NBS CIRCULAR 539Refer to be laken pour to L'hary.

VOLUME III

# **Standard X-ray Diffraction Powder Patterns**

# **UNITED STATES DEPARTMENT OF COMMERCE**

# **NATIONAL BUREAU OF STANDARDS**

# Standard X-ray Diffraction Powder Patterns

The two previously issued volumes in this series are available from the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C., as follows:

NBS Circular 539, Volume I, Standard X-ray Diffraction Powder Patterns (Data for 54 inorganic substances)

NBS Circular 539, Volume II, Standard X-ray Diffraction Powder Patterns (Data for 30 inorganic substances)

The price of each volume is 45 cents. Send orders with remittance to: Superintendent of Documents, Government Printing Office, Washington 25, D. C.

# Standard X-ray Diffraction Powder Patterns

Howard E. Swanson, Ruth K. Fuyat, and George M. Ugrinic



# National Bureau of Standards Circular 539 Volume III, Issued June 10, 1954

For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C.

# Contents

|    |                                                                  | Page |
|----|------------------------------------------------------------------|------|
| 1. | Introduction                                                     | 1    |
| 2. | X-ray data                                                       | 4    |
|    | 2.1. Elements                                                    | 4    |
|    | Titanium, Ti                                                     | 4    |
|    | Arsenic, As                                                      | 6    |
|    | Rhodium, Rh                                                      | 9    |
|    | Cadmium, Cd                                                      | 10   |
|    | Indium, In                                                       | 12   |
|    | Antimony, Sb                                                     | 14   |
|    | Iodine, I <sub>2</sub>                                           | 16   |
|    | Hafnium, Hf                                                      | 18   |
|    | Bismuth, Bi                                                      | 20   |
|    | 2.2. Selenides                                                   | 23   |
|    | Zinc selenide, ZnSe                                              | 23   |
|    | 2.3. Oxides                                                      | 24   |
|    | Silicon dioxide (alpha quartz), SiO <sub>2</sub>                 | 24   |
|    | Scandium oxide, Sc <sub>2</sub> O <sub>3</sub>                   | 27   |
|    | Yttrium oxide, Y2O3                                              | 28   |
|    | Molybdenum trioxide (molybdite), MoO <sub>3</sub>                | 30   |
|    | Antimony trioxide (senarmontite), Sb <sub>2</sub> O <sub>3</sub> | 31   |
|    | Lanthanum oxide, La <sub>2</sub> O <sub>3</sub>                  | 33   |
|    | Mercury (II) oxide (montroydite) HgO                             | 35   |
|    | 2.4. Oxide hydrates                                              | . 38 |
|    | Aluminum oxide mono-hydrate, alpha,                              |      |
|    | (böhmite), Al <sub>2</sub> O <sub>3</sub> ·H <sub>2</sub> O      | 38   |
|    | Aluminum oxide mono-hydrate, beta, (dia-                         |      |
|    | spore), $Al_2O_3 \cdot H_2O_1$                                   | 41   |
|    |                                                                  |      |

| 2. | X-ray dataCon.                                                          | Page |
|----|-------------------------------------------------------------------------|------|
|    | 2.5. Multiple oxides                                                    | 44   |
|    | Strontium titanate, SrTiO <sub>3</sub>                                  | 44   |
|    | Barium titanate, BaTiO <sub>3</sub>                                     | 45   |
|    | 2.6. Halides                                                            | 47   |
|    | Sodium bromide, NaBr                                                    | 47   |
|    | Cesium bromide, CsBr                                                    | 49   |
|    | Cesium dichloroiodide, CsICl <sub>2</sub>                               | 50   |
|    | 2.7. Chlorates                                                          | 51   |
|    | Sodium chlorate, NaClO <sub>3</sub>                                     | 51   |
|    | 2.8. Carbonates                                                         | 53   |
|    | Calcium carbonate (aragonite), CaCO3                                    | 53   |
|    | Strontium carbonate (strontianite),                                     |      |
|    | SrCO3                                                                   | 56   |
|    | 2.9. Nitrates                                                           | 58   |
|    | Potassium nitrate (niter), KNO <sub>3</sub>                             | 58   |
|    | 2.10. Sulfates and Sulfites                                             | 60   |
|    | Sodium sulfite, Na <sub>2</sub> SO <sub>3</sub>                         | 60   |
|    | Potassium sulfate (arcanite), K <sub>2</sub> SO <sub>4</sub>            | 62   |
|    | Barium sulfate (barite), BaSO <sub>4</sub>                              | 65   |
|    | Lead sulfate (anglesite), PbSO4                                         | 67   |
|    | 2.11. Phosphates                                                        | 69   |
|    | Potassium dihydrogen phosphate, KH <sub>2</sub> PO <sub>4</sub>         | 69   |
|    | 2.12. Bromoösmates                                                      | 71   |
|    | Ammonium bromoösmate, (NH <sub>4</sub> ) <sub>2</sub> OsBr <sub>6</sub> | 71   |
| 3. | Cumulative index to volumes I, II,                                      |      |
|    | and III                                                                 | 72   |

#### ERRATA

Vol. I. Page 64, table 37, Swanson and Tatge pattern. The a value for the d spacing at 2.680 should read 4.642.

Vol. II. Page 54, column 1. The a and c values for Bergen should read 4.99003 and 17.0605.

# STANDARD X-RAY DIFFRACTION POWDER PATTERNS

# Vol. III-Data for 34 Inorganic Substances

Howard E. Swanson, Ruth K. Fuyat<sup>1</sup>, and George M. Ugrinic

Data for thirty-two standard X-ray diffraction powder patterns are presented in revision of the eighty-one corresponding patterns in the American Society for Testing Materials card file, a system for the identification of unknown crystalline materials based on the three strongest reflections of each structurally distinct phase. Patterns for two compounds not represented in the file are also included. A comparison is made between all powder data available for each of the substances reported. The patterns were made with a geiger counter X-ray spectrometer, using samples of exceptionally high purity. The d-spacings were assigned Miller indices determined from calculated patterns of theoretical spacings and from space group considerations. The lattice constants and densities were calculated, and the refractive indices were measured whenever possible.

Included in this report is X-ray data for the following thirty-four substances: Ti, As, Rh, Cd, In, Sb, I<sub>2</sub>, Hf, Bi, ZnSe, SiO<sub>2</sub> (a-quartz), Sc<sub>2</sub>O<sub>3</sub>, Y<sub>2</sub>O<sub>3</sub>, MoO<sub>3</sub> (molybdite), Sb<sub>2</sub>O<sub>3</sub> (senarmontite), La<sub>2</sub>O<sub>3</sub>, HgO (montroydite),  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>·H<sub>2</sub>O (bohmite),  $\beta$ -Al<sub>2</sub>O<sub>3</sub>·H<sub>2</sub>O (diaspore), SrTiO<sub>3</sub>, BaTiO<sub>3</sub>, NaBr, CsBr, CsICl<sub>2</sub>, NaClO<sub>3</sub>, CaCo<sub>3</sub> (aragonite), SrCO<sub>3</sub> (strontianite), KNO<sub>3</sub> (niter), Na<sub>2</sub>SO<sub>3</sub>, K<sub>2</sub>SO<sub>4</sub> (arcanite), BaSO<sub>4</sub> (barite), PbSO<sub>4</sub> (anglesite), KH<sub>2</sub>PO<sub>4</sub>, and (NH<sub>4</sub>)<sub>2</sub>OsBr<sub>6</sub>

# **1. INTRODUCTION**

The National Bureau of Standards program<sup>2</sup> for revision and evaluation of published X-ray data for the American Society for Testing Materials card file presents in this paper a third series<sup>3</sup> of standard powder diffraction patterns for nine elements and twentythree inorganic compounds. These patterns are recommended to replace eighty-four cards now in the file. Two compounds, scandium oxide and ammonium bromoösmate, not represented in the file, have been added.

Experimental procedures and the general plan of these reports are discussed in the first three papers of this series, two by Swanson and Tatge [1, 2]<sup>4</sup> and one by Swanson and Fuyat [3]. The significant changes in procedure and certain basic data discussed below are arranged in the same form as the data for each compound in the body of the report.

ASTM Cards. Each section of this paper, devoted to the discussion of X-ray data for one substance, contains a table listing old and new file card numbers, the ASTM index lines, the radiation used and the literature reference for each card. The old card numbers of these tables refer to the original ASTM card file (1939) and the first supplement (1944). The new card numbers are from

<sup>&</sup>lt;sup>1</sup> Fellow at the National Bureau of Standards sponsored by the Joint Committee on Chemical Analysis by X-ray Diffraction Methods.

<sup>&</sup>lt;sup>2</sup> This project is sponsored by the Joint Committee on Chemical Analysis by X-ray Diffraction Methods, composed of members from the American Society for Testing Materials, the American Crystallographic Association, and the British Institute of Physics. Financial support is being given by the National Bureau of Standards and the Flight Research Laboratory, Wright Air Development Center, Wright-Patterson Air Force Base.

<sup>&</sup>lt;sup>3</sup> The first paper of this series is Standard X-ray Diffraction Powder Patterns, I. Data for 53 Inorganic Substances by H. E. Swanson and E. Tatge, and the second is Standard X-ray Diffraction Powder Patterns, II. Data for 30 Inorganic Compounds by H. E. Swanson and R. K. Fuyat.

<sup>&</sup>lt;sup>4</sup>Figures in brackets indicate the literature references at the end of each section of this paper.

the second edition and include the second supplement (1950).

Additional published patterns. Literature references and radiation data for patterns that had not been published as ASTM cards were listed and the patterns were included in the tables of *d*-spacings and intensities.

NBS pattern. The samples used to make the NBS patterns were special preparations of exceptionally high purity obtained or prepared only in small quantities.

The purity of each sample was determined by a spectrographic or chemical analysis. A phase purity check was made on the nonopaque materials during the refractive index determination. Another excellent check on the phase purity was provided by the X-ray pattern itself, since it was indexed by comparison with theoretical *d*-values. However, some uncertainty was possible in the unequivocal isolation of the desired isomorphic forms when their *d*-spacings tended to coincide.

The majority of the samples that were initially too coarse for X-ray analysis could be reduced to the proper size and then annealed to remove the lattice distortion caused by grinding. It was found that powder samples of soluble salts which could not be annealed successfully or which could not be obtained free from the distortion of grinding, could be recrystallized by using a throat aspirator. Particles averaging 15 microns were obtained by using an aspirator or a nebulizer in which a concentrated solution of a salt was atomized to form a fine mist. This mist was confined in a box set over a glass plate on which the crystallites fell as they formed. Sufficient material, fine enough for an intensity pattern, could be collected in a few hours.

The equipment and procedures were essentially the same as those described in Standard X-ray Diffraction Patterns [1] and Standard X-ray Diffraction Powder Patterns I [2] with the exception of the newer X-ray spectrometer equipment described in Standard X-ray Diffraction Powder Patterns II [3].

At least two intensity patterns were prepared to check reproducibility of measured values. The grain sizes of samples used were less than 25 microns. A flat piece of glass was held temporarily over the face of an open cell while the sample was drifted in from the top. The sample holder was then turned face up, and the piece of glass removed. This surface was used for exposure to the X-ray beam. For a few powder samples which did not flow readily or were prone to orient badly, 25 to 50 percent finely ground silica-gel was added as a diluent. The intensity values of each pattern were measured as peak height above background and were expressed as percentages of the strongest line. The d-spacing patterns were made with a sample packed into a shallow sample holder, using approximately 5 weight percent of tungsten as an internal standard, whose lattice constant at 25°C is 3.1648 A, as determined by Jette and Foote [4]. All the NBS patterns were made by using copper radiation with a wavelength of 1.5405.

Interplanar spacings and intensity measurements. Interplanar spacing data presented in the tables were converted to angstrom units as internationally defined in 1946 [5], from Bragg angle data, from *d*-spacings in kX units or supposed kX units, using the factor 1.00202, or from *d*-spacings with specifically stated wavelengths other than kX. In each case the type of conversion made was indicated. The wavelength values in the tables of *d*-spacings and intensities are given in angstroms; the values listed under the first section of the reports, ASTM cards, are the original values taken from the literature.

The tables of patterns contain data from the original literature except in those instances where there is no reference other than an ASTM card.

Intensities, when not numerically evaluated, were given the following abbreviations: strong, s; medium, m; weak, w; very, v; diffuse, D; and doublet, db.

Indexing of the NBS patterns was accomplished by comparison of the experimental data with theoretical values of all possible Miller indices of a particular cell calculated with the aid of IBM punched-card machines. The unit cells used for these calculations were obtained either through a review of the literature or with an estimated cell based on partial indexing of the NBS pattern. The indexing as it appears in the tables includes all of the probable indices for any given *d*-spacing allowed by the space group of that structure. Although an attempt was made to reconcile these values with published single crystal work when it was available, errors inherent in this method of indexing undoubtedly are present. For the NBS pattern a maximum of 40 lines were generally considered sufficient for any identification problem, and indexing of a cell large enough to have many more lines would become increasingly indefinite beyond that number.

The intensity of the three strongest lines is particularly important as the ASTM card file system of identification depends upon comparing the three strongest lines of the unknown material with those on the file cards, which are arranged according to their first, second, and third strongest lines, respectively. Thus a table of the three strongest lines of each pattern is listed for comparison with the NBS values.

Lattice constants. The NBS lattice constants of cubic materials were calculated for all *d*-spacings, and the average of the last five lines was assumed to be the best value because of greater accuracy of measurement in the large-angle portion of the pattern. The lattice constants for each noncubic substance were determined from all of the *d*-spacings of its pattern, for which there was only one possible Miller index by means of a leastsquares calculation made on an IBM Card Program Calculator.

The conversion of published unit-cell data to angstroms followed the same pattern as that used for the *d*-spacings. The unitcell dimensions were recalculated to values corresponding to  $25^{\circ}$  or  $26^{\circ}$ C for comparison with the NBS values if the temperature of measurement and the thermal expansion were known. Unless otherwise indicated, the coefficient of linear thermal expansion as used is defined as the change in length per unit length per degree centigrade in the roomtemperature range. Thermal-expansion data have been given whenever the data were readily available, even though no temperature conversions were made in the unit-cell table. The limits of error generally published with unit-cell data have not been included in the table as the number of determinations, their accuracy and variation were such that a statistical evaluation would be invalid.

The densities calculated from the NBS lattice constants were expressed in grams per cubic centimeter, and the refractive-index measurements were made in white light by grain immersion methods, using oils standardized in sodium light.

- H. E. Swanson and E. Tatge, Standard X-ray diffraction patterns, NBS J. Research 46, 318 (1951) RP2202.
- [2] H. E. Swanson and E. Tatge, Standard X-ray diffraction powder patterns, NBS Circular 539, Vol. I (1953).
- [3] H. E. Swanson and R. K. Fuyat, Standard X-ray diffraction powder patterns, NBS Circular 539, Vol. II (1953).
- [4] E. R. Jette and F. Foote, Precision determination of lattice constants, J. Chem. Phys. 3, 605-16 (1935).
- [5] Anonymous, The conversion factor for kX units to angstrom units, J. Sci. Inst. 24, 27 (1947).

# 2.1. Elements

#### Titanium, Ti (hexagonal)

#### **ASTM** cards

| Card | number                   | New                  |                   |                                        |  |  |
|------|--------------------------|----------------------|-------------------|----------------------------------------|--|--|
| Old  | New                      | index<br>lines       | Radiation         | Source                                 |  |  |
| 3136 | 3323<br>1-1207<br>1-1197 | 2.24<br>1.34<br>2.56 | Molybdenum 0.7078 | Patterson [1] 1925.                    |  |  |
| 3148 | 3291<br>1-1198<br>1-1198 | 2.23<br>2.54<br>2.34 | Molybdenum        | Hanawalt, Rinn and<br>Frevel [2] 1938. |  |  |

The Patterson pattern is one of four very similar patterns made on titanium, after four different types of physical treatment, in an attempt to determine the existence of any unknown forms.

Additional published patterns. None.

NBS sample. The titanium used for the NBS pattern was a high-purity sample from the New Jersey Zinc Co., prepared by the iodide process. Their spectrographic analysis showed the following impurities: 0.02 percent of aluminum, 0.012 percent each of iron and manganese, 0.006 percent of molybdenum, 0.004 percent of nitrogen, 0.0025 percent of magnesium, and 0.002 percent of copper.

Interplanar spacings and intensity measurements. The Patterson and the Hanawalt, Rinn, and Frevel *d*-spacings were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

| Pattern                    | 1   | 2   | 3   |  |
|----------------------------|-----|-----|-----|--|
| Patterson                  | 011 | 103 | 010 |  |
| Hanawalt, Rinn, and Frevel | 011 | 010 | 002 |  |
| Swanson and Fuyat          | 011 | 010 | 002 |  |

Lattice constants. The structure was determined by Hull [3] in 1921. The space group is  $D_{6h}^4$ -P6<sub>3</sub>/mmc with 2(Ti) per unit cell.

A group of unit-cell values were converted from kX to angstrom units for comparison with the NBS values.

| Lattice | constants | in | angstroms |
|---------|-----------|----|-----------|
|---------|-----------|----|-----------|

| 1925<br>1930<br>1936<br>1949 | Hull [3]<br>Patterson [1]<br>Hägg [4]<br>Burgers and Jacobs [5]<br>Clark [6]<br>Swanson and Fuyat | 2.957<br>2.959<br>2.959<br>2.959 | c<br>4.73<br>4.701<br>4.739<br>4.6833 at 25℃<br>4.686 at 25℃ |
|------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------|
| 1953                         | Swanson and Fuyat                                                                                 | 2.950                            | 4.686 at 25°C                                                |

The density of titanium calculated from the NBS lattice constants is 4.503 at 25°C.

Titanium, Ti (hexagonal)

|     |        | 25    |          | 938               | 1953                 |               |  |
|-----|--------|-------|----------|-------------------|----------------------|---------------|--|
|     | Patte  | erson | Hanawalt | t, Rinn,<br>revel | Swans                | on and<br>vat |  |
| hkl |        |       | and I    | Tevel             | ru                   | yal           |  |
|     | Мо, О. | 709 A | Mo, 0.   | 709 A             | Cu, 1.5405 A<br>25°C |               |  |
|     | d      | I     | d        | I                 | d                    | I             |  |
|     | A      |       | A        |                   | A                    |               |  |
| 010 | 2.561  | 40    | 2.55     | 27                | 2.557                | 30            |  |
| 002 | 2.346  | 40    | 2.34     | 20                | 2.342                | 26            |  |
| 011 | 2.246  | 100   | 2.23     | 100               | 2.244                | 100           |  |
| 012 | 1.731  | 40    | 1.72     | 13                | 1.726                | 19            |  |
| 110 | 1.480  | 40    | 1.473    | 13                | 1.475                | 17            |  |
| 103 | 1.339  | 50    | 1.333    | 13                | 1.332                | 16            |  |
| 200 |        |       | 1.278    | 1                 | 1.276                | 2             |  |
| 112 | 1.252  | 40    | 1.251    | 11                | 1.247                | 16            |  |
| 201 | 1.235  | 30    | 1.232    | 5                 | 1.233                | 13            |  |
| 004 | 1.178  | 10    |          |                   | 1.1708               | 2             |  |
| 202 | 1,127  | 10    |          |                   | 1.1220               | 2             |  |
| 014 | 1.067  | 20    |          |                   | 1.0653               | 2<br>3        |  |
| 203 | .991   | 30    |          |                   | . 9895               | 6             |  |
| 211 | .944   | 30    |          |                   | .9458                | 11            |  |
| 114 | .919   | 30    |          |                   | .9175                | 10            |  |
| 212 |        |       |          |                   | .8927                |               |  |
| 015 | .882   | 10    |          |                   | .8927                | 4             |  |
| 204 | .002   | 10    |          |                   | .8634                | 42            |  |
| 300 | .851   |       |          |                   | .8514                | 4             |  |
| 213 | .831   |       |          |                   | .8211                | 12            |  |
|     | .021   |       |          |                   | .0211                | 12            |  |
| 302 | .802   |       |          |                   | .8005                | 9             |  |

- [1] R. A. Patterson, Crystal structure of titanium and chromium, Phys. Rev. 26, 56-9 (1925).
- [2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [3] A. W. Hull, The crystal structures of Ti, Zr, Ce, Th, and Os, Phys. Rev. 18, 88-9 (1921).
- [4] G. Hägg, Röntgenuntersuchungen über die Hydride von Titan, Zirkonium, Vanadin und Tantal, Z. physik. Chem. B11, 433-454 (1930).
- [5] W. G. Burgers and F. M. Jacobs, Crystal structure of beta titanium, Z. Krist. 94, 299-300 (1936).
- [6] H. T. Clark, The lattice parameters of high purity alpha titanium; and the effects of oxygen and nitrogen on them, J. Metals 1, 588-589 (1949).

## Arsenic, As (hexagonal)

**ASTM** cards

| Card n  | number<br>New | New<br>index | Radiation    | Source                         |
|---------|---------------|--------------|--------------|--------------------------------|
| oru     | 110.4         | lines        |              |                                |
| 1895    | 1856          | 3.18         | Copper 1.539 | Bradley [1] 1924.              |
| 10/5    | 1-0779        | 1.02         | copper 1.559 | Diadicy [1] 1/24.              |
|         | 1-0760        | 1.22         |              |                                |
|         | 1-0100        | 1.22         |              |                                |
|         | 2648          | 2.78         | (a)          | Bradley <sup>a</sup> [1] 1924. |
|         | 3-0769        | 1.89         |              |                                |
|         | 3-0757        | 2.05         |              |                                |
|         |               |              |              |                                |
|         | 2637          | 2.78         | Copper       | Olshausen 2 1925.              |
|         | 3-0765        | 2.05         |              |                                |
|         | 3-0754        | 1.88         |              |                                |
|         | 040           | 0.70         | C            | Dettich Manage                 |
|         | 2649          | 2.79         | Copper       | British Museum.                |
|         | 3-0770        | 1.89         |              |                                |
|         | 3-0749        | 1.29         |              |                                |
| 2502    | 2650          | 2.76         | Molybdenum   | Hanawalt, Rinn, and            |
|         | 1-1024        | 1.88         |              | Frevel [3] 1938.               |
|         | 1-1019        | 2.04         |              |                                |
|         |               |              |              |                                |
| II-1825 | 2734          | 2.74         | Copper       | Harcourt 4 1942.               |
|         | 2~0892        | 1.87         |              |                                |
|         | 2-0872        | 2.04         |              |                                |
|         | L             | i            | l <u></u>    | l                              |

<sup>a</sup> The same *d*-spacings as above but carrying rhombohedral indices and different intensities

All of the patterns with the exception of the Hanawalt, Rinn, and Frevel pattern contain lines of both arsenic and arsenic trioxide with other possible contaminants. The British Museum and the Harcourt patterns were made on mineral material from Andreasberg, Harz Mountains, Germany, and from the Broken Hill Mines, New South Wales, Australia, respectively. The literature source for the intensities on the second Bradley ASTM card is unknown, but the three strongest lines are in better agreement than the previous set.

#### Additional published patterns

| Source                     | Radiation | Wavelength |
|----------------------------|-----------|------------|
| Willott and Evans [5] 1934 | Copper    |            |

NBS sample. The arsenic used for the NBS pattern was obtained from the Baker Chemical Co. and was purified at the NBS by J. Osmalov by sublimation in a nitrogen atmosphere. The sample was kept in nitrogen until mixed with petrolatum for grinding and mounting. (The presence of even a minute amount of water in air or oxygen catalyzes the oxidation of arsenic to a black powder giving an arsenic trioxide pattern, according to Stohr [6].) Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent each of bismuth and antimony; 0.001 to 0.01 percent each of iron and silicon; and 0.0001 to 0.001 percent each of silver, aluminum, calcium, magnesium, and lead.

Interplanar spacings and intensity measurements. The *d*-spacings for the Bradley and Olshausen patterns were converted to angstroms from Bragg angle data, whereas the British Museum, the Hanawalt, Rinn, and Frevel, the Harcourt, and the Willott and Evans *d*-spacings were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

| Patterns                   | 1   | 2   | 3       |
|----------------------------|-----|-----|---------|
| Bradley                    |     |     | 121,108 |
| Olshausen                  | 102 | 014 | 110     |
| British Museum             | 102 | 110 | 025     |
| Hanawalt, Rinn, and Frevel | 102 | 110 | 014     |
| Harcourt                   | 102 | 110 | 014     |
| Willott and Evans          | 102 | 014 | 110     |
| Swanson and Fuyat          | 102 | 003 | 110     |

The first and second strongest lines of the Bradley pattern are possible arsenic oxide lines, and therefore are not included in this table.

The previous arsenic patterns, except for the Hanawalt, Rinn, and Frevel pattern, contain such large percentages of arsenic trioxide and other impurities that they are essentially useless for identification. Of the lines present that cannot be indexed as arsenic, those that might be due to arsenic trioxide are denoted by an (a) in the *hkl* column.

Lattice constants. The structure was determined by Bradley [1] in 1924, who showed that arsenic is isomorphous with antimony and bismuth. The space group is  $D_{3d}^5$ -R3m with 6(As) per unit cell. Arsenic is a prototype for other similar structures.

Rhombohedral unit cell values were converted to their hexagonal equivalents and from kX to angstrom units. In addition, the Jung and the Willott and Evans *a*-values based on a cell twice the accepted value for that direction were divided by two for comparison with the NBS results. Lattice constants in angstroms

| 1925 | Olshausen [2]                  | a<br>3.758 | с<br>10.646     |
|------|--------------------------------|------------|-----------------|
| 1926 | Jung 71                        | 3 765      | 10 63.9         |
| 1934 | Willott and Evans 5            | 3.770      | 10.575          |
| 1935 | Hagg and Hybinette 9           | 3 750      | 10 547          |
| 1939 | Stohr [6]                      | 3.762      | 10.543          |
| 1953 | Stohr [6]<br>Swanson and Fuyat | 3.760      | 10 548 at 26%   |
|      |                                | 5.100      | 1010-00 at 20 C |

The density of arsenic calculated from the NBS lattice constants is 5.778 at  $26^{\circ}$ C.

# Arsenic, As (hexagonal)

|                         |                 | 204      |                    |             |                                            |          |                |                               |                |          | 1              |             |                  |             |  |
|-------------------------|-----------------|----------|--------------------|-------------|--------------------------------------------|----------|----------------|-------------------------------|----------------|----------|----------------|-------------|------------------|-------------|--|
|                         | 1924            |          | 19                 |             |                                            |          | 193            |                               | 194            | 42       | 19:            | 34          | 1953             | 3           |  |
|                         | Bra             | Bradley  |                    | Olshausen I |                                            |          |                | Hanawalt, Rinn,<br>and Frevel |                | Harcourt |                | Willott and |                  | Swanson and |  |
| hkl                     | C. 1            | 5405 A   | G 1                | 5405 A      |                                            |          |                |                               |                |          | Eva            |             | Fuya             | t           |  |
|                         | [Cu, 1,         | 5405 A   | Cu, 1.:            | 5405 A      | Cu, 1.                                     | 5405 A   | Mo, 0.7        | 09 A                          | Cu, 1.         | 5405 A   | Cu, 1.5        | 5405 A      | Cu, 1.54         |             |  |
|                         | d               | I        | d                  | I           | d                                          | I        | đ              |                               | •              |          |                |             | 26°C             |             |  |
|                         | A               |          | A                  |             | A                                          | 1        | A              | I                             | d<br>A         | I        | d<br>A         |             | d                | I           |  |
| (8)                     |                 |          |                    |             |                                            |          |                |                               | A              |          | A              |             | A                |             |  |
| (ª)                     |                 |          |                    |             |                                            |          |                |                               | 6.51<br>6.18   | 3<br>25  |                |             |                  |             |  |
| 003                     | 3.56            | 76       | 3.537              |             | 4.02                                       | 20       |                |                               |                |          |                |             |                  |             |  |
|                         |                 |          |                    | w           | 3.58                                       | 40       | 3.52           | 4                             | 3.46           | 25       |                |             | 3.52             | 26          |  |
|                         |                 |          |                    |             | 3.28                                       | 20       |                |                               |                |          |                |             |                  |             |  |
| ( <sup>a</sup> )<br>011 | 3.184           | 100      | 3.211              | w           | 3.12                                       |          |                |                               | 3.15           | * 50     |                |             |                  |             |  |
|                         |                 |          |                    |             | 2.97                                       | 60       |                |                               |                |          |                |             | 3.112            | 6           |  |
|                         |                 |          |                    |             |                                            |          |                |                               | 2.82           | 6        |                |             |                  |             |  |
| 102<br>( <sup>a</sup> ) | 2.786           | 4        | 2.774              | S           | 2.80                                       | 100      | 2.77           | 100                           | 2.75           | 100      | 2,782          | s           | 2.771            | 100         |  |
| (a)<br>(a)              |                 |          |                    |             | 2.29                                       | 20       |                |                               | 2.53 2.25      | 25<br>6  |                |             |                  |             |  |
| (ª)<br>014              | 2.055           | 12       | 2.056              | <br>m       | 2.14 2.05                                  | 20<br>60 | 2.04           |                               | 2.12 2.04      | 6<br>63  | 2.053          | <br>S       | 2.050            |             |  |
| (*)                     |                 |          |                    |             |                                            |          |                |                               | 1.95           | 13       | 2.055          | 3           | 2.030            | 24          |  |
| 110<br>( <sup>a</sup> ) | 1.892           | 8        | 1.877              | m           | 1.89                                       | 80       | 1.88           | 20                            | 1.871          | 75       | 1.884          | <br>S       | 1.879            | 26          |  |
|                         |                 |          |                    |             | 1.80                                       | 60       |                |                               | 1.841          | 6        |                |             |                  |             |  |
| 105<br>006              | 1.785<br>1.768  | 6        | {1.765             | w           | 1.78                                       | 20       | 1.77           | 5                             | 1.76           | 38       |                |             | 1.768            | 10          |  |
|                         |                 | ·        |                    |             | 1 71                                       |          |                |                               |                |          |                |             | 1.757            | 7           |  |
| 113                     | 1.664           | 48       | 1.661              | <br>W       | 1.71                                       | 60       | 1.66           | 4                             | 1.65           |          |                |             | 1.658            |             |  |
| (ª)<br>022              | 1.566           | 32       | 1.594              | w<br>m      | 1.56                                       | 60       | 1.56           |                               | 1.59           | 6        | 1.602          | vw          |                  |             |  |
| (ª)                     |                 |          |                    |             | 1.30                                       | 20       |                | 8<br>                         | 1.53           | 63<br>   | 1.559          | s<br>       | 1.556            | 11          |  |
| (a)                     |                 |          |                    |             | 1.42                                       | 20       |                |                               | 1.436          | 13       |                |             |                  |             |  |
| 204<br>017              | 1.389<br>1.370  | } 20     | { 1.382            | m           | 1.39<br>1.37                               | 60<br>40 | 1.385<br>1.371 | 4<br>1                        | 1.383 1.363    | 25       | 1.388          | ш           | 1.386            | 6           |  |
| (*)                     |                 |          |                    |             |                                            |          |                |                               | 1.348          | 13<br>13 | 1.371          | W           | 1.367            | 4           |  |
| 025                     | 1.286           | 28       | 1.285              | m           | 1.29                                       | 70       |                |                               | 1.302          | 6        | 1.289          | m           | 1.289            | 5           |  |
| 116<br>121              | 1 225           |          | 1                  |             |                                            |          | 1.284          | 4                             | 1.286          | 38       |                |             | 1.284            | 5           |  |
| 108<br>212              | }1.225<br>1.203 | 92<br>24 | 1.233              | w           |                                            |          |                |                               |                |          |                |             | 1.222            | 1           |  |
| (*)                     | 1.185           | 24<br>84 | 1.200              | m<br>       | 1,20                                       | 70       | 1.198          | 5                             | 1.197          | 50       |                |             | 1.1987           | 7           |  |
| 009                     |                 |          | 1.172              | vw          |                                            |          |                |                               |                |          | 1.174          | <br>W       | 1.1722           | 1           |  |
| (ª)<br>124              | 1.120           |          | <pre>/ 1.115</pre> |             |                                            |          |                |                               |                |          | 1.163          | m           |                  |             |  |
| 207                     | 1.109           | 36       | l                  | m<br>       | $\begin{array}{c} 1.12\\ 1.11 \end{array}$ | 50<br>50 | 1.102          | 2                             | 1.114<br>1.104 | 25<br>13 | 1.116          | m<br>       | 1.1158<br>1.1062 | 4 2         |  |
|                         | 1.090           | 56<br>60 | 1.084<br>1.065     | w<br>w      | 1.09                                       | 40       | 1.087          | 1                             | 1.085          | 25       | 1.087          | w           | 1.0857           | 3           |  |
| 215                     |                 |          |                    |             | 1.06                                       | 40       | 1.064          | 1                             | 1.070<br>1.063 | 13<br>13 | 1.072<br>1.064 | n<br>n      | 1.0631           | 3           |  |

7

Arsenic, As (hexagonal)-Con.

| hkl                     | 19<br>Brac<br>Cu, 1. | iley     | 192<br>Olshau<br>Cu, 1.5 | ısen  | British<br>Cu, 1.5 |    | 1938<br>Hanawalt,<br>and Fre<br>Mo, 0.70 | Rinn,<br>vel | 194<br>Harco<br>Cu, 1.5 | ourt          | 193<br>Willott<br>Evar<br>Cu, 1.5 | and<br>s | 1953<br>Swanson<br>Fuyat<br>Cu, 1.54<br>26°C | and<br>05 A |
|-------------------------|----------------------|----------|--------------------------|-------|--------------------|----|------------------------------------------|--------------|-------------------------|---------------|-----------------------------------|----------|----------------------------------------------|-------------|
|                         | đ                    | I        | đ                        | I     | đ                  | I  | đ                                        | I            | đ                       | I             | đ                                 | I        | đ                                            | I           |
|                         | A                    |          | A                        |       | A                  |    | A                                        |              | A                       |               | A                                 |          | A                                            |             |
| 303<br>( <sup>a</sup> ) | 1.042                | 80<br>96 | 1.041                    | vw    | 1.04               | 20 |                                          |              |                         |               | 1.034                             | w        | 1.0374                                       | 2           |
| 119                     | .998                 | 40       | . 999                    | <br>m |                    |    |                                          |              | .995                    | 25            | .997                              | <br>W    | .9948                                        | 2           |
| (a)                     |                      |          |                          |       |                    |    |                                          |              | .966                    | 6             | .972                              | w        |                                              |             |
| 127                     | .955                 | 64       | . 955                    | w     |                    |    |                                          |              | .954                    | 13            |                                   |          | .9531                                        | 2           |
| 220                     | .943                 | 72       | .944                     | w     |                    |    |                                          |              | .940                    | 13            | .944                              | m        | .9397                                        | 1           |
| 1.0.11                  | .929                 | } 44     | { .925                   | m     |                    |    |                                          |              | . 923                   | 13            | .925                              | w        | .9198                                        | 3           |
|                         | .923<br>.910         | 88       | (                        |       |                    |    |                                          |              |                         |               | .920                              | vw       |                                              |             |
| 218                     | .910                 | 88       | .902                     | <br>W |                    |    |                                          |              | .899                    | 6             | .899                              | <br>vw   | .8995                                        | 1           |
| 132                     | . 892                | 52       | .895                     | m     |                    |    |                                          |              | .891                    | 6             | .890                              | w        | .8903                                        | 2           |
| (ª)                     | .855                 | 68       | .860                     | m<br> |                    |    |                                          |              | .864<br>.855<br>.829    | 3<br>13<br>13 | .866                              | w        |                                              |             |
|                         |                      |          | .834                     | m     |                    |    |                                          |              |                         |               |                                   |          |                                              |             |

<sup>a</sup> Possible arsenic trioxide lines not superimposed on arsenic lines.

- A. J. Bradley, The crystal structure of metallic arsenic, Phil. Mag. 47, 657-671 (1924).
- [2] S. v. Olshausen, Strukturuntersuchungen nach der Debye-Scherrer-Methode, Z. Krist, 61, 463-514 (1925).
- [3] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [4] G. A. Harcourt, Tables for the identification of ore minerals by X-ray powder patterns, Am. Mineralogist 27, 63-113 (1942).
- [5] W. H. Willott and E. J. Evans, An X-ray investigation of the arsenic-tin system of alloys, Phil. Mag. 18, 114-128 (1934).
- [6] H. Stohr, The allotropy of arsenic, Z. anorg. Chem. 242, 138 (1939).
- [7] H. Jung, Centralbl. Min. Geol. (1926) 107-114, as quoted in Z. Krist., Structurbericht I, 57 (1913-28).
- [8] G. Hagg and A. G. Hybinette, X-ray studies on the systems tin-antimony and tin-arsenic, Phil. Mag. 20, 913 (1935).

#### Rhodium, Rh (cubic)

ASTM cards

| Card number |                          | New                  |                       |                                         |  |  |
|-------------|--------------------------|----------------------|-----------------------|-----------------------------------------|--|--|
| Old         | New                      | index<br>lines       | Radiation             | Source                                  |  |  |
| 3188        | 3333<br>1-1214<br>1-1214 | 2.20<br>1.15<br>1.91 | Molybdenum,<br>0.712. | Hall [1] 1921.                          |  |  |
| 3187        | 3303<br>1-1205<br>1-1213 | 2.20<br>1.90<br>1.15 | Molybdenum            | Hanawalt, Rinn, and<br>Frevel [2] 1938. |  |  |

Additional published patterns. None. NBS sample. The rhodium used for the NBS pattern was obtained from the Baker Chemical Company. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent of silver; 0.001 to 0.01 percent each of aluminum, iron, iridium, magnesium, manganese, palladium, platinum, and silicon; and 0.0001 to 0.001 percent each of calcium, copper, lead, and ruthenium.

Interplanar spacings and intensity measurements. The Hull and the Hanawalt, Rinn, and Frevel *d*-spacings were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

| Patterns                   | 1   | 2   | 3   |
|----------------------------|-----|-----|-----|
| Hull                       | 111 | 311 | 200 |
| Hanawalt, Rinn, and Frevel | 111 | 200 | 311 |
| Swanson and Fuyat          | 111 | 200 | 311 |

**Lattice constant.** The structure was determined by Hull [1] in 1921. The space group is  $O_h^5$ -Fm3m with sodium-chloridestructure type and 4(Rh) per unit cell.

Several unit-cell determinations have been converted from kX to angstrom units for comparison with the NBS values. Lattice constant in angstroms

| 1921              | Hull [1]            | 3.828          |
|-------------------|---------------------|----------------|
| 1925 <sup>-</sup> | Barth and Lunde [3] | 3.803          |
| 1928              | van Arkel [4]       | 3.802          |
| 1932              | Owen and Yates [5]  | 3.8034 at 25°C |
| 1953              | Swanson and Fuyat   | 3.8031 at 25°C |

The density of rhodium calculated from the NBS lattice constant is 12.424 at 25°C.

Rhodium, Rh (cubic)

|      |             | 1921 |       | 1 938                         |     |       | 1953    |       |        |
|------|-------------|------|-------|-------------------------------|-----|-------|---------|-------|--------|
| h kl |             | Hull |       | Hanawalt, Rinn,<br>and Frevel |     |       | Swansor | ı and | Fuyat  |
|      | Mo,         | 0.70 | 9 A   | Mo,                           | 0.7 | 09 A  | Cu, 1.5 | 405   | A, 25℃ |
|      | đ           | I    | a     | d                             | I   | a     | d       | Ι     | a      |
|      | A           |      | A     | A                             |     | A     | A       |       | A      |
| 111  | 2,204       | 100  | 3.817 | 2.20                          | 100 | 3.81  | 2.1958  | 100   | 3.8032 |
| 200  | 1,912       | 20   | 3.824 | 1.90                          | 50  | 3.80  | 1.9016  | 50    | 3.8032 |
| 220  | 1.353       | 20   | 3.827 | 1.348                         | 30  | 3.813 | 1.3446  | 26    | 3.8031 |
| 311  | 1.152       | 30   | 3.821 | 1.148                         | 40  | 3.807 | 1.1468  | 33    | 3.8035 |
| 222  | 1.102       | 4    | 3.817 | 1.101                         | 13  | 3.814 | 1.0979  | 11    | 3.8032 |
|      |             |      |       |                               |     |       |         |       |        |
| 400  |             |      |       | .954                          | 4   | 3.816 | .9508   | 7     | 3.8032 |
| 331  | .880        | 4    | 3.836 | .875                          |     |       | . 8724  | 20    |        |
| 420  | .855        | 3    | 3.824 | .854                          | 15  |       | .8504   | 14    | 3.8031 |
| 422  | .783        | 2    | 3.836 | .779                          |     |       |         |       |        |
| 511  | .737        | 1    | 3.830 | .734                          | 10  | 3.814 |         |       |        |
| 531  | .648        | 1    | 3.834 |                               |     |       |         |       |        |
|      | rage of the |      |       |                               |     |       |         |       |        |
|      | st five     |      |       |                               |     | 3.816 |         |       | 3.8031 |

- A. W. Hull, X-ray crystal analysis of thirteen common metals, Phys. Rev. 17, 571-586 (1921).
- [2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [3] T. Barth and G. Lunde, Der Einfluss der Lanthaniden Kontraktion auf die Gitterdimensionen der kubischen Platinmetalle, Z. physik. Chem. 117, 478-490 (1925).
- [4] A. E. van Arkel, Eine einfache Methode zur Erhöhung der Genauigkeit bei Debye-Scherrer-Aufnahmen, Z. Krist. 67, 235-238 (1928).
- [5] E. A. Owen and E. L. Yates, Precision measurements of crystal parameters, Phil. Mag. 15, 472-488 (1933).

#### Cadmium, Cd (hexagonal)

ASTM cards

| Card number |                          | New                  |                       |                                         |  |  |
|-------------|--------------------------|----------------------|-----------------------|-----------------------------------------|--|--|
| Old         | New                      | index<br>lines       | Radiation             | Source                                  |  |  |
| 3065        | 3204<br>1-1177<br>1-1178 | 2.33<br>2.79<br>1.89 | Molybdenum,<br>0.712. | Hull [1] 1921.                          |  |  |
| 3043        | 3203<br>1-1176<br>1-1175 | 2.34<br>2.80<br>2.58 | Molybdenum            | Hanawalt, Rinn, and<br>Frevel [2] 1938. |  |  |

#### Additional published patterns

| Source                                                                        | Radiation                  | Wavelength |
|-------------------------------------------------------------------------------|----------------------------|------------|
| Roux and Cournot [3] 1928<br>McLennan and Monkman [4] 1929<br>Taylor [5] 1932 | Copper<br>Copper<br>Copper | 1.539      |

NBS sample. The cadmium used for the NBS pattern was prepared by the New Jersey Zinc Co. and is 99.99 percent pure. Spectrographic analysis at the NBS showed the following impurities: 0.001 to 0.01 percent of mercury, 0.0001 to 0.001 percent of silicon, and less than 0.0001 percent each of calcium, copper, iron, magnesium, and lead.

Interplanar spacings and intensity measurements. The *d*-spacing for the Roux and Cournot and the Taylor patterns were calculated from Bragg angle data. The other three were converted from d-spacings in kX to angstrom units. The Roux and Cournot pattern contains a d-spacing at 2.130 A, which is not possible theoretically. The McLennan and Monkman pattern is incomplete and contains no intensity values.

The three strongest lines for each of the patterns are as follows:

| Patterns                   | 1   | 2   | 3   |
|----------------------------|-----|-----|-----|
| Hull                       | 101 | 002 | 102 |
| Hanawalt, Rinn, and Frevel | 101 | 002 | 100 |
| Roux and Cournot           | 101 | 103 | 004 |
| Taylor                     | 101 | 112 | 203 |
| Swanson and Fuyat          | 101 | 002 | 100 |

Lattice constants. The structure was investigated by Hull [1] in 1921. The space group of the hexagonal close packed cell is  $D_{4b}^4$ -P6<sub>3</sub>/mmc with 2(Cd) per unit cell.

A number of unit cell measurements were converted from kX to angstrom units and were converted from the temperatures indicated in parentheses to 26 °C. for comparison with the NBS values. The thermal expansion, according to McLennan and Monkman [4], is  $48.2 \times 10^{-6}$ parallel to the *c*-axis and  $18.5 \times 10^{-6}$  perpendicular to it.

| Lattice | constants | in | angstroms |
|---------|-----------|----|-----------|
|---------|-----------|----|-----------|

|      |                                 | a       | с                      |
|------|---------------------------------|---------|------------------------|
| 1921 | Hull [1]                        | 2.949   | 5.572                  |
| 1929 | McLennan and Monkman [4]        | 2.971   | 5.610 at 26°C (18°C)   |
|      | Jenkins and Preston [6]         | 2.9784  | 5.6155                 |
|      | Taylor [5]                      | 2.969   | 5.656                  |
| 1932 | Stenzel and Weerts [7]          | 2.9801  | 5.6191 at 26°C (20°C)  |
| 1933 | Jette and Gebert [8]            | 2.9773  | 5.6159                 |
| 1935 | Jette and Foote [9]             | 2.97918 | 5.61858 at 26°C (25°C) |
| 1935 | Kossolapow and Trapesnikow [10] | 2.97910 | 5.61728 at 26°C        |
|      | Owen and Roberts [11]           | 2.97887 | 5.61765 at 26°C (18°C) |
| 1941 | Lu and Chang [12]               | 2.9791  | 5.6183 at 26°C (21°C)  |
| 1947 | Vegard [13]                     | 2.9802  | 5.6155                 |
| 1953 | Swanson and Fuyat               | 2.9793  | 5.6181 at 26°C         |

|            |         |        | 1        |        |          |         | r      |        |         |        | 1         |           |
|------------|---------|--------|----------|--------|----------|---------|--------|--------|---------|--------|-----------|-----------|
|            | 19      | 21     | 19       | 38     | 19       | 28      | 19     | 29     | 193     | 32     | 19        | 53        |
|            |         |        |          |        |          |         |        |        |         |        |           |           |
|            | Hul     | 11     | Hanawalt |        | Roux and | Cournot | McLenn |        | Tay]    | lor    | Swanson a | nd Fuyat  |
| hkl        |         |        | and F    | revel  |          |         | Monk   | man    |         |        |           |           |
|            | Mo, 0.7 | 0926 A | Mo, 0.7  | 0926 A | Cu, 1.   | 5405 A  | Cu, 1. | 5405 A | Cu, 1.5 | 5405 A | Cu, 1.540 | 5 A, 26°C |
|            | d       | I      | d        | I      | d        | I       | d      | I      | d       | I      | d         | I         |
|            | A       |        | A        |        | A        |         | A      |        | A       |        | A         |           |
| 002        | 2.779   | 33     | 2.81     | 40     | 2.859    | vw      |        |        |         |        | 2.809     | 65        |
| 100        | 2.555   | 17     | 2.59     | 30     | 2.563    | w       |        |        | 2.598   | VW     | 2.580     | 32        |
| 101        | 2.316   | 100    | 2.34     | 100    | 2.356    | vs      |        |        | 2.336   | m      | 2.345     | 100       |
|            |         |        |          |        | 2.130    | vw      |        |        |         |        |           |           |
| 102        | 1.886   | 20     | 1.89     | 20     | 1.926    | m       | 1.891  |        | 1,900   | w      | 1.901     | 32        |
| 103        | 1.502   | 17     | 1.51     | 25     | 1.519    | s       | 1.513  |        | 1.520   | w      | 1.516     | 26        |
| 110        | 1.470   | 13     | 1.489    | 18     |          |         | 1.484  |        | 1.489   | W      | 1.490     | 19        |
| 004        | 1.392   | 2      | 1.403    | 3      | 1.353    | s       |        |        |         |        | 1.404     | 3         |
| 112        | 1.301   | 17     | 1.313    | 27     | 1.301    | w       | 1.316  |        | 1.314   | m      | 1.316     | 17        |
| 200        | 1.282   | 0      | 1.289    | 2      |          |         |        |        | 1.293   | w      | 1.290     | 2         |
| 201        | 1.245   | 10     | 1,255    | 20     | 1.216    | vw      | 1.255  |        |         |        | 1.258     | 13        |
| 104        | 1.219   | 2      | 1.230    | 2      | 1.179    | vw      | 1.231  |        | 1,231   | W      | 1.234     | 4         |
| 202        | 1.112   | 3      | 1.172    | 3      | 1.124    | vw      | 1.171  |        |         |        | 1.1724    | 3         |
| 203        | 1.051   | 3      | 1.062    | 5      | 1.083    | vw      | 1.060  |        | 1.062   | m      | 1.0622    | 5         |
| 105        | 1.020   | 3      | 1.022    | 4      | 1.033    | vw      | 1.028  |        | 1.019   | m      | 1.0303    | 3         |
| 114        | 1.010   | 3      |          | -      | 1,004    | vw      | 1,020  |        |         |        | 1.0220    | 4         |
| 210        | 1.010   |        |          |        | 1.004    |         | 1.020  |        | .9749   | <br>W  | .9752     | 2         |
| 211        | .949    | 7      | .961     | 10     | .951     | vw      | .958   |        | .9601   | m      | .9609     | 9         |
| 204        |         |        |          |        |          |         |        |        | . 9517  | w      | .9501     | í         |
| 006        |         |        |          |        |          |         |        |        |         |        | . 9363    | 1         |
|            |         | _      |          |        |          |         |        |        |         |        |           |           |
| 212        | .910    | 2      | . 923    | 2      |          |         | .919   |        | .9218   | m      | .9212     | 4         |
| 106        |         |        |          |        |          |         |        |        |         |        | .8802     | 2         |
| 213<br>300 | .857    | 5      | .865     | 4      |          |         | .864   |        |         |        | .8650     | 10        |
| 205        | .840    | 2      |          |        |          |         | .858   |        |         |        | .8600     | 2         |
| 205        | .040    | 2      |          |        |          |         | .846   |        |         |        | .8473     | 1         |
| 302        | .814    | 2      | . 823    | 2      |          |         | . 821  |        |         |        | . 8223    | 5         |
| 214        |         |        |          |        |          |         |        |        |         |        | .8010     | 2         |
| L          |         |        |          |        |          | l       | l      |        |         |        |           |           |

Cadmium, Cd (hexagonal)

- A. W. Hull, X-ray crystal analysis of thirteen common metals, Phys. Rev. 17, 571-588 (1921).
- [2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [3] A. Roux and J. Cournot, Etude cristallographique par rayons X de la structure de dépôts électrolytiques simultanés de deux métaux, Compt. rend. (Paris) 186, 1733-36 (1928).
- [4] J. C. McLennan and R. J. Monkman, On the thermal expansion of zinc and cadmium crystals and on the crystal structure of erbium and niobium, Trans. Roy. Soc. Can. III, 23, 255-267 (1929).
- [5] N. W. Taylor, Solid cadmium amalgams. An X-ray proof of the compound Cd<sub>3</sub>Hg, J. Am. Chem. Soc. 54, 2713-2720 (1932).
- [6] C. H. M. Jenkins and G. O. Preston, Some properties of metallic cadmium, J. Inst. Metals 45, 307-343 (1931).
- [7] W. Stenzel and J. Weerts, Prazisionsbestimmung von Gitterkonstanten nichtkubischer Stoffe, Z. Krist. 84, 20-44 (1932).

- [8] E. R. Jette and E. B. Gebert, An X-ray study of the binary alloys of silicon with Ag, Au, Pb, Sn, Zn, Cd, Sb, and Bi, J. Chem. Phys. 1, 753-755 (1933).
- [9] E. R. Jette and F. Foote, Precision Determination of lattice constants, J. Chem. Phys. 3, 605-616 (1935).
- [10] G. F. Kossolapow and A. K. Trapesnikow, X-ray investigation of the thermal expansion of Cd, Z. Krist. 91A, 410-423 (1935).
- [11] E. A. Owen and E. W. Roberts, The thermal expansion of the crystal lattices of cadmium, osmium, and ruthenium, Phil. Mag. 22, 290-304 (1936).
- [12] S. S. Lu and Y. L. Chang, The accurate evaluation of lattice spacings from back-reflection powder photographs, Proc. Phys. Soc. (London) 53, 517-528 (1941).
- [13] L. Vegard, Investigation into the structure and properties of solid matter with the help of X-rays, Skrifter Norske Videnskaps-Akad. Oslo I, Mat. Naturv. Kl. 1947, No. 2, 83 p. (1947).

## Indium, In (tetragonal)

**ASTM** cards

| Card number<br>Old New |                          | New<br>index<br>lines | Radiation  | Source                                  |
|------------------------|--------------------------|-----------------------|------------|-----------------------------------------|
| 2568                   | 2714<br>1-1046<br>1-1042 | 2.29                  | Molybdenum | Hanawalt, Rinn, and<br>Frevel [1] 1938. |
| 2599                   |                          | 2.70<br>2.29<br>1.675 |            | Hull [2] 1920.                          |

The Hull pattern was not reproduced in the revised edition of the file or in the 1950 index and is found only in the original card file and index.

Additional published patterns. None.

NBS sample. The indium used for the NBS pattern was obtained from the Fisher Scientific Co. through the NBS Spectrographic Laboratory. Spectrographic analysis at the NBS showed the following impurities: 0.001 to 0.01 percent each of iron, nickel, silicon, and tin; 0.0001 to 0.001 percent each of aluminum, copper, and calcium; and less than 0.0001 percent of silver.

The intensities were determined from several patterns produced from indium filings and from vaporized indium made by arcing two indium electrodes under water.

Interplanar spacings and intensity measurements. The *d*-spacings for the Hanawalt, Rinn, and Frevel and the Hull patterns were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

| Patterns                   | 1   | 2   | 3   |
|----------------------------|-----|-----|-----|
| Hanawalt, Rinn, and Frevel | 101 | 110 | 112 |
| Hull                       | 101 | 110 | 112 |
| Swanson and Fuyat          | 101 | 110 | 112 |

Lattice constants. The structure was determined by Hull [2] in 1920. The space group is  $D_{4h}^{17}$ -I4/mmm with 2(In) per unit cell. Indium is a prototype for other similar structures.

A group of unit cell values were converted from kX to angstrom units for comparison with the NBS values. Several *a*-values given in terms of the larger cell produced by a 45° rotation about the *c*-axis were reduced to the true cell size.

|      |                       | a      | с             |
|------|-----------------------|--------|---------------|
|      | Hull [2]              | 3.25   | 4.87          |
| 1932 | Dwyer and Mellor [3]  | 3.251  | 4.956         |
|      | Zintl and Neumayr [4] | 3.247  | 4.946         |
|      | Shinoda [5]           | 3.246  | 4.943         |
| 1935 | Frevel and Ott [6]    | 3.251  | 4.948         |
| 1936 | Ageev and Ageeva [7]  | 3.284  | 5.007         |
| 1938 | Betteridge [8]        | 3.2514 | 4.9457        |
| 1953 | Swanson and Fuyat     | 3.2517 | 4.9459 at 26℃ |

The density of indium calculated from the NBS lattice constants is 7.286 at 26°C.

Indium, In (tetragonal)

| hkl | Hanawalt | 1938<br>Hanawalt, Rinn,<br>and Frevel |          | 1920<br>Hull |           | 1953<br>Swanson and Fuyat |  |
|-----|----------|---------------------------------------|----------|--------------|-----------|---------------------------|--|
|     | Mo, 0.7  | 709 A                                 | Mo, 0.70 | 09 A         | Cu, 1.540 | 5 A, 26°C                 |  |
|     | đ        | I                                     | d        | I            | đ         | I                         |  |
|     | A        |                                       | A        |              | A         |                           |  |
| 101 | 2.73     | 100                                   | 2.71     | 100          | 2.715     | 100                       |  |
| 002 | 2.46     | 25                                    | 2.42     | 3            | 2.471     | 21                        |  |
| 110 | 2.29     | 40                                    | 2.29     | 25           | 2.298     | 36                        |  |
| 112 | 1.68     | 30                                    | 1.678    | 10           | 1.683     | 24                        |  |
| 200 | 1.62     | 15                                    | 1.620    | 3            | 1.625     | 12                        |  |
| 103 | 1.465    | 20                                    | 1.453    | 5            | 1.470     | 16                        |  |
| 211 | 1.398    | 30                                    | 1.395    | 10           | 1.395     | 23                        |  |
| 202 | 1.358    | 15                                    | 1.351    | 10           | 1.358     | 11                        |  |
| 004 | ~        |                                       |          |              | 1.2368    | 3                         |  |
| 220 | 1.146    | 2                                     | 1.152    | 1            | 1.1493    | 5                         |  |
| 213 | 1.090    | 10                                    | 1.082    | 5            | 1.0904    | 12                        |  |
| 301 | 1.057    | 2                                     |          |              | 1.0587    | 4                         |  |
| 222 | 1.042    | 2                                     |          |              | 1.0425    | 5                         |  |
| 310 | 1.027    | 2                                     |          |              | 1,0282    | 8                         |  |
| 204 | .982     | 2                                     |          |              | . 9845    | 1                         |  |
| 312 | .950     | 6                                     |          |              | . 9495    | 3                         |  |
| 303 | . 907    | 2                                     |          |              | .9056     | 2                         |  |
| 321 | . 890    | 2                                     |          |              | .8874     | 4                         |  |
| 215 |          |                                       |          |              | .8180     | 3                         |  |

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [2] A. W. Hull, Arrangement of the atoms in some common metals, Science 52, 227-229 (1920).
- [3] F. D. Dwyer and D. P. Mellor, J. Proc. Roy. Soc.
   N. S. Wales 66, 234-239 (1932) as quoted in [7].
- [4] E. Zintl and S. Neumayr, Gitterstruktur des Indiums, Z. Elektrochem. 39, 81-84 (1933).

- [5] G. Shinoda, X-ray investigations on the thermal expansion of solids. I., Mem. Coll. Sci. Kyoto Imp. Univ. 16A, 193-201 (1933).
- [6] L. K. Frevel and E. Ott, The X-ray study of indium and the indium-silver system, J. Am. Chem. Soc. 57, 228 (1935).
- [7] N. W. Ageev and V. Ageeva, Solid solutions of indium and lead, J. Inst. Metals 59, No. 2, 311-316 (1936).
- [8] W. Betteridge, The crystal structure of Cd-In alloys rich in In, Proc. Phys. Soc. (London) 50A, 519 (1938).

#### Antimony, Sb (hexagonal)

**ASTM** cards

| Card number |                          | New                    |            |                                         |  |  |
|-------------|--------------------------|------------------------|------------|-----------------------------------------|--|--|
| Old         | New                      | index<br>lines         | Radiation  | Source                                  |  |  |
| II-1273     | 2002<br>2-0597<br>2-0587 | 3.08<br>2.31<br>2.14   | Copper     | Dorn and Glockler [1]<br>1937.          |  |  |
| 1940        | 1911<br>1-0793<br>1-0802 | $3.10 \\ 2.24 \\ 2.14$ | Molybdenum | Hanawalt, Rinn, and<br>Frevel [2] 1938. |  |  |
| II-1287     | 2005<br>2-0599<br>2-0592 | 3.07<br>2.23<br>2.13   | Copper     | Harcourt [3] 1942.                      |  |  |

Additional published patterns. None. NBS sample. An antimony sample from C.A.F. Kahlbaum was used for the NBS pattern. Spectrographic analysis at the NBS showed the following impurities: 0.001 to 0.01 percent of copper, 0.0001 to 0.001 percent each of bismuth, iron, nickel, lead, silicon, and tin, and less than 0.0001 percent each of silver, aluminum, and calcium.

Interplanar spacings and intensity measurements. The *d*-spacings for the Dorn and Glockler pattern were calculated from Bragg angle data, whereas those for the Hanawalt, Rinn, and Frevel and the Harcourt patterns were converted from kX to angstrom units. Lines at 1.717 A and 1.678 A found in the Dorn and Glockler and the Harcourt patterns, respectively, are possible antimony lines, but they are not in the NBS pattern.

The three strongest lines for each of the patterns are as follows:

| Patterns                   | 1   | 2   | 3   |
|----------------------------|-----|-----|-----|
| Dorn and Glockler          | 102 | 014 | 110 |
| Hanawalt, Rinn, and Frevel | 102 | 014 | 110 |
| Harcourt                   | 102 | 014 | 110 |
| Swanson and Fuyat          | 102 | 014 | 212 |

**Lattice constants.** The structure was determined by James and Tunstall [4] in 1920. The space group is  $D_{3d}^5 - R\overline{3}m$  with arsenic-structure-type and 6(Sb) per unit cell.

Several unit-cell measurements have been converted from rhombohedral to hexagonal dimensions and from kX to angstrom units. The Lu and Chang and the Jette and Foote values were converted to 26°C from the temperatures indicated in parentheses, using the coefficient of expansion determined by Erfling [5]. The expansion is  $16.18 \times 10^{-6}$  parallel to the *c*-axis and  $8.24 \times 10^{-6}$  perpendicular to it.

| Lattice | constants | in | angstroms |
|---------|-----------|----|-----------|
|---------|-----------|----|-----------|

| 1933       Jette and Gebert [6]         1935       Hagg and Hybinette [7]         1935       Jette and Foote [8]         1937       Dorn and Glockler [1]         1941       Lu and Chang [9]         1953       Swanson and Fuyat | 4.313<br>4.3083<br>4.294<br>4.307 | <i>c</i><br>11.270<br>11.263<br>11.2743 (25°C)<br>11.263<br>11.274 (22°C)<br>11.273 at 26°C |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------|

The density of antimony calculated from the NBS lattice constants is 6.697 at 26°C.

| Antimony, | Sb ( | (hexagonal | ) |
|-----------|------|------------|---|
|-----------|------|------------|---|

|        | 193    |       | 193    |      | 1942     |       | 1953        |       |
|--------|--------|-------|--------|------|----------|-------|-------------|-------|
|        | Dorn   | and   | Hanaw  | alt, | Harcourt |       | Swanson and |       |
|        | Glock  | der   | Rin    | n,   |          |       | Fuy         | at    |
| hkl    |        |       | and Fr | evel |          |       | l l         |       |
| 1660   |        |       |        |      |          |       |             |       |
|        | Cu, 1. | 5405A | Mo, 0, | 709A | Cu, 1.   | 5405A | Cu, 1.      | 5405A |
|        | ,      |       |        |      | ,        |       | 25.5        |       |
|        |        |       |        |      |          |       | 23.3        | C I   |
|        | d      | I     | d      | I    | đ        | I     | d           | I     |
|        | A      |       | A      |      | A        |       | A           |       |
| 003    | 3.71   | s     | 3.72   | 15   |          |       | 3.753       | 25    |
| 011    | 0.11   | 3     | 5.12   | 15   |          |       | 3.538       | 4     |
| 102    | 3.092  | vs    | 3.11   | 100  | 3.08     | 100   | 3,109       | 100   |
| 014    | 2.251  | vs    | 2.24   | 63   | 2.23     | 33    | 2.248       | 70    |
| 110    | 2.142  | vs    | 2.14   | 63   | 2.13     | 33    | 2.152       | 56    |
|        |        |       |        | 00   | 2.10     |       |             |       |
| 105    | 1.926  | s     |        |      | 1.92     | 8     | 1.929       | 12    |
| 006    | 1.873  | s     | 1.86   | 15   | 1.87     | 8     | 1.878       | 35    |
| 022    | 1.763  | vs    | 1.76   | 44   | 1.759    | 17    | 1.770       | 26    |
|        | 1.717  | w     |        |      | 1.678    | 3     |             |       |
| 204    | 1.552  | vw    | 1.55   | 20   | 1.543    | 17    | 1.555       | 15    |
|        |        |       |        |      |          |       |             |       |
| 017    | 1.473  | s     | 1.473  | 13   | 1.473    | 8     | 1.479       | 13    |
| 025    | 1.433  | vw    |        |      |          |       | 1.437       | 12    |
| 116    | 1.410  | s     | 1.413  | 20   | 1.408    | 17    | 1.416       | 63    |
| 212    | 1.362  | s     | 1.363  | 25   | 1.358    | 17    | 1.368       | 67    |
| 108    | 1.313  | s     | 1.313  | 8    |          |       | 1.318       | 30    |
| 124    | 1.257  | _     | 1.261  | 15   |          |       | 1.261       | 40    |
| 009    | 1.257  | S     | 1.246  | 10   | 1.254    | 17    | 1.251       | 25    |
| 300    | 1.239  | <br>s | 1.240  | 10   | 1.234    | 17    | 1.232       | 30    |
| 207    | 1.239  | 5     | 1.217  | 3    | 1.234    | 5     | 1.243       | 11    |
| 215    | 1.191  | <br>S | 1.192  | 3    | 1.217    | 3     | 1.1955      | 11    |
| 215    | 1.171  |       | 1.192  | 3    |          |       | 1.1955      | 12    |
| 303    |        |       |        |      |          |       | 1.1802      | 5     |
| 028    | 1.123  | w     | 1,122  | 3    |          |       | 1.1243      | 12    |
| 119    | 1.079  | s     |        |      |          |       | 1.0829      | 32    |
| 0.1.10 |        |       | 1.077  | 10   | 1.077    | 8     | 1.0792      | 16    |
| 220    |        |       |        |      |          |       | 1.0768      | 12    |
| 127    | 1.056  | s     | 1.049  | 3    |          |       | 1.0609      | 16    |
| 306    | 1.041  | s     | 1.033  | 8    | 1.032    | 5     | 1.0369      | 17    |
| 132    | 1.014  | s     |        |      | 1.010    | 3     | 1.0177      | 27    |
| 218    | 1.000  | vw    |        |      |          |       | .9966       | 25    |
| 1.0.11 | . 985  | w     |        |      | . 987    | 3     | . 9882      | 24    |

14

| h k l                                                                | 193<br>Dorn<br>Glock<br>Cu, 1. | and<br>ler      | 1938<br>Hanawalt,<br>Rinn,<br>and Frevel<br>Mo, 0.709A |   | 194<br>Нагсс<br>Си, 1. | ourt               | 195<br>Swanso<br>Fuy<br>Cu, 1.<br>25.5                                        | n and<br>at<br>5405A                               |
|----------------------------------------------------------------------|--------------------------------|-----------------|--------------------------------------------------------|---|------------------------|--------------------|-------------------------------------------------------------------------------|----------------------------------------------------|
|                                                                      | d                              | I               | đ                                                      | I | đ                      | I                  | d                                                                             | I                                                  |
|                                                                      | A                              |                 | A                                                      |   | A                      |                    | A                                                                             |                                                    |
| 314<br>2.0.10<br>135<br>226<br>402<br>0.2.11<br>044<br>309<br>1.2.10 | .979<br>.967<br><br>.931<br>   | s<br>s<br><br>s |                                                        |   | .964<br><br><br>.878   | <br>5<br><br><br>5 | .9713<br>.9650<br>.9402<br>.9343<br>.9201<br>.8981<br>.8853<br>.8825<br>.8804 | <br>15<br>8<br>7<br>13<br>8<br>10<br>7<br>15<br>15 |
| 317<br>405<br>322<br>0·1·13<br>138<br>                               |                                |                 |                                                        |   |                        | <br>5<br>          | .8704<br>.8612<br>.8461<br>.8446<br>.8340<br>.8290<br>.8190<br>.8167<br>.8140 | 7<br>5<br>11<br>22<br>5<br>16<br>8<br>22<br>13     |
|                                                                      |                                |                 |                                                        |   |                        |                    | .8140                                                                         | 7                                                  |

#### Antimony, Sb (hexagonal)-Con.

- J. E. Dorn and G. Glockler, X-ray study of the structure of copper, lead, cadmium and antimony at high temperatures, J. Phys. Chem. 41, 499-506 (1937).
- [2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [3] G. A. Harcourt, Tables for the identification of ore minerals by X-ray powder patterns, Am. Mineralogist 27, 63-113 (1942).
- [4] R. W. James and N. Tunstall, The crystalline structure of antimony, Phil. Mag. 40, 233-239 (1920).
- [5] H. D. Erfling, Studien zur thermischen Ausdehnung fester Stoffe in tiefer Temperatur. II, Ann. Physik. 34, 136-160 (1939).
- [6] E. R. Jette and E. B. Gebert, An X-ray study of the binary alloys of silicon with Ag, Au, Pb, Sn, Zn, Cd, Sb, and Bi, J. Chem. Phys. 1, 753-755 (1933).
- [7] G. Hägg and A. G. Hybinette, X-ray studies on the systems tin-antimony and tin-arsenic, Phil. Mag. 20, 913-928 (1935).
- [8] E. R. Jette and F. Foote, Precision determination of lattice constants, J. Chem. Phys. 3, 605-616 (1935).
- [9] S. S. Lu and Y. L. Chang, The accurate evaluation of lattice spacings from back-reflection powder photographs, Proc. Phys. Soc. (London) 53, 517-528 (1941).

# Iodine, I<sub>2</sub> (orthorhombic)

**ASTM** cards

| Card<br>Old | number<br>New | New<br>index  | Radiation  | Source           |
|-------------|---------------|---------------|------------|------------------|
| 1246        |               | lines<br>3.69 | Molybdenum |                  |
|             |               | 3.09<br>1.97  |            | Frevel [1] 1938. |

This pattern was not reproduced in the revised edition of the file or in the 1950 index and is found only in the original card file and index.

#### Additional published patterns

| Source                           | Radiation  | Wavelength |
|----------------------------------|------------|------------|
| Harris, Mack, and Blake [2] 1928 | Molybdenum | 0.710      |

NBS sample. The iodine sample used for the NBS pattern was obtained from the Fisher Scientific Co. Chemical analysis at the NBS showed the following impurities: Chlorine and bromine, determined as the chloride, less than 0.005 percent, and total nonvolatiles less than 0.020 percent. The refractive indices are too high to be measured by the usual grain-oil immersion methods.

Interplanar spacings and intensity measurements. The *d*-spacings for both the Hanawalt, Rinn, and Frevel and the Harris, Mack, and Blake patterns were converted from kX to angstrom units. The latter of these contains a very weak line at 1.881 A that does not appear in the NBS pattern or among the permissible calculated lines for iodine.

The three strongest lines for each of the patterns are as follows:

| Patterns                   | 1   | 2   | 3   |
|----------------------------|-----|-----|-----|
| Hanawalt, Rinn, and Frevel | 111 | 112 | 132 |
| Harris, Mack, and Blake    | 112 | 111 | 020 |
| Swanson and Fuyat          | 112 | 111 | 020 |

**Lattice constants.** The structure was determined by Harris, Mack, and Blake [2] in 1928. The space group is  $D_{2h}^{18}$ -Ccmb (Cmca) with gallium structure type and 4(I<sub>2</sub>) per unit cell.

Three unit-cell values were converted from kX to angstrom units for comparison with the NBS values. The Straumanis and Sauka values were converted from 25° to 26°C, using 16 their coefficient of expansion [4] of  $133.4 \times 10^{-6}$  parallel to the *a*-axis,  $95.0 \times 10^{-6}$  parallel to the *b*-axis, and  $35.1 \times 10^{-6}$  parallel to the *c*-axis.

| Lattice ( | constants | in | angstroms |
|-----------|-----------|----|-----------|
|-----------|-----------|----|-----------|

|      |                                 | a       | Ъ       | c              |
|------|---------------------------------|---------|---------|----------------|
| 1927 |                                 | 4.770   | 7.178   | 9.803          |
| 1928 | Harris, Mack, and<br>Blake [2]. | 4.805   | 7.270   | 9.800          |
| 1943 | Straumanis and<br>Sauka [4].    | 4.79044 | 7.27007 | 9.79344 at 26℃ |
| 1953 | Swanson and Fuyat               | 4.792   | 7.271   | 9.803 at 26°C  |

The density of iodine calculated from the NBS lattice constants is 4.935 at 26 °C.

Iodine, I, (orthorhombic)

|      | 19:    | 38                            | 192    | 28                         | 19        | 53          |  |
|------|--------|-------------------------------|--------|----------------------------|-----------|-------------|--|
| hkl  |        | Hanawalt, Rinn,<br>and Frevel |        | Harris, Mack,<br>and Blake |           | Swanson and |  |
| 1 "" |        |                               | and L  | JIAKE                      | Fuyat     |             |  |
|      | Mo, 0. | 709 A                         | Mo, 0. | 709 A                      | Cu, 1.540 | 5 A, 26℃    |  |
| -    | d      | I                             | đ      | I                          | đ         | I           |  |
|      | A      |                               | A      |                            | A         |             |  |
| 111  | 3.70   | 100                           | 3.705  | 83                         | 3.708     | 66          |  |
| 020  |        |                               | 3.623  | 83                         | 3.635     | 62          |  |
| 112  |        | 100                           | 3.100  | 100                        | 3.103     | 100         |  |
| 113  |        | 8                             | 2.535  | 17                         | 2.534     | 14          |  |
| 004  | 2.44   | 18                            | 2.458  | 33                         | 2.456     | 23          |  |
| 200  |        |                               | 2.394  | vw                         | 2.395     | 2           |  |
| 201  | 2.33   | 15                            | 2.326  | 27                         | 2.328     | 20          |  |
| 131  |        | 15                            | 2.108  | 20                         | 2.112     | 13          |  |
| 024  |        | 20                            | 2.036  | 33                         | 2.036     | 23          |  |
| 220  |        |                               |        |                            | 2.000     | 5           |  |
| 132  | 1.97   | 30                            | 1.982  |                            | 1.979     | 28          |  |
| 221  |        |                               | 1.968  | 33                         | 1.959     | 17          |  |
| 203  |        |                               | 1.933  | 23                         | 1.933     | 14          |  |
|      |        |                               | 1.881  | vvw                        |           |             |  |
| 040  | 1.81   | 10                            | 1.813  | 23                         | 1.817     | 9           |  |
| 133  |        |                               |        |                            | 1.804     | 5           |  |
| 115  | -      | 10                            | 1.763  | 20                         | 1.763     | 13          |  |
| 223  |        | 20                            | 1.709  | 33                         | 1.707     | 18          |  |
| 224  |        |                               |        |                            | 1.551     | 4           |  |
| 311  |        |                               | 1.544  | 23                         | 1.540     | 7           |  |
| 205  |        |                               |        |                            | 1.519     | 4           |  |
| 116  |        | 10                            | 1.516  | 27                         | 1.515     | 10          |  |
| 312  |        |                               | 1.491  | vw<br>oo                   | 1.487     | 3           |  |
| 044  |        | 8                             | 1.459  | 20                         | 1.461     | 6           |  |
| 135  |        |                               |        |                            | 1.454     | 3           |  |
| 241  |        |                               | 1.435  | 7                          | 1.432     | 5           |  |
| 313  |        |                               | 1.407  | 13                         | 1.408     | 4           |  |
| 225  |        | 5                             |        |                            | 1.402     | 2           |  |
| 151  |        |                               | 1.378  | 3                          | 1.377     |             |  |
| 152  |        |                               | 1.339  | 17                         | 1.338     | 5           |  |
| 243  |        |                               | 1.325  | w                          | 1.324     | 7           |  |
| 117  |        |                               | 1.302  | w                          | 1.321     | 7           |  |
| 136  |        |                               | 1.202  | w                          | 1.305     | 4           |  |
| L    | -      |                               | L      |                            | I         |             |  |

References

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [2] P. M. Harris, E. Mack, and F. C. Blake, The atomic arrangement in the crystal of orthorhom-

bic iodine, J. Am. Chem. Soc. 50, 1583-1600 (1928).

- [3] A. Ferrari, La struttura cristallina dello iodio, Rend. accad. nazb. Lincei 5, 582-586 (1927).
- [4] M. Straumanis and J. Sauka, Die Gitterkonstanten und Ausdehnungskoeffizienten des Jods, Z. physik. Chem. B53, 320-330 (1943).

## Hafnium, Hf (hexagonal)

ASTM cards

| Card | number                   | New                  |           |                                      |
|------|--------------------------|----------------------|-----------|--------------------------------------|
| Old  | New                      | index<br>lines       | Radiation | Source                               |
|      | 2748<br>2-0898<br>2-0885 | 2.73<br>1.66<br>1.42 | Zinc      | Noethling and Tolksdorf [1]<br>1925. |

#### Additional published patterns

| Sour ce                    | Radiation | Wavelength |
|----------------------------|-----------|------------|
| Sidhu and McGuire [2] 1952 | Copper    | Ka         |

NBS sample. The hafnium used for the NBS pattern came from two sources, a crosssectional slice of an "as deposited" crystal bar supplied by the Atomic Energy Commission and a rolled sheet contributed by the Foote Mineral Co. Both were prepared by the iodide process. The Foote sample was annealed in vacuum for 1 hour at 850°C. Flat surfaces were filed on the AEC sample and then etched with hydrofluoric acid.

The AEC spectrographic analysis of their sample showed the following impurities: 2.0 percent of zirconium, 0.02 percent of iron, 0.001 to 0.01 percent each of silicon, aluminum, titanium, calcium, nickel, and chromium, and less than 0.001 percent each of copper, manganese, magnesium, lead, molybdenum, and tin. Spectrographic analysis of the Foote Mineral Co. sample at the NBS showed the following impurities: 0.1 to 1.0 percent of zirconium, 0.01 to 0.1 percent each of nickel, silicon, and zinc, 0.001 to 0.01 percent each of aluminum, iron, and magnesium, 0.0001 to 0.001 percent of copper, and less than 0.0001 percent of silver.

Interplanar spacings and intensity measurements. The *d*-spacings for the Noethling and Tolksdorf pattern were calculated from Bragg angle data; the *d*-spacings for the Sidhu and McGuire pattern were published in angstrom units. Since the NBS samples were either oriented or large-grained, the rolled sheet and several different surfaces of the chunk were used to obtain all of the *d*-spacings. It was possible to combine these values into one pattern because the reflections in both samples had identical *d*-spacings. The ASTM card for the Noethling and Tolksdorf pattern made with zinc radiation contains a *d*-spacing of 1.50 not found in the original reference, whereas the original reference contains a *d*-spacing of 1.36 not found on the ASTM card. Another Noethling and Tolksdorf pattern made with copper radiation contains an additional *d*-spacing of 1.808 that has not been included in the card-file pattern or in the table in this report because it is not a possible hafnium line. The line at 0.924 angstrom, hkl of 300, found in the Sidhu and McGuire pattern is not in the NBS pattern.

The NBS intensity values were the average of four sets of values measured, using filings mixed with silica gel. The three strongest lines for each of the patterns are as follows:

| Patterns          | 1   | 2   | 3   |
|-------------------|-----|-----|-----|
| Sidhu and McGuire | 101 | 100 | 002 |
| Swanson and Fuyat | 101 | 002 | 100 |

The strong lines of the Noethling and Tolksdorf pattern do not coincide with the indexed NBS pattern, and they apparently represent quite a different material.

Lattice constants. The structure was determined by Noethling and Tolksdorf [1], who showed its similarity to the zirconium structure. The space group is  $D_{6h}^4$ -P6<sub>3</sub>/mmc with 2(Hf) per unit cell.

The Noethling and Tolksdorf and the van Arkel lattice constants were converted from kX to angstrom units, whereas the Fast, the Duwez, and the Sidhu and McGuire values were published in angstroms.

| Lattice | constants | in | angstroms |
|---------|-----------|----|-----------|
|---------|-----------|----|-----------|

|      |                             | a      | с              |
|------|-----------------------------|--------|----------------|
| 1925 | Noethling and Tolksdorf [1] | 3.33   | 5.47           |
| 1927 | Van Arkel [3]               | 3.206  | 5.087          |
|      | Fast [4]                    | 3.187  | 5.041          |
| 1951 | Duwez [5]                   | 3.1952 | 5.0569         |
|      | Sidhu and McGuire [2]       |        | 5.061          |
| 1953 | Swanson and Fuyat           | 3.1967 | 5.0578 at 26°C |
|      |                             |        |                |

The density of hafnium calculated from the NBS lattice constants is 13.248 at 26°C.

| naiblum, hi (hexagonal) |                  |         |               |                |                   |          |
|-------------------------|------------------|---------|---------------|----------------|-------------------|----------|
|                         | 19               | 25      | 195           | 52             | 19                | 53       |
| hkl                     | Noethli<br>Tolks | -       | Sidhu<br>McGu |                | Swanson and Fuyat |          |
|                         | Zn, 1.4          | 4351 A  | Cu, 1.5       | 405 A          | Cu, 1.540         | 5 A, 26℃ |
|                         | đ                | I       | đ             | I              | đ                 | I        |
|                         | A                |         | A             |                | A                 |          |
|                         | 2.84             | S       |               |                |                   |          |
| 100                     |                  |         | 2.77          | s              | 2.768             | 27       |
| 002                     | 2.72<br>2.54     | VS<br>W | 2.53          | <br>S          | 2,531             | 34       |
| 101                     | 2.34             |         | 2.33          | vs             | 2.428             | 100      |
|                         |                  |         |               |                |                   |          |
|                         | 2.35             | W       |               |                |                   |          |
| 102                     | 1.99             | w       | 1.868         |                | 1.0((             |          |
|                         | 1.65             | vs      | 1.000         | S              | 1.866             | 10       |
| 110                     | 1.59             | w       | 1.600         | s              | 1.599             | 14       |
|                         | 1.53             | vw      |               |                |                   |          |
| 103                     |                  |         | 1.443         | s              | 1.440             | 16       |
| 200                     | 1.41             | ٧S      | 1.383         | w              | 1.385             | 2        |
| 112                     | 1.36             | . ms    | 1.354         | 3              | 1.351             | 16       |
| 201                     | 1.31             |         | 1.337         | S              | 1.336             | 12       |
| 004                     | 1.26             | w       | 1.265         | m+             | 1.265             | 4        |
| 202                     | 1.23             | w       | 1.216         | m              | 1.214             | 3        |
| 104                     |                  |         | 1.152         | m              | 1.1503            | 3        |
| 203                     | 1.08             | ms      | 1.065         | s              | 1.0697            | 4        |
| 210                     |                  |         | 1.049         | w <sup>+</sup> | 1.0464            | 1        |
| 211                     |                  |         | 1.027         | 3              | 1.0247            | 6        |
| 114                     | .991             | W       | .993          | s              | .9917             | 5        |
| 212                     |                  |         | .968          | m              | .9671             | 2        |
| 105                     | .957             | ms      | .951          | S              | .9502             | 5        |
| 204                     | .931             | ms      | . 935         | m              | .9336             | 3        |
|                         |                  |         | .924          | m              |                   |          |
| 213                     | .907             | ms      | .890          | s              | .8891             | 5        |
| 302                     |                  |         | .868          | m              | .8668             | 4        |
| 006<br>205              |                  |         | .844          | w<br>m         | .8428             | 1 2      |
|                         |                  |         |               |                | .0100             |          |
| 106<br>214              | }.798            | s       | .807          | m              | .8060             | 3        |
|                         | 1                |         |               |                | L                 |          |

#### Hafnium, Hf (hexagonal)

- W. Noethling and S. Tolksdorf, Die Kristallstruktur des Hafniums, Z. Krist. 62, 255-259 (1925).
- [2] S. S. Sidhu and J. C. McGuire, An X-ray diffraction study of the hafnium-hydrogen system, J. Appl. Phys. 23, 1257-1261 (1952).
- [3] A. E. van Arkel, Das Atomvolum des Zirkoniums und des Hafniums, Z. physik, Chem. 130, 100-104 (1927).
- [4] J. D. Fast, The allotropic transformation of hafnium and a tentative equilibrium diagram of the system zirconium-hafnium, J. Appl. Phys. 23, 350-351 (1952), as quoted from J. D. Fast, Chem. Weekblad 44, 621 (1948).
- [5] P. Duwez, The allotropic transformation of hafnium, J. Appl. Phys. 22, 1174-1175 (1951).

## Bismuth, Bi (hexagonal)

ASTM cards

| Card 1  | number                   | New            |                  |                                                           |
|---------|--------------------------|----------------|------------------|-----------------------------------------------------------|
| Old     | New                      | index<br>lines | Radiation        | Source                                                    |
| 1710    | 1659<br>1-0700<br>1-0699 | 2.35           | Molybdenum       | Davey [1] 1925.                                           |
| II-1078 | 1683<br>2-0491<br>2-0491 |                | Copper<br>Copper | Parravano and Caglioti<br>[2] 1930.<br>Caglioti [3] 1930. |
| 1692    | 1658<br>1-0699<br>1-0688 |                | Molybdenum       | Hanawalt, Rinn, and<br>Frevel [4] 1938.                   |
| II-1124 | 1776<br>2-0527<br>2-0518 | 1.44           | Copper           | Harcourt [5] 1942.                                        |

The Harcourt ASTM card erroneously states that molybdenum radiation was used. The Parravano and Caglioti and the Caglioti patterns are identical except for one line listed 44.47 and 44.42, respectively, and they are combined on one card.

#### Additional published patterns

| Source                     | Radiation | Wavelength |
|----------------------------|-----------|------------|
| Solomon and Jones [6] 1931 | Copper    |            |

NBS sample. The bismuth used for the NBS pattern was prepared by the Johnson Matthey & Co. Ltd. Their spectrographic analysis shows less than 0.001 percent each of lead, silicon, copper, iron, aluminum, calcium, magnesium, and sodium.

Interplanar spacings and intensity measurements. The *d*-spacings of the Davey, the Hanawalt, Rinn, and Frevel, the Harcourt, and the Solomon and Jones patterns were converted from supposed kX to angstrom units. The Parravano and Caglioti pattern, expressed in Bragg angles, was converted directly into angstroms. The Parravano pattern contains four lines with d-spacings 2.982, 2.707, 1.836, and 1.743 not possible in the bismuth structure, as shown by the theoretical pattern.

The three strongest lines for each of the patterns are as follows:

| Patterns                   | 1   | 2   | 3   |
|----------------------------|-----|-----|-----|
| Davey                      | 102 | 014 | 110 |
| Parravano and Caglioti     | 102 | 212 | 132 |
| Hanawalt, Rinn, and Frevel | 102 | 014 | 110 |
| Harcourt                   | 102 | 212 | 110 |
| Solomon and Jones          | 102 | 014 | 110 |
| Swanson and Fuyat          | 102 | 110 | 014 |

**Lattice constants.** The structure was determined by Hassel and Mark [7] in 1924 following several more general investigations. The space group is  $D_{3d}^5$ -R $\overline{3}m$  with arsenicstructure type and 6(Bi) per unit cell.

A group of unit-cell determinations were converted from kX to angstrom units for comparison with the NBS values. The Hassel and Mark, the Ehret and Fine, and the Solomon and Jones data also were converted from rhombohedral to hexagonal form. The Hassel and Mark, and the Solomon and Jones values were originally presented in terms of a nonprimitive cell with *a*-values twice their true length. These have been halved for comparison.

| Lattice | constants | in | angstroms |
|---------|-----------|----|-----------|
|---------|-----------|----|-----------|

|      |                         | a       | с              |
|------|-------------------------|---------|----------------|
| 1924 | Davey [1]               | 4.548   | 11.853         |
| 1924 | Hassel and Mark [7]     | 4.55    | 11.85          |
| 1930 | Ehret and Fine 8        | 4.551   | 11.867         |
| 1931 | Solomon and Jones [6]   | 4.525   | 11.799         |
| 1935 | Jette and Foote [9]     | 4.54643 | 11.8620        |
| 1938 | Ieviņš, Straumanis, and |         |                |
|      | Karlsons [10]           |         | 11.86225       |
| 1953 | Swanson and Fuyat       | 4.546   | 11.860 at 25°C |
|      |                         |         |                |

The coefficient of expansion parallel to the c-axis, as determined by Jacobs and Goetz [11], is approximately  $13.8 \times 10^{-6}$ . The density calculated from the NBS lattice constants is 9.808 at 25°C.

| Bismuth, | Bi | (hexagonal) |
|----------|----|-------------|
|----------|----|-------------|

|            | 192     | 5        | 1930                | 1938       |                      | 1938                                                        |              | 1931              |          | 1953        |                 |        |
|------------|---------|----------|---------------------|------------|----------------------|-------------------------------------------------------------|--------------|-------------------|----------|-------------|-----------------|--------|
| hkl        | Dave    | у        | Parravano<br>Caglio |            | Hanawalt,<br>and Fre | alt, Rinn, Harcourt Solomon and Jones Swanson a<br>d Frevel |              | Solomon and Jones |          | Swanson and | Fuyat           |        |
|            | Mo, 0.7 | 09 A     | Cu, 1.54            | 05 A       | Mo, 0.70             | 19 A                                                        | Cu, 1.54     | 05 A              | Cu, 1.54 | 05 A        | Cu, 1.5405      | A, 25℃ |
| -          | d       | I        | đ                   | I          | d                    | I                                                           | đ            | I                 | ā        | I           | d               | I      |
|            | A       |          | A                   |            | A                    |                                                             | A            |                   | A        |             | A               |        |
| 003        | 3.94    | 11       | <i>a</i>            | 1.11       | n                    |                                                             | <i>n</i>     |                   |          |             | 3.95            | 9      |
| 011        | 3.71    | 11       |                     |            |                      |                                                             |              |                   |          |             | 3.74            | 3      |
| 102        | 3.27    | 100      | 3.26                | s          | 3.29                 | 100                                                         | 3.22         | 100               | 3.254    | s           | 3.28            | 100    |
|            |         |          | 2.982               | m          |                      |                                                             |              |                   |          |             |                 |        |
|            |         |          | 2.707               | m          |                      |                                                             |              |                   |          |             |                 |        |
| 014        | 2.35    | 89       | 2.346               | ms         | 2.35                 | 50                                                          | 2.34         | 33                | 2.358    | m           | 2.39            | 40     |
| 110        | 2.26    | 89       | 2.258               | ms         | 2.27                 | 50                                                          | 2.250        | 67                | 2.262    | m           | 2.273           | 41     |
| 105        | 2.02    | 33       |                     |            | 2.01                 | 7                                                           | 2.019        | 17                | 2.022    | w           | 2.030           | 8      |
| 006        |         |          |                     |            |                      |                                                             |              |                   |          |             | 1.976           | 3      |
| 113        | 1.968   | 45       | 1.988               | ₩          | 1.96                 | 13                                                          | 1.959        | 17                | 1.969    | m           | 1.970           | 10     |
| 201        |         |          | 1.941               | w          |                      |                                                             |              |                   |          |             | 1.941           | 1      |
| 022        | 1.866   | 78       | 1.941               | w          | 1.86                 | 30                                                          | 1.854        | 33                | 1.866    | <br>m       | 1.941           | 23     |
|            |         |          | 1.836               | m          |                      |                                                             |              |                   |          |             |                 |        |
|            |         |          | 1.743               | mw         |                      |                                                             |              |                   |          |             |                 |        |
| 204        | 1.638   | 67       | 1.636               | m          | 1.63                 | 20                                                          | 1.628        | 33                | 1.633    | m           | 1.639           | 9      |
| 017        | 1.553   | 33       | 1.550               | ms         | 1.54                 | 3                                                           | 1.548        | 17                | 1.552    | w           | 1.556           | 6      |
| 025        | 1.514   | 22       | 1.550               |            | 1.54                 | J                                                           | 1.040        |                   | 1.552    |             | 1.515           | 2      |
| 116        | 1.489   | 67       | 1.480               | ms         | 1.493                | 20                                                          | 1.483        | 67                | 1.488    | m           | 1.491           | 13     |
| 212        | 1.442   | 78       | 1.445               | s          | 1.443                | 27                                                          | 1.438        | 100               | 1.441    | m           | 1.443           | 16     |
| 108        | 1.386   | 22       |                     |            |                      |                                                             | 1.381        | 17                | 1.386    | w           | 1.387           | 4      |
| 10.4       | 1 290   | 45       | 1 991               |            | 1 220                | 10                                                          | 1 200        | (7                | 1 296    | _           | 1 220           | iı     |
| 124<br>009 | 1.329   |          | 1.331               | ms         | 1.330                | 13                                                          | 1.328        | 67                | 1.326    | m           | 1.330<br>1.319  | 1      |
| 300        | 1.313   | 45       | 1.313               | <br>ms     |                      |                                                             | 1.307        | 33                | 1.310    | m           | 1.312           | 6      |
| 207        | 1.286   | 22       |                     |            |                      |                                                             | 1.281        | 17                | 1.284    | w           | 1.284           | 2      |
| 215        | 1.260   | 11       | 1.237               | nsw        |                      |                                                             | 1.257        | 17                | 1.259    | vw          | 1.261           | 2      |
| 202        |         |          |                     |            |                      |                                                             | 1.040        | 10                |          |             | 1.044           |        |
| 303<br>028 | 1.184   | 22       |                     |            | 1.182                |                                                             | 1.243        | 10<br>17          |          |             | 1.246<br>1.1843 | 1<br>2 |
| 119        | 1.139   | 33       |                     |            | 1,102                | 3                                                           | 1.182        | 11                |          |             | 1.1399          | 4      |
| 220        | 1.137   |          | 1.134               | <br>mw     | 1.137                | 10                                                          | 1.134        | 67                | 1,133    | vw          | 1.1368          | 4      |
| 127        | 1.118   | 11       |                     |            |                      |                                                             | 1.114        | 33                |          |             | 1.1179          | 2      |
|            | 1       |          | 1                   |            | 1 001                | -                                                           |              |                   | 1        |             | 1 0000          |        |
| 306        | 1.093   | 33       | 1.094               | mw         | 1.091                | 7                                                           | 1.090        | 67                | 1.090    | vw          | 1.0932          | 4      |
| 132<br>218 | 1.074   | 33<br>22 | 1.072               | s          | 1.075<br>1.047       | 7                                                           | 1.071 1.049  | 67<br>17          | 1.071    | W           | 1.0738 1.0501   | 5<br>2 |
| 1.0.11     | 1.040   | 22       | 1.043               | <br>S      | 1.041                | J                                                           | 1.038        | 17                |          |             | 1.0399          | 2      |
| 314        | 1.023   | 22       | 1.022               | s          | 1.022                | 3                                                           | 1.023        | 33                |          |             | 1.0247          | 3      |
| 1.0.7      |         |          |                     |            |                      |                                                             |              |                   |          |             |                 |        |
| 135        | 006     |          |                     |            |                      |                                                             | 004          |                   |          |             | .9920           | 1<br>3 |
| 226<br>402 | .986    | 22<br>22 | .984<br>.971        | ms<br>ms   |                      |                                                             | .984<br>.970 | 17<br>17          |          |             | .9854           | 3<br>2 |
| 0.2.11     |         |          | . 711               | ш <b>э</b> |                      |                                                             | .945         | 17                |          |             | .9455           | 2      |
| 309        | .933    | 22       | .927                | ms         |                      |                                                             | . 929        | 17                |          |             | .9301           | 4      |
| 1.2.10     |         |          |                     |            |                      |                                                             |              |                   |          |             | . 9276          | 2      |
| 317        |         |          | .919                | ms         |                      |                                                             | .917         | 17                |          |             | .9178           | 2      |
| 1.1.12     |         |          |                     |            |                      |                                                             |              |                   |          |             | .9065           | 2      |
| 322        | .892    | 22       |                     |            |                      |                                                             | . 893        | 33                |          |             | . 8928          | 2      |
| 0.1.13     |         |          | .890                | ms         |                      |                                                             |              |                   |          |             | .8886           | 2      |
| 138        | . 878   | 11       |                     |            |                      |                                                             | . 880        | 10                |          |             | .8792           | 2      |
| 2.1.11     |         |          | .873                | ms         |                      |                                                             | .874         | 33                |          |             | . 8731          | 2      |
| 234        |         |          |                     |            |                      |                                                             | .864         | 33                |          |             | .8640           | 2      |
| 410        | .859    | 11       | .860                | ms         |                      |                                                             | . 860        | 33                |          |             | .8591           | 4      |
| 041        |         |          |                     |            |                      |                                                             |              |                   |          |             | .8511           | 1      |
|            | .794    | 22       |                     |            |                      |                                                             | .829         | 33                |          |             |                 |        |
|            | .752    | 22       |                     |            |                      |                                                             | .821         | 17                |          |             |                 |        |
| L          |         |          |                     | I          |                      |                                                             | L            |                   | I        | L           | ł               |        |

- W. P. Davey, Precision measurements of the lattice constants of twelve common metals, Phys. Rev. 25, 753-761 (1925).
- [2] N. Parravano and V. Caglioti, Ricerche sul sistema bismuto-selenio, Gazz. chim. ital. 60, 923-935 (1930).
- [3] V. Caglioti, Sulla non esistenza dei sottoioduri di bismuto BiJ<sub>2</sub> e BiJ, Gazz. chim. ital. 60, 935 (1930).
- [4] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [5] G. A. Harcourt, Tables for the identification of ore minerals by X-ray powder patterns, Am. Mineralogist 27, 63-113 (1942).
- [6] D. Solomon and W. M. Jones, An X-ray investigation of the lead-bismuth and tin-bismuth alloys, Phil. Mag. 11, 1090-1103 (1931).

- [7] O. Hassel and H. Mark, Über die Struktur des Wismuts, Z. Physik. 23, 269-277 (1924).
- [8] W. F. Ehret and R. D. Fine, Crystal structure in the system copper-bismuth, Phil. Mag. 10, 551-559 (Oct. 1930).
- [9] E. R. Jette and F. Foote, Precision determination of lattice constants, J. Chem. Phys. 3, 605-616 (1935).
- [10] A. Ieviņš, M. Straumanis, and K. Karlsons, Die Präzisionsbestimmung von Gitterkonstanten nichtkubischer Stoffe (Bi, Mg, Sn) nach der asymmetrischen Methode, Z. physik. Chem. 408, 347-356 (1938).
- [11] R. B. Jacobs and A. Goetz, The thermal expansion of the bismuth lattice between 25° and 530° Abs., Phys. Rev. 51, 159-164 (1937).

# 2.2. Selenides

#### Zinc Selenide, ZnSe (cubic)

**ASTM** cards

| Card number |                          | New                  |            |                                            |  |  |
|-------------|--------------------------|----------------------|------------|--------------------------------------------|--|--|
| Old         | New                      | index<br>lines       | Radiation  | Source                                     |  |  |
| II-1058     | 1672<br>2-0487<br>2-0479 | 3.28<br>2.00<br>1.72 | Molybdenum | General Electric Co.,<br>Wembley, England. |  |  |
| 1694        | 1673<br>1-0708<br>1-0690 | 3.28<br>2.00<br>1.70 | Molybdenum | New Jersey Zinc Co.                        |  |  |

The radiation given above is that found on the ASTM cards as no published data are available.

Additional published patterns. None.

NBS sample. The zinc selenide used for the NBS pattern is a specially purified sample prepared by the Mallinckrodt Chemical Works. Their spectrographic analysis shows 0.001 to 0.01 percent each of barium, potassium, molybdenum, and sodium, 0.0001 to 0.001 percent each of aluminum, calcium, iron, magnesium, nickel, palladium, and silicon, and less than 0.0001 percent each of silver, bismuth, cadmium, copper, and manganese. Chemical analysis at the NBS showed that the sample contained 44.9 percent zinc as compared to the theoretical amount, 45.3 percent. The refractive index is too high to be measured by grain-oil immersion methods.

Interplanar spacings and intensity measurements. The *d*-spacings for the General Electric and New Jersey Zinc patterns were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

| Pattern                  | 1   | 2   | 3   |
|--------------------------|-----|-----|-----|
| General Electric Company | 111 | 220 | 311 |
| New Jersey Zinc Company  | 111 | 220 | 311 |
| Swanson and Fuyat        | 111 | 220 | 311 |

Lattice constant. The structure was investigated by Davey [1] in 1923. The space group is  $T_d^2$ -F43m with 4(ZnSe) per unit cell.

Several unit cell measurements were converted to angstroms for comparison with the NBS value.

| 1923 Davey [1]         | 5.662         |
|------------------------|---------------|
| 1926 Zachariasen [2]   | 5.672         |
| 1953 Swanson and Fuyat | 5.667 at 25°C |

The density of zinc selenide calculated from the NBS lattice constant is 5.267 at 25°C.

Zinc Selenide, ZnSe (cubic)

|      |               |       |       |       |      |       |          | 1052  |         |
|------|---------------|-------|-------|-------|------|-------|----------|-------|---------|
|      |               |       |       |       |      | 1953  |          |       |         |
|      | G             | enera | 1     | New   | Jer  | sey   | Swan     | son   | and     |
| hkl  | Elec          | tric  | Co.   | Zi    | nc C | ٥.    | F        | uyat  |         |
|      |               |       |       |       |      |       |          |       |         |
|      | мо,           | 0.70  | J9 A  | Mo,   | 0.70 | J9 A  | Cu, 1.54 | 105 A | A, 25°C |
|      | đ             | I     | a     | đ     | I    | a     | đ        | I     | a       |
|      | A             |       | A     | A     |      | A     | A        |       | A       |
| 111  | 3.288         | 100   | 5.695 | 3.29  | 100  | 5.698 | 3.273    | 100   | 5.669   |
| 200  | 2.850         | 10    | 5.700 |       |      |       | 2.835    | <1    | 5.670   |
| 220  | 2.008         | 100   |       | 1.999 | 80   | 5.654 | 2.003    | 70    | 5.665   |
| 311  | 1.719         | 90    | 5.701 | 1.704 | 50   | 5.652 | 1.707    | 44    | 5.661   |
| 222  |               |       |       |       |      |       | 1.635    | <1    | 5.664   |
| 400  | 1.417         | 40    | 5.668 | 1.413 | 8    | 5.652 | 1.416    | 9     | 5.664   |
| 331  | 1.301         | 50    | 5.671 | 1.298 | 20   | 5.658 | 1.299    | 13    | 5.662   |
| 420  |               |       |       |       |      |       | 1.267    | <1    | 5.666   |
| 422  | 1.156         | 60    | 5.663 | 1.156 | 30   | 5.663 | 1.1561   | 15    | 5.664   |
| 511  | 1.091         | 50    | 5.669 | 1.091 | 10   | 5.669 | 1.0901   | 8     | 5.664   |
| 440  | 1.002         | 40    | 5.668 | 1.001 | 2    | 5.663 | 1.0018   | 4     | 5.667   |
| 531  | . 959         | 60    | 5.674 | .958  | 8    | 5.668 | .9577    | 8     | 5.666   |
| 600  |               |       |       |       |      |       | .9441    | <1    | 5.665   |
| 620  |               |       |       |       |      |       | .8958    | 4     | 5.666   |
| 533  |               |       |       |       |      |       | .8642    | 2     | 5.667   |
| 622  |               |       |       |       |      |       | .8545    | 4     | 5.668   |
| 444  |               |       |       |       |      |       | .8180    | 2     | 5.667   |
| -    | L             | I     |       |       |      |       |          |       |         |
|      | Average value |       |       |       |      |       |          |       |         |
| 1    | the la        |       |       |       |      |       |          |       |         |
| 1 11 | ve line       | s     | 5.669 |       |      | 5.664 |          |       | 5.667   |

- W. P. Davey, The crystal structure and densities of Cu<sub>2</sub>Se and ZnSe, Phys. Rev. 21, 380 (1923).
- [2] W. H. Zachariasen, Uber die Kristallstrukturen der Selenide von Beryllium, Zink, Cadmium und Quecksilber, Z. physik. Chem. 124, 436-448 (1926).

# 2.3. Oxides

## Silicon dioxide (alpha-quartz), SiO<sub>2</sub> (hexagonal)

#### **ASTM** cards

| Card n  | umber ' | New            |             |                      |
|---------|---------|----------------|-------------|----------------------|
| Old     | New     | index<br>lines | Radiation   | Source               |
| II-1034 | 1597    | 3.32           | Molybdenum, | Harrington [1] 1927. |
| 11 1034 | 2-0474  | 1.82           | 0.710.      | harringeon [1] 1921. |
|         | 2-0471  | 1.38           | 0.110.      |                      |
|         | 2-041   | 1.50           |             |                      |
|         | 1535    | 3.35           | No data     | Waldo [2] 1935.      |
|         | 2-0456  | 1.81           |             |                      |
|         | 2-0459  | 1.37           |             |                      |
|         |         |                |             |                      |
| 1612    | 1472    | 3.35           | Molybdenum  | Hanawalt, Rinn and   |
|         | 1-0633  | 4.25           |             | Frevel [3] 1938.     |
|         | 1-0649  | 1.82           |             |                      |
|         | 1471    | 3.35           | Copper      | Favejee [4] 1939.    |
|         | 3-0407  | 4.26           | ooppor      | B                    |
|         | 3-0419  | 1.37           |             | 2                    |
|         | 0 011/  | 1.01           |             |                      |
|         | 1534    | 3.35           | Cobalt,     | Clark [5] 1946.      |
|         | 3-0427  | 1.81           | 1.786.      |                      |
|         | 3-0427  | 1.54           |             |                      |
| II-1007 | 1022    | 3.35           | Campon      | British Museum.      |
| 11-1007 | 1533    | 1.81           | Copper      | british Museum.      |
|         | 2-0455  | 1.81           |             |                      |
|         | 2-0458  | 1.54           |             |                      |
|         | 1602    | 3.32           | Iron        | Allis-Chalmers Mfg.  |
|         | 3-0454  | 1.54           |             | Co.                  |
|         | 3-0444  | 1.81           |             |                      |
|         |         |                |             |                      |

The Waldo pattern from the literature is labeled chrysocolla and the ASTM card carries chrysocolla optical data. The pattern contains both quartz and chrysocolla lines, and is not typical of either material. No explanation can be found for reference "B" who is responsible for one line on the Favegee card. The British Museum pattern appears to have been made with copper radiation although molybdenum is listed.

Additional published patterns. None. NBS sample. The alpha-quartz sample used for the NBS pattern is a natural mineral from Lake Toxaway, Transylvania County, North Carolina. The material was contributed by the Geophysical Laboratory of the Carnegie Institution of Washington. Spectrographic analysis at the NBS showed 0.001 to 0.01 percent of aluminum and 0.0001 to 0.001 percent each of calcium, copper, iron, and magnesium. The NBS sample is uniaxial positive with refractive indices of  $\omega = 1.544$  and  $\epsilon = 1.553$ . Two additional samples of quartz were considered for use in preparing the NBS pattern. One was a high quality radio grade crystal from Brazil, and the other a synthetic crystal contributed by the Bell Telephone Laboratories. Spectrographic analysis at the NBS indicated that the Brazilian crystal contained a slightly larger percentage of silver, copper, and magnesium than the Lake Toxaway sample while the Bell crystal had a slightly larger percentage of iron and approximately 0.01 percent magnesium.

The synthetic and Lake Toxaway samples showed no appreciable difference in *d*-spacings. The Brazilian quartz averaged about 0.00006 A smaller than the Lake Toxaway sample for the last seven lines measured.

Interplanar spacings and intensity measurements. All of the patterns were expressed as d-spacings and were converted from kX to angstrom units. The British Museum and Allis-Chalmers patterns were taken from the ASTM cards and the others from the original The Allis-Chalmers pattern conliterature. tains a number of completely erroneous lines, 30.0, 15.5 and 7.25 and a 1.84 line not allowed by the space group. In addition the pairs of lines at the end of the pattern are presumably  $Ka_1$  and  $Ka_2$  doublets of which only the Ka, lines have been included in the comparison table. The 3.73 line added to the Favejee pattern by "B" is not allowed by the space group.

The three strongest lines for each of the patterns are as follows:

| Patterns                   | 1   | 2     | 3       |
|----------------------------|-----|-------|---------|
| Harrington                 | 101 | 112   | 212     |
| Waldo                      | 101 | 112   | 203,301 |
| Hanawalt, Rinn, and Frevel | 101 | 100   | 112     |
| Fave jee                   | 101 | . 100 | 203,301 |
| Clark                      | 101 | 112   | 211     |
| British Museum             | 101 | 112   | 211     |
| Allis-Chalmers             | 101 | 211   | 112     |
| Swanson and Fuyat          | 101 | 100   | 112     |

Lattice constants. The structure was determined by Bragg and Gibbs [6] in 1925. They found the space group was D<sup>4</sup><sub>4</sub>-P3,21 or  $D_3^6-P3_221$  according to the rotary sense of the lattice with  $3(SiO_2)$  per unit cell. Alphaquartz is a prototype for other similar structures.

A group of unit cell determinations were converted from kX to angstrom units and Jay's data were converted to 25°C from the temperature indicated in parentheses to compare with the NBS values. The linear thermal expansion according to Sosman [7] for the temperature range 0°C to 100°C is 7.10 to  $7.97 \times 10^{-6}$ parallel to the *c*-axis and 13.24 to 14.45 × 10<sup>-6</sup> perpendicular to it. Lattice constants in angstroms

|      |                     | a       | с                     |
|------|---------------------|---------|-----------------------|
| 1925 | Bragg and Gibbs [6] | 4.90    | 5.386                 |
| 1925 | Seljakow and Stru-  |         |                       |
|      | tinski [8]          | 4.87    | 5.37                  |
|      | Harrington [1]      | 4.913   | 5.404                 |
| 1933 | Jay [9]             | 4.9132  | 5.4045 at 25°C (18°C) |
| 1939 | Favejee [4]         | 4.913   | 5.404                 |
|      | Novak [10]          | 4.913   | 5.404                 |
| 1950 | Keith [11]          | 4.91304 | 5.40463 at 25°C       |
| 1953 | Swanson and Fuyat   | 4.913   | 5.405 at 25°C         |
|      |                     | L       |                       |

The density of silicon dioxide calculated from the NBS lattice constants is 2.647 at 25°C.

| Silicon | dioxide | (alpha-quartz) | , <b>Si</b> 0, | (hexagonal) |
|---------|---------|----------------|----------------|-------------|
|---------|---------|----------------|----------------|-------------|

|       | 19             | 27       | 19   | 93 5 | 193                  | 3       | 193          | 39       | 19      | 46       |            |          |               |          | 195            | 53       |
|-------|----------------|----------|------|------|----------------------|---------|--------------|----------|---------|----------|------------|----------|---------------|----------|----------------|----------|
| hkl   | Harri          | ngton    | Wa   | ldo  | Hanawalt,<br>and Fre |         | Fave         | gee      | Cla     | ark      | Bri<br>Mus |          | All:<br>Chalm |          | Swanso<br>Fuy  |          |
| 10.00 | Mo, 0.         | .709 A   |      |      | Mo, 0.7              | 09 A    | Cu, 1.5      | 5405 A   | Co, -1. | 7902 A   | Cu, 1.     | 5405 A   | Fe, 1.9       | 3597 A   | Cu, 1.5<br>25° |          |
|       | đ              | I        | đ    | I    | đ                    | I       | đ            | I        | đ       | I        | đ          | I        | đ             | I        | đ              | I        |
|       | A              |          | A    |      | A                    |         | A            |          | A       |          | A          |          | A             |          | A              |          |
|       |                |          |      |      |                      |         |              |          |         |          |            |          | 30.0          | 10       |                |          |
|       |                |          |      |      |                      |         |              |          |         |          |            |          | 15.5<br>7.25  | 10<br>10 |                |          |
| 100   |                |          |      |      | 4.26                 | 25      | 4.27         | 80       | 4.26    | 60       | 4.30       | 60       | 4.22          | 70       | 4.26           | 35       |
|       |                |          |      |      |                      |         | 3.73B        | 30       |         |          |            |          |               |          |                |          |
| 101   | 3.33           | 100      | 3.36 | 100  | 3.36                 | 100     | 3.36         | 100      | 3.35    | 100      | 3.36       | 100      | 3.33          | 100      | 3.343          | 100      |
| 110   | 2.45           | 30       | 2.46 | 40   | 2.45                 | 15      | 2.46         | 60       | 2.45    | 40       | 2.45       | 60       | 2,44          | 40       | 2.458          | 12       |
| 102   | 2.28           | 30       |      |      | 2.29                 | 10      | 2.28         | 60       | 2.27    | 40<br>20 | 2.28       | 60       | 2.27          | 40       | 2.282          | 12<br>6  |
| 200   | 2.12           | 30       |      |      | 2.23<br>2.12         | 6       | 2.24<br>2.13 | 30<br>50 | 2.23    | 40       | 2.22       | 40<br>60 | 2.22          | 30<br>40 | 2.237 2.128    | 9        |
|       |                |          |      |      |                      |         |              |          |         |          | 1          |          |               |          |                |          |
| 201   | 1.979          | 20       |      |      | 1.97                 | 8       | 1.98         | 40       | 1.98    | 20       | 1.97       | 40       | 1,97          | 30<br>10 | 1.980          | 6        |
| 112   | 1.819          | 80       | 1.81 | 80   | 1.82                 | 25      | 1.82         | 70+      | 1.81    | 80       | 1.81       | 80       | 1.81          | 80       | 1.817          | 17       |
| 003   |                |          |      |      |                      |         |              |          |         |          |            |          |               |          | 1.801          | <1       |
| 202   | 1.668          | 30       |      |      | 1.66                 | 8       | 1.67         | 50       | 1.67    | 40       |            |          | 1.67          | 30       | 1.672          | 7        |
| 103   |                |          |      |      |                      |         |              |          | 1.65    | 10       | 1.66       | 60       | 1.65          | 10       | 1.659          | 3        |
| 210   | 1 542          |          | 1 54 |      |                      |         |              |          |         |          |            |          | 1.60          | 10       | 1.608          | <1       |
| 211   | 1.543<br>1.455 | 60<br>10 | 1.54 | 60   | 1.54                 | 20<br>2 | 1.54         | 70<br>20 | 1.54    | 70<br>10 | 1.540      | 80<br>40 | 1.54          | 90<br>20 | 1.541          | 15<br>3  |
| 300   | 1.418          | 10       |      |      |                      |         | 1.42         | 10       | 1.41    | 10       | 1.423      | 20       | 1.41          | 20       | 1.418          | <1       |
| 212   | 1.381          | 70       |      |      | _                    |         |              |          | 1.38    | 40       |            |          | 1.38          | 70       | 1.382          | 7        |
| 203   | 1              |          | 1.37 | 80   | 1.378                | 25      | 1.37         | 80       | 1.37    | 60       | 1.374      | 80       | 1.37          | 80       | 1.375          | 11       |
| 301   | / ·            |          |      |      |                      |         |              |          |         |          |            |          |               |          | 1.372          | 9        |
| 104   | 1.289          | 20       | (a)  |      | 1.302                | 4       | 1.29         | 30<br>40 | 1.28    | 20       | 1.288      | 40<br>40 | 1.28          | 40<br>60 | 1.288          | 3        |
|       |                |          |      |      |                      |         |              |          |         |          |            |          |               |          | 1              | -        |
| 220   | 1.230          | 20       |      |      | 1.230                | 3       | 1.23         | 20       | 1.22    | 20       | 1.229      | 40<br>60 | 1.22          | 60<br>60 | 1.228          | 25       |
| 221   |                |          |      |      |                      |         | 1.20         |          | 1.20    | 40       | 1.204      |          | 1.20          |          | 1.1973         | 2        |
| 114   | 1.185          | 20       |      |      |                      |         |              |          |         |          |            |          | 1.18          | 20       | 1.1838         | 4        |
| 310   |                |          | 1.18 | 20   | 1.182                | 8       | 1.18         | 50       | 1.18    | 20       | 1.182      | 60       | 1.18          | 60       | 1.1802         | 4        |
| 311   | 1.156          | 20       |      |      | 1.157                | 1       | 1.15         | 30       | 1.15    | 20       | 1.155      | 40       | 1.15          | 60       | 1.1530         | 2        |
| 204   |                |          |      |      |                      |         |              |          |         |          |            |          | 1.14          | 20<br>10 | 1.1408         | <1<br><1 |
| 312   | 1.083          | 20       |      |      | 1.082                | 4       | 1.08         | 40       | 1.08    | 40       | 1.084      | 60       | 1.12          | 10       | 1.0816         |          |
| 400   |                |          |      |      |                      |         |              |          | 1.06    | 10       | 1.067      | 20       | 1.06          | 30       | 1.0636         | i        |

25

|       | 19    | 927    | 19   | 935  | 193                   | 8       | 19     | 39     | 19     | 946      |            |              |               |        | 195            | 53      |
|-------|-------|--------|------|------|-----------------------|---------|--------|--------|--------|----------|------------|--------------|---------------|--------|----------------|---------|
| hkl   | Harri | ngton  | Wa   | l do | Hanawalt,<br>'and Fro |         | Fave   | gee    | Cl     | ark      | Bri<br>Mus | tish<br>seum | All:<br>Chalt |        | Swan so<br>Fuy |         |
|       | Mo, 0 | .709 A |      |      | Мо, 0.7               | 09 A    | Cu, 1. | 5405 A | C₀, 1. | 7902 A   | Cu, 1.     | 5405 A       | Fe, 1.9       | 3597 A | Cu, 1.5<br>25  |         |
|       | đ     | I      | d    | I    | đ                     | I       | đ      | I      | d      | I        | d          | I            | đ             | I      | đ              | I       |
|       | A     |        | A    |      | A                     |         | A      |        | A      |          | A          |              | A             |        | A              |         |
| 105   | 1.046 | 10     | 1.05 | 20   | 1.050                 | 2       | 1.05   | 30     | 1.04   | 10       | 1.051      | 40           | 1.05          | 30     | 1.0477         | 2       |
| 401   |       |        |      | 20   | 1.030                 | -       | 1.05   |        | 1.04   | 10       | 1.001      |              | 1.04          | 30     | 1.0437         | 2       |
| 214   |       |        | 1.03 | 20   | 1.037                 | 1       | 1.04   | 30     | 1.03   | 10       | 1.038      | 40           | 1.03          | 30     | 1.0346         | 2       |
| 223   | 1.018 | 10     |      |      | 1.017                 | ī       | 1.02   | 30     | 1.01   | 10       | 1.017      | 40           | 1.01          | 30     | 1.0149         | 2       |
| 402   |       |        |      |      | 1.011                 | -       |        |        |        |          |            |              |               |        |                |         |
| 115   | }.993 | 10     |      |      |                       |         | .990   | 40     | .987   | 10       |            |              |               |        | .9896          | 2       |
| 1 222 |       |        |      |      |                       |         |        |        | 0.05   | 10       |            |              |               |        | 0070           |         |
| 313   |       |        |      |      |                       |         |        |        | .985   | 10       |            |              |               |        | .9872          | 2<br><1 |
| 304   |       |        |      |      |                       |         |        |        | 074    |          |            |              |               |        | .9781          |         |
| 320   |       |        |      |      |                       |         |        |        | .974   | 10<br>20 |            |              |               |        | .9762          | 2       |
| 321   | .963  | 5      |      |      |                       |         |        |        | .958   |          |            |              |               |        | .9607          | <1      |
| 410   |       |        |      |      |                       |         |        |        |        |          |            |              |               |        | .9285          | 1       |
| 322   | .918  | 5      |      |      |                       |         |        |        | .917   | 10       |            |              |               |        | .9182          | 1       |
| 403   |       |        |      |      |                       |         |        |        | .915   | 20       |            |              |               |        | .9160          | 3       |
| 411   |       |        |      |      |                       |         |        |        | .912   | 10       |            |              |               |        | . 91 52        | 2       |
| 224   |       |        |      |      |                       |         |        |        | .908   | 10       |            |              |               |        | . 9090         | 1       |
| 006   |       |        |      |      |                       | <b></b> |        |        |        |          |            |              |               |        | . 9008         | <1      |
| 215   | .898  | 2.5    |      |      |                       |         |        |        |        |          |            |              |               |        | . 8971         | 2       |
| 314   |       |        |      |      |                       |         |        |        |        |          |            |              |               |        | .8889          | 2       |
| 106   |       |        |      |      |                       |         |        |        |        |          |            |              |               |        | .8812          | <1      |
| 412   |       |        |      |      |                       |         |        |        |        |          |            |              |               |        | .8782          | 1       |
| 305   |       |        |      |      |                       |         |        |        |        |          |            |              |               |        | .8598          | <1      |
| 116   |       |        |      |      |                       |         |        |        |        |          |            |              |               |        | .8460          | <1      |
| 501   |       |        |      |      |                       |         |        |        |        |          |            |              |               |        | .8405          | <1      |
| 404   |       |        |      |      |                       |         |        |        |        |          |            |              |               |        | .8359          | <1      |
| 206   |       |        |      |      |                       |         |        |        |        |          |            |              |               |        | .8295          | 3       |
| 413   |       |        |      |      |                       |         |        |        |        |          |            |              |               |        | .8254          | 2       |
| 330   | .817  | 2.5    |      |      |                       |         |        |        |        |          |            |              |               |        | .8189          | 1       |
| 502   |       |        |      |      |                       |         |        |        |        |          |            |              |               |        | .8117          | 3       |
| 225   |       |        |      |      |                       |         |        |        |        |          |            |              |               |        | .8115          | 3       |
| 331   |       |        |      |      |                       |         |        |        |        |          |            |              |               |        | .8096          | 2       |
| 420   |       |        |      |      |                       |         |        |        |        |          |            |              |               |        | .8041          | 2       |
|       |       |        |      |      |                       |         |        |        |        |          |            |              |               |        |                |         |
| 315   |       |        |      |      |                       |         |        |        |        |          |            |              |               |        | .7971          | 2       |
| 421   | .793  | 2.5    |      |      |                       |         |        |        |        |          |            |              |               |        | .7952          | 1       |

#### Silicon dioxide (alpha-quartz), SiO, (hexagonal)-Con.

<sup>a</sup> Line at 1.32 not included.

#### References

- E. A. Harrington, X-ray diffraction measurements on some of the pure compounds concerned in the study or portland cement, Am. J. Sci. 13, 467-479 (1927).
- [2] A. W. Waldo, Identification of the copper ore minerals by means of X-ray powder diffraction patterns, Am. Mineralogist 20, 586 (1935).
- [3] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical Analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [4] J. Ch. L. Favegee, Zur Methodik der röntgenographischen Bodenforschung, Z. Krist. 100, 430 (1939).
- [5] C. B. Clark, X-ray diffraction data for compounds in the system CaO-MgO-SiO<sub>2</sub>, J. Am. Ceram. Soc. 29, 25-30 (1946).

- [6] W. H. Bragg and R. E. Gibbs, Structure of α and β quartz, Proc. Roy. Soc. (London) A109, 405-427 (1925).
- [7] R. B. Sosman, The properties of silica, Reinhold Publishing Corporation, p. 370 (1927).
- [8] N. Seljakow, L. Strutinski, and A. Krasnikow, Zur Frage nach der Struktur des Glases, Z. Physik. 33, 53-62 (1925).
- [9] A. H. Jay, The thermal expansion of quartz by X-ray measurements, Proc. Roy. Soc. (London) A142, 237 (1933).
- [10] J. Novak, Les modifications fibreuses de la silice, Bull. soc. franç. mineral. 70, 288-299 (1947).
- [11] H. D. Keith, Precision lattice-parameter measurements, Proc. Phys. Soc. (London), 63B, 1034-1036 (1950).

26

# Scandium oxide, Sc<sub>2</sub>O<sub>3</sub> (cubic)

#### ASTM cards. None.

Additional published patterns. None.

NBS sample. The scandium oxide used for the NBS pattern was obtained from the Fairmount Chemical Co., Inc. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent each of platinum and silicon; 0.001 to 0.01 percent each of calcium, copper, and magnesium; and 0.0001 to 0.001 percent of barium. The refractive index of the NBS sample is 1.964.

Interplanar spacings and intensity measurements. The three strongest lines for the NBS pattern are as follows:

| Patterns          | 1   | 2   | 3   |
|-------------------|-----|-----|-----|
| Swanson and Fuyat | 222 | 440 | 622 |

**Lattice constant.** The structure was determined by Zachariasen [1] in 1928. The space group is  $T^5$ -I2<sub>1</sub>3 with thallium oxidestructure type and 16 (Sc<sub>2</sub>O<sub>3</sub>) per unit cell.

The Zachariasen unit cell value has been converted from kX to angstrom units for comparison with the NBS values.

| Lattice | constant | in | angstroms |
|---------|----------|----|-----------|
|---------|----------|----|-----------|

| 1928 | Zachariasen [1]                      | 9.81          |
|------|--------------------------------------|---------------|
| 1953 | Zachariasen [1]<br>Swanson and Fuyat | 9.845 at 25°C |

The density of scandium oxide calculated from the NBS lattice constant is 3.847 at 25°C. Scandium oxide, Sc. 0, (cubic)

|                | 1                   |                 |       |  |  |  |  |  |  |
|----------------|---------------------|-----------------|-------|--|--|--|--|--|--|
|                |                     | 1953            |       |  |  |  |  |  |  |
| hkl            | S                   | wanson and Fuya | t     |  |  |  |  |  |  |
|                | Cu, 1.5405 A, 25 °C |                 |       |  |  |  |  |  |  |
|                | d ·                 | I               | a     |  |  |  |  |  |  |
|                | A                   |                 | A     |  |  |  |  |  |  |
| 211            | 4.021               | 30              | 9.849 |  |  |  |  |  |  |
| 222            | 2.841               | 100             | 9.842 |  |  |  |  |  |  |
| 321            | 2.631               | 4               | 9.844 |  |  |  |  |  |  |
| 400            | 2.461               | 15              | 9.844 |  |  |  |  |  |  |
| 411            | 2.321               | 8               | 9.847 |  |  |  |  |  |  |
| 420            | 2.202               | 3               | 9.848 |  |  |  |  |  |  |
| 332            | 2.099               | 26              | 9.845 |  |  |  |  |  |  |
| 422            | 2.009               | 4               | 9.842 |  |  |  |  |  |  |
| 510            | 1.9301              | 20              | 9,842 |  |  |  |  |  |  |
| 521            | 1.7977              | 9               | 9.846 |  |  |  |  |  |  |
| 440            | 1.7406              | 78              | 9.846 |  |  |  |  |  |  |
| 530            | 1.6885              | 5               | 9.846 |  |  |  |  |  |  |
| 600            | 1.6407              | 2               | 9.844 |  |  |  |  |  |  |
| 611            | 1.5968              | 10              | 9.843 |  |  |  |  |  |  |
| 620            | 1.5573              | 4               | 9.849 |  |  |  |  |  |  |
| 541            | 1.5188              | 9               | 9,843 |  |  |  |  |  |  |
| 622            | 1,4839              | 33              | 9.843 |  |  |  |  |  |  |
| 631            | 1,4517              | 12              | 9.846 |  |  |  |  |  |  |
| 444            | 1.4205              | 4               | 9.842 |  |  |  |  |  |  |
| 710            | 1.3924              | 4               | 9.846 |  |  |  |  |  |  |
| 640            | 1.3654              | 3               | 9.846 |  |  |  |  |  |  |
| 721            | 1.3397              | 8               | 9.845 |  |  |  |  |  |  |
| 642            | 1,3158              | 3               | 9.847 |  |  |  |  |  |  |
| 732            | 1.2507              | 3               | 9.848 |  |  |  |  |  |  |
| 800            | 1.2308              | 7               | 9.846 |  |  |  |  |  |  |
| 811            | 1,2120              | 5               | 9.846 |  |  |  |  |  |  |
| 820            | 1.1938              | 4               | 9.844 |  |  |  |  |  |  |
| 653            | 1.1769              | 3               | 9.847 |  |  |  |  |  |  |
| 822            | 1.1603              | 3               | 9.845 |  |  |  |  |  |  |
| 831            | 1.1445              | 4               | 9.845 |  |  |  |  |  |  |
| 662            | 1,1293              | 8               | 9.845 |  |  |  |  |  |  |
| 752            | 1.1147              | 2               | 9.845 |  |  |  |  |  |  |
| 840            | 1,1008              | 3               | 9.846 |  |  |  |  |  |  |
| Average of the | e last five lind    | es              | 9.845 |  |  |  |  |  |  |

#### References

 W. H. Zachariasen, Untersuchungen über die Kristallstruktur von Sesquioxyden und Verbindungen ABO<sub>3</sub>, Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo, I. Mat.-Naturv. Klasse 1928, No. 4, 1928.

# Yttrium oxide, Y<sub>2</sub>O<sub>3</sub> (cubic)

#### **ASTM** cards

| Card number |                          | New                  |            |                                         |  |  |
|-------------|--------------------------|----------------------|------------|-----------------------------------------|--|--|
| Old         | New line                 |                      | Radiation  | Source                                  |  |  |
| 2018        | 2025<br>1-0830<br>1-0831 | 3.05<br>1.87<br>1.60 | Molybdenum | Hanawalt, Rinn, and<br>Frevel [1] 1938. |  |  |

#### Additional published patterns

| Source               | Radiation | Wavelength |
|----------------------|-----------|------------|
| Zachariasen [2] 1928 | Iron Ka   | 1.934      |

NBS sample. The yttrium oxide sample used for the NBS pattern was contributed by the NBS spectrographic laboratory. Their analysis showed the following impurities: 0.01 to 0.1 percent of barium, 0.001 to 0.01 percent each of calcium, erbium, and silicon, and 0.0001 to 0.001 percent each of magnesium, lead, and ytterbium. The NBS sample reacted with the high refractive index liquids, but the index appeared to be above 1.77.

Interplanar spacings and intensity measurements. The *d*-spacings for the Hanawalt, Rinn, and Frevel pattern were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

| Patterns                   | 1   | 2   | 3   |
|----------------------------|-----|-----|-----|
| Hanawalt, Rinn, and Frevel | 222 | 440 | 622 |
| Zachariasen                | 222 | 440 | 622 |
| Swanson and Fuyat          | 222 | 440 | 622 |

**Lattice constant.** The structure was determined by Zachariasen [3] in 1926. The body-centered cubic cell has thallium oxide-structure type, space group  $T^5$ -I2<sub>1</sub>3, and 16 (Y<sub>2</sub>O<sub>2</sub>) per unit cell.

Two unit cell values have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constant in angstroms

| 1926         Zachariasen [3]         10.62           1932         Quill [4]         10.61           1953         Swanson and Fuyat         10.604 at | at 27℃ |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------|

The density of yttrium oxide calculated from the NBS lattice constant is 5.031 at 27 °C.

Yttrium oxide, Y,O, (cubic)

|                  |                    | 1938                          |                  |                             | 1928      |                      |                  | 1953         | 3                |
|------------------|--------------------|-------------------------------|------------------|-----------------------------|-----------|----------------------|------------------|--------------|------------------|
| hkl              |                    | Hanawalt, Rinn,<br>and Frevel |                  | Zachariasen                 |           | Swanson and<br>Fuyat |                  |              |                  |
|                  | Мо                 | , 0.                          | 709 A            | Fe, 1                       | 1.93      | 597 A                | Cu,              | 1.54<br>27°0 | 05 A,<br>C       |
|                  | d                  | I                             | a                | d                           | I         | a                    | đ                | I            | a                |
|                  | A                  |                               | A                | A                           |           | A                    | A                |              | A                |
| 211              | 4.30               | 2                             |                  | 4.33                        | 20        | 10.61                | 1                | 16           | 10.63            |
| 222              | 3.06               | 100                           | 10.60            | <sup>a</sup> 3.376<br>3.052 | 15<br>100 |                      | 3.060            | 100          | 10.600           |
|                  |                    |                               |                  | <sup>a</sup> 2.908          | 2         |                      |                  |              |                  |
| 400              | 2.65               | 16                            | 10.60            | 2.649                       | 20        | 10.60                | 2.652            | 30           | 10.608           |
| 411              | 2.51               | 32                            | 10.65            | 2.493                       | 5         |                      | 2.500            | 7            |                  |
| 420              | 2.37               | 3                             | 10.60            | 2.253                       | 5         |                      | 2.372            | 1 8          | 10.608           |
| 422              |                    |                               |                  |                             |           |                      | 2.165            | 1            | 10.606           |
| 510              | 2.07               | 4                             | 10.55            | 2.073                       | 20        |                      | 2.080            | 12           | 10.606           |
| 521              | 1.93               | 2                             | 10.57            | *2.061<br>1.920             | 20        |                      | 1.936            |              | 10.604           |
| 440              | 1.87               | 40                            |                  | 1.864                       | 100       |                      | 1.874            |              | 10.601           |
| 530              | 1.81               | 2                             |                  |                             |           |                      | 1.818            |              | 10.601           |
| 600              |                    |                               |                  | 1.756                       | 15        |                      | 1.769            |              | 10.612           |
| 611<br>620       | 1.71               | 2                             | 10.54            | 1.712                       | 15        | 10.55                | 1.720            |              | 10.603           |
| 541              | 1.64               | 2                             | 10.63            | 1.628                       | 10        | 10.55                | 1.677            |              | 10.606<br>10.602 |
| 622              | 1.60               | 30                            | 10.61            | 1.589                       | 90        | 10.54                | 1.599            | 31           | 10.607           |
| 631              | 1.56               | 2                             | 10.58            | 1.556                       | 15        | 10.55                | 1.563            | 7            | 10.601           |
| 444<br>710       | 1.52               | 2                             | 10.53            | 1.522<br>1.490              |           | 10.55                | 1.531            | 52           |                  |
| 640              |                    |                               |                  |                             |           |                      | 1.470            |              | 10.600           |
| 721              |                    |                               |                  | 1.434                       | 15        | 10.54                | 1.443            | 3            | 10.604           |
| 642              |                    |                               |                  | 1.409                       | 8         | 10.54                | 1.417            | 2            | 10.604           |
| 732<br>800       | 1.346              | 2<br>2                        | 10,598<br>10,600 |                             |           | 10.54<br>10.56       |                  |              | 10.598           |
| 811              |                    |                               | 10.000           | 1.300                       |           | 10.56                | 1.305            | 4            |                  |
| 820              |                    |                               |                  | 1.280                       | 8         | 10.56                | 1.287            | 1            | 10.613           |
| 653              |                    |                               |                  | 1.262                       |           | 10.56                | 1.267            | 2            | 10.600           |
| 822<br>831       |                    |                               |                  | 1.244<br>1.226              |           | 10.56                |                  | 1            | 10.598           |
| 662              | 1.217              |                               | 10.610           |                             | 20<br>50  | 10.55<br>10.55       |                  | 3<br>8       | 10.607<br>10.601 |
| 840              | 1.188              | 3                             | b10.626          | 1.1801                      |           |                      | 1.1854           |              | 10.603           |
| 910              |                    |                               |                  |                             |           |                      | 1.1708           |              | 10.602           |
| 842<br>921       | 1.143              | 2                             | 10.600           | 1.1525                      | 5<br>15   | 10.56                | 1.1570<br>1.1436 | 1<br>2       | 10.604           |
| 930              | 1.143              | 2                             | 10.606           | 1.138/                      |           | 10.30                | 1.1178           | 2            | 10.605<br>10.604 |
| 932              |                    |                               |                  |                             |           |                      | 1.0939           | 2            | 10.606           |
| 844              | 1.083              | 2                             | 10.611           |                             |           |                      | 1.0821           | 5            | 10.602           |
| 941              |                    |                               |                  |                             |           |                      | 1.0711           | 2            | 10.603           |
| 10°0°0<br>10°1°1 |                    |                               |                  |                             |           |                      | 1.0606           | 1 < 1 < 1    | 10.606           |
| 10-2-0           |                    |                               |                  |                             |           |                      | 1.0399           | 2            | 10.605           |
|                  |                    | , 1                           |                  |                             |           |                      |                  |              |                  |
|                  | ge of t<br>five li |                               | 10.605           |                             |           | 10.56                |                  |              | 10.604           |
|                  |                    |                               |                  |                             |           |                      |                  |              |                  |

<sup>a</sup>K-beta lines.

<sup>b</sup> This value not included in average of last five lines.

- J. D. Hanawalt, H. W. Rinn and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- W. H. Zachariasen, The crystal structure of the sesquioxides and compounds of the type ABO<sub>3</sub>, Skrifter Norske Videnskaps-Akad. Oslo I. Mat. Naturv. Ki. **1928**. No. 4 (1928).
- [3] W. H. Zachariasen, The crystal structure of the modification C of the sesquioxides of the rare earth metals and of indium and thallium, Norsk. Geol. Tidsskr. 9, 310-316 (1926).
- [4] L. L. Quill, Die Kristallstruktur des Yttriums, Z. anorg. Chem. 208, 59-64 (1932).

#### Molybdenum trioxide, MoO<sub>3</sub> (orthorhombic)

**ASTM** cards

| Card number |                          | New                  |            |                                         |
|-------------|--------------------------|----------------------|------------|-----------------------------------------|
| Old         | New                      | index<br>lines       | Radiation  | Source                                  |
| 1720        | 1621<br>1-0683<br>1-0706 | 3.25<br>3.80<br>3.46 | Molybdenum | Hanawalt, Rinn, and<br>Frevel [1] 1938. |

Additional published patterns. None.

NBS sample. The molybdenum trioxide used for the NBS pattern was obtained from the Merck Chemical Co. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent each of aluminum, cobalt, manganese, and silicon; 0.001 to 0.01 percent of iron; 0.0001 to 0.001 percent each of copper and magnesium; and less than 0.0001 percent of calcium. The refractive indices are too high to be measured by the usual grain immersion liquids.

Interplanar spacings and intensity measurements. The *d*-spacings for the Hanawalt, Rinn, and Frevel pattern were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

| Patterns                   | 1   | 2   | 3   |
|----------------------------|-----|-----|-----|
| Hanawalt, Rinn, and Frevel | 021 | 110 | 040 |
| Swanson and Fuyat          | 021 | 110 | 040 |

**Lattice constants.** The structure was determined by Wooster [2] and Bräkken [3] both in 1931. The space group is  $D_{2h}^{16}$ -Pbnm (Pnma) and there are  $4(MoO_3)$  per unit cell.

Data for two unit cells were converted from kX to angstrom units for comparison with the NBS values.

| Lattice | constants | in | angst | roms |
|---------|-----------|----|-------|------|
|---------|-----------|----|-------|------|

|      |                                                 | a     | ь      | с             |
|------|-------------------------------------------------|-------|--------|---------------|
| 1931 | Wooster [2]                                     | 3.93  | 13.97  | 3.67          |
| 1931 | Brakken [3]                                     | 3.962 | 13.853 | 3.701         |
| 1953 | Wooster [2]<br>Bräkken [3]<br>Swanson and Fuyat | 3.962 | 13.858 | 3.697 at 26°C |

The density of molybdenum trioxide calculated from the NBS lattice constants is 4.709 at 26°C.

| Molybdenum | trioxide, | MoO, | (orthorhombic) |
|------------|-----------|------|----------------|
|------------|-----------|------|----------------|

| ħkl    | 19<br>Hanawalt<br>and F | , Rinn, | 1953<br>Swanson and<br>Fuyat |          |  |
|--------|-------------------------|---------|------------------------------|----------|--|
|        | Cu, 1.5405A             |         | Cu, 1.5405A, 26°C            |          |  |
|        | d                       | I       | d                            | I        |  |
|        | A                       |         | A                            |          |  |
| 020    | <br>6.9                 | 24      | 6.93                         | 34       |  |
| 110    | 3.81                    | 60      | 3.81                         | 82       |  |
| 040    | 3.47                    | 40      | 3.463                        | 61       |  |
| 120    | 0                       | 10      | 3.441                        | 44       |  |
| 021    | 3.26                    | 100     | 3.260                        | 100      |  |
|        |                         |         |                              |          |  |
| 130    | 3.01                    | 6       | 3.006                        | 13       |  |
| 101    |                         |         | 2.702                        | 19       |  |
| 111    | 2.67                    | 32      | 2.655                        | 35       |  |
| 140    |                         |         | 2.607                        | 6        |  |
| 041    | 2.53                    | 8       | 2.527                        | 12       |  |
| 131    |                         |         | 2.332                        | 12       |  |
| 060    | 2.30                    | 32      | 2.309                        | 31       |  |
| 150    | 2.26                    | 6       | 2.21                         | 18       |  |
| 141    | 2.13                    | 6       | 2 133                        | 9        |  |
| 160    |                         |         | 1. 105                       | 4        |  |
| 200    |                         |         | 1.962                        | 10       |  |
| 200    | 1.97                    | 24      | 1,962                        | 13<br>17 |  |
| 002    | 1.97                    | 24      | 1.50                         | 21       |  |
| 230    | 1.05                    | 24      | 1 623                        | 11       |  |
| 170    |                         |         | 1.12                         | 5        |  |
| 110    |                         |         |                              | J J      |  |
| 161    |                         |         | 1.756                        | 5        |  |
| 080    | 1.73                    | 16      | 1.733                        | 17       |  |
| 221    | 1.70                    | 4       | 1.693                        | 8        |  |
| 112    | 1.67                    | 12      | 1.663                        | 13       |  |
| 042    | 1.63                    | 12      | 1.631                        | 13       |  |
| 171    | 1.60                    | 12      | 1.597                        | 15       |  |
| 180    |                         |         | 1.587                        | 6        |  |
| 081    | 1.57                    | 14      | 1.569                        | 16       |  |
| 260    | 1.50                    | 3       | 1.504                        | 5        |  |
| 251    | 1.478                   | 8       | 1.477                        | 10       |  |
| 062    | 1.443                   | 20      | 1.443                        | 12       |  |
| 190    |                         |         | 1.435                        | 12       |  |
| 270    | 1.398                   | 6       | 1.400                        | 5        |  |
| 0.10.0 |                         |         | 1.386                        | 5        |  |
| 202    |                         |         | 1.352                        | 6        |  |
|        |                         | L       |                              |          |  |

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [2] N. Wooster, The crystal structure of molybdenum trioxide, MoO<sub>q</sub>, Z. Krist. 80, 504-512 (1931).
- [3] H. Bräkken, Die Kristallstrukturen der Trioxyde von Chrom, Molybdän und Wolfram, Z. Krist. 78, 484-488 (1931).

## Antimony trioxide (senarmontite), Sb<sub>2</sub>O<sub>3</sub> (cubic)

#### ASTM cards

| Card    | number                   | New                  |            |                                                      |  |
|---------|--------------------------|----------------------|------------|------------------------------------------------------|--|
| Old     | New                      | index<br>lines       | Radiation  | Source                                               |  |
| 1767    | 1764<br>1-0742<br>1-0729 | 3.22<br>1.96<br>1.68 | Molybdenum | Hanawalt, Binn, and<br>Frevel [1] 1938.              |  |
| II-3011 | 3609<br>2-1273<br>2-1283 | 1.96<br>3.18<br>1.67 | Iron       | Mikheev and Dubinina<br>[2] 1938.<br>British Museum. |  |

The orthorhombic antimony trioxide, valentinite, is represented in the ASTM card file by patterns by the British Museum and the Dow Chemical Co.

#### Additional published patterns

| Source             | Radiation | Wavelength |  |
|--------------------|-----------|------------|--|
| Dehlinger [3] 1927 | Copper    |            |  |

NBS sample. The antimony trioxide used for the NBS pattern was prepared by the Mallinckrodt Chemical Works. Their spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of lead and silicon; 0.001 to 0.01 percent each of silver, arsenic, calcium, copper, iron, nickel, and tin; 0.0001 to 0.001 percent each of aluminum, gold, barium, bismuth, cadmium, cobalt, sodium, and thallium; and less than 0.0001 percent each of cesium, indium, potassium, lithium, and magnesium.

Interplanar spacings and intensity measurements. The Dehlinger *d*-spacings were calculated from Bragg angle data and the Hanawalt, Rinn and Frevel and the Boldyrev d-spacings were converted from kX to angstrom units. The British Museum pattern which contains d-spacings at 2.11, 1.159, 1.035 and presumed  $\beta$ -lines at 1.379 and 1.349 not found in the Mikheev and Dubinina pattern, was not published except as the ASTM card with Mikheev and Dubinina and so was not included in the table of d-spacings. The Dehlinger pattern contains two d-spacings at 4.12 and 3.445 angstroms, neither of which are theoretically possible antimony trioxide lines.

The three strongest lines for each of the patterns are as follows:

| Patterns                   | 1   | 2   | 3   |
|----------------------------|-----|-----|-----|
| Hanawalt, Rinn, and Frevel | 222 | 440 | 622 |
| Mikheev and Dubinina       | 622 | 222 | 440 |
| Dehlinger                  | 440 | 622 | 662 |
| Swanson and Fuyat          | 222 | 440 | 400 |

**Lattice constant.** The structure was determined by Bozorth [4] in 1923. The space group is  $O_h^7$ -Fd3m with  $8(Sb_4O_6)$ . The structure type is the same as that of cubic arsenic trioxide.

A group of unit cell values were converted from kX to angstrom units for comparison with the NBS values.

Lattice constant in angstroms

| 1923 | Bozorth [4]              | 11.16          |
|------|--------------------------|----------------|
| 1927 | Dehlinger [3]            | 11.16          |
| 1938 | Mikheev and Dubinina [2] | 11.130         |
| 1942 | Almin and Westgren [5]   | 11.15          |
| 1953 | Swanson and Fuyat        | 11.152 at 26°C |
| 1953 | Swanson and Fuyat        | 11.152 at 26°C |

The density of antimony trioxide calculated from the NBS lattice constant is 5.583<sup>°</sup> at 26 °C.

|                           |             |          |          | 1020                 |      |       | 1007           |      |       |                   |      |        |  |
|---------------------------|-------------|----------|----------|----------------------|------|-------|----------------|------|-------|-------------------|------|--------|--|
| 1938<br>Hanawalt, Rinn, a |             |          |          |                      | 1938 |       |                | 1927 |       |                   | 1953 |        |  |
|                           |             |          | d Enoval | Mikheev and Dubinina |      |       | Dehlinger      |      |       | Swanson and Fuyat |      |        |  |
| hkl                       | Indinaware, | runn, an | u llevel | WIRNeev and Dubinina |      |       | Denlinger      |      |       | Swanson and Fuyat |      |        |  |
|                           | Mo, 0.709 A |          |          | Fe, 1.93597 A        |      |       | Cu, 1.5405 A   |      |       | Cu, 1.5405 A, 26℃ |      |        |  |
|                           |             |          |          |                      |      |       |                |      |       | a   r   -         |      |        |  |
|                           | d           | I        | a        | đ                    | I    | a     | đ              | I    | a     | d                 | I    | a      |  |
|                           | A           |          | A        | A                    |      | A     | A              |      | A     | A                 |      | A      |  |
| 111                       | 6.4         | 10       | 11.09    |                      |      |       |                |      |       | 6.44              | 12   | 11.15  |  |
|                           |             |          |          |                      |      |       | 4.12           | vw   |       |                   |      |        |  |
| 222                       | 3.23        | 100      | 11.18    | 3.218                |      | 11.15 | 3.445<br>3.225 | w    | 11.17 | 3.218             | 100  | 11.147 |  |
| 400                       | 2.79        | 30       | 11.13    | 2.785                | 5    | 11.13 | 2.794          | W    | 11.18 | 2.788             | 40   | 11.152 |  |
| 100                       | ,           |          | 11117    | 21100                | Ĵ    |       |                |      |       | 21100             | -10  | 111102 |  |
| 331                       | 2.57        | 8        | 11.18    | 2.559                | 3    | 11.15 | 2.567          | vw   | 11.19 | 2.559             | 11   | 11.154 |  |
| 422                       |             |          |          |                      |      |       |                |      |       | 2.276             | 2    | 11.150 |  |
| 511                       | 1.00        |          |          | 1.000                |      | 11 10 | 2.178          | w    | 11.32 | 2.145             | 3    | 11.146 |  |
| 440                       | 1.96        | 50       | 11.11    | 1.966                | 8    | 11.12 | 1.969          | s    | 11.14 | 1.972             | 42   | 11.155 |  |
| 5 31                      |             |          |          |                      |      |       |                |      |       | 1.885             | 2    | 11.152 |  |
| 622                       | 1.68        | 50       | 11.16    | 1.676                | 9    | 11.12 | 1.681          | s    | 11.15 | 1.681             | 35   | 11.150 |  |
| 444                       | 1.61        | 10       | 11.18    | 1.604                | 6    | 11.11 | 1.610          | m    | 11.15 | 1.611             | 11   | 11.161 |  |
| 711                       | 1.56        | 10       | 11.16    | 1.558                | 5    | 11.13 | 1.572          | w~m  | 11.23 | 1.562             | 7    | 11.155 |  |
|                           | 1 452       |          | 11.16    | 1.499                | 1    |       |                |      | 11 16 | 1 450             |      | 11 150 |  |
| 731                       | 1.453       | 2        | 11.16    | 1.449                | 2    | 11.13 | 1.453          | w-m  | 11.16 | 1.452             | 3    | 11.152 |  |
| 800                       | 1.397       | 6        | 11.18    |                      |      |       | 1.392          | w    | 11.14 | 1.394             | 4    | 11.152 |  |
| 733                       | 1.358       | 4        | a11.12   |                      |      |       |                |      |       | 1.363             | 4    | 11.157 |  |
| 662                       | 1.286       | 15       | 11.21    | 1.277                | 7    | 11.13 | 1.280          | S    | 11.16 | 1.279             | 12   | 11.150 |  |
| 840                       | 1.250       | 10       | all.18   | 1.246                | 7    | 11.15 | 1.248          | s    | 11.16 | 1.247             | 8    | 11.153 |  |
| 911                       | 1.219       | 1        | all.ll   | 1.223                | 1    | 11.14 |                |      |       | 1.224             | 2    | 11.151 |  |
| 931                       | 1.186       | 1        | 11.32    |                      |      |       |                |      |       | 1.1694            | 1    | 11.155 |  |
| 844                       | 1.140       | 4        | all.17   | 1.136                | 4    | 11.13 | 1.138          | m    | 11.15 | 1,1384            | 5    | 11.154 |  |
|                           |             |          |          | 1.121                | 2    |       |                |      |       | <b></b>           |      |        |  |
| 951                       |             |          |          | 1.073                | 7    | 11.10 |                |      |       | 1.0783            | 4    | 11.154 |  |
| 10-2-2                    | 1.075       | 8        | all.17   |                      |      |       |                |      |       | 1.0732            | 6    | 11.153 |  |
| 953                       |             |          |          |                      |      |       |                |      |       | 1.0402            | 1    | 11.155 |  |
| 11.1.1                    |             |          |          |                      |      |       |                |      |       | 1.0056            | 1    | 11.153 |  |
| 880                       |             |          |          |                      |      |       |                |      |       | .9856             | 2    | 11.151 |  |
| 11.3.1                    |             |          |          |                      |      |       |                |      |       | .9744             | 3    | 11.153 |  |
| 11.3.3                    |             |          |          |                      |      |       |                |      |       | .9457             | 1    | 11.150 |  |
| 10.6.2                    |             |          |          |                      |      |       |                |      |       | .9425             | 5    | 11.152 |  |
| 12.0.0                    |             |          |          |                      |      |       |                |      |       | .9291             | 3    | 11.132 |  |
| 11.2.1                    |             |          |          |                      |      |       |                |      |       | .9196             | <1   | 11.150 |  |
| 11.2.3                    |             |          |          |                      |      |       |                |      |       | .8956             | <1   | 11.150 |  |
| 12.4.0                    |             |          |          |                      |      |       |                |      |       | .8817             | 2    | 11.153 |  |
| 991                       |             |          |          |                      |      |       |                |      |       | .8734             | 1    | 11.151 |  |
| 13.1.1                    |             |          |          |                      |      |       |                |      |       | .8734             | 3    | 11.151 |  |
| 10.6.6                    |             |          |          |                      |      |       |                |      |       | .8505             | 3    | 11.154 |  |
| 12.4.4                    |             |          |          |                      |      |       |                |      |       | .8406             | 2    | 11.152 |  |
| 13.3.1                    |             |          |          |                      |      |       |                |      |       | . 8335            | 3    | 11.151 |  |
| 12.2.2.2                  |             |          |          |                      |      |       |                |      |       | 0154              |      | 11 150 |  |
| 13·3·3<br>13·5·1          |             |          |          |                      |      |       |                |      |       | .8154             | 2    | 11.150 |  |
| 13 3 1                    |             |          |          |                      |      |       |                |      |       | .1900             | 2    | 11,132 |  |
| Average value of last     |             |          |          |                      |      |       |                |      |       |                   |      |        |  |
| -                         | ines        |          | 11.15    |                      |      | 11.13 |                |      | 11,15 |                   |      | 11.152 |  |
|                           |             |          |          |                      | 1    | 1     | 1              |      |       |                   |      |        |  |

## Antimony trioxide (senarmontite), Sb<sub>2</sub>O<sub>3</sub> (cubic)

aValues used for average cell size.

- J. D. Hanawalt, H. W. Rinn and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [2] V. I. Mikheev and V. N. Dubinina, X-ray powder diagrams of the oxide group, Zap. Len. Gorn. Inst. 1938.
- [3] U. Dehlinger, Über die Kristallstruktur der Antimonoxyde, Z. Krist. 66, 108 (1927).
- [4] R. M. Bozorth, The crystal structures of the cubic forms of arsenious and antimonious oxides, J. Am. Chem. Soc. 45, 1621 (1923).
- [5] K. E. Almin and A. Westgren, Lattice parameters of cubic As 40, and Sb 40, Arkiv. Kemi. Mineral. Geol. 15B, No. 22, (1947).

#### Lanthanum oxide, La<sub>2</sub>O<sub>3</sub> (hexagonal)

#### **ASTM** cards

| Card    | number                   | New                  |            |                                           |
|---------|--------------------------|----------------------|------------|-------------------------------------------|
| 01d     | New                      | index<br>lines       | Radiation  | Source                                    |
| II-1432 | 2172<br>2-0673<br>2-0688 | 2.97<br>3.41<br>1.96 | Molybdenum | General Electric Co.<br>Wembley, England. |

The following ASTM card for lanthanum oxide is the pattern for the cubic form at 450°C.

| 4<br>4 | 2.02<br>0855 1.72<br>0856 3.30 | 1.5418. | Löhberg [1] | 1935. |
|--------|--------------------------------|---------|-------------|-------|
|--------|--------------------------------|---------|-------------|-------|

#### Additional published patterns

| Source               | Radiation | Wavelength |
|----------------------|-----------|------------|
| Zachariasen [2] 1926 | Tungsten  |            |

NBS sample. The lanthanum oxide used for the NBS pattern was obtained from the Fairmount Chemical Co. The sample was annealed at 1,200°C for one hour and was mounted in petrolatum to prevent reabsorption of carbon dioxide and water, with which lanthanum oxide readily combines, according to Hüttig and Kantor [3].

Spectrographic analysis at the NBS showed the following impurities: 0.001 to 0.01 percent each of calcium, magnesium, and silicon; and 0.0001 to 0.001 percent each of aluminum, copper, iron, and lead.

Interplanar spacings and intensity measurements. The *d*-spacings for the Zachariasen pattern were calculated from Bragg angle data while the General Electric *d*-spacings were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

| Patterns                 | 1   | 2       | 3   |
|--------------------------|-----|---------|-----|
| General Electric Company | 101 | 100     | 110 |
| Zachariasen              | 101 | 112,201 | 103 |
| Swanson and Fuyat        | 101 | 110     | 102 |

**Lattice constants.** The structure was determined by Zachariasen [2] in 1926. The space group is  $D_3^2$ -P321 with  $1(La_2O_3)$  per unit cell. Lanthanum oxide is a prototype for other similar structures.

Data for two unit cells have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants in angstroms

| 1926<br>1929 | Zachariasen [2]<br>Pauling [4]<br>Swanson and Fuyat | a<br>3.94<br>3.93 | c<br>6.13<br>5.63 |
|--------------|-----------------------------------------------------|-------------------|-------------------|
| 1929         | Pauling [4]                                         | 3.93              | 5.63              |
| 1953         | Swanson and Fuyat                                   | 3.9373            | 6.1299 at 26°C    |

The density of lanthanum oxide calculated from the NBS lattice constants is 6.573 at 26°C.

Lanthanum oxide, La<sub>2</sub>O<sub>3</sub> (hexagonal)

|            |           |          | 19     | 26       | 1953        |           |
|------------|-----------|----------|--------|----------|-------------|-----------|
|            | General   | Electric | Zachar | iasen    | Swanson and |           |
| hkl        | Co., Wemb | ly, Eng. |        |          |             | yat       |
|            |           |          |        |          |             | ,         |
|            | Mo, 0     | .709A    | W, 0.2 | 20904A   | Cu, 1.54    | 05A, 26°C |
|            |           |          |        |          |             |           |
|            | d         | I        | d      | I        | d           | I         |
|            | A         |          | A      |          | A           |           |
| 100        | 3.42      | 60       | 3.419  | 40       | 3.41        | 34        |
| 002        | 3.07      | 50       | 3.076  | 40       | 3.063       | 31        |
| 101        | 2.978     | 100      | 2.988  | 100      | 2.980       | 100       |
| 102        | 2.278     | 50       | 2.289  | 50       | 2.278       | 58        |
| 110        | 1.964     | 60       | 1.975  | 60       | 1.968       | 63        |
| 103        | 1.750     | 50       | 1.760  | 70       | 1.753       | 52        |
| 200        | 1.702     | 10       | 1.710  | 10-20    | 1.705       | 52        |
| 112        | 1.655     | 40       | 1.661  | 10-20    | 1 3 181     | 4<br>24   |
| 201        | 1.640     | 30       | 1,646  | 100      | 1.656       | 17        |
| 004        | 1.531     | 10       | 1.541  | 10-20    | 1.532       | 3         |
|            |           |          |        |          |             | Ŭ         |
| 202        | 1.488     | 30       | 1.496  | 20       | 1.490       | 5         |
| 104        | 1.393     | 10       | 1.403  | 30       | 1.398       | 2         |
| 203        | 1.307     | 20       | 1.315  | 50       | 1.309       | 7         |
| 210        | 1.286     | 10       | 1.293  | 10       | 1.289       | 2         |
| 211        | 1.259     | 30       | 1.266  | 70       | 1.261       | 12        |
| 114        | 1.206     | 10       | 1.214  | 70       | 1.209       | 6         |
| 212        |           | 10.      | 1.192  | 30-40    | 1.1879      | 4         |
| 105        |           |          | 1.158  | 50       | 1.1538      | 4         |
| 204        |           |          | 1.140  | 40       | 1.1396      | 2         |
| 300        |           |          |        |          | 1.1367      | 4         |
| 010        |           | •        | 1 004  | =0       |             | _         |
| 213<br>302 |           |          | 1.094  | 70<br>50 | 1.0901      | 7         |
| 006        |           |          | 1.070  | 0-10     | 1.0658      | 4<br>< 1  |
| 205        |           |          | 1.020  | 50       | .9952       | 3         |
| 220        |           |          | 1.000  |          | . 9840      | 3         |
|            |           |          |        |          |             | J         |
| 106        |           |          |        |          | .9787       | 1         |
| 310        |           |          |        |          | .9459       | <1        |
| 222        |           |          |        |          | .9372       | 3         |
| 311        |           |          |        |          | .9345       | 5         |
| 304        |           |          |        |          | . 9131      | 2         |
| 116        |           |          |        |          | .9070       | 2         |
| 215        |           |          |        |          | . 8883      | 5         |
| 206        |           |          |        |          | .8766       | 1         |
| 313        |           |          |        |          | . 8583      | 4         |
| 107        |           |          |        |          | . 8480      | 2         |
| 401        |           |          |        |          | 0.4.40      |           |
| 401<br>224 |           |          |        |          | .8443       | 1         |
| 314        |           |          |        |          | . 8283      | 2         |
| 117        | )         |          |        |          | . 80 50     | 1         |
| 216        | }         |          |        |          | . 8007      | 2         |
|            | /         |          |        |          | 1           |           |

- K. Löhberg, Über die C-modifikation der Sesquioxyde von Neodym und Lanthan, Z. physik. Chem. B28, 402-7 (1935).
- W. Zachariasen, Die Kristallstruktur der A-Modifikation von den Sesquioxyden der seltenen Erdmetalle (La<sub>2</sub>O<sub>3</sub>, Ce<sub>2</sub>O<sub>3</sub>, Pr<sub>2</sub>O<sub>3</sub>, Nd<sub>2</sub>O<sub>3</sub>), Z. physik. Chem. 123, 134-150 (1926).
- [3] G. F. Hüttig and M. Kantor, Das System Lanthan (III) oxyd/Wasser, Z. anorg. allg. Chem. 202, 421-428 (1931).
- [4] L. Pauling, The crystal structure of the A-modification of the rare earth sesquioxides, Z. Krist. 69, 415-421 (1929).

## Mercury (II) oxide (montroydite), HgO (orthorhombic)

#### **ASTM** cards

| Card   | number                   | New                  |            |                                         |  |  |
|--------|--------------------------|----------------------|------------|-----------------------------------------|--|--|
| 01d    | New                      | index<br>lines       | Radiation  | Source                                  |  |  |
| II-672 | 1089<br>2-0309<br>2-0305 | 3.85<br>2.86<br>5.26 |            | Bird [1] 1932.                          |  |  |
| 219(   | 2183<br>1-0882<br>1-0896 | 2.96<br>2.83<br>2.40 | Molybdenum | Hanawalt, Rinn, and<br>Frevel [2] 1938. |  |  |

#### Additional published patterns

| Source                                | Radiation      | Wavelength |  |
|---------------------------------------|----------------|------------|--|
| Levi [3] 1924<br>Zachariasen [4] 1927 | Copper<br>Iron | 1.934      |  |

NBS sample. The red and yellow mercuric oxides used for the NBS pattern were ACS standard samples from the Mallinckrodt Chemical Works. Spectrographic analysis at the NBS showed the following impurities for the yellow form: 0.01 to 0.1 percent each of calcium and magnesium; 0.001 to 0.01 percent each of aluminum, iron, nickel, and silicon; and 0.0001 to 0.001 percent of chromium; and the red form: 0.01 to 0.1 percent each of aluminum, calcium, magnesium, and silicon; and 0.001 to 0.01 percent each of chromium and iron. The refractive indices are too high to be measured by the usual grain-oil immersion methods.

The NBS pattern is that of the yellow oxide as it gave a better pattern than the red form. However, measuring the red pattern as accurately as possible, there were no systematic differences between the two samples and any differences observed were smaller than the experimental error of the apparatus. Therefore, it is believed, at least for powder data, that the two forms are identical and the NBS pattern will serve for both the red and yellow mercuric oxides.

Interplanar spacing and intensity measurements. The *d*-spacings for the Levi and the Zachariasen patterns were calculated from Bragg angle data while *d*-spacings for the Bird and the Hanawalt, Rinn, and Frevel patterns were converted from kX to angstrom units. The controversy concerning the possible existence of two distinct forms of mercuric oxide, the red and the yellow, has been reconciled and the present authors feel both are the same form; the difference in color being due to grain size or some other factor not affecting the structure. The data supports this contention.

The Levi patterns for both the red and yellow oxides are thought to be identical. The Zachariasen *d*-spacings were made on a sample containing sodium chloride which covered four lines of the pattern as indicated in the table. The intensity pattern made without the sodium chloride standard contains these four lines.

Three lines of the Bird pattern, including his first and third strongest lines are due to kleinite, a mercury ammonium chloride of uncertain composition. This contamination is understandable since the pattern was made from a natural mineral sample. Both of the Levi patterns also contain extra lines apparently due to eglestonite,  $Hg_4Cl_2O$ .

The three strongest lines for each of the patterns are as follows:

| Pattern                    | 1   | 2   | 3   |
|----------------------------|-----|-----|-----|
| Bird                       |     | 101 |     |
| Hanawalt, Rinn, and Frevel | 011 | 101 | 110 |
| Levi, yellow sample        | 112 | 022 | 110 |
| Levi, red sample           | 112 | 022 | 123 |
| Zachariasen                | 112 | 130 | 011 |
| Swanson and Fuyat          | 011 | 101 | 110 |

**Lattice constants.** The structure was determined by Zachariasen [4] in 1947. The space group is  $D_{2h}^{13}$ -Pmnm (Pmmn) with 2(HgO) per unit cell.

The Zachariasen unit cell data were converted to angstrom units for comparison with the NBS values.

Lattice constants in angstroms

|      |                   | a     | Ъ     | с             |
|------|-------------------|-------|-------|---------------|
| 1927 | Zachariasen [4]   | 3.302 | 3.519 | 5.513         |
| 1953 | Swanson and Fuyat | 3.304 | 3.519 | 5.518 at 25°C |
|      |                   |       |       |               |

The density of mercuric oxide calculated from the NBS lattice constants is 11.211 at 25°C.

|            |                    | •          |       |          | 1                         |         |                           |                                         |              |           |           |           |
|------------|--------------------|------------|-------|----------|---------------------------|---------|---------------------------|-----------------------------------------|--------------|-----------|-----------|-----------|
|            | 10                 | 32         | 10    | 938      |                           | 19      | 24                        |                                         | 19           | 27        | 19        | 53        |
|            |                    |            |       |          |                           |         |                           |                                         |              |           |           |           |
|            | Bi                 | rd         |       | t, Rinn, |                           | Le      | vi                        |                                         | Zachar       | riasen    | Swanson a | and Fuyat |
| hkl        |                    |            | and F | revel    |                           |         |                           |                                         |              |           |           |           |
| nRi        |                    |            | Mo. 0 | .709 A   |                           | Cu. 1.  | 5405 A                    |                                         | Fe, 1.9      | 93597 A   | Cu. 1.540 | 5 A, 25℃  |
|            |                    |            |       |          |                           | 04, 1.  | J                         |                                         | 10, 11,      | 00011     | Cu, 1.570 | 0 m, 20 G |
|            |                    |            |       |          | Yello                     | w HgO   | Red                       | HgO                                     |              |           |           |           |
|            | d                  | I          | d     | I        | d                         | I       | d                         | I                                       | d            | I         | d         | I         |
|            | A                  |            | A     |          | A                         |         | A                         |                                         | A            | · · · · · | A         |           |
|            | *5.272             | 30         |       |          |                           |         |                           |                                         | "            |           |           |           |
|            | <sup>a</sup> 3.856 | 100        |       |          |                           |         |                           |                                         |              |           |           |           |
|            |                    |            |       |          | <sup>b</sup> 3.10         | vw      | <sup>b</sup> 3.16         | vw                                      |              |           |           |           |
| 011        |                    |            | 2.97  | 100      | 2.98                      | W       | 2.98                      | w                                       | 2.977        | 70        | 2.967     | 100       |
| 101        | 2.870              | 50         | 2.84  | 75       | 2.83                      | m       | 2.86                      | m                                       | (c)          | 70        | 2.834     | 81        |
| 002        |                    |            | 2.76  | 38       | 2.73                      | ms      | 2.75                      | w                                       | 2.758        | 50        | 2.759     | 58        |
|            | *2.622             | 10         |       |          | 2.65                      | m       | 2.67                      | ms                                      |              |           |           |           |
| 110        | 9 407              | 30         | 2.40  |          | <sup>b</sup> 2.56         | vw      | 0.25                      |                                         | 2,409        | 70        |           |           |
| 110        | 2.407              | 30         | 2.40  | 75       | 2.33<br><sup>b</sup> 1.95 | s<br>₩  | 2.35<br><sup>b</sup> 1.97 | m<br>w                                  | 2.409        |           | 2.408     | 67        |
|            |                    |            |       |          | 1. 55                     |         | 1.71                      |                                         |              |           |           |           |
| 112        |                    |            | 1.81  | 63       | 1.77                      | vs      | 1.79                      | vs                                      | 1.813        | 100       | 1.814     | 49        |
| 020        | 1.766              | 30         | 1.75  | 8        | 1.73                      | w       | 1.74                      | w                                       | 1.761        | 20        | 1.759     | 11        |
| 200<br>013 |                    |            | 1.64  | 15       | 1.63                      |         | 1.64                      |                                         | 1.650<br>(°) | 40<br>40  | 1.651     | 11<br>15  |
| 103        |                    |            | 1.60  | 10       | 1.60                      | m<br>m  | 1.61                      | w                                       | 1.608        | 40        | 1.630     | 13        |
| 100        |                    |            | 1.00  |          |                           |         |                           |                                         | 11000        | 10        | 1.001     | 10        |
|            |                    |            |       |          | <sup>b</sup> 1.58         | m       | <sup>b</sup> 1.59         | шw                                      |              |           |           |           |
| 210        | 1.500              | 30         |       |          |                           |         | 1.52                      | vw                                      | 1.495        | 70        | 1.495     | 25        |
| 121<br>022 | ,                  |            | 1.489 | 38       | 1.47                      | vs      | 1.48                      | s                                       | 1.484        | 40        | 1.484     | 12        |
| 211        | 1.444              | 10         | 1.443 | 20       | 1.42                      | s       | 1.40                      | mw                                      | 1.443        | 40<br>60  | 1.443     | 18        |
|            |                    |            |       |          |                           |         |                           |                                         |              |           |           |           |
| 202        |                    |            | 1.416 | 8        | 1.40                      | m       | 1.41                      | w                                       | 1.416        | 40        | 1.417     | 11        |
| 004 212    |                    |            | 1.381 | 5        | 1.36                      | w<br>vw | 1.37<br>1.31              | mw<br>vw                                | 1.378        | 30        | 1.379     | 4         |
| 220        |                    |            |       |          | 1.30                      |         | 1. JI                     | •••                                     |              |           | 1.204     | 5         |
| 114        |                    |            | 1.202 | 13       |                           |         |                           |                                         | 1.197        | 50        | 1.1971    | 10        |
| 123        | 1 109              | 10         | 1 100 | 10       | 1 10                      |         | 1 10                      |                                         | 1 100        | 25        | 1 10//    |           |
| 213        | 1.182              | 10         | 1.189 | 10<br>5  | 1.19                      | s<br>ms | 1.19                      | s<br>m                                  | 1.186        | 35<br>50  | 1.1866    | 9<br>7    |
| 031        | 1.143              | 10         | 1.150 | 3        | 1.15                      | ms      | 1.15                      | m                                       | (°)          | 30        | 1.1475    | 4         |
|            | 1.134              | 10         |       |          | 1.14                      | w       |                           |                                         |              |           |           |           |
| 130        |                    |            |       |          |                           |         |                           |                                         | (c)          | 80        | 1.1052    | 6         |
| 222        |                    |            | 1.105 | 5        | 1.09                      | ms      | 1.11                      | mw                                      |              |           | 1,1039    | 8         |
| 024        |                    |            | 1.103 | 3        | 1.09                      | uis     | 1.11                      | liw                                     |              |           | 1.0855    | 3         |
| 301        | 1                  |            | 1 001 | 3        | 1.07                      |         | 1.00                      |                                         |              |           |           | 3         |
| 032        | ]}                 |            | 1.081 | 3        | 1.07                      | m       | 1.08                      | m                                       |              |           | 1.0801    |           |
| 204        |                    |            |       |          |                           |         |                           |                                         |              |           | 1.0589    | 4         |
| 015        |                    |            |       | 1        |                           |         |                           |                                         |              |           | 1.0532    | 4         |
| 310        |                    |            | 1.052 | 5B       | 1.05                      | ms      | 1.05                      | ms                                      |              |           | 1.0510    | 4         |
| 132        |                    |            | 1.028 | 3        | 1.02                      | m       | 1.03                      | mw                                      |              |           | 1.0262    | 5         |
|            | 1.015              | 10         |       |          |                           |         |                           |                                         |              |           |           |           |
| 033        |                    |            |       |          |                           |         |                           |                                         |              |           | .9890     | 3         |
| 312        |                    |            | .984  | 3        | .977                      | ms      | .986                      | m                                       |              |           | . 9823    | 4         |
| 303        |                    |            |       |          |                           |         |                           |                                         |              |           | .9450     | 5         |
| 231        |                    |            | .945  | 3        | .940                      | ms      | .943                      | шw                                      |              |           | .9425     | 3         |
| 321        |                    |            |       |          | .917                      | ms      | .921                      | m                                       |              |           | .9202     | 4         |
| 224        |                    |            |       |          | d.903                     | m       | *.905                     | IIIW                                    |              |           | .9072     | 3         |
| aThese     |                    | able blair |       |          | in able                   | mide    |                           | • · · · · · · · · · · · · · · · · · · · | <u></u>      |           | d         |           |

# Mercury (II) oxide (yellow), HgO (orthorhombic)

aThese lines probably kleinite, a mercury ammonium chloride.

bThese lines probably due to eglestonite, Hg<sub>4</sub>Cl<sub>2</sub>O.

"Lines covered by NaCl-std; the intensity pattern made without standard.  ${}^{\rm d}{\rm Twelve}$  additional lines omitted.

<sup>e</sup>Seven additional lines omitted.

- P. H. Bird, A new occurrence and X-ray study of mosesite, Am. Mineralogist 17, 541-550 (1932).
- [2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [3] G. R. Levi, Identità cristallografica delle due forme di ossido mercurico, Gazz chim. ital. 54, 709-712 (1924).
- [4] W. Zachariasen, Über die Kristallstruktur des Quecksilberoxyds, Z. physik. Chem. 128, 421-429 (1927).

# 2.4. Oxide Hydrates

Alpha-aluminum oxide mono-hydrate (böhmite), <sup>a</sup> a-Al<sub>2</sub>O<sub>3</sub>·H<sub>2</sub>O (orthorhombic)

#### **ASTM** cards

| Card            | number                   | New                  |            |                                                         |
|-----------------|--------------------------|----------------------|------------|---------------------------------------------------------|
| Old             | New                      | index<br>lines       | Radiation  | Source                                                  |
| II-3183         | 3695<br>2-1314           | 1.85                 | No data    | Weiser and Milligan [1]<br>1932.                        |
|                 | 2-1314                   | 1.31                 | Iron       | Kovalev [2] 1938.                                       |
|                 | 0277<br>3-0063<br>3-0065 | $6.9 \\ 6.1 \\ 2.35$ | Copper     | Noll [3] 1936.                                          |
|                 | 0278<br>3-0064<br>3-0066 |                      |            | A continuation of the preceding.card.                   |
| 1868            | 1848<br>1-0777<br>1-0774 | 3.16<br>1.85<br>2.33 | Molybdenum | New Jersey Zinc Company.                                |
| 3544            | 3689<br>1-1281<br>1-1284 | 1.85<br>6.20<br>3.16 | Molybdenum | Physics Department,<br>Newcastle-on-Tyne,<br>England.   |
| 1 <b>1-2</b> 16 | 0360<br>2-0130<br>2-0129 | 6.2<br>3.17<br>2.34  | Molybdenum | Imperial Chem. Indus-<br>tries, Billingham,<br>England. |

The Imperial Chemical Co. sample was a mineral specimen while all of the rest were synthetic materials. The seven line Weiser and Milligan pattern combined with the Kovalev pattern on an ASTM card, is called deltaalumina by the authors.

#### Additional published patterns

| Source                                             | Radiation   | Wavelength |
|----------------------------------------------------|-------------|------------|
| Schwiersch [4] 1933<br>Reichertz and Yost [5] 1946 | Mo. and Cu. |            |

NBS sample. The alpha-aluminum oxide mono-hydrate used for the NBS pattern was prepared at the Aluminum Co. of America, Aluminum Research Laboratories by digesting alpha-aluminum trihydrate (made by the Bayer process) in steam at 200°C. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent each of calcium, magnesium, and silicon; 0.001 to 0.01 percent each of iron, manganese, nickel and titanium; and 0.0001 to 0.001 percent each of chromium and copper. The NBS sample was too fine for detailed optical measurements but the average index of the crystal aggregates is 1.64 to 1.65.

Interplanar spacings and intensity measurements. The *d*-spacings for the Weiser and Milligan, the Kovalev, and the Reichertz and Yost patterns were converted from kX to angstrom units while *d*-spacings for the Noll, the New Jersey Zinc, the Physics Department, Newcastle-on-Tyne, the Imperial Chemical Industries, Billingham, England, and the Schwiersch patterns were calculated from Bragg angle data.

The three strongest lines for each of the patterns are as follows:

| Patterns                      | 1       | 2       | 3      |  |
|-------------------------------|---------|---------|--------|--|
| Weiser and Milligan           | 002     | 200     | 041.13 |  |
| Noll                          | 002     | 020     | 041,13 |  |
| Kovalev                       | 041.130 | 002     | 15     |  |
| New Jersey Zinc               | 021     | 002     | 041,13 |  |
| Physics Department, Newcastle | 002     | 020     | 02     |  |
| Imperial Chemical Industries  | 020     | 021     | 041,13 |  |
| Schwiersch                    |         | 020     | 02     |  |
| Reichertz and Yost            | 020     | 150,002 | 02     |  |
| Swanson and Fuyat             | 020     | 021     | 041,13 |  |

Reichertz and Yost measured integrated intensities rather than peak height above background.

**Lattice constants.** The structure was determined by Reichertz and Yost [5] in 1946. The space group is  $D_{2h}^{17}$ -Cmcm with  $2(Al_2O_3 \cdot H_2O)$  per unit cell.

Data for two unit cells were converted from kX to angstrom units for comparison with the NBS values.

Lattice constants in angstroms

|      |                                                               | a     | ь      | с             |
|------|---------------------------------------------------------------|-------|--------|---------------|
| 1936 | Goldsztaub [6]                                                | 2.86  | 11.8   | 3.79          |
| 1946 | Reichertz and Yost [5]                                        | 2.865 | 12.26  | 3.698         |
| 1953 | Goldsztaub [6]<br>Reichertz and Yost [5]<br>Swanson and Fuyat | 2.868 | 12.227 | 3.700 at 26°C |

The density of böhmite calculated from the NBS lattice constants is 3.070 at 26°C.

<sup>&</sup>lt;sup>a</sup>The Greek letter designation used is that of the Aluminum Company of America. Böhmite also has been referred to as gamma-alumina monohydrate.

# Alpha-aluminum oxide mono-hydrate (böhmite), $\alpha$ -Al<sub>2</sub>O<sub>3</sub>·H<sub>2</sub>O (orthorhombic)

|            | 19             | 32     | 1936           |              | 193      | 8       |                |      |                  | -          |                    | -        | 193            | 3             | 194                                                          | 46         | 1953                                                         |          |
|------------|----------------|--------|----------------|--------------|----------|---------|----------------|------|------------------|------------|--------------------|----------|----------------|---------------|--------------------------------------------------------------|------------|--------------------------------------------------------------|----------|
|            | Weise<br>Mill: |        | Nol1           |              | Koval    | ev      | New Je<br>Zinc |      | Physi<br>Dept    |            | Imper<br>Chem      |          | Schwie         | rsch          | Reich<br>and Y                                               |            | Swanson<br>Fuya                                              |          |
| hkl        |                |        |                |              |          |         |                |      | Newcas<br>on-Tyj |            | Industr<br>Billing | - 1      |                |               |                                                              |            |                                                              |          |
|            | n              | -      |                |              |          | -       |                |      | Fngla            | nd         | Engla              | nd       |                |               | -                                                            |            | -                                                            | -        |
|            |                |        | Cu, 1.54       | 05 A         | Fe, 1.93 | 597A    | Mo, 0.         | 709A | Mo, 0.           | 709A       | Mo, 0.             | 709A     |                |               | Cu, 1.9<br>and Mo,                                           |            | Cu, 1.54<br>26°C                                             |          |
|            | đ              | I      | d              | I            | đ        | I       | d              | I    | đ                | I          | d                  | I        | d              | I             | đ                                                            | I          | đ                                                            | I        |
|            | A              |        | A<br>6.86      | 100          | A        | 1       | A              |      | A                |            | A                  |          | A<br>6.91      | 100           | A                                                            |            | A                                                            |          |
| 020        |                |        | 6.09           | 100          |          |         |                |      | 6.21             | 72         | 6.2                | 100      | 6.06           | 100           | 6.12                                                         | 100        | 6.11                                                         | 100      |
|            |                |        | 3.51           | 40<br><br>90 |          | <br>80  | 3.17           | 100  | <br>3.17         | <br><br>72 | <br>3.18           | <br>100  | 3.300<br>3.140 | <br>60<br>100 | <br>3.160                                                    | <br><br>48 | 3. 164                                                       |          |
| 021        | 3.15           | 50<br> | 3.146          |              | 3.164    |         | 5.1 <i>1</i>   |      | 5.17             |            | 5.16               |          | 2.938          | 20            | 5.160                                                        | 48<br>     | 5. 104<br>                                                   | 65<br>   |
|            |                |        | 2.597          | 50<br>       |          |         |                |      |                  |            |                    |          | 2.605<br>2.415 | 40<br>60      |                                                              |            |                                                              |          |
| 041<br>130 | }2.36          | 70     | 2.340          | 100          | 2.349    | 100     | 2.33           | 75   | 2.350            | 72         | 2.34               | 100      | 2.331          | 100           | $\left\{ \begin{array}{c} 2.355\\ 2.341 \end{array} \right.$ | } 42       | 2.346                                                        | 53       |
| 131        |                |        | 2.037<br>1.977 | 60<br>30     | 1.979    |         | 1.980          |      | <br>1.979        | 9          | 1.985              | 60       | 2.047<br>1.988 | 50<br>30      | 1.977                                                        | 4          | 1.980                                                        | 6        |
| 150<br>002 | 1.85           | 100    | 1.841          | 100          | 1.853    | <br>100 | 1.851          | 83   | 1.85             | <br>100    | 1.859              | 100      | 1.843          | 100           | 1.859<br>1.845                                               | } 52       | { 1.860<br>1.850                                             | 32<br>27 |
| 022        |                |        | 1.763          | 40           | 1.764    | <br>30  | 1.757          | 3    | 1.76             | <br>19     | 1.771              | <br>60   | 1.770          | 40            | $1.785 \\ 1.766$                                             | } 4        | {                                                            | 6        |
| 151        |                |        | 1.657          | 60           | 1.667    | 70      | 1.659          | 18   | 1.659            | 31         | 1.663              | 70       | 1.657          | 60            | 1.660                                                        | 11         | 1.662                                                        | 13       |
| 080        | 1.61           | 1      | 1.604<br>1.524 | 20<br>50     | 1.524    | 60      | 1.523          | 1    | 1.527            | 9          | 1.529              | 60       | 1.609<br>1.527 | 30<br>50      | 1.538<br>1.530                                               | }          | 1.527                                                        | 6        |
| 132<br>200 | 1.43           | 80     | 1.449<br>1.432 | 80<br>50     | 1.455    | 80      | 1.451          | 18   | 1.448<br>1.431   | 31<br>19   | 1.453<br>1.433     | 70<br>60 | 1.450<br>1.438 | 80<br>20      | 1.449<br>1.429                                               | 21         | $\left\{ \begin{array}{c} 1.453\\ 1.434 \end{array} \right.$ | 16<br>9  |
| 081<br>220 |                |        |                |              |          |         | 1.397          |      | 1.38             | 25         |                    |          |                |               | 1.413                                                        | K          | (1.412)                                                      | 1<br>2   |
| 171<br>062 |                |        | 1.379          | 60           | 1.382    | 50      |                |      |                  |            | 1.385              | 70       | 1.385          | 50            | 1.383                                                        | } 9        | { 1.383<br>1.369                                             | 6<br>2   |
| 152        | 1.32           | 60     |                |              | 1.309    | 100     | 1.309          | 26   | 1.309            | 50         | 1.310              | 80       | 1.310          | 80            | 1.310                                                        | 6          | { 1.312                                                      | 15       |
| 221        |                |        | 1.305          | 80<br>10     |          |         |                |      |                  |            |                    |          |                |               | 1.302                                                        | } 18       | 1.303                                                        | 3        |
| 241        |                |        | 1.253<br>1.205 | 10<br>20     | 1.223    | 20      |                |      | 1.224            |            | 1.222              | 20       | 1.224          | 10            |                                                              |            | 1.224                                                        |          |
| 023        |                |        |                |              | 1.208    | 20      |                |      | 1.204            | 3          | 1.207              | 40       | 1.211          | 10            | 1.206                                                        |            | 1.209                                                        | 2        |
| 260        |                |        | 1.175          | 40           | 1.177    | 40      |                |      | 1.177            | 9          | 1.179              | 60       | 1.179          | 40            | 1.171                                                        | }          | 1.1711                                                       | <1       |
|            |                |        |                |              |          |         |                |      |                  |            |                    |          |                |               | 1.165<br>1.162                                               | }          | {                                                            |          |
| 172        |                |        | 1.157<br>1.148 | 40<br>60     | 1.158    | 40      |                |      | 1.158            | 9          | 1.159              | 60       | 1.162          | 40            | 1.160                                                        | )<br>      | (1.1609                                                      | 3        |
| 202<br>222 | 1.13           | 10     | 1.112          | 30           | 1.133    | 60      | 1.130          | 6    | 1.13<br>1.11     | 13<br>6    | 1.133              | 70<br>60 | 1.134          | 50<br>20      | 1.130                                                        |            | 1.1337                                                       | 5<br>2   |
| 133 280    |                |        | 1.090<br>1.045 | 5<br>30      |          |         |                |      | 1.043            | 3          | 1.091              | 30k      |                |               |                                                              |            | 1.0917                                                       | < 1<br>2 |
| 153        |                |        | 1.021          | 30           |          |         |                |      |                  |            | 1.029              | 50       | 1.027          | 40            |                                                              |            | 1. 0281                                                      | 1        |
| 262        |                |        |                |              |          |         |                |      | 1.023            | 3          | 1.019              | 40<br>20 |                |               |                                                              |            | .9903                                                        | <br>< 1  |
|            |                |        | .9795          | 10<br>10     |          |         |                |      |                  |            | . 982              | 40       | . 986          | 10            |                                                              |            | . 9818                                                       | < 1      |
| 173        |                |        | .9479          | 50           | }        |         |                |      |                  |            | .951               | 60<br>50 | .951           | 40<br>30      |                                                              |            | .9506                                                        | 2        |
| 004        |                |        | . 9304         | 50           |          |         |                |      |                  |            | .931               | 60       | .930           | 40            |                                                              |            | . 9247                                                       | 2        |
| 223        | P              |        |                |              |          |         |                | 1    |                  | 1          |                    | 1        |                | 1             |                                                              | Į          | 1                                                            |          |

Alpha-aluminum oxide mono-hydrate (böhmite), a-Al<sub>2</sub>O<sub>3</sub>·H<sub>2</sub>O (orthorhombic)-Con.

| ħkl  | 1932<br>Weiser and<br>Milligan<br>hkl |   |        |    | 193<br>Koval<br>Fe, 1. 93 | ev | New Je<br>Zinc<br>Mo, 0. | Со. | Physi<br>Dept<br>Newcas<br>on-Ty<br>Engla<br>Mo, 0. | tle-<br>ne,<br>and | Imper<br>Chen<br>Industr<br>Billing<br>Engla<br>Mo, 0. | n.<br>ries,<br>gham,<br>and | 193<br>Schwie |          | 194<br>Reich<br>and M | ertz<br>(ost | 1953<br>Swanson<br>Fuya<br>Cu, 1.54 | and<br>t |
|------|---------------------------------------|---|--------|----|---------------------------|----|--------------------------|-----|-----------------------------------------------------|--------------------|--------------------------------------------------------|-----------------------------|---------------|----------|-----------------------|--------------|-------------------------------------|----------|
|      |                                       | I | d      | I  | d                         | I  | đ                        | I   | đ                                                   | I                  |                                                        | I                           | đ             | I        | and Mo,<br>d          |              |                                     |          |
| -    |                                       |   |        | 1  |                           |    |                          | 1   |                                                     | 1                  |                                                        | 1                           |               |          |                       | 1            |                                     | 1        |
|      | A                                     |   | A      |    | A                         |    | A                        |     | A                                                   |                    | A                                                      |                             | A             |          | A                     |              | A,                                  |          |
| 282  |                                       |   | .9091  | 40 |                           |    |                          |     |                                                     |                    | .915                                                   | 30                          |               |          |                       |              |                                     |          |
| 331  |                                       |   | .9091  | 50 |                           |    |                          |     |                                                     |                    | .912                                                   | 60<br>60                    | .911          | 40<br>40 |                       |              | .9105                               | 2<br>2   |
| 243  |                                       |   | .9013  |    |                           |    |                          |     |                                                     |                    | . 903                                                  | 00                          | . 504         | 40       |                       |              | . 9023                              | <1       |
| 350  |                                       |   | . 8896 | 50 |                           |    |                          |     |                                                     |                    |                                                        |                             | .891          | 40       |                       |              | .8907                               | 1        |
| 351  |                                       |   | .8662  | 60 |                           |    |                          |     |                                                     |                    |                                                        |                             | . 868         | 50       |                       |              | .8660                               | < 1      |
| 134  |                                       |   | . 8586 | 50 |                           |    |                          |     |                                                     |                    |                                                        |                             | .861          | 50       |                       |              | .8607                               | 1        |
| 3 32 |                                       |   | .8317  | 60 |                           |    |                          |     |                                                     |                    |                                                        |                             | .831          | 60       |                       |              | .8316                               | 2        |
| 154  |                                       |   | . 8266 | 60 | _                         |    |                          |     |                                                     |                    |                                                        |                             | . 828         | 60       |                       |              | . 8286                              | 3        |
| 371  |                                       |   | .8170  | 30 |                           |    |                          |     |                                                     |                    |                                                        |                             | .819          | 40       |                       |              | .8180                               | 1        |
|      |                                       |   | .8098  | 20 |                           |    |                          |     |                                                     |                    |                                                        |                             |               |          |                       |              |                                     |          |
| 352  |                                       |   | .8016  | 60 |                           |    |                          |     |                                                     |                    |                                                        |                             | .803          | 60       |                       |              | .8026                               | 2        |
|      |                                       |   |        |    |                           |    |                          |     |                                                     |                    |                                                        |                             | .792          | 40       |                       |              |                                     |          |
|      | ·                                     | L |        |    | L                         | -  | I                        | L   | L                                                   | L                  | I                                                      | I                           | L             | i        | L                     | L            |                                     |          |

- H. B. Weiser and W. O. Milligan, X-ray studies on the hydrous oxides. I. Alumina, J. Phys. Chem. 36, 3010-3029 (1932).
- J. A. Kovalev, Debye-Sherrer diffraction diagrams of some oxide and borate minerals, Materialy TsNIGRI 1938. From A. K. Boldyrev and others, Annales de l'Institut des Mines à Léningrad 11 (2) (1938).
- [3] W. Noll, Mineralbildung im System Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-H<sub>2</sub>O, Neues Jahr. Mineral. 70, 76 (65-115) (1936).
- [4] H. Schwiersch, Thermischer Abbau der natürlichen Hydroxyde des Aluminiums und des dreiwertigen Eisens, Chem. Erde 8, 252 (1933). From Noll, reference 3.
- [5] P. P. Reichertz and W. J. Yost, The crystal structure of synthetic boehmite, J. Chem. Phys. 14, 495-501 (1946).
- [6] S. Goldsztaub, Quelques Observations sur la Boehmite, Bull. soc. franc. mineral. 59, 348-350 (1936).

Beta-aluminum oxide mono-hydrate (diaspore),<sup>a</sup>  $\beta$ -Al<sub>2</sub>O<sub>3</sub>·H<sub>2</sub>O (orthorhombic)

**ASTM** cards

| =  | Card  | number                   | New                  |                                          |                                                                                            |
|----|-------|--------------------------|----------------------|------------------------------------------|--------------------------------------------------------------------------------------------|
|    | 01 d  | New                      | index<br>lines       | Radiation                                | Source                                                                                     |
| 11 | -2498 | 3217<br>2-1104<br>2-1106 | 2.33<br>2.14<br>2.08 | Molybdenum                               | Hansen and Brownmiller<br>[1] 1928.                                                        |
|    | 1038  | 1009<br>1-0446<br>1-0447 | 4.00<br>2.34<br>2.13 | Molybdenum                               | Weiser and Milligan [2]<br>1932.                                                           |
| 11 | -628  | 1059<br>2-0301<br>2-0291 | 3.99<br>2.13<br>1.64 | No data<br>Iron<br>No data<br>Molybdenum | British Museum.<br>Kovalev [3] 1938.<br>Kerr [4] 1932.<br>Weiser and Milligan [2]<br>1932. |
|    | 1046  | 1058<br>1-0470<br>1-0449 | 3.99<br>2.31<br>1.63 | Molybdenum                               | Hanawalt, Rinn, and<br>Frevel [5] 1938.                                                    |
|    | 1056  | 1057<br>1-0469<br>1-0454 | 3.98<br>2.31<br>2.13 | Molybdenum                               | Physics Department,<br>Newcastle-on-Tyne,<br>England.                                      |

The British Museum contributed five lines with d-spacings and intensities of 4.45, 60; 3.60, 20; 2.02, 20; 1.91, 40; 1.76, 20 to the composite pattern, card 2-0291. Because these d-spacings represent only lines not found in any of the other three patterns in the composite, and the complete British Museum pattern apparently was not published, the above data were not presented in the table of d-spacings.

#### Additional published patterns

| Source           | Radiation | Wavelength |  |  |  |  |  |
|------------------|-----------|------------|--|--|--|--|--|
| Rooksby [6] 1929 |           |            |  |  |  |  |  |

NBS sample. The diaspore sample was contributed by the Aluminum Research Laboratories, Aluminum Company of America. It is a

<sup>a</sup> The Greek letter designation used is that of the Aluminum Company of America. Diaspore has also been referred to as alpha-alumina monohydrate. mineral from Springfield, Mass. containing 0.18 percent of SiO<sub>2</sub> and 0.64 percent of Fe<sub>2</sub>O<sub>3</sub> by chemical analysis at the Aluminum Company. Spectrographic analysis at the NBS showed the following impurities: 0.1 to 1.0 percent each of iron, magnesium, silicon, and titanium, 0.01 to 0.1 percent each of nickel and vanadium, and 0.001 to 0.01 percent each of calcium, chromium, copper, and manganese. The sample is biaxial positive with large 2V,  $\alpha$ =1.700 and  $\gamma$ =1.745. The  $\beta$ -index was not readily available due to the platy character of the crystal perpendicular to that direction.

Interplanar spacings and intensity measurements. The *d*-spacings for all the patterns were converted from kX to angstrom units. The pattern from the Physics Department, Newcastle-on-Tyne and the British Museum pattern have not been published except in the ASTM file.

The intensity values for the (010) planes of diaspore are difficult to determine as diaspore commonly grows platy crystals perpendicular to the *b*-axis. The three strongest lines for each of the patterns are as follows:

| Patterns                      | 1   | 2   | 3   |
|-------------------------------|-----|-----|-----|
| Hansen and Brownmiller        | 111 | 121 | 140 |
| Weiser and Milligan           | 110 | 111 | 121 |
| Kerr                          | 110 | 111 | 121 |
| Kovalev                       | 221 | 121 | 140 |
| Hanawalt, Rinn, and Frevel    | 110 | 111 | 221 |
| Physics Department, Newcastle | 110 | 111 | 121 |
| Rooksby                       | 110 | 111 | 221 |
| Swanson and Fuyat             | 110 | 111 | 121 |

There are four lines present in some of the patterns that do not appear in the NBS pattern. The lines, d-spacing 4.87 and 4.40 are probably due to the alpha-alumina monohydrate or to one of the trihydrates. The 3.50 line might be due to corundum, and the 2.82 line could be a strong line for either kappa or beta alumina. All the patterns were made by using mineral diaspore, as it has never been prepared sufficiently pure or in large enough quantity for an X-ray pattern.

**Lattice constants.** The structure was determined by Deflandre [7] in 1932. The space group is  $D_{2h}^{16}$ -Pbnm (Pnma) with  $2(Al_2O_3 \cdot H_2O)$  per unit cell.

A group of unit-cell values were converted from kX to angstrom units for comparison with the NBS values.

Lattice constants in angstroms

|      |                   | a     | b     | с             |
|------|-------------------|-------|-------|---------------|
|      | Deflandre [7]     |       | 9.40  | 2.84          |
|      | Takane [8]        |       | 9.38  |               |
| 1935 | Ewing [9]         | 4.41  | 9.41  | 2.85          |
|      | Hoppe [10]        |       |       |               |
| 1953 | Swanson and Fuyat | 4.396 | 9.426 | 2.844 at 25°C |
|      |                   |       |       |               |

The density of diaspore calculated from the NBS lattice constants is 3.380 at 25°C.

| Beta-aluminum oxide mono-hydrate (diaspore), $\beta$ -Al <sub>2</sub> O. | Beta-aluminum | oxide | mono-hydrate | (diaspore). | $\beta$ -Al.O. | ·H_O <sup>a</sup> |
|--------------------------------------------------------------------------|---------------|-------|--------------|-------------|----------------|-------------------|
|--------------------------------------------------------------------------|---------------|-------|--------------|-------------|----------------|-------------------|

|             | 1928<br>Hanson |          | 1932<br>Weiser |            | 1932<br>Kerr |            | 1937<br>Kovale | v        | 1938<br>Hanawal | t,        | Physics D    | ept.     | 1929<br>Rooksb | y         | 1953<br>Swanson  | and      |
|-------------|----------------|----------|----------------|------------|--------------|------------|----------------|----------|-----------------|-----------|--------------|----------|----------------|-----------|------------------|----------|
|             | Brownmil       | ller     | Millig         | an         |              |            |                |          | Rinn, a         |           | Newcastl     | e,       |                |           | Fuyat            |          |
| hkl         |                |          |                |            |              |            |                |          | Frevel          | -         | Eng.         |          |                |           |                  |          |
|             | Mo, 0.70       | )9 A     | Mo, 0.70       | )9 A       |              |            | Fe, 1.935      | 97 A     | Mo, 0.70        | 9 A       | Mo, 0.70     | 9 A      |                |           | Cu, 1.540<br>25℃ | 5 A,     |
|             | d              | I        | d              | I          | d            | I          | d              | I        | d               | I         | d            | I        | d              | I         | d                | I        |
|             | A              |          | A              |            | A            |            | A              |          | A               |           | A            |          | A              |           | A                |          |
| 020         |                |          |                |            | 4.87<br>4.68 | 5<br>5     | 4.699          | 20       | 4.71            | 9         |              |          | 4.700          |           | 4.71             |          |
| 110         |                |          | 4.01           | 100        |              |            |                |          |                 |           | 4.44         | 3        |                |           |                  |          |
|             |                |          | 4.01           |            | 4.02         | 100        | 3.996          | 60<br>   | 4.00            | 100       | 3.99<br>3.51 | 100<br>6 | 3.985<br>3.513 | 100<br>20 | 3.99             | 100      |
| 120         |                |          |                |            | 3.28         | 20         | 3.256          | 10       | 3.21            | 8         | 3.22         | 6        | 3.222          | 20        | 3.214            | 10       |
| 130         | 2.58           | <br>s    | 2.58           | <br>80     | 2.83         | 5<br>50    | 2.559          | 60       | 2.56            | 33        | 2.57         | <br>41   | 2.563          | 40        | 2.558            | 30       |
| 021         |                |          |                |            | 2.52         | 5          |                |          |                 |           |              |          |                |           | 2.434            |          |
| 101         |                |          |                |            |              |            |                |          |                 |           | 2.38         | 3        |                |           | 2.386            | 5        |
| 040         |                |          |                |            |              |            |                |          | 2.37            | 5         |              |          |                |           | 2.356            | 8        |
| 111<br>121  | 2.33<br>2.14   | vs<br>vs | 2.34 2.13      | 100<br>100 | 2.328 2.148  | 100<br>100 | 2.318<br>2.134 | 60<br>80 | 2.31<br>2.12    | 100<br>67 | 2.31<br>2.13 | 72<br>59 | 2.317 2.128    | 80<br>70  | 2.317<br>2.131   | 56<br>52 |
| 140         | 2.08           | vs       | 2.08           | 20         | 2.088        | 100        | 2.076          | 80       | 2.06            | 67        | 2.07         | 50       | 2.076          | 70        | 2.077            | 49       |
| 131         |                |          |                |            |              |            |                |          |                 |           | 1.898        | 6        | 1.896          | 5         | 1.901            | 3        |
| 041         | 1.81           | w        | 1.82           | 10         | 1.838        | 5          |                |          | 1.81            | 7         | 1.81         | 6        | 1.811          | 10        | 1.815<br>1.733   | 8<br>3   |
| 211         | 1.715          | s<br>w   | 1.71           | 20         |              |            | 1.710<br>1.676 | 40<br>20 | 1.71            | 20        | 1.711        | 19       | 1.710          | 30        | 1.712 1.678      | 15<br>3  |
| 221         | 1.634          | vs       | 1.63           | 100        | 1.643        | 100        | 1.633          | 100      | 1.63            | 83        | 1.63         | .59      | 1.632          | 80        | 1.633            | 43       |
| 240         | 1.604          | w        |                |            |              |            | 1.608          | 30       | 1.60            | 5         | 1.607        | 6        | 1.606          | 20        | 1.608            | 12       |
| 060         | 1.574          | ww<br>m  | 1.54 1.50      | 10<br>20   | 1.548        | 5          | 1.570 1.520    | 20<br>20 | 1.52            | 8         | 1.52         | 6        | 1,522          | 10        | 1.570 1.522      | 4        |
| 160<br>151  | 1.483          | s        | 1.47           | 20         | 1.498        | 30         | 1.480          | 80       | 1.480           | 33        | 1.481        | 41       | 1.480          | 30        | 1.480            | 20       |
| 250         |                |          |                |            | 1.438        | 30         | 1.429          | 30       |                 |           |              |          |                |           | 1.431            | 7        |
| 002         | 1.427          | s        |                |            |              |            |                |          | 1.423           | 27        | 1.423        | 31       | 1.421          | 20        | 1.423            | 12       |
| 320         | 1.404          | m<br>s   | 1.40           | 80<br>10   | 1.388        | 30         | 1.403<br>1.375 | 30<br>60 | 1.403           | 8         | 1.37         | 31       | 1.400          | 10<br>30  | 1.400            | 6<br>16  |
| 112         | 1.338          |          | 1.34           | 10         | 1.353        | 20         | 1.340          | 20       |                 |           |              |          | 1.339          | 10        | 1.340            | 5        |
| 3 30<br>301 | 1,302          | <br>m    | 1.32           | 10         | 1,308        | 20         | 1.303          | 30       | 1.333           | 10        | 1.333        | 19<br>9  | 1.328<br>1.303 | 10<br>5   | 1.329            | 63       |
| 311         | 1.302          | m        | 1.29           | 10         | 1.306        |            | 1.303          | 30       | 1.293           | 8         | 1.299        | 13       | 1.287          | 5         | 1.304            | 6        |
| 170<br>251  | ,              |          |                |            |              |            |                |          |                 |           |              |          |                |           | 1.279            | 1        |
| 321         | 1.250          | m        |                |            | 1.263        | 20         | 1.265          | 20       | 1.263           | 5         | 1.259        | 6        |                |           | 1.256            | 4        |

Beta-aluminum oxide mono-hydrate (diaspore),  $\beta$ -Al<sub>2</sub>O<sub>3</sub>·H<sub>2</sub>O<sup>\*</sup>-Con.

| hkl | 1928<br>Hanson and<br>Brownmiller<br>kl<br>Mo, 0.709 A<br>d I |       | Hanson and<br>Brownmiller Milligan<br>Mo, 0.709 A Mo, 0.709 A |         | Weiser and<br>Milligan<br>Mo, 0.709 A Fe |    |                | Rinn, and           Fe, 1.93597 A         Mo, 0.709 A |       |   | Physics D<br>Newcastl<br>Eng.<br>Mo, 0.70 | e, | 1929<br>Rooksb |   | 1953<br>Swanson and<br>Fuyat<br>Cu, 1.5405 A,<br>25°C |     |
|-----|---------------------------------------------------------------|-------|---------------------------------------------------------------|---------|------------------------------------------|----|----------------|-------------------------------------------------------|-------|---|-------------------------------------------|----|----------------|---|-------------------------------------------------------|-----|
|     | d                                                             | I     | đ                                                             | I       | đ                                        | I  | đ              | I                                                     | d     | I | đ                                         | I  | d              | I | đ                                                     | I   |
|     | Å                                                             |       | A                                                             | -       | A                                        | -  | A              |                                                       | A     |   | A                                         |    | A              |   | A                                                     |     |
| 340 | }                                                             |       |                                                               |         |                                          |    | 1.243          | 20                                                    | 1.243 | 7 | 1.24                                      | 13 |                |   | 1.243                                                 | 5   |
| 042 | ·                                                             |       |                                                               |         |                                          |    | 1.213          | 20                                                    | 1.217 | 3 |                                           |    |                |   | 1.218                                                 | 2   |
| 331 | 1.206                                                         | m     |                                                               |         | 1.220                                    | 20 | 1.203          | 40                                                    | 1,203 | 5 | 1.205                                     | 9  |                |   | 1.204                                                 | 4   |
| 080 | 1.175                                                         | <br>m |                                                               |         | 1.182                                    | 20 | 1.178<br>1.173 | 20<br>40                                              | 1.172 | 9 | 1.17                                      | 13 |                |   | 1.1783                                                | 17  |
| 142 |                                                               | ш     |                                                               |         |                                          | 20 |                |                                                       |       | , |                                           | 15 |                |   |                                                       | 1 ' |
| 341 | 1.142                                                         | w     |                                                               |         | 1.152                                    | 10 | 1.146          | 20                                                    | 1.142 | 3 | 1.14                                      | 6  |                |   | 1.1408                                                | 3   |
| 400 | 1,093                                                         | <br>m |                                                               |         | 1.107                                    | 20 | 1.093          | 30                                                    | 1.092 | 8 |                                           |    |                |   | 1.1003                                                | 1   |
| 410 | 1.095                                                         |       |                                                               |         |                                          |    | 1.095          |                                                       | 1.094 |   |                                           |    |                |   | 1.0323                                                |     |
|     |                                                               |       |                                                               |         |                                          |    |                |                                                       |       |   |                                           |    |                |   |                                                       |     |
|     | 1.068                                                         | m     |                                                               |         | 1.077                                    | 20 | *****          |                                                       | 1.065 | 7 |                                           |    |                |   |                                                       |     |
|     | 1.041                                                         |       |                                                               |         | 1.047                                    | 20 |                |                                                       | 1.039 |   |                                           |    |                |   |                                                       |     |
|     | 1,004                                                         | w     |                                                               |         | 1.017                                    | 20 |                |                                                       | 1.002 | 3 |                                           |    |                |   |                                                       |     |
|     | . 996                                                         | m     |                                                               |         |                                          |    |                |                                                       |       |   |                                           |    |                |   |                                                       |     |
|     |                                                               |       |                                                               |         | .982                                     | 20 |                |                                                       |       |   |                                           |    |                |   |                                                       |     |
|     | .957                                                          | <br>w |                                                               |         | .962                                     | 20 |                |                                                       |       |   |                                           |    |                |   |                                                       |     |
|     | . 923                                                         | w     |                                                               |         | .932                                     | 5  |                |                                                       |       |   |                                           |    |                |   |                                                       |     |
|     | .880                                                          | w     |                                                               |         |                                          |    |                |                                                       |       |   |                                           |    |                |   |                                                       |     |
|     | .869                                                          | m     |                                                               | • • • • | .877                                     | 10 |                |                                                       |       |   |                                           |    |                |   |                                                       |     |
|     | .857                                                          | m     |                                                               |         | . 863                                    | 10 |                |                                                       |       |   |                                           |    |                |   |                                                       |     |
|     | . 839                                                         | m     |                                                               |         | .841                                     | 10 |                |                                                       |       |   |                                           |    |                |   |                                                       |     |
|     | .816                                                          | m     |                                                               |         | .820                                     | 10 |                |                                                       |       |   |                                           |    |                |   |                                                       |     |

- W. C. Hansen and L. T. Brownmiller, Equilibrium studies on alumina and ferric oxide, and on combinations of these with magnesia and calcium oxide, Am. J. Sci. 15, 225-242 (1928).
- [2] H. B. Weiser and W. O. Milligan, X-ray studies on the hydrous oxides I. Alumina, J. Phys. Chem. 36, 3010 (1932).
- J. A. Kovalev, Debye diffraction diagrams of some oxide and borate minerals, Materialy TsNIGRI 1938. From A. K. Boldyrev and others, Annales de l'Institut des Mines à Leningrad 11, (2)(1938).
- [4] P. F. Kerr, The occurence of andalusite and related minerals at White Mountain, California, Econ. Geol. 27, 614-643 (1932).

- [5] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [6] H. P. Rooksby, An X-ray examination of the effect of heat on aluminum hydroxide, Al<sub>2</sub>O<sub>3</sub>·H<sub>2</sub>O, Trans. Ceram. Soc. (England) 28, 399-404 (1929).
- [7] M. M. Deflandre, Crystal structure of diaspore, Bull. soc. franç. mineral. 55, 140 (1932).
- [8] K. Takané, Crystal structure of diaspore, Proc. Imp. Acad. (Tokyo) 9, 113, (1933).
- [9] F. J. Ewing, The crystal structure of diaspore, J. Chem. Phys. 3, 203-207 (1935).
- [10] W. Hoppe, The crystal structure of α-AlOOH (diaspore) and α-FeOOH (needle iron ore), Z. Krist. 103, 73-80 (1940).

# 2.5. Multiple Oxides

# Strontium titanate, SrTiO<sub>3</sub> (cubic)

**ASTM** cards

| Card number |                          | New                    |            | Source              |  |
|-------------|--------------------------|------------------------|------------|---------------------|--|
| Old         | Old New                  |                        | Radiation  |                     |  |
| II-4192     | 3982<br>2-1457<br>2-1454 | 1.04<br>1.59<br>2.76   | Copper     | Hoffmann [1] 1934.  |  |
| 2501        | 2647<br>1-1023<br>1-1018 | $2.76 \\ 1.94 \\ 1.59$ | Molybdenum | New Jersey Zinc Co. |  |
|             | 2667<br>3-0775<br>3-0769 | 2.76<br>0.80<br>1.95   | No data    | Megaw.              |  |

Additional published patterns. None.

NBS sample. The strontium titanate sample used for the NBS pattern was prepared by the National Lead Co. Spectrographic analysis at the NBS showed the following impurities: 0.001 to 0.01 percent each of aluminum, barium, calcium, and silicon; and 0.0001 to 0.001 percent each of copper and magnesium. The refractive index of the NBS sample could not be determined because the sample was opaque. Interplanar spacings and intensity measurements. The Hoffmann Bragg angle data were converted to angstrom units. The New Jersey Zinc Co. and the Megaw *d*-spacings were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

| Patterns          | 1   | 2   | 3   |
|-------------------|-----|-----|-----|
| Hoffmann          | 321 | 211 | 110 |
| New Jersey Zinc   | 110 | 200 | 211 |
| Megaw             | 110 | 422 | 200 |
| Swanson and Fuyat | 110 | 200 | 211 |

**Lattice constant.** The structure was determined by Goldschmidt [2] in 1927. The space group is  $O_h^1$ -Pm3m with perovskite-type structure and  $1(SrTiO_3)$  per unit cell.

Hoffmann's lattice constant was converted from kX to angstrom units for comparison with the NBS values.

Lattice constant in angstroms

| 1935 | Hoffmann [1]      | 3.907          |
|------|-------------------|----------------|
| 1953 | Swanson and Fuyat | 3.9050 at 25°C |

The density of strontium titanate calculated from the NBS lattice constant is 5.116 at 25°C.

| hkl | d                  | 1934<br>Hoffman<br>کی, 1.540<br>I |       |       | Jersey<br>5, 0.709 |       | d     | Megaw | a    |          | 1953<br>son and<br>.5405 A |          |
|-----|--------------------|-----------------------------------|-------|-------|--------------------|-------|-------|-------|------|----------|----------------------------|----------|
|     | <u>u</u>           |                                   | u     |       | -                  | u     | u     |       | a a  | <i>u</i> | 1                          | <i>u</i> |
|     | A                  |                                   | A     | A     |                    | A     | Å     | 1     | A    | A        |                            | Á        |
| 100 |                    |                                   |       |       |                    |       |       |       | {    | 3.90     | 12                         | 3.90     |
| 110 | 2.76               | 80                                | 3.90  | 2.77  | 100                | 3.92  | 2.77  | 100   | 3.92 | 2.759    | 100                        | 3.902    |
| 111 | 2.25               | 30                                | 3.897 | 2.25  | 10                 | 3.897 | 2.25  | 70    | 3.90 | 2.253    | 30                         | 3.902    |
| 200 | 1.951              | 70                                | 3.902 | 1.948 | 30                 | 3.896 | 1.95  | 80    | 3.90 | 1.952    | 50                         | 3.904    |
| 210 | 1.744              | 10                                | 3.900 |       |                    |       |       |       |      | 1.746    | 3                          | 3.904    |
|     |                    |                                   |       |       |                    |       |       |       |      |          |                            |          |
| 211 | 1.593              | 90                                | 3.902 | 1.592 | 30                 | 3.900 | 1.60  | 80    | 3.92 | 1.594    | 40                         | 3.904    |
| 220 | 1.378              | 80                                | 3.898 | 1.379 | 23                 | 3.900 | 1.38  | 80    | 3.90 | 1.381    | 25                         | 3.906    |
| 300 |                    |                                   |       |       |                    |       |       |       |      | 1.302    | 1                          | 3.906    |
| 310 |                    |                                   |       | 1.232 | 18                 | 3.896 | 1.23  | 70    | 3.89 | 1.235    | 15                         | 3.905    |
| 311 | 1.176              | 50                                | 3.900 | 1.175 | 2                  | 3.897 | 1.18  | 60    | 3.91 | 1.1774   | 5                          | 3.9050   |
| 222 | 1.127              | 50                                | 3.904 | 1.124 | 3                  | 3,894 | 1.13  | 60    | 3.91 | 1.1273   | 8                          | 3,9051   |
| 321 | 1.043              | 100                               | 3.904 | 1.043 | 15                 | 3.903 | 1.13  | 80    | 3.89 | 1.0437   | 16                         | 3.9052   |
| 400 | .976               | 40                                | 3.904 | 1.045 | 15                 | 5.905 | .978  | 50    | 3.91 | .9765    | 3                          | 3,9060   |
| 411 | .920               | 60                                | 3.903 |       |                    |       | .922  | 70    | 3.91 | . 9205   | 10                         | 3.9053   |
| 331 | . 920              | 00                                | 3.903 |       |                    |       | . 722 | 10    | 5.71 | .8959    | 3                          | 3.9051   |
| 331 |                    |                                   |       |       |                    |       |       |       |      |          | J                          | 0. /001  |
| 420 |                    |                                   |       |       |                    |       | .875  | 80    | 3.91 | . 8731   | 10                         | 3.9046   |
| 332 |                    |                                   |       |       |                    |       | .835  | 70    | 3.92 | .8325    | 6                          | 3.9048   |
| 422 |                    |                                   |       |       |                    |       | .799  | 100   | 3.91 | .7972    | 9                          | 3.9054   |
|     |                    |                                   |       |       |                    |       |       |       |      |          |                            |          |
|     | e value o<br>lines |                                   | 3.903 |       |                    | 3,898 |       |       | 3.91 |          |                            | 3.9050   |

Strontium titanate, SrTiO<sub>3</sub> (cubic)

#### References

 A. Hoffmann, Untersuchungen über Verbindungen mit Perowkitstruktur, Z. physik. Chem. 28b, 65 (1935). [2] V. M. Goldschmidt, Geochem. Verteilungses. der Elemente. Norske Videnskaps-Akad. Oslo, VII (1926) and VIII (1927). From Z. Krist. Strukturbericht I, 333 (1913-1928).

# Barium titanate, BaTiO<sub>3</sub> (tetragonal)

#### **ASTM** cards

| Card number |                          | New                  |           |                                            |  |
|-------------|--------------------------|----------------------|-----------|--------------------------------------------|--|
| O1d         | New                      | index<br>lines       | Radiation | Source                                     |  |
|             | 2570<br>3-0744<br>3-0725 | 2.83<br>1.63<br>0.82 | Copper    | Megaw (pattern unpub-<br>lished).          |  |
|             | 2571<br>3-0745<br>3-0726 |                      |           | A continuation of the pre-<br>ceding card. |  |

Additional published patterns. None. NBS sample. The barium titanate used for the NBS pattern was contributed by the National Lead Co., Titanium Division. The sample was annealed at 1,480°C in a magnesium crucible. After this treatment spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent each of bismuth and strontium; 0.001 to 0.01 percent each of aluminum, calcium, iron, magnesium, lead, and silicon; and 0.0001 to 0.001 percent each of manganese and tin. The NBS sample was too finely divided for refractive index measurements.

Interplanar spacings and intensity measurements. The *d*-spacings of the Megaw pattern were assumed to be in angstrom units.

The three strongest lines for each of the patterns are as follows:

| Patterns          | 1       | 2   | 3   |
|-------------------|---------|-----|-----|
| Megaw             | 101,110 | 211 | 422 |
| Swanson and Fuyat | 101,110 | 111 | 200 |

Lattice constants. The structure was determined by Evans [1] in 1951. The space group is  $C_{4*}^1$ -P4mm with perovskite-structure type and 1(BaTiO<sub>3</sub>) per unit cell. The tetragonal cell inverts to the cubic system at approximately 120 °C, as reported by Megaw [2] and many others. A number of investigators also report changes below room temperature.

All of the unit cell data have been converted from kX to angstrom units and data for three cells have been converted to 26°C from the temperatures indicated in parentheses. The mean linear expansion is  $3.5 \pm 1.5 \times 10^{-6}$ , the change being positive perpendicular to the *c*-axis and negative parallel to it, according to Megaw [2].

| Lattice | constants | in | angstroms |
|---------|-----------|----|-----------|
|---------|-----------|----|-----------|

|      |                                                          | a      | с                     |
|------|----------------------------------------------------------|--------|-----------------------|
| 1947 | Rooksby [3]<br>Megaw [2]                                 | 3.9947 | 4.0336 at 26°C (20°C) |
| 1949 | de Bretteville [4]<br>Danielson [5]<br>Swanson and Fuyat | 3.9863 | 4.0043 at 26℃ (25℃)   |

The density of barium titanate calculated from the NBS lattice constants is 6.012 at 26°C.

| Barium | titanate. | BaTiO. | (tetragonal) |
|--------|-----------|--------|--------------|
|        |           |        |              |

| hkl        | <br>Meg       | <br>5aw   | 1953<br>Swanson and Fuyat                                     |          |  |
|------------|---------------|-----------|---------------------------------------------------------------|----------|--|
| 11.86      | Cu, 1.        | 5405 A    | Cu, 1,5405 A, 26°C                                            |          |  |
|            | Cu, 1.        | 3403 A    | Cu, 1.3405 A, 20 C                                            |          |  |
|            | đ             | I         | đ                                                             | I        |  |
| 001        | A             |           | A                                                             | 12       |  |
| 100        | 3.99          | 20        | { 4.03<br>3.99                                                | 25       |  |
| 101<br>110 | 2.83          | 100       | 2.838                                                         | } 100    |  |
| 111        | 2.31          | 70        | 2.314                                                         | 46       |  |
| 002        | 2.02          | 70        | 2.019                                                         | 12       |  |
| 200        | 2.00          | 80        | 1.997                                                         | 37       |  |
| 102        | 1.80          | 50        | 1.802                                                         | 6        |  |
| 201        | } 1.79        | 60        | { 1.790                                                       | 8        |  |
| 210        | )             | -         | 1.786                                                         | 7        |  |
| 112<br>211 | 1.64          | 70<br>100 | 1.642                                                         | 15<br>35 |  |
| 202        | 1.63          | 80        | 1.634                                                         | 12       |  |
| 220        | 1.41          | 70        | 1.412                                                         | 10       |  |
| 212        | } 1.34        | 50        | \$ 1.337                                                      | 5        |  |
| 221        | ,             |           | 1.332                                                         | 2        |  |
| 103        | 1.28          | 60        | 1.275                                                         | 5        |  |
| 301<br>310 | 1.26          | 70        | $\left\{ \begin{array}{c} 1.264 \\ 1.263 \end{array} \right.$ | 7 9      |  |
| 113        | 1.21          | 50        | 1.214                                                         | 3        |  |
| 311        | 1.21          | 60        | 1.205                                                         | 5        |  |
| 222        | 1.16          | 70        | 1.1569                                                        | 7        |  |
| 203        | 1.12          | 40        | 1.1194                                                        | <1       |  |
| 302<br>320 | 1.11<br>1.11- | 40<br>40  | 1.1161                                                        | 1 < 1    |  |
| 320        | 1,11-         | 40        | 1,1082                                                        | ~1       |  |
| 213        | 1.07          | 80        | 1.0746                                                        | 7        |  |
| 312        | 1.07          | 80        | 1.0703                                                        | 12       |  |
| 321<br>004 | 1.07          | 80<br>40  | 1.0679                                                        | 12<br>1  |  |
| 400        | .999          | 50        | .9984                                                         | 2        |  |
|            | 1             |           |                                                               |          |  |
| 104<br>223 | .978<br>.974  | 20<br>20  | .9784                                                         | <1<br>1  |  |
| 225        | .7(4          | 20        | .7(42                                                         |          |  |

#### Barium titanate, BaTiO<sub>3</sub> (tetragonal)-Con.

| <b></b> |              |       |     |           |           |  |
|---------|--------------|-------|-----|-----------|-----------|--|
|         |              |       |     | 19        | 53        |  |
|         |              |       |     |           |           |  |
| hkl     |              | Meg   | aw  | Swanson a | nd Fuyat  |  |
|         | Cu, 1.5405 A |       |     | Cu, 1.540 | 5 A, 26°C |  |
|         |              | đ     | I   | đ         | I         |  |
|         |              | A     |     | A         |           |  |
| 322     |              | .971  | 50  | .9710     | 1         |  |
| 401     | 3            | .969  | 50  | . 9686    | 1         |  |
| 410     | )            | 050   | (0) |           | 3         |  |
| 114     |              | .950  | 60  | . 9506    | 3         |  |
| 303     |              | .946  | 60  | .9465     | 1         |  |
| 411     | 2            | .942  | 80  | .9419     | 5         |  |
| 330     | 5            |       |     |           |           |  |
| 313     |              | .921  | 60  | . 9208    | 2         |  |
| 331     |              | .917  | 50  | .9166     | 2         |  |
| 204     |              | .900  | 70  | .9008     | 3         |  |
| 402     |              | . 895 | 70  | . 8948    | 5         |  |
| 420     |              | .893  | 80  | . 8929    | 7         |  |
| 214     |              | .878  | 50  | . 8787    | 2         |  |
| 412     |              | .873  | 50  | . 8733    | 1         |  |
| 421     | İ            | .872  | 50  | . 8720    | 1         |  |
| 323     |              | .855  | 80  | .8552     | 7         |  |
| 332     |              | .853  | 80  | .8531     | 6         |  |
| 224     |              | .821  | 70  | .8211     | 3         |  |
| 422     |              | .817  | 100 | .8167     | 4         |  |
|         |              | .807  | 10  |           |           |  |
|         |              | .804  | 40  |           |           |  |
|         |              | .802  | 40  |           |           |  |
|         |              | .799  | 40  |           |           |  |

### Barium titanate, BaTiO<sub>3</sub> (tetragonal)-Con.

| hkl | <br>Meg<br>Cu, 1. |     | 1953<br>Swanson and Fuyat<br>Cu, 1.5405 A, 26°C |   |  |
|-----|-------------------|-----|-------------------------------------------------|---|--|
|     | đ                 | I   | đ                                               | I |  |
|     | A                 |     | A                                               |   |  |
|     | .791              | 70  |                                                 |   |  |
|     | .788              | 80  |                                                 |   |  |
|     | .786              | 80  |                                                 |   |  |
|     | .784              | 100 |                                                 |   |  |
|     | .776              | 50  |                                                 |   |  |

- H. T. Evans, Jr., The crystal structure of tetragonal barium titanate, Acta Cryst. 4, 377 (1951).
- [2] H. D. Megaw, Temperature changes in the crystal structure of barium titanium exide, Proc. Roy. Soc. (London) 189A, 261-283 (1947).
- [3] H. P. Rooksby, Compounds of the structural type of calcium titanate, Nature **155**, 484 (1945).
- [4] A. P. de Bretteville and S. B. Levin, The lattice constants of a single crystal of barium titanate, Am. Mineralogist 32, 686 (1947).
- [5] G. C. Danielson, Domain orientation in polycrystalline barium titanate, Acta Cryst. 2, 90-93 (1949).

# 2.6. Halides

#### Sodium bromide, NaBr (cubic)

#### ASTM cards

| Card number |                          | New                  |            |                                         |  |
|-------------|--------------------------|----------------------|------------|-----------------------------------------|--|
| Old         | New                      | index<br>lines       | Radiation  | Source                                  |  |
| 3281        | 3380<br>1-1225<br>1-1230 | 2.10<br>2.98<br>1.79 | Molybdenum | Davey [1] 1923.                         |  |
| 2197        | 2228<br>1-0900<br>1-0901 | 2.96<br>2.09<br>3.44 | Molybdenum | Hanawalt, Rinn, and<br>Frevel [2] 1938. |  |

Additional published patterns. None.

NBS sample. The sodium bromide used for the NBS pattern was an analytical reagentgrade sample prepared by the Mallinckrodt Chemical Works. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent of potassium, 0.001 to 0.01 percent each of aluminum, calcium, iron, and molybdenum, 0.0001 to 0.001 percent each of barium, magnesium, lead, and silicon, and less than 0.0001 percent of copper. The refractive index of the NBS sample is 1.641.

Interplanar spacings and intensity measurements. Both the Davey and the Hanawalt, Rinn, and Frevel *d*-spacings were converted from kX to angstrom units. The three strongest lines for each of the patterns are as follows:

| Patterns                   | 1   | 2   | 3   |
|----------------------------|-----|-----|-----|
| Davey                      | 220 | 200 | 311 |
| Hanawalt, Rinn, and Frevel | 200 | 220 | 111 |
| Swanson and Fuyat          | 200 | 111 | 220 |

Lattice constant. The structure, determined by Davey [1] in 1923, is the facecentered, sodium chloride type,  $O_h^5$ -Fm3m with 4(NaBr) per unit cell.

A group of unit-cell data was converted from kX to angstrom units for comparison with the NBS values. The coefficient of expansion according to Ieviņš, Straumanis, and Karlsons is  $42.52 \times 10^{-6}$ .

| Lattice | constant | in | angstroms |
|---------|----------|----|-----------|
|---------|----------|----|-----------|

| 1921         Wyckoff [3]           1923         Davey [1]           1926         Ott [4]           1938         Ieviņš, Straumanis, and Karlsons [5]           1942         Batuecas and Fernandez-Alonso [6]           1949         Nickels, Fineman, and Wallace [7]           1953         Swanson and Fuyat | 5.951<br>5.974<br>5.97324 at 26°C<br>5.984<br>5.9737 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|

The density of sodium bromide calculated from the NBS lattice constant is 3.200 at 26°C.

| hkl | 1923<br>Davey<br>Mo, 0.709 A |     | Davey Hanawalt, Rinn,<br>and Frevel |       | 1953<br>Swanson and<br>Fuyat<br>Cu, 1.5405 A, 26°C |       |        |     |        |
|-----|------------------------------|-----|-------------------------------------|-------|----------------------------------------------------|-------|--------|-----|--------|
|     | đ                            | I   | a                                   | đ     | I                                                  | a     | đ      | I   | a      |
|     | A                            |     | A                                   | A     |                                                    | A     | A      |     | A      |
| 111 | 3.46                         | 25  | 5.99                                | 3.45  | 45                                                 | 5.98  | 3.449  | 64  | 5.974  |
| 200 | 2.99                         | 80  | 5.98                                | 2.97  | 100                                                | 5.94  | 2.988  | 100 | 5.976  |
| 220 | 2.10                         | 100 | 5.94                                | 2.09  | 63                                                 | 5.91  | 2.113  | 63  | 5.976  |
| 311 | 1.795                        | 30  | 5.953                               | 1.79  | 20                                                 | 5.94  | 1.802  | 21  | 5.977  |
| 222 | 1.717                        | 30  | 5.948                               | 1.71  | 20                                                 | 5.92  | 1.725  | 19  | 5.976  |
| 400 | 1.486                        | 10  | 5.944                               | 1.490 | 10                                                 | 5.960 | 1.495  | 8   | 5,980  |
| 331 | 1.366                        | 10  | 5.954                               | 1.365 | 5                                                  | 5.950 | 1.371  | 7   | 5.976  |
| 420 | 1.332                        | 30  | 5.957                               | 1.332 | 35                                                 | 5.957 | 1.337  | 15  | 5.979  |
| 422 | 1.215                        | 20  | 5.952                               | 1.218 | 10                                                 | 5.967 | 1.221  | 9   | 5.982  |
| 511 |                              |     |                                     | 1.147 | 5                                                  | 5.960 | 1.1506 | 4   | 5.9787 |
| 440 | 1.051                        | 5   | 5.945                               | 1.055 | 5                                                  | 5.968 | 1.0566 | 2   | 5,9770 |
| 531 | 1.007                        | 5   | 5.957                               |       |                                                    |       | 1.0103 | 2   | 5.9770 |

Sodium bromide, NaBr (cubic)

#### Sodium bromide, NaBr (cubic)-Con.

| hkl | 1923<br>Davey<br>Mo, 0.709 A     |    | 1938<br>Henawelt, Rinn,<br>and Frevel<br>Mo, 0.709 A |   |       | 1953<br>Swanson and<br>Fuyat<br>Cu, 1.5405 A, 26℃ |                |        |        |
|-----|----------------------------------|----|------------------------------------------------------|---|-------|---------------------------------------------------|----------------|--------|--------|
|     | ġ                                | I  | a                                                    | d | I     | a                                                 | đ              | I      | a      |
|     | A                                |    | 1.                                                   | А |       | A                                                 | A              |        | A      |
| 600 | . 991                            | 10 | 5.946                                                |   |       |                                                   | . 9963         | 3      | 5.9778 |
| 620 | . 940                            | 10 | 5.945                                                |   |       |                                                   | . 9451         | 2      | 5.9773 |
| 533 |                                  |    |                                                      |   |       |                                                   | . 9117         | <1     | 5.9784 |
| 622 |                                  |    |                                                      |   |       |                                                   | .9012          | 2      | 5.9779 |
| 444 |                                  |    |                                                      |   |       |                                                   | .86 <b>2</b> 6 | <1     | 5.9763 |
| 711 |                                  |    |                                                      |   |       |                                                   | .8370          | 1      | 5.9774 |
| 640 |                                  |    |                                                      |   |       |                                                   | . 8289         | 1      | 5.9773 |
| 642 | . 796                            | 5  | 5.957                                                |   |       |                                                   | .7987          | 2      | 5.9769 |
|     | Average value of last five 5.950 |    |                                                      |   | 5.960 |                                                   |                | 5.9772 |        |

- W. P. Davey, Precision measurements of crystals of the alkali halides, Phys. Rev. 21, 143-161 (1923).
- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [3] R. W. G. Wyckoff, The crystal structures of the alkali halides, J. Wash. Acad. Sci. 11, 429-434 (1921).
- [4] H. Ott, Die Strukturen von MnO, MnS, AgF, NiS, SnJ<sub>4</sub>, SrCl<sub>2</sub>, BaF<sub>2</sub>; Präzisionsmessungen einiger Alkalihalogenide, Z. Krist. **63**, 222-230 (1926).
- [5] A. Ieviņš, M. Straumanis, and K. Karlsons, Präzisionsbestimmung von Gitterkonstanten hygroskopischer Verbindungen (LiCl, NaBr), Z. physik. Chem. 40B, 146-150 (1938).
- [6] T. Batuecas and J. I. Fernández-Alonso, Pycnometrische Präzisionsmethode für Flüssigkeiten und feste Körper. IV Neubestimmung der Dichte von reinem Kaliumchlorid, Kaliumbromid und Natriumbromid bei O°C, Z. physik. Chem. A190, 272-277 (1942).
- [7] J. E. Nickels, M. A. Fineman and W. E. Wallace, Xray diffraction studies of sodium chloride-sodium bromide solid solutions, J. Phys. & Colloid Chem. 53, 625-628 (1949).

#### Cesium bromide, CsBr (cubic)

#### **ASTM** cards

| Card number |                          | New                  |           |                 |  |  |  |  |
|-------------|--------------------------|----------------------|-----------|-----------------|--|--|--|--|
| Old         | New                      | index<br>lines       | Radiation | Source          |  |  |  |  |
| 2054        | 2138<br>1-0866<br>1-0843 | 3.03<br>1.75<br>2.15 |           | Davey [1] 1923. |  |  |  |  |

The following ASTM card for body-centered cesium bromide at 455 °C. is also in the file but the ASTM index does not specify that this is a high temperature form.

| <br>4-0608 | 1.79 | Copper | Wagner<br>1923. | and Lippert | [2] |
|------------|------|--------|-----------------|-------------|-----|
| 4-0609     | 2.19 |        |                 |             |     |

Additional published patterns. None.

NBS sample. The cesium bromide sample used for the NBS pattern was prepared at the NBS by R. B. Johannesen from cesium chloride. Spectrographic analysis at the NBS showed the following impurities: 0.001 to 0.01 percent each of calcium, potassium, and sodium and less than 0.001 percent each of aluminum, barium, copper, iron, magnesium, and silicon. The refractive index of the NBS sample is 1.703.

Interplanar spacings and intensity measurements. The *d*-spacings for the Davey pattern were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

| Patterns          | 1   | 2   | 3   |
|-------------------|-----|-----|-----|
| Davey             | 110 | 211 | 200 |
| Swanson and Fuyat | 110 | 211 | 321 |

**Lattice constant.** The structure was determined by Wyckoff [3] in 1921. The simplecubic lattice has space group  $O_h^1$ -Pm3m, cesium chloride-structure type, and 1(CsBr) per unit cell.

Several unit cell values were converted from kX to angstrom units for comparison with the NBS values. Lattice constant in angstroms

| 1921<br>1923 | Wyckoff [3]<br>Davey [1]<br>Wagner and Lippert [2] | 4.31<br>4.297<br>4.296 |
|--------------|----------------------------------------------------|------------------------|
| 1936         | Wagner and Lippert [2]                             | 4.296                  |
| 1953         | Swanson and Fuyat                                  | 4.2953 at 25℃          |
|              |                                                    |                        |

The density of cesium bromide calculated from the NBS lattice constant is 4.456 at 25°C.

Cesium bromide, CsBr (cubic)

|      |           | 1922     |       |        | 1953     |             |  |
|------|-----------|----------|-------|--------|----------|-------------|--|
| hkl  |           | Davey    |       | Swans  | on and 1 | l Fuyat     |  |
|      | Мо        | o, 0.709 | A     | Cu, 1. | 5405 A,  | 25 <b>℃</b> |  |
|      | đ         | I        | a     | d      | I        | a           |  |
|      | A         |          | A     | A      |          | A           |  |
| 100  | 4.34      | 1        | 4.34  | 4.29   | 8        | 4.29        |  |
| 110  | 3.04      | 100      | 4.30  | 3.039  | 100      | 4.298       |  |
| 111  | 2.42      | .75      | 4.20  | 2.480  | 3        | 4.295       |  |
| 200  | 2.15      | 10       | 4.31  | 2.148  | 18       | 4.296       |  |
| 210  | 1,929     | .75      | 4.313 | 1,921  | 6        | 4.295       |  |
|      |           |          |       |        | -        |             |  |
| 211  | 1.754     | 35       | 4.295 | 1.754  | 43       | 4.296       |  |
| 220  | 1.523     | 7        | 4.308 | 1.519  | 18       | 4.296       |  |
| 300  | 1.434     | .5       | 4.302 | 1.432  | 3        | 4.296       |  |
| 310  | 1.359     | 5        | 4.297 | 1.358  | 16       | 4.294       |  |
| 311  |           |          |       | 1.295  | <1       | 4.295       |  |
|      |           |          |       |        |          |             |  |
| 222  | 1.242     | 1.5      | 4.304 | 1.240  | 6        | 4.295       |  |
| 320  |           |          |       | 1.1919 | 1        | 4.2975      |  |
| 321  | 1.150     | 3.5      | 4.304 | 1.1482 | 20       | 4.2962      |  |
| 400  | 1.075     | .75      | 4.301 | 1.0741 | 1        | 4.2964      |  |
| 411  | 1.013     | 1.5      | 4.297 | 1.0125 | 9        | 4.2957      |  |
| 331  |           |          |       | .9856  | 1        | 4.2961      |  |
| 420  | .959      | .75      | 4,289 | .9605  | 5        | 4.2955      |  |
| 332  | .916      | .75      | 4.296 | .9003  | 3        | 4.2950      |  |
| 422  | . 877     | .75      | 4.296 | .8768  | 3        | 4.2954      |  |
| 500  | 1011      |          | 1.270 | .8590  | <1       | 4.2950      |  |
| 000  |           |          |       | .0390  |          | 4.2750      |  |
| 510  | . 843     | 1.5      | 4.297 | . 8424 | 9        | 4.2954      |  |
|      | ge of las | t five   | 4.295 |        |          | 4.2953      |  |
| TTHE | 9         |          | 4.273 |        |          | 4.2933      |  |

- W. P. Davey, Precision measurements of crystals of the alkali halides, Phys. Rev. 21, 143-161 (1923).
- [2] G. Wagner and L. Lippert, Uber polymorphe Umwandlung bei einfachen Ionengittern. I. Versuche zur Umwandlung von CsCl- in NaCl-Gitter durch Erhitzen, Z. physik. Chem. B31, 263-274 (1936).
- [3] R. W. G. Wyckoff, The crystal structures of the alkali halides, J. Wash. Acad. Sci. 11, 429-434 (1921).

### Cesium dichloroiodide, CsICl<sub>2</sub> (hexagonal)

#### **ASTM** cards

| Card | ard number               |                      |            |                                         |  |
|------|--------------------------|----------------------|------------|-----------------------------------------|--|
| Old  | New                      | index<br>lines       | Radiation  | Source                                  |  |
| 1857 | 1795<br>1-0758<br>1-0769 | 3.16<br>4.07<br>1.71 | Molybdenum | Hanawalt, Rinn, and<br>Frevel [1] 1938. |  |

Additional published patterns. None.

NBS sample. The cesium dichloroiodide used for the NBS pattern was prepared by R. B. Johannesen at the NBS. The product was purified by recrystallization three times from dilute hydrochloric acid. Spectrographic analysis at the NBS showed the following impurities: 0.001 to 0.01 percent each of calcium, potassium, and sodium; and less than 0.001 percent each of aluminum, barium, copper, iron, magnesium, and silicon. The refractive indices of the NBS sample are as follows:  $\omega = 1.611$  and  $\epsilon = 1.645$  with positive optical sign.

Interplanar spacings and intensity measurements. The Hanawalt *d*-spacings were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

| Patterns                   | 1   | 2   | 3   |
|----------------------------|-----|-----|-----|
| Hanawalt, Rinn, and Frevel | 110 | 102 | 124 |
| Swanson and Fuyat          | 110 | 102 | 014 |

Lattice constants. The structure was determined by Wyckoff [2] in 1920. The space group is  $D_{3d}^{-}R\overline{3}m$  with  $3(CsICl_2)$  per unit cell. Cesium dichloroiodide is representative of the group of similar rhombohedral compounds that possess a distorted cesium chloride-type arrangement.

Wyckoff's lattice constants have been converted from kX to angstrom units for comparison with the NBS values.

| Lattice | constants | in | angstroms |
|---------|-----------|----|-----------|
|---------|-----------|----|-----------|

|      |                   | a     | с              |
|------|-------------------|-------|----------------|
| 1920 | Wyckoff [2]       | 6.331 | 12.213         |
| 1953 | Swanson and Fuyat | 6.328 | 12.216 at 26°C |
|      |                   |       |                |

The density of cesium dichloroiodide calculated from the NBS lattice constants is 3.888 at 26 °C.

| Cesium | dichloroiodide, | CsICl. | (hexagonal) |
|--------|-----------------|--------|-------------|
|--------|-----------------|--------|-------------|

|               |         |           | 2 .                |     |  |
|---------------|---------|-----------|--------------------|-----|--|
|               |         | 938       |                    | 53  |  |
|               |         | Rinn, and | Swanson and        |     |  |
| hkl           | Fre     | vel       | Fuy                | at  |  |
|               | Mo, 0   | .709 A    | Cu, 1.5405 A, 26°C |     |  |
|               | d       | I         | d                  | I   |  |
|               | A       |           | A                  |     |  |
| 102           | 4.08    | 53        | 4.081              | 75  |  |
| 110           | 3.17    | 100       | 3.164              | 100 |  |
| 014           | 2.67    | 40        | 2.668              | 50  |  |
| 022           | 2.51    | 20        | 2.499              | 23  |  |
| 204           | 2.03    | 27        | 2.039              | 25  |  |
| 212           | 1.96    | 20        | 1.961              | 15  |  |
| 300           | 1.82    | 20        | 1.827              | 15  |  |
| 124           | 1.71    | 53        | 1.713              | 32  |  |
| 220           | 1.58    | 13        | 1.582              | 9   |  |
| 132           | 1.475   | 13        | 1.475              | 6   |  |
| 108<br>314    |         |           | 1.471              | 7   |  |
| 306           | 1.360   | 20        | 1.360              | 10  |  |
| 042           |         |           | 1.337              | 4   |  |
| 028           | 1.334   | 7         | 1.334              | 4   |  |
| 231           | 1.253   | 8         | 1,250              | 5   |  |
| 044<br>322    | ]}      | Ű         |                    |     |  |
| 218           | 1.227   |           | 1.231              | 4   |  |
| 410           | 1.227   | 8         | 1.229<br>1.1958    | 3   |  |
|               |         |           |                    | 5   |  |
| 0.1.10        | 1.193   | 11        | 1.1923             | 4   |  |
| 234           | 1.163   | 7         | 1.1624             | 3   |  |
| 325<br>2•0•10 | } 1.117 | 4         | 1.1169             | 3   |  |
| 047           |         |           | 1.0775             | 2   |  |
| 2.1.10        | 1.053   | 7         | 1,0522             | 4   |  |
| 421           | 1.032   | 5         | 1.0318             | 4   |  |
| 242           | }       |           | 1.0209             | 1   |  |
| 333<br>424    | )       |           | . 9807             | 1   |  |
|               |         |           |                    |     |  |
| 328           |         |           | .9705              | 1   |  |
| 3•1•10        |         |           | .9522              | 2   |  |
| 336           |         |           | .9364              | 2   |  |
| 520<br>614    |         |           | .8777              | 1   |  |
| 526           | }       |           | .8060              | 1   |  |
|               |         |           | 1                  |     |  |

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [2] R. W. G. Wyckoff, The crystal structure of cesium dichloroiodide, J. Am. Chem. Soc. 42, 1100-1116 (1920).

# 2.7. Chlorates

### Sodium chlorate, NaClO<sub>3</sub> (cubic)

#### **ASTM** cards

| Card<br>Old | number<br>New            | New<br>index<br>lines | Radiation  | Source                                  |
|-------------|--------------------------|-----------------------|------------|-----------------------------------------|
| 2227        | 2296<br>1-0917<br>1-0908 | 2.94<br>3.28<br>1.76  | Molybdenum | Hanawalt, Rinn, and<br>Frevel [1] 1938. |

#### Additional published patterns

| Source                                       | Radiation        | Wavelength      |
|----------------------------------------------|------------------|-----------------|
| Kolkmeijer, Bijvoet, and Karssen [2]<br>1921 | Copper<br>Copper | К <sub>а1</sub> |

NBS sample. The sodium chlorate used for the NBS pattern was procured from the Fisher Scientific Co. Spectrographic analysis at the NBS showed the following impurities: 0.001 to 0.01 percent of calcium; 0.0001 to 0.001 percent each of aluminum, iron, magnesium, and silicon; and less than 0.0001 percent of copper. The refractive index of the NBS sample is 1.515.

Interplanar spacings and intensity measurements. The *d*-spacings for the Kolkmeijer, Bijvoet, and Karssen and the Vegard patterns were calculated from Bragg angle data while the *d*-spacings for the Hanawalt, Rinn, and Frevel pattern were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

| Patterns                         | 1   | 2   | 3  |
|----------------------------------|-----|-----|----|
| Kolkmeijer, Bijvoet, and Karssen | 210 | 321 | 20 |
| Vegard                           | 321 | 210 | 51 |
| Hanawalt, Rinn, and Frevel       | 210 | 200 | 32 |
| Swanson and Fuyat                | 210 | 200 | 32 |

**Lattice constant.** The structure was determined by Dickinson and Goodhue [4] in 1921. The space group is  $T^4$ -P2<sub>1</sub>3 with 4(NaClO<sub>3</sub>) per unit cell. Sodium chlorate is a prototype for other similar structures.

Several unit cell values have been converted from kX to angstrom units for comparison with the NBS values.

| Lattice | consta | int in | angstroms |  |
|---------|--------|--------|-----------|--|
| <br>    |        |        |           |  |
| <br>    |        |        |           |  |

The density of sodium chlorate calculated from the NBS lattice constant is 2.486 at 25°C.

| hkl |         | 1921<br>ijer, Bi<br>d Karss<br>, 1.540 | en    | Cu,   | 1922<br>Vegard<br>1.540 | 5 A   | a    | 1938<br>awalt, R<br>nd Freve<br>o, 0.709 | 1    |       | 1953<br>son and<br>.5405 A, |       |
|-----|---------|----------------------------------------|-------|-------|-------------------------|-------|------|------------------------------------------|------|-------|-----------------------------|-------|
|     | d       | I                                      | a     | đ     | I                       | a     | d    | I                                        | а    | d     | I                           | a     |
|     | A       |                                        | A     | A     |                         | A     | A    |                                          | A    | A     |                             | A     |
| 110 | 4.77    | w                                      | 6.75  | 4.69  | 10                      | 6.63  | 4.66 | 20                                       | 6.59 | 4.65  | 23                          | 6.58  |
| 111 | 3.80    | w                                      | 6.58  | 3.86  | 60                      | 6.69  | 3.80 | 33                                       | 6.58 | 3.797 | 35                          | 6.577 |
| 200 | a 3.255 | S                                      | 6.510 | 3.292 | 60                      | 6.584 | 3.29 | 67                                       | 6.58 | 3.289 | 65                          | 6.578 |
| 210 | 2.932   | vs                                     | 6.556 | 2.957 | 70                      | 6.612 | 2.95 | 100                                      | 6.60 | 2.941 | 100                         | 6.576 |
| 211 | 2.673   | m                                      | 6.547 | 2.695 | 50                      | 6.601 | 2.69 | 40                                       | 6.59 | 2.685 | 41                          | 6.577 |
| 000 |         |                                        |       |       |                         |       |      | -                                        |      |       |                             |       |
| 220 |         |                                        |       |       |                         |       | 2.32 | 1                                        | 6.56 | 2.325 | 2                           | 6.576 |
| 221 | 2.179   | m                                      | 6.537 | 2,195 | 30                      | 6.585 | 2.18 | 33                                       | 6.54 | 2.192 | 26                          | 6.576 |
| 310 | 2.066   | vw                                     | 6.533 |       |                         |       | 2.07 | 7                                        | 6.55 | 2.080 | 6                           | 6.578 |
| 311 | 1.975   | W                                      | 6.550 | 1.976 | 30                      | 6.554 | 1.98 | 13                                       | 6.57 | 1.983 | 11                          | 6.577 |
| 222 |         |                                        |       |       |                         |       | 1.89 | 1                                        | 6.55 | 1.898 | 2                           | 6.575 |

Sodium chlorate, NaClO, (cubic)

| Sodium chlorate, NaClO, (cubic)-Con | Sodium | chlorate, | NaC10 | (cubic)-Con. |
|-------------------------------------|--------|-----------|-------|--------------|
|-------------------------------------|--------|-----------|-------|--------------|

| here         1921         1932         1932         1933         Sease-response response respons |       |           |        | ····· |       |        |       | 3 1   |         | ·    |                   |         |         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|--------|-------|-------|--------|-------|-------|---------|------|-------------------|---------|---------|--|
| hkl         and Karssen         Cu, 1.540 × K         Cu, 1.540 × K         no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |           |        |       |       | 1922   |       |       | 1938    |      |                   | 1953    |         |  |
| d         I         a         d         I         a         d         I         a         d         I         a         d         I         a           320         1.816         vw         6.559         1.759         100         6.591         1.83         7         6.60         1.824         7         6.574           400         1.753         vs         6.564         1.594         30         6.572         1.59         11         6.56         1.644         2         6.576           410         1.592         w         6.560         1.519         11         6.56         1.644         2         6.576           411           1.555         10         6.571         1.55         3         6.58         1.595         10         6.578           311         1.505         vw         6.560         1.512         20         6.591         1.51         11         6.69         1.407         3         6.578           322           1.407         1         6.60         1.402         2         6.575           333         1.227         m         6.562 <td< td=""><td>hkl</td><td></td><td>- ·</td><td></td><td></td><td>Vegard</td><td></td><td></td><td></td><td></td><td colspan="4">Swanson and Fuyat</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | hkl   |           | - ·    |       |       | Vegard |       |       |         |      | Swanson and Fuyat |         |         |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | Cu,       | 1.5405 | 5 A   | Cu,   | 1.5405 | A     | Мо    | , 0.709 | A    | Cu, 1.            | 5405 A, | 25 ℃    |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | d         | τ      | a     | d     | T      | a     | đ     | т       | a    | đ.                | T       | a       |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |           |        |       |       |        |       |       |         |      |                   |         |         |  |
| 321       1.753       vs       6.559       1.757       42       6.574         400         1.64       1       6.564       1.644       2       6.576         410       1.592       w       6.564       1.594       30       6.572       1.59       3       6.566       1.644       2       6.576         411         1.555       10       6.597       1.55       3       6.56       1.597       3       6.576         331       1.505       vw       6.576       1.435       30       6.576       1.437       13       6.59       1.470       3       6.576         420         1.471       10       6.576       1.437       13       6.59       1.470       3       6.576         322           1.437       13       6.59       1.435       9       6.576         420          1.437       13       6.59       1.435       9       6.576         1.423       30       6.572       1.437       13       6.59       1.432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 320   |           | vw     |       |       | 20     | 1     |       | 7       |      |                   | 7       |         |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |           |        |       |       |        |       |       |         |      |                   |         |         |  |
| 410       1.592       w       6.564       1.594       30       6.572       1.59       11       6.56       1.595       10       6.576         331       1.505       vw       6.560       1.512       20       6.591       1.51       11       6.58       1.509       7       6.576         420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |           |        | 01005 | 1.105 |        | 0.002 |       |         |      |                   |         |         |  |
| 411         1.555       10       6.597       1.55       3       6.58       1.550       3       6.576         331       1.505       vw       6.560       1.512       20       6.591       1.51       11       6.588       1.509       7       6.578         420          1.471       10       6.579       1.413       13       6.59       1.470       3       6.576         332           1.437       13       6.59       1.435       9       6.576         422           1.447       1       6.60       1.442       2       6.576         422           1.344       1       6.58       1.345       2       6.576         421       1.287       m       6.562       1.291       70       6.583       1.292       3       6.59       1.2867       5       6.574         520         1.224       5       6.59       1.208       4       6.5742         531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 1.592     |        | 6.564 | 1.594 |        | 6.572 |       |         |      |                   |         |         |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 1         |        |       |       |        |       |       |         |      |                   |         |         |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |           |        |       |       |        |       |       |         |      |                   |         |         |  |
| 4211.435w6.5761.435306.5761.437136.591.43596.5763321.34416.601.40226.5744301.34416.581.34226.5744301.32016.601.31526.5745101.287m6.5621.291706.5831.29236.591.2895146.57525201.224306.5631.26756.581.267756.57425211.224306.5731.20256.581.200456.57495221.142106.5601.14736.591.144526.57515311.110106.5671.13636.601.11426.57516001.068106.5971.04416.601.039726.57566111.027706.5761.03086.601.030726.57516201.027706.5761.03086.601.026986.57546331.02616.57516.5751641 <td></td> <td>1.505</td> <td>vw</td> <td>6.560</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 1.505     | vw     | 6.560 |       |        |       |       |         |      |                   |         |         |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |           |        |       |       |        |       |       |         |      |                   |         |         |  |
| 422          1.344       1       6.58       1.342       2       6.574         430           1.320       1       6.60       1.315       2       6.575         510       1.287       m       6.562       1.291       70       6.583       1.267       5       6.58       1.2657       5       6.574         520         1.224       30       6.591       1.224       5       6.59       1.2857       5       6.5749         521         1.200       20       6.573       1.202       5       6.59       1.1445       2       6.5742         521         1.142       10       6.560       1.147       3       6.59       1.1445       2       6.5741         531         1.110       10       6.560       1.147       3       6.60       1.1142       6.5751         610         1.110       10       6.567       1.116       3       6.60       1.0144       6.5755       6.5755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 1.435     | w      | 6.576 | 1.435 |        | 6.576 |       |         |      |                   |         |         |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |           |        |       |       |        |       |       |         |      |                   |         |         |  |
| 5101.287m6.5621.291706.5831.29236.591.2895146.57525111.263306.5631.26756.581.265756.57495201.224306.5911.22456.591.220846.57425211.224306.5911.22456.581.200446.57495221.142106.5601.14736.601.127626.57505311.110106.5671.11636.601.111426.57516001.110106.5671.11636.601.011426.57546101.068106.5841.07036.601.039726.57566201.043106.5761.03086.601.026986.57546311.027706.5761.03086.601.026986.57546311.002746.57516301.04416.601.03972 <td>422</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.344</td> <td>I</td> <td>6.58</td> <td>1.342</td> <td>2</td> <td>6.5/4</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 422   |           |        |       |       |        |       | 1.344 | I       | 6.58 | 1.342             | 2       | 6.5/4   |  |
| 5101.287m6.5621.291706.5831.29236.591.2895146.57525111.263306.5631.26756.581.265756.57495201.224306.5911.22456.591.220846.57425211.224306.5911.22456.581.200446.57495221.142106.5601.14736.601.127626.57505311.110106.5671.11636.601.111426.57516001.110106.5671.11636.601.011426.57546101.068106.5841.07036.601.039726.57566201.043106.5761.03086.601.026986.57546311.027706.5761.03086.601.026986.57546311.002746.57516301.04416.601.03972 <td>430</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.320</td> <td>1</td> <td>6.60</td> <td>1.315</td> <td>2</td> <td>6.575</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 430   |           |        |       |       |        |       | 1.320 | 1       | 6.60 | 1.315             | 2       | 6.575   |  |
| 511         1.263       30       6.563       1.267       5       6.58       1.2657       5       6.5768         520         1.224       30       6.591       1.224       5       6.59       1.2208       4       6.5742         521         1.200       20       6.573       1.202       5       6.58       1.2004       5       6.5747         530         1.142       10       6.560       1.147       3       6.69       1.1425       2       6.5751         531         1.110       10       6.567       1.116       3       6.60       1.1114       2       6.5751         600          1.096       1       6.58       1.0958       1       6.5756         611         1.043       10       6.597       1.044       1       6.60       1.0269       8       6.5754         541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |           | _      | 6.562 | 1.291 | 70     | 6.583 |       |         |      |                   |         |         |  |
| 521         1.200       20       6.573       1.202       5       6.58       1.2004       5       6.5749         522          1.142       10       6.560       1.147       3       6.59       1.1445       2       6.5749         530          1.142       10       6.560       1.147       3       6.60       1.1276       2       6.5750         531         1.110       10       6.567       1.116       3       6.60       1.1114       2       6.5751         600          1.110       10       6.567       1.116       3       6.60       1.0144       2       6.5751         610         1.068       10       6.584       1.070       3       6.60       1.0666       2       6.5754         621         1.027       70       6.576       1.030       8       6.60       1.0269       8       6.5754         533         1.027       70       6.576 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td></td><td></td><td>5</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |        |       |       |        |       |       | 5       |      |                   | 5       |         |  |
| 522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 520   |           |        |       | 1.224 | 30     | 6.591 | 1.224 | 5       | 6.59 | 1.2208            | 4       | 6.5742  |  |
| 530          1.110       10       6.567       1.132       1       6.60       1.1276       2       6.5750         531          1.110       10       6.567       1.116       3       6.60       1.1114       2       6.5751         600          1.096       1       6.58       1.0958       1       6.5748         610         1.096       1       6.60       1.0958       1       6.5748         610        1.068       10       6.584       1.070       3       6.60       1.0666       2       6.5756         621        1.043       10       6.597       1.044       1       6.60       1.0269       8       6.5754         533        1.027       70       6.576       1.030       8       6.60       1.0269       8       6.5751         630            1.0027       4       6.5761         631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 521   |           |        |       | 1.200 | 20     | 6.573 | 1.202 | 5       | 6.58 | 1.2004            | 5       | 6.5749  |  |
| 530          1.110       10       6.567       1.132       1       6.60       1.1276       2       6.5750         531          1.110       10       6.567       1.116       3       6.60       1.1114       2       6.5751         600          1.096       1       6.58       1.0958       1       6.5748         610         1.096       1       6.60       1.0958       1       6.5748         610        1.068       10       6.584       1.070       3       6.60       1.0666       2       6.5756         621        1.043       10       6.597       1.044       1       6.60       1.0269       8       6.5754         533        1.027       70       6.576       1.030       8       6.60       1.0269       8       6.5751         630            1.0027       4       6.5761         631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 599   |           |        |       | 1 142 | 10     | 6 560 | 1 147 | 3       | 6 59 | 1 1445            | 2       | 6 57 47 |  |
| 531         1.110       10       6.567       1.116       3       6.60       1.1114       2       6.5751         600            1.096       1       6.58       1.0958       1       6.5748         610             1.096       1       6.58       1.0958       1       6.5748         610          1.068       10       6.584       1.070       3       6.60       1.0666       2       6.5750         620         1.043       10       6.597       1.044       1       6.60       1.0269       8       6.5754         621         1.027       70       6.576       1.030       8       6.60       1.0269       8       6.5754         533             1.0027       4       6.5751         630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |           |        |       | 1.142 | 10     | 0.300 |       |         |      |                   |         |         |  |
| 600         1.096       1       6.58       1.0958       1       6.5748         610            1.0810       1       6.5748         611            1.0810       1       6.5775         611         1.068       10       6.584       1.070       3       6.60       1.0666       2       6.5755         620         1.043       10       6.597       1.044       1       6.60       1.0397       2       6.5756         621         1.027       70       6.576       1.030       8       6.60       1.0146       4       6.5754         533            1.0027       4       6.5751         630           9803       2       6.5761         631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |           |        |       | 1 110 | 10     | 6 567 |       |         |      |                   |         |         |  |
| 610           1.0810       1       6.5755         611         1.068       10       6.584       1.070       3       6.60       1.0666       2       6.5756         620         1.043       10       6.597       1.044       1       6.60       1.0397       2       6.5756         621         1.027       70       6.576       1.030       8       6.60       1.0269       2       6.5754         541         1.027       70       6.576       1.030       8       6.60       1.0269       2       6.5754         533            1.0027       4       6.5754         630           9803       2       6.5761         631          99933       1       6.5751         632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |           |        |       |       |        | 0.001 |       |         |      |                   | , ,     |         |  |
| 611         1.068       10       6.584       1.070       3       6.60       1.0666       2       6.5750         621         1.027       70       6.576       1.044       1       6.60       1.0269       2       6.5754         621         1.027       70       6.576       1.030       8       6.60       1.046       4       6.5754         533             1.027       4       6.5754         630             9803       2       6.5761         631            9903       1       6.5751         632            9393       1       6.5751         632           9393       1       6.5751         710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           |        |       |       |        |       | 11050 |         |      |                   |         |         |  |
| 620         1.043       10       6.597       1.044       1       6.60       1.0397       2       6.5756         621         1.027       70       6.576       1.030       8       6.60       1.0269       8       6.5754         531              1.0146       4       6.5754         630              9803       2       6.5761         630                9803       2       6.5761         631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |           |        |       |       |        |       |       |         |      |                   |         |         |  |
| 621         1.027       70       6.576       1.030       8       6.60       1.0269       8       6.5754         533            1.0146       4       6.5754         630            1.0027       4       6.5761         631            9803       2       6.5761         631            9803       1       6.5768         632            99393       1       6.5751         710            99393       1       6.5751         710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |           |        |       | 1.068 | 10     |       | 1.070 |         | 6.60 |                   |         |         |  |
| 541          1.0146       4       6.5754         533          1.0027       4       6.5754         630           1.0027       4       6.5751         631            9803       2       6.5761         631           9697       1       6.5768         632          99393       1       6.5751         710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4     |           |        |       |       |        |       |       |         |      |                   |         |         |  |
| 533           1.0027       4       6.5751         630           9803       2       6.5761         631            9903       2       6.5761         632           9393       1       6.5768         632           9393       1       6.5768         632           9393       1       6.5768         632          9393       1       6.5751         710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1     |           |        |       | 1.027 | 70     | 6.576 | 1.030 | 8       | 6.60 |                   |         |         |  |
| 630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |           |        |       |       |        |       |       |         |      |                   | _       |         |  |
| 631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 533   |           |        |       |       |        |       |       |         |      | 1.0027            | 4       | 6.5751  |  |
| 631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 630   |           |        |       |       |        |       |       |         |      | .9803             | 2       | 6.5761  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |           |        |       |       |        |       |       |         |      |                   |         |         |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |           |        |       |       |        |       |       |         |      |                   | 1       |         |  |
| 711           9207       1       6.5751         720            9033       3       6.5761         720            8949       2       6.5761         Average of the last            8949       2       6.5761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |           |        |       |       |        |       |       |         |      |                   | 3       |         |  |
| 721            8949       2       6.5761         Average of the last            8949       2       6.5761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 711   |           |        |       |       |        |       |       |         |      | .9207             | 1       |         |  |
| 721            8949       2       6.5761         Average of the last            8949       2       6.5761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 790   |           |        |       |       |        |       |       |         |      | 0.022             |         | 6 5761  |  |
| Average of the last     Image: Constraint of the last     Image: Constraint of the last     Image: Constraint of the last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           |        |       |       |        |       |       |         |      |                   |         |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (21   |           |        |       |       |        |       |       |         |      | , 0949            | 2       | 0.3/01  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Avera | ge of the | last   |       |       |        |       |       |         | 1    |                   |         |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |           |        | 6.564 |       |        | 6.577 |       |         | 6,60 |                   |         | 6.5755  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |           |        |       |       |        | 0.0.1 |       |         |      |                   |         |         |  |

<sup>a</sup>d-spacing 3.553, vw was omitted as it cannot be indexed.

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [2] N. H. Kolkmeijer, J. M. Bijvoet, and A. Karssen, Investigation by means of X-rays of the crystal structure of sodium chlorate and sodium bromate, Koninkl. Akad. Wetenschap. Amsterdam 23, 644-653 (1921).
- [3] L. Vegard, Die Lage der Atome in den optisch aktiven Kristallen NaClO<sub>3</sub> und NaBrO<sub>3</sub>, Z. Physik 12, 289-303 (1922).
- [4] R. G. Dickinson and E. A. Goodhue, The crystal structures of sodium chlorate and sodium bromate, J. Am. Chem. Soc. 43, 2045-2055 (1921).
- [5] W. H. Zachariasen, The crystal structure of sodium chlorate, Z. Krist. 71, 517-529 (1929).

# 2.8. Carbonates

### Calcium carbonate (aragonite), $CaCO_3$ (orthorhombic)

#### ASTM cards

| Card | number                   | New                  |                 |                                |
|------|--------------------------|----------------------|-----------------|--------------------------------|
| Old  | New                      | index<br>lines       | Radiation       | Source                         |
|      | 3106<br>3-0894<br>3-0893 | 2.46<br>1.23<br>1.86 | Rhodium         | Bragg [1] 1924.                |
|      | 1506<br>3-0417<br>3-0425 | 3.35<br>2.70<br>2.36 | Copper, 1.53923 | Olshausen [2] 1925.            |
|      | 2357<br>3-0680<br>3-0670 | 2.92<br>1.86<br>1.85 | Copper          | Norton [3] 1937.               |
|      | 3604<br>3-1062<br>3-1067 | 1.97<br>3.39<br>3.26 | Iron            | Allis-Chalmers.                |
|      | 1531<br>3-0426<br>3-0405 | 3.39<br>1.99<br>2.72 | Copper          | British Museum.                |
| 1560 | 1456<br>1-0628<br>1-0628 | 3.40<br>1.98<br>2.70 | Molybdenum      | Hanawalt, Rinn, and<br>Frevel. |

The Bragg pattern is a single crystal pattern which accounts for the duplicate d-spacings and the absence of intensities in certain cases. The Norton card is mislabeled calcite.

Additional published patterns. None.

NBS sample. The aragonite used for the NBS pattern was prepared by H. E. Kissinger of the NBS. Solutions of potassium carbonate and calcium chloride were heated to boiling and poured quickly together into a third beaker. The resulting mixture was digested until precipitation was complete and then filtered. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent each of silicon and strontium; 0.001 to 0.01 percent each of aluminum, barium, copper, iron, magnesium, nickel, and lead; and 0.0001 to 0.001 percent each of silver, manganese, and tin. The NBS sample is optically negative with the following refractive indices:  $\alpha = 1.529$ ,  $\beta = 1.680$ ,  $\gamma$  was not obtainable due to the acicular crystal form.

Interplanar spacings and intensity measurements. The Bragg, Olshausen, and Norton data were converted from Bragg angles to *d*-spacings in angstroms. The Allis-Chalmers, British Museum, and Hanawalt, Rinn, and Frevel *d*-spacings were converted from kX to angstrom units. In the Bragg pattern the reflections of zero intensity listed on the ASTM card have been dropped and only one of the two possible intensities given for certain *d*-spacings is included in the table of patterns. The 3.06 *d*-spacing of the Hanawalt, Rinn, and Frevel pattern is the strong line for calcite.

The three strongest lines for each of the patterns are as follows:

| Patterns                                                                                                   | 1                                      | 2                               | 3                            |
|------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------|------------------------------|
| Olshausen<br>Norton<br>Allis-Chalmers<br>British Museum<br>Hanawalt, Rinn, and Frevel<br>Swanson and Fuyat | 111<br>002<br>221<br>111<br>111<br>111 | 041<br>111<br>221<br>221<br>221 | 112<br>132,230<br>021<br>121 |

The Bragg intensity values for the three strongest lines were not included in this table as they represent single crystal data.

Lattice constants. The structure, determined by Bragg [1] in 1924, is the orthorhombic pseudo-hexagonal potassium nitrate-type structure with space group  $D_{2h}^{16}$ -Pbnm (Pnma) and 4(CaCO<sub>3</sub>, aragonite) per unit cell.

Several unit cell values have been converted from kX to angstrom units for comparison with the NBS values.

| Lattice | constants | in | angstroms |
|---------|-----------|----|-----------|
|---------|-----------|----|-----------|

|      |                                                 | a     | D     | c c           |
|------|-------------------------------------------------|-------|-------|---------------|
| 1924 | Bragg [1]                                       | 4.95  | 7.96  | 5.73          |
| 1925 | Olshausen 2                                     | 4.965 | 7.977 | 5.748         |
| 1953 | Bragg [1]<br>Olshausen [2]<br>Swanson and Fuyat | 4.959 | 7.968 | 5.741 at 26°C |

The density of aragonite calculated from the NBS lattice constants is 2.930 at 26°C.

| Brage         Olshusses         Nortex         Allise<br>Dalaers         Eritish<br>Masue         Brauwelt, Him.<br>and Frevel         Semme and<br>Frevel           d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         d         T         T </th <th></th> <th></th> <th>1924</th> <th>,</th> <th>1925</th> <th></th> <th>1937</th> <th></th> <th>~~~</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1953</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    | 1924                       | ,   | 1925    |          | 1937                                                  |      | ~~~   |                    |      |     |       |     | 1953   |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----------------------------|-----|---------|----------|-------------------------------------------------------|------|-------|--------------------|------|-----|-------|-----|--------|-----|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | h  | kl | Brag                       | ß   | 01shaus | en       | Norto                                                 | n    |       |                    |      |     |       |     |        | and |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |    | Rh, 0.61326 A Cu, 1.5405 A |     | 05 A    | Cu, 1.54 | Cu, 1.5405 A Fe, 1.93597 A Cu, 1.5405 A Mo, 0.70926 A |      | 926 A | Cu, 1.5405 A, 26°C |      |     |       |     |        |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1  | -1 | d                          | I   | d       | I        | d                                                     | I    | d     | I                  | đ    | I   | d     | I   | đ      | I   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    | A                          | 1   | A       |          | A                                                     |      | A     |                    | A    |     | A     |     | A      |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    | ******                     |     |         |          |                                                       |      |       |                    |      |     |       |     | 4.21   | 2   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |                            |     | 1       |          |                                                       | 1    | 3.40  |                    | 3.40 | 100 | 3.41  | 100 | 3.396  | 100 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02 | 21 |                            |     |         |          | 3.23                                                  | 6    | 3.27  | 60                 |      |     |       |     | 3.273  | 52  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |                            |     |         |          |                                                       |      |       |                    |      |     | 3.06  | 2   |        |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0  | 02 | 2.855                      | 34  |         | ~        | 2.92                                                  | 100  |       |                    | 3.02 | 30  | 2.89  | 2   | 2.871  | 4   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1: | 21 |                            |     |         |          |                                                       |      |       |                    | 2.73 | 80  |       |     |        |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |                            |     | 2,693   | S        |                                                       |      |       |                    |      |     | 2.71  | 64  | 2.700  | 46  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    | 2.471                      | 100 | 2.457   |          |                                                       |      |       |                    | 2.51 | 65  | 2.50  | 48  | 2.481  | 33  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |                            |     |         |          | 2.39                                                  | 25   | 2.39  | 10                 |      |     |       |     | 2.409  | 14  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |                            |     | 2.358   |          |                                                       |      | 2.37  | 20                 | 2.36 |     | 2.36  | 48B |        |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |                            |     |         |          |                                                       | 1000 | 2.32  |                    |      |     |       |     |        | 1   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |                            | -   |         |          | 2 20                                                  |      |       |                    | 2 19 |     | 2 19  |     |        | 1   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |                            |     |         | 2 1      | <b>~.2</b> 0                                          | 50   |       |                    |      |     |       |     |        |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |                            |     |         |          |                                                       |      |       |                    |      |     |       |     |        |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    | 3                          |     |         |          | 1.86                                                  |      |       |                    |      |     |       |     |        | ,   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | -  |                            |     |         |          |                                                       |      |       |                    |      |     |       |     |        | 1   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    | }                          |     | 1.801   | w        | 1.83                                                  | 63   | 1.81  | 40                 | 1.83 | 65  | 1.82  | 32  | 1.814  | 23  |
| $ \begin{bmatrix} 113 \\ 221 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 2$ |    |    | ſ                          |     |         |          |                                                       |      |       |                    |      |     |       |     | 1.750  |     |
| $ \begin{bmatrix} 231 & \dots & \dots & 1.728 & s & \dots & \dots & 1.73 & 40 & \dots & \dots & \dots & \dots & 1.73 & 40 & \dots & 1.728 & 15 \\ \hline 222 & \dots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1  |    |                            |     |         |          |                                                       |      |       |                    | 1.74 |     | 1.74  | 1   |        |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |                            |     | 1.728   |          |                                                       |      | 1.73  |                    |      |     |       |     |        |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |                            |     |         |          |                                                       |      | 1.72  | 40                 |      |     |       |     |        |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2  | 22 |                            |     |         |          |                                                       |      |       |                    |      |     |       |     | 1.698  | 3   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |                            |     |         |          | 1 50                                                  |      | 1 55  |                    | 1 56 |     |       |     | 1 557  |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |                            |     | 1,001   |          | 1.59                                                  |      | 1.55  |                    | 1.30 |     |       | -   |        |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |                            |     |         |          | 1.49                                                  |      | 1.49  |                    |      |     |       |     |        | 4   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |                            |     | 1.474   | w        |                                                       |      |       |                    |      |     | 1.473 | 8   |        |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1  | 51 |                            |     |         |          | 1.44                                                  | 13   | 1,46  | 10                 |      |     | ·     |     | 1.466  | 5   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    | 1.428                      | 7   |         |          |                                                       |      |       |                    |      |     | 1 .10 |     |        |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |                            |     | 1 404   |          |                                                       |      |       |                    | 1 30 |     | 1.413 | 8   |        |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    | >                          |     |         |          |                                                       | *    | 1 26  |                    |      |     | 1 365 | 6   |        |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3  | 31 | }1.303                     | 21  | 1.304   |          |                                                       |      | 1.50  | 20                 | 1.51 | 50  | 1,505 | Ů   | 1,000  |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |                            |     |         |          |                                                       |      |       |                    |      |     |       |     |        |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    | 1.320                      |     |         | 1        |                                                       |      | 1.96  |                    |      |     | 1 966 |     |        |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    | 1.236                      |     | 1.238   |          |                                                       |      | 1,20  |                    | 1.25 |     |       |     |        |     |
| 243<br>062<br>153<br>154<br>260         1.204       vw            1.192       2       1.205       6         153<br>162<br>260       1.164       42       1.163       w       1.17       13       1.17       20         1.192       2       1.1892       5         421       1.158       4          1.15       20         1.132       5       1.1599       3         *360       1.047       40       1.034       m        1.03       20         1.122       2       1.1599       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1  | 34 | }                          |     |         |          |                                                       | 200  | 1.23  |                    |      | 1   |       | 6   |        | 5   |
| 062       }        1.204       vw          1.205       6         153            1.192       2       1.1892       5         162       1.164       42       1.163       w       1.17       13       1.17       20         1.175       8       1.1712       6         421       1.158       4          1.15       20         1.1599       3             1.03       20         1.12       2             1.1599       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1  |    | ľ,                         |     |         |          |                                                       |      |       |                    |      |     |       |     |        |     |
| 153<br>162<br>260            1.192       2       1.1892       5         421       1.163       w       1.17       13       1.17       20         1.192       2       1.1892       5         421       1.158       4          1.15       20         1.132       5        1.1599       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    | }                          |     | 1.204   | vw       |                                                       |      |       |                    |      |     |       |     | 1,205  | 6   |
| 260       \$ 1.107       42       1.103       1       10       1.11       10       1.11       10       1.11       10       1.11       10       1.11       10       1.11       10       1.11       10       1.11       10       1.11       10       1.11       10       1.11       10       1.11       10       1.11       10       1.11       10       1.11       10       1.11       10       1.11       10       1.11       10       1.11       10       1.11       10       1.11       10       1.11       10       1.11       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td< td=""><td>1</td><td>53</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.192</td><td>2</td><td>1,1892</td><td>5</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1  | 53 |                            |     |         |          |                                                       |      |       |                    |      |     | 1.192 | 2   | 1,1892 | 5   |
| 421       1.158       4         1.15       20         1.1599       3         •360       1.047       40       1.034       m        1.03       20         1.112       5        1.1599       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    | 1.164                      | 42  | 1.163   | w        | 1.17                                                  | 13   | 1.17  | 20                 |      |     | 1.175 | 8   | 1.1712 | 6   |
| 1.132       5           •360       1.047       40       1.034       m        1.03       20         1.112       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |    | 1.158                      | 4   |         |          |                                                       |      | 1.15  | 20                 |      |     |       |     | 1,1599 | . 3 |
| a360 1.047 40 1.034 m 1.03 20 1.112 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |                            |     |         |          |                                                       |      |       | 1                  |      | 1   | 1.132 | 5   |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -  |    |                            |     |         |          |                                                       |      |       |                    |      |     | 1.112 | 2   |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1  |    | 1.047                      | 40  | 1.034   | m<br>m   |                                                       |      | 1.03  | 20                 |      |     |       |     |        | è   |

# Calcium carbonate (aragonite) CaCO<sub>3</sub> (orthorhombic)

Calcium carbonate (aragonite) CaCO<sub>3</sub> (orthorhombic)-Con.

| hkl | 1924<br>Brag<br>Rh, 0.61 | :E | 1925<br>Olshau<br>Cu, 1.54 | sen | 1937<br>Nortc<br>Cu, 1.54 | m    | Allis<br>Chalme<br>Fe, 1.935 | rs | Britis<br>Museu<br>Cu, 1.54 | m | Hanawalt,<br>and Fr<br>Mo, 0.70 | evel | 1953<br>Swanson<br>Fuyar<br>Cu, 1.5405 | and<br>t |
|-----|--------------------------|----|----------------------------|-----|---------------------------|------|------------------------------|----|-----------------------------|---|---------------------------------|------|----------------------------------------|----------|
|     | đ.                       | I  | đ                          | I   | đ                         | I    | đ                            | I  | đ                           | I | đ                               | I    | d                                      | I        |
|     | A                        |    | A                          |     | A                         |      | A                            |    | A                           |   | A                               |      | A                                      |          |
| 450 | .990                     | 9  | .975                       | vd  |                           |      |                              |    |                             |   |                                 |      |                                        |          |
| 173 | .952                     | 18 | .957                       | w   |                           |      |                              |    |                             |   |                                 |      |                                        |          |
|     | .933                     | 2  | .936                       | m   |                           |      |                              |    |                             |   |                                 |      |                                        |          |
|     | .926                     | 6  |                            |     |                           |      |                              |    |                             |   |                                 |      |                                        |          |
| 325 | .913                     | 2  | .914                       | m   |                           | **** |                              |    |                             |   |                                 |      |                                        |          |
| 381 | (b)                      |    | .896                       | m   |                           |      |                              |    |                             |   |                                 |      |                                        |          |

 $^{\rm a}$  This and succeeding indices are taken from Olshausen's data.  $^{\rm b}$  Twelve additional lines are omitted.

- [1] W. L. Bragg, The structure of aragonite, Proc. Roy. Soc. (London), **105A**, 16-39 (1924).
- [2] S. v. Olshausen, Strukturuntersuchungen nach der Debye-Scherrer-Methode, Z. Krist. 61, 463-514 (1925).
- [3] F. H. Norton, Accelerated weathering of feldspars, Am. Mineralogist 22, 1-14 (1937).

### Strontium carbonate (strontianite), SrCO<sub>3</sub> (orthorhombic)

#### ASTM cards

| Card    | number                   | New                  |            |                                         |  |  |  |
|---------|--------------------------|----------------------|------------|-----------------------------------------|--|--|--|
| Old     | Old New                  |                      | Radiation  | Source                                  |  |  |  |
| 1394    | 1309<br>1-0562<br>1-0556 | 3.53<br>2.45<br>2.05 | Molybdenum | Hanawalt, Rinn, and<br>Frevel [1] 1938. |  |  |  |
| II-893  | 1377<br>2-0405<br>2-0397 | 3.49<br>2.42<br>2.03 | Copper     | British Museum.                         |  |  |  |
| II-893a | 1378<br>2-0406<br>2-0398 |                      |            | A continuation of the preceding card.   |  |  |  |

The British Museum pattern was made using a natural mineral specimen from Strontian, Argyll, Scotland.

#### Additional published patterns

| Source                | Radiation | Wavelength |  |  |
|-----------------------|-----------|------------|--|--|
| J. J. Lander [2] 1949 | Copper    | 1.5418     |  |  |

NBS sample. The strontium carbonate used for the NBS pattern was specially purified material contributed by the Mallinckrodt Chemical Works. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent of barium; 0.001 to 0.01 percent each of calcium and lithium; 0.0001 to 0.001 percent each of aluminum, potassium, manganese and sodium; and less than 0.0001 percent each of copper, iron, magnesium, and silicon. The refractive indices of the NBS sample are:  $\alpha = 1.517$ ,  $\beta = 1.663$  and  $\gamma = 1.667$ with negative optical sign.

Interplanar spacings and intensity measurements. The *d*-spacings for the Hanawalt, Rinn, and Frevel and the British Museum patterns were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

| Patterns                                                                    | 1                        | 2                        | 3                               |
|-----------------------------------------------------------------------------|--------------------------|--------------------------|---------------------------------|
| Hanawalt, Rinn, and Frevel<br>British Museum<br>Lander<br>Swanson and Fuyat | 111<br>111<br>111<br>111 | 130<br>130<br>021<br>021 | 221<br>221<br>221<br>221<br>221 |

Four *d*-spacings of the British Museum pattern, 6.71, 6.09, 4.83, and 3.11 cannot be indexed and are probably due to mineral contamination.

Lattice constants. The structure was determined by Wilson [3] in 1928. The space group is  $D_{2h}^{16}$ -Pmcn (Pnma) with potassium nitrate-structure type and  $4(SrCO_3)$  per unit cell. A rhombohedral form of  $SrCO_3$  stable above 912°C is also known, according to J. J. Lander [2].

The Wilson unit cell data were converted from kX to angstrom units for comparison with the NBS values.

Lattice constants in angstroms

|      |                   | a     | Ъ     | с             |
|------|-------------------|-------|-------|---------------|
| 1928 | Wilson [2]        | 5.128 | 8.421 | 6.094         |
| 1953 | Swanson and Fuyat | 5.107 | 8.414 | 6.029 at 26°C |

The density of strontium carbonate calculated from the NBS lattice constants is 3.785 at 26°C.

#### (See table on next page)

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [2] J. J. Lander, Polymorphism in the alkaline earth carbonates, J. Chem. Phys. 17, 892-901 (1949).
- [3] T. A. Wilson, The lattice constants and the space groups of BaCO<sub>3</sub> and SrCO<sub>3</sub>, Phys. Rev. 31, 305 (1928).

# Strontium carbonate, SrCO<sub>3</sub> (orthorhombic)

r

| Stront | ium | car | bonat | e, | SrCU, |
|--------|-----|-----|-------|----|-------|
|        |     |     | bic)- |    |       |

|     | 193     | 8     |          | -     | 1949              | 9    | 195     | 3   | Ì  |                                                         |          |      |          |      |          |                             |         |     |
|-----|---------|-------|----------|-------|-------------------|------|---------|-----|----|---------------------------------------------------------|----------|------|----------|------|----------|-----------------------------|---------|-----|
|     | Hanaw   | alt.  | Briti    | sh    | Land              | er   | Swanson | and |    |                                                         | 1938     | 3    |          | •    | 1949     | 9                           | 1953    | 3   |
|     | Rinn,   | and   | Muse     | um    |                   |      | Fuya    | t   |    |                                                         | Hanawa   | lt,  | Briti    | sh   | Lande    | er                          | Swanson | and |
| hkl | Frev    |       |          |       |                   |      |         |     |    |                                                         | Rinn,    | and  | Museu    | າມ   |          |                             | Fuya    | t   |
|     |         |       |          |       |                   |      |         |     |    | hkl                                                     | Freve    | 1    |          |      |          |                             |         |     |
|     | Mo, 0.7 | '09 A | Cu, 1.54 | 105 A | Cu, 1. 54         | 18 A |         |     |    |                                                         |          |      |          |      |          |                             |         |     |
|     |         |       |          |       |                   |      | 26°(    |     |    |                                                         | Mo, 0.7  | 09 A | Cu, 1.54 | 05 A | Cu, 1.54 | Cu, 1. 5418 A Cu, 1. 5405 A |         |     |
|     | đ       | I     | đ        | I     | d                 | I    | đ       | I   |    |                                                         |          |      |          |      |          |                             | 26°0    | 2   |
|     | A       |       | A        | -     | A                 |      | A       |     |    |                                                         | đ        | I    | d        | I    | d        | I                           | đ       | I   |
|     | л       |       | 6.71     | 40    |                   |      | a       |     |    |                                                         | A        |      | A        |      | A        |                             | A       |     |
|     |         |       | 6.09     | 40    |                   |      |         |     | 11 | 023                                                     | 1.81     | 32   | 1.802    | 70   | 1.804    | 10                          | 1.8134  | 16  |
|     |         |       | 4.83     | 20    |                   |      |         |     |    | 231                                                     |          |      |          |      |          |                             | 1.8023  | 4   |
| 110 |         |       | 4.24     | 20    | 4.32              | 3    | 4.367   | 14  |    | 222                                                     |          |      | 1.756    | 20   | 1.758    | 5                           | 1.7685  | 7   |
| 020 |         |       | 3.87     | 60    | 4.18              | 3    | 4.207   | 6   |    | 042                                                     |          |      | 1.704    | 20   | 1.716    | 3                           | 1.7253  | 5   |
|     |         |       |          |       | <sup>a</sup> 3.90 | 3    |         |     |    | 310                                                     |          |      | 1.654    | 20   | 1.660    | 5                           | 1.6684  | 3   |
| 111 | 3.54    | 100   | 3.50     | 100   | 3.50              | 100  | 3.535   | 100 |    | 240                                                     |          |      | 1.004    |      | 1.617    | 5                           | 1.6236  | 4   |
| 021 |         |       | 3.38     | 60    | 3.42              | 50   | 3.450   | 70  |    | 311                                                     |          |      | 1.603    | 60   | 1.602    | 20                          | 1.6080  | 13  |
|     |         |       | 3.11     | 20    |                   |      |         |     |    | 150                                                     |          |      |          |      |          |                             | 1.5981  | 3   |
| 002 |         |       | 2.98     | 40    | 2.98              | 20   | 3.014   | 22  |    | 241                                                     |          |      | 1.556    | 60   | 1.562    | 20                          | 1.5676  | 13  |
| 121 |         |       | 2.82     | 60    |                   |      | 2.859   | 5   |    | 151                                                     |          |      | 1.531    | 60   | 1.537    | 20                          | 1.5447  | 11  |
| 012 |         |       | 2.71     | 60    | 2.81              | 20   | 2.838   | 20  |    | 004                                                     |          |      | 1.551    |      | 1.500    | 3                           | 1.5072  | 3   |
| 102 |         |       |          |       | 2.58              | 10   | 2.596   | 12  |    | 223                                                     |          |      | 1.471    | 40   | 1.473    | 8                           | 1.4782  | 6   |
| 200 | 2.57    | 8     | 2.55     | 40    | 2.54              | 20   | 2.554   | 23  |    | 312                                                     |          |      |          |      |          |                             | 1.4596  | 4   |
| 112 |         |       |          |       | 2.46              | 30   | 2.481   | 34  |    | 330                                                     |          |      | 1.443    | 50   |          |                             | 1.4551  | 9   |
| 130 | 2.45    | 40    | 2.42     | 80    | 2.44              | 30   | 2.458   | 40  |    | 242                                                     |          |      |          |      |          |                             | 1.4293  | 6   |
| 022 |         |       |          |       |                   |      | 2.4511  | 33  |    | 114                                                     |          |      | 1.413    | 60   | 1.420    | 10                          | 1.4246  | 7   |
| 211 |         |       | 2.25     | 40    | 2.25              | 5    | 2.2646  | 5   |    | 152                                                     |          |      | 1.392    | 20   |          |                             | 1.4120  | 5   |
| 220 | 2.18    | 8     | 2.16     | 40    | 2.17              | 15   | 2.1831  | 16  |    | 060                                                     |          |      | 1.354    | 20   |          |                             | 1.4024  | 4   |
| 040 |         |       | 2.09     | 20    | 2.090             | 5    | 2.1035  | 7   |    | 332                                                     |          |      | 1.305    | 70   |          |                             | 1.3103  | 10  |
| 221 | 2.05    | 40    | 2.03     | 80    | 2.040             | 50   | 2.0526  | 50  |    | 204                                                     |          |      |          |      |          |                             | 1.2977  | 4   |
| 041 | 1.98    | 8     | 1.975    | 60    | 1.973             | 30   | 1.9860  | 26  |    | 313                                                     |          |      | 1.278    | 60   |          |                             | 1.2840  | 13  |
| 202 |         |       | 1.936    | 60    | 1.936             | 30   | 1.9489  | 21  |    | 400                                                     |          |      | (b)      |      |          |                             | 1.2766  | 4   |
| 132 | 1.90    | 16    | 1.881    | 70    | 1.893             | 40   | 1.9053  | 35  |    | 4 P                                                     | obably b |      | ing for  | 111  | I        | L                           | I       |     |
| 141 |         |       |          |       | 1.816             | 30   | 1.8514  | 3   |    |                                                         |          |      |          |      | heen om  | itted                       |         |     |
| 113 |         |       |          |       | 1.010             | 30   | 1.8253  | 31  |    | <sup>b</sup> Twelve additional lines have been omitted. |          |      |          |      |          |                             |         |     |

# 2.9. Nitrates

### Potassium nitrate (niter), KNO<sub>3</sub> (orthorhombic)

### **ASTM** cards

| Card r | umber                    | New                  |            |                                         |
|--------|--------------------------|----------------------|------------|-----------------------------------------|
| Old    | Old New                  |                      | Radiation  | Source                                  |
| 1188   | 1132<br>1-0497<br>1-0493 | 3.77<br>3.03<br>2.66 | Molybdenum | Hanawalt, Rinn, and<br>Frevel [1] 1938. |

The two additional patterns, one by Barth and the other by Finbak and Hassel, were made at  $115\,^{\circ}$ C and represent high temperature forms.

| 11-2104 | 2910<br>2-0982<br>2-0991 | 2.60<br>1.81<br>2.15 | Copper | Barth [2] 1939.                |
|---------|--------------------------|----------------------|--------|--------------------------------|
|         | 1650<br>3-0474<br>3-0482 | 3.25<br>2.73<br>2.08 | Copper | Finbak and Hassel [3]<br>1937. |

#### Additional published patterns

| Source           | Radiation  | Wavelength |
|------------------|------------|------------|
| Edwards [4] 1931 | Molybdenum |            |

NBS sample. The potassium nitrate used for the NBS pattern was obtained from the Mallinckrodt Chemical Works. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent sodium; 0.001 to 0.01 percent each of aluminum, calcium, and iron; 0.0001 to 0.001 percent each of barium, magnesium, lead and silicon; and less than 0.0001 percent of copper. The refractive indices of the NBS sample are as follows:  $\alpha$  is too low for the usual liquids (1.335),  $\beta$ =1.505, and  $\gamma$ =1.509.

Interplanar spacings and intensity measurements. The *d*-spacings for the Edwards pattern were calculated from Bragg angle data while the Hanawalt, Rinn, and Frevel *d*-spacings were converted from kX to angstrom units. The Edwards pattern contains no powder intensity data, although Edwards did extensive single crystal work on potassium nitrate.

The three strongest lines for each of the patterns are as follows:

| Patterns                   | 1   | 2   | 3   |
|----------------------------|-----|-----|-----|
| Hanawalt, Rinn, and Frevel | 111 | 012 | 130 |
| Swanson and Fuyat          | 111 | 021 | 012 |

The literature reference for Edwards' pattern lists some indices which are not in complete agreement with those assigned to the corresponding *d*-spacings of the NBS pattern.

Lattice constants. The structure was determined by Zachariasen [5] in 1928. The space group is  $D_{2h}^{16}$ -Pmcn (Pnma) with 4(KNO<sub>3</sub>) per unit cell. Orthorhombic potassium nitrate is a prototype for other similar structures. This form designated KNO<sub>3</sub>II is reported to change at 127.7 °C to KNO<sub>3</sub>I, a rhombohedral form, and on cooling below 125 °C to another rhombohedral form, KNO<sub>3</sub>III, all according to Kracek, Barth, and Ksanda [6]. The two patterns in the card file made at 115 °C by Barth [2] and by Finbak and Hassel [3] do not agree with either of the high temperature forms described by Kracek, Barth, and Ksanda.

Two unit cell values have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants in angstroms

|      |                                                     | a     | ь     | с             |
|------|-----------------------------------------------------|-------|-------|---------------|
| 1928 | Zachariasen [5]<br>Edwards [4]<br>Swanson and Fuyat | 5.41  | 9.16  | 6.42          |
| 1931 | Edwards [4]                                         | 5.44  | 9.19  | 6.46          |
| 1953 | Swanson and Fuyat                                   | 5.414 | 9.164 | 6.431 at 26°C |
|      |                                                     |       |       |               |

The density of potassium nitrate calculated from the NBS lattice constants is 2.104 at 26 °C.

#### Potassium nitrate, KNO<sub>3</sub> (orthorhomhic)

|     | 19      | 931    | 19      | 38          | 19          | 53       |  |
|-----|---------|--------|---------|-------------|-------------|----------|--|
|     | Edwa    | ards   | Hanawal |             | Swanson and |          |  |
| hkl |         |        | and F   | revel       | Fuyat       |          |  |
|     | Mo, 0.  | .709 A | Mo, 0.  | 709 A       | Cu, 1.540   | 5 A, 26℃ |  |
|     | đ       | I      | đ       | I           | đ           | I        |  |
|     | A       |        | A       |             | A           |          |  |
| 110 | 4.70    |        | 4.67    | 12          | 4.66        | 23       |  |
| 020 |         |        |         |             | 4.58        | 11       |  |
| 111 | 3.78    |        | 3.78    | 100         | 3.78        | 100      |  |
| 021 |         |        |         |             | 3.73        | 56       |  |
| 002 |         |        |         |             | 3.215       | 5        |  |
| 121 |         |        |         |             | 3.070       | 15       |  |
| 012 | 3.04    |        | 3.04    | 36          | 3.070       | 55       |  |
| 102 | 2.78    |        | 2.78    | - 30<br>- 8 | 2.763       | 28       |  |
| 200 | 2.10    |        | 2.10    | 0           | 2.707       | 17       |  |
| 130 |         |        | 2.67    | 28          | 2.662       | 41       |  |
| 130 |         |        | 2.01    | 20          | 2.002       | 41       |  |
| 112 | 2.654   |        |         |             | 2.647       | 55       |  |
| 022 |         |        |         |             | 2.632       | 20       |  |
| 211 | 2.419   |        |         |             | 2.409       | 7        |  |
| 122 |         |        |         |             | 2.367       | 4        |  |
| 220 | 2.339   |        |         |             | 2.332       | 9        |  |
| 040 |         |        |         |             | 2.292       | 5        |  |
| 221 | 2.199   |        | 2.19    | 24          | 2.192       | 41       |  |
| 041 |         |        |         |             | 2.159       | 20       |  |
| 202 |         |        |         |             | 2.071       | 13       |  |
| 132 | 2.063   |        | 2.06    | 8           | 2.050       | 18       |  |
| 113 | 1.941   |        | 1.96    | 12          | 1.947       | 24       |  |
| 023 |         |        |         |             | 1.942       | 6        |  |
| 222 |         |        |         |             | 1.888       | 3        |  |
| 042 |         |        |         |             | 1.866       | 2        |  |
| 142 |         |        |         |             | 1.763       | 6        |  |
| 240 |         |        | 1.76    | 4           | 1.750       | 2        |  |
| 150 |         |        |         |             | 1.733       | 1        |  |
| 311 |         |        |         |             | 1.707       | 4        |  |
| 241 | 1.685   |        |         |             | 1.688       | 6        |  |
| 151 |         |        |         |             | 1.677       | 4        |  |
| 321 | 1.626   |        |         |             | 1.624       | 3        |  |
| 014 |         |        |         |             | 1.585       | 3        |  |
| 312 | 1.557   |        |         |             | 1.552       | 2        |  |
| 242 |         |        | 1.54    | 4           | 1.536       | 2        |  |
| 114 | } 1.519 |        |         |             | 1.519       | _        |  |
| 024 | 1.519   |        |         |             | 1.519       | 6        |  |

#### Potassium nitrate, KNO<sub>3</sub> (orthorhombic)-Con.

| hkl | 19<br>Edwa<br>Mo, 0. |   | 19<br>Hanawalt<br>and F<br>Mo, 0, | revel | 1953<br>Swanson and<br>Fuyat<br>Cu, 1.5405 A, 26°C |        |  |
|-----|----------------------|---|-----------------------------------|-------|----------------------------------------------------|--------|--|
|     | đ                    | I | đ                                 | I     | đ                                                  | I      |  |
|     | A                    |   | A                                 |       | A                                                  |        |  |
| 124 |                      |   |                                   |       | 1.461                                              | 1      |  |
| 332 |                      |   |                                   |       | 1.399                                              | 5      |  |
| 204 |                      |   |                                   |       | 1.381                                              | 5<br>2 |  |
| 134 |                      |   |                                   |       | 1.376                                              | 2      |  |
| 214 | }                    |   | 1.368                             | 4     | 1.365                                              | 4      |  |
| 313 | )                    |   |                                   |       |                                                    |        |  |
| 243 | 2                    |   |                                   |       |                                                    |        |  |
| 400 | }                    |   |                                   |       | 1.354                                              | 8      |  |
| 153 |                      |   |                                   |       | 1.350                                              | 8      |  |
| 260 | *****                |   |                                   |       | 1.330                                              | 4      |  |

- J. D. Hanawalt, H. W. Kinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [2] F. T. W. Barth, Die Kristallstruktur der Druckmodifikation des Saltpeters, Z. physik. Chem. B43, 448-450 (1939).
- [3] C. Finbak and O. Hassel, Kristallchemie der Nitrate einwertiger Kationen II, Z. physik. Chem. B37, 75-80 (1937))
- [4] D. A. Edwards, A determination of the complete crystal structure of potassium nitrate, Z. Krist. 80, 154-163 (1931).
- [5] W. H. Zachariasen, Untersuchungen über die Kristallstruktur von Sesquioxyden und Verbindungen ABO<sub>3</sub>, Skrifter Norske Videnskaps-Akad. Oslo, I. Mat. Naturv. Kl. **10**, 14 (1928).
- [6] F. C. Kracek, F. T. W. Barth, and C. J. Ksanda, Molecular rotation in the solid state and the polymorphic relation of the univalent nitrates, Phys. Rev. 40, 1034 (1932).

# 2.10. Sulfates and Sulfites

Sodium sulfite, Na<sub>2</sub>SO<sub>3</sub> (hexagonal)

ASTM cards

| Card | number                   | New                  |            |                                         |  |
|------|--------------------------|----------------------|------------|-----------------------------------------|--|
| 01d  | New                      | index<br>lines       | Radiation  | Source                                  |  |
|      | 1138<br>3-0311<br>3-0305 | 3.77<br>2.72<br>2.58 | Molybdenum | Zachariasen and<br>Buckley [1] 1931.    |  |
| 2565 | 2695<br>1-1040<br>1-1039 | 2.72<br>2.57<br>1.87 | Molybdenum | Hanawalt, Rinn, and<br>Frevel [2] 1938. |  |

The Zachariasen pattern found in the ASTM file is a combination of single-crystal *d*-spacings and powder-intensity data.

Additional published patterns. None.

NBS sample. The sodium sulfite used to make the NBS pattern was an analytical reagent grade sample prepared by the Mallinckrodt Chemical Works. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent of calcium; 0.001 to 0.01 percent each of aluminum, iron, molybdenum, and strontium; 0.0001 to 0.001 percent each of barium, magnesium, lead, and silicon; and less than 0.0001 percent of copper. The sample used for the NBS pattern is optically negative with the following refractive indices:  $\omega = 1.568$  and  $\epsilon = 1.517$ .

Interplanar spacings and intensity measurements. The Zachariasen and Buckley Bragg angle data were converted to angstroms and the Hanawalt, Rinn, and Frevel *d*-spacings were converted from kX to angstrom units.

The *d*-spacings of the Zachariasen and Buckley single-crystal pattern of nil intensity have been omitted from the table, but many points, which combined would make a single powder diffraction line or which would be invisible, still remain.

The three strongest lines for each of the patterns are as follows:

| Patterns                   | 1   | 2   | 3   |
|----------------------------|-----|-----|-----|
| Zachariasen and Buckley    | 101 | 110 | 102 |
| Hanawalt, Rinn, and Frevel | 110 | 102 | 202 |
| Swanson and Fuyat          | 102 | 110 | 101 |

**Lattice constants.** The structure was determined by Zachariasen and Buckley [1] in 1931. The space group is  $C_{3i}^1 - P\overline{3}$  with  $2(Na_2SO_3)$  per unit cell.

The Zachariasen and Buckley unit-cell measurements were converted from kX to angstrom units for comparison with the NBS values.

| Lattice | constants | in | angstroms |
|---------|-----------|----|-----------|
|---------|-----------|----|-----------|

|      |                                                  | a     | с             |
|------|--------------------------------------------------|-------|---------------|
| 1931 | Zachariasen and Buckley [1]<br>Swanson and Fuyat | 5.452 | 6.145         |
| 1953 | Swanson and Fuyat                                | 5.459 | 6.160 at 25°C |
|      |                                                  |       |               |

The density of sodium sulfite calculated from the NBS lattice constants is 2.633 at 25°C.

#### Sodium sulfite, Na, SQ, (hexagonal)

|      | 1     |         |                  |        |             |           |
|------|-------|---------|------------------|--------|-------------|-----------|
|      | 1     | .931    | 19               | 38     | 19          | 53        |
|      | 1 7 1 |         |                  | 1.     | ~           |           |
| hkl  | 1     | ariasen | Hanav            |        | Swanson and |           |
| n RL | and   | Buckley | Rinn, and Frevel |        | Fuj         | yat       |
|      | Мо,   | 0.709 A | Mo, 0,           | .709 A | Cu, 1.540   | 5 A, 25°C |
|      | d     | I       | d                | I      | đ           | I         |
|      | A     |         | A                |        | A           |           |
| 100  | 4.72  | VW      | 4.72             | 3      | 4.73        | 5         |
| 101  | 3.741 | VS      | 3.73             | 67     | 3.75        | 60        |
| 002  | 1     | m       | 3.08             | 27     | 3.078       | 55        |
| 110  |       | VS      | 2.73             | 100    | 2.728       | ·78       |
| 102  | 2.574 | VS      | 2.58             | 100    | 2.580       | 100       |
| 111  | 2.489 | m       | 2,49             | 20     | 2.495       | 11        |
| 200  | 2.361 | W       | 2.35             | 11     | 2.364       | 4         |
| 201  | 2.204 | m       | 2.20             | 20     | 2,207       | 9         |
| 003  | 2.048 | 1       | {                |        |             |           |
| 112  | 2.038 | ) vw    | 2.02             | 3      | 2.043       | 2         |
| 103  | 1.879 | 12      | (                |        | 1.883       | <1        |
| 202  | 1.870 | ) s-vs  | { 1.87           | 100    | 1.876       | 34        |
| 210  | 1.783 | IDW     | 1.78             | 11     | 1.788       | 3         |
| 211  | 1.713 | VVW     | 1.71             | 1      | 1.714       | 1         |
| 113  | 1.637 | w       | 1.63             | 3      | 1.641       | 2         |
| 300  | 1.573 | ms      | 1.57             | 40     | 1.576       | 12        |
| 203  | 1.546 |         | (                |        |             |           |
| 212  | 1.543 | s       | 1.54             | 53     | 1.546       | 16        |
| 004  | 1.536 | ין      | (                |        | 1.540       | 1         |
| 104  | 1.461 | m       | 1.463            | 17     | 1.465       | 15        |
| 220  | 1.362 | ms      | 1.363            | 27     | 1.365       | 6         |
| 114  | 1.338 | vvvw    |                  |        | 1.342       | 1         |
| 310  | 1.309 | VW      |                  |        | 1.311       | <1        |
| 204  | 1.287 | ) m     | 1.285            | 13     | { 1.291     | 8         |
| 311  | 1.280 | ) ia    | 1.203            | 13     | 1.283       | 2         |
| 303  |       | 3       | 1.940            | ,      | 1 950       | 1         |
| 222  |       | } vvw   | 1.248            | 1      | 1.250       |           |
| 132  | 1.204 | ms      | 1.203            | 20     | 1.207       | 11        |
| 214  | 1.164 | )} m    | 1.163            | 20     | 1.1668      | 13        |
| 401  | 1.159 | ) "     | 1.105            | 20     | (           |           |

# Sodium sulfite, Na<sub>2</sub>SO<sub>3</sub> (hexagonal)-Con.

|            | 1     | 931                | 19                | 38                | 19                   | 53        |  |
|------------|-------|--------------------|-------------------|-------------------|----------------------|-----------|--|
| hkl        |       | ariasen<br>Buckley | Hanav<br>Rinn, an | valt,<br>d Frevel | Swanson and<br>Fuyat |           |  |
|            | Мо, ( | 0.709 A            | Мо, О.            | .709 A            | Cu, 1.540            | 5 A, 25°C |  |
|            | đ     | I                  | đ                 | I                 | đ                    | I         |  |
|            | A     |                    | A                 |                   | A                    |           |  |
| 313        | 1.103 | )                  | (                 |                   |                      |           |  |
| 402        | 1.102 | ) m                | 1.102             | 8                 | 1.1033               | 4         |  |
| 304        | 1.099 | )                  | (                 |                   | 1.0926               | 1         |  |
| 321        | 1.067 | vvw                |                   |                   | 1.0683               | 2         |  |
| 410<br>006 | 1.030 | )                  | (1.032            | 8                 | 1.0315               | 4         |  |
| 403        | 1.024 | 1                  | 1                 |                   |                      |           |  |
| 322        | 1.021 | ms                 | 1.023             | 13                | 1.0232               | 4         |  |
| 224        | 1.019 |                    |                   |                   |                      |           |  |
| 411        | 1.016 | 1                  | \                 |                   |                      |           |  |
| 215        |       |                    |                   |                   | 1.0145               | <1        |  |
| 314        |       |                    | .998              | 5                 | . 9983               | 2         |  |
| 116        |       |                    | .962              | 7                 | .9605                | 3         |  |
| 404        |       |                    |                   |                   | .9374                | < 1       |  |
| 220        |       |                    |                   |                   |                      |           |  |
| 330<br>331 |       |                    |                   |                   | . 9038               | <1        |  |
| 306        |       |                    |                   |                   | . 8600               | 2         |  |
| 422        |       |                    |                   |                   | .8580                | 3         |  |
| 226        |       |                    |                   |                   | .8206                | 2         |  |
| 512        |       |                    |                   |                   | .8186                | 2         |  |
| 504        |       |                    |                   |                   | .8058                | 1         |  |

- W. H. Zachariasen and H. E. Buckley, The crystal lattice of anhydrous sodium sulfite, Na<sub>2</sub>SO<sub>3</sub>, Phys. Rev. **37**, 1295 (1931).
   J. D. Hanawalt, H. W. Rinn, and L. K. Frevel,
- 2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).

# Potassium sulfate (arcanite), $K_2 SO_4$ (orthorhombic)

**ASTM** cards

| Card    | number                   | New                  |                       |                                            |  |
|---------|--------------------------|----------------------|-----------------------|--------------------------------------------|--|
| Old     | New                      | index<br>lines       | Radiation             | Source                                     |  |
| 2298    | 2417<br>1-0954<br>1-0939 | 2.89<br>3.01<br>2.08 | Molybdenum,<br>0.712. | Goeder [1] 1928.                           |  |
| 2308    | 2418<br>1-0955<br>1-0944 | 2.88<br>3.00<br>2.08 | Molybdenum            | Hanawalt, Rinn, and<br>Frevel [2] 1938.    |  |
| 11-1343 | 2077<br>2-0628<br>2-0626 | 3.02<br>2.91<br>2.10 | Соррег, Ка,<br>1.539. | Goubeau, Kolb, and<br>Krall [3] 1938.      |  |
|         | 2078<br>3-0599<br>3-0608 | 3.01<br>2.90<br>2.23 |                       | Bredig [4] 1942.                           |  |
|         | 2420<br>3-0695<br>3-0695 | 2.88<br>2.99<br>2.07 | Copper, Ka            | O'Daniel and<br>Tscheischwili [5]<br>1942. |  |

Additional published patterns. None. NBS sample. The potassium sulfate used for the NBS pattern was contributed by the Mallinckrodt Chemical Works. Spectrographic analysis at the NBS showed the following impurities: 0.01 to 0.1 percent of sodium; 0.001 to 0.01 percent of calcium; 0.0001 to 0.001 percent each of aluminum, magnesium, and silicon; and less than 0.0001 percent each of silver, barium, copper, and iron. The refractive indices of the NBS sample are as follows:  $\alpha = 1.493$ ,  $\beta = 1.495$ , and  $\gamma = 1.498$ , with 2V of 70° and positive optical sign.

Interplanar spacings and intensity measurements. The *d*-spacings for the Goeder, the Goubeau, Kolb, and Krall, and the O'Daniel and Tscheischwili patterns were calculated from Bragg angle data, whereas those for the Hanawalt, Rinn, and Frevel and the Bredig patterns were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

| Patterns                   | 1       | 2       | 3       |
|----------------------------|---------|---------|---------|
| Goeder                     | 130     | 022-112 | 042     |
| Hanawalt, Rinn, and Frevel | 130     | 022-112 | 042     |
| Goubeau, Kolb, and Krall   | 022-112 | 130     | 042     |
| Bredig                     | 022-112 | 130     | 113-212 |
| O'Daniel and Tscheischwili | 130     | 022-112 | 032     |
| Swanson and Fuyat          | 130     | 022-112 | 200     |

Lattice constants. The structure was determined by Ehrenberg and Hermann [6] in 1929. The space group is  $D_{2h}^{16}$ -Pmcn (Pnma) with  $4(K_2SO_4)$  per unit cell. Potassium sulfate is a prototype for other similar structures.

A group of unit cell determinations were converted from kX to angstrom units for comparison with the NBS values.

|      |                     | a     | Ъ      | с             |
|------|---------------------|-------|--------|---------------|
| 1916 | Ogg and Hopwood [7] | 5.743 | 10.028 | 7.439         |
| 1927 | Koch-Holm and       |       |        |               |
|      | Schönfeldt [8]      | 5.29  | 10.27  | 7.52          |
| 1928 | Gossner [9]         | 5.86  | 10.08  | 7.34          |
| 1928 | Goeder [1]          | 5.783 | 10.084 | 7.533         |
| 1938 | Goubeau, Kolb, and  |       |        |               |
|      | Krall [3]           | 5.83  | 10.05  | 7.43          |
| 1942 | Bredig [4]          | 5.77  | 10.07  | 7.48          |
| 1953 | Swanson and Fuyat   | 5.772 | 10.072 | 7.483 at 25°C |

Lattice constants in angstroms

The density of potassium sulfate calculated from the NBS lattice constants is 2.660 at 25°C.

(See table on next page)

# Potassium sulfate, $K_2SO_4$ (orthorhombic)

|            | 19      | 28      | 19                | 38      | 19               | 38     | 194         | 2        | 19                | 42       | 19             | 53        |
|------------|---------|---------|-------------------|---------|------------------|--------|-------------|----------|-------------------|----------|----------------|-----------|
| hkl        | Goe     | der     | Hanawalt<br>and F |         | Goubeau<br>and I |        | Bred        | ig       | O'Dani<br>Tscheis |          | Swanso<br>Fuy  |           |
|            | Mo, 0.  | 709 A   | Mo, 0.            | 709 A   | Cu, 1.           | 5405 A |             |          | Cu, 1.            | 5405 A   | Cu, 1.540      | 5 A, 25°C |
| -          | đ       | I       | đ                 | Ι       | d                | Ι      | d           | I        | d                 | I        | d              | I         |
|            | A       |         | A                 |         | A                |        | A           |          | A                 |          | A              | 1         |
| 020<br>021 | 4.19    | 30      | 5.0               | 2<br>24 |                  |        | 4.19        | <br>m    | 4 12              | <br>W    | 5.03           | 8         |
| 111        | 4.19    | 30      | 4.20              | 24      | 4.23             | <br>w  | 4.19        | m        | 4.12              | w        | 4.176 4.160    | 28<br>23  |
| 002        | 3.76    | 25      | 3.74              | 8       | 3.86             | vw     | 3.76        | vw       | 3.68              | *        | 3.743          | 18        |
| 012        |         |         |                   |         |                  |        |             |          |                   |          | 3.508          | 6         |
| 121        |         |         | 3.39              | 5       | 3,351            | vw     |             |          | 3.371             | vw       | 3.384          | 13        |
| 102        |         |         |                   |         |                  |        |             |          | 3.095             | VVW      | 3.140          | 9         |
| 031<br>022 | )       |         |                   |         |                  |        |             |          |                   |          | 3.062          | 8         |
| 112        | } 3.00  | 90      | 3.01              | 80      | 3.028            | s      | 3.02        | ۷s       | 2.983             | ms       | 3.001          | 77        |
| 130        | 2.883   | 100     | 2.88              | 100     | 2.921            | s      | 2.91        | vs       | 2.871             | s        | 2,903          | 100       |
| 200        |         |         |                   |         |                  |        |             |          |                   |          | 2.886          | 53        |
| 122        | 2.676   | 5       | 2.67              | 2       |                  |        |             |          | 2.682             | vvw      | 2.665          | 7         |
| 211        |         |         |                   |         |                  |        |             |          |                   |          | 2.602          | 2         |
| 040        | 2.513   | 30      | 2.51              | 12      | 2.522            | m      | 2.520       | m        |                   |          | 2.518          | 13        |
| 032        |         |         |                   |         |                  |        |             |          | 2.491             | ms       | 2.499          | 15        |
| 013<br>041 | 2.424   | 40      | 2.41              | 20      | 2.455            | m      | 2.426 2.389 | m<br>W   | 2.413             | m        | 2.422 2.386    | 25<br>13  |
| 221        |         |         |                   |         |                  |        | 2.309       |          | 2.370             | <br>w    | 2.374          | 13        |
| 113        | } 2.223 | 40      |                   |         | 2.254            | m      | 2,230       | S        | 2.273             | vvw      | 2.230          | 19        |
| 212        | }       | 10      |                   |         |                  |        |             | -        |                   |          |                |           |
| 141        |         |         | 2.21              | 24      |                  |        |             |          | 2.201             | 10.      | 2.206          | 14        |
| 231        |         |         |                   |         |                  |        |             |          |                   |          | 2.101          | 6         |
| 042        | 2.081   | 50      | 2.08              | 40      | 2.104            | s      | 2.087       | s        | 2.072             | ms       | 2.089 2.082    | 25<br>25  |
| 033        | 2.022   | 5       | 2.00              | 5       | 2.015            | w      |             |          | 1.994             | w        | 2.002          | 7         |
| 142        |         |         |                   |         |                  |        |             |          |                   |          | 1.964          | 4         |
| 051        | 1,950   | 5       | 1.94              | 4       | 1.956            |        |             |          | 1.933             | <br>vw   | 1.964          | 4         |
| 232        |         |         | 1.88              | 10      |                  |        |             |          |                   |          | 1.889          | 12        |
| 004        |         |         |                   |         | 1.873            | m      |             |          | 1.874             | mw       | 1.870          | 8         |
| 213        | 1.835   | 30      | 1.85              | 4       |                  |        |             |          | 1.841             | w        | 1.855          | 6         |
| 052        | 1.765   | 15      | 1.76              | 3       |                  |        |             |          | 1.771             | vw       | 1.774          | 5         |
| 114        |         |         |                   |         | 1 716            |        |             |          | 1.743             | vw       | 1.752          | 4         |
| 302<br>143 |         |         |                   |         | 1.715            | m      |             |          |                   |          | 1.711<br>1.694 | 5<br>9    |
| 124        | 1.681   | 30      | 1.68              | 10      |                  |        |             |          | 1.679             | m₩       | 1.679          | 5         |
| 330        |         |         |                   |         | 1.669            | W      | Í           |          | 1.662             | ШW       | 1.669          | 8         |
| 034        |         |         |                   |         |                  |        |             |          |                   |          | 1.634          | 4         |
| 331        |         |         |                   |         |                  |        |             |          | 1.627             | vw       | 1.629          | 3         |
| 251<br>134 | 1.619   | 20      | 1.62              | 4       | 1.590            | m      |             |          | 1.613             | ww.<br>m | 1.613          | 4<br>7    |
|            |         |         |                   | Ŭ       | 21070            |        |             |          |                   | }        |                |           |
| 214 062    | 1.528   | 25      |                   |         |                  |        |             |          |                   |          | 1.5508         | 1<br>1    |
| 252        | 1.528   | 25<br>5 |                   |         |                  |        |             |          |                   |          | 1.5105         | 1         |
| 341        | 1.493   | 5       |                   |         | 1.494            | vw     |             |          |                   |          | 1.4977         | 2         |
| 015        |         |         |                   |         |                  |        |             |          |                   |          | 1.4807         | 2         |
| 260        |         |         |                   |         |                  |        |             | <b>-</b> |                   |          | 1.4513         | 5         |
| 400        | 1.441   | 30      | 1.442             | 10      |                  |        |             |          |                   |          | 1.4427         | 8         |
| 025        | }       |         |                   |         | 1.435            | m      |             |          |                   |          | 1.4332         | 9         |
| 234        | ĺ       |         | 1.421             | 3       |                  |        |             |          |                   |          | 1.4219         | 10        |

| hkl                      | 19<br>Goe<br>Mo, 0. |   | 19:<br>Hanawalt<br>and Fr<br>Mo, 0.             | , Rinn,<br>revel | 19<br>Goubeau<br>and H<br>Cu, 1. | rall   | 194<br>Bred |   | 19<br>O'Dani<br>Tscheis<br>Cu, 1. | el and<br>schwili | 19:<br>Swanso<br>Fuy<br>Cu, 1.540:        | n and<br>at       |
|--------------------------|---------------------|---|-------------------------------------------------|------------------|----------------------------------|--------|-------------|---|-----------------------------------|-------------------|-------------------------------------------|-------------------|
|                          | đ                   | I | đ                                               | I                | đ                                | I      | đ           | I | d                                 | I                 | d                                         | I                 |
| 071<br>170<br>054<br>163 | A<br>1.398<br>      | 5 | A<br><br>1.394<br><br>1.352<br>( <sup>b</sup> ) | 3<br>            | A<br>1.411<br>1.371<br>          | w<br>m | A<br>       | A | A                                 |                   | A<br>1.4129<br>1.3966<br>1.3707<br>1.3534 | 12<br>4<br>2<br>7 |

#### Potassium sulfate, K<sub>2</sub>SO<sub>4</sub> (orthorhombic)-Con.

<sup>a</sup> Thirteen additional lines omitted.

<sup>b</sup> Twelve additional lines omitted.

<sup>c</sup> Twenty-five additional lines omitted.

- F. P. Goeder, The crystal structure of potassium sulfate, Proc. Nat. Acad. Sci. U. S. 14, 766-771 (1928).
- [2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind, Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [3] J. Goubeau, H. Kolb, and H. G. Krall, Das System Kaliumsulfat-Kaliumsulfid, Z. anorg. Chem. 236, 45-56 (1938).
- [4] M. A. Bredig, Isomorphism and allotropy in compounds of the type A<sub>2</sub>XO<sub>4</sub>, J. Phys. Chem. 46, 750-764 (1942).

- [5] H. O'Daniel and L. Tscheischwili, Zur Struktur von K<sub>2</sub>BeF<sub>4</sub>, Sr<sub>2</sub>SiO<sub>4</sub> und Ba<sub>2</sub>SiO<sub>4</sub>, Z. Krist. **104**, 348-357 (1942).
- [6] W. Ehrenberg and C. Hermann, Die Raumgruppe von Kaliumsulfat, Z. Krist. 70, 163-170 (1929).
- [7] A. Ogg and F. Hopwood, A critical test of the crystallographic law of valency volumes, a note on the crystalline structure of the alkali sulphates, Phil. Mag. 32, 518-525 (1916).
- [8] E. Koch-Holm and N. Schönfeldt, Raumgitteranalyse von Kaliumsulfat and Kaliumselenat, Wiss. Veröffent1...Siemens-Konzern 6, 177-187 (1927).
- [9] B. Gossner, Über die Kristallstruktur von Glaserite und Kaliumsulfat, Neues Jahrb. Mineral. B.-Bd. 57A, 89-116 (1928).

# Barium sulfate (barite), BaSO<sub>4</sub> (orthorhombic)

#### ASTM cards

| _ |        |                          |                      |            |                                         |  |  |  |  |  |
|---|--------|--------------------------|----------------------|------------|-----------------------------------------|--|--|--|--|--|
|   | Card r | umber                    | New                  |            |                                         |  |  |  |  |  |
|   | Old    | New                      | index<br>lines       | Radiation  | Source                                  |  |  |  |  |  |
|   | 3277   | 3377<br>1-1224<br>1-1229 | 2.10<br>3.44<br>3.10 | Molybdenum | Hanawalt, Rinn, and<br>Frevel [1] 1938. |  |  |  |  |  |
| I | [-2765 | 3378<br>2-1183<br>2-1199 | 2.11<br>3.42<br>3.08 | Copper     | British Museum.                         |  |  |  |  |  |

Additional published patterns. None.

NBS sample. The material used for the NBS pattern was prepared by the Mallinckrodt Chemical Works. Their spectrographic analysis shows 0.001 to 0.01 percent of iron, 0.0001 to 0.001 percent each of aluminum and strontium and less than 0.0001 percent each of calcium, copper and magnesium. The NBS sample is too finely divided for determination of the refractive indices.

Interplanar spacings and intensity measurements. The Hanawalt and the British Museum *d*-spacings were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

| Patterns                                                          | 1                         | 2                 | 3                 |
|-------------------------------------------------------------------|---------------------------|-------------------|-------------------|
| Hanawalt, Rinn, and Frevel<br>British Museum<br>Swanson and Fuyat | 113,312<br>113,312<br>210 | 210<br>210<br>211 | 211<br>211<br>113 |

**Lattice constants.** The structure was determined by Rinne, Hentschel, and Schiebold [2] in 1924. The space group is  $D_{2b}^{16}$ -Pnma with 4(BaSO<sub>4</sub>) per unit cell.

A group of unit cell values were converted to angstroms for comparison with the NBS values. The Allison value for the *a*direction was multiplied by two.

Lattice constants in angstroms

|      |                        | a      | ь      | с             |
|------|------------------------|--------|--------|---------------|
| 1924 | Allison [3]            | 8.916  | 5.459  | 7.18          |
| 1924 | Rinne, Hentschel, and  |        |        |               |
|      | Schiebold [2]          | 8.90   | 5.46   | 7.16          |
| 1925 |                        | 8.864  | 5.441  | 7.11          |
| 1925 | James and Wood [5]     | 8.87   | 5.44   | 7.14          |
| 1925 | Wyckoff and Merwin [6] | 8.916  | 5.459  | 7.18          |
| 1926 |                        | 8.87   | 5.46   | 7.15          |
| 1946 | Walton and Walden [8]  | 8.8701 | 5.4534 | 7.1507        |
| 1953 | Swanson and Fuyat      | 8.878  | 5.450  | 7.152 at 26°C |

The density of barium sulfate calculated from the NBS lattice constants is 4.480 at 26°C.

Barium sulfate (barite), BaSO, (orthorhombic)

|       | 19:      | 38    |        |        | 19          | 53        |  |
|-------|----------|-------|--------|--------|-------------|-----------|--|
|       |          | D.    | n :.   |        | S           |           |  |
|       | Hanawalt |       | Brit   |        | Swanson and |           |  |
| hkl   | and Fi   | revel | Muse   | eum    | Fuy         | at        |  |
|       |          |       |        |        |             |           |  |
|       | Mo, 0.   | 709 A | Cu, 1. | 5405 A | Cu, 1.540   | 5 A, 26°C |  |
|       |          |       |        | Ŧ      |             |           |  |
|       | d        | I     | d      | I      | d           | I         |  |
|       | A        |       | A      |        | A           |           |  |
| 200   |          |       |        |        | 4.44        | 17        |  |
| 011   | 4.36     | 20    | 4.28   | 40     | 4.34        | 36        |  |
| 111   | 3.90     | 25    | 3.83   | 40     | 3,90        | 57        |  |
| 201   |          |       |        |        | 3.77        | 12        |  |
| 002   | 3.58     | 10    | 3.56   | 40     | 3.576       | 31        |  |
|       |          |       |        | •••    |             |           |  |
| 210   | 3.45     | 63    | 3.43   | 80     | 3.442       | 100       |  |
| 102   | 3.32     | 35    | 3.31   | 60     | 3.317       | 67        |  |
| 211   | 3.11     | 63    | 3.09   | 80     | 3.101       | 97        |  |
| 112   | 2.84     | 40    | 2.85   | 50     | 2.834       | 53        |  |
| 301   | 2.73     | 45    | 2.73   | 50     | \$ 2.734    | 16        |  |
| 020   | 1 2.13   | 4,0   | 2.13   | 50     | 2.726       | 47        |  |
|       |          |       |        |        |             |           |  |
| 212   | 2.47     | 15    | 2.47   | 20     | 2.481       | 14        |  |
| 311   |          |       |        |        | 2.444       | 2         |  |
| 220   | 2.31     | 10    | 2.33   | 60     | 2.322       | 15        |  |
| 103   |          |       |        |        | 2.303       | 6         |  |
| 302   |          |       | _2.28  | 20     | 2.281       | 7         |  |
| 221   | 2.20     | 15    | 2.21   | 40     | 2.209       | 27        |  |
| 113   | 32.10    | 100   | 2.11   | 100    | { 2.120     | 80        |  |
| 312   | 12.10    | 100   | 2.11   | 100    | 2.104       | 76        |  |
| 410   | 2.04     | 10    | 2.06   | 40     | 2.056       | 23        |  |
| 222   |          |       |        |        | 1.947       | <1        |  |
|       |          |       |        |        |             |           |  |
| 321   |          | 5     | 1.93   | 20     | 1.930       | 7         |  |
| 303   |          | 15    | 1.86   | 50     | 1.857       | 16        |  |
| 004   |          |       |        |        | 1.787       | 3         |  |
| 031   |          |       |        |        | 1.760       | 9         |  |
| 313   | 1.74     | 8     | 1.75   | 40     | 1.754       | 9         |  |
| 131   |          |       |        |        | 1.726       | 5         |  |
| 501   |          |       |        |        | 1.723       | 6         |  |
| 1 301 |          |       |        |        | 1 1120      | · · ·     |  |

| Barium | sulfate   | (barite), | BaS0 |
|--------|-----------|-----------|------|
| (      | orthorhom | abic)—Con | . 1  |

|       | 19                            | 38    |                   |        | 19                   | 53        |
|-------|-------------------------------|-------|-------------------|--------|----------------------|-----------|
|       | Hanamala                      | Dina  | D-:-              |        | Smar e e d           |           |
| hkl   | Hanawalt, Rinn,<br>and Frevel |       | British<br>Museum |        | Swanson and<br>Fuyat |           |
| 16166 |                               | rever | Mus               | eum    | ruy                  | at        |
|       | Mo, 0.                        | 709 A | Cu, 1.            | 5405 A | Cu, 1.540            | 5 A, 26°C |
|       | d                             | I     | d                 | I      | d                    | I         |
|       | A                             |       | A                 |        | A                    |           |
| 230   |                               |       | 1.68              | 50     | 1.681                | 7         |
| 421   | 1.67                          | 15    |                   |        | 1.673                | 14        |
| 114   |                               |       |                   |        | 1.669                | 10        |
| 231   | 1.63                          | 8     | 1.64              | 40     | 1.636                | 8         |
| 132   |                               |       | 1.594             | 40     | 1.593                | 8         |
| 502   | 1.58                          | 10    |                   |        | 1.590                | 7         |
| 323   |                               |       | 1.537             | 60     | 1.534                | 18        |
| 512   | 1.52                          | 25    |                   |        | 1.526                | 11        |
| 024   |                               |       |                   |        | 1.495                | 3         |
| 124   | 1.468                         | 7     | 1.483             | 40     | 1.474                | 10        |
| 521   |                               |       | *                 |        | 1.457                | 3         |
| 610   | 1                             |       | 1.429             | 60     | 1.426                | 8         |
| 133   | }                             |       | 1.427             | 00     | 1.420                | 0         |
| 503   | 1.423                         | 20    |                   |        | 1.424                | 16        |
| 332   |                               |       |                   |        | 1.421                | 13        |
| 430   |                               |       | 1.406             | 50     | 1.406                | 7         |
| 611   |                               |       |                   |        | 1.401                | 10        |
| 015   |                               |       | 1.384             | 40     | 1.384                | 6         |
| 421   |                               |       |                   |        |                      |           |
| 431   | }                             |       |                   |        | 1.378                | 5         |
| 040   | ĺ                             |       | 1.360             | 40     | 1.363                | 6         |
| 414   |                               |       |                   |        | 1.349                | 5         |
| 215   |                               |       | 1.324             | 40     | 1.321                | 6         |
| 240   | 5                             |       |                   |        |                      |           |
| 620   | }                             |       | 1.308             | 40     | 1.300                | 5         |
| 523   | lí –                          |       | 1.268             | 60     | 1,262                | 13        |
| 134   | 3                             |       | 1.208             | 00     | 1.202                | 13        |
| 142   | 1.258                         | 18    |                   |        | 1.260                | 10        |
| 504   | P                             |       |                   |        |                      |           |
|       |                               |       | 1.222             | 50     |                      |           |
|       | 1.192                         | 8     | 1.202             | 50     |                      |           |
|       | 1.095                         | 13    |                   |        |                      |           |
|       | 1.028                         | 5     |                   |        |                      |           |
|       |                               |       |                   |        | 1                    | 1         |

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [2] F. Runne, H. Hentschel, and E. Schiebold, Zum Feinbau von Anhydrit und Schwerspat, Z. Krist. 61, 164-176 (1924).
- [3] S. K. Allison, The reflection of X-rays by barite, Am. J. Sci. 8, 261-276 (1924).
- [4] L. Pauling and P. H. Emmett, The crystal structure of barite, J. Am. Chem. Soc. 47, 1026-1030 (1925).
- [5] R. W. James and W. A. Wood, The crystal structure of baryte, celestine and anglesite, Proc. Roy. Soc. (London) A109, 598-620 (1925).
- [6] R. W. G. Wyckoff and H. E. Merwin, The space group of barite (BaSO<sub>4</sub>), Am. J. Sci. 9, 286-295 (1925).
- [7] W. Basche and H. Mark, Uber die Struktur von Verbindungen des Typus MeXO<sub>4</sub>, Z. Krist. 64, 1-70, (1926).
- [8] G. Walton and G. H. Walden, Jr., The nature of the variable hydration of precipitated barium sulfate, J. Am. Chem. Soc. 68, 1750-1753 (1946).

### Lead sulfate (anglesite), PbSO<sub>4</sub> (orthorhombic)

#### **ASTM** cards

| Card | Card number              |                      |            |                                         |
|------|--------------------------|----------------------|------------|-----------------------------------------|
| Old  | New                      | index<br>lines       | Radiation  | Source                                  |
| 2117 | 2119<br>1-0862<br>1-0867 | 3.00<br>2.06<br>4.26 | Molybdenum | Hanawalt, Rinn, and<br>Frevel [1] 1938. |
|      | 3457<br>3-1006<br>3-1019 | 2.07<br>3.00<br>4.22 | Copper     | British Museum.                         |
|      | 3458<br>3-1007<br>3-1020 |                      |            | A continuation of the preceding card.   |

Additional published patterns. None.

NBS sample. The lead sulfate sample used for the NBS pattern was prepared by the National Lead Co. Spectrographic analysis at the NBS showed 0.001 to 0.01 percent each of bismuth, iron, and silicon, 0.0001 to 0.001 percent each of silver, aluminum, copper, and magnesium and less than 0.0001 percent of calcium. The refractive indices are too high to be determined by grain-oil immersion methods.

Interplanar spacings and intensity measurements. The Hanawalt and British Museum d-spacings were converted from kX to angstrom units. The d-spacing 4.69 of the British Museum pattern is not possible according to the space group.

The three strongest lines for each of the patterns are as follows:

| Patterns                   | 1       | 2       | 3   |
|----------------------------|---------|---------|-----|
| Hanawalt, Rinn, and Frevel | 211     | 122,113 | 011 |
| British Museum             | 122,113 | 211     | 011 |
| Swanson and Fuyat          | 211     | 011     | 210 |

Lattice constants. The structure was determined by James and Wood [2] in 1925. The space group is  $D_2^{16}$ -Pnma with 4(PbSO<sub>4</sub>) per unit cell.

Data for two unit cells were converted to angstrom units for comparison with the NBS values. Lattice constants in angstroms

|      |                                                                | a     | ь     | с             |
|------|----------------------------------------------------------------|-------|-------|---------------|
| 1925 | James and Wood [2]<br>Basche and Mark [3]<br>Swanson and Fuyat | 8.27  | 5.39  | 6.94          |
| 1926 | Basche and Mark [3]                                            | 8.48  | 5.39  | 6.96          |
| 1953 | Swanson and Fuyat                                              | 8.480 | 5.398 | 6.958 at 25°C |

The density of lead sulfate calculated from the NBS lattice constants is 6.323 at  $25 \,^{\circ}\text{C}$ .

#### Lead sulfate (anglesite), PbSO<sub>4</sub> (orthorhombic)

|       | 19           | 38       |         |        | 19          | 53              |
|-------|--------------|----------|---------|--------|-------------|-----------------|
|       |              |          |         |        |             |                 |
|       | Hanawalt     | t, Rinn, | British |        | Swanson and |                 |
| hkl   | and Frevel   |          | Mus     | eum    | Fu          | yat             |
| 11.66 | und ficter   |          | MILIS   | cum    | I U         | yat             |
|       | Mo, 0.7093 A |          | C. 1    | 5405 A | Cu 1 540    | 5 A, 25℃        |
|       | wo, 0.       | (053 A   | ou, 1.  | 3403 A | Cu, 1.040   | 13 A, 23 C      |
|       | đ            | I        | đ       | I      | đ           | T               |
|       | u            |          | u       | 1      | u           | I               |
|       | A            |          | A       |        | A           |                 |
| 101   |              |          |         |        | 5.381       | 3               |
|       |              |          | 4.69    | 25     |             | _               |
| 011   | 4.27         | 80       | 4.23    | 75     | 4.26        | 87              |
| 111   | 3.81         | 28       | 3.79    | 25     | 3.813       | 57              |
| 201   | 3.62         | 8        | 0.112   | 20     | 3.622       | 23              |
| 201   | 0.02         | v        |         |        | 01044       | 25              |
| 002   | 3.48         | 8        |         |        | 3.479       | 33              |
| 210   | 3.34         | 60       | 3.35    | 75     | 3.333       | 86              |
| 102   | 3,22         | 40       | 3.21    | 50     | 3.220       | 71              |
| 211   | 3.01         | 100      | 3.01    | 85     | 3.001       | 100             |
| 112   | 2.76         | 32       | 2.77    | 25     | 2.773       | 35              |
|       | 2.10         | 52       |         | 2.5    | 2.113       |                 |
| 020   | 2.69         | 32       | 2.70    | 50     | 2.699       | 46              |
| 301   |              |          |         |        | 2.618       | 8               |
| 212   | 2.40         | 12       | 2.41    | 50     | 2.406       | 17              |
| 311   |              |          |         |        | 2.355       | <i< td=""></i<> |
| 220   | 2.27         | 12       | 2.29    | 50d    | 2.276       | 20              |
|       |              |          |         | 0      |             |                 |
| 103   |              |          |         |        | 2.235       | 5               |
| 302   |              |          |         |        | 2.193       | 7               |
| 221   | 2.16         | 16       | 2.16    | 50     | 2.164       | 26              |
| 022   |              |          |         |        | 2.133       | 5               |
| 122   | 12000        | 100      |         | 1      | 0.07        |                 |
| 113   | 2.06         | 100      | 2.07    | 100    | 2.067       | 76              |
| 1     |              |          | 1       |        |             |                 |
| 312   |              |          |         |        | 2.031       | 34              |
| 401   | 2.02         | 40       | 2.01    | 75     | 2.028       | 48              |
| 410   | 1.97         | 20       | 1.98    | 50     | 1.973       | 21              |
| 222   | 1.90         | 4        |         |        | 1.905       | 3               |
| 321   | 1.87         | 4        | 1.88    | 25     | 1.879       | 6               |
|       |              |          |         |        |             |                 |
| 303   | 1.78         | 12       | 1.79    | 50     | 1.793       | 15              |
| 031   | 1.73         | 6        | 1.75    | 25     | 1,741       | 8               |
| 004   | J            |          |         |        |             | U U             |
| 412   |              |          |         |        | 1.716       | 3               |
| 322   | 1.70         | 12       | 1.70    | 50     | 1.703       | 16              |
|       |              |          |         |        |             |                 |
| 230   |              |          |         |        | 1.656       | 7               |
| 501   | 1.65         | 4        | 1.65    | 25     | 1.648       | 3               |
| 421   |              |          | 1.62    | 50     | 1.621       | 19              |
| 231   | 1.61         | 20       |         |        | 1.611       | 10              |
| 132   | 1.57         | 4        |         |        | 1.571       | 6               |
| 0.1   |              |          |         |        | 1.5.0       |                 |
| 214   |              |          |         |        | 1.542       | 2               |
| 502   |              |          | 1       |        | 1.525       | 1               |

| hkl | 1938<br>Hanawalt, Rinn,<br>and Frevel<br>Mo, 0.7093 A |    | Hanawalt, Rinn, British<br>and Frevel Museum |    | 1953<br>Swanson and<br>Fuyat<br>Cu, 1.5405 A, 25℃ |        |
|-----|-------------------------------------------------------|----|----------------------------------------------|----|---------------------------------------------------|--------|
|     | đ                                                     | I  | d                                            | I  | đ                                                 | I      |
|     | A                                                     |    | A                                            |    | A                                                 |        |
| 323 | 1,493                                                 | 16 | 1.49                                         | 50 | 1.493                                             | 15     |
| 512 |                                                       |    | 1.47                                         | 25 | 1.467                                             | 7      |
| 124 |                                                       |    |                                              |    | 1.441                                             | 8      |
|     |                                                       |    |                                              |    | 1.111                                             | 0      |
| 314 |                                                       |    | 1.43                                         | 25 | 1.429                                             | 4      |
| 521 |                                                       |    |                                              |    | 1.406                                             | 3      |
| 133 |                                                       |    | 1.40                                         | 25 | 1.402                                             | 3<br>7 |
| 332 |                                                       |    |                                              |    | 1.391                                             |        |
| 601 |                                                       |    |                                              |    | 1.385                                             | 4      |
|     |                                                       |    |                                              |    |                                                   |        |
| 105 | 1                                                     |    | 1.37                                         | 50 | 1.371                                             | 6      |
| 503 | } {                                                   |    | 1.57                                         | 50 | 1.5/1                                             | U U    |
| 610 |                                                       |    |                                              |    | 1.368                                             | 7      |
| 233 |                                                       |    | 1.35                                         | 50 | 1.348                                             | 4      |
| 611 |                                                       |    |                                              |    | 1.341                                             | 5      |
|     |                                                       |    | ( <sup>a</sup> )                             |    |                                                   |        |
|     |                                                       |    |                                              |    |                                                   |        |

### Lead sulfate (anglesite), PbSO<sub>4</sub> (orthorhombic)—Con.

<sup>a</sup> This pattern contains thirteen additional lines

- J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [2] R. W. James and W. A. Wood, The crystal structure of barytes, celestine and anglesite, Proc. Roy. Soc. (London) 109A, 598-620 (1925).
- [3] W. Basche and H. Mark, Uber die Struktur von Verbindungen des Typus MeXO<sub>4</sub>, Z. Krist. 64, 1-70 (1926).

# 2.11. Phosphates

## Potassium dihydrogen phosphate, KH,PO<sub>4</sub> (tetragonal)

#### **ASTM** cards

| Card number |                          | New<br>index         | Radiation              | Source                                                            |
|-------------|--------------------------|----------------------|------------------------|-------------------------------------------------------------------|
| 01d         | New                      | lines                |                        | -                                                                 |
| II-2022     | 2812<br>2-0932<br>2-0948 | 2.65<br>1.96<br>3.76 | Molybdenum,<br>0.7076. | Hendricks [1] 1927.                                               |
| 2669        | 2813<br>1-1062<br>1-1072 |                      |                        | This card is the same<br>source and pattern as<br>the card above. |
| 1229        | 1135<br>1-0499<br>1-0505 | 3.72<br>2.90<br>1.95 | Molybdenum             | Hanawalt, Rinn, and<br>Frevel [2] 1938.                           |

The second set of Hendricks cards as listed above gives the same pattern but with the lattice constants in their proper order (on the original card c was larger than a).

#### Additional published patterns

| Source        | Radiation | Wavelength |
|---------------|-----------|------------|
| West [3] 1930 | Rhodium   |            |

NBS sample. The monobasic potassium phosphate used for the NBS pattern was reagent grade material prepared by the Mallinckrodt Chemical Works. Spectrographic analysis at the NBS showed the following impurities: 0.001 to 0.01 percent each of aluminum, calcium and iron; 0.0001 to 0.001 percent each of barium, magnesium, lead, silicon, and strontium; and less than 0.0001 percent of copper. The NBS sample is uniaxial negative with  $\omega = 1.511$  and  $\epsilon = 1.468$ .

Interplanar spacings and intensity measurements. The Hanawalt, Rinn, and Frevel Bragg angle data were converted into *d*-spacings in angstroms. The Hendricks *d*-spacings were converted from kX to angstrom units.

The three strongest lines for each of the patterns are as follows:

| Patterns                   | 1   | 2       | 3       |
|----------------------------|-----|---------|---------|
| Hendricks                  | 220 | 231,132 | 200     |
| Hanawalt, Rinn, and Frevel | 200 | 112     | 231,132 |
| Swanson and Fuyat          | 200 | 112     | 132     |

**Lattice constants.** The structure was determined by West [3] in 1930. The space group is  $D_{2d}^{12}$ -I $\overline{4}$ 2d with 4(KH<sub>2</sub>PO<sub>4</sub>) per unit cell.

Wests' unit cell measurements have been converted from kX to angstrom units for comparison with the NBS values.

| Lattice | constants | in | angstroms |
|---------|-----------|----|-----------|
|---------|-----------|----|-----------|

|      |                                        | a     | с             |
|------|----------------------------------------|-------|---------------|
| 1930 | West [3]                               | 7.45  | 6.98          |
| 1947 | West [3]<br>Ubbelohde and Woodward [4] | 7.452 | 6.959 at 20°C |
| 1953 | Swanson and Fuyat                      | 7.448 | 6.977 at 26°C |
|      |                                        |       |               |

The density of potassium dihydrogen phosphate calculated from the NBS lattice constants is 2.335 at 26°C.

#### Potassium dihydrogen phosphate, KH <sub>2</sub>PO<sub>4</sub> (tetragonal)

| hkl        | 1927<br>Hendricks |        |       |     | 1953<br>Swanson and<br>Fuyat<br>Cu, 1.5405 A, 26℃ |           |
|------------|-------------------|--------|-------|-----|---------------------------------------------------|-----------|
|            |                   | 105 11 | ,, 0. |     | Cu, 1.040                                         | J A, 20 C |
|            | đ                 | I      | d     | I   | d                                                 | Ι         |
|            | A                 |        | A     |     | A                                                 |           |
| 101        | 5.142             | 5      | 5.1   | 10  | 5.10                                              | 22        |
| 200        | 3.763             | 80     | 3.73  | 100 | 3.726                                             | 100       |
| 121        |                   |        | 3.01  | 8   | 3.008                                             | 12        |
| 112        |                   |        | 2.91  | 100 | 2.910                                             | 75        |
| 220        | 2.650             | 100B   | 2.64  | 16  | 2.636                                             | 23        |
|            |                   |        |       |     |                                                   |           |
| 202        |                   |        | 2.54  | 6   | 2.547                                             | 10        |
| 130        | 2.358             | 10     | 2.34  | 12  | 2.356                                             | 5         |
| 301        | 1                 | 10     | 0.00  |     | 2.341                                             | 10        |
| 103<br>231 | 2.212             | 10     | 2.22  | 3   | 2.220                                             | 5         |
| 132        | 1.966             | 90B    | 1.95  | 40  | 1.982                                             | 37        |
| 132        | P                 | ł      |       |     | (1.953                                            | 31        |
| 213        |                   |        | 1.90  | 2   | 1.907                                             | 4         |
| 400        |                   |        |       |     | 1.863                                             |           |
| 141        |                   |        |       |     | 1.750                                             | 2<br>1    |
| 303        |                   |        |       |     | 1.698                                             | <1        |
| 240        | 1.672             | 15     | 1.66  | 6   | 1.667                                             | 8         |

| hkl        | 1927<br>Hendricks<br>Mo, 0.709 A |    | 1938<br>Hanawalt, Rinn,<br>and Frevel<br>Mo, 0.709 A |   | 1953<br>Swanson and<br>Fuyat<br>Cu, 1.5405 A, 26°C |            |  |
|------------|----------------------------------|----|------------------------------------------------------|---|----------------------------------------------------|------------|--|
|            | d                                | I  | d                                                    | I | đ                                                  | I          |  |
|            | A                                | -  | A                                                    |   | A                                                  |            |  |
| 204<br>332 | )<br>]1.576                      | 40 | 1.57                                                 | 8 | A<br>{ 1.580<br>1.569                              | 7          |  |
| 233<br>242 |                                  |    |                                                      |   | 1.545                                              | <1 < 1 < 1 |  |
| 242<br>224 | 1.456                            | 15 | 1.453                                                | 4 | 1.504                                              | 5          |  |
| 152        | 1.351                            | 20 | 1.348                                                | 6 | 1.348                                              | 8          |  |
| 440        | 1.316                            | >1 | 1,321                                                | 2 | 1.318                                              | 3          |  |
| 404        | 1.273                            | 15 | 1.273                                                | 4 | 1.273                                              | 7          |  |
| 600        |                                  |    |                                                      |   | 1.242                                              | 1          |  |
| 244        | 1.205                            | 30 | 1.202                                                | 6 | 1.205                                              | 5          |  |
| 352        |                                  |    |                                                      |   | 1.1998                                             | 2          |  |
| 260        | 1.179                            |    | 1.177                                                | 2 | 1.1785                                             | 2          |  |
| 602        |                                  |    |                                                      |   | 1.1702                                             |            |  |
| 116        | 1.136                            |    |                                                      |   | 1.1348                                             | 1          |  |
| 361        |                                  |    | 1.010                                                | 2 | 1.0966                                             | <1         |  |
| 136        | 1.043                            |    |                                                      |   | 1.0424                                             | 2          |  |
| 460        |                                  |    | ]                                                    |   | 1.0333                                             | <1         |  |
| 552        | 1.009                            |    |                                                      |   | 1.0087                                             | 3          |  |
| 264        |                                  |    |                                                      |   | .9763                                              | <1         |  |
| 732        |                                  |    |                                                      |   | .9422                                              | <1         |  |

### Potassium dihydrogen phosphate, KH<sub>2</sub>PO<sub>4</sub> (tetragonal)-Con.

- S. B. Hendricks, The crystal structure of potassium dihydrogen phosphate, Am. J. Sci. 14, 269-287 (1927).
- [2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938).
- [3] J. West, A quantitative X-ray analysis of the structure of potassium dihydrogen phosphate, Z. Krist. 74, 306-332 (1930).
- [4] A. R. Ubbelohde and I. Woodward, Structure and thermal properties associated with some hydrogen bonds in crystals, Proc. Roy. Soc. (London) A188, 358-371 (1947).

# 2.12. Bromoösmates

# Ammonium bromoösmate, (NH<sub>4</sub>)<sub>2</sub>OsBr<sub>6</sub> (cubic)

#### ASTM cards. None.

Additional published patterns. None.

NBS sample. The ammonium bromoösmate used for the NBS sample was prepared by R. B. Johannesen at the NBS. Spectrographic analysis at the Bureau showed the following impurities: 0.01 to 0.1 percent of silicon, 0.001 to 0.01 percent of magnesium, and 0.0001 to 0.001 percent each of copper and iron. The refractive indices of the NBS sample could not be determined as the sample was opaque.

Interplanar spacings and intensity measurements. The three strongest lines for the NBS pattern are as follows:

| Patterns          | 1   | 2   | 3   |
|-------------------|-----|-----|-----|
| Swanson and Fuyat | 200 | 111 | 400 |

Lattice constants. No X-ray data appears to have been published for ammonium bromoösmate. From related compounds such as ammonium chloroplatinate the material was found to be face-centered cubic with a lattice constant of approximately 10 angstroms. The structure is cubic face-centered with  $4[(NH_4)_2OsBr_6]$  per unit cell and probably space group  $O_5^{h}$ -Fm3m.

Lattice constant in angstroms

| 1953 | Swanson and Fuyat | 10.398 at 25°C |
|------|-------------------|----------------|
|      |                   |                |

The density of ammonium bromoösmate calculated from the NBS lattice constant is 4.169 at 25°C.

#### Ammonium bromoösmate, (NH4), OsBr6 (cubic)

|               |                    | 1953            |        |  |  |  |  |
|---------------|--------------------|-----------------|--------|--|--|--|--|
|               | Swanson and Fuyat  |                 |        |  |  |  |  |
| hkl           | Cu, 1.5405 A, 25°C |                 |        |  |  |  |  |
|               |                    | 1, 1.3403 A, 23 | C I    |  |  |  |  |
|               |                    | I               |        |  |  |  |  |
|               | đ                  | I               | a      |  |  |  |  |
|               | A                  |                 | A      |  |  |  |  |
| 111           | 6.0                | 97              | 10.4   |  |  |  |  |
| 200           | 5.20               | 100             | 10.40  |  |  |  |  |
| 220           | 3.68               | 5               | 10.41  |  |  |  |  |
| 311           | 3.135              | 40              | 10.398 |  |  |  |  |
| 222           | 3.002              | 55              | 10.399 |  |  |  |  |
| 400           | 2.600              | 83              | 10,400 |  |  |  |  |
| 331           | 2.385              | 12              | 10.396 |  |  |  |  |
| 420           | 2.325              | 51              | 10.398 |  |  |  |  |
| 422           | 2,121              | <1              | 10.391 |  |  |  |  |
| 511           | 2.001              | 20              | 10.398 |  |  |  |  |
| 440           | 1.838              | 49              | 10.397 |  |  |  |  |
| 531           | 1.858              | 20              | 10.389 |  |  |  |  |
| 600           | 1.733              | 23              | 10.398 |  |  |  |  |
| 533           | 1.585              | 5               | 10.394 |  |  |  |  |
| 622           | 1.567              | 8               | 10.394 |  |  |  |  |
|               |                    | 10              |        |  |  |  |  |
| 444           | 1.501              | 12              | 10.399 |  |  |  |  |
| 711           | 1.456              | 10              | 10.398 |  |  |  |  |
| 640           | 1.443              | 8               | 10.406 |  |  |  |  |
| 642           | 1.389              | <1              | 10.394 |  |  |  |  |
| 731           | 1.353              | 5               | 10.393 |  |  |  |  |
| 800           | 1.300              | 4               | 10.400 |  |  |  |  |
| 733           | 1.270              | 1               | 10.395 |  |  |  |  |
| 820           | 1.261              | 8               | 10.398 |  |  |  |  |
| 751           | 1.201              | 3               | 10.401 |  |  |  |  |
| 662           | 1.1927             | 3               | 10.398 |  |  |  |  |
| 840           | 1.1628             | 8               | 10,400 |  |  |  |  |
| 911           | 1.1414             | 3               | 10.399 |  |  |  |  |
| 842           | 1.1343             | 4               | 10.396 |  |  |  |  |
| 931           | 1.0900             | 3               | 10.398 |  |  |  |  |
| 844           | 1.0611             | 5               | 10.397 |  |  |  |  |
| 933           | 1.0455             | < 1             | 10.403 |  |  |  |  |
| 10.0.0        | 1.0397             | <1              | 10.397 |  |  |  |  |
| 951           | 1.0048             | 2               | 10.394 |  |  |  |  |
|               | 1                  |                 | 10,000 |  |  |  |  |
| Average of la | 10.398             |                 |        |  |  |  |  |

References. None.

# 3. CUMULATIVE INDEX TO VOLUMES I, II, AND III

|                                                                  | Vol. | Page |                                                                | Vol. | Page |
|------------------------------------------------------------------|------|------|----------------------------------------------------------------|------|------|
| Aluminum, Al                                                     | Ι    | 11   | Lead fluochloride (matlockite), PbFCL                          | I    | 76   |
| Aluminum oxide, alpha (corundum), Al <sub>2</sub> O <sub>3</sub> | II   | 20   | Lead monoxide (litharge), PbO (red)                            | II   | 30   |
| Aluminum oxide mono-hydrate, alpha                               |      |      | Lead monoxide (massicot), PbO (yellow)                         | II   | 32   |
| (böhmite), Al <sub>2</sub> O <sub>3</sub> ·H <sub>2</sub> O      | III  | 38   | Lead sulfate (anglesite), PbSO4                                | III  | 67   |
| Aluminum oxide monohydrate, beta (dia-                           |      |      | Lead sulfide (galena), PbS                                     | II   | 18   |
| spore), $Al_2O_3 \cdot H_2O_2$                                   | III  | 41   | Lithium chloride, LiCl                                         | Ι    | 62   |
| Ammonium bromide, NH <sub>4</sub> Br                             | II   | 49   | Lithium fluoride, LiF                                          | Ι    | 61   |
| Ammonium bromoösmate, (NH4)2OsBr6                                | III  | 71   | Magnesium, Mg                                                  | Ι    | 10   |
| Ammonium chloride (sal-ammoniac), NH4CL                          | Ι    | 59   | Magnesium aluminate (spinel), MgAl <sub>2</sub> O <sub>4</sub> | II   | 35   |
| Antimony, Sb                                                     | III  | 14   | Magnesium oxide (periclase), MgO                               | Ι    | 37   |
| Antimony trioxide (senarmontite), Sb <sub>2</sub> O <sub>3</sub> |      | 31   | Magnesium silicate (forsterite), Mg2SiO4                       | Ι    | 83   |
| Arsenic, As                                                      |      | 6    | Magnesium tungstate, MgWO4                                     | Ι    | 84   |
| Arsenic trioxide (arsenolite), As <sub>2</sub> O <sub>3</sub>    |      | 51   | Mercury (II) chloride, HgCl,                                   | Ι    | 73   |
| Barium carbonate (witherite), BaCO3                              | II   | 54   | Mercury (I) chloride (calomel), Hg2Cl2                         | Ι    | 72   |
| Barium fluoride, BaF <sub>2</sub>                                | Ι    | 70   | Mercury (II) iodide, HgI2                                      | Ι    | 74   |
| Barium nitrate (nitrobarite), Ba(NO <sub>3</sub> ) <sub>2</sub>  |      | 81   | Mercury (II) oxide (montroydite), HgO                          | III  | 35   |
| Barium sulfate (barite), BaSO4                                   |      | 65   | Molybdenum, Mo                                                 | Ι    | 20   |
| Barium titanate, BaTiO <sub>3</sub>                              |      | 45   | Molybdenum trioxide (molybdite), MoO3                          | III  | 30   |
| Beryllium oxide (bromellite), BeO                                |      | 36   | Nickel, Ni                                                     | Ι    | 13   |
| Bismuth, Bi                                                      |      | 20   | Nickel (II) oxide (bunsenite), NiO                             | Ι    | 47   |
| Cadmium, Cd                                                      |      | 10   | Palladium, Pd                                                  | Ι    | 21   |
| Cadmium oxide, CdO                                               |      | 27   | Platinum, Pt                                                   | Ι    | 31   |
| Calcium carbonate (aragonite), CaCO <sub>3</sub>                 |      | 53   | Potassium bromide, KBr                                         | Ι    | 66   |
| Calcium carbonate (calcite), CaCO <sub>3</sub>                   |      | 51   | Potassium chloride (sylvite), KCL                              | I    | 65   |
| Calcium fluoride (fluorite), CaF2                                |      | 69   | Potassium cyanide, KCN                                         | Ι    | 77   |
| Calcium hydroxide (portlandite), Ca(OH)2                         |      | 58   | Potassium fluoride, KF                                         | I    | 64   |
| Calcium oxide, CaO                                               |      | 43   | Potassium dihydrogen phosphate, KH_PO                          | III  | 69   |
| Carbon (diamond), C                                              |      | 5    | Potassium iodide, KI.                                          | I    | 68   |
| Cerium (IV) oxide, CeO2                                          |      | 56   | Potassium nitrate (niter), KNO3                                | III  | 58   |
| Cesium bromide, CsBr                                             |      | 49   | Potassium sulfate (arcanite), K <sub>2</sub> SO <sub>4</sub>   | III  | 62   |
| Cesium chloride, CsCl                                            |      | 44   | Rhenium, Re                                                    | II   | 13   |
| Cesium dichloroiodide, CsICl <sub>2</sub>                        |      | 50   | Rhodium, Rh                                                    | III  | 9    |
| Copper, Cu                                                       |      | 15   | Scandium oxide, Sc <sub>2</sub> O <sub>3</sub>                 | III  | 27   |
| Copper (II) oxide (tenorite), CuO                                |      | 49   | Selenium dioxide (selenolite), SeO2                            | I    | 53   |
| Copper (I) oxide (cuprite), Cu <sub>2</sub> O                    |      | 23   | Silicon, Si                                                    | II   | 6    |
| Gallium, Ga                                                      |      | 9    | Silicon dioxide (alpha or low quartz), SiO,                    | III  | 24   |
| Germanium, Ge                                                    |      | 18   | Silicon dioxide (alpha or low cristobalite),                   |      |      |
| Germanium oxide, GeO2                                            |      | 51   | SiO,                                                           | Ι    | 39   |
| Gold, Au                                                         | _    |      | Silicon dioxide (beta or high cristobalite),                   |      |      |
| Hafnium, Hf                                                      |      |      | Si0 <sub>2</sub>                                               | I    | 42   |
| Indium, In                                                       |      | 12   | Silver, Ag                                                     | Ī    | 23   |
| Iodine, I <sub>2</sub>                                           |      |      | Sodium bromide, NaBr                                           | III  | 47   |
| Lanthanum oxide, La <sub>2</sub> O <sub>3</sub>                  |      | 33   | Sodium chlorate, NaClO <sub>3</sub>                            | III  | 51   |
| Lead, Pb                                                         | _    |      | Sodium chloride (halite), NaCl                                 | II   | 41   |
| Lead bromide, PbBr <sub>2</sub>                                  |      | [ 47 | Sodium cyanide, cubic, NaCN                                    | I    | 78   |
| Lead carbonate (cerussite), PbCO <sub>3</sub>                    |      |      | Sodium cyanide, orthorhombic, NaCN                             | Ī    | 79   |
| lead chloride (cotunnite), PbCl                                  |      |      | Sodium fluoride (villiaumite), NaF                             | T    | 63   |

|                                                      | Vol. | Page |
|------------------------------------------------------|------|------|
| Sodium sulfate (thenardite), Na2SO4                  | II   | 59   |
| Sodium sulfite, Na <sub>2</sub> SO <sub>3</sub>      | III  | 60   |
| Stannic oxide (cassiterite), SnO2                    | Ι    | 54   |
| Strontium carbonate (strontianite), SrCO3            | III  | 56   |
| Strontium nitrate, Sr(NO3)2                          | Ι    | 80   |
| Strontium sulfate (celestite), SrSO <sub>4</sub>     | II   | 61   |
| Strontium titanate, SrTiO3                           | III  | 44   |
| Tantalum, Ta                                         | Ι    | 29   |
| Tellurium, Te                                        | Ι    | 26   |
| Thallium (III) oxide, Tl <sub>2</sub> O <sub>3</sub> | II   | 28   |
| Thorium oxide (thorianite), ThO2                     | Ι    | 57   |
| Tin, alpha, Sn                                       | II   | 12   |
| Tin, beta, Sn                                        | Ι    | 24   |
| Tin (IV) oxide (cassiterite), SnO2                   | Ι    | 54   |
| Titanium, Ti                                         | III  | 1    |
|                                                      |      |      |

| 1                                                          | Vol. | Page |
|------------------------------------------------------------|------|------|
| Titanium dioxide (anatase), TiO <sub>2</sub>               | Ι    | 46   |
| Titanium dioxide (rutile), TiO2                            | Ι    | 44   |
| Tungsten, W                                                | Ι    | 28   |
| Uranium dioxide, UO,                                       | II   | 33   |
| Yttrium oxide, Y <sub>2</sub> O <sub>3</sub>               | III  | 28   |
| Zinc, Zn                                                   | Ι    | 16   |
| Zinc aluminate (gahnite), ZnAl <sub>2</sub> O <sub>4</sub> | II   | 38   |
| Zinc borate, ZnB204                                        | Ι    | 83   |
| Zinc oxide (zincite), ZnO                                  | II   | 25   |
| Zinc pyrosilicate hydrate (hemimorphite),                  |      |      |
| $Zn_4(OH)_2Si_2O_7 \cdot H_2O$                             | II   | 62   |
| Zinc selenide, ZnSe                                        | III  | 23   |
| Zinc sulfide, alpha (wurtzite), ZnS                        | II   | 14   |
| Zinc sulfide, beta (sphalerite), ZnS                       | II   | 16   |
| Zirconium, alpha, Zr                                       | II   | 11   |

# PERIODICALS OF THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards is engaged in fundamental and applied research in physics, chemistry, mathematics, and engineering. Projects are conducted in thirteen fields: electricity, optics and metrology, heat and power, atomic and radiation physics, chemistry, mechanics, organic and fibrous materials, metallurgy, mineral products, building technology, applied mathematics, electronics, and radio propagation. The Bureau has custody of the national standards of measurement and conducts research leading to the improvement of scientific and engineering standards and of techniques and methods of measurement. Testing methods and instruments are developed; physical constants and properties of materials are determined; and technical processes are investigated.

# JOURNAL OF RESEARCH

The Journal presents research papers by authorities in the specialized fields of physics, mathematics, chemistry, and engineering. Complete details of the work are presented, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Annual subscription: domestic, \$5.50; foreign, \$6.75.

# TECHNICAL NEWS BULLETIN

Summaries of current research at the National Bureau of Standards are published each month in the Technical News Bulletin. The articles are brief, with emphasis on the results of research, chosen on the basis of their scientific or technologic importance. Lists of all Bureau publications during the preceding month are given, including Research Papers, Handbooks, Applied Mathematics Series, Building Materials and Structures Reports, Miscellaneous Publications, and Circulars. Each issue contains 12 or more two-column pages; illustrated. Annual subscription: domestic, \$1.00; foreign, \$1.35.

# BASIC RADIO PROPAGATION PREDICTIONS

The Predictions provide the information necessary for calculating the best frequencies for communication between any two points in the world at any time during the given month. The data are important to all users of long-range radio communications and navigation, including broadcasting, airline, steamship, and wireless services, as well as to investigators of radio propagation and ionosphere. Each issue, covering a period of one month, is released three months in advance and contains 16 large pages, including pertinent charts, drawings, and tables. Annual subscription: domestic, \$1.00; foreign, \$1.25.

> Order all publications from the Superintendent of Documents U. S. Government Printing Office, Washington 25, D. C.



