 71 \\ 11 \\ 23 \\$	$2.486 \\ 2.351 \\ 2.153 \\ 2.147 \\ 2.136$	$27 \\ 42 \\ 8 \\ 10 \\ 6$
$ \begin{array}{r} \overline{221} \\ 112 \\ 311 \\ 401 \end{array} $	$ \begin{array}{c c} 2.05 \\ 1.93 \\ \hline 1.83 \\ 1.70 \\ \end{array} $	w s m m	$ \begin{array}{r} 1.98 \\ 1.88 \\ 1.83 \\ 1.73 \end{array} $	$\begin{array}{c} \overline{29} \\ 6 \\ 11 \\ 11 \end{array}$	$ \begin{array}{r} 1.922 \\ 1.912 \\ 1.861 \\ 1.708 \end{array} $	$\begin{array}{r} \overline{2} \\ 10 \\ 13 \\ 4 \end{array}$
$ \begin{array}{c} \bar{410} \\ 302 \\ 321 \\ 411 \\ 222 \end{array} $	$ \left. \begin{array}{c} 1.61 \\ 1.58 \\ 1.51 \end{array} \right \right\} $	s m w	$1.66 \\ 1.63 \\ 1.60 \\ 1.56 \\ 1.54$	$ \begin{array}{c} 11 \\ 17 \\ 6 \\ 6 \\ 6 \\ 6 \end{array} $	$ \left\{ \begin{array}{c} 1.626 \\ 1.618 \\ 1.586 \\ \left\{ \begin{array}{c} 1.519 \\ 1.515 \end{array} \right. \right. \right. $	$\begin{array}{r} -7\\7\\3\\2\\4\end{array}$
$\begin{array}{c} 330 \\ 420 \\ 501 \\ 103 \\ 113 \end{array}$	$\left. \right\} \left. \left. \left\{ 1.48 \\ 1.40 \\ \right\} \right\} \right\}$	w m 			$ \left\{\begin{array}{c} 1.434\\ 1.408\\ 1.397\\ 1.350 \end{array}\right. $	7 < 1 1 < 1
$510 \\ 421 \\ 203 \\ 412 \\ 511$	$\left. \begin{array}{c} & & \\ & 1.33 \\ & 1.29 \\ & 1.27 \end{array} \right $	 m m m	1.321 	 6 	$1.337 \\ 1.3287 \\ 1.2934 \\ 1.2768$	<1 3 4 <1
$\begin{array}{c} 213 \\ 600 \\ 520 \\ 332 \\ 431 \end{array}$					$1.2699 \\ 1.2424 \\ 1.1933 \\ 1.1905 \\ 1.1778$	$2 < 1 \\ 1 < 1 < 1 < 1 < 1$
$\begin{array}{c} 313 \\ 403 \\ 611 \\ 323 \\ 440 \end{array}$					$1.1719\\1.1309\\1.0981\\1.0936\\1.0751$	$ \begin{array}{c} 1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \end{array} $
$ \begin{array}{c c} 602 \\ 004 \\ 441 \\ 522 \\ 114 \\ 622 \end{array} $	}				$1.0736 \\ 1.0673 \\ 1.0419 \\ 1.0355$	<1 <1 <1 <1
$620 \\ 701$	}				1.0331	<1

- anorg. allgem. Chem. 197, 212–218 (1931).
 [2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [3] A. T. Jensen, On the structure of SrCl₂·6H₂O, Kgl. Danske Videnskab. selskab., Mat. fys Medd. 17, No. 9 (1940).

Tantalum Silicide, TaSi₂ (hexagonal)

ASTM cards. None. Additional published patterns

Source	Radiation
Wallbaum [1] 1941	Cobalt, $K\alpha$

NBS sample. The sample of tantalum silicide was prepared at NBS by Raymond F. Walker and Sylvanus F. Holley [2] by solid-state reaction of the elements at 1,300°C for 3 hr. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent each of aluminum, chromium, copper, iron, magnesium, nickel, and titanium; and 0.0001 to 0.001 percent each of silver, calcium, and manganese. The sample was a dark gray metallic powder.

Interplanar spacings and intensity measurements. The *d*-values reported by Wallbaum have been converted from kX to angstrom units. The indices of the three strongest lines of each pattern are as follows:

Pattern]	1	2	3
Wallbaum [1] National Bureau of Standards_	$\begin{array}{c} 111\\ 101 \end{array}$	$\begin{array}{c} 301 \\ 111 \end{array}$	$223 \\ 112$

Structural data. Borén [3] in 1933 determined the structure of chromium silicide. Wallbaum [1] in 1941 found that tantalum silicide has chromium silicide-type structure, the space group $P6_222$ (No. 180), and $3(TaSi_2)$ per unit cell.

The unit-cell measurements reported by Wallbaum have been converted from kX to angstrom units.

Lattice constants

1941 1958	Wallbaum [1] National Bureau of Standards	$ \begin{array}{c} a \\ \hline 4.783 \\ 4.7821 \end{array} $	$ \begin{array}{c} C \\ A \\ 6.565 \\ 6.5695 \text{ at} \\ 25^{\circ} \text{C} \\ \end{array} $
--------------	---	--	---

The density of tantalum silicide calculated from the NBS lattice constants is 9.072 g/cm³ at 25°C.

References

hemi-

hem.,

Kgl

No.

- H. J. Wallbaum, Disilizide des Niobs, Tantals, Vanadiums und Rheniums, Z. Metallkunde 33, 378–381 (1941).
- [2] R. F. Walker and S. F. Holley, NBS Report **3252**, (March 31, 1954).
- [3] B. Borén, Röntgenuntersuchung der Leigierungen von Silicium mit Chrom, Mangan, Kobalt und Nickel, Arkiv Kemi, Mineral., Geol., 11A, No. 10, 1–28 (1933).

hkl	1941 Wallba Co, 1.79	um 02 A	1958 National Bureau of Standards Cu, 1.5405 A at 25°	
	d	Ι	d	Ι
$100 \\ 101 \\ 102 \\ 110 \\ 111$	$\begin{array}{c} A \\ \hline 3.52 \\ 2.58 \\ 2.39 \\ 2.24 \end{array}$	m mw w s	$\begin{matrix} A \\ 4.13 \\ 3.50 \\ 2.57 \\ 2.389 \\ 2.246 \end{matrix}$	$22 \\ 100 \\ 58 \\ 17 \\ 94$
$\begin{array}{c} 003 \\ 200 \\ 112 \\ 113 \\ 210 \end{array}$	$2.185 \\ 2.066 \\ 1.926 \\ 1.612 \\ 1.564$	w+ m- mw w vw	$2.187 \\ 2.070 \\ 1.932 \\ 1.615 \\ 1.565$	$32 \\ 36 \\ 63 \\ 10 \\ 6$
$104 \\ 211 \\ 203 \\ 212 \\ 300$	$ \begin{array}{r} 1.521 \\ 1.502 \\ 1.410 \\ 1.380 \end{array} $	ms m m vw	$1.525 \\ 1.523 \\ 1.505 \\ 1.413 \\ 1.380$	$21 \\ 27 \\ 24 \\ 17 \\ 4$
$114 \\ 301 \\ 213 \\ 302 \\ 105$	$\left. \begin{array}{c} 1.350 \\ 1.272 \\ 1.251 \end{array} \right $	s m+ w	$1.353 \\ 1.351 \\ 1.2726 \\ 1.2519$	$21 \\ 25 \\ 17 \\ 6$
$220 \\ 303 \\ 115 \\ 214 \\ 311$	$\left. \begin{array}{c} 1.194 \\ 1.167 \\ 1.151 \\ \end{array} \right\} \ 1.131$	m vw m s-	$\left\{\begin{array}{c}1.1956\\1.1680\\1.1513\\1.1330\\1.1330\\1.1316\end{array}\right.$	$13 \\ 4 \\ 10 \\ 9 \\ 11$
$\begin{array}{c} 006 \\ 312 \\ 304 \\ 223 \\ 400 \end{array}$	$1.095 \\ 1.083 \\ 1.057 \\ 1.048 \\ 1.0352$	w- m- m- s w+	$\begin{array}{c} 1.0947 \\ 1.0846 \\ 1.0569 \\ 1.0493 \\ 1.0357 \end{array}$	$5 \\ 7 \\ 8 \\ 17 \\ 3$
$313 \\ 215 \\ 116 \\ 206 \\ 305$			$1.0172 \\ 1.0064 \\ 0.9975 \\ .9679 \\ .9518$	$\begin{array}{c}1\\6\\1\\6\\6\end{array}$
$314 \\ 321 \\ 403 \\ 107 \\ 322$			$\begin{array}{c} .9412\\ .9404\\ .9360\\ .9152\\ .9129\end{array}$	9993277
$\begin{array}{c} 410 \\ 117 \\ 323 \\ 315 \\ 306 \end{array}$.9038 .8735 .8716 .8648 .8579	$\begin{array}{c}2\\13\\6\\7\\2\end{array}$
$\begin{array}{c} 413 \\ 501 \\ 226 \\ 108 \end{array}$.8356 .8223 .8074 .8051	$\begin{array}{c} 4\\ 6\\ 10\\ 10\end{array}$
$217 \\ 502 \\ 420$			$.8033 \\ .7829$	5 6

Thallium(I) Bromate, TlBrO₃ (trigonal)

ASTM cards. None. Additional published patterns

Source	Radiation
Rivoir and Abbad [1] 1948	Copper, K_{α_1}

NBS sample. The sample of thallium bromate was precipitated at NBS from a solution of thallium hydroxide with a solution of hydrogen bromate. Spectrographic analysis showed the following impurities: 0.0001 to 0.001 percent each of calcium, magnesium, and silicon.

The sample was colorless. The indices of refraction could not be determined because the sample reacted with the index liquids.

Interplanar spacings and intensity measurements. The *d*-values reported in the Rivoir and Abbad pattern were converted from Bragg angle data. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Rivoir and Abbad National Bureau of Standards_	$\begin{array}{c} 012\\012\end{array}$	$\begin{array}{c} 110\\110\end{array}$	$\begin{array}{c} 202\\ 202 \end{array}$

hkl	1948 Rivoir and Abbad Cu, 1.5405 A		1958 National Bureau of Standards Cu, 1.5405 A at 25°C	
iic.a.	d	Ι	d	I
$ \begin{array}{r} 101 \\ 012 \\ 110 \\ 003 \\ 021 \end{array} $	$\begin{array}{c} A \\ 4.35 \\ 3.20 \\ 3.04 \\ 2.68 \\ 2.52 \end{array}$	m vs vs w	$\begin{matrix} A \\ 4.46 \\ 3.222 \\ 3.086 \\ 2.696 \\ 2.530 \end{matrix}$	$32 \\ 100 \\ 67 \\ 11 \\ 22$
$\begin{array}{c} 202\\ 113\\ 211\\ 104\\ 122 \end{array}$	$2.32 \\ 2.220 \\ 2.030 \\ 1.955 \\ 1.886 \\ 1.802$	VS W W S VS	$\begin{array}{c} 2.333 \\ 2.231 \\ 2.030 \\ 1.960 \\ 1.891 \\ 1.808 \end{array}$	$ \begin{array}{r} 23 \\ 50 \\ 10 \\ 7 \\ 29 \\ 31 \end{array} $
$300 \\ 024 \\ 015 \\ 220 \\ 303$	$ \begin{array}{r} 1.773 \\ 1.608 \\ \overline{1.538} \\ 1.484 \end{array} $	m m s vw	$1.783 \\ 1.613 \\ 1.585 \\ 1.544 \\ 1.487$	$13 \\ 12 \\ 14 \\ 16 \\ 5$
$131 \\ 214 \\ 312 \\ 205 \\ 006$	$ \begin{array}{r} 1.452\\ 1.426\\ \overline{1.381}\\ 1.341 \end{array} $	W S S VW	$1.458 \\ 1.430 \\ 1.393 \\ 1.384 \\ 1.349$	$5 \\ 19 \\ 11 \\ 7 \\ 14$
$223 \\ 401 \\ 042 \\ 125 \\ 116$	$ \begin{array}{r} 1.262 \\ 1.258 \\ 1.231 \end{array} $	 w vw m	$1.340 \\ 1.319 \\ 1.270 \\ 1.263 \\ 1.236$	4 3 7 5 8

hkl hex.	1948 Rivoir and Abbad Cu, 1.5405 A		1958 National E of Stand Cu, 1.5405 A	Bureau ards . at 25°C
	d	Ι	d	Ι
	A		A	
$321 \\ 134 \\ 232 \\ 410 \\ 107$	$ \begin{array}{r} 1.208 \\ 1.192 \\ \overline{1.166} \\ 1.129 \\ \end{array} $	vw m vs vw	$1.2126 \\ 1.1968 \\ 1.1742 \\ 1.1674 \\ 1.1299$	$2 \\ 6 \\ 1 \\ 7 \\ 1$
$\begin{array}{r} 404\\ 315\\ 306\\ 413\\ 027\\ 051 \end{array}$	$\begin{array}{c}1.111\\1.090\\\hline\hline1.069\\1.057\end{array}$	w vw vs vw	$1.1159 \\ 1.0937 \\ 1.0757 \\ 1.0716 \\ 1.0609$	$ \begin{array}{c} 4 \\ 1 \\ 3 \\ 3 \\ 1 \end{array} $
$324 \\ 502 \\ 045 \\ 226$	$1.046 \\ 1.033 \\ 1.028 \\ 1.013$	W VW VW W	$1.0492 \\ 1.0343 \\ 1.0308 \\ 1.0157$	$egin{array}{c} 3 \\ 3 \\ 2 \\ 1 \end{array}$
$217 \\ 241 \\ 018 \\ 422 \\ 235$	$\left. \begin{array}{c} 1.000 \\ 0.9911 \\ \hline .9771 \end{array} \right.$	w vw m	$1.0033 \\ 0.9936 \\ .9807 \\ .9784$	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 3 \\ 3 \end{array} $
$333 \\ 511 \\ 208 \\ 054 \\ 152$	$\left. \begin{array}{c}\\\\ 9461\\ .9322 \end{array} \right.$	 W W	.9622 .9540 .9458 .9348	$1 < 1 < 1 < 1 \\ 2$
$137 \\ 128 \\ 244 \\ 009 \\ 505 \\ 600$.9099	vw	.9116 .9044 .8988 .8925 .8916	<1 4 <1 1 <1
$416 \\ 431 \\ 407 \\ 514$	}		.8824 .8742 .8678	2 <1 1
$119 \\ 342 \\ 425 \\ 520 \\ 603$.8629 .8593 .8572 .8566 .8465	$1 \\ 2 \\ 1 \\ < 1 \\ < 1 \\ < 1$
327 318 155 336 523 048 434	}		$.8414 \\ .8359 \\ .8258 \\ .8182 \\ .8164 \\ .8065$	$<1 < 1 < 1 \\ 1 & 2 \\ 3 & 2 \\ 2 & 3 \\$
$ \begin{array}{c} 309 \\ 1 \cdot 0 \cdot 10 \\ 612 \\ 057 \\ 238 \end{array} $	}		.8026 .7998 .7850 .7803	$egin{array}{c} 1 \\ 3 \\ 1 \\ 3 \end{array}$

Structural data. Rivoir and Abbad [1] in 1948 determined that thallium bromate has potassium bromate-type structure, the space group R3m (No. 160), $1(\text{TlBrO}_3)$ per unit rhombohedral cell, or $3(\text{TlBrO}_3)$ per unit hexagonal cell.

The rhombohedral unit cell measurements reported by Rivoir and Abbad in kX units were converted to hexagonal values in angstrom units for comparison with the NBS values.

Lattice constants

1948 Rivoir and Abbad [1] 1958 National Bureau of Standards	$\begin{array}{ c c c }\hline a \\\hline A \\\hline 6.16 \\\hline 6.179 \\\hline \end{array}$	
--	---	--

The density of thallium bromate calculated from the NBS lattice constants is 6.188 g/cm^3 at 25° C.

References

 L. Rivoir and M. Abbad, La estructura del bromato talioso, Anales real soc. españ. fís. y quím. (Madrid). Ser. A 44, 5-15 (1948).

Thallium(I) Chlorate, TlClO₃ (trigonal)

ASTM cards. None. Additional published patterns

Source	Radiation
Smith and Carrera [1] 1951	Copper K_{α_1}

NBS sample. The sample of thallous chlorate was made at NBS by reaction of solutions of thallous sulfate and barium chlorate. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of silicon and sodium; and 0.001 to 0.01 percent each of aluminum, calcium, iron, magnesium, and barium.

The sample was colorless. The indices of refraction could not be determined because the sample reacted with the index liquids.

Interplanar spacings and intensity measurements. The *d*-values of the Smith and Carrera pattern were calculated from reported Bragg angle data. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Smith and Carrera [1] National Bureau of Standards_	$\frac{101}{012}$	$\begin{array}{c} 012\\110\end{array}$	$\begin{array}{c} 110\\ 101 \end{array}$

Structural data. Smith and Carrera [1] in 1951 determined that thallous chlorate has potassium bromate-type structure, the space group R3m (No. 160), and $1(\text{TlClO}_3)$ per unit rhombohedral cell, or $3(\text{TlClO}_3)$ per unit hexagonal cell.

The rhombohedral unit cell measurements reported by Smith and Carrera have been converted to hexagonal values for comparison with the NBS values.

hkl hex.	1951 Smith and Carrera Cu, 1.5405 A		1958 National B of Stands Cu, 1.5405 A	Sureau ards . at 25°C
	d	Ι	d	Ι
$101 \\ 012 \\ 110 \\ 003 \\ 021$	$\begin{matrix} A \\ 4.43 \\ 3.23 \\ 3.06 \\ 2.71 \\ 2.52 \end{matrix}$	VS VS VS W S	$\begin{array}{r} & A \\ 4.42 \\ 3.21 \\ 3.05 \\ 2.701 \\ 2.509 \end{array}$	$74 \\ 100 \\ 83 \\ 15 \\ 40$
$202 \\ 113 \\ 211 \\ 104 \\ 122$	$2.217 \\ 2.021 \\ 1.940 \\ 1.893 \\ 1.793$	vs s ms ms s	2.211 2.021 1.9371 1.8904 1.7889	$41 \\ 26 \\ 22 \\ 16 \\ 24$
$300 \\ 024 \\ 015 \\ 220 \\ 303$	$1.758 \\ 1.611 \\ 1.556 \\ 1.522 \\ 1.474$	m m w m m	$1.7583 \\ 1.6060 \\ 1.5482 \\ 1.5230 \\ 1.4733$	$\begin{array}{c}14\\9\\6\\10\\6\end{array}$
$131 \\ 214 \\ 205 \\ 312 \\ 006$	$\left. \begin{array}{c} 1.437 \\ 1.425 \\ 1.381 \\ 1.354 \end{array} \right\}$	mw S S VVW	$ \left\{ \begin{array}{c} 1.4399 \\ 1.4205 \\ 1.3798 \\ 1.3762 \\ 1.3498 \end{array} \right. $	$7 \\ 12 \\ 6 \\ 11 \\ 2$
$223 \\ 401 \\ 125 \\ 042 \\ 116$	$ \begin{array}{r} 1.326\\ 1.304\\ 1.259\\ \overline{1.238}\end{array} $	w vw m ni	$1.3266 \\ 1.3017 \\ 1.2575 \\ 1.2545 \\ 1.2334$	4254
$321 \\ 134 \\ 232 \\ 410 \\ 107$	$ \begin{array}{r} 1.189 \\ 1.162 \\ 1.149 \\ \end{array} $	ni ims ims	1.19691.18571.15911.15131.1301	2 4 4 4 2
$\begin{array}{r} 404 \\ 315 \\ 306 \\ 027 \\ 413 \end{array}$	$\left. \begin{array}{c} 1.104 \\ 1.089 \\ 1.075 \\ 1.062 \end{array} \right\}$	w m m vw	$1.1051 \\ 1.0858 \\ 1.0708 \\ 1.0591$	$\begin{array}{c}1\\2\\2\\3\end{array}$

hkl hex.	1951 Smith and Carrera Cu, 1.5405 A		1958 National F of Stand Cu, 1.5405 A	Bureau ards . at 25°C
	d	I	d	I
	A		A	
051			1.0462	1
324	1.041	m	1.0388	3
045			1.0231	$\overline{2}$
502			1.0211	1
330			1.0153	2
226			1.0102	2
217			1.0008	<1
018			0.9942	1
241			.9899	2
235			. 9693	2
422			. 9681	2
333			.9502	< 1
208			.9449	< 1
511			.9411	<1
054			. 9356	2
152			. 9226	1

Lattice constants

		a	с
$1951 \\ 1958$	Smith and Carrera [1] National Bureau of Standards	$\begin{matrix}A\\6.059\\6.092\end{matrix}$	$\begin{array}{c} A \\ 8.153 \\ 8.098 \mathrm{at} \\ 25^{\circ}\mathrm{C} \end{array}$

The density of thallous chlorate calculated from the NBS lattice constants is 5.508 g/cm^3 at 25° C.

References

 P. Smith and S. Martínez Carrera, La estructura del clorato talioso, Anales real soc. españ. fís y quím., (Madrid) Ser. A 47, 89-94 (1951).

Thallium(I) Iodate, THO₃ (trigonal)

ASTM cards. None. Additional published patterns

Source	Radiation
Rivoir and Abbad [1] 1947	Copper, Ka

NBS sample. The sample of thallous iodate was made at NBS by precipitation. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent each of aluminum, barium, iron, magnesium, sodium, lead, and silicon; and 0.0001 to 0.001 percent each of calcium and manganese.

The sample was colorless. The indices of refraction could not be determined by the usual liquid grain immersion method because the sample was too fine-grained.

Interplanar spacings and intensity measurements. The d-values of the Rivoir and Abbad pattern were calculated from reported Bragg angle data. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Rivoir and Abbad [1] National Bureau of Standards_	$\begin{array}{c} 110\\012 \end{array}$	$122,300\ 110$	$\begin{array}{c} 202 \\ 202 \end{array}$

Structural data. Wyckoff [2] in 1951 determined that thallous iodate has the potassium bromate-type structure, the space group R3m (No. 160) with $1(\text{TIIO}_3)$ per unit rhombohedral cell and $3(\text{TIIO}_3)$ per hexagonal cell.

hkl hex.	1947 Rivoir and Abbad Cu, 1.5405 A		1958 National I of Stand Cu, 1.5405 A	Bureau ards at 25°C
	d	Ι	d	I
$ \begin{array}{r} 101 \\ 012 \\ 110 \\ 003 \\ 021 \end{array} $	$\begin{array}{c} A\\ \hline \hline 3.14\\ \hline 2.579 \end{array}$	 vs vw	$\begin{matrix} A \\ 4.52 \\ 3.21 \\ 3.17 \\ 2.644 \\ 2.598 \end{matrix}$	$\begin{array}{c} 6\\100\\94\\2\\7\end{array}$
$202 \\ 113 \\ 211 \\ 104 \\ 122 \\ 300$	$\left.\begin{array}{c} 2.251 \\ 2.023 \\ \hline 1.853 \\ 1.826 \end{array}\right\}$	s vw m vs	$\begin{cases} 2.259 \\ 2.029 \\ 2.011 \\ 1.8635 \\ \{ 1.8384 \\ 1.8335 \end{cases}$	$54 \\ 1 \\ 2 \\ 18 \\ 40 \\ 30$
$\begin{array}{c} 024 \\ 220 \\ 303 \\ 214 \\ 312 \end{array}$	$\left.\begin{array}{c} 1.597 \\ 1.578 \\ \\ 1.421 \end{array}\right\}$	m m s	$\begin{cases} 1.6065\\ 1.5860\\ 1.5049\\ 1.4330\\ 1.4221 \end{cases}$	$12 \\ 14 \\ <1 \\ 16 \\ 16$
$223 \\ 006 \\ 042 \\ 116$	$\frac{1.317}{1.294}\\1.214$	vw w m	$\begin{array}{c} 1.3585 \\ 1.3211 \\ 1.2977 \\ 1.2190 \end{array}$	$<1 \\ 2 \\ 4 \\ 7 $
$134 \\ 232 \\ 410 \\ 404 \\ 107$	$\Big\} \begin{array}{c} 1.198 \\ 1.125 \\ \\ \end{array}$	s w	$\left\{\begin{array}{c} 1.2078\\ 1.2013\\ 1.1995\\ 1.1287\\ 1.1094\end{array}\right.$	$7 \\ 10 \\ 10 \\ 4 \\ < 1$
$315 \\ 413 \\ 051 \\ 306 \\ 324$	 1.070	 m	$\begin{array}{c} 1.0992 \\ 1.0918 \\ 1.0880 \\ 1.0709 \\ 1.0632 \end{array}$	$<1 < 1 < 1 \\ 1 \\ 6 \\ 3 $

hkl hex.	1947 Rivoir and Abbad Cu, 1.5405 A		1958 National Bureau of Standards Cu, 1.5405 A at 25°C	
	d	Ι	d	Ι
$502 \\ 330 \\ 226 \\ 422 \\ 217$	$\left. \begin{array}{c} A \\ 1.055 \\ 1.011 \\ 1.002 \\ \end{array} \right.$	s m m	$ \begin{smallmatrix} A \\ \{ \begin{array}{c} 1.0588 \\ 1.0575 \\ 1.0148 \\ 1.0045 \\ 0.9943 \end{smallmatrix} \} $	$3 \\ 3 \\ 2 \\ 3 \\ < 1$
$511 \\ 018 \\ 054 \\ 152$	0.973	w m	.9789 .9745 .9610 .9576	$<1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
$\begin{array}{r} 208\\244\\600\end{array}$.930 .916 .910	w m w	.9321 .9196 .9155	$1 \\ 3 \\ < 1$

The rhombohedral unit-cell measurements reported by Rivoir and Abbad in kX units were converted to hexagonal values in angstrom units for comparison with the NBS values.

Lattice constan	ıt	
-----------------	----	--

1947	Rivoir and Abbad [1]	$\begin{array}{c} a \\ \hline A \\ 6.24 \end{array}$	$\begin{array}{c}c\\ A\\7.83\end{array}$
1947	National Bureau of Standards	$6.24 \\ 6.344$	7.83 7.925 at 25°C

The density of thallous iodate calculated from the NBS lattice constants is 6.839 g/cm³ at 25°C.

References

- L. Rivoir and M. Abbad, La estructura del yodato talioso, Anales real soc. españ. fís. y quím. (Madrid) 43, 1051-1060 (1947).
- [2] R. W. G. Wyckoff, Crystal Structures I, chap. VII 17a (1951).

Thallium (I) Thiocyanate, TICNS (orthorhombic)

ASTM cards

Card number	Index lines	Radiation	Source
2-0773	$2.87 \\ 1.82 \\ 1.18$	Chromium	Strada [1] 1933.

Card number 2–0773 gives a pattern based on a tetragonal structure which is presumably wrong [2]. It is included for comparison to show a possible relation to the orthorhombic pattern.

Additional published patterns

Source	Radiation
Büssem, Günther, and Tubin [3] 1934	Copper, K_{α}

NBS sample. The sample of thallous thiocyanate was prepared at NBS by precipitation from solutions of thallium sulfate and potassium thiocyanate. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of silver, silicon, and tin; 0.001 to 0.01 percent each of aluminum, calcium, iron, magnesium, nickel, and sodium; and 0.0001 to 0.001 percent each of barium, chromium, copper, lead, and manganese.

The sample was colorless. The indices of refraction could not be determined by the usual liquid grain immersion method because the sample was too fine-grained.

Interplanar spacings and intensity measurements. The *d*-values of the Büssem, Günther, and Tubin and the M. Strada patterns were calculated from reported Bragg angle data. The indices of the three strongest lines of each pattern are as follows:

hkl	193 M. Str Cr, 2.29	4 rada 009 A	1934 Büssem, Günther, and Tubin Cu, 1.5418 A		1958 National Bureau of Standards Cu, 1.5405 A at 25°C	
	d	Ι	d	Ι	d	Ι
$ \begin{array}{r} 100 \\ 110 \\ 002 \\ 020 \\ 200 \end{array} $	$\left.\begin{array}{c}A\\\overline{4.48}\\\overline{}}$	70 80	$\begin{array}{c} A\\ \hline 3.80\\ 3.41 \end{array}$	$\overline{20}$ 57	$\begin{matrix} A \\ 6.78 \\ 4.80 \\ 3.81 \\ \left\{ \begin{array}{c} 3.40 \\ 3.39 \end{matrix} \right. \end{matrix}$	$5\\84\\22\\45\\48$
$\begin{array}{c} 102 \\ 210 \\ 112 \\ 121 \\ 211 \end{array}$	$\left. \begin{array}{c} \\ \overline{2.88} \\ \end{array} \right\}$	 100 	$\frac{\overline{2.96}}{2.81}$	100 7	3.32 3.04 2.983 2.823	$7\\13\\100\\8$
$\begin{array}{c} 022 \\ 202 \\ 220 \\ 212 \\ 122 \end{array}$	$\left. \begin{array}{c} 2.45\\ 2.33 \end{array} \right.$	80 70	2.52 2.39	33 16	$ \left\{\begin{array}{c} 2.538\\ 2.531\\ 2.404\\ \end{array}\right\}_{2.377} $	$\begin{array}{c} 42\\ 44\\ 25\\ 6\end{array}$
$\begin{array}{c} 300 \\ 130 \\ 310 \\ 311 \\ 222 \end{array}$	} 2.08	 60 	$2.27 \\ 2.14 \\ \overline{2.02}$	3 21 $\overline{11}$	$\begin{cases} 2.2596 \\ 2.1532 \\ 2.1464 \\ 2.0655 \\ 2.0316 \end{cases}$	$ \begin{array}{c} 4 \\ 27 \\ 24 \\ 1 \\ 21 \end{array} $
$\begin{array}{c} 302 \\ 004 \\ 320 \\ 132 \\ 312 \end{array}$	}	 100	1.87	 16	$1.9434 \\ 1.8993 \\ 1.8827 \\ \left\{ \begin{array}{c} 1.8743 \\ 1.8696 \end{array} \right.$	$5 \\ 9 \\ 6 \\ 21 \\ 20$
$ \begin{array}{c c} 114 \\ 040 \\ 400 \\ 232 \\ 204 \\ 410 \end{array} $			1.76 1.68 1.65	7 5 6	$\left\{\begin{array}{c}1.7672\\1.7030\\1.6949\\1.6903\\1.6584\\1.6584\end{array}\right.$	$ \begin{array}{c c} 12 \\ 3 \\ 6 \\ 10 \\ 2 \end{array} $

hkl	193 M. St Cr, 2.29	1934 Strada 2.2909 A 1934 Büssem, Günther, and Tubin Cu, 1.5418 A		1934 Büssem, Günther, and Tubin Cu, 1.5418 A		al of ds A at
3	d	Ι	d	I	d	I
	A		A		A	
214					1.6122	2
330					1.6024	3
042	1.51	80		0	1.5546	7
402					1.5487	6
240					1.5221	5
420					1.5181	6
412					1.5100	5
224	1.47	70			1.4910	8
332	1.46	50			1.4767	8
304					1.4549	1
134	1.44	60			1.4250	8
314					1.4230	8
242					1.4129	4
199						
403	1.38	80			1.4097	5
430					1.3578 1.3562	3
500					1.3563	

References

- M. Strada, Ricerche sulla struttura dei pseudo-alogeni e dei loro compotti. I. Tiocianato di tallio, Gazz. chim. ital. 64, 400-429, 526 (1934).
 R. W. G. Wyckoff, The structure of crystals, Supp. to
- R. W. G. Wyckoff, The structure of crystals, Supp. to 2d Ed., p. 43 (1935).
 W. Büssem, P. Günther, and R. Tubin, Die Struktur
- [3] W. Büssen, P. Günther, and R. Tubin, Die Struktur des Thallorhodanids und des Kaliumrhodanids, Z. phys. Chem. 24B, 1–21 (1934).

	Pattern	1	2	3
1	M. Strada	112	132, 312	020, 200
	Tubin	112	020, 200	202, 022
	Standards	112	110	200

Structural data. Büssem, Günther, and Tubin [3] in 1934 determined that thallous thiocyanate has potassium thiocyanate-type structure, the space group Pbcm (No. 57), and 4(TlCNS) per unit cell.

The unit-cell measurements reported by Büssem, Günther, and Tubin [3] have been converted from kX to angstrom units for comparison with the NBS values.

Lattice	constants
	001000000000

		a	b	с
1094	Dr. Cr. d	A	A	A
1934	and Tubin [3]	6.79	6.81	7.54
1958	National Bureau of Standards	6.782	6.814	7.603 at

The density of thallous thiocyanate calculated from the NBS lattice constants is 4.961 g/cm^3 at 25°C .

Titanium Silicide, Ti₅Si₃ (hexagonal)

ASTM cards. None. Additional published patterns

Source	Radiation
Hansen, Kessler, and McPherson [1] 1952	Copper, K_{α}

NBS sample. The sample of titanium silicide was prepared at NBS by Ramond F. Walker and Sylvanus F. Holley by solid-state reaction of the elements at 1,300°C for 3 hr [2]. Spectrographic analysis showed the following impurities: 0.1 to 1.0-percent aluminum; 0.01 to 0.1 percent each of calcium, chromium, iron, and zirconium; and 0.001 to 0.01 percent each of cobalt, copper, magnesium, manganese, nickel, antimony, and tin. The sample was a dark gray metallic powder.

Interplanar spacings and intensity measurements. The *d*-values reported by Hansen, Kessler, and McPherson are, as published, in angstrom units. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Hansen, Kessler, and McPherson [1] National Bureau of Standards_	$211 \\ 211$	112 112	$\frac{300}{210}$

hkl	1952 Hansen, Kessler, and McPherson Cu, 1.5418 A		1958 National Bureau of Standards Cu, 1.5405 A at 25°(
	d	Ι	d	Ι
$\begin{array}{c} 200\\111\\002\\210\\102\\211\\300\\112\\202\\220\\\end{array}$	$\begin{array}{c} A \\ \hline 2.54 \\ 2.41 \\ 2.37 \\ 2.19 \\ 2.14 \\ 2.11 \\ \hline \\ \hline \end{array}$	vvw vvw ww mw w mw	$\begin{array}{c} A\\ 3.220\\ 3.010\\ 2.569\\ 2.412\\ 2.385\\ 2.198\\ 2.145\\ 2.113\\ 2.007\\ 1.857\end{array}$	7 6 14 47 30 100 38 98 6 6 6
$\begin{array}{c} 221\\ 311\\ 400\\ 222\\ 312\\ \end{array}\\ \begin{array}{c} 321\\ 410\\ 213\\ 402\\ 500\\ 001\\ \end{array}$	$ \begin{array}{c} 1.675 \\ 1.506 \\ 1.470 \\ 1.421 \\ \\ 1.367 \\ 1.285 \\ \end{array} $	<vvw vw <vvw w vw w</vvw </vvw 	$\begin{array}{c} 1.745\\ 1.685\\ 1.6075\\ 1.5056\\ 1.4656\\ 1.4180\\ 1.4039\\ 1.4003\\ 1.3637\\ 1.2867\\ 1.2846\end{array}$	$ \begin{array}{c} 10 \\ 9 \\ 9 \\ 18 \\ 8 \\ 10 \\ 15 \\ 29 \\ 12 \\ 15 \\ 21 \\ \end{array} $

1					
	hkl	1952 Hansen, Kessler, and McPherson Cu, 1.5418 A		1958 National Burea of Standards Cu, 1.5405 A at 2	
-		d	I	d	Ι
		A		A	
	$104 \\ 223$	}		1.2597	3
i	313	1.238	vvw	1.2360	6
	$\begin{array}{c} 420\\ 331\end{array}$	1.221 1.208	<vvw <vvw< td=""><td>1.2156 1.2040</td><td>$\frac{7}{9}$</td></vvw<></vvw 	1.2156 1.2040	$\frac{7}{9}$
	421			1.1825	2
	502 214	1.163	<vvw< td=""><td>1.1502</td><td>14</td></vvw<>	1.1502	14
	$\frac{214}{511}$	1.130 1.120	< vvw < vvw	1.1300 1.1275	$\frac{11}{3}$
	323			1.1180	4
	332			1.1151	10
	$304 \\ 521$	$1.105 \\ 1.012$	W	$1.1021 \\ 1.0101$	11
1	333	0.995		1.0030	9
	404	f 0.550	~~~~	1.0000	0
	$602 \\ 610$			0.9897 0813	5
	432			.9785	4
	513 522	.962		.9578	$\frac{2}{2}$
	022			.9500	2
	$\begin{array}{c} 215 \\ 440 \end{array}$.951 932		.9469 9283	$\frac{11}{7}$
	504			.9094	6
	$\begin{array}{c} 523 \\ 424 \end{array}$.886	vvw	. 8830	8
	621	.870	vw	.8791	8
	$532 \\ 702$	}		.8654	7
	514	. 856	<vvw< td=""><td>. 8590</td><td>5</td></vvw<>	. 8590	5
	710			.8522	4
	325	.844	<vvw< th=""><th>.8438</th><th>4</th></vvw<>	.8438	4
	206	. 808	vvw	.8344 .8277	8 5
	524 800	. 806	<vvw< th=""><th>. 8039</th><th>4</th></vvw<>	. 8039	4
	631	,		.8008	3
	623	.782	vvw	.7913	3
		.118	mw		

Structural data. Pietrokowsky and Duwez [3] in 1951 determined that titanium silicide has manganese silicide-type structure, space group P6₃/mcm (No. 193), and $16(Ti_5Si_3)$ per unit cell. Unit-cell measurements compare as follows:

Lattice c	onstants
-------------	----------

25°C	1951 1958	Pietrokowsky and Duwez [3] National Bureau of Standards	a A 7.465 7.429	c A 5.162 5.1392 at 25°C
------	--------------	--	--------------------------	--------------------------------------

The density of titanium silicide calculated from the NBS lattice constants is 3.501 g/cm^3 at 25° C.

References

- M. Hansen, H. D. Kessler, and J. D. McPherson, The titanium-silicon system, Trans. A. S. M. 44, 518-38 (1952)
- [2] R. F. Walker and S. F. Holley, NBS Report 3252,
- (March 31, 1954).
 [3] P. Pietrokowsky and P. Duwez, Crystal structure of Ti₅Si₃, Ti₅Ge₃ and Ti₃Sn₃, J. Metals 3, 772-773 (1951).

Tungsten Sulfide (tungstenite), WS₂ (hexagonal)

ASTM cards

Card number	Index lines	Radiation	Source
2-0131	$6.2 \\ 2.68 \\ 2.28$	Copper	Harcourt [1] 1938.

Additional published patterns

Source	Radiation
van Arkel [2] 1926	Copper, K_{α}

NBS sample. The sample of tungsten sulfide was made at NBS by direct combination of the elements in a sealed fused silica tube at 900°C. Ehrlich [3] determined that the homogeneity range of tungsten sulfide is from $WS_{1.95}$ to $WS_{2.00}$. A pattern from a second NBS sample which contained excess sulfur showed no apparent change in lattice constants; hence it is assumed that the ratio of tungsten to sulfur in each sample of WS_2 is 1:2. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of magnesium and silicon; 0.001 to 0.01 percent each of chromium, copper, manganese, and lead. The same a, was black metallic powder.

Interplanar spacings and intensity measurements. The *d*-values reported by Harcourt have been converted from kX to angstrom units. The d-

hkl	1926 van Arkel H Cu, 1.5418 A Cu,		1942 Harco Cu, 1.54	2 urt 18 A	1958 National Bureau of Standards Cu, 1.5405 A at 25°C	
	d	Ι	d	Ι	d	Ι
$002 \\ 004 \\ 100 \\ 101 \\ 102$	$\begin{array}{c} A \\ 6.10 \\ 3.10 \\ \overline{2.68} \\ \end{array}$		$\begin{array}{c} A\\ 6.2\\ \hline \\ \overline{2.69}\\ \hline \end{array}$	100 66 	$\begin{matrix} A \\ 6.18 \\ 3.089 \\ 2.731 \\ 2.667 \\ 2.498 \end{matrix}$	$100 \\ 13 \\ 24 \\ 27 \\ 7 \\ 7$
$103 \\ 006 \\ 105 \\ 106 \\ 110$	$2.30 \\ 2.09 \\ 1.86 \\ 1.66 \\ 1.60$		$2.28 \\ 2.05 \\ 1.88 \\ \bar{1.58}$	$22 \\ 11 \\ 11 \\ \bar{2}\bar{2}$	2.277 2.061 1.834 1.6455 1.5783	$36 \\ 12 \\ 17 \\ 2 \\ 16$
$\begin{array}{c} 008 \\ 112 \\ 107 \\ 114 \\ 200 \end{array}$	$ \begin{array}{r} 1.56 \\ 1.50 \\ \overline{1.42} \\ 1.38 \\ \end{array} $		$\overline{1.52}$ $\overline{1.40}$ $$		$\begin{array}{c} 1.5458 \\ 1.5288 \\ 1.4832 \\ 1.4052 \\ 1.3658 \end{array}$	
$201 \\ 108 \\ 116 \\ 0 \cdot 0 \cdot 10 \\ 109$	$1.36 \\ 1.32 \\ 1.26 \\ 1.24 \\ 1.21$		$1.35 \\ 1.31 \\ 1.25 \\ \\ $	6 3 6 	$1.3575 \\ 1.3449 \\ 1.2524 \\ 1.2362 \\ 1.2274$	$ \begin{array}{c} 3 \\ 4 \\ 7 \\ 1 \\ 1 \\ 1 \end{array} $
$205 \\ 1 \cdot 0 \cdot 10 \\ 118 \\ 1 \cdot 0 \cdot 11 \\ 1 \cdot 0 \cdot 11$	$1.14\\1.12\\1.10\\1.06\\1.05$		1.10 	 11 	$ \begin{array}{r} 1.1954\\ 1.1271\\ 1.1037\\ \hline 1.0392 \end{array} $	$4 < 1 \\ 8 \\ -\bar{2}$
$0.0.12 \\ 213 \\ 1.1.10 \\ 215 \\ 300 \\ 302$	1.02		1.027 1.002 0.962	11 11 6 	$\begin{array}{c} 1.0300\\ 1.0012\\ 0.9726\\ .9524\\ .9117\\ .9021 \end{array}$	$ \begin{array}{c} 4 \\ 4 \\ 3 \\ 4 \\ 1 \\ 1 \end{array} $
$1 \cdot 0 \cdot 13 \\ 0 \cdot 0 \cdot 14 \\ 2 \cdot 0 \cdot 11 \\ 1 \cdot 1 \cdot 12$.8981 .8830 .8630 .8626	$3 < 1 \\ 1 \\ 1 \\ 1$

Tungsten Sulfide (tungstenite), WS₂ (hexagonal)

values of the van Arkel pattern were calculated from Bragg angle data. The van Arkel pattern did not include intensity measurements. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Harcourt National Bureau of Standards_	$\begin{array}{c} 002\\ 002 \end{array}$	$\begin{array}{c} 101 \\ 103 \end{array}$	$\begin{array}{c} 103 \\ 101 \end{array}$

Structural data. Van Arkel [2] in 1926 determined that tungsten sulfide has molybdenum sulfide-type structure, space group $P6_3/mmc$ (No. 194), and $2(WS_2)$ per unit cell.

Several unit cell measurements have been converted from kX to angstrom units for comparison with the NBS values.

1958 National Bureau of Standards	1926 1948 1948 1958	van Arkel [2] Ehrlich [3] Glemser, Sauer, and König [4] National Bureau of Standards	$ \begin{array}{c} a \\ \hline A \\ 3.19 \\ 3.15 \\ 3.18 \\ 3.154 \end{array} $	$\begin{array}{c} c \\ \hline A \\ 12.5 \\ 12.3 \\ 12.5 \\ 12.362 \text{ at} \\ 25^{\circ} \text{C} \end{array}$
--	------------------------------	---	---	--

Lattice	constants
Luine	constants

The density of tungsten sulfide calculated from the NBS lattice constants is 7.732g/cm³ at 25°C.

References

- G. A. Harcourt, Tables for the identification of ore minerals by X-ray powder patterns, Am. Mineralogist 27, 63-113 (1942).
- [2] A. E. van Arkel, Über die Kristallstruktur der Verbindungen Manganfluorid, Bleijodid und Wolframsulfid, Rev. trav. chim. 45, 437–444 (1926).
- [3] P. Ehrlich, Untersuchungen an Wolframsulfiden, Z. anorg. u. allgem. Chem. 257, 247-253 (1948).
- [4] O. Glemser, H. Sauer and P. König, Über Wolframsulfide und Wolframselenide, Z. anorg. u. allgem. Chem. 257, 241-246 (1948).

Vanadium (V) Oxide, V_2O_5 (orthorhombic)

ASTM cards

Card numbers	Index lines	Radiation	Source
3–0206 and 3–0207	$4.40 \\ 2.90 \\ 3.41$	Chromium	Ketelaar [1] 1936.
1-0359	$4.38 \\ 3.39 \\ 2.87$	Molybdenum	Hanawalt, Rinn, and Frevel [2] 1938.

Additional published patterns. None.

NBS sample. The sample of vanadium pentoxide was obtained from the Vanadium Corp. of America, New York. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent of aluminum; 0.001 to 0.01 percent each of iron and silicon; and 0.0001 to 0.001 percent each of chromium, copper, magnesium, manganese, and tin.

The color of the sample was dull orange. The indices of refraction were not determined by the usual liquid grain immersion method because the sample was too fine-grained.
Interplanar spacings and intensity measurements. The *d*-values reported by Hanawalt, Rinn, and Frevel were converted from kX to angstrom units and the *d*-values of the Ketelaar pattern were calculated from reported Bragg angle data. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
Ketelaar Hanawalt, Rinn, and Frevel National Bureau of Standards_	$\begin{array}{c} 001 \\ 001 \\ 001 \end{array}$	$400 \\ 110 \\ 110$	$\begin{array}{c}110\\400\\400\end{array}$

Structural data. Byström, Wilhelmi, and Brotzen [3] in 1950 determined that vanadium pentoxide has the space group Pmmn (No. 59) and $2(V_2O_5)$ per unit cell. Vanadium pentoxide is used as a structure type.

The unit-cell measurements reported by Ketelaar have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

1936 1950 1958	Ketelaar [1] Byström, Wilhelmi, and Brotzen[3] National Bureau of Standards	a 11.50 11.519 11.51	b A 3.56 3.564 3.559	$\begin{array}{c} c\\ \hline A\\ 4.37\\ 4.373\\ 4.373\\ 4.371 \text{ at} \end{array}$
1000	Standards	11.51	3.559	4.371 at

The density of vanadium pentoxide calculated from the NBS lattice constants is 3.372 g/cm^3 at 25°C .

References

ted

6 Of

as

-

um No.

on-

son

mon

ore

binlfid,

Z.

iem.

-X0 10

ysis cent and 1ro-

The the

the

- J. A. A. Ketelaar, Die Kristallstruktur des Vanadinpentoxyds, Z. Krist. 95, 9-27 (1936).
 J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemi-
- [2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [3] A. Byström, K. A. Wilhelmi, and O. Brotzen, Vanadium pentoxide-a compound with five-coordinated vanadium atoms, Acta Chem. Scand. 4, 1119-1130 (1950).

Vanadium(V) Oxide, V₂O₅ (orthorhombic)

193 Ketel hkl Cr, 2.2		36 laar 291 A	193 Hanav Rinn, Frey Mo, 0.7	8 valt, and rel 107 A	1958 Nation Bureau Standar Cu, 1.5405 25°C	al of cds A at
	d	Ι	d	Ι	d	I
$200 \\ 001 \\ 101 \\ 201 \\ 110$	$\begin{matrix} A \\ 5.77 \\ 4.39 \\ 4.09 \\ 3.49 \\ 3.42 \end{matrix}$	mw vvs m vvw s	$\begin{array}{c} A \\ 5.8 \\ 4.39 \\ \\ \overline{3.40} \end{array}$	$ \begin{array}{r} 33 \\ 100 \\ \\ \bar{83} \end{array} $	$\begin{array}{c} A \\ 5.76 \\ 4.38 \\ 4.09 \\ 3.48 \\ 3.40 \end{array}$	$\begin{vmatrix} 42 \\ 100 \\ 36 \\ 7 \\ 91 \end{vmatrix}$
$400 \\ 011 \\ 111 \\ 310 \\ 211$	$2.90 \\ 2.77 \\ 2.69 \\ 2.61 \\ 2.51$	s+ ww ww mw vvw	$2.88 \\ 2.77 \\ 2.69 \\ 2.62 \\$	$53 \\ 13 \\ 7 \\ 13 \\$	$2.88 \\ 2.76 \\ 2.687 \\ 2.610 \\ 2.492$	$65 \\ 35 \\ 14 \\ 39 \\ 6$
$\begin{array}{c} 401 \\ \bar{0}\bar{0}\bar{2} \\ 102 \\ 202 \end{array}$	$2.24 \\ 2.18 \\ 2.14 \\ 2.04$	w s m vw	2.18		$ \begin{array}{r} 2.405 \\ \overline{2.185} \\ 2.147 \\ 2.042 \end{array} $	$\begin{vmatrix} 6\\ 1\overline{7}\\ 10\\ 2 \end{vmatrix}$
$\begin{array}{c} 411 \\ 600 \\ 302 \\ 012 \\ 112 \end{array}$	$1.99 \\ 1.92 \\ 1.89 \\ 1.86 \\ 1.84$	vw m w+ mw w-	$ \begin{array}{r} 1.99 \\ 1.92 \\ \overline{1.86} \\ \end{array} $	$\begin{array}{c} 7\\13\\-\overline{7}\\\end{array}$	$1.992 \\ 1.919 \\ 1.900 \\ 1.864 \\ 1.840$	$ \begin{array}{c} 16 \\ 26 \\ 16 \\ 12 \\ 4 \end{array} $
$\begin{array}{c} 020 \\ 601 \\ 402 \\ \bar{0}\bar{2}\bar{1} \end{array}$	$1.78 \\ 1.76 \\ 1.73 \\ 1.70 \\ 1.65$	mw mw vvw vw mw+	$\overline{1.77}$ $\overline{1.65}$	10 -7	$ \begin{array}{r} 1.778 \\ 1.757 \\ 1.740 \\ \overline{1.648} \end{array} $	$ \begin{array}{c} 2 \\ 28 \\ 13 \\ \overline{11} \end{array} $
$ar{611}{412}{701}{321}$	$1.63 \\ 1.57 \\ 1.56 \\ 1.54 $	vw w mw w	$\frac{1.56}{1.51}$	 7 -7	$1.632 \\ 1.5764 \\ 1.5640 \\ 1.5396 \\ 1.5149$	
$420 \\ 710 \\ 103 \\ 602$	$1.49 \\ 1.44 \\ 1.43$	m s mw	$1.493 \\ 1.455 \\$	7777	$1.5124 \\ 1.4925 \\ 1.4447 \\ 1.4421$	$\begin{array}{c c}10\\16\\6\\4\end{array}$
$711 \\ 022 \\ \bar{3}\bar{0}\bar{3}$	$1.41 \\ 1.38 \\ 1.37 \\ 1.36$	vw mw w vw	 1.305	 7	$ \begin{array}{r} 1.4123 \\ 1.3801 \\ \overline{1.3625} \end{array} $	$6 \\ 5 \\ \overline{4}$

Yttrium Phosphate (xenotime), YPO₄ (tetragonal)

ASTM cards

Card number	Index lines	Radiation	Source
5-0454	$3.43 \\ 1.76 \\ 2.55$	Copper	Horne, Geological Museum, London

Additional published patterns

Source	Radiation
Vegard [1] 1927 Strada and Schwendimann [2] 1934	

NBS sample. The sample of yttrium phosphate was prepared in a hydrothermal bomb at 375°C at

hkl	Horn Cu, 1.54	ne 418 A	192 Veg: Cr, 2.2	27 ard 909 A	193 Strada and Sc Cr, 2.2	34 hwendimann 909 A	1958 National Burea ards Cu, 1.5405 A	3 u of Stand- at 26°C
	d	Ι	d	I	d	Ι	d	Ι
$ \begin{array}{r} 101 \\ 200 \\ 211 \\ 112 \\ 220 \end{array} $	$\begin{matrix} A \\ 4.53 \\ 3.43 \\ 2.73 \\ 2.55 \\ 2.43 \end{matrix}$	$30 \\ 100 \\ 20 \\ 60 \\ 40$	$\begin{matrix} A \\ 4.57 \\ 3.45 \\ 2.73 \\ 2.56 \\ 2.44 \end{matrix}$	$15 \\ 90 \\ 5 \\ 60 \\ 15$	A 3.35 2.52	s m	$\begin{array}{c} A\\ 4.54\\ 3.443\\ 2.744\\ 2.558\\ 2.434\end{array}$	$24 \\ 100 \\ 9 \\ 58 \\ 19$
$202 \\ 301 \\ 103 \\ 321 \\ 312 \\$	$2.26 \\ 2.14 \\ 1.925 \\ 1.820 \\ 1.763$	10 50 20 50 70	$2.27 \\ 2.15 \\ 1.93 \\ 1.82 \\ 1.77$	$10 \\ 30 \\ 30 \\ 25 \\ 100$	$2.252.12\overline{1.80}\\1.75$	W M m vs	2.265 2.145 1.927 1.820 1.762	$9 \\ 23 \\ 13 \\ 16 \\ 47$
$ \begin{array}{r} 400\\ 213\\ 411\\ 420\\ 303 \end{array} $	$1.719 \\ 1.681 \\ 1.609 \\ 1.539 \\ 1.511$	$50 \\ 10 \\ 10 \\ 40 \\ 10$	$1.72 \\ 1.69 \\ 1.61 \\ 1.54 \\ 1.52$	$40 \\ 5 \\ 5 \\ 15 \\ 10$	$ \begin{array}{r} 1.71 \\ \hline 1.53 \\ 1.50 \end{array} $	m m w	$1.721 \\ 1.681 \\ 1.608 \\ 1.540 \\ 1.505$	17 7 5 10 4
$332 \\ 323 \\ 431 \\ 413 \\ 314$	$1.428 \\ 1.379 \\ 1.343 \\ 1.281 \\ 1.232$	$30 \\ 30 \\ 30 \\ 30 \\ 40$	$1.43 \\ 1.38 \\ 1.34 \\ 1.28 \\ 1.24$	$50 \\ 30 \\ 15 \\ 60 \\ 90$	$ \begin{array}{r} 1.42 \\ \overline{1.34} \\ 1.29 \\ 1.24 \end{array} $	s m m s	$1.428 \\ 1.379 \\ 1.342 \\ 1.280 \\ 1.232$	$13 \\ 10 \\ 7 \\ 11 \\ 11 \\ 11$
$\begin{array}{c} 440 \\ 600 \\ 503 \\ 611 \\ 532 \end{array}$	$1.218 \\ 1.149 \\ 1.135 \\ \overline{1.100}$	$ \begin{array}{c} 10 \\ 30 \\ 20 \\ \overline{30} \end{array} $	1.22	20	1.22	m 	$\begin{array}{c} 1.2171 \\ 1.1475 \\ 1.1331 \\ 1.1118 \\ 1.0991 \end{array}$	$<1 \\ 6 \\ 6 \\ 1 \\ 6$
$egin{array}{c} 620 \\ 523 \\ 631 \\ 613 \\ 116 \end{array}$	$ \begin{array}{c} 1.090\\ 1.077\\ 1.013\\ 0.985\\ \end{array} $	30 30 10 10					$\begin{array}{c} 1.0885\\ 1.0762\\ 1.0114\\ 0.9826\\ .9765\end{array}$	$\begin{array}{c} 6\\ 10\\ 4\\ 6\\ 2\end{array}$
$640 \\ 543 \\ 721 \\ 534 \\ 712$	$\begin{array}{c} .957\\ .949\\\\ \end{array}$	$20 \\ 10 \\ \\ 40$.9547 .9464 .9340 .9262	4 6 3 8
633 604 703 732 800	$\left.\begin{array}{c} .914 \\ .885 \\ .868 \\ \end{array}\right.$	20 20 20					$\begin{array}{r} .9111\\ .8819\\ .8656\\ .8604\end{array}$	
$723 \\ 820 \\ 802 \\ 660 \\ 644 \\ 813$.8533 .8347 .8282 .8112 .8053 .7857	2 3 3 2 7 2

Yttrium Phosphate (xenotime), YPO₄ (tetragonal)

the NBS by Alvin Perloff using yttrium oxide and an excess of 1:1 phosphoric acid. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of aluminum, calcium, dysprosium, platinum, and silicon; 0.001 to 0.01 percent each of erbium, iron, magnesium, and ytterbium; and 0.001 to 0.001 percent of lead. The sample was colorless. The particle size was too small to determine the refractive indices.

Interplanar spacings and intensity measurements. The d-values reported by Horne and by Strada and Schwendimann have been converted from kX to angstrom units. The d-values of the Vegard pattern were calculated from Bragg angle data. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	. 3
Horne Vegard Strada and Schwendimann National Bureau of Standards_	$200 \\ 312 \\ 312 \\ 200$	$312 \\ 200 \\ 200 \\ 112$	$112 \\ 314 \\ 114 \\ 312$

Structural data. Vegard [1] in 1923 determined that yttrium phosphate has a zircon-type structure, the space group being $I4_1$ /amd (No. 141), and $4(YPO_4)$ per unit cell. Two unit-cell measurements have been converted from kX to angstrom units for comparison with the NBS values.

		a	с
1927	Vegard [1]	A 6.90	$\begin{array}{c} A \\ 6.03 \end{array}$
1934	Strada and Schwendimann [2]	6.88	6.19
1958	National Bureau of Standards	6.885	$5.982\mathrm{at}$ $26^\circ\mathrm{C}$

The density of yttrium phosphate calculated from the NBS lattice constants is 4.306 g/cm^3 at 26°C .

References

- L. Vegard, The structure of xenotime and the relation between chemical constitution and crystal structure, Phil. Mag. 4, 511 (1927).
- [2] M. Strada and G. Schwendimann, La struttura cristallina di alcuni forfati des metalli trivalenti. II. Arseniato e fosfato di ittrio, Gazz. Chim. Ital. 64, 662–674 (1934).

Zinc Carbonate (smithsonite), ZnCO₃ (trigonal)

ASTM cards

nd by verted of the angle nes of

Card numbers	Index lines	Radiation	Source
3-0774	$2.75 \\ 1.71 \\ 3.56$	Molybdenum	The Dow Chemical Co.
3-1336	No	powder data	Brentano and Adamson [1] 1929.

Additional published patterns

Source	Radiation
Levi and Ferrari [2] 1924	Copper, K_{α}

NBS sample. The zinc carbonate used was the Natural Museum sample No. 96155 from Broken Hill, Rhodesia. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of cadmium, iron, magnesium, and lead; 0.001 to 0.01 percent each of calcium, manganese, and silicon; and 0.0001 to 0.001 percent of copper. The sample was colorless and optically negative. The indices of refraction are $N_o=1.841$ and $N_e=1.630$.

Interplanar spacings and intensity measurements. The *d*-values reported by Levi and Ferrari have been converted from kX to angstrom units. The indices of the three strongest lines of each pattern are as follows:

	Pattern	1	2	3
The Dow Levi and National	Chemical Co Ferrari Bureau of	$\begin{array}{c} 104 \\ 104 \end{array}$	$116,018 \\ 116,018$	$012 \\ 3 \cdot 0 \cdot 12$
Standa	rds	104	012	116,018

hkl hex.	The D Chemica Mo, 0.71	1924 Dow Levi and cal Co. Ferrari 7107 A Cu, 1.5418 A		1958 National Bureau of Standards Cu, 1.5405 A 25°C		
	d	Ι	d	I	d	I
$012 \\ 104 \\ 110 \\ 113 \\ 202$	$\begin{matrix} A \\ 3.56 \\ 2.75 \\ 2.33 \\ 2.11 \\ 1.95 \end{matrix}$	$ \begin{array}{r} 32 \\ 100 \\ 16 \\ 10 \\ 20 \end{array} $	$\begin{matrix} A \\ 3.33 \\ 2.63 \\ 2.26 \\ 2.05 \\ 1.90 \end{matrix}$	m vs ms ms s	$\begin{array}{c} A\\ 3.55\\ 2.750\\ 2.327\\ 2.110\\ 1.946\end{array}$	49 100 25 18 26
$\begin{array}{c} 024 \\ 116 \\ 018 \\ 211 \\ 122 \end{array}$	$\begin{array}{c} 1.78 \\ 1.71 \\ \bar{1.49} \end{array}$	8 48 10	$1.74 \\ 1.67 \\ 1.47 \\ 1.39$	m vs s s	$1.776 \\ 1.703 \\ 1.515 \\ 1.493$	$11 \\ 44 \\ 13 \\ 13 \\ 13$
$214 \\ 1 \cdot 0 \cdot 10 \\ 208 \\ 119 \\ 300$	1.41 $\overline{1.38}$ $\overline{1.34}$	$ \begin{array}{c} 11 \\ \overline{3} \\ \overline{-8} \end{array} $	 1.33	 ms	$1.411 \\ 1.408 \\ 1.374 \\ 1.357 \\ 1.343$	9 2 3 2 9
$\begin{array}{c} 0\!\cdot\!0\!\cdot\!12\\ 217\\ 0\!\cdot\!2\!\cdot\!10\\ 306\\ 128\end{array}$	$\begin{array}{c} 1.26 \\ \bar{1}.\bar{2}\bar{1} \\ \end{array} \\ \begin{array}{c} 1.18 \end{array}$	$\begin{array}{c} 2\\ \overline{2}\\ 5\end{array}$	$ \begin{array}{r} 1.24 \\ \bar{1}.\bar{2}\bar{0} \\ 1.17 \end{array} $	m w s	$1.2524 \\ 1.2423 \\ 1.2048 \\ 1.1833$	
$220 \\ 312 \\ 1 \cdot 1 \cdot 12 \\ 134 \\ 2 \cdot 1 \cdot 10$	1.16	2	1.16 1.06 	W 	$\begin{array}{c} 1.1632 \\ 1.1057 \\ 1.1028 \\ 1.0710 \\ 1.0699 \end{array}$	$ \begin{array}{c} 1 \\ 2 \\ 2 \\ 6 \\ 3 \end{array} $
$ \begin{array}{c c} 226 \\ 0 \cdot 1 \cdot 14 \\ 404 \\ 318 \\ 2 \cdot 0 \cdot 14 \end{array} $			 0.956 .946	m	$\begin{array}{c} 1.0552 \\ 1.0371 \\ 0.9730 \\ .9606 \\ .9473 \end{array}$	$\begin{vmatrix} 2\\ <1\\ 5\\ 8\\ 1 \end{vmatrix}$

hkl hex.	The Dow Chemical Co. Mo, 0.7107 A		The Dow Chemical Co. Mo, 0.7107 A 1924 Levi and Ferrari Cu, 1.5418 A		1958 National Bureau of Standards Cu, 1.5405 A at 25°C	
	d	Ι	d	Ι	d	Ι
$ \begin{array}{r} 1 \cdot 1 \cdot 15 \\ 232 \\ 3 \cdot 0 \cdot 12 \\ 324 \\ 1 \cdot 3 \cdot 10 \end{array} $	A 		A .915 .897 	 vs m 	$\begin{array}{c} A\\.9201\\.9174\\.9160\\.8977\\.8967\end{array}$	3 3 8 <1 <1 <1
$048 \\ 410 \\ 1 \cdot 2 \cdot 14 \\ 2 \cdot 2 \cdot 12 \\ 0 \cdot 2 \cdot 16$.888 .878 .855	m ms ms	.8878 .8793 .8775 .8523 .8514	$<1 \\ 1 < 1 \\ <1 \\ <1 < 1$
$4 \cdot 0 \cdot 10$ 416 238 502	}		. 832 . 802	s ms	.8370 .8295 .8013	<1 2 <1
$2 \cdot 1 \cdot 16 \\ 054 \\ 3 \cdot 2 \cdot 10 \\ 1 \cdot 1 \cdot 18$.790	 s	.7994 .7878 .7873 .7857	$\begin{array}{c} 3\\1\\2\\2\end{array}$

Structural data. Wyckoff [3] in 1920 determined the structure of calcite. Levi and Ferrari [2] showed in 1924 that zinc carbonate has calcitetype structure, the space group $R\bar{3}c$ (No. 167), and $2(ZnCO_3)$ per unit rhombohedral cell or $6(ZnCO_3)$ per unit hexagonal cell. The unit-cell measurements reported by Goldschmidt have been converted from kX to angstrom units for comparison with the NBS values. Cell measurements were reported by Brentano and Adamson [1] and by Levi and Ferrari [2] but were not included as they were given as large pseudo-cubic values.

	Lattice consta	nts	
		a	с
1029	Coldsehmidt and	A	A
1952	Hauptmann [4]	4.6612	15.007
1998	Standards	4.6533	15.028 at

The density of zinc carbonate calculated from the NBS lattice constants is 4.333 g/cm³ at 25°C.

 $25^{\circ}C$

References

- J. Brentano and J. Adamson, Precision measurements of X-ray reflections from crystal powders. The lattice constants of zinc carbonate, manganese carbonate and cadmium oxide, Phil. Mag. 7, 507–517 (1929).
- G. R. Levi and A. Ferrari, Ī reticoli crystallini dei carbonati romboedrici di metalli bivalenti, Rend. Accad. Lincei 33, 516-521 (1924).
 R. W. G. Wyckoff, The crystal structures of some car-
- [3] R. W. G. Wyckoff, The crystal structures of some carbonates of the calcite group, Am. J. Sci. 50, 317–360 (1920).
- [4] V. M. Goldschmidt and H. Hauptmann, Isomorphie von Boraten und Karbonaten, Nachr. Ges. Wiss. Göttingen, Mathphysik Kl. 1932–1933, 53–72 (1932– 1933).

Zinc Fluosilicate Hexahydrate, ZnSiF₆·6H₂O (trigonal)

ASTM cards

Card number	Index lines	Radiation	Source
10298	$4.72 \\ 4.17 \\ 2.59$	Molybdenum	New Jersey Zinc Co.

Additional published patterns. None.

NBS sample. The sample of zinc fluosilicate hexahydrate was obtained from the City Chemical Corp., New York. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of calcium, iron, and magnesium; 0.001 to 0.01 percent each of aluminum, nickel, lead, and titanium; and 0.0001 to 0.001 percent each of silver, barium, copper, and manganese. The sample was colorless. The indices of refraction were too low to be determined by the liquid grain-immersion method.

Interplanar spacings and intensity measurements. The *d*-values reported by the New Jersey Zinc Co. were converted from kX to angstrom

hkl hex.	New Je Zinc C Mo,	rsey Vo.	1958 National Bureau of Standards Cu, 1.5405 A at 25°C		
	d	I	d	I	
$ \begin{array}{c} 101\\ 110\\ 012\\ 202\\\\ 211\\ 113\\ 122\\ 104\\ 131\\ \end{array} $	$\begin{array}{c} A \\ \hline 4.73 \\ 4.18 \\ 3.10 \\ 3.02 \\ 2.93 \\ 2.68 \\ 2.60 \\ \hline \\ \end{array}$	100 75 5 1 15 50 	$\begin{array}{c} A\\ 6.22\\ 4.68\\ 4.16\\ 3.11\\ \hline \\ 2.922\\ 2.660\\ 2.590\\ 2.321\\ 2.191\\ \end{array}$	$ \begin{array}{r} 2 \\ 100 \\ 46 \\ 5 \\ \\ 10 \\ 5 \\ 27 \\ 2 \\ 2 \end{array} $	
$\begin{array}{c} 024 \\ 303 \\ 312 \\ 401 \\ \hline \end{array}$	$2.08 \\ \overline{2.03} \\ 1.988 \\ 1.946$	$\begin{array}{c}13\\-1\\8\\3\end{array}$	2.080 2.074 2.040 1.9835	$\begin{array}{c} 6\\ 4\\ 2\\ 4\\ \end{array}$	

hkl	New Jersey Zinc Co. Mo,		1958 National B of Standa Cu, 1.5405 A	ureau ards at 25°C
hex.	d	 I	d	Ι
$214 \\ 042 \\ 321 \\ 410 \\ 232$	$\begin{array}{c} A \\ 1.901 \\ 1.868 \\ 1.827 \\ 1.776 \\ 1.741 \end{array}$	$32 \\ 5 \\ 3 \\ 6 \\ 6 \\ 6$	$\begin{array}{c} A \\ 1.9008 \\ 1.8706 \\ 1.8270 \\ 1.7694 \\ 1.7372 \end{array}$	$\begin{array}{c}10\\5\\3\\4\\4\end{array}$
$134 \\ 051 \\ 330 \\ 116 \\ 324$	$\begin{array}{c} 1.647\\ \hline 1.556\\ \hline 1.479\end{array}$	$\begin{array}{c} 25\\ \overline{4}\\ \overline{6}\end{array}$	$1.6488 \\ 1.5999 \\ 1.5603 \\ 1.5271 \\ 1.4754$	$7 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2$
$\begin{array}{c} 422 \\ 511 \\ 333 \\ 045 \\ 152 \end{array}$			$1.4611 \\ 1.4403 \\ 1.4050 \\ 1.4007 \\ 1.3946$	$1 \\ < 1 \\ < 1 \\ < 1 \\ 1$
$ \begin{array}{c} 306 \\ 107 \\ 600 \\ 226 \\ 520 \end{array} $	$ \begin{array}{r} 1.395 \\ \overline{1.355} \\ 1.331 \\ 1.297 \end{array} $		$1.3866 \\ 1.3651 \\ 1.3510 \\ 1.3299 \\ 1.2981$	$2 \\ 1 \\ 3 \\ 1 \\ 2$
$\begin{array}{c c} 244 \\ 342 \\ 514 \\ 612 \\ 440 \end{array}$	1.198	 9 	$\begin{array}{c} 1.2950\\ 1.2858\\ 1.2484\\ 1.1976\\ 1.1701 \end{array}$	$2 < 1 < 1 < 1 \\ 5 \\ 1 \end{bmatrix}$
$ \begin{array}{c} 434 \\ 208 \\ 532 \\ 128 \\ 345 \end{array} $	} 1.127	5	$ \begin{array}{r} 1.1675 \\ 1.1604 \\ 1.1265 \\ 1.0988 \\ \end{array} $	<1 < 1 < 1 2 < 1 < 1
$262 \\ 170 \\ 318 \\ 057 \\ 704$			$\begin{array}{c} 1.0956 \\ 1.0740 \\ 1.0666 \\ 1.0530 \\ 1.0451 \end{array}$	$1 \\ 1 \\ < 1 \\ < 1 \\ < 1$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.023		$\begin{array}{c} 1.0366\\ 1.0276\\ 1.0122\\ 0.9942\\ .9706\end{array}$	<1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 1

units. The indices of the three strongest lines of each pattern are as follows:

Pattern	1	2	3
New Jersey Zinc Co National Bureau of Standards.	$\begin{array}{c} 110\\ 110\end{array}$	$\begin{array}{c} 012\\012\end{array}$	$\begin{array}{c} 122 \\ 122 \end{array}$

Structural data. Hassel [1] in 1927 determined that zinc fluosilicate hexahydrate has nickel chlorostannate structure type, the space group $\overline{R3}$ (No. 148) and 1(ZnSiF₆·6H₂O) per unit rhombohedral cell or 3(ZnSiF₆·6H₂O) per unit hexagonal cell.

The unit-cell measurements reported by Hassel and Salvesen have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

1927 1958	Hassel and Salvesen [2] National Bureau of Standards	a 9.344 9.362	$ \begin{array}{c} c \\ A \\ 9.66 \\ 9.695 \text{ at} \\ 25^{\circ}\text{C} \end{array} $
--------------	--	-------------------	---

The density of zinc fluosilicate hexahydrate calculated from the NBS lattice constants is 2.135 g/cm³ at 25° C.

References

- O. Hassel, Vorläufige Notiz über die Kristallstruktur einiger Verbindungen von der Zusammensetzung MGe-LRe, Z. physik. Chem. 126, 118–126 (1927).
- [2] O. Hassel and J. R. Salvesen, Über den Kristallbau der trigonal kristallisierenden heteropolaren Verbindungen von der Zusammensetzung MG₆·LR₆, MG₅D·LR₆ und MG₄D₂·LR₅, Z. physik. Chem. **128**, 345–361 (1927).

Zinc Sulfate Heptahydrate (goslarite), ZnSO₄·7H₂O (orthorhombic)

ASTM cards

ld

ge

om °C.

tice and carcarcar-

-360

Wiss. 1932-

Card number	Index lines	Radiation	Source
1-0402	$4.20 \\ 5.3 \\ 3.44$	Molybdenum	Hanawalt, Rinn, and Frevel [1] 1938.

Additional published patterns. None. NBS sample. The sample of zinc sulfate heptahydrate was a specially purified sample obtained from Mallinckrodt Chemical Works, New York. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent magnesium; 0.001 to 0.01 percent each of calcium and sulfur; and 0.0001 to 0.001 percent each of aluminum, barium, copper, iron, and lead. The NBS pattern was obtained at approximately 100-percent humidity. The sample was colorless and optically negative. The refractive indices are N_{α} =1.458, N_{\beta}=1.480, and N_{γ} = 1.485. The calculated value of 2V was 25°.

Interplanar spacings and intensity measurements. The *d*-values of the Hanawalt, Rinn, and

hkl	1938 Hanawalt, and Fre Mo, 0.71	3 , Rinn, evel 107 A	1958 National J of Stand Cu, 1.5405 A	8 Bureau lards A at 25°C
	d	Ι	d	I
$110 \\ 020 \\ 101 \\ 120 \\ 210$		 60 	$\begin{matrix} A \\ 8.43 \\ 6.02 \\ 5.91 \\ 5.36 \\ 5.29 \end{matrix}$	$ \begin{array}{r} 10 \\ 10 \\ 6 \\ 78 \\ 37 \end{array} $
$\begin{array}{c} 021 \\ 201 \\ 121 \\ 220 \\ 211 \end{array}$	$\left.\begin{array}{c} 4.51 \\ \\ 4.21 \\ \end{array}\right.$	16 100 	$ \begin{array}{c c} 4.52 \\ 4.46 \\ 4.21 \\ 4.18 \\ \end{array} $	$7 \\ 25 \\ 100 \\ 47$
$130 \\ 310 \\ 031 \\ 002 \\ 131 \\ 230$	$\left.\begin{array}{c} 3.93\\ 3.77\\ 3.45\\\\ 3.31\end{array}\right.$	$ \begin{array}{c} 12 \\ 20 \\ 30 \\ \\ 4 \end{array} $	$\begin{array}{c} 3.80\\ 3.74\\ 3.457\\ 3.411\\ 3.319\end{array}$	$ \begin{array}{c} 10 \\ 21 \\ 23 \\ 9 \\ 15 \end{array} $
$ \begin{array}{r} 112 \\ 231 \\ 202 \\ 212 \\ 330 \end{array} $	3.15 3.00 2.88	$2 \\ 12 \\ \overline{30} \\$	$3.162 \\ 2.985 \\ 2.953 \\ 2.867 \\ 2.809$	$\begin{array}{c}4\\14\\8\\33\\22\end{array}$
$041 \\ 141 \\ 240 \\ 222 \\ 420$	2.76 2.67 	10 25 	$2.754 \\ 2.682 \\ 2.680 \\ 2.651 \\ 2.648$	$20 \\ 16 \\ 16 \\ 29 \\ 15$
$\begin{array}{c} 032 \\ 241 \\ 421 \\ 340 \\ 232 \\ 430 \end{array}$	$\left.\begin{array}{c} 2.51 \\ \\ \\ 2.37 \end{array}\right.$	12 8	2.5992.4972.4692.3942.376	3 9 6 3 8
$150 \\ 042 \\ 341 \\ 013 \\ 103$	} 2.25	 20 	$\begin{cases} 2.362 \\ 2.258 \\ 2.255 \\ 2.236 \\ 2.233 \end{cases}$	$9 \\ 3 \\ 13 \\ 11 \\ 5$
$113 \\ 052 \\ 023 \\ 242 \\ 123 \\ 422$	$ \left. \begin{array}{c} 2.12 \\ 2.08 \end{array} \right $	 20 20	2.1952.1272.1092.092	17 7 2 11
$350 \\ 530 \\ 441 \\ 060 \\ 033$	2.02	 6 	$2.055 \\ 2.034 \\ 2.012 \\ 2.007 \\ 1.979$	$ \begin{array}{c} 6 \\ 10 \\ 7 \\ 6 \\ 9 \end{array} $
$303 \\ 052 \\ 133 \\ 512 \\ 161$)} 1.95 	 12 	$1.968 \\ 1.950 \\ 1.914 \\ 1.902$	$ \begin{array}{c} 11 \\ 7 \\ 10 \\ 9 \end{array} $
$\begin{array}{c} 601 \\ 233 \end{array}$	1.87	12	$1.888 \\ 1.874$	$\frac{11}{7}$

Zinc	Sulfate	Hept	ahydrate	(goslarite),
	ZnSO ₄ ·7	H_2O	(orthorh	ombic)

hkl	1938 Hanawalt, and Fre Mo, 0.71	Rinn, evel 07 A	1958 National Bureau of Standards Cu, 1.5405 A at 25°C	
	d	Ι	d	Ι
$620 \\ 540 \\ 261$	A 		${}^{A}_{1.867}_{1.857}_{1.831}$	8 5 8
$\begin{array}{c} 621 \\ 143 \\ 630 \\ 352 \\ 062 \end{array}$	1.80 } 1.74	10 6	$1.801 \\ 1.795 \\ 1.761 \\ 1.731$	$9 \\ 4 \\ 5 \\ 13$
$162 \\ 004 \\ 104 \\ 114 \\ 343$	1.71	8 	$1.713 \\ 1.706 \\ 1.687 \\ 1.671 \\ 1.648$	8 8 5 8 8
$204 \\ 622 \\ 153 \\ 124 \\ 214$	} 1.63	14 	1.638 1.625 1.624	5 8 8
$224 \\ 134 \\ 443 \\ 080 \\ 603 \\ 272$	$\left.\begin{array}{c}1.58\\\overline{1.52}\\1.495\end{array}\right\}$	$\frac{4}{2}$	$\left\{\begin{array}{c} 1.581 \\ 1.557 \\ 1.546 \\ 1.506 \\ 1.487 \end{array}\right.$	5 2 3 4 8
$740 \\ 414 \\ 810 \\ 623 \\ 424$	<pre>} 1.468 } 1.438</pre>	8 2	$\left\{\begin{array}{cc} 1.467 \\ 1.461 \\ 1.443 \\ 1.433 \end{array}\right.$	$egin{array}{c} 6 \ 6 \ 4 \ 3 \end{array}$
$750 \\ 105 \\ 831 \\ 254$	$\left.\begin{array}{c}1.385\\1.360\end{array}\right\}$	4 4	$\frac{1.379}{1.355}$	5 5
812 282 671	$\left. ight\} 1.325$	2	$\begin{array}{c}1.342\\1.273\end{array}$	3 3

Frevel pattern were converted from kX to angstrom units. The indices of the three strongest lines for each pattern are as follows:

Pattern	1	2	3
Hanawalt, Rinn, and Frevel National Bureau of Standards_	$121,220\\121,220$	$\begin{array}{c} 120\\ 120\end{array}$	$\begin{array}{c} 031\\ 211 \end{array}$

Structural data. Westenbrink [2] in 1926 determined that zinc sulfate heptahydrate has magnesium sulfate heptahydrate-type structure, the space group $P2_12_12_1$ (No. 19), and $4(ZnSO_4\cdot7H_2O)$ per unit cell.

The unit-cell measurements reported by Westenbrink have been converted from kX to angstrom units for comparison with NBS values.

Lattice constants

1926 Westenbrink [2] 1958 National Bureau of Standards	$\begin{array}{c} a \\ \hline A \\ 11.87 \\ 11.779 \end{array}$	$\begin{array}{c} b\\ A\\ 12.11\\ 12.050\end{array}$	<i>c</i> <i>A</i> 6.84 6.822 at 25°C
--	---	--	--

The density of zinc sulfate heptahydrate calculated from the NBS lattice constants is 1.972 g/cm³ at 25°C.

References

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemi-cal analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
 H. G. K. Westenbrink, The space groups of the rhombic and monoclinic heptahydrates of the sulfates of biva-lent metals, Proc. Accad. Sci. Amsterdam 29, 1223-1232 (1926).

	Volume	Page		Volume	Page
Aluminum, Al	1	11	Cadmium carbonate (otavite), CdCO ₃	7	11
Aluminum antimony, AlSb	4	$\overline{72}$	Cadmium molybdate, CdMoO ₄	6	$\overline{21}$
Aluminum calcium sulfate hydrate (ettringite).		• -	Cadmium oxide. CdO	$\tilde{2}$	27
$Al_2O_3 \cdot 6CaO \cdot 3SO_3 \cdot 31H_2O_3$	8	3	Cadmium selenide CdSe (hexagonal)	7	12
Aluminum chloride hexahydrate (chloralumi-	0	0	Cadmium sulfide (greenockite) CdS	4	15
nite), AlCl ₂ , 6H ₂ O	7	3	tri-Calcium aluminate 3CaO; AlcO	5	10
Aluminum oxide, alpha (corundum) Al ₂ O ₂	2	20	Calcium bromide hexabydrate CaBrate	8	15
Aluminum oxide monohydrate alpha (böh-	4	20	Calcium carbonate (aragonite) CaCO.	3	53
mite). Al ₂ O ₂ ·H ₂ O	3	38	Calcium carbonate (calcita), CaCO.	2	51
Aluminum oxide monohydrate beta (diaspore)	0	00	Calcium abromate CaCrO	7	12
AlaQa+HaQ	2	41	Calcium fuorida (fuorita) CaF	i	60
Ammonium aluminum sulfate dodooshudrate	0	.41	Calcium formate $C_2(HCO)$	1	16
NH Al(SO). 19H O	c	9	Calcium formate, $Ca(\Pi CO_2)_2$	0	10
Ammonium bromido NH Pr	0	40	Calcium nydroxide (portiandite), $Ca(OH)_{2}$		00
Ammonium bromoormate (NIL) O-D-	4	49	Calcium molybdate (poweinte), Calvio O_4	0	22
Ammonium bromosolenete $(NH_4)_2OSDr_{6}$	0	11	Calcium nitrate, $Ca(NO_3)_2$	1	14
Ammonium bromotollum to $(NH_4)_2SeDf_{6}$	0	4	Calcium oxide, CaO	1	43
Ammonium bromotenurate, $(NH_4)_2 1eBr_{6}$	8	50	Calcium suitate (annydrite), CaSO ₄	4	65
Ammonium chloride (sal-ammoniac), $NH_4CI_{}$	1	99	Calcium suinde (oldnamite), CaS	1	15
Ammonium chloropridate, $(NH_4)_2 Ir U_{16}$	8	6	Calcium tungstate (scheelite), $CaWO_{4}$	6	23
Ammonium chloropalladate, $(NH_4)_2PdCl_{6}$	8	7	Carbon (diamond), C	2	5
Ammonium chloropalladite, $(NH_4)_2PdCl_4$	6	6	Cerium (III) fluoride, CeF ₃	8	17
Ammonium chloroplatinate, $(NH_4)_2PtCl_{6}$	5	3	Cerium (IV) oxide (cerianite) CeO_2	1	56
Ammonium chlorostannate $(NH_4)_2SnCl_{6}$	5	4	Cesium aluminum sulfate dodecahydrate, CsAl-		
Ammonium chlortellurate, $(NH_4)_2 TeCl_{6}$	8	8	$(SO_4)_2 \cdot 12H_2O_{$	6	25
Ammonium chromium sulfate dodecahydrate,			Cesium bromate, CsBrO ₃	8	18
$\mathrm{NH}_4\mathrm{Cr}(\mathrm{SO}_4)_2 \cdot 12\mathrm{H}_2\mathrm{O}$	6	7	Cesium bromide, CsBr	3	49
Ammonium dihydrogen phosphate, NH ₄ H ₂ PO ₄₋	4	64	Cesium bromoplatinate, Cs ₂ PtBr ₆	8	19
Ammonium fluogermanate, $(NH_4)_2GeF_{6}$	6	8	Cesium bromoselenate, Cs ₂ SeBr ₆	8	20
Ammonium fluosilicate (cryptohalitc), $(NH_4)_2$ -			Cesium chlorate, CsClO ₃	8	20
SiF ₆	5	5	Cesium chloride, CsCl	2	44
Ammonium gallium sulfate dodecahydrate,			Cesium chloroplatinate, Cs ₂ PtCl ₆	5	14
$\mathrm{NH}_{4}\mathrm{Ga}(\mathrm{SO}_{4})_{2}\cdot 12\mathrm{H}_{2}\mathrm{O}_{$	6	9	Cesium chlorostannate, Cs ₂ SnCl ₆	5	16
Ammonium iodide, NH ₄ I	4	56	Cesium chromium sulfate dodecahydrate, Cs-		
Ammonium iron sulfate dodecahydrate, NH ₄ -			$Cr(SO_4)_2 \cdot 12H_2O_{$	8	21
$Fe(SO_4)_2 \cdot 12H_2O$	6	10	Cesium diclhoroiodide, CsICl ₂	3	50
Ammonium metavanadate, NH ₄ VO ₃	8	9	Cesium fluoborate, CsBF ₄	8	22
Ammonium nitrate (ammonia-niter), NH ₄ NO ₃₋	7	4	Cesium fluogermanate, Cs ₂ GeF ₆	5	17
Ammonium oxalate monohydrate (oxammite),			Cesium fluoplatinate, Cs ₂ PtF ₆	6	27
$(\mathrm{NH}_4)_2\mathrm{C}_2\mathrm{O}_4\cdot\mathrm{H}_2\mathrm{O}$	7	5	Cesium fluosilicate, Cs ₂ SiF ₆	5	19
Ammonium perchlorate, NH_4ClO_4 , (ortho-			Cesium gallium sulfate dodecahydrate, CsGa-		
rhombic)	7	6	$(SO_4)_2 \cdot 12H_2O_{$	8	23
Ammonium phosphomolybdate tetrahydrate,			Cesium iodide, CsI	4	47
$(NH_4)_3PO_4(MoO_3)_{12} \cdot 4H_2O$	8	10	Cesium iron sulfate dodecahydrate, $CsFe(SO_4)_2$ -		
Ammonium sulfate (mascagnite), $(NH_4)_2SO_{4}$	6	12	$\cdot 12 H_2 O_{$	6	28
Ammonium zirconium fluoride (NH ₄) ₃ ZrF ₇	6	14	Cesium sulfate, Cs ₂ SO ₄	7	17
Antimony, Sb	3	14	Chromium, Cr	5	20
Antimony (111) iodide, Sbl ₃	6	16	Chromium (III) oxide, Cr_2O_3	5	22
Antimony (111) sulfide (stibnite), Sb_2S_3	5	6	Chromium silicide, Cr ₃ Si	6	29
Antimony trioxide (scnarmontite), Sb_2O_{3}	3	31	Copper, Cu	1	15
Arsenic, As	3	6	Copper (1) bromide, CuBr	4	36
Arsenic (111) iodide, Asl ₃	6	17	Copper (1) chloride (nantokite), CuCl	4	35
Arsenic trioxide (arsenolite), As_2O_3	1	51	Copper (1) iodide (marshite), Cul	4	38
Barium, Ba	4	1	Copper (1) oxide (cuprite), $Cu_2O_{}$	2	23
Barium carbonate (witherite), BaCO ₃	2	54	Copper (II) oxide (tenorite), CuO	1	49
Barium fluoride, BaF ₂	1	70	Copper (II) sulfide (covellite), CuS	4	13
Barium molybdate, BaMoO ₄	1	7	Erbium sesquioxide, Er ₂ O ₃	8	25
Barium nitrate (nitrobarite), $Ba(NO_3)_{2}$	1	81	Gallium, Ga	2	9
Barium peroxide, BaO_2	6	18	Gallium antimonide, GaSb	6	30
Barium sulfate (barite), BaSO ₄	3	65	Gallium oxide, alpha, Ga ₂ O ₃	4	25
Barium sulfide, BaS	1	8	Gallium phosphate, (α -quartz type) GaPO ₄	8	27
Barium titanate, BaTiO ₃	3	45	Germanium, Ge	1	18
Barium tungstate, BaWO ₄	1	9	Germanium dioxide, GeO ₂	8	28
Barium zirconate, BaZrO ₃	5	8	Germanium (IV) iodide, GeI ₄	5	25
Beryllium orthosilicate (phenacite), Be_2SiO_4	8	11	Germanium oxide, GeO_2	1	51
Dispute Dispute (bromellite), BeO	1	30	Gold, Au	1	33
Dismuth (III) is lite D'I	3	20	Gold antimony 1:2 (aurostibite), AuSb ₂	7	18
Dismuth (111) lodide, Bil ₃	6	20	Gold tin 1:1, AuSn	7	19
Dismuth excellent de (historial) D'OCL	8	14	Hafnium, Hf	3	18
Bismuth culf do (bismochte), BIOUL	4	04	Indium, In	3	12
Cadmium Cd	4	23	Indium antimony, InSb	4	73
Caumum, Ca	3	10	Indium oxide, In ₂ O ₃	5	26
			Indium phosphate, InPO ₄	8	29
			Iodic acid, HIO3	5	28
"Further work on this program is in progress, and i	t is antic	pated	Iodine, I ₂	3	16
here is not necessarily the concluding index for the proje	ot	much	Iridium. Ir	4	9

Iodine, I2_____ Iridium, Ir_____

⁶ Further work on this program is in progress, and it is anticipated that additional volumes will be issued. Therefore, the accumulative index here is not necessarily the concluding index for the project.

	Volume	Page
Iron, alpha, Fe Iron sulfide (nyrite), FeS ₂	$\frac{4}{5}$	$\frac{3}{29}$
Lanthanum fluoride, LaF ₃	7	$\overline{21}$
Lanthanum oxide, La ₂ O ₃	$\frac{3}{7}$	$\frac{33}{22}$
Lead, Pb	1	$\overline{34}$
Lead bromide, PbBr ₂	$\frac{2}{2}$	47 56
Lead chloride (cotunnite), PbCl ₂	$\frac{2}{2}$	45
Lead formate, Pb(HCO ₂) ₂	8	30
Lead fluoride, alpha, PbF ₂	1 5	$\frac{76}{31}$
Lead fluoride, beta, PbF ₂	5	33
Lead (II) iodide, PbI_{2} .	$\frac{5}{7}$	34 23
Lead monoxide (litharge), PbO (red)	2	30
Lead monoxide (massicot), PbO (yellow)	2	32
Lead (II, III) oxide (minium), Pb_3O_4	9 8	$\frac{30}{32}$
Lead phosphate hydrate (lead hydroxyapa-	0	00
tite), $PD_5(PO_4)_3OH_{}$ Lead selenide (clausthalite), PbSe	8 5	33 38
Lead sulfate (anglesite), PbSO ₄	3	67
Lead sulfide (galena), PbS	2 5	18
Lead tungstate (stolzite), PbWO ₄	7	$\frac{39}{24}$
Lithium bromide, LiBr	4	30
Lithium chloride, LiCl	1	62 61
Lithium iodate, LiIO ₃	7	26^{-1}
Lithium nitrate, LiNO ₃	7	27
Lithium perchlorate trinydrate, $LiCiO_4 \cdot 3H_2O_{-}$ Magnesium Mg	8	34 10
Magnesium aluminate (spinel), MgAl ₂ O ₄	$\frac{1}{2}$	$\frac{10}{35}$
Magnesium carbonate (magnesite), MgCO ₃	7	28
Magnesium huoride (senarte), Mgr_2 Magnesium hydroxide (brucite), Mg (OH),	46	33 30
Magnesium oxide (periclase), MgO	1	37
Magnesium silicate (enstatite), MgSiO ₃	6	32 83
Magnesium sulfate heptahydrate (epsomite),	1	00
$MgSO_4 \cdot 7H_2O_{$	77	30 21
Magnesium tin, Mg ₂ Sn	5	41
Magnesium titanate (geikielite), MgTiO ₃	5	43
Magnesium tungstate, $MgWO_4$ Manganese(II) carbonate (rhodochrosite)	1	84
MnCO ₃	7	32
Manganese (II) oxide (manganosite), MnO	5	45_{11}
Manganese sunde, alpha (alabandite), α -MinS Mercury(I) bromide. Hg ₂ Br ₂	47	33
Mercury(I) chloride (calomel), Hg ₂ Cl ₂	1	72
Mercury (II) chloride, $HgCl_2$.	1	73 35
Mercury(I) iodide, HgI	4	49
Mercury(II) iodide, HgI ₂	1	$\frac{74}{25}$
Mercury(II) selenide (tiemannite), HgSe	3 7	35 35
Mercury(II) sulfide (cinnabar), HgS (hex-		
agonal) Mercury(II) sulfide (metacinnabar) HgS	4	17
(cubic)	4	21
Molybdenum, Mo	1	$\frac{20}{47}$
Molybdenum trioxide (molybdenute), MoS_{2}	3	30
Neodymium fluoride, NdF ₃	8	36
Neodymium oxide, Nd_2O_3	4	26 27
Nickel, Ni	8	٥ <i>۲</i> 13
Nickel fluosilicate hexabydrate, NiSiF ₆ .6H ₂ O.	8	38
Nickel(II) oxide (bunsenite), NiO	1	47
Nickel sulfate hexahydrate, $NiSO_4 \cdot 6H_2O_{}$	7	36
Osmium. Os	8	39
Palladium, Pd	1	21
Palladium oxide, PdO	4	$\overline{27}$
Platinum, Pt	1	31

2 92 11

Potassium aluminum sulfate dodecahydrate,		
$KAl(SO_4)_2 \cdot 12H_2O$	6	36
Potassium bromate, KBrO ₃	7	38
Potassium bromide, KBr	1	66
Potassium bromonlatinate K_PtBr.	8	40
Potassium bromosolonato, K.SoBr.	8	41
Potassium ablarida (arbita) KCl	1	65
D tassium chloride (sylvite), KOI	1 2	10
Potassium chloroplatinate, K ₂ PtO ₁₆	Ð	49
Potassium chlorostannate K ₂ SnCl ₆	6	38
Potassium chromium sulfate dodecahydrate,		
$\mathrm{KCr}(\mathrm{SO}_4)_2 \cdot 12\mathrm{H}_2\mathrm{O}_{$	6	39
Potassium cvanate, KCNO	7	39
Potassium evanide KCN	1	77
Potassium dihydrogen phosphate KH_PO.	3	69
Potassium duogermanata K.CoF.	6	41
Detassium fluorlatinate, K ² OtF	6	49
Potassium nuopiatinate, $\mathbf{K}_2 \mathbf{F} \mathbf{F}_6$	1	44
Potassium fluoride, KF	1	04
Potassium fluosificate (hieratite), K ₂ SiF ₆	5	50
Potassium fluotitanate, K ₂ TiF ₆	7	40
Potassium iodide, KI	1	68
Potassium metaperiodate, KIO4	7	41
Potassium nitrate (niter), KNO ₂	3	58
Potassium perchlorate KClO.	ĕ	43
Potossium permongenete KMnO	7	10
Determine werden der KMn04	6	41
Potassium permenate, Kneo4	0	41
Potassium phosphomolybdate, tetrahydrate,	0	40
$K_3PO_4(MoO_3)_{12} \cdot 4H_2O_{$	8	43
Potassium sulfate (arcanite), K_2SO_4	- 3	62
Potassium thiocyanate, KCNS	8	-1-1
Potassium zinc fluoride, KZnF ₂	5	51
Praseodymium fluoride PrF.	5	52
Rhonium Re	2	13
Dhodium Dh	2	10
\mathbf{D}	0	3
Rubidium aluminum sulfate dodecanydrate,	0	
$RbAl(SO_4)_2 \cdot 12H_2O_{$	6	44
Rubidium bromate, RbBrO ₃	8	45
Rubidium bromide, RbBr	7	43
Rubidium bromotellurate. Rb ₂ TeBr ₆	8	-46
Rubidium chlorate. RbClO ₂	8	47
Rubidium chloride BbCl	4	41
Pubidium chloroplatinata, Ph PtCl	5	53
Pubidium chlorostannata, Rb21 tO16	6	46
Rubidium chlorostannate, RD ₂ ShCl ₆	0	40
Rubidium chlorotellurate, Rb ₂ TeCl ₆	8	48
Rubidium chromium sulfate dodecahydrate,		
$RbCr(SO_4)_2 \cdot 12H_2O$	6	47
Rubidium fluoplatinate, Rb ₂ PtF ₆	6	48
Rubidium fluosilicate, Rb ₂ SiF ₆	6	49
Rubidium iodide. RbÍ	4	43
Rubidium sulfate Rb ₂ SO	8	48
Ruthenium Ru	4	5
Seendium ovide Se.O.	3	27
Seandium phoenhote SeDO	e e	50
Scandium phosphate, Scr O ₄	2	50
Selenium, Se	0	- 04
Selenium dioxide (selenolite), SeO_{2}	1	23
Silicon, Si	2	6
Silicon dioxide (alpha or low quartz), SiO ₂	3	24
Silicon dioxide (alpha or low cristobalite), SiO ₂	1	39
Silicon dioxide (beta or high cristobalite), SiO ₂	1	42
Silver, Ag	1	23
Silver arsenate AgaAsO	5	56
Silver bromete AgBrO	5	57
Silver bromide (bromunite) AgPr	4	46
Silver bronnide (bromyrite), Agbi	7	14
Silver chlorate, AgClO ₃	4	-1-1
Silver chloride (cerargyrite), AgCl	4	44
Silver iodide (iodyrite), Agl (hexagonal)	8	51
Silver molybdate, Ag ₂ MoO ₄	7	45
Silver nitrate, AgNO ₃	5	59
Silver nitrite, AgNO ₂	5	60
Silver(II) oxynitrate, Ag-O.NO3	4	61
Silver perrhenate, AgReO.	8	53
Silver phosphate Ag PO.	5	62
Silver sulfate AgeSO	7	46
Sodium said fuorido NeUF	5	63
Colling to N. D. C	5	65
Sodium bromate, NaBrO ₃	5	00
Sodium bromide, NaBr	3	47
Sodium carbonate monohvdrate (thermona-		
trite), Na ₂ CO ₂ ·H ₂ O	8	54
Sodium chlorate NaClO	3	51

75

Volume Page

	Volume	Page		Volume	Page
Sodium chloride (halite), NaCl	2	41	Thallium(I) iodide, TlI, (orthorhombic)	4	53
Sodium cyanide, NaCN (cubic)	1	78	Thallium(I) nitrate, TlNO ₃	6	58
Sodium evanide, NaCN, (orthorhombic)	1	79	Thallium(III) oxide, Tl ₂ O ₃	2	28
Sodium fluoride (villiaumite), NaF	1	63	Thallium(I) phosphate, Tl ₃ PO ₄	7	58
Sodium iodate, NaIO ₃	7	47	Thallium(III) phosphate, TIPO	7	59
Sodium iodide. Nal	4	31	Thallium(I) sulfate, Tl ₂ SO ₄	6	59
Sodium metaperiodate, NaIO ₄	7	48	Thallium(I) thiocyanate, TICNS	8	63
Sodium nitrate (soda-niter), NaNO ₃	6	50	Thorium oxide (thorianite). ThO ₂	ĭ	57
Sodium nitrite NaNO.	4	62	Tin alpha Sn	$\overline{2}$	12
Sodium perchlorate NaClO ₄ (orthorhombic)	7	49	Tin, beta Sn	ĩ	24
Sodium sulfate (thenardite) Na ₂ SO.	2	59	Tin (IV) jodide SnL	5	71
Sodium sulfite NasSO	3	60	Tin(II) ovide SnO	4	28
Strontium bromide bevelvdrate SrBr. 6H.0	4	60	Tin(IV) oxide (cassitarite) SnO .	1	54
Strontium orbonate (strontianite) SrCO.	3	56	Tin(II) telluride SnTe	7	61
Strontium chlorida SrCl.	4	40	Titonium Ti	2	1
Strontium chloride, brought ato SrCl. 6H.O	4	58	Titanium, II	1	16
Strontium fundide fiexally drate, SI 012.01120	5	67	Titanium dioxide (anatase), 1102	1	40
Strontium formata $Sr(CHO)$	0	55	Titanium dioxide (rume), 1102	1	64
Strontium formate, $Sr(OHO_2)_2$	ð	99	Turnata W	0	04
Strontium formate dinydrate, $Sr(OHO_2)_2$.	0	56	Tungsten, w	1	40
2fi20 orthornombic	0	50	Tungsten sunde (tungstenite), WS_2	0	00
Strontium iodide nexanydrate, Sr12.0H2O	87	- 08 50	Uranium dioxide, UO_2	2	00
Strontium molybdate, SrMoO4	1	50	Urea, $CO(NH_2)_2$	(01
Strontium nitrate, $Sr(NO_3)_{2$	1 F	80	$v_{anadium}(v)$ oxide, v_2O_5	8	00
Strontium oxide, SrO	5	08	Y ttrium, oxide, Y_2O_3	3	28
Strontium peroxide, SrO_2	0	52	Yttrium phosphate (xenotime), YPO ₄	8	67
Strontium sulfate (celestite), SrSO ₄	2	61	Zinc, Zn	1	10
Strontium sulfide, SrS	1	52	Zinc aluminate (gahnite), $ZnAl_2O_4$	2	- 38
Strontium titanate, SrTiO ₃	3	44	Zinc borate, ZnB_2O_4	1	83
Strontium tungstate, SrWO ₄	2	53	Zinc carbonate (smithsonite), ZnCO ₃	8	69
Sulfamic acid, NH ₃ SO ₃	7	54	Zinc cyanide, Zn(CN) ₂	5	73
Tantalum, Ta	1	29	Zinc fluoride, ZnF.	6	60
Tantalum Silicide, TaSi ₂	8	59	Zine fluosilicate beyahydrate ZnSiF. 6H.O	8	70
Tellurium, Te	1	26	Zine anthogilizate (willowite) Zn SiO	7	62
Tellurium(IV) oxide, TeO ₂ (tetragonal)	7	56	Zine orthosineate (winemite), Zi_2SiO_4	6	04
Thallium aluminum sulfate dodecahydrate,			Zinc oxide (zincite), ZnO	2	25
$TlAl(SO_4)_2 \cdot 12H_2O$	6	53	Zinc pyrosilicate hydrate (hemimorphite)		
Thallium(I) bromate, TlBrO ₃	8	60	$Zn_4(OH)_2Si_2O_7 \cdot H_2O$	2	62
Thallium bromide, TlBr	7	57	Zinc senenide, ZnSe	3	23
Thallium(I) chlorate, TlClO ₃	8	61	Zinc sulfate (zinkosite), ZnSO4	7	64
Thallium(I) chloride, TlCl	4	51	Zinc sulfate hentahydrate (goslarite), ZnSO-		
Thallium chloroplatinate, Tl ₂ PtCl ₆	5	70	•7H _a O	8	71
Thallium chlorostannate, Tl2SnCl	6	54	Zine sulfide alpha (muntgita) ZnS	õ	14
Thallium chromium sulfate dodecahydrate,			Zine sumue, aipita (wul $(210e)$, $Zino = = = = = = = = = = = = = = = = = = =$	<u>6</u>	16
$T Cr(SO_4)_{2} \cdot 12H_{2}O_{$	6	55	Zinc suinde, beta (sphalerite), ZhS	4	10
Thallium fluosilicate, Tl ₂ SiF ₆	6	56	Zirconium, alpha, Zr	2	11
Thallium gallium sulfate dodecahydrate. TlGa-			Zirconium silicate (zircon), ZrSiO ₄	4	68
$(SO_4)_{\bullet} \cdot 12H_{\bullet}O$	6	57	Zirconium sulfate tetrahydrate, $Zr(SO_4)_2$.		
Thallium(I) iodate, TlIO ₃	8	62	$4H_2O_{$	7	66

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its headquarters in Washington, D. C., and its major laboratories in Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside front cover.

WASHINGTON, D. C.

Electricity and Electronics. Resistance and Reactance. Electron Devices. Electrical Instruments. Magnetic Measurements. Dielectrics. Engineering Electronics. Electronic Instrumentation. Electrochemistry.

Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Engineering Metrology.

Heat. Temperature Physics. Thermodynamics. Cryogenic Physics. Rheology. Engine Fuels. Free Radicals Research.

Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Neutron Physics. Radiation Theory. Radioactivity. X-rays. High Energy Radiation. Nucleonic Instrumentation. Radiological Equipment.

Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Molecular Structure and Properties of Gases. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.

Mechanics. Sound. Mechanical Instruments. Fluid Mechanics. Engineering Mechanics. Mass and Scale. Capacity, Density, and Fluid Meters. Combustion Controls.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion. Metal Physics.

Mineral Products. Engineering Ceramics. Glass. Refractories. Enameled Metals. Concreting Materials. Constitution and Microstructure.

Building Technology. Structural Engineering. Fire Protection. Air Conditioning, Heating, and Refrigeration. Floor, Roof, and Wall Coverings. Codes and Safety Standards. Heat Transfer.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics.

Data Processing Systems. SEAC Engineering Group. Components and Techniques. Digital Circuitry. Digital Systems. Analog Systems. Application Engineering.

Office of Basic Instrumentation.
 Office of Weights and Measures.

BOULDER, COLORADO

Cryogenic Engineering. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Gas Liquefaction.

Radio Propagation Physics. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services. Sun-Earth Relationships. VHF Research. Ionospheric Communication Systems.

Radio Propagation Engineering. Data Reduction Instrumentation. Modulation Systems. Navigation Systems. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Radio Systems Application Engineering. Radio-Meteorology.

Radio Standards. High Frequency Electrical Standards. Radio Broadcast Service. High Frequency Impedance Standards. Electronic Calibration Center. Microwave Physics. Microwave Circuit Standards.

