Standard X-ray Diffraction

Powder Patterns

UNITED STATES DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

PERIODICALS OF THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards is engaged in fundamental and applied research in physics, chemistry, mathematics, and engineering. Projects are conducted in fifteen fields: electricity, optics and metrology, heat and power, atomic and radiation physics, chemistry, mechanics, organic and fibrous materials, metallurgy, mineral products, building technology, applied mathematics, electronics, ordnance development, radio propagation, and missile development. The Bureau has custody of the national standards of measurement and conducts research leading to the improvement of scientific and engineering standards and of techniques and methods of measurement. Testing methods and instruments are developed; physical constants and properties of materials are determined; and technical processes are investigated.

JOURNAL OF RESEARCH

Internationally known as a leading scientific periodical, the Journal presents research papers by authorities in the specialized fields of physics, mathematics, chemistry, and engineering. Complete details of the work are presented, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Each of the monthly issues averages 85 two-column pages; illustrated. Annual subscription: domestic, $\$ 5.50$; foreign, $\$ 6.75$.

TECHNICAL NEWS BULLETIN

Summaries of current research at the National Bureau of Standards are published each month in the Technical News Bulletin. The articles are brief, with emphasis on the results of research, chosen on the basis of their scientific or technologic importance. Lists of all Bureau publications during the preceding month are given, including Research Papers, Handbooks, Applied Mathematics Series, Building Materials and Structures Reports, and Circulars. Each issue contains 12 or more two-column pages; illustrated. Annual subscription: domestic, $\$ 1.00$; foreign, $\$ 1.35$.

BASIC RADIO PROPAGATION PREDICTIONS

The Predictions provide the information necessary for calculating the best frequencies for communication between any two points in the world at any time during the given month. The data are important to all users of long-range radio communications and navigation, including broadcasting, airline, steamship, and wireless services, as well as to investigators of radio propagation and ionosphere. Each issue, covering a period of one month, is released three months in advance and contains 16 large pages, including pertinent charts, drawings, and tables. Annual subscription: domestic, $\$ 1.00$; foreign, $\$ 1.25$.

Order all publications from the Superintendent of Documents U. S. Government Printing Office, Washington 25, D. C.

Standard X-ray Diffraction Powder Patterns

Howard E. Swanson and Eleanor Tatge

National Bureau of Standards Circular 539

Volume I, Issued June 15, 1953

For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C.

Contents

Page

1. Introduction 1
2. Patterns 3
3. 4. Nagnesium 10
1. 2. Aluminum 11
1. 3. Nickel 13
1. 4. Copper 15
2.5. Zinc 16
2.6. Germanium 18
2.7. Mol ybdenum 20
2.8. Palladium- 21
2.9. Silver 23
2.10. Tin, beta 24
1. 11. Tellurium 26
1. 12. Tungsten 28
2.13. Tantalum 29
2.14. Platinum 31
1. 15. Gold 33
1. 16. Lead 34
2.17. Beryllium oxide, BeO (bromellite) 36
1. 18. Magnesium axide, Mgo (periclase) 37
1. 19. Low or α-cristobalite, SiO_{2} 39
2.20. High or F-cristobalite, SiO_{2} 42
2.21. Calcium oxide, Ca () 43
1. 22. Titanium dioxide (rutile), $\mathrm{TiO}_{2} \ldots \ldots$. 44
1. 23. Titaniurn dioxide (anatase), $\mathrm{TiO}_{2} \ldots \ldots$ 46
2.24. Nickelous oxide, NiO (bunsenite) 47
2.25. Cupric oxide, CuO (tenorile) 49
2.26. Germanium dioxide, $\mathrm{Ge} \mathrm{O}_{2}$ 51
1. 27. Arsenic trioxide, $\mathrm{As}_{2} \mathrm{O}_{3}$ (arsenolite) _ 51
1. 28. Selenium dioxide, SeO_{2} (selenolite) 53
1. 2^{9}. Stannic oxide, SnO_{2} (cassiterite) 54
2.30. Ceric oxide, $\mathrm{CeO}_{2}-$ 56
2. Patterns-Continued Page
3. 31. Thorium oxide, ThO_{2} (thorianite) 57
2.32. Calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$ (port- landite) 58
2.33. Ammonium chloride, $\mathrm{NH}_{4} \mathrm{Cl}$ (sal- ammoniac) 59
1. 34. Lithium fluoride, LiF 61
2.35. Lithium chloride, LiCl 62
2.36. Sodium fluoride, NaF (villiaumite) 63
2.37. Potassium fluoride, KF 64
2.38. Potassium chloride, KCl (sylvite) 65
1. 39. Potassium bromide, KPr 66
1. 40. Potassium iodide, KI 68
2.41. Calcium fluoride, CaF_{2} (fluorite) 69
2.42. Barium fluoride, $\mathrm{FaF}_{2^{-}}$ 70
1. 4.. Mercurous chloride, $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ (calome1) 72
2.44. Nercuric chloride, $\mathrm{HeCl}_{2}-$ 73
2. 45. Mercuric iodide, HgI 74.
1. 46. Lead fluochloride, FlFC1 (matlock- ite) 76
2.47. Potassium cyanide, KCN 77
1. 48. Sodium cyanide (cubic), NaCN 78
2.49. Sodium cyanide (orthorhombic), NaCN 79
2.50. Strontium nitrate, $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ 80
2.51. Barium nitrate, $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ (nitrobarite) 81
2.52. Zinc horate, $\mathrm{ZnF}_{2} \mathrm{O}_{4}$ 83
2.53. Magnesium silicate, $\mathrm{Nig}_{2} \mathrm{SiO}_{4}$ (forster- ite) 93
2.54. Nagnesium tungstate, MgHO_{4} 84
1. Keferences 87
2. Cumulative index to volumes I and

II 95

STANDARD X-RAY DIFFRACTION POWDER PATTERNS Vol. I-Data for 54 Inorganic Substances

Lioward E. Swanson and Eleanor Tatge

In continuation of the National Bureau of Standards project for improving the file of X-ray diffraction patterns published by the American Society for Testing Materials, sets of patterns in the file, each representing a different chemical, have been reviewed with the object of supplanting them with single standard patterns. Reports are made on substances for each of which a pattern prepared at the Rureau is offered to replace a set now in the file. Four additional reports are included, one for high cristobalite, for which no pattern was prepared at the NBS, and three, which are not represented in the ASTM file, on selenium dioxide, zinc borate, and magnesium tungstate.

The substances reported upon are $\mathrm{Mg}, \mathrm{Al}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Ge}, \mathrm{Mo}, \mathrm{Pd}, \mathrm{Ag}, \mathrm{Sn}, \mathrm{Te}, \mathrm{W}$, $\mathrm{Ta}, \mathrm{Pt}, \mathrm{Au}, \mathrm{Pb}, \mathrm{BeO}, \mathrm{MgO}, \mathrm{SiO}_{2}$ (low cristobalite), SiO_{2} (high cristobalite), $\mathrm{CaO}, \mathrm{TiO} 2$ (rutile), TiO_{2} (anatase), $\mathrm{NiO}, \mathrm{CuO}, \mathrm{GeO}_{2}, \mathrm{As}_{2} \mathrm{O}_{3}, \mathrm{SeO}_{2}, \mathrm{SnO}_{2}, \mathrm{CeO}_{2}, \mathrm{ThO}_{2}, \mathrm{Ca}\left(\mathrm{OH}\right.$), $\mathrm{NH}_{4} \mathrm{Cl}$, $\mathrm{LiF}, \mathrm{LiCl}, \mathrm{NaF}, \mathrm{KF}, \mathrm{KCl}, \mathrm{KBr}, \mathrm{KI}, \mathrm{CaF}_{2}, \mathrm{HaF}_{2}, \mathrm{Hg}_{2} \mathrm{Cl}_{2}, \mathrm{HgCl}_{2}, \mathrm{HgI}, \mathrm{PbFCl}, \mathrm{KCN}, \mathrm{NaCN}$ (cubic), NaCN (orthorhombic), $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{ZnF}_{2} \mathrm{O}_{4}, \mathrm{Mg}_{2} \mathrm{SiO}_{4}$, and MgWO 4 .

The ASTM patterns are tabulated for comparison with additional patterns from the literature and one prepared at the NBS. Miller indices are derived from the calculation of spacings by desk calculator or the electronic computer SEAC. Interplanar spacings in angstroms (except where otherwise noted) and relative intensities from 1 to 100 are tabulated. For the NBS pattern the three strongest lines are given, as well as the lattice constants and the computed density. The index of refraction of the sample is noted if it could be determined. Crystal-structure data from the literature are noted.

1. Introduction

Three hundred or more substances are represented in the X -ray Diffraction Pattern card file [l] of the American Society for Testing llaterials by more than one pattern each, many of the patterns differing materially from each other. Upon the recommendation of the Joint Committee on Chemical Analysis by X-ray Diffraction Methods, ${ }^{2}$ a critical examination of repeated patterns in the card file is being undertaken as part of a program for the general improvement of the file. Patterns made recently for 53 substances at the National Bureau of Standards are presented, compared with those in the file and in the literature, and recommended for adoption as standard fatterns, 50 of them to replace 170 patterns now in the file, and three of them ($\mathrm{Sen}_{2}, \mathrm{ZnB}_{2} \mathrm{O}_{4}$, and MgWn_{4}) offered as additions

[^0]to the file. Also, the patterns for β cristobalite (SiO_{2}), for which no NBS pattern was prepared, are discussed, and one in the ASTM file is recommended as a standard. The eight patterns given in an earlier paper [218], in which the technique used in the NBS laboratory was outlined, are included in this paper with some slight revisions. A complete list of the patterns reported is given on page 3.

Priefly, for preparing the NBS pattern, a Geiger-counter spectrometer with a 160 degree arc was used, which permits recording the patterns into the back reflection region. Copper Ka x-radiation with a wavelength of 1.5405 A was considered most satisfactory for general use. Separate charts were made for interplanar spacing and for intensity measurements so that the flat sample surface desirable for the former did not preclude the disorientation of particles necessary for the latter. Actual peak height from background was used for intensity measurements. Samples
used were sufficiently fine-grained, usually less than 25 microns, to give reproducible results. The spacings for all NBS standard patterns were corrected by an internal standard of tungsten, except that for the tungsten pattern, silver was used. The unit cell used for tungsten calibration was 3.1648 A and for silver calibration, 4.0861 A , both at $25^{\circ} \mathrm{C}$ [119]. Lines occasionally hidden by tungsten lines were obtained from the intensity diagrams. All spacing errors inherent in sample mountings, sample density variations, spectrometer alinement, and recorder lag were easily compensated by the use of the internal standard. The samples used were of high chemical purity, and chemical or spectrographic analyses are given (rarely both). Phase purity was checked microscopically where possible. The temperature was allowed to vary not more than $\pm 1^{\circ} \mathrm{C}$ from that recorded in the respective tables.

The diffraction lines were indexed and the lattice constants determined. For the cubic substances the indexing was done by comparing theoretical spacings calculated on a desk calculator. The electronic computer SEAC (National Bureau of Standards Eastern Automatic Computer), used under the direction of Dr. Fred Ordway, proved a time-saving device for computing the spacings for many of the substances.

So far as possible the interplanar spacing data reproduced in the tables were reduced to angstrom units as internationally agreed upon in 1946 [264]. In some cases the data are known to be, or assumed to be, in $k X$ units, which are less than angstroms by a factor of 1.00202 [264], and thus easily converted. In others, Bragg angle data are computed to obtain spacings directly in angstroms; or the wavelength of the radiation used in preparing the pattern is compared with the actual wavelength in angstroms to obtain a conversion factor. The dates heading
the column are those of the first publication of the basic data.

With regard to other units, the values of the coefficient of linear thermal expansion given are those which could be readily located in the literature and which cover a satisfactory temperature range. The density is given in grams per cubic centimeter. Indices of refraction for the NBS materials were obtained in white light with oils standardized by sodium light; indices quoted from the literature are accompanied by subscript D for the sodium D line, or $L i$ for lithium.

Lattice constants from the literature are presentedin order of date in unnumbered tables in the text for comparison with those obtained from the NBS data. They are tabulated in angstrom units and are given at $25^{\circ} \mathrm{C}$, the most commonly stated temperature, if a coefficient of expansion is available from the literature for use in recalculating. This results in an occasional difference between the NBS lattice constant given in the text (at $25^{\circ} \mathrm{C}$) and that appearing with the tabulated pattern (at the experimental temperature, usually $26^{\circ} \mathrm{C}$, noted at the head of the column).

The cumulative maximum error of interplanar spacing and lattice constant measurements on NBS patterns varies not more than ± 5 in the last significant figure recorded. In most cases the last significant figure for the density depends rather on the precision to which atomic weights are known than on that of the lattice constant, which is usuually greater.

The original sources are noted of all patterns, tabulated lattice constants, and, where practicable, structure data. For some of the simpler structures it was not always easy to ascertain who was first responsible for the determination of the structure of the compound in question and a reference could not be given with certainty.

2. Patterns

The duplicate patterns considered here are listed in table l. In the table the file card numbers are given for both the old (194041) and new (1950) files of the ASTM, followed by the index numbers (interplanar spacings for the three strongest lines).

Tables 2 to 55 list Miller indices, interplanar spacings, and relative-intensity measurements for the substances considered. Also, in the case of cubic materials, the lattice constants calculated from each spacing are given and averaged at the bottom of the table. The text preceding each table furnishes the following information: Origin of the patterns (such as ASTM cards, or literature); source of the NBS material, its chemistry, and its treatment preliminary to preparing the pattern; basis for converting the spacings of each pattern to angstrom units; the three strongest lines of the NBS patternthe lines used for indexing the ASTM cards; crystal structure data, such as the type of lattice, space group, and the number of molecules in the unit cell; the lattice constant determined from the NBS pattern, compared with constants obtained from the literature; the density, calculated from the NBS lattice constant; and the index of refraction, if it could be determined on the NBS material, or was easily available for other pure material from the literature.

A complete list of the patterns given is magnesium (hexagonal); aluminum (cubic); nickel (cubic); copper (cubic); zinc (hexagonal); germanium (cubic); molybdenum (cubic); palladium (cubic); silver (cubic); tin-white or F (tetragonal); tellurium (hexagonal); tungsten (cubic); tantalum (cubic); platinum (cubic); gold (cubic); lead (cubic); BeO-bromellite (hexagonal); MgO -periclase (cubic); SiO_{2}-low or a cristobalite (tetragonal); SiO_{2}-high or E cristobalite (cubic); $\mathrm{CaO}-\mathrm{lime}$ (cubic); TiO_{2}-rutile (tetragonal); TiO_{2}-anatase (tetragonal); NiO -bunsenite (cubic); CuO -tenorite (monoclinic); GeO_{2} (hexagonal); $\mathrm{As}_{2} \mathrm{O}_{3}$ arsenolite (cubic); SeO_{2}-selenolite (tetrag-
onal); SnO_{2}-cassiterite (tetragonal); CeO_{2} (culic); ThO_{2} - thorianite (cubic); $\mathrm{Ca}\left(\mathrm{CHi}_{2}\right.$ portlandite (hexagonal); $\mathrm{NH}_{4} \mathrm{Cl}$-salammoniac (cubic); LiF (cubic); LiCl (cubic); NaF-villiaumite (cubic); KF (cubic); KCl-sylvite (cubic); KBr (cubic); KI (cubic); CaF_{2}-fluorite (cubic); BaF_{2} (cubic); $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$-calomel (tetragonal); HgCl_{2} (orthorhombic) HgI_{2} (tetragonal) ; $\mathrm{PbFCl}-$ matlockite (tetragonal); KCN (cubic); NaCN (cubic); NaCN (orthorhombic); $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ (cubic); $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$-nitrobarite (cubic); $\mathrm{ZnB}_{2} \mathrm{O}_{4}$ (cubic); $\mathrm{ME}_{2} \mathrm{SiO}_{4}$-forsterite (orthorhombic); and MgWO_{4} (monoclinic).

Table 1. ASTM card to be superseded

Card number		Index lines		Source
old	1950	Old	1950	
1. Magnesium				
2942	3124	2.44	2.44	[100]
	1-1151	2.75	2.75	
	1-1148	1.61	1.61	
2924	3080	2.45	2.45	[85]
	1-1135	2.77	2.77	
	1-1141	2.60	2.60	
2. Aluminum				
3060	3224	2.33	2.33	[102]
	1-1180	2.025	2.03	
	1-1179	1.21	1.21	
3049	3242	2.34	2.34	[59]
	1-1186	1.221	1.22	
	1-1176	2.02	2.02	
-------	3223	-----	2.32	[170]
	3-0938	-.-.-	2.03	
	3-0932	--	1.43	
3061	3225	2.33	2.33	[85]
	1-1181	2.02	2.02	
	1-1180	1.430	1.43	
II-2503	3243	2.33	2.33	Crystallographic Labo ratory, Cambridge.
	2-1117	1.22	1.22	
	2-1109	2.02	2.02	
3. Nickel				
3462	3645	1.95	1.95	[103]
	1-1272	1.13	1.13	
	1-1272	0.74	0.74	
3362	3595	2.038	2.04	[104]
	1-1270	1.067	1.07	
	1-1258	1.766	1.77	

Table 1. ASTM cards to be superseded-Con.

20. Silicon dioxide (β-cristobalite)				
956	0964	4.14	4.14	[254]
	1-0430	2.53	2.53	
	1-0424	1.639	1.64	
----	0965	-----	4.14	[8]
	3-0259	-----	2.52	
	3-0257	-----	1.64	
II-588	0963	4.14	4.14	[255,8]
	2-0276	2.53	2.53	
	2-0278	1.64	1.64	
21. Calcium oxide				
II-244I	3140	2.40	2.40	United Steel Compa-
	2-1079	1.70	1.70	nies, England, and
	2-1088	1.45	1.45	[89; 40].

Table 1. ASTM cards to be superseded-Con.

Card number		Index lines		Source
O1d	1950	Old	1950	
21. Calcium oxide-Con.				
2989	$\begin{array}{r} 3183 \\ 1-1172 \\ 1-1160 \\ 3784 \\ 3-1127 \\ 3-1123 \end{array}$		$\begin{aligned} & 2.39 \\ & 1.69 \\ & 2.76 \\ & 1.69 \\ & 2.39 \\ & 0.98 \end{aligned}$	$[85]$ $[48]$
22. Titanium dioxide (rutile)				
3653	$\begin{array}{r} 3774 \\ 1-1292 \\ 1-1292 \\ 1774 \\ 2-0526 \\ 2-0494 \\ \\ 3773 \\ 3-1124 \\ 3-1122 \end{array}$	$\begin{aligned} & 1.69 \\ & 3.24 \\ & 2.49 \\ & 3.24 \\ & 1.68 \\ & 1.36 \\ & \\ & 1.69 \\ & 3.25 \\ & 1.36 \end{aligned}$	$\begin{aligned} & 1.69 \\ & 3.24 \\ & 2.49 \\ & 3.24 \\ & 1.68 \\ & 1.36 \\ & \\ & 1.69 \\ & 3.25 \\ & 1.36 \end{aligned}$	[85] British Museum, Crystallographic Lab., Cambridge, and [19, 125,246]. United Steel Companies, England.
23. Titanium dioxide (anatase)				
II-911	$\begin{array}{r} 4111 \\ 3-1332 \\ 3-1332 \\ 1390 \\ 2-0411 \\ 2-0406 \\ 1324 \\ 1-0572 \\ 1-0562 \\ \\ 1323 \\ 2-0391 \\ 2-0387 \end{array}$	$--\cdots-$.--- 3.47 1.88 1.69 3.52 1.88 1.70 3.51 1.89 1.70	----- $\cdots----$ 3.47 1.88 1.69 3.52 1.88 1.70 3.51 1.89 1.70	[233] British Museum, Crystallographic Lab., Cambridge, and [246]. [85] United Steel Companies, England.
24. Nickelous oxide				
II-2809	$\begin{array}{r} 3516 \\ 2-1238 \\ 2-1216 \\ 4066 \\ 3-1287 \\ 3-1287 \\ 3471 \\ 1-1238 \\ 1-1238 \end{array}$	$\begin{aligned} & 2.09 \\ & 1.48 \\ & 2.41 \\ & ------- \\ & ----- \\ & 2.08 \\ & 2.40 \\ & 1.474 \end{aligned}$	2.09 1. 48 2.41 \qquad \qquad \qquad 2.08 2.40 1. 47	United Steel Companies, England, and [139; 93; 134] [46] [85]
25. Cupric oxide				
-	$\begin{array}{r} 3014 \\ 3-0867 \\ 3-0867 \end{array}$	----------	2.52 2.31 1.04	[165]

Table 1. ASTM cards to be superseded-Con.

Table 1. ASTM cards to be superseded-Con.

Card number		Index lines		Source
Old	1950	Old	1950	
42. Barium fluoride				
II-2633	3305	2.20	2.20	[221]
	2-1147	1.87	1.87	
	2-1157	1.43	1.43	
1346	1311	3.58	3.58	[85]
	1-0563	2.19	2.19	
	1-0533	1.86	1.86	
43. Mercurous chloride				
1869	1792	3.155	3.16	[90]
	1-0757	4.143	4.14	
	1-0768	1.962	1.96	
	1842	-----	3.17	[112]
	3-0522	--	1.96	
	3-0516	--	1.04	
II-1222	1921	3.13	3.13	[196]
	2-0574	1.94	1.94	
	2-0560	4.05	4.05	
945	0959	4.16	4.16	[85]
	1-0426	3.17	3.17	
	1-0420	1.97	1.97	
44. Mercuric chloride				
812	0852	4.35	4.35	[85]
	1-0377	3.00	3.00	
	1-0365	2.70	2.70	
II-524	0826	4.34	4.34	[26]
	2-0249	4.08	4.08	
	2-0255	3.36	3.36	
45. Mercuric iodide				
3204	3336	2. 183	2.18	[91]
	1-1216	3.563	3.56	
	1-1217	6.192	6.19	
	4060	-----		[99]
1362	3-1281	-----	-----	
	3-1281	-----	-----	
	1312	3.56	3.56	[85]
	1-0564	2.18	2.18	
	1-0542	4.11	4.11	
46. Lead fluochloride				
II-856	1310	3.54	3.54	British Museum.
	2-0388	2.25	2.25	
	2-0377	1.77	1.77	
	3928	-----	1.22	[164]
	3-1184	-----	1.29	
	3-1182		1.79	

Table 1. ASTM cards to be superseded-Con.

2.1. Magnesium (Hexagonal)

In addition to the two patterns recorded in the ASTM file (see table l) four were found in the literature: 1920, Bohlin [18]; 1923, Owen and Preston [176]; 1929, Grime and Morris-Jones [84]; and 1933, Finch and Quarrell. [69]. These are compared in table 2 with a pattern prepared at the NBS.

The magnesium sample used for the NBS pattern was obtained from the Dow Chemical Co. Spectrographic analysis at the NBS indicates the presence of calcium <0.01 percent, and traces of $\mathrm{Al}, \mathrm{Cu}, \mathrm{Fe}$, and Si .

In table 2 the data of Hull and Bohlin were derived directly in angstrom units from the published Bragg angle data. The electron diffraction measurements of Finch and Quarrell

Table 2. Magnesium (hexagonal)

are presented as published. Measurements by the remaining workers were converted to angstroms from $k X$ units. The two patterns published by full gave the same interplanar spacings; only the one reproduced on the ASTM card is given in the table. The Bohlin pattern shows two lines for approximately the spacing requi red for 101 , one of which is extraneous to the structure. Bohlin also found lines at 001 and 003 not found in any other pattern, and at lll, occurring only in the electron diffraction pattern of Finch and Quarrell. It is surprising that neither Hull, nor Owen and Preston reported the strong 002 line.

Two patterns were published by Hull [100]; they are much alike, and only one appears in the ASTM file and in table 2. The three lines 104,300 , and 205 recorded in table 2 as <1, were miscalculated in converting them for the ASTM card as 3 rather than as 0.3 . The intensities of Hanawalt, Rinn, and Frevel and of the NBS compare closely except that the 002 line is almost twice as strong for the pattern of the latter. The NBS sample, in minute spheres formed upon atomizing the material, was particularly satisfactory for this determination as particle orientation was not possible.

The structure of magnesium, which is hexagonal close-packed, was worked out by Hull [103] in 1917. The space group is $D_{6 h}^{4}$ ($\mathrm{C} 6 / \mathrm{mmc}$); there are two atoms in the unit cell.

Some recent unit cell determinations, after the addition of corrections for temperature and conversion to angstrom units, are tabulated:

Unit cell at $25^{\circ} \mathrm{C}$, angstroms

		a	c
1932	Stenzel and Weertz [212]	3.2091	5.2104
1935	Jette and Foote [119]	3.2095	5.2107
1935	Owen, Pickup, and Roberts [175].-	3.2091	5.2115
1938	Ievinš, Straumanis, and Karlsons [114]	3.20927	5.21033
1939	Raynor and Hume-Rothery [191].	3.20948	5.2113
1940	Foote and Jette [71, 72$]$	3.2095	5.2107
1942	Raynor [190]	3.20949	5.21096
1953	Swanson and Tatge.-..---.-.---.---	3. 2094	5.2103

The 1939 determinations of Raynor and HumeRothery [191] of the coefficients of expansion were used in correcting for temperature: 27.9×10^{-6} parallel to c, and 27×10^{-6} parallel to a. The density based on the NBS unit-cell determination is 1.737 .

2.2. Aluminum (Cubic)

Five patterns of aluminum recorded on ASTM cards (see table l) are compared in table 3 with a pattern prepared at the NBS and one by Scherrer [202] obtained from the literature. The material used for the NBS sample was a melting-point Standard Sample of aluminum prepared in the chemistry laboratories of the Bureau. The chemical analysis (in percent) is $\mathrm{Si}, 0.011 ; \mathrm{Cu}, .006 ; \mathrm{Fe}, .007$; $\mathrm{Ti}, .0001 ; \mathrm{Zr}, .003 ; \mathrm{Ga}, .004 ; \mathrm{Mo}, .00002 ; \mathrm{S}$, .0001; Al, $99.9+$ (by difference).

The intensity measurements on the ASTM card accompanying the spacings ascribed to the Crystallographic Laboratory correspond to those of the 1925 Davey pattern except for one line, and were probably supplied from that source; the 400 , a very weak line, has the intensity giverı as 80 , surely a misprint for the 40 of the Davey pattern. This set of intensity measurements is the only one showing the 311 line stronger than the 200 . All patterns show the 111 line as the strongest. The order shown by the NBS pattern is 111,200 , and 311 as first, second, and third strongest lines.

Aluminum has a face-centered cubic lattice [102], four atoms to the unit cell, and the space group 0_{h}^{5} ($\mathrm{Fm}_{\mathrm{m}} 3 \mathrm{~m}$). Unit cell values from the literature are compared below with the NBS determination.

Unit cell, angstroms at $25^{\circ} \mathrm{C}$

		a
1933	Owen and Yates [178]	4.0495
1935	Jette and Foote [119]	4.0496
1936	Jevins and Straumanis [121]	4.04961
1936	Straumanis and Ievinš [216]	4.0489
1940	Foote and Jette [71]	4.0496
1941	Lu and Chang [141	4.0498
1941	Van Bergen [230]	4.04955
1948	Axon and Hume-Rothery	4.0495
1953	Swanson and Tatge.......	4.0494

These were accompanied by temperature data, and by means of a coefficient of expansion of 23.84×10^{-6} [4, 67, 127, 230] were converted to angstroms at $25^{\circ} \mathrm{C}$. Using the

NBS lattice constant, the density was calculated as 2.697 at $25^{\circ} \mathrm{C}$.

For table 3, the spacings of three of the five ASTM patterns were converted to angstroms from the $k X$ units in which they were given. The Olshausen interplanar spacings were calculated for the table directly from the measurements given of the Bragg angle. Hull used 0.712 as the wavelength for molyb-
denum radiation; his spacings were converted to angstroms to correspond with a wavelength of 0.709 A . The pattern by Scherrer, a slight improvement on that of Hull made the year before, was calculated for table 3 directly in angstroms from Bragg angle data. Agreement among the patterns on spacings is excellent, as demonstrated by the uni form unit-cell values shown at the bottom of the table.

Table 3. Aluminnum (cubic)

2.3. Nickel (Cubic)

An unusually large number of patterns has been published for nickel. Table 4 is based on 15 patterns, 6 of which are in the ASTM card index file of X-ray diffraction patterns (see table 1), nine additional patterns found in the literature, and the proposed standard pattern made at the NBS. The literature sources are 1917, Hull [103]; 1920, Bohlin [18]; 1922, Wever [247] ; 1925, Levi and Tacchini [139]; 1925, Clark, Asbury, and Wick [49]; 1926, Holgersson [95]; 1928, Roux and Cournot [195]; 1929, Greenwood [83]; 1939, Boochs [20].

With regard to the ASTM cards, the earliest pattern recorded, the 1917 pattern of Hull [103], was retracted in 1921 [106], and is replaced in table 4 by a second pattern from the same 1917 publication, not in the ASTM file. Hull's 1921 pattern was published twice in successive articles in the same journal $[104,106]$. The ASTM card ascribes it to the second of these. Jung's published pattern [123] comprises four lines, of which the fourth is omitted from the ASTM card, probably due to its lack of precision.

The sample of nickel used for the NBS pattern was prepared by the Johnson, Mat they \& Co., Ltd., laboratories of London, England; it is numbered 3236 . Their spectrographic analysis (in percent) showed as impurities Mg , <0.01; Si, <0.01; Ca, <0.01.

Table 4 compares the interplanar spacings, intensity measurements and unit cell dimensions of the 15 patterns. Nine of the investigators published A or $\sin \theta$ values rather than interplanar spacings. The spacings were calculated for the table directly in angstrom units. The spacings of the Davey, the Hanawalt, Rinn, and Frevel, and the Boochs patterns were converted to angstrom from $k X$ units. The two Hull patterns, one made with tungsten radiation with a wavelength given as 0.212 , the other with molybdenum (wavelength 0.712), and the spacings of the Roux and Cournot pattern giving the wavelength of the molybdenum radi -
ation used as 0.712 , were converted to angstrom units on the basis of the wavelengths used. Wever tabulated the e values for several samples of nickel; these are closely parallel and one, of a sample of high purity, was selected for table 4. Only one of two similar patterns published by Davey was chosen for the table. Mazza and Nasini likewise published several patterns, of which one was selected for the ASTM card and is reproduced here. Comparison of the lattice constants for the lines of each pattern shows that none of the interplanar spacings of the published patterns is accurate to more than two decimal places.

Five of the patterns record intensity measurements numerically. The older ones show the effects of uncorrected absorption and focusing errors. Those of Hanawalt, Rinn, and Frevel and of the NBS, although utilizing different radiations in their preparation, agree in designating the three strongest or index lines as the 111,200 , and 320 .

The common form of nickel discussed here has a face-centered cubic lattice [103], four atoms to the unit cell, and the space group 0_{h}^{5} (Fm 3 m). About 40 lattice constants were found in the literature, many of these of high precision. Six, accompanied by the necessary data for conversion to angstroms at $25^{\circ} \mathrm{C}$, are tabulated below with the NBS determination. For the conversion the coefficient of expansion of 13.4×10^{-6} was used, an average of two recent values [122, 179].

Unit cell in angstroms, $25^{\circ} \mathrm{C}$

1931	Phragmén [185]..------------------------	3.5255
1932	Oven and Yball [173]	3. 5254
1934	Jesse [118]	3.525
1935	Jette and Foote $[71,119,120]$	3.5239
1936	Owen and Yates [179]	3.5247
1941	L_{u} and Chang [141]	3.5247
1941	Fricke [76	3.5239
1953	Swanson and Tatge.----------------------	3.5238

The density, based on the NBS lattice constant, is 8.907 at $25^{\circ} \mathrm{C}$.

Table 4. Nickel (cuozc)

[^1]Table 4. Nackel (cuoic)-Con.

${ }^{\text {a }}$ Average of last three lines.

2.4. Copper (Cubic)

The six patterns for copper in the ASTM file (see table l) are supplemented in table 5 by two from the literature, by Sidhu [207] and by Terrey and Wright [219]. The NBS pattern was made with a sample of copper from the metallurgical laboratory of the Bureau. It had been heated in a hydrogen atmosphere at $300^{\circ} \mathrm{C}$. Spectrographic examination at the NBS showed the following impurities from 0.001 to 0.01 percent: $\mathrm{Ag}, \mathrm{Al}, \mathrm{Bi}, \mathrm{Fe}, \mathrm{Si}$, and Zn .

The spacings for the Jung patterns were calculated for table 5 directly in angstroms from the published Bragg angle data. For the other patterns the spacings were converted from kX to angstrom units, except that of Allis-Chalmers (presumably a personal communication), which was left as it appears on the ASTM card, the unit employed not being known. The second of the two Jung patterns appearing on one ASTM card was published with additional $\mathrm{Cu}_{2} \mathrm{O}$ lines which are omitted in the table. For the Jung and the Waldo patterns two columns of intensity measurements are given, the first as originally published, the second as converted to numerical values on
the ASTM card. For most of the patterns the three strongest lines are 111,200 , and 220 .

The lattice was first determined by Bragg [31] in 1914 as face-centered cubic. The space group is $\mathrm{O}_{\mathrm{h}}^{5}$ (Fm 3 m) [107], and there are four atoms in the unit cell. Nine unit cell determinations are compared below with that of the NBS. All were converted to angstroms at $25^{\circ} \mathrm{C}$; the coefficient of expansion 16.99×10^{-6} [67] was used.

Unit cell in angstroms at $25^{\circ} \mathrm{C}$

1933		3.6155
1933	Obinata and Wasserman [168]	3.6155
1936	Hume-Rothery, Lewin, and Reynolds [109]	3.6148
1939	Owen and Roberts [177]	3.6151
1940	Foote and Jette [71]	3.6151
1941		3.6149
1941	Fricke [76]	3.615
1942	Hume-Rothery and Andrews [108]..-------	3.6151
1945		3.616
1953	Swanson and Tatge	3.6150

From the NBS unit-cell determination the density was calculated as 8.932 at $25^{\circ} \mathrm{C}$.

Table 5. Copper (cubic)

${ }^{\text {a }}$ As first published. ${ }^{\mathrm{b}}$ On ASTM card. ${ }^{\mathrm{c}}$ Unit not known. ${ }^{\text {d Average of four lines only. }{ }^{\text {e }} \text { Average of three }}$ lines only.

2.5. Zinc (Hexagonal)

Two patterns for zinc recorded in the ASTM file (see table 1) are compared in table 6 with a pattern made at the NBS and with 12 found in the literature. The literature sources are 1925, Peirce, Anderson, and van Dyck [184]; 1926, Freeman, Sillers, and Brandt [73]; 1928, Roux and Cournot [195]; 1929, Osawa and Ogawa [171]; 1929, McLennan and Monkman [148]; 1933,

Finch and Quarrell [69] ; 1935, Kotin and Losada [132]; 1936, Brindley [37]; 1937, Wollan and Harvey [251]; 1937, Miller [154]; 1938, Wroński [252]; 1943, Köhler [128].

The sample of zinc used to obtain the NBS pattern presented here was supplied by the New Jersey Zinc Co., and was numbered 11837. Spectrographic analysis at the Bureau showed a trace of lead and faint traces of copper,
magnesium, and silicon. A lump of zinc sublimed in an evacuated tube yielded a fine powder.

The interplanar spacings of all patterns listed in table 6 are in angstroms, some of them changed from $k X$ units, some computed directly in angstroms from Bragg angle data, and others converted from angstrom units based on old wavelength values. Only experimental data are listed; published spacings computed by some investigators in the course of work on intensity measurements do not appear in the table. Freeman, Sillers, and Brandt in 1926 published a pattern showing the presence of every possible line. The Köhler pattern
of 1943 misses the 006 line, and shows an extraneous line between 114 and 210.

There is general agreement that 101 is the strongest line. The patterns since 1936 give 002 and 100 as second and third strongest, respectively, except for that of Wroński, 1938, which places these in reverse order.

The structure of zinc [106] is based on a hexagonal lattice, space group $\mathrm{L}_{6 \mathrm{~h}}^{4}$ ($\mathrm{C} 6 / \mathrm{mmc}$). There are two atoms to the unit cell. Values, presumed all in $k X$ urits, found in the literature were converted to angstror units for the following table and corrected for terrperature by means of the coefficients of expansion

Table 6. Zinc (hexagonal)

hkl	1921 Hull Mo, 0.7093 A		1925 Peirce, Anderson and van Dyck Mo, 0.7093 A		1926 Freeman, Sillers and Brandt Mo, 0.7093 A		1928Roux and Cournot$\mathrm{Cu}, \quad 1.5405 \mathrm{~A}$		1929 Osawa and Ogawa $\mathrm{Fe}, 1.9360 \mathrm{~A}$	1929 McLennan and Monkman $\mathrm{Cu}, 1.5405 \mathrm{~A}$	1933 Finch and Quarre 11 Electron diffraction
	a	I	${ }^{\text {d }}$	I	d	I	d	I	a	a	a
	A		A		A		4		A	A	A
002	2.462	30	2. 479	25	2.461	30	2.489	vs	2. 477		2.56
100	2.284	10	2.306	13	2.293	20	2.356	w	-------------		2.32
101	2.069	100	2.094	100	2.078	100	2.130	vs	2.099	2.078	2.12
102	1.678	20	1.690	25	1.677	15	1.742	1	1.687	1.684	1.74
103	1.334	100	1.340	44	1.335	30	1.402	s	1.343	1.339	1.39
110	1.327	100			1.324	30	1.304	w	------------	1.329	1.35
004	1.230	5	1.236	2	1.231	3	1.232	w	-----------		1.30
112	1.167	70	1.173	25	1.166	35	1.201	w	1.174	1.169	1.19
200	1.148	5	1.150	-	1.146	3	-------	-..	-------------		1.17
201	1.117	40	1.124	19	1. 117	35	------	--	1.123	1.119	1.13
104	1.084	5	1.090	3	1.085	1	------	---	1.090	1.085	
202	1.040	10	1.046	2	1.039	1	------		1.046	1.043	1.06
203	0.943	20	0.944	------	0.940	3	------	---	------------	0.943	0.96
105	-------				. 905	5					. 93
114	0.906	20	0.908	6	. 901	5					
210	-------				0.866					0.870	0.87
211	0.856	30	0.859	6	. 853	8	------			. 856	. 86
204	-------	-----	. 847	2	. 839	1	------	---	------------	-------------	----------
006			\{-------	------	. 821	1	------	----	------------	0.825	----------
212	0.824	10			. 817	1	------		-----------	. 821	0.84
106				------	. 773	-------	------	---	------------	-----------	. 80
213			$\{0.772$	3	. 766	3	------		------------	------------	. 79
300	0.770	20	------		. 764	3				-----------	
205	. 753	10	---------	------	. 748	-----	------		------------	------------	. 78
302	. 734	20			. 729	1					. 74
214	. 714	5	---------	------	-		------		-----------	-----------	. 72
116	. 700	5	---------	--..--	------		------		------------	----------	

Table 6. Zinc (hexagonal)-Con.

hkl	1935 Kotin and Losada $\mathrm{Cu}, 1.5405 \mathrm{~A}$		1936 Brindley $\mathrm{Cu}, 1.5405 \mathrm{~A}$	1937 Wollan and Harvey $\mathrm{Cu}, 1.5405 \mathrm{~A}$	1937 Miller Mo, 0.7093 A	1938 Wroński $\mathrm{Cu}, 1.5405 \mathrm{~A}$	1938 Hanawalt, Rinn and Frevel Mo, 0.7093 A		1943 Köhler $\mathrm{Cu}, 1.5405 \mathrm{~A}$		1953 Swanson and Tatge $\mathrm{Cu}, 1.5405 \mathrm{~A}$, $26^{\circ} \mathrm{C}$	
	a	I	I	I	I	I	d	I	a	I	a	I
	A						A		A		A	
002	2.475	100	35	33	32	41	2.46	25	2.48	81	2.473	53
100	2.310	100	28	30	26	44	2.30	20	2.31	68	2.308	40
101	2.092	80	100	100	100	100	2.08	100	2.09	100	2.091	100
102	1.687	60	15	15	16	26	1.68	14	1.69	50	1.687	28
103	\} 1.337	36	28	15	34	56	1.333	18	$\{1.34$	53	1.342	25
110									1.33	36	1.332	21
004	1.237	31			2		--	-----	1.23	8	1.237	2
112	1.176	23	13	14	16	32	1.171	12	1.171	33	1.1729	23
200	1.155	25					-	-	1. 153	6	1.1538	5
201	1.124	21	9	11	11	26	1.122	8	1. 123	22	1.1236	17
104	1.090	25						-----	1.089	8	1.0901	3
202	1.046	21					1.042	2	1.045	6	1.0456	5
203	0.9458	11	4	4	4	12	0.943	2	0.945	17	0.9454	8
105) 9086						\{. 907	2	. 909	17	. 9093	6
114	\}. 9086	7	8	7	5	15	\{-----	-----	. 906	25	. 9064	11
								----	. 905	14	------	
210	0.8726	10					-------	-----	. 872	8	0.8722	5
211	. 8593	11	10	11	6	26	-------	-----	. 859	31	. 8589	9
204	. 8438	5	---------	-----------	--	------------	-------	-----	. 857	19	. 8437	2
006	------	-----							-----	----	. 8245	1
212		-----		4	1				\{ 0.822	14	. 8225	9
106	------	-----	---------	---------	-----------	-----------	-------	-----				
213	-------	----		----------	-----------	-----------	-------	-----	----			----
300									---			
205												
302	-------		-----------	-----------	-----------	------------	-------			---		
214				------------	------------	------------	-------	-----	------	-----	-------	---
116												

60.8×10^{-6} parallel to the c-axis and 14.3×10^{-6} perpendicular to it [175].

Unit cell at $25^{\circ} \mathrm{C}$ in angstrom units

		a	c
1929	McLennan and Monkman [148].	2.662	4.960
1932	Stenzel and Weertz [212]	2.6643	4.9472
1932	Boas [17] ---------------------------	2.6640	4.9468
1933	Hansen and Stenzel [86]	2.6646	4.9466
1933	Owen and Iball [174]	2.6646	4.947
1935	Jette and Foote [119].-----------	2.6649	4.9468
1935	Owen, Pickup, and Roberts [175].--	2.6648	4.9474
1953	Swanson and Tatge	2.665	4.947

The density, based on the NBS unit cell, is 7.134 at $25^{\circ} \mathrm{C}$.

2.6. Germanium (Cubic)

The two patterns for germanium in the ASTM file (see table l) were not published elsewhere; information regarding the first is limited to the author's name and date, and the second is a combined pattern from two sources. The two patterns are compared in table 7 with one prepared at the NBS and three from the literature, by Kolkmeijer [130], Nitka [166], and König [129].

The germanium used for the NBS pattern was obtained from Johnson, Matthey \& Co., Ltd., numbered 4065. Their spectrographic examination showed faint traces of silver, copper, sodium, and iron present as impurities.

The Kolkmeijer and Nitka patterns were published as Bragg angle data and the values of the spacings were calculated for table 7 directly in angstroms. The spacings of the other patterns were converted from $k X$ units to angstroms. In Nitka's pattern the reflection from the 400 plane was omitted; it is shown by the other patterns to be very weak. In the patterns of Nitka, König, and Fuller no reflections were recorded with indices higher than 51l. König noted and indexed as 222 a reflection in his electron diffraction pattern which is not consistent with the assumed diamond structure of germanium as found in X-ray patterns.

The intensity measurements of the patterns of Kolkmeijer and Nitka are estimated values represented by letters. No intensity values accompany the electron diffraction pattern by König. Schatzlein's pattern shows the customary high values associated with the absorption and focusing errors of much film work. A comparison between the Fuller pattern and the NBS pattern, after a rough conversion of the Fuller-Hanawalt intensity meas-
urements from molybdenum to copper radiation by means of the ASTM conversion chart ([1] page 108 of index covering original set of cards, or card No. vii of the introduction to the 1950 file), indicates good agreement of values. The NBS pattern is in close agreement with those of other investigators using copper radiation.

Germanium, cubic, has the structure of diamond and the space group $\mathrm{O}_{\mathrm{h}}^{7}(\mathrm{Fd} 3 \mathrm{~m})$ [105] wi th eight atoms in the unit cell. The lattice constant determined at the NBS is compared in the following table with determinations found in the literature, after their conversion to angstrom units at $25^{\circ} \mathrm{C}$. The coefficient of expansion of 5.92×10^{-6} was used for the temperature conversions.

Unit cell, angstroms at $25^{\circ} \mathrm{C}$

1937	Nitka [166].----------------------	5.659
1952	Straumanis and Aka [215a].------	5.657640
1953	Swanson and Tatge----------------	5.6576

The density, based on the NBS lattice constant, is 5.325 at $25^{\circ} \mathrm{C}$.

Table 7. Germanium (cubic)

2.7. Molybdenum (Cubic)

Molybdenum is represented in table 8 by three patterns from the ASTM file (see table 1); no additional patterns were found in the literature. A pattern was made at the NBS from a sample prepared by fused salt electrolysis by Seymour Senderoff of the Bureau. Spectrographic analysis showed very weak lines of $\mathrm{Al}, \mathrm{Fe}, \mathrm{Mg}$, and Si , and traces of Ca, Cu, Mn , and Pb . The unit-cell size remained unchanged after heating the finely divided powder in a vacuum furnace at $1,430^{\circ} \mathrm{C}$ for 1 hour.

The spacings of the three ASTM card patterns were converted to angstrom units for table 8. For the Davey and the Hanawalt, Rinn, and Frevel patterns the conversion was from kX units to angstroms; for the Hull pattern the radiation wavelength cited as 0.712 unit for molybdenum was used as the basis for the conversion. Only the first of four series
of interplanar spacings published by Cavey is given on an ASTM card, and only this is represented in table 8. Two patterns closely resembling these were published a year later by Davey in a German article [60]. Copper radiation used for the recording of the NBS pattern permitted the deternination of only seven lines.

The first and second strongest lines are generally agreed upon as the 110 and 211 , respectively. Hull and Davey list the 321 and 310 as third strongest, but their intensity values show the effect of sample absorption when compared with those of Hanawalt, Rinn, and Frevel and of the NBS, which agree upon the 200 as third strongest.

The molybdenum lattice is body centered cubic [106]. Molybdenum has the space group $\mathrm{O}_{\mathrm{h}}^{9}(\operatorname{Im} 3 \mathrm{~m})$, and two atoms in the unit cell. Correcting temperatures to $25^{\circ} \mathrm{C}$ with the

Table 8. Molybdenum

coefficient of expansion Michel [152] gives as 5×10^{-6}, and converting to angstrom units, the following lattice constants compare thus with the NBS determinations:

Unit cell at $25^{\circ} \mathrm{C}$ in angstrom units

1935	Jette and Foote [119	3.1474
1941	Lu and Chang [141]	3.1467
1953	Swanson and Tatge	3.1472

The density, using the NBS unit-cell value, is 10.220 at $25^{\circ} \mathrm{C}$.

2.8. Palladium (Cubic)

Four patterns recorded on ASTM cards (see table l) and two patterns by Barth and Lund [7] and Jaeger and Zanstra [116] are represented in table 9. The sample of sponge palladium used for the NBS pattern was obtained from Johnson, Matthey \& Co., Ltd. Spectrographic analysis (in percent) at the Bureau showed $\mathrm{Ag}, 0.1$ to $0.01 ; \mathrm{Ca}, 0.01$ to 0.001 ; Cu , 0.01 to $0.001 ; \mathrm{Mg}, 0.01$ to 0.001 ; $\mathrm{Pb},<0.0001$; Pt, 0.01 to $0.001 ; \mathrm{Si}, 0.1$ to 0.01 . The sample was heated at $700^{\circ} \mathrm{C}$ for 15 minutes in vacuum and rechecked for a change in unitcell size. No appreciable change took place.

There is good agreement among various workers on the interplanar spacings of palladium. The spacings of the Hull pattern were converted to angstrom units on the basis of 0.712 as the wavelength used by Hull for molybdenum radiation. Those of the other patterns were converted from $k X$ units. The two Lavey patterns are essentially the same. The two most recent patterns, the Hanawalt, Rinn, and Frevel, and that of the NBS agree closely.

In contrast to the agreement of spacings among various workers, the intensity values
are not in complete accord. The 311 is recorded on all but two patterns as either first or second strongest. The two most recent patterns, that of Hanawalt, Rinn, and Frevel, and that of the NBS, show the lll, 200 , and 220 as first, second, and third strongest lines, putting the 311 in fourth place.

On the fiull card of the 1950 file the lattice constant is given as 3.950 and the density as 11.40. Although these data are referred to Wyckoff and to "C.C.," respectively, they are in fact from hull's own published work. The two Davey caro's of the new file both have lattice constants and densities ascribed to Kyckoff and to "C.C.," respectively; on the 1925 card these data are from Davey's own work, while on the 1926 card the lattice constant is from Kyckoff as represented, and the source of the density was not determined.

Palladium crystallizes in the cubic system [178] and has a space group $\mathrm{O}_{\mathrm{h}}^{5}(\mathrm{Fm} 3 \mathrm{~m})$. Two unit cell determinations made at specified temperatures were found in the literature. Converted to angstrom from $k X$ units and corrected to $25^{\circ} \mathrm{C}$ temperature, these are compared below with the NBS determination. For the correction, a coefficient of expansion of 11.8×10^{-6} published by Owen and Yates [178] was used.

Unit cell, angstroms at $25^{\circ} \mathrm{C}$

1931	Stenzel and Weerts [213] ..	3.889
1933	Owen and Yates [178] $\ldots . .-$	3.8905
1953	Swanson and Tatge_.........	3.8898

The density calculated from the NBS lattice constant is 12.04 at $25^{\circ} \mathrm{C}$.

Table 9. Palladium (cubic)

hkl		$\begin{aligned} & 1931 \\ & \text { r and } \mathrm{Zar} \\ & 1.9360 \end{aligned}$		Hanawa	1938 Rinn, 0.709	Frevel		1953 nand $5405 \mathrm{~A}$	
	a	I	a	d	I	a	${ }^{\text {d }}$	I	a
111	$\begin{gathered} A \\ 2.221 \end{gathered}$	60	A 3.847 3.85	$\begin{gathered} A \\ 2.23 \end{gathered}$	100	A 3.86 3.88	A 2.246	100	A 3.891 3.89
200	1.926	50	3.852	1.94	50	3.88	1.945	42	3.889
220	1.367	90	3.866	1.374	27	3.886	1.376	25	3.891
311	1.166	100	3.867	1.172	27	3.887	1.1730	24	3.8904
222	1.117	40	3.876	1.122	5	3.887	1.1232	8	3.8909
400	-----	-------	-----	0.972	1	3.888	0.9723	3	3.8890
331			-----	. 893	5	3.892	. 8924	13	3.8896
420	-----	----.--		. 871	5	3.895	. 8697	11	3. 8893
422	-----	-------		. 795	2	3.895	---------	-------	---------
511	-----	---...-	----	. 750	2	3.897	--------	----.--	--------
440						----	--.	---	
531		----			-----	-----	------	-----	
600	-----	-------	----	---	-------	-------	-------	------	-------
620	-----								
Average unit cell for last five lines.									3.8898
			3.862	-----	------	3.893	--------	-----	

2.9. Silver (Cubic)

There are six cards for silver in the ASTM file of diffraction patterns (see table 1). One of these (number 2-1098), for a "bismuth rich" silver, is not listed in either table 1 or 10 . Three lines in this pattern are not silver lines and are probably due to
a compound of silver and bismuth. When this card was duplicated for the 1950 reprinting, a unit cell measurement of pure silver was included that does not depend on any of the interplanar spacings on the card and misleadingly indicates that the pattern is for pure silver. Another card (3-1316), which is

Table 10. Silver (cubic)

listed in table l, gives no pattern, but only a unit cell measurement-a measurement actually appearing in only one [231] of the two papers to which it is ascribed. Of the remaining four patterns, the two by Jung [124] were published in the same paper. All four are compared in table 10 with a more recently published pattern by Harcourt [88], and one prepared at the NBS.

The NBS pattern was made from a sample furnished by Johnson, Matthey \& Co., Ltd., London, with a purity of more than 99.999 percent. Their spectrographic analysis indicated faint traces of calcium, iron, and copper.

The interplanar spacings of the Jung patterns were calculated directly in angstroms from the Bragg angle data given; the spacings of the other patterns were converted from $k X$ units. All patterns show 111 as the strongest line, but there is considerable difference as to the second and third strongest-Hanawalt, Rinn, and Frevel agree wi th the NBS on 200 and 311, respectively.

The atoms in silver are arranged in a face-centered lattice [231]. Silver has the space group 0_{h}^{5} ($F m 3 m$), and four atoms in the unit cell. Published unit cell values are compared in the following table with that derived from the NBS pattern. Conversion to $25^{\circ} \mathrm{C}$ was made by means of a coefficient of expansion of 19.59×10^{-6} [67], and all were corrected from $k X$ to angstrom units.

Unit cell in angstroms at $25^{\circ} \mathrm{C}$

1930	Sachs and Weerts [200	4.0863
1932	Owen and Iball [173]	4.0862
1933	Owen and Yates [178]	4.0860
1933	Saini [201]	4.0862
1935	Jette and Foote [119]	4.0861
1936	Hume-Rothery, Lewin, and Reynolds [109]	4.0862
1939	Owen and Roberts [177	4.0860
1940	Foote and Jette [71]	4.0861
1953	Swans on and Tatge	4.0862

The density of silver based on the NBS unit cell is 10.500 at $25^{\circ} \mathrm{C}$.

2.10. Tin (White or β) (Tetragonal)

The two patterns in the ASTM X-ray diffraction pattern file for tin are both for the tetragonal modification, referred to as white or β-tin (see table l). Three patterns for tin not included in the ASTM file were found in the literature; these are by Bijl and Kolkmeijer [14], Van Arkel [228], and Willot and Evans [248].

The sample of tin used for the NBS pattern was furnished by Johnson, Matthey \& Co., L.td., London, with the notation that the metal had been specially purified by Capper, Pass, \& Sons, Limited, who furnished the following analysis (in percent): lead, 0.0012; antimony, 0.001 ; iron, 0.00027 ; copper, 0.0002 ; arsenic, 0.0002 ; bismuth, 0.00012 ; sulfur, 0.00003 ; tin, 99.997 (by difference). Spectrographic analysis by Johnson, Matthey \& Co., Ltd., showed the following impurities: lead, faint; bismuth, faint; iron, very faint; sodium, faint; cadmium, very faint; calcium, very faint; magnesium, very faint; aluminum, barely visible; copper, barely visible; indium, barely visible in one spectrum only. The sample was annealed for 12 hours at $160^{\circ} \mathrm{C}$ before it was mounted in the spectrometer.

Interplanar spacings and intensity measurements of the six patterns are compared in table 1l. The interplanar spacings of Bijl and Kolkmeijer and of Van Arkel were calculated directly in angstrom units from their published Bragg angle data; for the remaining patterns they were converted from $k X$ units to angstroms. Intensity values are given numerically by only three of the patterns. These are in agreement with those of the NBS in designating the 200,101 , and 211 as the first, second, and third strongest lines, respectively.

White or β-tin belongs to the tetragonal system; Mark and Polanyi [142] in 1923 assigned it to space group D_{4}^{19} (I4/amd), a bodycentered lattice with two atoms in the unit cell. Recent unit cell measurements have

Table 11. Tin (white or β)

been made by several workers, whose results are compared in the following table after conversion to angstroms at $26^{\circ} \mathrm{C}$. In making the temperature corrections coefficients of expansion obtained from Kosolapov and Trapeznikov [131] of 46.4×10^{-6} perpendicular to the c axis and of 22.4×10^{-6} parallel with it were used.

Unit cell in angstroms at $26^{\circ} \mathrm{C}$

		a	c
1932	Stenzel and Weertz [212].	5.8326	3. 1821
1935	Jette and Foote [119].	5.83126	3.1814
1936	Kosolapor and. Trapeznikov [131].	5.8311	3.1810
1938	Ieviňs, Straumanis, and Karlsons [114]	5.83146	3.18129
1953	Swanson and Tatge.	5.831	3.182

The density of tin based on the NBS lattice constant is 7.286 at $26^{\circ} \mathrm{C}$.

2.11. Tellurium (Hexagonal)

Of the eight patterns in table 12, six are recorcled on ASTM cards (see table l), one, by Bose and Ray [21], was found in the literature, and one was prepared at the NBS. The sample used for the NBS pattern was prepared in the laboratories of Johnson, Mathey and Co., Ltd., London, and was numbered 3824. Their spectrographic analysis showed Si, Fe, Mg , and Al present as faint traces. After being finely ground the sample was annealed in a vacuum furnace at approximately $400^{\circ} \mathrm{C}$ for 15 minutes.

For purposes of comparison, the spacings of the patterns in table 12 were converted to angstrom units except for those by Olshausen and by Bose and Ray, whose Bragg angle data enabled the derivation of interplanar spacings directly in angstrom units, and those of

Bradley and Slattery for which a correction factor could not be determined. The patterns by Harcourt, by Hanawalt, Rinn, and Frevel, and by the Institute of Physics at Cardiff, Wales, were presumed to be in kX units, and were converted accordingly. The Olshausen pattern includes a spacing of 3.58 A , incompatible with the tellurium structure and parameters, and another such spacing, of 5.8 A , is included in the Hanawalt, Rinn, and Frevel pattern.

With the exception of the Slattery pattern of 1924, all patterns accompanied by numerical relative intensity values are in agreement with the NBS pattern as to the three strongest lines: 101,102 , and 110 , in decreasing order.

The tellurium lattice is hexagonal closepacked. The space group was determined in 1924 [25] as enantiomorphic D_{3}^{4} or $\mathrm{D}_{3}^{6}\left(\mathrm{C}_{1} 2\right.$ or $\mathrm{C}_{2} 2$). There are three atoms in the unit cell. The only precision determination of the lattice constants found in the literature is by Straumanis [215], whose measurements, corrected for temperature and converted from kX to angstrom units are compared with the NBS values in the table below. For the temperature correction the coefficient of expansion given in the same paper was used; 27.51×10^{-6} perpendicular to the c axis, and -1.70×10^{-6} parallel to it.

Unit cell in angstroms at $25^{\circ} \mathrm{C}$

		a	c
1940	Straumanis [215].	4.45653	5.92682
1953	Swanson and Tatge.	4.4570	5.9290

The density calculated from the NBS lattice constants is 6.2311 at $25^{\circ} \mathrm{C}$.

Table 12. Tellurium (hexagonal)

$h k l$	1924 Bradley		1925 Slattery		$\begin{gathered} 1925 \\ \text { Olshausen } \end{gathered}$		1927 Harcourt		1938 Hanawalt, Rinn, and Frevel Mo, 0.7093 A		$\begin{gathered} 1941 \\ \begin{array}{c} \text { Bose and } \\ \text { Ray } \end{array} \\ \mathrm{Cu}, 1.5405 \mathrm{~A} \end{gathered}$		Institute Physics, Wales $\mathrm{Cu}, 1.5405 \mathrm{~A}$		$\begin{gathered} 1953 \\ \text { Swanson and } \\ \text { Tatge } \\ \mathrm{Cu}, 1.5405 \mathrm{~A}, \\ 26^{\circ} \mathrm{C} \end{gathered}$	
	d	I	d	I	d	I	d	I	d	I	d	I	d	I	d	I
	(${ }^{\text {) }}$		(${ }^{\text {a }}$		A		A		$\begin{array}{r} A \\ 5.8 \end{array}$	19	A		A		A	
100	3.845	84	3.83	20	3.81	w	3.86	50	3.87	14	3.67	w	3.80	40	3.86	20
		--	-.----	---	3.58	m	------	---		----	----	---	-	----	------	---
101	3.220	5	3.22	100	3.224	s	3.23	100	3.25	100	3.05	vs	3. 20	100	3.230	100
102	2.344	11	2.34	50	2.350	m	2. 33	80	2.34	48	2.86	vvw	2.33	80	2.351	37
110	2.219	16	2.22	40	2.215	m	2. 22	70	2.22	32	2.12	s	2.21	80	2.228	31
111	2.078	63	2.08	20	2.019	vw	2.07	50	2.08	14	--	---	2.06	60	2.087	11
003	1.968	63	1.969	20	1.965	w	1.97	50	1.96	14	1.99	w	1.96	60	1.980	8
200	-----	---		--		----	----	--						----	1.930	4
201	1.830	27	1.834	40	1.836	m	1.82	60	1.83	28	1. 87	vvw	1.82	80	1.835	20
112	1.765	79	1.777	20	-----		1.77	30	1.77	10	1.78	vvw	1.77	20	1.781	7
103	-.-..--	--	--.----	---	--	----	-------	--	-------	----	------	---	------	----	1.758	2
202	1.614	52	1.614	25	1. 619	m	1.61	60	1.61	20	1.55	vvw	1.61	60	1.616	12
113) 1.464	32	1.469	30	\{1.471	${ }^{\text {m }}$	1.47) 1.473	28			$\{1.47$	60	1. 479	13
210	$)^{1.464}$	32	1.469	30	1.448	w	1. 448	30	f 1.473	28			\1.45	40	1.459	8
211	1.410	50	1.412	20	1.409	${ }^{w}$	1.413	50	1.421	13	1.41	vvw	1.41	60	1.417	8
104	$\} 1.375$	50	1. 377	20	1.377	${ }^{*}$	1. 378	50	1.383	16		----	1.38	60	1.383	7
212	1.308	68	1.307	10	1.305	m	1.303	30	1.312	8			1. 30	40	1. 309	6
300	1.287	68	-------	---			-------	---	-------	-----			---	---	1.287	1
301	1.255	74	1. 267	3	------	----	1.254	20	1. 260	5	------		1.25	20	1.257	4
114	---	---				----	1.232	20							1. 234	1
302						--		---						---	1.1802	3
204 213	$\} 1.172$	21	1.171	30	1. 171	m	1. 172	70	1. 177	14			1.17	60	1. 1740	8
105	1.131	84	1. 130	8	1.129	${ }^{\text {v w }}$	1. 127	20	1. 121	5				---	1. 1334	3
221	1. 092	95		---	1.096	vw	-------	---	-------				1.09	10	1.0951	2
303	------	----	-------	---	------	----	-------	---				-----	------	----	1.0784	1
310	1.075	100	-------	---	------	----	-------	---	--------	--				----	1.0705	1
311	------	----		---	1.049	w	1.050	20	1.047	5			1.05	20	1. 0535	3
115	---	-		---	-----	--	------	--	--------					----	1.0432	2
222	1.038	42	-------	---	1.038	w	1.039	10	--------	-----	--.---	-----	1.04	20	1.0399	3
214	-----	----	-------	---		--	------	--						---	1.0104	2
205				---	1.009	w	1.007	10	1.007	5			1.00	20	1.0071	3
312																
006		----		---	------	---	------	---	--------	-----			------	----	0.9889	1
304				---	------	----		---	--------	-----				---	. 9714	2
223		----		---	0.966	vd		---	0.970	2				--	. 9650	1
313				---	. 944	w		---							. 9413	1
215				-..	. 921	w	-	--							. 9201	2
116		----		---	. 905	w	0.900	10		-----	------		----	--	. 9032	2
224															(. 8909	1
320	\}-----			---	. 889	w		---							. 8858	
206															. 8760	1
321								---		-----		-----		----	. 8719	,
305																
314	\}-----	----		---	0.870	π	0.866	10	0.868	2			0.868	10	. 8675	4
322					. 851										. 8485	1
411					. 838										. 8339	2
107				---				---							. 8270	1
216								---							. 8180	2
225				---				---							. 8119	1
412				---				---		-----		-----	-----	--	. 8102	2
404															. 8082	3
315															. 7945	2
117								--							. 7917	1

[^2]
2.12. Tungsten (Cubic)

Two tungsten patterns from the ASTM file (see table l) and five additional patterns from the literature, of which three comprise interplanar spacings only, are compared in table 13 with a pattern prepared at the NBS.

The patterns from the literature are by Becker [12], Debye [62], Neuburger [160], Sidhu [207], and Zeidenfeld [261]. The NBS pattern was made from a sample prepared and contributed by the Westinghouse Electric Corporation, who provided the following chemical analysis (in

Table 13. Tungsten (cubic)

${ }^{\text {a }}$ Unit not known. b Average for last two lines. ${ }^{c}$ Average for last three lines. ${ }^{d}$ Average for two lines preceding last line.
percent) by A. Pettel, Jr.: $\mathrm{SiO}_{2}, 0.04$; K, $0.05 ; \mathrm{Mo}, 0.01 ; \mathrm{Al}_{2} \mathrm{O}_{3}, 0.01 ; \mathrm{Fe}, 0.01$. This was verified by spectrographic analysis at the Bureau.

For table 13, data given in Bragg angles were used directly to derive interplanar spacings in angstroms for the patterns of Debye, Becker, Neuburger, and Sidhu. Davey's pattern was left in its original form, since the radiation wavelength was not given. Zeidenfeld gave a radiation wavelength of too few significant figures to show whether his data are in $k X$ units or angstroms. The spacings of Hanawalt, Rinn, and Frevel were converted from $k X$ units to angstroms.

Only three sets of intensity measurements are given with numerical values. Those of Hanawalt, Rinn, and Frevel, and of Swanson and Tatge show the same three strongest or index lines: 110, 211, and 321. Sidhu's estimated intensities agree with them.

The tungsten lattice is body-centered cubic with two atoms in the unit cell. Tungsten has the space group $\mathrm{O}_{\mathrm{h}}^{9}$ ($\operatorname{Im} 3 \mathrm{~m}$) [160]. The lattice parameters derived by several investigators are compared in the table following. They were converted to angstrom units at $25^{\circ} \mathrm{C}$. The coefficient of expansion of 4.3×10^{-6} of Michel [152] was used.

Unit cell at $25^{\circ} \mathrm{C}$ in angstroms

1932	Owen and lball [173]	3. 1657
1934	Neuburger [160]	3.1654
1935	Jette and Foote [119]	3.1648
1936	Cohen [51]	3.16473
1936	Straumanis and Ieviňs [216]	3. 1651
1941	Lu and Chang [141]	3. 1650
1953	Swanson and Tatge.------	3. 1648

The density determined from the NBS lattice constant is 19.265 at $25^{\circ} \mathrm{C}$.

A less common form of tungsten, likewise stable at room temperature but with a simple cubic lattice, is represented by a third tungsten card in the ASTM file (old file number II-2579, new file number $2-1138$, index lines $2.25,2.06,1.34)$. This form, of different structure, is not to be confused with the form discussed here.

2.13. Tantalum (Cubic)

The three patterns given in the ASTM file (see table l) are supplemented by three additional patterns found in the literature, by Becker and Ebert [13], McLennon and Monkman [148], and Horn and Ziegler [96]. One of the ASTM patterns (Quill [189]) is recorded as made with molybdenum radiation al though copper radiation was actually employed. These patterns are compared with an NBS pattern in table 14.

The sample of tantalum used for the NBS pattern was procured from Johnson, Matthey \& Co., Ltd, London. The material contained dissolved gases which caused broadening of diffraction peaks, and TaH, which contributed extra lines. After annealing at $1,500^{\circ} \mathrm{C}$ in vacuum for 30 minutes in a tantalum boat the sample gave very sharp lines including only traces of the hydride. The spectrographic analysis furnished with the sample indicated faint traces of $\mathrm{Nb}, \mathrm{Al}, \mathrm{Si}, \mathrm{Fe}$, and Mn .

The interplanar spacings of table 14 are all given in angstrom units. The Becker, and the Ebert and Quill patterns were originally recorded as a series of Bragg angles, from which the interplanar spacings in angstroms were derived directly for the table. Hull's pattern was calculated by him with the use of a wavelength of 0.712 , on the basis of which his spacings were converted to angstrom units. The McLennon and Monkman, and the lianawalt, Rinn, and Frevel interplanar spacings were converted from kX units to angstroms. The Horn and Ziegler data are published presumably in angstroms.

The Horn and Ziegler measurements as well as those of Hull and Quill suffer from focusing and absorption effects. The Hanawalt, Rinn, and Frevel data agree wi th those of the NBS in designating the three strongest lines as the 110,211 , and 200 , in decreasing strength.

The tantalum lattice is body-centered cubic; the space group is $\mathrm{O}_{\mathrm{h}}^{9}$ (Im3m) [104]. There are two atoms in the unit cell. Two measurements of the lattice constant are compared in the table below with that of the NBS.

Table 14. Tantalum (cubic)

[^3]The data were converted to angstroms at $25^{\circ} \mathrm{C}$; the coefficient of expansion of 6.6×10^{-6} [94] was used.

Unit cell in angstroms at $25^{\circ} \mathrm{C}$

1932	Owen and Iball [173]	3.3183
1936	Neuburger [161]	3. 3027
1953	Swanson and Tatge	3. 3058

The density as calculated from the NBS lattice constant is 16.626 at $25^{\circ} \mathrm{C}$.

2.14. Platinum (Cubic)

Three patterns for platinum are given in the X-ray diffraction pattern files of the ASTM (see table 1). Four additional patterns were obtained from the literature; these were made by Barth and Lunde [7], Jaeger and Zanstra [116], Rusterholz [199], and by Uspenski and Konobejewski [227]. The sample used to obtain a pattern at the NBS was prepared by R. Gilchrist of the Chemistry Division of the Bureau. The NBS Spectroscopic Laboratory estimated the purity at >99.99 percent.

All the interplanar spacings of the eight patterns of table 15 are given in angstrom units except those of Davey, for which a conversion constant could not be determined. The spacings of Hull were converted to angstroms on the basis of the wavelength $\lambda=0.712$ given for molybdenum $K a$ radiation; the remainder were calculated directly in angstroms from the Bragg angle data given.

It may be observed from table 15 that several of the patterns omit the weak 400 line. The three earliest patterns, by Hull, by Uspenski and Konobejewski, and by Davey, made
with molybdenum radiation, include 511, 531, and 600 lines beyond the range of patterns made with copper radiation. The pattern of Hanawalt, Rinn, and Frevel agrees with that of the NBS upon 111 and 200 as the two strongest lines, but shows 220 and 311 as equal in strength whereas the NBS pattern shows 311 as plainly stronger. This is evidently due to the difference in the radiation used, for upon recalculation of the Hanawalt, Rinn, and Frevel intensity values derived with molybdenum radiation to a copper radiation base ([1] page 108 of index covering original set of cards, or card number vii of introduction to 1950 file), the 311 is plainly the stronger in this pattern also. The earlier intensity measurements vary widely, suffering from the defects common to uncorrected film values.

The platinum lattice is face-centered cubic [106], $\mathrm{O}_{\mathrm{h}}^{5}(\mathrm{Fm} 3 \mathrm{~m})$, with four atoms in the unit cell. Of the many unit cell determinations found in the literature, two are accompanied by the temperature at which they were measured. These values were converted to $25^{\circ} \mathrm{C}$ by means of the coefficient of expansion 8.3×10^{-6}, an average of two published values [66, 178]. After conversion from $k X$ to angstrom units, comparison with the NBS data gives:

Unit cell at $25^{\circ} \mathrm{C}$, angstroms

1933	Owen and Yates [178] --	3.9240
1937	Moeller [155]	3.92261

The density based on the NBS lattice constant is 21.472 at $25^{\circ} \mathrm{C}$.

Table 15. Platinum (cubic)

${ }^{a}$ Unit not know. ${ }^{b}$ Average for two lines only.

2.15. Gold (Cubic)

Three patterns for gold are included in the X-ray diffraction pattern file of the ASTM (see table l). These are compared in table 16 wi th a pattern prepared at the NBS. The sample used for the NBS pattern was purified by R. Gilchrist of the Chemistry Division of the Bureau. Spectrographic analysis showed faint traces of silicon and calcium (about 0.001 percent each), and possibly a faint trace of silver; thus the sample is about 99.997 percent gold.

In table 16 all interplanar spacings are given in angstrom units. The spacings of the Davey, the Hanawalt, Rinn, and Frevel, and the Harcourt patterns were converted from $k X$ units. Jung presented his data in Bragg angle values from which interplanar spacings were computed directly in angstroms for the table. The intensity measurements of Hanawalt, Rinn, and Frevel, of Harcourt, and of Swanson and Tatge agree as to the three strongest or index lines: 111, 200, and 311.

The gold lattice is face-centered cubic [232]; the space group is $\mathrm{O}_{\mathrm{h}}^{5}$ (Fm 3 m). There are four atons per unit cell. Four measurements of the unit cell edge at specified temperatures were found in the literature. These: values were corrected to $25^{\circ} \mathrm{C}$ by the use of the coefficient of expansion of 15.2×10^{-6} [66], and converted from $k X$ to angstrom units. They compare with the NBS determination, after all are corrected for units and temperature, as follows:

Unit cell at $25^{\circ} \mathrm{C}$, angstrows

1930	Sachs and Weerts [200]	4.0785
1933	Owen and Yates [178]	4.0786
1935	Jette and Foote [119]	4.0786
1938	Esser, Eilander, and Bungardt [66]...-	4.078
1953	Swanson and Tatge---------------	4.0786

The density determined from the NBS lattice constant is 19.302 at $25^{\circ} \mathrm{C}$.

Table 16. Gold (cubic)

		1925			1926			1926			1938			1942			1953	
$h k l$		Davey			Dave			Jung		Hana an	$1 \mathrm{t}$ Fre	Rinn, el		cou		Swanso	and	Tatge
	Mo,	0.709	A	Mo,	0.70	3 A	Cu,	1.54	5 A	Mo,	0.70	3 A	Cu ,	1. 54	5 A	$\mathrm{Cu}, 1.5$	405	$26^{\circ} \mathrm{C}$
	d	I	a	d	I	a	d	I	a	d	I	a	${ }^{\text {d }}$	I	a	d	I	a
	A		A	A		A	A		A	A		A	A		A	A		A
111	2.35	100	4.07	2.35	100	4.08	2.349	s	4.069	2.35	100	4.07	2.36	100	4.09	2.355	100	4.079
200	2.03	75	4.06	2.03	75	4.07	2.038	ms	4.076	2.03	53	4.06	2.04	67	4.08	2.039	52	4.078
220	1.439	75	4.070	1.440	75	4.072	1.436	s	4.062	1.442	33	4.078	1.44	44	4.07	1.442	32	4.078
311	1.227	88	4.071	1.228	88	4.074	1.229	s	4.076	1.229	40	4.077	1.23	56	4.08	1.230	36	4.079
222	1.175	62	4.071	1.175	62	4.071	1.179	w	4.084	1. 175	9	4.071	1.177	12	4.078	1.1774	12	4.0786
400	1.018	38	4.072	1.018	38	4.072		--		1.021	3	4.084	1.019	3	4.076	1.0196	6	4.0784
331	0.935	75	4.075	0.935	75	4.075	0.935	s	4.073	0.937	9	4.084	0.935	22	4.075	0.9358	23	4.0790
420	. 911	75	4.073	. 911	50	4.073	. 913	s	4.083	. 912	7	4.078	. 912	22	4.078	. 9120	22	4.0786
422	. 832	50	4.074	. 832	50	4.074		--		. 834	4	4.084	. 832	33	4.074	. 8325	23	4.0784
511				. 784	---	4.077		--		. 786	4	4.082	. 786	33	4.082			
Average unit cell for last five lines \qquad			4.073	-----	---	4.074	-----	--	4.076	-----								
			---								4.082	-----	---	4.077	------	---	4. 0786	

2.16. Lead (Cubic)

Lead is represented by six patterns in the ASTM X-ray diffraction pattern file (see table l). An additional pattern to those of the ASTM cards, by Solomon and Jones [16], 1931, was found in the literature. They are compared in table 17 with a pattern prepared at the NBS.

The sample of lead used for the NBS diffraction pattern was obtained from the American Smelting and Refining Company. Spectrographic analysis at the NBS showed faint traces of bismuth and magnesium; the purity of the sample is believed greater than 99.999 percent. It was annealed for one hour at $180^{\circ} \mathrm{C}$ in petrolatum.

The interplanar spacings of the Levi and the Solomon and Jones patterns were calculated for table 17 directly in angstrom units from the published Bragg angle data. The remaining published patterns were converted from $k X$ units to angstroms. The interplanar spacings for the 1925 pattern of Davey were selected for the ASTM card from two sets of values published in adjacent columns. These two sets were averaged to obtain the pattern published by Davey in German in 1926. Two cards in the ASTM file have patterns credited to Harcourt; the interplanar spacings of these are identical and are given only once in table 17.

The intensity measurements of the Levi pattern were published as visual estimates, which were given numerical designations for the ASTM cards. The intensity measurements of the two Davey patterns are identical, as published; the strongest line has a value of 6, the others proportionately lower. These were converted to a base 100 for the strongest
line in transferring the data to the ASTM cards. However, the converted figures were given to two places for the 1925 pattern, and rounded off to one place for the 1926 pattern, with the result shown in table 17. The intensity values for the Solomon and Jones pattern, which is not included in the ASTM file, are given in the table as they were published. The intensity measurements of both Harcourt patterns are given; column I_{1} refers to the set published in 1942, I_{2} to the set found only in the ASTM file.

Lead has a face-centered cubic lattice [232]. It belongs to the space group $\mathrm{O}_{\mathrm{h}}^{5}$ (Fm 3 m), and has four atoms to the unit cell. The length of the unit cell edge has been determined, with great accuracy, by many investigators. The following lattice constants, of fairly recent date, are converted to angstroms for comparison at a standard temperature. As published they are supposedly all in $k X$ units. The temperature correction was made by means of Owen and Yates' [178] value of 29.1×10^{-6} for the coefficient of expansion at $20^{\circ} \mathrm{C}$.

Unit cell in angstroms at $25^{\circ} \mathrm{C}$

1932	Owen and Iball [173]	4.9505
1933	Owen and Yates [178]	4.9506
1933	Obinata and Schmid [167	4.9496
1934	Ölander [169]	4.9492
1941	Stokes and Wilson [214	4.9503
1941	Fricke [76]	4.950
1941	Lu and Chang [141	4.9500
1946	Klug [126]	4.9508
1953	Swanson and Tatge.	4.9505

The density of lead based on the NBS determination of the unit cell is 11.341 at $25^{\circ} \mathrm{C}$.

Table 17. Lead (cubic)

$h k l$	Hanawal		d Frevel A			5 A			1953 5405	
	d	I	a	d	$I^{\text {a }}$	$I^{\text {b }}$	a	d	I	a
111	A 2.86	100	$\begin{gathered} A \\ 4.95 \end{gathered}$	$\begin{gathered} A \\ 2.85 \end{gathered}$	90	100	$\begin{gathered} A \\ 4.94 \end{gathered}$	$\begin{gathered} A \\ 2.855 \end{gathered}$	100	$\begin{gathered} A \\ 4.945 \end{gathered}$
200	2.47	50	4.94	2.450	70	90	4.900	2.475	50	4.950
220	1.74	50	4.92	1.744	80	90	4.933	1.750	31	4.950
311	1.493	50	4.952	1.488	100	100	4.935	1.493	32	4.950
222	1.431	17	4.957	1.426	40	80	4.940	1.429	9	4.950
400	---	-----	---------	1.235	10	50	4.940	1.238	2	4.950
331	1.136	17	4.952	1.135	70	90	4.947	1.1359	10	4.9513
420	1.107	17	4.951	1.107	70	90	4.951	1.1069	7	4.9502
422	-------	-----	---------	1.011	70	90	4.953	1.0105	6	4.9504
511	----			0.9534	70	90	4.9540	0.9526	5	4.9500
440			---------	. 877	10	50	4.961	. 8752	1	4.9508
531	-------		--------	. 8382	70	90	4.9589	. 8369	9	4.9510
620	-------	----	---------	. 8267	60	90	4. 9602	. 8251	4	4.9507
533			------	--------.			-------	--------		
622										
444	-									
Average unit cell for last five lines \qquad							${ }^{\text {c }} 4.9577$			4.9506
			4.953			-		---	-	

${ }^{\text {a }}$ As first published.
${ }^{b}$ On ASTM card.
${ }^{c}$ Average for 511,531 , and 620 lines.

2.17. Beryllium Oxide, Be0 (Hexagonal)

In addition to four patterns for beryllium oxide (bromellite) included in the ASTM file (see table 1), patterns by Zachariasen [258, 259] and by Cl aassen [47], found in the literature, are compared with an NBS pattern in table 18. Since the two Zachariasen patterns are very similar, only the first is reproduced in the table.

The sample of BeO used for the Bureau pattern was prepared by the Brush Beryllium Company. The material, No. 1743-1747, is of fluorescent grade, and was prepared at a furnace temperature of $1,150^{\circ} \mathrm{C}$. Spectrographic analysis at the Bureau laboratory indicated about 0.03 percent $\mathrm{Al},<0.01$ percent each of $\mathrm{Ca}, \mathrm{Fe}, \mathrm{Mg}$, and Si , and traces of Cu, Pb, and Sn .

For the McKeehan pattern the ASTM card carries spacings derived from the author's Bragg angle data, while for table 18, d was
obtained directly from the author's log d values, and converted from $k X$ to angstrom units. The Claassen interplanar spacings were calculated directly in angstrom units for table 18, from the Bragg angle data published. Since it is not clear from the ASTM card whether the pattern of the United Steel Companies, England,.is in $k X$ or angstroms, it was not altered. All others were converted to angstroms upon the assumption that they are published in $k X$ units. Two lines, 114 and 212, not previously observed, show up in the NBS pattern. The 004 and 104 appearing in the two Zachariasen patterns and in the United Steel Companies pattern were observed only with difficulty in the NBS pattern. In the United Steel Companies pattern the line of interplanar spacing 0.993 is indexed as a compound reflection from 104 and 113 planes. As the presence of a 113 reflection is not

Table 18. Beryllium oxide, BeO (hexagonal)

$h k l$	1922 McKeehan Mo, 0.7093 A		1925 Zachariasen $\mathrm{Cu}, 1.5405 \mathrm{~A}$		1925 Aminoff $\mathrm{Fe}, 1.9360 \mathrm{~A}$		1926 Claassen $\mathrm{Cu}, 1.5405 \mathrm{~A}$		1938 Hanawalt, Rinn, and Frevel Mo, 0.7093 A		United Steel Co, 1.7902 A		1953 Swanson and Tatge $\mathrm{Cu}, 1.5405 \mathrm{~A}, 26^{\circ} \mathrm{C}$	
	d	I	d	I	d	I	${ }^{\text {d }}$	I	d	I	d	I	d	I
	A		A		A		A		A		(a)		A	
100	2.34	80	2.34	100	2.33	100	2.40	81	2.34	80	2.34	100	2.337	91
002	2.18	60	2.20	60	2.18	50	2.20	58	2.19	50	2.19	80	2.189	61
101	2.06	100	2.07	100	2.05	100	2.14	100	2.06	100	2.06	100	2.061	100
102	1.601	30	1.60	50	1.59	50	1.60	24	1.59	24	1.60	60	1.598	22
110	1. 349	80	1.35	80	1.34	75	1.35	39	1.353	32	1.35	70	1.349	29
103	1.239	80	1.24	80	1.20	75	1.24	31	1.242	32	1.24	70	1.238	24
200	-------	-----	1.167	20	1.165	25	1.169	4	1.172	4	1.17	40	1. 1682	4
112	1.148	60	1.149	70	1.144	75	1.151	31	1.152	20	1.15	60	1.1482	16
201	-------	-----	1.129	20-30	1.123	25	1.101	4	1.132	4	1.13	40	1.1287	5
004	-------	-----	1.119	0-10	-----.-	-----	--.-.-.	-----	-------		1.09	20	1.0958	<1
202		-----	1.031	10-20	1.025	25	1.026	-----	1.034	3	1.03	40	1.0308	3
104	-------	-	0.995	0-10		-----	0.988	4	-------		0.993	20	0.9920	<1
203	0.910	20	. 911	70	-------	-----	. 918	-----	0.917	8	. 914	70	. 9118	10
210	. 885	10	. 881	40	-------	-----	. 886	13	. 882	2	-.-.-.-	-----	. 8832	4
211	. 866	10	. 864	50	-------	-----	. 866	7	. 872	2	------	-----	. 8657	5
114	----	--	-------	-----	-------	-----	-------	-----	-------	------	-	-----	. 8498	2
105	0.820	20	-------	-----	-------	-----	-------	-----	0.824	8	-------	-----	. 8199	14
212	-------	---				-----	------	-----	-------	------	------	-----	. 8179	8
---	0.780	10		-----		--.--		--.--	0.782	3				---
	-------	-							. 760	8				-----
---	0.755	20				-----			-.-----	------	-------	-----	----------	-------

[^4]compatible with the structure worked out by Zachariasen, the line is indexed only 104 in table 18.

The intensity values of the Cl aassen, the Hanawalt, Rinn, and Frevel, and the NBS patterns are closely comparable, with the 101, 100 , and 002 lines appearing as the first, second, and third strongest, respectively.

Zachariasen [259] in 1926 recorded the space group determination of $\mathrm{C}_{6 \mathrm{v}}^{4}$ (C6mc) for hexagonal beryllium oxide. There are two molecules in the hexagonal unit cell. Two lattice constants found in the literature compare with that determined from the NBS data as follows:

Unit cell, in angstroms

		a	c
1925	Aminoff [2]	2.69	4.37
1926	Zachariasen [259]	2.699	4.401
1953	Swanson and Tatge ($26^{\circ} \mathrm{C}$)	2.698	4.380

The density, based on the NBS lattice constant, is 3.008 at $26^{\circ} \mathrm{C}$. The material used was too finely divided for determination of the refractive index.

2.18. Magnesium Oxide, Mg0 (Cubic)

Four patterns for magnesium oxide (periclase) lịsted in table 19 appear in the ASTM file (see table 1). The pattern of Hansen and Brownmiller, card number 2-1395, is erroneously labelled $\mathrm{Mg}(\mathrm{OH})_{2}$ in the 1950 file, although correctly ascribed to MgO in the old file. However, it appeared in the old index as $\mathrm{Mg}(\mathrm{OH})_{2}$ and was repeated thus in the new. Two of the patterns of table 19 are combined on one ASTM card; the United Steel Companies, England, interplanar spacings parallel the
intensity measurements of Wyckoff and Armstrong. Five patterns were obtained from the literature; they are by Büssem, Schusterius, and Ungewiss [43], Frevel [74], Gerlach [79], Menzer [151], and Passerini [182].

The NBS pattern was made from a sample contributed by the Radio Corporation of America as a pure compound prepared for use in phosphor research [135]. The $\mathrm{N}!\mathrm{gO}$ was crystallized in a graphite crucible which was maintained at $1,800^{\circ} \mathrm{C}$ for three hours. An NBS spectrographic analysis shows calcium and silicon between 0.01 and 0.1 percent; aluminum, boron, chromium, iron, and nickel, between 0.001 and 0.01 percent.

Some of the patterns of table 19 were corrected to angstroms from $k X$ units. Those of Gerlach, of Passerini, of Wyckoff and Armstrong, of Büssem, Schusterius, and Ungewiss, and of Menzer were calculated directly in angstroms from the published Bragg angle data. Two errors occur in the Hansen and Brownmiller pattern; the spacing for $h k l=200$ is published as 2.01 , doubtless in error for 2.10 , as the ASTM card notes; and the spacing 1.243 is superfluous to the pattern. The Hanawalt, Rinn, and Frevel, and the Frevel patterns show two $K a_{2}$ lines which are not listed in table 19, where only $K \alpha_{1}$ lines are tabulated. In the table the complete pattern of Wyckoff and Armstrong is given, of which only the intensity values for the first eight of 16 lines appear on the ASTM card. The two strongest lines are given in almost every case as 200 and 220 , but the third strongest is not universally agreed upon. Three patterns (including the two of most recent date) and the NBS pattern agree that 420 is third strongest.

Table 19. Magnesium oxide, MgO (cubic)

${ }^{\text {a }}$ Published intensity values. b Intensity values as they appear on ASTM card. © Average of four lines only. d Average of three lines only.

Magnesium oxide has a face-centered cubic lattice [101], space group $\mathrm{O}_{\mathrm{h}}^{5}(\mathrm{Fm} 3 \mathrm{~m})$, and four molecules in the unit cell. Unit cell values are tabulated below for comparison. They are all given in angstrom units, the three published ones converted from kX units, at $25^{\circ} \mathrm{C}$. The coefficient of expansion 14.45×10^{-6} [42] was used.

Unit cell in angstroms at $25^{\circ} \mathrm{C}$

1935	Büssem, Bluth, and Grochtmann [42	4.211
1936	Straumanis and Ievinš [216]	4.2115
1944	Freve1 [74]	4.214
1953	Swanson and Tatge	4.213

The density calculated from the NBS lattice constant is 3.581 at $25^{\circ} \mathrm{C}$. The NBS sample shows an index of refraction of $n=1.732$.

2.19. Silicon Dioxide (Low or a-cristobalite), SiO_{2} (Tetragonal)

Seven ASTM patterns (see table 1) for a-cristobalite are represented by nine original patterns (some are combined on the cards) in table 20. These are compared with an additional pattern from the literature, by Jay [117], and one produced at the NBS. An eighth card (number 956 of the original set) is mistakenly referred to in the original ASTM index [1] as the a form. This card, which is not itself designated a or β, is represented in the new edition by a pattern labelled correctly " β-Cristobalite" (card number 1-0430).

The NBS sample was obtained from the Radio Corporation of America Laboratories, Princeton, N. J. It was purified in connection with the RCA Phosphor project [135], and had been heated for two hours at $1,420^{\circ} \mathrm{C}$; a
trace of tridymite showed up in the X-ray diagram.

All the patterns of the table were changed' from $k X$ to angstrom units except that of Thilo, which was calculated directly in angstroms from Bragg angle data given. Hith regard to intensity measurements, the three strongest lines are the same as those of the NBS pattern-101, 200, 102-al though some of the patterns show 111 equal in intensity to 102, except for the British Museum pattern, in which 102 appears stronger than 200. The intensity values of most of the patterns were published as visual estimates, but are given in the table in the numerical conversion shown on the ASTM cards; the measured intensities of Barth and of Hanawalt, Rinn, and Frevel are converted to a base of 100 for the strongest line as on the ASTM cards.

Early workers considered alpha cristobalite cubic or nearly so. Nieuwenkamp [163] established the tetragonal structure of the mineral, showing that it has the space group $D_{4}^{4}\left(\mathrm{P}_{4} 2_{1}\right)$, and the enantiomorphous form D_{4}^{8} $\left(P 4_{3} 2_{1}\right)$. There are four molecules in the unit cell. The following table compares lattice constants from his data with those later determined by Jay [117] and those based on the NBS pattern, all in angstrom units.

Unit cell, in angstroms

		a	c
1935	Nieuwenkamp [163]	4.97	6.93
1944	Jay [117] ($22^{\circ} \mathrm{C}$)	4.9715	6.9193
1953	Swanson and Tatge ($27^{\circ} \mathrm{C}$)	4.973	6.95

The density was calculated from the NBS unit cell as 2.32 at $27^{\circ} \mathrm{C}$. The indices of refraction were determined as $\epsilon=1.484$ and $\omega=1.486$.

Table 20. Silicon dioxide (low or α-cristobalite), SiO_{2} (tetragonal)

(Continuea)

Table 20. Silicon dioxicie (low or a-cristobalite), SiO_{2} (tetragonal)-Con.

2.20. Silicon Dioxide (High or β-Cristobalite), SiO_{2} (Cubic)

Al though an NBS pattern was not made for high or β-cristobalite, the published patterns were reviewed in order to select the most suitable one for retention in the ASTM file. Three cards in the latest edition of the ASTM file of X-ray diffraction patterns record two patterns for high or β-cristobalite; the two patterns are combined on the third card (see table 1). Two references are given to Wyckoff $[254,255]$ - one on the simple card, one on the combined card; they were published the same year, the one in German a translation of the one in English, and the patterns

Table 21. Silicon dioxide (high or f-cristobalite), SiO_{2} (cubic)

hkl	$\begin{aligned} & 1925 \\ & \text { Wyckoff } \\ & 0.7093 \mathrm{~A}, \\ & 290^{\circ} \mathrm{C} \end{aligned}$			1932 Barth and Posnjak Mo, 0.7093 A , $500^{\circ} \mathrm{C}$			Combined ${ }^{\text {a }}$ Mo, 0.7093 A		
	d	I	a	a	I	a	a	I	a
	A		A	A		A	A		A
111	4.137	100	7.165	4.15	100	7.19	4.14	100	7.17
211	-----	--	-----	2.92	5	7.15	2.92	5	7.15
220	2.524	45	7.139	2.53	80	7.16	2.53	90	7.16
311	-----	--		2.17	10	7.20	2.17	10	7.20
222	2.070	13	7.171	2.07	30	7.17	2.07	30	7.17
320		--		1.99	5	7.18	1.99	5	7.18
400	1.779	tr.	7.116	1.793	5	7.172	1.79	10	7.16
411	-----	--		1.688	5	7.162	1.69	5	7.17
331	1.637	35	7.136	1.639	60	7.144	1.639	70	7.144
422	1.455	30	7.128	1.469	50	7.148	1.457	60	7.138
511	1.372	10	7.129	1.379	20	7.165	1.376	20	7.150
440	1.261	15	7.133	1.265	30	7.156	1.263	30	7.145
531	1.203	28	7.117	1.209	30	7.153	1.206	50	7.135
620	1.125	10	7.115	1.130	20	7.147	1.127	20	7.128
533	1.085	tr.	7.115	1.089	5	7.141	1.087	10	7.128
444	1.031	tr.	7.143	1.029	5	7.129	1.030	10	7.136
711	0.993	5	7.091	1.000	10	7.141	0.997	10	7.120
642	. 949	7	7.102	0.956	10	7.154	. 953	20	7.131
731	. 924	4	7.097	. 929	10	7.136	. 927	10	7.120
822	. 838	3	7.110		--		. 838	5	7.110
	age un 1 for e line		7.109		--	7.140		-	7.123

[^5]are identical. Two literature references to Barth and Posnjak [8], one on a simple, one on a combined card, are identical, although the combined card erroneously lists the junior author first. The older edition of the ASTM file labelled the Wyckoff pattern simply "cristobalite" and listed it in the accompanying index as " α-cristobalite." In the 1950 edition the card is correctly labelled and indexed. The combined pattern apparently represents an average of the two published patterns, with the addition of lines given by one or the other.

Some of the data on the ASTM cards is confusing. The new card for the Hyckoff pattern states that the material is stable "over 275° " but does not indicate that the pattern was prepared at $290^{\circ} \mathrm{C}$. The Barth and Posnjak card does not mention temperature. The combined card gives the Barth and Posnjak temperature correctly as 500°, the Myckoff temperature erroneously as 430°, and states cryptically on the card " SiO_{2} at about 450°," which is evidently meant for a rough average of the preceding values. An error occurs in the listing of intensity measurements on the Wyckoff card; the third line should read "13" rather than " 7 " (on the old card " 0.125 " rather than " 0.07 ") .

For table 21 the spacings of the ASTM patterns were reduced to angstrom units on the basis of the wavelength used for molybdenum radiation. Since, in the temperature range indicated, the coefficient of expansion is of the order 8×10^{-6} [42], the difference in the two sets of spacings due to temperature is very little. The intensities of the three patterns correlate well; in each case the three strongest lines are represented by 111, 220, and 331.

The space group of β-cristobalite, which belongs to the cubic system, is $\mathrm{T}^{4}(\mathrm{P} 2,13)$ [42]. There are eight molecules in the unit cell. Published unit cell measurements, converted to angstrom units at $500^{\circ} \mathrm{C}$ (using the coefficient of expansion noted above) compare as follows:

Unit cell in angstroms at $500^{\circ} \mathrm{C}$

1929	Wyckoff [254]	7.127
1932	Barth and Posnjak [8]	7.16
1935	Büssem, Bluth, and Grochtmann [42]	7.1282

As noted in table 2l, however, an average of the last five lines of the Barth and Posnjak pattern at $500^{\circ} \mathrm{C}$ yields 7.140 A for the lattice constant, which is closer to the value of other workers. Because of its greater completeness, as it shows several low angle lines not given in the earlier pattern, it is recommended that the Barth and Posnjak pattern be selected as the standard ASTM pattern.

2.21. Calcium Oxide, CaO (Cubic)

The file of X-ray diffraction patterns of the ASTM includes three cards for calcium oxide (see table l). One of these is a composite of lines from three sources, of which one was previously unpublished. The four previously published patterns are compared in table 22 with two additional patterns found
in the literature by Gerlach [77], and by Natta and Passerini [157], and a pattern prepared at the NBS.

The NBS sample was obtained as calcium carbonate from the J. T. Baker Chemical Co., No. 121647, and calcined in a platinum crucible at $925^{\circ} \mathrm{C}$ for l hour. The following chemical analysis (in percent) was provided by the chemical laboratory of the NBS: insoluble in HCl and $\mathrm{NH}_{4} \mathrm{OH} p p t, 0.01$; chloride, <0.005; sulfate, 0.037 ; alkalis (as SO_{4}), 0.011 ; barium, <0.l; heavy metals ($\mathrm{Pb}, \mathrm{etc}$.$) ,$ $0.001 ; \mathrm{Fe},<0.003 ; \mathrm{MgO}$ and alkalis, 0.21 . The J. T. Baker Chemical Company specified the barium content as 0.005 percent and the iron as 0.001 percent. In preparing the pattern a petrolatum mount minimized hydration.

The interplanar spacings are given in angstroms in table 22. The Gerlach [77] pattern was calculated in angstroms from published Bragg angle data. The Harrington [89] and the Brownmiller and Bogue [40] spacings were converted to angstrom units in accordance with the wavelength given for the radiation

Table 22. Calcıum oxide, CaO (cubic)

$h k l$	$\begin{gathered} 1922 \\ \text { Gerlach } \\ 1.5405 \mathrm{~A} \end{gathered}$			1927 Harrington Mo, 0.7093 A			1929 Natta and Passerini $\mathrm{Cu}, \quad 1.5405 \mathrm{~A}$			1930 Brownmiller and Bogue $\text { Mo, } 0.7093 \mathrm{~A}$		
	${ }^{\text {d }}$	I	a.	${ }^{\text {d }}$	I	a	d	I	a	d	I	a
111	$\begin{gathered} { }_{2}^{A} \end{gathered}$	ms	$\begin{gathered} A \\ 4.801 \end{gathered}$	$\begin{gathered} A \\ 2.77 \end{gathered}$	70	$\begin{gathered} A \\ 4.80 \end{gathered}$	$\begin{gathered} A \\ 2.626 \end{gathered}$	w	$\begin{gathered} A \\ 4.548 \end{gathered}$	$\begin{gathered} A \\ 2.754 \end{gathered}$	m	$\begin{gathered} A \\ 4.770 \end{gathered}$
200	2.398	s	4.796	2.40	100	4.80	2.372	ms	4.744	2. 381	ss	4.762
220	1.689	s	4.777	1.698	100	4.803	1.683	s	4.760	1.688	s	4.774
311	1.438	m*	4.769	1.448	80	4.802	1.440	ms	4.776	1.439	m	4.773
222	1.379	mw	4.777	1.387	80	4.805	1.381	ms	4.784	1.380	m	4.780
400	1.193	w	4.772	1.200	60	4.800	1.193	mw	4.772	-------	------	
331	1.095	w	4.773	1.100	60	4.795	1.096	mw	4.777	------	------	--
420	1.082	s	4.839	1.073	80	4.799	1.073	s	4.799	1.071	m	4.790
422	0.9802	ms	4.802	0.978	70	4.791	0.980	s	4.801	0.976	m	4.781
511	. 9133	ms	4.746	. 922	50	4.791	. 926	mw	4.812	-------	------	
440	. 8454	m	4.782	. 847	30	4.791	. 847	m	4.791	-----	----	---
531	. 8110	s	4.798	. 810	50	4.792	. 84	------	.	----------	--------	-----
600	. 8003	s	4.802	. 798	40	4.788	-------	------	-------	----.---	------	--------
620	--------		-------	. 756	40	4.781	-------	-------	-------	--------	------	----
533						--------						
622	--------		-------	0.722	40	4.789	-------	------		-------	------	---
444				. 692	10	4.794	-------	------	-------	-------	------	
711	--------			. 671	30	4.792						
640				. 665	20	${ }^{\text {a }} 4.795$						
Average unit cell for last five lines \qquad												
			4.786		----	${ }^{\text {b }} 4.779$	-------	------	4.796			4.780

[^6][^7](Continued)

Table 22. Calcium oxide, CaO (cubic)-Con.

$h k l$	Hanawa	$\begin{array}{r} 1938 \\ \text { qinn, } \\ 0.70 \end{array}$	Frevel		Co,				1953 son an $.5405$	ge $7^{\circ} \mathrm{C}$
	d	I	a	d	$I^{\text {c }}$	$I^{\text {d }}$	a	a	I	a
111	$\begin{gathered} A \\ 2.77 \end{gathered}$	40	$\begin{gathered} h \\ 4.80 \end{gathered}$	$\begin{array}{r} A \\ 2.77 \end{array}$	vw	20	$\begin{gathered} A \\ 4.80 \end{gathered}$	$\begin{gathered} A \\ 2.778 \end{gathered}$	34	$\begin{gathered} A \\ 4.815 \end{gathered}$
200	2.39	100	4.78	2.39	s	80	4.78	2.405	100	4.810
220	1.69	63	4.78	1.69	vs	100	4.78	1.701	45	4.811
311	1.448	20	4.802	1.443	w	40	4.786	1.451	10	4.812
222	1.385	20	4.798	1.381	w	40	4.784	1.390	5	4.815
400	1.202	10	4.808	1.197	vw	20	4.788	1.203	4	4.812
331	1.102	7	4.804	1.099	vw	20	4.790	1. 1036	4	4.8105
420	1.073	27	4.799	1.072	m	60	4.794	1.0755	9	4.8098
422	0.981	13	4.806	0.9794	m	70	4.798	0.9819	9	4.8103
511	. 924	3	4.810	. 9240	vw	20	4.810	. 9258	3	4.8106
440	. 849	3	4.803	-..--.....-			-.-.-.	. 8504	4	4.8106
531	. 812	3	4.804	---------			-----	. 8131	5	4.8104
600	. 802	6	4.812	---1-0-0-1			-	. 8018	6	4.8108
620	. 761	2	4.813							
533	. 732	1	4.800	-......	---	---	-....	-	--.	
622	. 724	2	4.802	----------		--	----	---	--.	--..-
444	--		-------	------			-		--.	---
711	0.672	1	4.799							
640	. 667	1	4.810	----------		--	---			
Average unit cell for last fivelines.----------------------										
			4.805	-----.----			4.796	---	-----	4.8105

${ }^{\text {c }}$ Published.
d ASTM card.
used. The remaining patterns were converted from $k X$ units. The intensity measurements of Hanawalt, Rinn, and Frevel, and of the NBS show the three strongest lines as 200, 220, and 111 in the order given.

Calcium oxide has a face-centered cubic lattice, and the space group $\mathrm{O}_{\mathrm{h}}^{5}(\mathrm{Fm} 3 \mathrm{~m})$ [61]. There are four molecules in the unit cell. Several lattice constants are listed below for comparison.

Unit cell in angstroms

	United Steel, England.	4.8082
1942	Huber and Wagener [97]	4.811
1953	Swanson and Tatge ($27^{\circ} \mathrm{C}$)	4.8105

The density calculated from the NBS lattice constant is 3.345 at $27^{\circ} \mathrm{C}$. The index of refraction was not determined on the NBS sample; it is given as $n_{D}=1.837$ by Winchell [250].

2.22. Titanium Dioxide (Rutile), TiO_{2} (Tetragonal)

The three patterns of the ASTM diffraction pattern file (see table 1) are compared in table 23 with an earlier pattern found in the literature, Vegard [234], and with one prepared at the NBS. One of the ASTM patterns lists five references as sources, only three of which were published; of these only two (by Kerr, and by Weiser and Milligan) appear in table 23. The third, ascribed to Boldyrev [19] (who compiled it from a Russian published source [133]), was made from a nattural mineral from the Ural mountains and, possibly because of impurities, is so unlike the other patterns in the table that it was not included.

Material for the NBS pattern was obtained from the National Lead Company, Sample No. MP 559. Spectrographic analysis at the NBS shows no impurity greater than 0.001 percent.

The sample, chiefly anatase, was heated for two ently, in angstroms. The three strongest hours at $1,000^{\circ} \mathrm{C}$ and cooled slowly to obtain lines are shown by the Vegard and the Hanawalt, the rutile phase.

The interplanar spacings of all patterns were converted from $k X$ to angstrom units except those of the Vegard pattern, which were calculated in angstroms from the published Bragg angle data, and the pattern of the United Steel Companies, which is given, appar-

Rinn, and Frevel patterns as 211, 110, and 101; the Kerr, the Weiser and Milligan, and the NBS patterns show them to be 110,211 , and 101 .

Rutile, which belongs to the tetragonal system, has a space group determined as D_{4}^{14} ($\mathrm{P} 4 / \mathrm{mnm}$) by Huggins [98]. Recent unit cell determinations, converted from $k X$ to angstrom

Table 23. Titanium dioxide (rutile), TiO_{2}

$h k l$	1926 Vegard $\mathrm{Cu}, 1.5405 \mathrm{~A}$		1932 Kerr		$\begin{gathered} 1934 \\ \text { Weiser and } \\ \text { Milligan } \end{gathered}$		1938 Hanawalt, Rinn, and Frevel Mo, 0.7093 A		United Steel		1953 Swanson and Tatge $\mathrm{Cu}, 1.5405 \mathrm{~A}, 26^{\circ} \mathrm{C}$	
	a	I	a	I	1	I	d	I	a	I	a	I
	A		A		A		A		A		A	
110	3.292	50	3.28	100	3.25	100	3.25	80	3.25	85	3.245	100
101	2.510	30	2.51	50	2.48	90	2.49	60	2.49	70	2.489	41
200	2.327	5	2.32	5	2.29	10	2.29	4	2.30	50	2.297	7
111	2.212	20	2.269	10	2.18	40	2.19	30	2.19	60	2.188	22
210	2.046	10	2.179	30	2.04	20	2.05	12	2.05	50	2.054	9
211	1.708	100	1.703	100	1.688	100	1.69	100	1.69	100	1.687	50
220	1.649	40	1.643	30	1.620	30	1.62	30	1.62	70	1.624	16
002	1.499	10	1.503	20	1.481	20	1. 487	20	1.48	60	1.480	8
310	1.472	10	1.473	20	1.450	20	1.451	20	1.45	60	1.453	6
301	\} 1.377	70	1.368	60	1.353	80	1.357	30	$\{1.36$	85	1.360	16
112									11.35	70	1.347	7
311							-------		1.30	20	1.305	1
202	-------	----	1.262	5	1.242	10	1.247	4	1.24	30	1.243	3
212	-------		-------		-------	-------	-------	----	1.20	20	1.200	1
321	1.184	10	1.181	10	1.169	10	1.172	8	1.17	60	1.1700	4
400	1.164	10	1.162	5	1.146	10	1.149	4	1.15	50	1.1485	4
410	1. 107	25	-----	------	------	-	-------	-------	1.11	20	1.1329	1
222	1.093	10	1.097	20	1.094	10	1.093	8	1.09	70	1.0933	4
330	-------						--	-------	1.08	60	1.0827	4
411	1.050	20	1.048	20	1.039	10	1.042	8	1.04	60	1.0424	5
312	1.038	5	--------	----	--------	--------	-------	-----	1.04	60	1.0361	4
420	-------		-------	-----	-------	-------	-		1.03	60	1.0273	3
421									0.970	30	--------	
322 103	\}0.976	10	0.975	5			0.966	4	. 964	70	0.9642	2
402	. 920	10	. 912	5	-------		---...	2	. 907	70	. 9071	3
510	. 913	10	. 902	5	-------		0.905	2	. 900	70	. 9007	3
213	. 897	40	-------		-------		. 892	8	---.-.-	---	. 8892	5
431												6
332) .884	50	0.882	5			. 877	4			$\left\{\begin{array}{l}.8739\end{array}\right.$	5
422	\}. 851	10	. 852	5			. 845	2	-------	-	. 8437	5
223). 837				--...--				-------			
303 521	.837 .826	30 50	-------	5	----------	-----	. 834	4	----------	-..-	. 8290	5 8
432			. 779	3			----------					
			. 748	3						-----	-------	

units, are compared in the following table with those of the NBS.

Unit cell in angstroms

		a	c
1942	Schossberger [203].	4.598	2.960
1946	Frevel, Rinn, and Anderson [75].-	4.59	2.96
----	United Steel	4.5928	2.9582
1953	Swanson and Tatge ($26^{\circ} \mathrm{C}$)	4.594	2.958

In accordance with the NBS lattice constant the density is 4.250 at $26^{\circ} \mathrm{C}$. The indices of refraction are very high; Schröder [204] measured them at $25^{\circ} \mathrm{C}$ as $\epsilon_{D}=2.8893$ and $\omega_{D}=2.6124$.

2.23. Titanium Dioxide (Anatase), TiO_{2} (Tetragonal) The first of the four ASTM cards listed in table 1 has no X-ray data on it except a

Table 24. Titanium dioxide (anatase), TiO_{2}

$h k l$	$\begin{gathered} 1926 \\ \text { Vegard } \\ \mathrm{Cu}, 1.5405 \mathrm{~A} \end{gathered}$		1934 Weiser and Milligan Mo, 0.7093 A		1938 Hanawalt, Rinn, and Frevel Mo, 0.7093 A		United Steel		1953 Swanson and Tatge $\mathrm{Cu}, 1.5405 \mathrm{~A}, 26^{\circ}-27^{\circ} \mathrm{C}$	
	a	I	2	I	d	I	d	I	a	I
101	A 3.58	100	$\begin{gathered} A \\ 3.50 \end{gathered}$	100	$\begin{gathered} A \\ 3.53 \end{gathered}$	100	$\begin{gathered} A \\ 3.515 \end{gathered}$	100	A 3.51	100
103						--	2.430	10	2.435	9
004	2.401	35	2.38	50	2.38	24	2.377	50	2.379	22
112		--------				------	2.338	10	2.336	9
200	1.911	70	1. 887	80	1.88	40	1.891	90	1.891	33
105	1.717	30	1.698	60	1.70	28	1.699	70	1.699	21
211	1.681	50	1.658	60	1.66	24	1.665	70	1.665	19
213	-	-	-	-------	--	------	-	---	1.494	4
204	1.499	60	1.480	50	1.483	24	1.450	70	1.480	13
116	1.382	20	1.361	20	1.365	8	1.364	60	1.367	5
220	1.351	30	1.337	20	1.338	8	1.338	60	1.337	5
215	1.275	50	1.267	40	1.265	11	1.264	70	1.264	10
301				-------	---------	-------	1.250	20	1.250	3
303				-------	-	-------	1.165	60	1.171	2
312	1.173	50	1.163	30	1.166	6	1.160	10	1.1609	3
118	----------	-------	---------	-------	---------		1.056	10	1.0598	1
217	---------	-------	---------	-------	---------	-------	1.0509	50	1.0510	1
321	1.055	30	1.046	20	1.047	3	1.0428	50	1.0433	3
226	-------	--	-	-------	---------	-------	1.0176	50	1.0173	2
109	1.026	10	1.017	20	---------	-------	1.0063	20	1.0065	2
323	---------	-------	-	-------	-	--	0.9959	10	0.9964	1
316	0.961	20	0.953	10	0.952	2	. 9547	70	. 9550	4
400	------	-------		------	-------	-------	. 9456	60	. 9461	3
325	0.922	35	0.915	10	0.915	2	. 9186	70	. 9189	2
411		-	-		--	-------	. 9132	70	. 9135	1
219	0.902	50	0.894	10	0.896	2	--------	---	. 8960	3
228	-	-------	-------	------	----------	-------	--------	-----	. 8894	1
332	0.883	50	0.878	10	---------	-------	----------	------	. 8794	2
318	. 852	40	. 845	10	----------	-------	----------	-----	. 8464	2
327	---------	--------	---------	-------	---------	-------	---------	----	. 8311	1
415	0.832	40	0.826	10	---------	-------	---------	-----	. 8268	3
309	. 814	20	. 808	10	---------		--------	-----	. 8100	1
424	. 800	50	. 797	10					. 7990	3
			. 742	10	---------	-------	--------	-		----
	---------	-------	. 703	10	--	-------	-	-----	----	-------
			. 669	10	---------				--------	

highly inaccurate value for the axial ratio, determined by Vegard in 1916 . The second card is a composite from which only the pattern of Weiser and Milligan appears in table 24 , along with the patterns of the remaining two cards, a pattern by Vegard [234] from the literature, and a pattern made at the NBS.

The NBS pattern was prepared from material supplied by the Research Laboratory of the National Lead Company, South Amboy, N.J., Sample No. MP 559. Spectrographic analysis at the NBS showed no impurity greater than 0.001 percent.

The interplanar spacings of table 24 were all recalculated to angstroms from $k X$ units except those of Vegard, which were calculated directly in angstroms from the Bragg angle data given. All patterns agree that 101 is the strongest line and 200 second strongest. Three or four almost equally intense lines, however, provide variation in the third strongest given in different patterns; this is listed as 004 in the NBS pattern. Two very weak rutile lines appearing in the NBS X-ray diagram are omitted from the pattern given in the table.

The space group of the tetragonal anatase form of titanium dioxide is $\mathrm{D}_{4 \mathrm{~h}}^{19}$ (I4/amd) according to Huggins [98] and Vegard [233]. The unit cell contains four molecules. The lattice constants obtained from the NBS pattern are compared in the table below with those of other workers:

Unit cell, angstroms

		a	c
	United Steel	3.783	9.509
1942	Schossberger [203]	3.784	9.505
1946	Frevel, Rinn, and Anderson [75	3.76	9.45
1953	Swanson and Tatge ($26^{\circ}-27^{\circ} \mathrm{C}$)	3.783	9.51

The density, calculated from the NBS lattice constant, is 3.899 at $26^{\circ}-27^{\circ} \mathrm{C}$. The indices of refraction could not be obtained from the NBS sample, which was too finely powdered.
2.24. Nickelous Oxide (Bunsenite), NiO (Cubic)

Three cards for nickelous oxide are included in the X-ray diffraction file of the ASTM (see table 1). One of them records no pattern but only a determination of the lattice constant (card number 3-1287). One of the patterns is a composite from four sources of which one is unpublished and not represented in table 25 . The X-ray patterns of the two cards, from four previously published sources, are compared in the table with those of three additional workers, Clark, Asbury, and Wick [49], Bravo [34], and Passerini [182], that were obtained from the literature, and with a pattern prepared at the NBS. An electron diffraction pattern by Darbyshire [55] is also included, for comparison.

The sample from which the NBS pattern was made was obtained from Johnson, Matthey \& Co., Ltd., and was numbered 3087. They estimated the purity at 99.99 percent. This was corroborated by spectroscopic analysis at the Bureau, which showed only faint traces of Mg , Si , and Ca .

The Levi and Tachinni, the Bravo, and the Ksanda spacings (table 25) were calculated in angstrom units from Bragg angle data. The spacings of the remaining patterns were assumed given in $k X$ units, and were converted to angstroms. The lines 200, 111, and 220 are the first, second, and third strongest index lines for the NBS and Darbyshire patterns and would be chosen in this order in selecting index lines for the Hanawalt, Rinn, and Frevel pattern, although 111 and 220 have actually the same intensity. Converting the intensity, values of the Hanawalt, Rinn, and Frevel pattern to their equivalents if copper rather than molybdenum radiation had been used, ([1] page 108 of index covering original set of cards or card no. vii of introduction to 1950 file), 111 becomes considerably stronger than 220.

The lattice of nickelous oxide is facecentered cubic [61]. It has a space group $\mathrm{O}_{\mathrm{h}}^{5}$ (Fm 3 m), with four molecules to the unit cell.

In 1948 Rooksby [194] showed that at $18^{\circ} \mathrm{C}$ most of the diffraction lines are doublets or triplets, and interpreted the structural significance as a slight distortion of the gen-
erally accepted cubic lattice. He regards the lattice as rhombohedral, $a=2.9518$, $a=60^{\circ} 4.2^{\prime}$ (for a face-centered cube referred to a primitive rhombohedral lattice $\alpha=60^{\circ}$).

Table 25. Nickelous oxide, NiO (cubic)

The doubling of lines could not be detected on the NBS chart. The NBS unit cell determination is compared below with other published values:

Unit cell, in angstroms

The density, calculated from the NBS value for the lattice constant, is 6.806 at $26^{\circ} \mathrm{C}$ 。 The index of refraction is very high; Ksanda in 1931 [134] gave $n_{L i}=2.73$.

2.25. Cupric Oxide (Tenorite), CuO (Monoclinic)

The ASTM file contains six cards for cupric oxide (see table 1). One of these (number 2-1263) contains only lattice constants and structure data. Of the cards containing patterns, one (number 2-1037) is a composite of data from four sources, only one of which is in the literature. Two others contain patterns by Tunell, Posnjak, and Ksanda, one from molybdenum radiation, the other copper, of which the lines were indexed on the basis of single crystal data. Those ASTM patterns appearing in the literature are compared in table 26 with two additional patterns, by Waldo [242], and by Billiet and Vandendriesshe [16], and with a pattern prepared at the NBS. The Harcourt and Waldo data of card number 2-1037 were doubtless communicated to the ASTM before publication elsewhere.

The sample used at the NBS was obtained from Johnson, Matthey \& Co., Ltd, and was numbered 3257. Spectrographic analysis at the NBS showed only faint traces of iron and magnesium as impurities.

All the interplanar spacings of the patterns in table 26 were converted from k λ to angstrom units except the first one, by Niggli, accompanied by a wavelength value of 1.541 for copper radiation. The indexing of the lines in table 26 follows that worked out by Tunell, Posnjak, and Ksanda in 1935, differing only where a line due to a group of superimposed reflections is resolved in the NBS pattern.

The three strongest or index lines are, in all except the first pattern, the combined $\overline{1} 11-002,111-200$, and $\overline{2} 02$ lines. The NBS pattern records the three strongest lines as $\overline{1} 11,111$, and 002 . The $\overline{1} 11$ reflection cannot be separated entirely in the NBS powder pattern, from the 002, nor can the intensity of the 111 be measured without the influence of the 200. Integrated measurements showed the total intensity of the $002, \overline{1} 11$ doublet to be about 85 percent of the 111,200 doublet; however, because 002 and $\overline{1} 11$ reflections are closer to each other than are the 200 and 111 , their reinforced intensities are greater when measured as peak height above background. ${ }^{3}$

In 1933 Tunell, Posnjak, and Ksanda [225] assigned tenorite to the monoclinic system, with the space group $\mathrm{C}_{2 \mathrm{~h}}^{6}(\mathrm{C} 2 / \mathrm{c})$. There are four molecules to the unit cell. Converted from $k X$ to angstrom units, the 1935 set of data from Tunell, Posnjak, and Ksanda compare thus with the NBS measurements:

Uhit cell, in angstroms

1935	Tunell, Posnjak, and Ksanda [226]	$\begin{gathered} a \\ 4.662 \end{gathered}$	$\begin{gathered} b \\ 3.417 \end{gathered}$	$\begin{gathered} c \\ 5.118 \end{gathered}$	$\begin{gathered} \beta \\ 99^{\circ} 29^{\prime} \end{gathered}$
1953	Swanson and Tatge $\left(26^{\circ} \mathrm{C}\right)$ _	4.684	3.425	5.129	$99^{\circ} 28^{\prime}$

The density, based on the NBS lattice constant, is 6.51 at $26^{\circ} \mathrm{C}$.

[^8]Table 26. Cupric oxide, CuO (monoclinic)

2.26. Germanium Dioxide, GeO_{2} (Hexagonal)

The two patterns for germanium dioxide in the X-ray diffraction file of the ASTM (see table l) are compared in table 27 with a pattern prepared at the NBS. The sample for the NBS pattern was obtained from Johnson, Matthey \& Co., Ltd, and was labelled number 3662. The only impurity indicated in their spectrographic analysis was a faint trace of calcium.

In table 27 the interplanar spacings of all patterns are given in angstrom units.

Table 27. Germanıum dioxide, GeO_{2} (hexagonal)

$h k l$	1928		1938		1953		1953		
	Zachariasen		Hanawalt,		Swanson andTatge		hkl	Swanson and Tatge	
	$\mathrm{Fe}, 1.9360 \mathrm{~A}$		Mo, 0.7093 A		$\left\|\begin{array}{c} \mathrm{Cu}, 1.5405 \mathrm{~A} \\ 26^{\circ} \mathrm{C} \end{array}\right\|$			$\begin{gathered} \mathrm{Cu}, 1.5405 \mathrm{~A} \\ 26^{\circ} \mathrm{C} \end{gathered}$	
	d	I	d	I	${ }^{\text {d }}$	I		d	I
	${ }_{\text {A }}$		${ }^{\text {A }}$		${ }^{\text {A }}$			${ }^{\text {A }}$	
100	4.33	20	4.32	20	4.32	21	005	1.1308	1
101	3.431	100	3.42	100	3.429	100	312	1.1026	2
110	2.486	15	2.49	14	2.496	11	105	1.0933	2
102	2.362	40	2.35	25	2.366	22	214	1.0683	3
111	2.278	15	2.28	16	2.283	13	401	1.0605	2
200	2.159	40	2.15	20	2.159	18	223	1.0397	2
201	2.014	5	2.00	2	2.018	2	115	1.0297	2
003	1.879	15		---	1.884	8	402		
112	1.868	30	1.87	25	1.870	14	304	1.0084	4
103	1.727	15	--.-	---	1.726	4	321	0.9759	2
202	1.717	15	1.71	12	1.716	7	006	. 9419	1
210	1.634	10	1.62	2	1.633	3	322	. 9352	1
211	1.564	60	1.56	25	1.568	13	224	. 9345	3
113	1.500	20	1.498	8	1.303	5	411	. 9294	3
203	1.420	30	1.448	4	1.420	11	412	. 8943	<1
212	1.413	30	1.413	25	1.414	13	305	. 8894	<1
301	1.394	30	1.389	8	1.395	7	403	8814	<1
104	1.341	30	1.342	10	1.343	5	500	. 8636	<1
	-----	---	1.304	2		--	404	. 8579	1
302	1.281	25	1.279	10	1.283	4	501	41	<1
220	1.246	5	1.256	2	1.247	1	330	. 8315	1
213					1.234	4	331	. 8223	1
114	${ }^{1.23}$	25	1.230	6	1.231	4	420	. 8162	1
221	1.218	20			1.218	2	324	. 8112	2
310	1.196	40			1.1976	4	421	. 8078	1
204	1.182	5				--			--
311	1.172	10			1.1720	1			--
$\begin{array}{\|l\|} 303 \\ 222 \end{array}$	\}1.142	10			1.1420	1			

One line of the Hanawalt, Rinn and Frevel pattern is extraneous to the postulated structure; it could not be indexed. The intensity measurements of the first lines of the three patterns are closely comparable. For all patterns the first, second, and third strongest lines are the 101,100 , and 110 , respectively.

The lattice of germanium dioxide is hexagonal and was determined by Zachariasen [2.60] as $\mathrm{D}_{3}^{4}\left(\mathrm{C}_{1} 2\right)$, isomorphous with low quartz. There are three molecules in the unit cell. The new file card for the Hanawalt, Rinn, and Frevel pattern is unfortunately mislabelled "Tetragonal." From table 27 the pattern is plainly identical to the hexagonal patterns of Zachariasen and the NBS. The published pattern [85] is unaccompanied by symmetry classification. Converted to angstrom units, the Zachariasen measurements compare thus with those of the NBS pattern:

Unit cell, anestrons

1928	Zachariasen $[260] \ldots$	a	c
1953	Swanson and Tatge $\left.\left(26^{\circ} \mathrm{C}\right) \ldots-\ldots-\right)^{2}$	4.982	5.659

The density, using the NBS unit cell dimensions, is 4.280 . The material was very fine-grained, which made optical examination difficult. The double refraction is very weak; the average index of refraction is $n=1.67$.

2.27. Arsenic Trioxide, $\mathrm{As}_{2} \mathrm{O}_{3}$ (Cubic)

The ASTM file of diffraction patterns includes five cards for arsenic trioxide (see table 1); one of these (number 3-1234) does not bear a pattern, but records only a lattice constant and a space group determination. Cf the remaining four, two are for synthetic compounds, and two for naturally occurring minerals. One of the latter (2-0530) represents the monoclinic form claudetite, the other (2-0531), like the two artificial forms, represents cubic arsenolite. The natural arsenolite is from Bieber, Hesse, Germany (misspelled "Hasse" on the new file card). The

Table 28. Arsenic trioxide, $\mathrm{As}_{2} \mathrm{O}_{3}$ (cubic)

$h k l$	1928 Passerini $\mathrm{Cu}, 1.5405 \mathrm{~A}$					1931 Lihl $\mathrm{Fe}, 1.9360 \mathrm{~A}$			1938 Mikheev and Dubinina $\mathrm{Fe}, 1.960 \mathrm{~A}$			1938 Hanawalt, Rinn, and Frevel Mo, 0.7093 A			1953 Swanson and Tatge $\mathrm{Cu}, 1.5405,26^{\circ} \mathrm{C}$		
	$d^{\text {a }}$	$d^{\text {b }}$	$I^{\text {c }}$	$I^{\text {d }}$	a	a	I	a	d	I	a	d	I	a	a	I	a
	A	A			A	A		A	A		A	A		A	A		A
111	5.975	6.39	w	40	10.34					---		6.3	56	10.9	6.39	63	11.07
220	3.754	3.92	ms	70	10.60		---			---			-----	-----	3.92	<1	11.09
222	3.111	3.20	s	80	10.78	3.191	s	11.05	3.195	100	11.07	3.19	100	11.1	3.195	100	11.07
				--			--.		2.944	10	-----	-----	---			---	
400	2.725	2.77	m	60	10.88	2.764	s	11.06	2.764	60	11.06	2.76	24	11.0	2.768	28	11.07
331	2.500	2.54	m	60	10.92	2.535	s	11.05	2.539	90	11.07	2.54	32	11.1	2.541	38	11.08
	2.332	2.36	vw	20	-----		---			---		-----	-----	-----	------	-	-----
422	2.235	2.26	vw	20	10.93	2.257	w	11.10	2.255	50	11.05	2.24	8	11.1	2.262	12	11.08
511	2.112	2.13	w	30	10.97	2.126	w	11.05	2.127	60	11.05	2.12	16	11.0	2.132	17	11.08
440	1.937	1.96	ms	70	10.96	1.971	s	11.15	1.955	90	11.06	1.95	24	11.0	1.958	27	11.08
531	-----	---.-	---	---	-----	------	---		1.875	40	11.09	-----	-----	-----	1.873	6	11.08
442	1.837	1.85	mw	50	11.02		---		1.841	50	11.05		-----	-----	1.846	5	11.08
	-----		---	---	--...	---....	---		1.810	10	-----	-----	--	-----			
622	1.661	1.67	ms	70	11.00	1.666	s	11.05	1.668	90	11.06	1.66	16	11.0	1.670	21	11.08
444	1.589	1.60	mw	50	11.00	------	---		1.596	60	11.06	1.59	8	11.0	1.599	10	11.08
711	1.541	1.55	ms	70	11.01	1. 547	---	11.05	1.550	90	11.07	1.54	16	11.0	1.551	22	11.08
642	-----	-----	---	---	-----	------	---	------	1.480	40	11.08	-----	-----	-----	1.480	2	11.08
731	1.434	1.44	ms	70	11.02	1.439	s	11.05	1.442	90	11.08	1.441	8	11.07	1.442	12	11.08
800			---	---	---	------	---		1.383	10	11.06				1.385	3	11.08
733	----*	-----	---	---	-----	1.350	s	11.05	1.353	90	11.07	--..--	---.-	-----	1.353	10	11.07
644	1.342	1.342	ms	70	11.05	------	---	------	-----	---	-----	1.346	8	11.10	1.343	1	11.07
822	1.300	1.300	w	40	11.04	1.302	w	11.04	1.305	80	11.07	1.305	8	11.06	1.305	5	11.07
751			---	---	-----	1.278	w	11.07	1.277	60	11.06		-----		1.278	3	11.07
662	1.269	1.269	w	40	11.06		---		1.270	50	11.07	1.269	8	11.06	1.271	1	11.08
840	-----	-----	---	---	-----	------	---		1.238	40	11.07	-----	-----	-----	1.238	2	11.07
911	-----	-----	---	---	-----	------	---	------	1.213	60	11.05		-----		1.216	5	11.08
842	1.206	1.206	ms	70	11.06	1.2065	m	11.058	1.208	60	11.07	1.207	8	11.06	1.208	6	11.07
664			-.-	---		1.1781	w	11.052		---					1.1812	1	11.081
931	1.161	1.161	w	40	11.08	1.1592	m	11.058	1.161	50	11.08				1.1610	3	11.075
933			--	---	-----		---	------	1.113	25	11.07				1.1132	2	11.076
	1.108	1.108	vvw	10	-----		---		-----	---	-----				------	--	------
10.2 .0		-----	---	---	-----		---		1.086	13	11.08		-----	-----	1.0859	1	11.074
951	1.068	1.068	vs	100	11.05	1.0685	s	11.053	1.070	100	11.07	1.066	8	11.03	1.0706	6	11.074
864	1.030	1.030	vw	20	11.10	1.0266	w	11.057	1.029	25	11.08	-----	-----		1.0294	2	11.087
$10 \cdot 4 \cdot 2$		-----	---	---	-----	------	---	------	-----	---	-----		-----		1.0117	<1	11.083
$11 \cdot 1 \cdot 1$	-----	-----	---	---	-----	0.9970	m	11.057	-----	---	-----		-----	-----	0.9976	2	11.064
$11 \cdot 3 \cdot 1$		-----	---	--	---									---	. 9676	4	11.075
$10.4 \cdot 4$	0.965	0.965	vs	100	11.08					-					. 9643	2	11.079
10.6 .0	. 950	. 950	vw	20	11.07	----				---					. 9496	1	11.074
$11 \cdot 3 \cdot 3$. 937	. 937	vw	20	11.08		---			---					. 9392	2	11.073
$11 \cdot 5 \cdot 1$. 915	. 915	vvw	10	11.09		---	------	-----	---	-----		-----	-----	. 9135	1	11.075
$12 \cdot 2 \cdot 2$. 898	. 898	s	80	11.08										. 6982	3	11.073
$12 \cdot 4 \cdot 2$. 865	. 865	ms	70	11.08										. 8648	2	11.074
$13 \cdot 1 \cdot 1$. 846	. 846	ms	70	11.08	------				---				-----	. 8469	3	11.075
$13 \cdot 3 \cdot 1$	-.-.--	--	---	---	-----	------	---	------	-----	---	-----	-----	-----	-----	. 8278	3	11.075
$13 \cdot 3 \cdot 3$							---			---					. 8098	2	11.074
Average unit cell for last five lines.																	
					11.08		---	11.055	-----	---	11.08			11.07			11.074

[^9]
card.

claudetite pattern is of little value to the file inasmuch as its locality is not given and it contains a large number of arsenolite lines. The reference "RI" appearing on the ASTM card for the two patterns of naturally occurring minerals indicates a compilation of Boldyrev [19] which gives the original published source [153] of the patterns. In table 28 the natural arsenolite pattern is listed along with the remaining two ASTM patterns, a fourth from the literature, Lihle [140], and one by the NBS.

The NBS pattern was made from a sample obtained from the Mallinckrodt Chemical Works, and numbered 906487. Their spectrographic analysis indicated the following impurities in amouncs of 0.001 to 0.01 percent: Ca, Fe, $\mathrm{Mg}, \mathrm{Pb}, \mathrm{Sb}$, and Si . The material was recrystallized by sublimation before using.

The Passerini and Lihl spacings were calculated for table 28 in angstroms from published Bragg angle data; the Mikheev and Dubinina, and the Hanawalt, Rinn, and Frevel spacings were converted from $k X$ units. On the ASTM card the first fourteen spacings of the Passerini pattern are not those originally published, but were recalculated on the basis of a lattice constant determined from the last or high angle lines of the pattern. The original intensity measurements were converted to numerical designations for the ASTM card. Both the published and the ASTM patterns are given in table 28. The Passerini pattern and that of Mikheev and Dubinina both include lines not permitted by the postulated $\mathrm{O}_{\mathrm{h}}^{7}$ space group. The intensity values of the Hanawalt, Rinn, and Frevel and the NBS patterns agree fairly closely. Both show 222, 111, and 331 as the first, second, and third strongest lines.

Arsenic trioxide was determined by Bozorth in 1923 [24] as having the diamond structure on the basis of line spectra from 100,110 , and 111 , and Laue photographs. Eight $\mathrm{As}_{4} \mathrm{O}_{6}$ units are tetrahedrally arranged in a unit cell having the space group $\mathrm{O}_{\mathrm{h}}^{7}$ (Fd3m). Two recent measurements of the lattice constant are compared below with that of the NBS. All
are in angstroms at $25^{\circ} \mathrm{C}$, converted by means of the coefficient of expansion 37.0×10^{-6} [217].
lint cell in angstroms at $25^{\circ} \mathrm{C}$

1936	Straumanis and Ieviņš [216]	11.0724
1939	Straumanis, Ievinss, and Karlsons [217].	11.07441
1953	Swanson and Ta	11.074

The density, based on the NBS lattice constant, is 3.8654 at $25^{\circ} \mathrm{C}$ 。 The index of refraction determined for the NBS sample is $n=1.748$.

2.28. Selenium Dioxide, SeO_{2} (Tetragonal)

No patterns were found for selenium dioxide (selenolite) in the ASTM file or in the literature. The one given in table 29 was prepared at the NBS from specially purified material supplied by the Mallinckrodt Chemical Works. Spectrographic analysis at the NBS showed no impurities greater than 0.001 percent. The material is very hygroscopic and, although the sample was mixed with petrolatum, a few weak lines from the monohydrate appeared in the diagram which were omitted from the pattern in table 29.

The lines of the pattern are indexed in accordance with the structure and unit-cell dimensions determined by McCullough [145] in 1937. Although crystals of SeO_{2} generally have been described as monoclinic (Waitkins and Clark [24l]), the NBS pattern agrees with the structure determination of McCullough, showing a tetragonal structure. McCullough gives the probable space group as $\mathrm{D}_{4 \mathrm{~h}}^{13}$ (P4/mbc), or $\mathrm{C}_{4 \mathrm{r}}^{8}$ (C4cb), with eight molecules in the unit cell. The lattice constants derived by McCullough, which were used by Frevel, Rinn, and Anderson [75] in 1946, compare with the NBS determinations as follows, after conversion to angstrom units:

Unit cell, in angstroms

		a	c
1937	McCullough [145]	8.370	5.061
1951	Swanson and Tatge ($26^{\circ} \mathrm{C}$)	8.35	5.08

The density is 4.16 at $26^{\circ} \mathrm{C}$, based on the NBS lattice constant. The material proved too unstable for a determination of the indices of refraction.

Table 29. Selenium dıoxide, SeO_{2} (tetragonal)

$h k l$	1951 Swanson and Tatge $\mathrm{Cu}, 1.5405 \mathrm{~A}, 26^{\circ} \mathrm{C}$		$h k l$	1951 Swanson and Tatge $\mathrm{Cu}, 1.5405 \mathrm{~A}, 26^{\circ} \mathrm{C}$	
	a	I		d	I
	A				
110	5. 92	13	322	1.711	25
200	4.17	85	500	1.673	9
210	3.73	100	510	1.640	9
201	3.227	11	431	1.588	3
211	3.009	88	511	1.559	14
220	2.998	38	332	1.556	10
300	2.789	2	213	1.538	4
310	2.640	14	422	1.503	3
002	2.533	2	440	1.478	4
311	2.343	3	530	1.437	4
112	2.320	15	313	1.421	5
202	2.252	14	432	1.394	8
321	2.105	6	512	1.379	20
400	2.090	14	522) 1.324	9
330	1.973	10	620	\} 1.324	
401	1.933	17	540	1.305	4
411	1.895	14	413	1.292	3
420	1.871	14	621	1.278	12
312	1.831	17	004	1.264	15
421	1.755	13	612	1.209	13

2.29. Stannic Oxide, SnO_{2} (Tetragonal)

In addition to the seven patterns for stannic oxide (cassiterite) appearing on ASTM cards (see table 1), an eighth was found in the literature, Natta and Passerini [158]. These are compared with an NBS pattern for which a sample of tin oxide was obtained from Johnson, Matthey \& Co., Ltd; the sample was
numbered 2763. The report on the spectrographic examination which accompanied the sample shows no lines for impurities stronger than faintly visible.

The interplanar spacings recorded in table 30 were all converted to angstrom units except those of the United Steel Companies pattern, which were evidently calculated in angstroms originally, and of the Natta and Passerini pattern, which were calculated directly in angstroms from the sine θ data published.

Several patterns list the 211 as the strongest liné, or at least equal in strength to the 110 and 101. The Hanawalt, Rinn, and Frevel, and the NBS patterns show the 110 strongest. In listing the first, second, and third strongest lines, four of the eight patterns, including those of Hanawalt, Rinn, and Frevel, and the NBS, would record them in the following order: 110, 101, 211.

Vegard [232] in 1916 recorded the space group determination of $\mathrm{D}_{4 \mathrm{~h}}^{14}$ for tetragonal stannic oxide. There are two molecules in the unit cell. The lattice constants derived from the NBS pattern compare as follows with earlier determinations:

Unit cell, in angstroms

		a	c
1924	Davey [58]	4.728	3.167
1932	Bragg and Darbyshire [33]	4.73	3.18
----	United Steel.	4.7355	3.1850
1953	Swanson and Tatge ($26^{\circ} \mathrm{C}$)	4.738	3.188

The density calculated from the NBS dimensions of the unit cell is 6.995 .

Table 30. Stannic oxide SnO_{2} (tetragonal)

$h k l$	1929		1932		1938		1938		1942						---		1953	
	Natta and Passerini		Weiser and Milligan		Boldyrev		Hanawalt, Rinn, and Frevel		Harcourt		Harcourt; Roldyrev		British Museum		United Steel		Swanson and Tatge	
	Fe, 1.9360 A		Mo, 0.7093 A		Mo, 0.7093 A		Mo, 0.7093 A		$\mathrm{Cu}, 1.5405 \mathrm{~A}$		Mo, 0.7093 A		$\mathrm{Cu}, 1.5405 \mathrm{~A}$		Co, $1.7902^{\text {a }} \mathrm{A}$		$\begin{gathered} \mathrm{Cu}, \quad 1.5405 \mathrm{~A}, \\ 26^{\circ} \mathrm{C} \end{gathered}$	
	d	I	d	I	d	I	d	1	d	I	d	I	d	I	d	I	d	I
110	A 3. 27	mw	$\begin{gathered} A \\ 3.41 \end{gathered}$	100	$\begin{gathered} A \\ 3.337 \end{gathered}$	50	$\begin{gathered} A \\ \text { 3. } 35 \end{gathered}$	100	A	100	A 3.34	80	A 3.31	80	A 3.36	80	$\begin{gathered} A \\ \text { 3. } 351 \end{gathered}$	100
		----		---		----		----		----	-----	----	2.92	20		-----		---
101	2.606	s	2.68	100	2.636	50	2.65	63	2.63	100	2.64	80	2.63	80	2.65	80	2.644	81
200		----	2.35	50	2. 367	40	2. 36	18	2.35	33	2. 36	60	2.35	60	2. 37	50	2. 369	24
111		----		---	-----	---	--	----	2. 28	8	2. 28	30	----	--	2.31	20	2. 309	5
210	-----	----	------	---	-----	----	-----	----	2.11	5	2.11	20	1.95	50	-----	-----	2. 120	2
211	1.754	vs	1.77	100	1.764	100	1.75	63	1.75	100	1.75	100	1.75	100	1.76	100	1.765	63
220	-----	----		---	1.675	70	1.67	10	1.668	33	1.67	70	1.67	60	1.67	60	1.675	63
002	1. 583	mw	------	---	1. 590	20	1. 58	5	1. 58	17	1.58	50	1. 59	50	1. 59	50	1. 593	8
		----		---	1. 529	10	-----	-	-----	--	-----	--	1. 57	40	-----	-----		---
310	1. 491	----		---	1. 500	80	1. 495	10	1.49	33	1. 49	70	1. 50	60	1. 50	60	1. 498	13
112	1.430	s	1. 43	70	1. 438	70	1. 438	10	1.43	33	1. 43	70	1. 44	60	1. 44	60	1. 439	17
301	1. 409	s		---	1. 413	70	1. 415	15	1. 408	33	1.411	70	1. 41	60	1.41	60	1. 415	15
		----	------	---	-----	----	-----	----	-----	----	-----	---	1.35	20	-----	-----	------	---
202	-----	----	1. 32	20	1. 323	40	1. 318	6	1.318	17	1.321	50	1. 32	40	1. 32	50	1. 322	7
321	1. 211	vs	1. 21	70	1. 216	80	1.215	10	1.211	33	1.213	80	1. 22	70	1.21	60	1.215	11
400		----		---	1. 185	30	1. 182	2	1. 181	8	1. 183	40	1. 19	20	1. 18	40	1. 184	3
222	1. 150	s	1. 16	20	1. 155	70	1. 152	6	1. 151	17	1. 153	60	1. 16	60	1. 15	60	1. 155	8
		---		---		-	-----	----	-----	----	1. 141	30	-----	---	-----	-----	------	---
330	1. 114	ms		---	1. 118	60	1. 112	3	1.113	17	1. 115	60	1. 12	60	1. 12	50	1. 117	3
312	1.087	s	1. 10	40	1.092	70	1.087	8	1.088	33	1.090	80	1.09	80	1.09	60	1.092	8
411	1.078	s		---	1.081	80	-----	----	1.077	33	1.079	80	1.08	80	1.08	60	1.081	8
420	1.058	ms		---	1.060	70	1.059	3	1. 057	17	1.059	70	1.06	50	1.06	50	1.059	3
---	1.049	mw	1.05	10		---		----	-----	-	1.047	70	1.05	40		-----		---
103	1.035	ms	-----	---	1.037	40	1.037	2	1.033	17	1.035	50	1.04	40	1.04	50	1.036	4
---				--				----		----	-----	--	1.01	20		-----		
402		----		---	-----	----	0.950	8	0.947	50	0.947	80	------	---	0.951	80	0.9505	8
510		----		---	-----	----	. 931	1	. 928	17	. 928	60		---	. 931	70	. 9291	3
332		----		---		----	-----	--	. 914	17	. 914	60	------	---	. 916	78	. 8153	3
501	-----	----		---		----	0.907	4	. 907	33	. 907	70		---	. 910	80	. 9081	8
422		----		---		----	. 882	4	. 881	50	. 881	80		--		--.	. 8819	7
303	-----	----		---	-----	----	-	-	-.---	--	--	----	-----	---	-----	-----	. 8814	6
521						----	0.847	2	0.848	50	0.848	80		--	----	---	. 8480	6
440		----	------	---	-----	----	-----	----	. 838	17	-----	----		---	-----	-----	. 8375	1
323	-----	----	------	---	-----	----	-----	----	. 826	33	-----	----	------	---	-----	-----	. 8261	4
530		----		---		----	-----	----	. 813	8	-----	----		---	-----	-----	. 8125	2
441				---				----	. 807	33				--				
512		----	------	---		----		----		----	-----	--		---	-----	--	0.8026	6

${ }^{a}$ Weighted K α.

2.30. Ceric Oxide, CeO_{2} (Cubic)

Two patterns for ceric oxide in the ASTM file (see table l) are compared in table 31 with a pattern prepared at the NBS. The sample used, of unknown origin, was obtained from the NBS spectrographic laboratory, and was labeled number 41-9100. It is approximately 99.99 percent pure, showing only spectrographic traces of praseodymium and copper.

The three patterns are compared in table 31. The spacings of the Hanawalt, Rinn, and Frevel pattern were converted from kX units to angstroms. The Passerini pattern was derived directly in angstroms from the Bragg angles published. As shown in table 31 by comparing the unit cell values in column a, the first six spacings are not in very good
agreement with the last four. For this reason they had been replaced on the ASTM card with values calculated from the smaller interplanar spacings in the last three lines of column d.

The intensity measurements by Passerini were published as visual estimates which were given numerical values for the ASTM card. The first, second, and third strongest lines are 111, 220, and 311, respectively.

Ceric oxide has the fluorite structure, a face-centered cubic lattice, space group $\mathrm{O}_{\mathrm{h}}^{5}$ (Fm 3 m), and four molecules to the unit cell [80]. Several determinations of the unit cell have been made but temperature data have not been published with them. McCullough used angstrom units. Assuming that the other

Table 31. Ceric oxide, CeO_{2} (cubic)

$h k l$				Hana	$\begin{aligned} & 1938 \\ & \text { Rinn, } \\ & 0.709 \end{aligned}$			1953 5405	
	d	I	a	d	I	a	d	I	a
	A		A	A		A	A		A
111	3.083	70	5.340	3.12	100	5. 40	3.124	100	5.411
200	2.678	40	5.356	2.70	25	5. 40	2.706	29	5.412
220	1.907	100	5.394	1.90	80	5.37	1.913	51	5.411
311	1.627	100	5.396	1.62	60	5.37	1.632	44	5.413
222	1.559	50	5.401	1.55	10	5.37	1. 562	5	5.411
400	1.350	40	5.400	1.350	10	5.400	1.353	5	5.412
331	1.242	80	5.414	1.239	25	5.401	1.241	15	5.409
420	1.212	80	5.420	1.209	16	5.407	1.210	6	5.411
422	1.107	100	5.423	1.103	20	5.404	1. 1044	12	5.4104
511	1.044	100	5.425	1.039	18	5. 399	1.0412	9	5.4102
440	-		---	0.956	4	5.408	0.9565	5	5.4108
531	----	---	----	. 914	14	5.407	. 9146	13	5.4108
600	-----	----	-----	. 901	2	5.406	. 9018	7	5.4108
620	-			. 855	4	5.407	. 8556	7	5.4113
533							. 8251	6	5.4105
622				0.818	2	5.426	. 8158	5	5.4114
711				. 758	4	5.413			
642				. 723	4	5.410			
731	-			. 704	2	5. 407			
Average unit cell for last five lines \qquad			5.416	-------		5.413	-	---	5.4110

workers used $k X$ units, the following table makes a comparison of their values with the NBS determination, in angstroms:

Lhit cell, angstroms

1923	Goldschmidt and Thomassen [80].	5.42
1925	Goldschmidt, Ulrich, and Barth [81]	5.413
1930	Passerini [183]	5.426
1939	Zintl and Croatto [262	5.407
1950	McCullough [146]	5.411
1953	Swanson and Tatge ($26^{\circ} \mathrm{C}$)	5.4110

The density calculated from the NBS lattice constant is 7.215 at $26^{\circ} \mathrm{C}$.

2.31. Thorium Oxide, ThO_{2} (Cubic)

Two patterns for thorium oxide (thorianite) from the ASTM file (see table 1) are supplemented by three from the literature,

Van Arkel [229], Levi and Reina [138], and Burgers and Van Liempt [45], and compared in table 32 with a pattern recently prepared at the NBS. The NBS pattern was made by the use of material obtained from the Lindsay Light and Chemical Company of West Chicago, who stated a purity of 99.99 percent.

Interplanar spacings for the first three patterns of table 32 were obtained directly in angstrom units from the published Bragg angle data. At the time the Passerini pattern was transferred to the ASTM card only the last four of the interplanar spacings were copied from his data; the first six were recalculated on the basis of the unit cell derived from the remaining lines. In table 32 the original values are given instead of the ASTM values for all lines, after con-

Table 32. Thorium oxide, ThO_{2} (cubic)

hkl	1924 Van Arkel $\mathrm{Cu}, 1.5405 \mathrm{~A}$		1927 Levi and Reina $\mathrm{Cu}, 1.5405 \mathrm{~A}$		1930 Burgers and Van Liempt $\mathrm{Cu}, 1.5405 \mathrm{~A}$		1930 Passerini $\mathrm{Fe}, 1.9360 \mathrm{~A}$				1938 Hanawalt, Rinn, and Frevel Mo, 0.7093 A			1953 Swanson and Tatge $\mathrm{Cu}, 1.5405 \mathrm{~A}, 26^{\circ} \mathrm{C}$		
	${ }^{\text {d }}$	a	d	a	d	a	d	$I^{\text {a }}$	$I^{\text {b }}$	a	d	I	a	d	I	a
	A	A	A	A	A	A	A			A	A		A	A		A
111	3.14	5.44	-...--	---..	3.24	5.61	3. 166	ms	70	5.485	3.23	100	5.59	3.234	100	5.602
200	2.73	5.46	--....	--.--	2.80	5.60	2.764	w	40	5.528	2.81	38	5.62	2.800	35	5.600
220	1.94	5.49	1.930	5.459	1.98	5.60	1.960	vs	100	5.542	1.97	75	5.57	1.980	58	5.600
311	1.66	5.51	1.658	5.499	1.69	5.61	1.675	vs	100	5.555	1.68	88	5.57	1.689	64	5.602
222	1.59	5.51	-----	-----	1.61	5.58	1.609	${ }^{\text {mw }}$	50	5.572	-----	-...-	-----	1.616	11	5.598
400	1.38	5.52	1.392	5.568	1.40	5.60	1.393	w	40	5.573	1.402	13	5.608	1.400	8	5. 600
331	1.27	5.54	1.272	5.545	1.30	5.67	1.282	s	80	5.589	1.283	38	5.592	1.284	26	5.597
420	1.24	5.55	1.242	5.554	1.25	5.59	1.250	s	80	5.592	1.248	25	5.581	1.252	17	5.599
422	1.132	5.546	1.133	5.551	1.14	5.58	1.141	vs	100	5.591	1.142	38	5.595	1.1432	20	5.6005
511	1.070	5.560	1.071	5.565	1.076	5.591	1.077	vs	100	5.597	1.076	38	5.591	1.0779	19	5.6010
440	---	--	0.983	5.561	0.988	5.589	-----	----	---..		0.989	13	5.595	0.9900	6	5.6003
531	0.940	5.561	. 941	5.567	. 945	5.591	-----	----			. 945	25	5.591	. 9465	18	5.5996
600	. 929	5.574	. 931	5.588	. 933	5.598		----			. 933	25	5.598	. 9333	8	5.5998
$620{ }^{\circ}$. 884	5.591	. 883	5.582	. 884	5.591	-----	----	-----	--.--	-----	-----	-----	. 8854	14	5.5998
533	. 852	5.587	. 851	5.582	. 853	5.593	-----	----	-----	-----	-----	-----	-----	. 8540	9	5.6001
622	. 843	5.592	. 843	5.592	. 843	5.592	-----	---	-----	-----		-----	-----	. 8441	9	5.5991
444	. 809	5.605	-----	-----	. 807	5.591	-----	----			-----	-----	-----	------	-----	------
711	. 784	5.600			. 783	5.592										------
640					. 780	5.625										
Average unit cell for last five lines...																
		5.595		5.582		5.986		----		5.588	---.-		5.594		-----	5.5997

[^10][^11]version from $k X$ to angstrom units. The interplanar spacings listed by Hanawalt, Rinn, and Frevel were likewise converted from $k X$ units to angstroms for the table. The intensity data of Hanawalt, Rinn, and Frevel agree well with those of the NBS. The three strongest lines of both patterns are 111, 311, and 220.

Thorium oxide has the fluorite structure (Goldschmidt and Thomassen [80]), a facecentered cubic lattice, space group $\mathrm{O}_{\mathrm{h}}^{5}$ (Fm 3 m). The unit cell contains four molecules. W. H. Zachariasen gave 5.5859 kX units for the lattice constant at the New Haven meeting of the American Society for X-ray and Electron Diffraction in 1948. This measurement and others published since 1929 (all probably in kX units and converted to angstroms) may be compared with the NBS determination thus:

Inıt cell, angstroms

1929	Ruff, Ebert, and Woitinek [197]	5.58
1930	Passerini [183]	5.596
1930	Burgers and Van. Liempt [45]	5.601
1944	Palache, Berman, and Frondel [180]	5.62
1948	Zachariasen	5.5972
1953	Swanson and Tatge ($26^{\circ} \mathrm{C}$)	5.5997

In the new (1950) ASTM file the Hanawalt, Rinn, and Frevel card (1-0731) states the lattice constant as 5.61 , ascribed correctly to " D_{7}," that is, Dana's Mineralogy, 7th edition [180]; the Passerini card (2-1278) gives it as 5.590, ascribed to Dana, although in this case the value is actually that of Passerini. Temperature data are not available for the comparison patterns. The density calculated from the NBS lattice constant is 9.991 at $26^{\circ} \mathrm{C}$.

2.32. Calcium Hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$ (Hexagonal)

The ASTM file of X-ray diffraction patterns contains four cards for calcium hydroxide (portlandite) (see table l). The four patterns are compared in table 33 with two from the literature (Levi [136] and Natta and Passerini [156]), and with a pattern prepared at the NBS.

The NBS sample was obtained as calcium carbonate from the J. T. Baker Chemical Company; it was numbered 121647. At the NBS laboratory it was heated in a platinum crucible at $925^{\circ} \mathrm{C}$ for one hour, and water added to the resulting calcium oxide in a nitrogen atmosphere.

The following chemical analysis (in percent) was provided by the chemical laboratory of the NBS: Insoluble in HCl and $\mathrm{NH}_{4} \mathrm{OH}$ ppt, 0.01 ; chloride, <0.005; sulfate, 0.037 ; alkalis (as SO_{4}), 0.011 ; barium, <0.l; heavy metals (as Pb), 0.001 ; $\mathrm{Fe}, 0.003$; MgO and alkalis, 0.21 . The laboratory of the J. T. Baker Chemical Company specified the barium content as 0.005 percent and the iron as 0.001 percent.

For table 33 the Levi and Natta and Passerini patterns were calculated directly in angstroms from Bragg angle data given. The spacings of the ASTM patterns were all converted to angstroms from $k X$ units. The fifth pattern in the table appeared in the old ASTM file with the source for it omitted; it was tentatively ascribed to the United Steel Companies, England, in the 1950 file. The Hanawalt, Rinn, and Frevel pattern and the two of the Linited Steel Companies agree with that of the NBS in showing the three strongest lines as 101, 001, and 102.

The space group assigned to hexagonal calcium hydroxide [23] is $\mathrm{D}_{3 \mathrm{~d}}^{3}$ (C3mi); there is one molecule in the unit cell. Lattice constants of several investigators are compared in the table below. All are from the literature except the two values of the United Steel Companies, which were taken from the ASTM cards, and are in angstrom units.

Unit cell, in angstroms

		a	c
1927	Harrington [89	3.587	5.040
1933	Tilley [222]	3.592	4.905
1935	Bunn, Clark, and Clifford [44]..--	3.5916	4. 9061
----	United Steel.--------------------------	3.588	4.903
	United Steel (?)	3.584	4.916
1953	Swanson and Tatge ($27^{\circ} \mathrm{C}$)	3.593	4.909

The density calculated from the NBS data is 2.241. Because of the platy nature and fine grain of the material the index of re-
fraction was determined only for the ordinary ray, $\omega=1.573$. Ashton and Wilson [3] give $\omega_{\mathrm{D}}=1.574, \epsilon_{\mathrm{D}}=1.545$.

Table 33. Calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$ (hexagonal)

${ }^{\text {a }}$ Nine lines following are omitted.
2.33. Ammonium Chloride, $\mathrm{NH}_{4} \mathrm{Cl}$ (Cubic)

Four patterns from ASTM cards (see table 1) are compared in table 34 for ammonium chloride (sal-ammoniac) with a fifth pattern
made at the NBS. The NBS sample was obtained from the J. T. Baker Chemical Company. It was tested by the NBS chemical laboratory and was found to conform with ACS standards;
it was recrystallized by sublimation before exposure to X rays.

The interplanar spacings of table 34 were changed to angstrom units on the basis of the wavelengths given for the radiation used in preparing the patterns, except for the Wyckoff and Armstrong spacings, which were calculated in angstroms from Bragg angle data given.

All patterns agree upon the 110 line as the strongest. For all except the NBS pattern the second strongest line is 211, and the third strongest 100 ; for the NBS pattern these are of the same intensity. This is in part due to the use of different radiation; however, recalculation of the intensities to
a common basis by the use of the ASTM conversion scale ([1] p. 108 of index covering original set of cards, or card no. vii of introduction to 1950 file) preserves the same choice of the three strongest lines although reducing the discrepancies in intensity between patterns. Bartlett and Langmuir missed the 100 line of the pattern, and weak lines are missing from other patterns.

An error has been carried over from the old ASTM card to the new one for the Bartlett and Langmuir pattern; in column d the second interplanar spacing was originally published as 2.238 rather than the 2.338 of the ASTM card. The radiation wavelength is given on

Table 34. Anmonium chloride, $\mathrm{NH}_{4} \mathrm{Cl}$ (cubic)

$h k l$	Bart Mo,	1921 lett ngmui 0.70	and	Havig Mo,	$\begin{aligned} & 1924 \\ & \text { wist, } \\ & \mathrm{d} \text { Bla } \\ & 0.700 \end{aligned}$	Mack k 3 A	Hyc Ar Mo,	$\begin{aligned} & 1929 \\ & \text { koff } \\ & \text { mstror } \\ & 0.709 \end{aligned}$	nd g 3 A	Hanaw and Mo,	$\begin{aligned} & 1938 \\ & \text { alt, } \\ & 1 \text { Fre } \\ & 0.70 \end{aligned}$	Rinn, el 3 A		ted S ies, 0.7	eel ngland 3 A	Swans $\mathrm{Cu}, 1$.	1953	Tatge $26^{\circ} \mathrm{C}$
	a	I	a	a	I	a	d	I	a	d	I	a	d	I	a	d	I	a
	A		A	A		A	A		A	A		A	A		4	A		A
100		--		3.87	30	3.870	3.85	8	3.85	3.86	15	3.86	3.87	60	3.87	3.87	23	3.87
110	2.708	100	3.829	2.731	100	3.862	2.728	100	3.857	2.73	100	3.86	2.74	100	3.87	2.740	100	3.875
111	2.229	10	3.861	2.231	7	3.864	2.226	3	3.856	2.22	5	3.85	2.24	50	3.88	2.238	4	3.876
200	1.917	20	3.834	1.932	15	3.864	1.928	11	3.856	1.92	12	3.84	1.94	60	3.88	1.939	7	3.878
210	1.718	15	3.842	1.726	12	3.859	1.724	6	3.855	1.72	8	3.85	1.73	50	3.87	1.733	5	3.875
211	1.562	30	3.826	1.556	40	3.811	1.575	21	3.858	1.57	25	3.85	1.58	70	3.87	1.582	23	3.875
220	1.357	15	3.838	1.365	10	3.862	1.363	6	3.855	1.373	5	3.883	1.37	60	3.87	1.370	5	3.875
300	1.282	10	3.846	1.288	12	3.863	1.286	3	3.858	1.291	3	3.873	1.29	50	3.87	1.292	3	3.876
310	1.209	15	3.823	1.221	15	3.861	1.220	6	3.858	1.223	7	3.867	1.22	60	3.86	1.225	5	3.874
311	1.158	8	3.841	1.165	3	3.863	1.163	2	3.857	1.167	1	3.871	1.17	50	3.88	1.1687	4	3.8761
222	1.107	8	3.835	1.116	2	3.865	1.113	2	3.856	1.117	1	3.869	1.12	50	3.88	1.1188	2	3.8576
320	1.069	6	3.854	1.070	2	3.859	1.069	1	3.854	-----	---		1.07	50	3.86	1.0751	1	3.8764
321	1.020	18	3.816	1.032	20	3.860	1.031	6	3.858	1.035	4	3.873	1.03	80	3.85	1.0357	3	3.8753
400	0.954	3	3.816	0.965	1	3.858	0.964	1	3.856	-----	---	-----	0.968	50	3.872	0.9680	1	3.8720
410	. 931	6	3.839	. 937	1	3.862	. 935	1	3.855	-----	---	-----	. 939	70	3.872	. 9400	2	3.8757
411	. 908	8	3.852	. 910	6	3.860	. 909	2	3.857	0.914	1	3.878	. 913	85	3.873	. 9134	3	3.8752
331	. 888	5	3.871	-----	---	-----	. 885	1	3.857	-----	---	-----	-----	---	------	. 8890	1	3.8751
420	. 864	5	3.864	0.864	3	3.863		--		0.866	1	3.873				. 8667	2	3.8760
421	. 841	5	3.854	. 844	2	3.866	-----	---	-----	-----	---	-----	-----	---		. 8457	3	3.8755
332	. 819	5	3.841	. 823	1	3.858		--								. 8263	4	3.8757
422	. 784	4	3.841	. 788	2	3.860		--			---			--		. 7911	3	3.8756
500	. 769	3	3.845	. 774	4	3.869		---			---			---		-----	---	------
510	. 752	7	3.834	. 757	7	3.863	-----	---	-----	-----	---			---			---	------
521				. 706	1	3.866					---							
Average unit cell for last five lines.--			3.843															
			3.863			-----	---	3.857		---	3.873		---	${ }^{\text {a }} 3.872$	------	---	3.8756	

[^12]the old card as 0.708 , on the new one 0.709 , while 0.712 was actually used. On the old card for the Havighurst, Mack, and Blake pattern the interplanar spacings 1.2.2l and 0.7748 should read 1.2221 and 0.7745 ; these errors were eliminated from the new card in reducing the values to two decimal places only. The radiation wavelength was changed on the cards from 0.708 to 0.709 ; actually 0.710 was used. The Wyckoff and Armstrong reference is given incorrectly on both old and new cards; it should read "Z. Krist. 72, 319 (1929)" rather than "320 (1930)." The interplanar spacings and intensity measurements check with those of the reference given; it is not understood why reference is given also to Greenberg and Walden [82] (misspelled "Walder" on the new card) with the notation "intensities by ionization spectrometer," since the intensity data of this paper seem of little value and are apparently not recorded on the ASTM card at all.

The structure of ammonium chloride [54] is based on a simple cubic lattice, space group $\mathrm{O}_{\mathrm{h}}^{1}\left(\mathrm{Pm}_{\mathrm{m}} \mathrm{m}\right)$. There is one molecule to the unit cell. The early lattice constant determinations (Bragg [28], Vegard [235], and Bartlett and Langmuir [9]) vary considerably, and uncertainty exists as to the correction to apply to convert their units to angstroms. In the table below a value of Havighurst, Mack, and Blake [92] is compared with an electron diffraction determination of Trillat and Laloeuf [223], and the NBS lattice constant. The two former are converted from asm sumed $k X$ units to angstroms.

Unit cell, angstroms

1924	Havighurst, Mack, and Blake [92].---	3.874
1948	Trillat and Laloeuf [223]	3.871
1953	Swanson and Tatge ($26^{\circ} \mathrm{C}$)	3.8756

The density of ammonium chloride based on the unit cell of the NBS is 1.527 at $26^{\circ} \mathrm{C}$. The index of refraction of the sample was determined as $n=1.641$.

2.34. Lithium Fluoride, LiF (Cubic)

Six patterns are compared in table 35; besides the three from the ASTM file (see table l), there is one from Debye and Scherrer [63], one from Bruni and Levi [41], and an NBS pattern. In their same publication Debye and Scherrer give a second pattern which closely corresponds to the first and is not reproduced in table 35.

The sample of lithium fluoride used for the NBSpattern was obtained from the Harshaw Chemical Co. Spectrographic analysis at the NBS showed (in percent): $\mathrm{Sr}, 0.01$ to 0.1 ; $\mathrm{Pb}, \mathrm{Si}, 0.001$ to $0.01 ; \mathrm{Al}, \mathrm{Ba}, \mathrm{Ca}, \mathrm{Cu}, \mathrm{Fe}$, $\mathrm{Mg}, \mathrm{Sn},<0.001$.

The interplanar spacings of the ASTM patterns in table 35 were converted from $k X$ to angstrom units. The data of Debye and Scherrer and of Rruni and Levi were published in Bragg angles, from which the interplanar spacings were derived directly in angstroms. Most of the relative intensity measurements of the various patterns bear out the choice of the three strongest lines as given in the NBS pattern; 200, 111, and 220 are the first, second, and third strongest lines, respectively.

Lithium fluoride has the well-known NaCl structure, space group $\mathrm{O}_{\mathrm{h}}^{5}$ (Fm 3 m), with four molecules to the unit cell. Published lattice constants after converting from $k X$ to angstrom units and allowing for temperature differences (the coefficient of expansion was determined by Straumanis, Ieviņs and Karlsons [217] as 34.17×10^{-6}) compare with the NBS value thus:

Unit cell at $25^{\circ} \mathrm{C}$, angstroms

1937	Moeller [155]	4.0286
1939	Straumanis, Ievinš, and Karlsons [217]	4.02620
1940	Hutchison and Johnston [110]	4.0255
1953	Swanson and Tatge----------------------	4.0264

The density based on the NBS lattice constant is 2.638 at $25^{\circ} \mathrm{C}$. The refractive index of lithium fluoride determined by Spangenberg [211] is $n_{D}=1.3915$.

Table 35. Lithium fluoride, LiF (cubic)

${ }^{\text {a }}$ Average for last three lines only.

2.35. Lithium Chloride, LiCl (Cubic)

In table 36 the three patterns for lithium chloride included in the ASTM diffraction pattern file (see table l) are compared with a pattern prepared at the NBS. The material for the NBS sample was obtained from the Mallinckrodt Chemical Works, labelled with their number SDD, and was accompanied by the following chemical analysis (in percent): $\mathrm{N}_{2} \mathrm{O}_{5}, 0.001 ; \mathrm{SO}_{3}, 0.01$; heavy metals, 0.005 ; $\mathrm{Fe}, 0.001$; other alkalis, $0.02 ; \mathrm{Cl}_{2} \mathrm{O}_{5}$, trace.

The interplanar spacings were converted for the table from $k X$ units to angstroms. The intensity measurements of all four patterns yield 111, 200, and 220 as the three strongest lines to be used as the ASTM index lines. It should be noted that in the flat packed sample used with Geiger counter apparatus the powder easily orients so that the 200 line is strongest. The NBS intensity measurements were made as usual on a loosely
packed sample expressly prepared to avoid orientation.

Lithium chloride crystallizes with the NaCl lattice, has the space group $\mathrm{O}_{\mathrm{h}}^{5}$ (Fm 3 m), and has four molecules in the unit cell. A recent value for the lattice constant is compared with that of the NBS in the following table after conversion to angstrom units at $25^{\circ} \mathrm{C}$. The coefficient of expansion of 44.76×10^{-6} [113] was employed in making the corrections.

Unit cell in angstroms at $25^{\circ} \mathrm{C}$

The density, calculated from the NBS lattice constant, is 2.074 at $25^{\circ} \mathrm{C}$. The index of refraction determined on the material used for the NBS pattern is $n=1.663$.

Table 36. Luthum chloride, LiCl (cubuc)

2.36. Sodium Fluoride, NaF (Cubic)

Three patterns for sodium fluoride (villiaumite) recorded on the ASTM file cards (see table l) are compared in table 37 with two patterns obtained from the literature and one made at the NBS. Those from the literature are by Debye and Scherrer [64] and by Wasastjerna [244]. A fourth ASTM pattern, from the Crystallographic Laboratory, Cambridge, England, had not been published prior to the ASTM compilation, and as the data were combined on the file card with those of Wyckoff and Armstrong, it is impossible to reproduce it as a separate pattern for comparison in table 37.

The NBS pattern was obtained from a sample numbered 7445 furnished by the J. T. Baker Chemical Company. The NBS chemical laboratory found that the sample complied with ACS specifications. The spectrographic labora-
tory reported the presence of silicon, 0.001 to 0.01 percent, and no other impurity greater than 0.001 percent. The sample was recrystallized by sublimation before using.

The spacings of the Debye and Scherrer and the Wyckoff and Armstrong patterns of table 37 were calculated directly in angstrom units from the published Bragg angle data. The Davey, the Hanawalt, Rinn, and Frevel, and the Wasastjerna patterns were converted from the $k X$ units of the published data. Thus, the entire table is in angstroms.

The patterns of table 37 agree in showing the 200,220 , and 222 lines as the first, second, and third strongest, respectively. The Wyckoff and Armstrong intensity measurements in their original publication differ considerably from those on either the old or new ASTM cards. They were recalculated for
table 37 directly from the published photometric measurements, which have lost much of their original precision in the versions used on the ASTM cards.

Sodium fluoride has the NaCl structure, space group $\mathrm{O}_{\mathrm{h}}^{5}$ (Fm 3 m), with four molecules in the unit cell. In 1939 Straumanis, Ieviņs, and Karlsons [217] found a lattice constant of 4.62345 kX units at $25^{\circ} \mathrm{C}$. Converting to angstroms at $25^{\circ} \mathrm{C}$, this compares with the NBS value:

Unit cell at $25^{\circ} \mathrm{C}$, angstroms

1939	Straumanis, Ievinš, and Karlsons [217]	4.63279
1953	Swanson and Tatge	4.6342

The coefficient of expansion 36.0×10^{-6} [217] was used. The density of sodium fluo-* ride based on the NBS cell value of the lattice constant is 2.799. The index of refraction was given by Spangenberg [211] as $n_{\mathrm{D}}=1.3258$.

Table 37. Sodium fluoride, NaF (cubic)

2.37. Potassium Fluoride, KF (Cubic)

Three diffraction patterns, all in the ASTM file, for potassium fluoride (see table 1) are compared with a pattern prepared at the NBS in table 38 . The NBS sample was obtained from the J. T. Baker Chemical Company, and accompanied by the following analysis (in percent): insoluble, 0.05 ; Cl, 0.005 ; HF (free acid), 0.05 ; alkali $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right), 0.1$; $\mathrm{K}_{2} \mathrm{SiF}_{6}, 0.05 ; \mathrm{SO}_{4}, 0.02 ; \mathrm{SO}_{3}, 0.005$; heavy metals (as Pb), $0.003 ; \mathrm{Fe}, 0.001$. A spectro-
graphic analysis made at the NBS indicates approximately $0 . l$ percent sodium present, the only extraneous element recognized greater than 0.01 percent. The presence of 0.1 percent sodium fluoride in solid solution with potassium fluoride decreases the unit-cell size approximately 0.0007 A. As potassium fluoride is very deliquescent, the sample was first dried at $220^{\circ} \mathrm{C}$, then mixed with petrolatum before mounting on the X-ray spectrometer.

The spacings of the Davey pattern were converted to angstrom units by recalculating them to agree with a molybdenum wavelength of 0.7093 angstroms rather than the 0.712 used to obtain the published data. The spacings of the remaining ASTM patterns were converted to angstroms from $k X$ units. The Hanawalt, Rinn, and Frevel, and the NBS patterns show the 200,220 , and 111 lines as the three strongest. The 420 and 422 are strong lines also, and, due to focusing and absorption effects, appear in the other two patterns as strong or stronger than the 111 line.

Potassium fluoride has the well known face-centered cubic structure of NaCl , space group $\mathrm{O}_{\mathrm{h}}^{5}\left(\mathrm{Fm}_{\mathrm{m}} 3 \mathrm{~m}\right)$, with four molecules in the unit cell. The lattice constants found in
the literature are not in close agreement. Several, converted to angstrom units, are compared with that of the NBS in the table below:

Unit cell, in angstroms

1922	Posnjak and Wyckoff [187	5.37
1929	Broch, Oftedal, and Pabst [38]	5.344
1938	Finch and Fordham ${ }^{\text {a }}$ [68]	5.367
1948	Mehmel [150]	5.34
1953	Swanson and Tatge ($26{ }^{\circ} \mathrm{C}$)	5.347

${ }^{a}$ By electron diffraction.
The density, calculated from the NBS lattice constant, is 2.524 at $26^{\circ} \mathrm{C}$. The index of refraction was not determined because of the fineness of the sample; it is given by Spangenberg [211] as $n_{D}=1.361$.

Table 38. Potassium fluoride, KF (cubic)

$h k l$		1923 Davev 0.70			1938 alt, Frev 0.709			llogr orator 0.709		Sw Cu	1953 and 405 A	ge $6^{\circ} \mathrm{C}$
	2	I	a	a	I	a	d	I	a	d	I	a
	A		A	A		A	A		A	A		A
111	3.10	15	5.37	3.09	27	5.35	3.02	40	5.23	3.087	29	5.347
200	2.68	100	5.36	2.67	100	5.34	2.64	100	5.28	2.671	100	5.342
220	1.88	80	5.317	1.88	83	5.32	1.87	80	5.29	1.890	63	5.346
311	1.603	10	5.317	1.60	10	5.31	1.599	20	5.303	1.612	10	5.346
222	1.533	20	5.310	1.54	27	5.33	1.533	40	5.310	1.542	17	5.342
400	1.328	10	5.312	1.336	8	5.344	1.330	40	5.320	1.337	8	5.348
331	1.217	8	5.305	1. 225	4	5.340	1.219	20	5.313	1.227	2	5.348
420	1. 187	25	5.308	1.193	20	5.335	1.190	80	5.322	1.1946	14	5.342
422	1.083	15	5.306	1.091	10	5.345	1.091	80	5.345	1.0912	8	5.346
511	1.020	5	5.300	1.029	1	5.347		-----		1.0297	3	5.350
440	0.935	5	5.289	0.945	1	5.346	0.945	20	5.346	0.9452	3	5.347
531	. 897	5	5.307	. 903	1	5.342	. 904	40	5.348	. 9037	4	5.346
600	. 884	8	5.304	. 891	2	5.346	-	---		. 8915	5	5.349
620	. 839	8	5. 306	. 845	1	5.344	-----	-----	------	. 8455	5	5.347
622	. 800	8	5.307				---			. 8060	4	5.346
642	. 708	8	5.298									
Average unit cell for last five lines.									5.335			5.347
			5.304			5.345						

2.38. Potassium Chloride, KCl (Cubic)

The two patterns of potassium chloride (sylvite) in the ASTM file (see table l), supplemented by two found in the literature, Wasastjerna [244a] and Sidhu [207], are com-
pared in table 39 with a pattern made at the NBS.

The sample used by the NBS was obtained from the Mallinckrodt Chemical Works, and bore the label KYD-1. The following chemi-
cal analysis accompanied it (in percent): Ba, $0.001 ; \mathrm{Ca}, \mathrm{Mg}$, and $\mathrm{NH}_{4} \mathrm{OH} \mathrm{ppt}, 0.005$; Chlorate $\left(\mathrm{ClO}_{3}\right), 0.001$; insoluble, 0.005 ; $\mathrm{Fe}, 0.0003$; heavy metals, 0.0005 ; neutrality $\mathrm{OK} ; \mathrm{NO}_{3}, 0.003$; $\mathrm{N}, 0.001 ; \mathrm{PO}_{4}, 0.002 ; \mathrm{Na}, 0.02 ; \mathrm{SO}_{4}, 0.005$.

The conversion of the interplanar spacings of the patterns of table 39 to angstrom units was made from $k X$ units except in the case of Wasastjerna, from whose data published as $\frac{\sin \theta}{\lambda}$, values were calculated directly in angstrom units. For each pattern the three strongest lines are 200, 220, and 222.

Apparently Bragg [29] is responsible for the original structure determination; he referred to the structure as "simple cubic," that is, face-centered cubic, having the space group $\mathrm{O}_{\mathrm{h}}^{5}$ (Fm 3 m). Tu [224] in 1936 determined the coefficient of expansion of potassium
chloride as 3.65×10^{-5}. Four measurements of the latice constant made at specified temperatures are compared, after conversion to angstrom units at $25^{\circ} \mathrm{C}$, with the NBS value in the following table:

Unit cell in angstroms at $25^{\circ} \mathrm{C}$

1936	Tu [224]	6.29229
1942	Batuecas and Fernandez-Alonso [10]_--	6.307
1944	Hutchinson [111]	6.30511
1947	Vegard [237]	6.289
1953	Swanson and Tatge.------------------------	6.2931

Hutchinson, and Batuecas and FernandezAlonso did not obtain their lattice constants from X -ray measurements but from precision density determinations. The density calculated from the NBS unit cell is 1.9865 at $25^{\circ} \mathrm{C}$. An index of refraction of $n=1.490$ was obtained for the NBS sample of potassium chloride.

Table 39. Potassium chloride, KCl (cubic)

		1923			1938					948			953	
$h k l$		Davey		Hana	Fre		Wasa	erna		dhu		Swans	and	
	Mo	0.70		Mo,	0.70		$\mathrm{Cu}, 1$	405 A		. 54		$\mathrm{Cu}, 1$	05	$25^{\circ} \mathrm{C}$
	d	I	a	a	I	a	d	a	a	I	a	d	I	a
	A		A	A		A	A	A	A		A	A		A
200	3.1	100	6.24	3.14	100	6.28	3.147	6.294	3.13	vs	6.26	3.146	100	6.292
220	2.21	67	6.25	2.21	60	6.25	2.224	6.290	2.21	s	6.25	2.224	59	6.290
222	1.812	20	6.277	1.81	14	6.27	1.817	6.294	1.81	m	6.27	1.816	23	6.291
400	1.567	7	6.268	1.57	6	6.28	1.573	6.292	1.57	w	6.28	1.573	8	6.292
420	1.403	17	6.274	1.404	12	6.279	1.407	6.292	1.41	m	6.31	1.407	20	6.292
422	1.281	10	6.275	1.283	6	6.285	1.285	6.295	1.28	m	6.27	1.284	13	6. 290
440	1.110	3	6.279	1.110	2	6.279	1.112	6.294	1.11	w	6.28	1.1126	2	6.2938
600	1.045	7	6.270	1.049	2	6.294	1.049	6.294	1.05	w	6.30	1.0490	6	6.2940
620	0.991	3	6.268	0.993	2	6.280	0.9948	6.2917	0.994	w	6. 287	0.9951	2	6.2936
622	. 994	3	6.261		---		. 9485	6.2930	. 950	w	6.302	. 9486	3	6.2923
444	. 905	3	6.270		---	-------	. 9083	6.2929	. 912	vw	6.319	. 9083	1	6.2929
640	. 869	3	6.266		---	-------	. 8727	6.2931	. 875	w	6.310	. 8727	2	6.2931
642	. 840	3	6.271		---		. 8409	6.2927	. 843	m	6.308	. 8410	6	6.2934
Average for last five lines. \qquad			6.267	-------	---	6.283	--------	6.2927	-------	--	6.305	--------	---	6.2931

2.39. Potassium Bromide, KBr (Cubic)

The two ASTM patterns of potassium bromide (see table 1), one from the literature (Wasastjerna [243]), and a pattern prepared at the NBS are compared in table 40 . The mate-
rial for the NBS pattern was obtained from the J. T. Baker Chemical Company, numbered 111642 , and accompanied by the following analysis (in percent): insoluble, $0.001 ; \mathrm{PO}_{4}, 0.000 ; \mathrm{SO}_{4}$, 0.003 ; heavy metals, $0.0001 ; \mathrm{KOH}, 0.002 ; \mathrm{N}$,
$0.0001 ; \mathrm{Ca}, \mathrm{Mg}$, and $\mathrm{NH}_{4} \mathrm{OH}$ ppt, $0.003 ; \mathrm{Cl}, 0.1$; $\mathrm{BrO}_{3}, 0.001 ; \mathrm{Ba}, 0.002 ; \mathrm{Fe}, 0.0001$. It was checked at the NBS and found to comply with ACS reagent standards.

After the calculation of the Wasastjerna

 spacings from the given $\frac{\sin \theta}{\lambda}$ data, the interplanar spacings of the three published patterns were converted from $k X$ to angstrom units. Two errors in entering intensity measurements on the Davey ASTM card were corrected for the 1950 file. The three lines 200,220 , and 420 are recognized as the first, second, and third strongest lines, respectively, in each of the four patterns.Potassium bromide has a face-centered cubic lattice [29], space group $0_{h}^{5}(F m 3 m)$, and four molecules to the unit cell. Three determinations of the lattice constant, given at specified temperatures, are compared below
with the NBS determination, all reduced to angstrom units at $25^{\circ} \mathrm{C}$. A recent determination of the coefficient of expansion is 40.5×10^{-6} [52].

Lnit cell in angstroms at $25^{\circ} \mathrm{C}$

1926	Ott [172]	6.600
1942	Batuecas and Fernandez-Alonso [10]	6.616
1947	Vegard [237]	6.593
1953	Swanson and Tatge	6.6000

Batuecas and Fernandez-Alonso did not obtain their lattice constant from X-ray measurements but calculated it from a pycnometric density determination of high precision. The density, calculated from the NBS diffraction data, is 2.7533 at $25^{\circ} \mathrm{C}$. The index of refraction of the specimen used for the NBS pattern was determined as $n=1.559$.

Table 40. Potassium bromide, KBr (cubic)

$h k l$		1923 Davey 0.709		Hanawa	1938 Rinn, 0.7093	nd Frevel A	Was Cu,	erna 05 A		1953 5405	tge $25^{\circ} \mathrm{C}$
	d	I	a.	d	I	a	a	a	d	I	a
	A		A	A		A	${ }^{\text {A }}$	A	A		A
111	3.79	20	6.56		-----		3.804	6.589	3.81	15	6.60
200	3.28	100	6.55	3.30	100	6.59	3.296	6.592	3.300	100	6.600
220	2.33	90	6.57	2.34	42	6.60	2.330	6.590	2.333	57	6.599
311	1.961	15	6.563	-----	-----	----------	1.987	6.590	1. 990	7	6.600
222	1.899	50	6.577	1.89	10	6.56	1.903	6.592	1.905	16	6.599
400	1.641	15	6.565	1.64	. 7	6.57	1.648	6.592	1.650	10	6.600
331	1.513	8	6.595		-----	---------	1.512	6.591	1.514	2	6.599
420	1. 468	60	6.565	1.471	17	6.578	1.474	6.592	1.476	17	6.601
422	1.346	30	6.592	1.346	7	6.592	1.345	6.589	1.347	8	6.599
511	--------	-----	-----	-------	---	---------	1.268	6.589	1.270	2	6.599
440	1.164	8	6.586	1. 166	3	6.598	1.1651	6.5909	1.1666	3	6.5993
531	--------	-----			-----	----------	1.1141	6.5911	1.1157	1	6.6006
600	1.098	10	6.589	1.097	3	6.583	1.0984	6.5904	1.1000	5	6.6000
620	1.038	10	6.565	1.042	3	6.591	1.0422	6.5915	1.0437	4	6.6009
533				------	-----	---------	1.0052	5.5915	-------		
622	0.991	5	6.573	--...	-----	---------	0.9937	6.5915	0.9949	4	6.5994
444	-..---	...	-----		-----		. 9514	6.5915	. 9527	2	6.6002
711	-------	-----	-----		-----	---------	. 9230	6.5915	. 9241	1	6.5997
640	------	----	-----	-----	-----	---------	. 9141	6.5917	. 9153	2	6.6003
642							. 2308	6 5913	. 8819	3	6.5995
731							. 8582	6.5919	. 8594	1	6.6002
Average unit cell for last five lines.											
			6.581			6.588	-----	6.5916		----	6.6000

2.40. Potassium Iodide, KI (Cubic)

Three patterns for potassium iodide included in the ASTM file of powder diffraction patterns (see table l) are compared in table 41 with a pattern found in the literature, Wasastjerna [244], and one prepared at the NBS. The specimen used for the NBS pattern was obtained from B. R. Elk \& Company, sample No. E-PF-3, accompanied by the following analysis, denoting higher purity than required by ACS specifications (in percent): alkali, 0.04; $\mathrm{Ba}, 0.002 ; \mathrm{Ca}, \mathrm{Mg}$, and $\mathrm{NH}_{4} \mathrm{OH}$ ppt, $0.005 ; \mathrm{Cl}$ and $\mathrm{Br}, 0.01$; insoluble, $0.005 ; \mathrm{IO}_{3}$, 0.0003 ; $\mathrm{Fe}, 0.0003$; heavy metals (as Pb),
$0.0005 ; \mathrm{H}_{2} \mathrm{O}, 0.20 ; \mathrm{N}, 0.002 ; \mathrm{PO}_{4}, 0.005 ; \mathrm{Na}$, $0.03 ; \mathrm{SO}_{4}, 0.01$. Annealing at $450^{\circ} \mathrm{C}$ for a half hour presumably was accompanied by elimination of the water.

The spacings of the patterns were either calculated directly in angstrom units from the Bragg angle data given or were converted from kX to angstrom units. There is general agreement that the first two strongest lines are 200 and 220, but the Davey and the Olshausen patterns show 420 as third strongest, while the Hanawalt, Rinn, and Frevel pattern agrees with that of the NBS in showing the 111 line as third strongest.

Table 41. Potassium iodide, KI (cubic)

Potassium iodide has the NaCi structure [253], face-centered cubic, with four molecules to the unit cell, and space group O_{b}^{5} (Fm3m). Lattice constants of several investigators are compared as follows (Finch and Fordham obtained theirs from electron diffraction measurements):

Unit cell in angstroms

1922	Clark and Duane [50]	7.064
1923	Davey [57]	7.050
1924	Havighurst, Mack, and Blake [92]	7.052
1925	Olshausen [170]	7.040
1936	Finch and Fordham [68]	7.078
1953	Swanson and Tatge ($25^{\circ} \mathrm{C}$)	7.0655

The density calculated from the NBS lattice constant is 3.1257 at $25^{\circ} \mathrm{C}$. The index of refraction of the sample used by the Bureau was determined as $n=1.668$.

2.41. Calcium Fluoride, CaF_{2} (Cubic)

Calcium fluoride (fluorite) is represented in table 42 by four patterns reproduced in the ASTM file (see table l), one appearing in the literature, Gerlach [78], and one prepared at the NBS.

The sample of calcium fluoride used for the NBS pattern was prepared by D. C. Stockbarger at the Massachusetts Institute of Technology. Spectrographic analysis at the NBS showed arsenic, boron, iron, magnesium, silicon, and strontium less than 0.001 percent each, and silver and copper less than 0.0001 percent.

The spacings of the Gerlach pattern were computed for table 42 in angstrom units directly from the published Bragg angle data. Those of the four remaining patterns, which appear on the ASTM cards, were converted from kX units to angstroms. Of these, only the Hanawalt, Rinn, and Frevel pattern is known to be previously published. As can readily be seen from the unit-cell calculations of the table, the precision of the Jessop-United Steel Companies and the United Steel Companies pat-
terns fully justifies the use of four decimal places in the high-angle part of the patterns, arbitrarily abbreviated in the version of the pattern given on the 1950 edition of the ASTM cards. The British Museum pattern, appearing only in the 1950 edition, is possibly abbreviated also. In performing this abbreviation, the 444 interplanar spacings of the Hanawalt, Rinn, and Frevel pattern should be given 0.79 rather than the 0.80 appearing on the card (the published value appearing on the original ASTM card is 0.789). The Gerlach pattern of 1922 is the only one to show a line for the 200 plane; this, marked very very weak, may well be in error.

All patterns give the strongest line as 220. Two of the British patterns give the 111 and 311 lines the same intensity, recording these as second and third strongest lines; the United Steel Companies pattern is completely at variance here, with 422 and 531 listed second and third strongest. The Hanawalt, Rinn, and Frevel pattern and that of the NBS list the three strongest lines as 220 , 111 , and 311.

It is difficult to get unoriented intensity measurements for CaF_{2}. The perfect cleavage of the 111 plane caused considerable variation in the first few of several patterns made at the NBS. Only after diluting the sample with finely ground silica gel and drifting it very carefully into the specimen holder were consistent values obtained. CaF_{2} is one of the few materials in which the question of orientation is critical in determining the strongest line for indexing, as in most cases cleavage plane reflections are inherently the strongest. With CaF_{2} the planes of the 111 form, which bound the eight sides of a cleavage particle, are easily oriented to produce the strongest reflections. The 220 is the strongest reflection in an unoriented sample. Flat specimens prepared for Geigercounter equipment will without extraordinary precaution invariably show the 111 as the strongest indexing line.

The structure was determined by W. H. Bragg [30] in 1914. The lattice is face-centered lhat cell, angstroms

1922	Gerlach [78]	5.466
1927	Thilo [221]	5.55
1930	Rumpf [198]	5.460
1933	Schumann [205	5.462
1939	Zintl and Udgard [263].---------------	5.479
1953	Swanson and Tatge ($25^{\circ} \mathrm{C}$) ----------------	5.4626

cubic, the space group $\mathrm{O}_{\mathrm{h}}^{5}(\mathrm{Fm} 3 \mathrm{~m})$, with four molecules to the unit cell. Published lattice constants, supposedly in kX units, were converted to angstroms and are compared with the NBS value.

The density of calcium fluoride, in accordance with the NBS lattice constant, is 3.181 at $25^{\circ} \mathrm{C}$. The index of refraction of the sample used for the NBS pattern is $n=1.433$.

Table 42. Calcium fluoride, CaF_{2} (cubic)

$h k l$	1922 Gerlach $\mathrm{Cu}, 1.5405 \mathrm{~A}$			1938 Hanawalt, Rinn, and Frevel Mo, 0.7093 A			Jessop United Steel Mo, 0.7093 A			United Steel Mo, 0.7093 A			British Museum $\mathrm{Cu}, 1.5405 \mathrm{~A}$			1953 Swanson and Tatge Cu, $1.5405 \mathrm{~A}, 25^{\circ} \mathrm{C}$		
	d	I	a	${ }^{\text {d }}$	I	a	d	I	a	${ }^{\text {d }}$	I	a	d	I	a	d	I	a
	A		A	A		A	A		A	A		A	A		A	A		A
111	3.15	m	5.46	3.17	67	5.49	3.154	70	5.463	3.153	70	5.461	3.11	80	5.39	3.153	94	5.461
200	2.74	vvw	5.48	-----	---			---	------		---	------	----	---	----		---	
220	1.94	s	5.49	1.93	100	5.46	1.932	100	5.465	1.931	100	5.462	1.90	100	5.37	1.931	100	5.462
311	1.65	s	5.47	1.65	50	5.47	1.647	70	5.462	1.646	70	5.459	1.63	80	5.41	1.647	35	5.462
222	-----	---	-----	-----	---			---			---	------	----	---	----	1.577	2	5.463
400	1.37	m	5.48	1.37	23	5.48	1.366	40	5.464	1.365	60	5.460	1.36	60	5.44	1.366	12	5.464
331	1.25	ms	5.45	1.259	23	5.488	1.254	50	5.466	1.253	60	5.462	1.25	60	5.45	1.253	10	5.462
422	1.12	s	5.49	1.119	30	5.482	1.1153	70	5.4639	1.114	90	5.457	1.11	80	5.44	1.1150	16	5.4624
511	1.050	ms	5.456	1.052	10	5.466	1.0515	50	5.4638	1.0510	70	5.4612	1.05	50	5.46	1.0512	7	5.4622
440	0.964	ms	5.453	0.970	6	5.487	0.9659	50	5.4640	0.9654	70	5.4611	----	---	----	0.9657	5	5.4628
531	. 924	s	5.466	. 927	7	5.484	. 9236	60	5.4641	. 9231	90	5.4611	----	---	----	. 9233	7	5.4623
600	-----	---	-----	-----	---	-----		---	------	. 9101	50	5.4606	----	---	----	. 9105	1	5.4630
620	0.863	ms	5.458	0.868	5	5.490		---			--			--		. 8637	9	5.4625
533	. 833	ms	5.462	. 837	2	5.489		---			---		----	---	----	. 8330	3	5.4623
444		---	-----	. 791	1	5.480		---			---	------	----	---	----	------	---	------
711				. 769	2	5.491		---			---		----	--			---	
642				. 732	5	5.478		---			---		----	--	----			
731		---		. 714	3	5.484		---			---		----	---	----		--	
822				. 645	1	5.473					---							
Average unit cell for last five lines.---																		
			5.459		---	5.481		---	${ }^{1} 5.4640$		---	$1_{5.4610}$	----	---	5.44		---	5.4626

${ }^{1}$ Average for last four lines only.
2.42. Barium Fluoride, BaF, (Cubic)

The two ASTM patterns of barium fluoride (see table l) are compared in table 43 with one of two published by Broch, Oftedal, and Pabst [37], of which the more nearly complete is given in the table, along with a pattern made at the NBS.

The NBS sample was a specially purified material supplied by the Mallinckrodt Chemical Works. Their spectrographic analysis showed 0.01 to 0.1 percent of sodium and strontium.

The interplanar spacings for the Thilo and for the Broch, Oftedal, and Pabst patterns
were computed for table 43 directly in angstroms from the published Bragg angle data. The Hanawalt, Rinn, and Frevel values were converted to angstroms from $k X$ units. For the Thilo pattern the values of the unit cell for the last ten lines are within 0.005 of each other, indicating that the interplanar spacings are accurate to the third decimal place in this part of the pattern. Only the second place is recorded on the ASTM cards of both the old and new (1950) files. The first three spacings of the Thilo pattern as they appear on the ASTM card are calculated values to fit the unit cell dimension based on the high angle diffraction lines. The intensity measurements published by Thilo and those recorded on the ASTM card are both
given in the table (columns I^{a} and I^{b}). The Hanawalt, Rinn, and Frevel, and the NBS measurements agree relatively well; the three strongest lines of both patterns are 111, 220, and 311 .

Barium fluoride has the fluorite structure, a face-centered cubic lattice, space group $\mathrm{O}_{\mathrm{h}}^{5}$ (Fm3m), and four molecules to the unit cell. Several published lattice constants, assumed to be in kX units, compare with the NBS value thus:

Unit cell, angstroms

1922	Davey [56]	6.21
1927	Thilo [221]	6.21
1933	Schumann [205]	6.199
1953	Swanson and Tatge ($26^{\circ} \mathrm{C}$)	6.2001

Table 43. Barium fluoride, $\mathrm{BaF}_{2}(\mathrm{c} u$ o vc $)$

$h k l$	1927 Thilo $\mathrm{Cu}, 1.5405 \mathrm{~A}$				1929 Broch, Oftedal, and Pabst $\mathrm{Cu}, 1.5405 \mathrm{~A}$			1938 Hanawalt, Rinn, and Frevel Mo, 0.7093 A			1953 Swanson and Tatge $\mathrm{Cu}, 1.5405 \mathrm{~A}, 26^{\circ} \mathrm{C}$		
	d	$I^{\text {a }}$	$I^{\text {b }}$	a	d	I	a	d	I	a	d	I	a
	A			A	A		A	A		A	A		A
111	3.61	m	70	6.25	-------	-----		3.59	100	6.22	3.58	100	6.20
200	3.12	w	50	6.24	-------	-----	-------	3.10	25	6.20	3.100	30	6.200
220	2.206	s	100	6.240	2.194	s	6.205	2.19	100	6.19	2.193	79	6.203
311	1.875	s	100	6.219	1.868	s	6.195	1.86	80	6.17	1.870	51	6.202
222	1.798	w	50	6.228	1.789	m	6.197	1.78	15	6.17	1.790	3	6.201
400	1.553	w	50	6. 212	-------	-----	-------	1.55	15	6.20	1.550	6	6. 2000
331	1.426	s	100	6.216	1.420	s	6.190	1.423	32	6.203	1.423	13	6.2027
420	1.392	m	70	6.225	1. 385	m	6.194	1.385	18	6.194	1.386	6	6.1983
422	1.268	s	100	6.212	1.264	m	6.192	1.265	32	6.197	1.266	14	6.2021
511	1.195	s	100	6.209	1.192	m	6.194	1.192	20	6.194	1. 1933	6	6.2006
440	1.098	w	50	6.211	1.094	w	6.198	1.097	5	6.206	1.0959	2	6.1993
531	1.050	s	100	6.212	-------		--------	1.047	15	6.194	1.0481	6	6.2006
600	1.035	m	70	6.210		-----	-------	1.033	3	6.198	1.0332	1	6.1992
620	0.981	s	100	6.204	-------	-----	-------	0.980	6	6.198	0.9803	2	6.2000
633	. 947	m	70	6.212.		-----		. 946	3	6.203	. 9455	1	6.2001
622	. 937	m	70	6.213	----...	-----	-------	. 935	2	6.202	. 9347	3	6.2001
444	---	-----	-----	-------	-------	-----	-------	-----		-------	. 8948	1	6.1994
711	0.869	s	100	6.204		-	-------	0.868	3	6.199	. 8682	4	6.2002
640	. 861	m	70	6.209				. 861	2	6.209	. 8599	1	6.2008
642	-------	----	-----	-------	-------	-----		. 829	5	6.204	. 8285	5	6.1999
731	------	-----	-----	-------	-------					--..---	. 8072	6	6.2002
Average unit cell for last five lines.													
				6.208		---.-	6.191	-------	--	6.203	-------	--	6.2001

${ }^{\text {a }}$ Published.
${ }^{\mathrm{b}}$ ASTM card.

The lattice constant (6.20) given on the ASTM card for the Thilo pattern is that of Thilo and not, as designated, of Wyckoff (written "Wys" in error for "Wy ${ }_{2}$ ", Wyckoff, vol. 2). The density calculated from the NBS lattice constant is 4.886 at $26^{\circ} \mathrm{C}$. The index of refraction obtained for the sample used is $n=1.472$.
2.43. Mercurous Chloride, $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ (Tetragonal)

Four ASTM patterns of mercurous chloride (calomel) (see table l) are compared in table 44 with a pattern prepared at the NBS using a sample from the General Chemical Company, labelled No. 1891. The spectrographic analysis made at the Bureau indicated only traces

Table 44. Mercurous chloride, $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ (tetragonal)

${ }^{8}$ Published.
${ }^{\text {b }}$ ASTM card.
of Cu and Fe , and faint traces of Al, Mg, and Si; the limit of detection of the alkali elements is about 0.05 percent.

The Havighurst [90] pattern was made with molybdenum radiation for which a wavelength of 0.710 angstrom was given. The interplanar spacings were converted to the angstrom unit used here in accordance with the change in wavelength assigned to the radiation. The Hylleraas [112] spacings were published as Bragg angle measurements, and were converted to interplanar spacings directly in angstroms for table 44. The spacings of the Ruff, Ebert, and Luft [196] and the Hanawalt, Rinn, and Frevel [85] patterns were measured in $k X$ units, and were converted to angstroms. The NBS pattern resolves three lines not separated in previous patterns, resulting in a different selection of the three strongest lines. Where previous patterns had always included the combined 211-105 among the ASTM index lines, although not always in the same position, the NBS pattern shows the l10, 101, and 114 lines first, second, and third strongest, respectively.

Mercurous chloride has a tetragonal lattice, space group $\mathrm{D}_{4 \mathrm{~h}}^{17}(\mathrm{I} 4 / \mathrm{mm})$ [143], and two molecules of $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ in the unit cell. The lattice constant a was determined for the NBS sample from an average of five calculations from hko planes, c from an average of five calculations from $h k l$ planes with 0 or low h and k values. These are compared with earlier determinations thus:

Unit cell in angstroms

1925	Havighurst [90].	4.48	10.91
1926	Mark and Steinbach [143]	4.46	10.91
1946	Frevel, Rinn, and Anderson [75]	4.47	10.91
1953	Swanson and Tatge ($26^{\circ} \mathrm{C}$)	4.478	10.91

The density from the NBS lattice constant is 7.176 at $26^{\circ} \mathrm{C}$. The indices of refraction were not measured on the NBS sample. Havighurst refers to the birefringence as the strongest known, and quotes values for the in-
dices: $\omega_{D}=1.97325$ (which is miscopied on the ASTM card as 1.97525) and $\epsilon_{\mathrm{D}}=2.6559$.

2.44. Mercuric Chloride, HgCl_{2} (Orthorhombic)

The two patterns for mercuric chloride in the X-ray diffraction file of the ASTM (see table l) are compared in table 45 with one recently prepared at the Bureau. The Hanawalt, Rinn, and Frevel pattern, omitted from the original ASTM index, is included in the 1950 index. In the original index the index lines of this pattern (the three strongest lines $4.35,3.00,2.70$) are mistakenly assigned to mercuric chlorate [1]. The NBS pattern was obtained from a J. T. Baker Chemical Co. sample numbered 101742. Spectrographic analysis at the NBS showed no impurity greater than 0.01 percent.

The data of Bräkken and Harang were published as a table of $h k l$ indices, $\sin ^{2} \theta$ values, and intensity values visually estimated. For table 45 the $\sin ^{2} \theta$ values were converted to interplanar spacings, using the iron radiation wavelength 1.93597 A. The spacings of Hanawalt, Rinn, and Frevel were converted from $k X$ units to angstroms. The 120 line is the strongest for all three patterns. The second strongest is the 200 , but this line is not resolved from the 031 line by Hanawalt, Rinn, and Frevel, so that their intensity measurement is a combination of the two intensities. The 011 and 111 are third and fourth strongest in the Hanawalt, Rinn, and Frevel pattern, reversed for the NBS pattern. The difference in intensity is probably too small to be significant; it is not due to the radiation used, as the conversion factor for molybdenum to copper radiation is close to 1 in this range ([1] page 108 of index covering original set of cards, or card no. vii of introduction to 1950 file).

In indexing the pattern the unit-cell dimensions were taken in the Dana convention, $\mathrm{c}<\mathrm{a}<\mathrm{b}$, although the reverse order is sometimes given. The unit cell dimensions published in 1934 by Braekken and Scholten [27] converted from $k X$ units to angstroms compare
thus with those derived from the NBS pattern:

Unit cell, angstroms

		a	b	c
1934	Braekken and Scholten [27] --	5.975	12.761	4.334
1951	Swanson and Tatge $\left(26^{\circ} \mathrm{C}\right) \ldots---$	5.96	12.76	4.32

The presence of hkO lines only if k is even, and hOl lines only if $h+l$ is even, agrees with the generally accepted orthorhombic space group determination $D_{2 h}^{16}$ (Pmnb) for the crystal orientation used here. The density of the material, calculated from the NBS lattice constant, is 5.49 at $26^{\circ} \mathrm{C}$. The indices of refraction are higher than 1.75.

Table 45. Mercuric chloride, HgCl_{2} (orthorhombic)

$h k l$	$\begin{gathered} 1928 \\ \begin{array}{c} \text { Bräkken and } \\ \text { Harang } \end{array} \\ \mathrm{Fe}, 1.936 \mathrm{~A} \end{gathered}$		1938 Hanawalt, Rinn, and Frevel Mo, 0.709 A		$\begin{gathered} 1953 \\ \text { Swanson and } \\ \text { Tatge } \\ \mathrm{Cu}, \begin{array}{l} 1.5405 \mathrm{~A}, \\ 26^{\circ} \mathrm{C} \end{array} \end{gathered}$	
	d	I	d	I	d	I
	A		A		A	
120	4.34	vs	4.36	100	4.35	100
011	4.08	s	4.11	25	4.10	38
021	3.57	*	----	-----	3.58	3
101	3.488	w	----	-----	3.51	1
111	3.368	s	3.41	38	3.383	31
040	3.172	w	3.21	13	3.188	11
121	3.056	vw	-----	-----	3.066	2
031	3.019	w	$\} 3.01$		\{ 3.033	21
200	2.976	s	\} 3.01	75	2.986	48
131	\}2.692					
220	$\}^{2.692}$	s	2.70	50	2.707	36
211	2.403	m	2.41	25	2.420	14
141	2.348	w	----	-----	2.366	2
221	2.281	vw	------	-----	2.297	4
051	2.194	w	-------	-----	2.202	2
002	2.158	vw	2.18	13	2.182	6
012						
231	2.120	m	2.12	25	2.132	9
060						
151	2.056	m	2.06	25	2.065	13
112	1.997	m	2.00	50	2.004	16
241	1.929	m	1.94	25	1.940	11
061	1.895	w	1.90	13	1.902	8
132	1.829	w		-----	1.837	1
301	1.806	vw		-----	1.810	1
042	$\} 1.784$	m	1.79	13	1.791	6
311					1.791	6
251	1.762	w		----	1.769	4

Table 45. Mercuric chloride, HgCl_{2}
(orthorhombic)-Con.

$h k l$	1928 Bräkken and Harang Fe, 1.936 A		1938Hanawalt, Rinn,and FrevelMo, 0.709 A		1953 Swanson and Tatge $\mathrm{Cu}, 1.5405 \mathrm{~A}$, $26^{\circ} \mathrm{C}$	
	a	I	d	I	d	I
	A		A		A	
202	1.745	vw		----	1.765	1
071	1.674	vw		-----	1.681	<1
331	1.658	w	1.67	13	1.666	4
052	1.643	m	-------	-----	1.653	< 1
232	-------		1.62	13	1.619	3
080	1.589	m	1.59	13	1.595	1
341	1.569	vw	-------	-----	1.572	1
180	1.531	m	1.54	13	1.539	2
081	1.489	w	---.-.--	--	1.496	1
312			1.455	13	1.454	4
013	-------		-------	-----	1.431	1
023	-------				1.406	3

2.45. Mercuric Iodide, HgI_{2} (Tetragonal)

The ASTM file of diffraction patterns contains three cards for mercuric iodide (see table 1) of which one (No. 3-1281) records only unit cell measurements. The patterns of the other two are compared in table 46 with a pattern prepared at the NBS.

The sample used for the NBS pattern was from Mallinckrodt Chemical Works, and was stated to be of ACS purity. Spectrographic analysis at the NBS shows a trace of iron and faint traces of calcium, chromium, magnesium, and silicon.

The interplanar spacings of the Havighurst pattern were reduced to angstroms in accordance with the wavelength given for the X radiation. The spacings of the Hanawalt, Rinn, and Frevel pattern were converted to angstroms from kX units. The line 200-114-201 is not resolved in the ASTM patterns, and appears very strong-even stronger than the 200-114 and 201 combined for the NBS pattern. Thus in the Havighurst pattern this is the strongest line, and in the Hanawalt, Rinn, and Frevel pattern it is equally as strong as the 102. The NBS pattern shows the three strongest lines as 102, 101, and the combination 200-114.

Table 46. Mercuric iodide. HgI_{2} (tetragonal)

Table 46. Mercuric iodide, HgI_{2} (tetragonal)-Con.

Mercuric iodide belongs to the tetragonal system. It has a space group of $\mathrm{D}_{4 \mathrm{~h}}^{15}$ (P4/nmc) [15], with two molecules in the unit cell. The unit cell measurements derived from the NBS powder pattern are compared below with those of other workers after conversion to angstroms from kX units:

		a	c
1926	Bijvoet, Claassen, and Karssen [15]	4.366	12.38
1927	Huggins and Magill [99]	4.35	12.36
1953	Swans on and Tatge ($26^{\circ} \mathrm{C}$)	4.390	12.38

The density on the basis of the NBS determined unit cell is 6.325 at $26^{\circ} \mathrm{C}$.

2.46. Lead Fluochloride, PbFCl (Tetragonal)

The 1950 ASTM X-ray diffraction file includes two patterns for lead fluochloride (see table 1); one, of natural matlockite, is from the mineral type locality of Matlock, Derbyshire, England, furnished by the British Museum (Natural History), London; the other, from synthetic material, was first published in 1932 by Nieuwenkamp and Bijvoet. In 1933 Nieuwenkamp [162] compared patterns of matlockite, whose formula was then given as $\mathrm{Pb}_{2} \mathrm{OCl}_{2}$, and synthetic PbFCl , showing their identity. In table 47 the two ASTM patterns are compared with one prepared at the Bureau from material of high purity obtained from the NBS chemical laboratory. The sample had been prepared as part of a project for the precise determination of fluorine.

The data published on the Nieuwenkamp and Bijvoet pattern do not include interplanar spacings; for table 47 they were calculated directly in angstroms from the $\sin ^{2} \theta$ values listed. The interplanar spacings of the British Museum pattern, presumably in $k X$ units, were converted to angstroms. Although the interplanar spacings of the patterns check closely, the intensity measurements vary. The NBS and British Museum patterns agree that 101 is the strongest line, but the Nieuwenkamp and Bijvoet pattern shows the last line (312) strongest, with the second and third strongest in close proximity. The 002, the second strongest line of the NBS pattern, is unresolved in the others. The third and fourth strongest lines of the NBS pattern appear as second and third strongest in the British Museum pattern.

Bannister [5] in 1934 gave the structure as tetragonal, space group $D_{4 \mathrm{~h}}^{7}(\mathrm{P} 4 / \mathrm{nmm})$, and
postulated two molecules in the unit cell. A Nieuwenkamp and Bijvoet determination of the lattice constant, converted to angstroms, compares thus with the NBS value:

Unit cell angstroms

		a	c
1932	Nieuwenkamp and Bijvoet [164]	4.09	7.21
1951	Swanson and Tatge ($26^{\circ} \mathrm{C}$)	4. 106	7.23

The density, in accordance with the NBS lattice constant, is 7.13 at $26^{\circ} \mathrm{C}$. The NBS sample was too finely powdered to determine the indices of refraction; Bannister found $\omega_{D}=2.145, \epsilon_{D}=2.006$.

Table 47. Lead fluochloride, PbFCl (tetragonal)

$h k l$	1932 Nieuwenkamp and Bijuoet $\text { Cr, } 2.2896 \mathrm{~A}$		British Museum		1953 Swanson and Tatge $\mathrm{Cu}, 1.5405 \mathrm{~A}$, $26^{\circ} \mathrm{C}$	
	d	I	d	I	d	I
	A		A		A	
001	-------	---	7.2	40	7.22	20
002	------	-----	------	-----	3.61	70
101	3.58	48	3.55	100	3.56	100
110	2.905	28	2.90	70	2.904	47
102	2.719	28	2.70	70	2.714	35
003	2.410	6	2.40	20	2.409	6
112	2.262	51	2.25	80	2.263	38
103	2.074	20	2.07	70	2.079	14
200	2.052	34	1.99	60	2.053	24
201	1.954	23	1.98	40	1.974	1
113	1.852	17	1.84	60	1.855	4
004	---	---	-	-	1.808	1
211	1.780	66	1.77	80	1.780	36
104	1.654	40	1.65	70	1.654	11
212	1.635	28	1.63	60	1.637	7
203	1.560	14	1.558	20	1.564	1
213	1.462	31	1.461	60	1.461	4
220	-------	-----	-------	-----	1.452	3
005	1.447	34	1.443	60	1.448	1
221	1.417	37	-------	-----	------	----
105	1. 363	23	-------	-----	-----	
222	\} 1.344	66	1.343	60	1.346	3
301						
310	1.298	68	------	-----	1.299	4
115	-------	-----		-----	1.293	3
214	1.285	89			1.289	5

TABLE 47. Lead fluochloride, PbFCl (tetragonal)-Con.

$h k l$	1932 Nieuwenkamp and Bijvoet $\mathrm{Cr}, 2.2896 \mathrm{~A}$		British Museum		1953 Swanson and Tatge $\mathrm{Cu}, 1.5405 \mathrm{~A}$, $26^{\circ} \mathrm{C}$	
	d	I	d	I	d	I
	A		A		A	
302 311	$\} 1.281$	17	1.276	70	1.281	1
223	--	---	1.240	20	1.244	1
312	1.220	100	1.222	60	1.223	2
006	-------	-----	-------	---	1.2041	1
303	-------	-----	-------	-----	1.1911	2
205		-----	1.181	60	1.1826	2
106	-------	-----	1.156	60	1.1565	2
313	-	-----	1.142	40	1.1443	1
215	-------	-----	------	-----	1.1386	1
321	-------	-----	1.126	50	1.1254	1
304		-----	-------	-----	1.0922	1
322			1.089	50	1.0863	1
323				-----	1.0300	1
400			1.027	60	1.0265	1
216		-----	1.008	60	1.0078	2
402	-------	-----	-------	-----	0.9872	2
117	-------	-----	-------	-----	. 9735	1
330	-------	-----	-------	-----	. 9664	2
324	-------	-----	-------	-----	. 9639	3
412			-------	-----	. 9608	2
207		----		----	. 9223	1
413					. 9203	1
420					. 9185	1

2.47. Potassium Cyanide, KCN (Cubic)

The card file of diffraction patterns of the ASTM contains three cards for potassium cyanide (see table 1). Only two of these give patterns, the third [3-1299] recording only a unit cell dimension. In table 48 the two patterns are compared with one produced at the NBS. The NBS pattern was obtained from a Nallinckrodt Chemical Works sample marked Lot GNB. An analysis furnished by the chemical laboratory of the NBS follows (in percent): $\mathrm{Cl}, 0.05 ; \mathrm{PO}_{4}, 0.005 ; \mathrm{SO}_{4}$ (total S), 0.005 ; $\mathrm{Fe}, 0.03 ; \mathrm{Pb}, 0.0000 ; \mathrm{Na},<0.05$.

For table 48 the spacings of both ASTM patterns were converted from $k X$ to anystrom units. The table shows the published inter-

TABLE 48. Potassium cyanıde, KCN (cubic)

[^13]planar spacings of the Natta and Passerini pattern as well as the version given on the ASTM card, which is recalculated from a unit cell derived from the last two lines. Two of the lines of this pattern are extraneous to the NaCl structure postulated for potassium cyanide and are not indexed. The three strongest lines are the same for all patterns- 200,220 , and 311.

Potassium cyanide has the NaCl structure [159] with a disordered CN group, a facecentered cubic lattice, and four molecules to the unit cell. Unit cell measurements have not been of very high accuracy. A few, converted to angstrom units, are given below:

Unit cell in angstroms

1921	Cooper [53]	6.55
1922	Bozorth [22]	6.56
1931	Natta and Passerini [159]	6.51
1953	Swanson and Tatge ($25^{\circ} \mathrm{C}$)	6.527

The density calculated from the NBS unit cell value is 1.555 at $25^{\circ} \mathrm{C}$. The index of
refraction determined on the NBS sample is $n=1.413$.

2.48. Sodium Cyanide, NaCN (Cubic)

The ASTM file contains two cards for the cubic form of sodium cyanide (see table l), the patterns of which are compared in table 49 with a pattern prepared at the NBS. The NBS sample was obtained from the J. T. Baker Chemical Company; it was numbered 121444. The chemical laboratory of the NBS reports that the material satisfies ACS standards, and gives the following analysis (in percent): $\mathrm{NaCN}, 96.2 ; \mathrm{Cl}, 0.02 ; \mathrm{FeCN}, 0.00 ; \mathrm{SO}_{4}, 0.00$; $\mathrm{S}, 0.003$; Thiocyanite, 0.02; Remainder CO_{3} and $\mathrm{H}_{2} \mathrm{O}$.

The spacings of the ASTM patterns were corrected from kX to angstrom units for the table. The Natta and Passerini pattern lists several reflections extraneous to the facecentered cubic structure postulated for sodium cyanide. In order to record this pattern on the ASTM card, a unit cell of 5.83 was calculated from the interplanar spacings of the

Table 49. Sod ium cyanide, NaCN (cubic)

${ }^{a}$ Published data. ${ }^{b}$ As recorded on ASTM card. ${ }^{\text {c }}$ Refers to spacings of d^{a} column. ${ }^{d}$ Average for last four lines only. 79
last three planes, and from this value the remaining spacings were recalculated, including the five lines which do not belong to the NaCN pattern. In the table both the originally published and the ASTM versions of the pattern are given. The NBS Geiger-counter diagram for sodium cyanide showed extraneous lines due to sodium carbonate and the strong line of the orthorhombic form of NaCN . These were not listed in the table. All three patterns list 200 and 220 as the first and second strongest lines. The intensities of 311 and 222 are very close-the earlier patterns show 222 as the third strongest line, while the NBS pattern shows 311 third strongest.

The room temperature form of sodium cyanide is face-centered cubic and has four molecules to the unit cell-that is, NaCl structure [159] with disordered CN group. Some recent lattice constants, corrected from kX to angstrom units, compare with that determined at the NBS as follows:

Unit cell in angstroms

1931	Natta and Passerini [159].	5.84
1938	Verweel and Bijvoet [240]	5.88
1953	Swanson and Tatge [$26^{\circ} \mathrm{C}$]	5.893

The density was calculated from the NBS lattice constant as 1.591 at $26^{\circ} \mathrm{C}$. The index of refraction of the NBS material was determined as $n=1.453$.

2.49. Sodium Cyanide, NaCN (Orthorhombic)

Sodium cyanide has a reversible inversion point from the cubic form at room temperature to an orthorhombic form at $10^{\circ} \mathrm{C}$. A pattern was made at the NBS with the temperature maintained between 6° and $7^{\circ} \mathrm{C}$. This is compared in table 50 with a pattern in the ASTM file (see table l), made at $-10^{\circ} \mathrm{C}$ by Verweel and Bijvoet [240]. The NBS sample is described in section 2.48 . on the cubic form of sodium cyanide.

The spacings in table 50 for the Verweel and Bijvoet pattern were calculated in angstrom units from published $\sin ^{2} \theta$ values. The

NBS diagram showed lines due to carbonate contamination as well as weak lines due to the presence of the cubic form, which are not given in the pattern of table 50. The three strongest lines are recorded in the NBS pattern as 110,002 , and 112.

The space group $\mathrm{C}_{2 v}^{20}$ (Imm) has been repeatedly assigned to the orthorhombic form of sodium cyanide on the basis of the determination

Table 50. Sodium cyanide, NaCN (orthorhombıc)

of Verweel and Bijvoet, who, however, suggest the possible alternatives of D_{2}^{8} (I222) or D_{2}^{25} (Immm). There are two molecules in the unit cell. The NBS pattern as indexed satisfies the requirements of any one of these three groups. The Verweel and Bijvoet unit cell determination compares thus with that of the NBS:

Unit cell, in angstroms

1938	Verweel and Bijvoet ($-10^{\circ} \mathrm{C}$)	a	b	c
	[240].	-3.75	4.72	5.62
1953	Swanson and Tatge (6° to $7^{\circ} \mathrm{C}$)	3.774	4.719	5.640

The density on the basis of the unit cell dimensions determined from the NBS pattern is 1.620 at 6° to $7^{\circ} \mathrm{C}$.
2.50. Strontium Nitrate, $\operatorname{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ (Cubic)

A pattern for strontium nitrate is compared in table 51 with two previously published patterns. The first, by Vegard [236] in 1922, was well indexed and misses few lines, although it is of less precision than the later patterns. The data were published as $\sin \theta$ values and estimated intensities. The former were converted to interplanar spacings in angstrom units for table 5l. The second pattern, by Hanawalt, Rinn, and Frevel, included in the diffraction pattern file of the ASTM (see table l), was converted from kX to angstrom units.

The sample for the NBS pattern was a specially purified material supplied by the Mallinckrodt Chemical Works. Their spectro-

Table 51. Strontium nitrate, $\operatorname{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ (cubic)

hkl	1922 Vegard $\mathrm{Cu}, 1.5405 \mathrm{~A}$			1938 Hanawalt, Rinn, and Frevel Mo, 0.7093 A			1951 Swanson and Tatge $\mathrm{Cu}, 1.5405 \mathrm{~A}, 26^{\circ} \mathrm{C}$		
	${ }_{\text {d }}$	I	a	${ }^{\text {a }}$	I	a	d	I	a
	${ }^{\text {A }}$		A	A		${ }^{\text {A }}$	A		A
111	4. 54	m	7.86	4.51	100	7.81	4.48	100	7.76
200	3.92	m	7.84	3.92	33	7.84	3.88	13	7.76
210	3.53	w	7.89	3.49	33	7.80	3.474	21	7.768
211	3.22	ゅ	7.89	-----------			3.175	14	7.777
220	2.78	w	7.87	-	-		2.749	19	7.775
311	2.37	s	7.86	2.36	100	7.83	2.346	72	7.781
222	2.27	s	7.85	2.24	100	7.76	2.246	54	7.780
400	1.96	m	7.84	1.94	17	7.76	1.945	12	7.780
411							1.836	2	7.789
331	1.80	m	7.86	1.78	17	7.76	1.785	16	7.781
420	1.75	m	7.84	1.75	17	7.83	1.740	12	7.782
422	1.60	m	7.81	1.58	17	7.74	1.589	10	7.784
333	1.51	m	7.84	1.50	17	7.79	1. 498	12	7.784
521							1.420	2	7.778
440	1.39	m	7.84	1.379	17	7.801	1.376	11	7.784
531	1.32	s	7.83	1.318	17	7.797	1.315	10	7.780
600	1.30	w	7.81	-----------	---------	-----------	1.296	4	7.775
620	1.24	w	7.82	-	--------	----------	1.231	2	7.786
533	1.20	m	7.84	-----------	---------	---------	1.1867	4	7.782
622	1.176	m	7.80	-----------	--...-...-	---------	1.1736	1	7.785
444	1.128	w	7.82	-----------	---------	---------	1.1235	2	7.784
711	1.094	m	7.81	-----------			1.0893	3	7.779
642	1.045	m	7.82	----------	--------	-----.-	1.0396	3	7.780
731	1.017	s	7.81	-----------	---------		1.0128	5	7.780
732				-----------			0.9878	2	7.778
820	0.951	s	7.84	--			. 9435	4	7.780
422	. 927	s	7.86				. 9168	4	7.779

Table 51. Strontium nitrate, $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ (cubic)-Con.

${ }^{\text {a }}$ Average of last two lines only.
graphic analysis shows $\mathrm{Ba}<0.01$ percent and $\mathrm{Na}<0.01$ percent as the only impurities greater than traces.

From the intensity measurements of the NBS pattern, the three strongest lines are the 111, 311, and 222 , consistent with the index lines of the ASTM card for the Hanawalt, Rinn, and Frevel pattern.

The lattice of strontium nitrate is simple cubic, four molecules to the unit cell. The space group according to Jaeger and Van Melle [115] is $\mathrm{T}_{\mathrm{h}}^{6}(\mathrm{~Pa} 3)$; Vegard and Bilberg [238] confirm this, but indicate the possibility of $\mathrm{T}^{4}(\mathrm{P} 2,3)$. The patterns of table 51 show hk0 only if h is even, adding confirmation of the $\mathrm{T}_{\mathrm{h}}^{6}(\mathrm{~Pa} 3)$ group. Three published lattice constants are converted from $k X$ to angstrom units and compared with the NBS determination in the table below. Vegard and Fioer [239] present a coefficient of expansion between 10° and $70^{\circ} \mathrm{C}$ of 2.58×10^{-5}. This was used to modify their lattice constant determination to correspond to that of the NBS made at $26^{\circ} \mathrm{C}$.

Unit cell dimensions, angstroms

1922	Vegard [236]	7.81
1932	Ringdal [192]	7.827
1942	Vegard and Hoer ($26^{\circ} \mathrm{C}$. [239$]$ _-----	7.7818
1951	Swanson and Tatge ($26^{\circ} \mathrm{C}$)	7.779

The density from the NBS lattice constant is 2.986 at $26 .^{\circ} \mathrm{C}$. The index of refraction is $n=1.587$.

2.51. Barium Nitrate, $\operatorname{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ (Cubic)

The pattern for barium nitrate (nitrobarite) closely parallels that for strontium nitrate. Vegard [236] and Hanawalt, Rinn, and Frevel published patterns of which the latter is included in the ASTM file (see table l).

The NBS sample was specially purified material supplied by the Mallinckrodt Chemical Works. Their spectrographic analysis indicates the following impurities: $\mathrm{Al}<0.01$ percent, $\mathrm{Na}<0.01$ percent, and $\mathrm{Sr}<0.01$ percent.

In Vegard's paper the data were published as $\sin \theta$ values. For comparison with the data in table 52, they were converted to interplanar spacings in angstroms. The pattern of Hanawalt, Rinn, and Frevel was converted from $k X$ to angstrom units for this table. The three strongest lines, used as index lines for the ASTN cards, are the same for the NBS and the Ilanawalt, Rinn, and Frevel patterns: 311, 111, and 222.

The lattice of barium nitrate is simple cubic, four molecules to the unit cell. The patterns of table 52 confirm the determination of the space group $\mathrm{T}_{\mathrm{h}}^{6}(\mathrm{~Pa} 3)$ by Jaeger and Van Melle [115] and by Vegard and Bilherg [238].

Three published lattice constants are converted from $k \lambda$ to angstrom units and compared with the NBS determination in the table below. Vegard and Foer [239] present a coefficent of expansion between 10° and $70^{\circ} \mathrm{C}$ of

Table 52. Barium nitrate, $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ (cubic)

1.75×10^{-5}. This was used to modify their lattice constant determination to correspond to that of the NBS made at $26^{\circ} \mathrm{C}$.

The density calculated from the NBS lattice constant is 3.244 at $26^{\circ} \mathrm{C}$. The index of refraction is $n=1.570$.

Unit cell, angstroms

1922	Vegard [236]	8.11
1932	Ringdal [192]	8.127
1942	Vegard and Roer ($26^{\circ} \mathrm{C}$) [239]	8.1172
1951	Swanson and Tatge ($26^{\circ} \mathrm{C}$)	8.119

2.52. Zinc Dorate, $\mathrm{ZnB}_{2} \mathrm{O}_{4}$ (Cubic)

No published pattern for zinc borate was found. The following pattern is offered by the NBS as an addition to the ASTM file. The sample used for the pattern of table 53 was one of the phosphor preparations of the Radio Corporation of America [135], sample XII-17, of high purity. The unit cell derived from an average of the values obtained from the last five lines is 7.4726 A , at $26^{\circ} \mathrm{C}$. The lattice derived from the powder pattern is body-centered cubic, with six molecules in the unit cell. The density based on the NBS lattice constant is 3.605 at $26^{\circ} \mathrm{C}$. The index of refraction for the sample was determined as $n=1.739$.

Table 53. Zinc borate, $\mathrm{ZnB}_{2} \mathrm{O}_{4}$ (cubic)

$h k l$	1951 Swanson and Tatge $\mathrm{Cu}, 1.5405 \mathrm{~A}, 26^{\circ} \mathrm{C}$			hkl	1951 Swanson and Tatge $\mathrm{Cu}, 1.5405 \mathrm{~A}, 26^{\circ} \mathrm{C}$		
	d	I	a		${ }^{\text {d }}$	I	a
	A		A		A		A
110	5.29	6	7.48	710	1.0568	1	7.473
200	3.74	3	7.48	640	1.0365	1	7.474
211	3.048	100	7.466	721	1.0169	3	7.473
310	2.364	23	7.476	642	0.9991	1	7.477
222	2.158	1	7.476	730	. 9812	2	7.4726
321	1.997	20	7.472	732	. 9490	1	7.4724
400	1.869	13	7.476	811	. 9198	3	7.4725
411	1.761	38	7.471	820	. 9062	1	7.4727
420	1.672	2	7.477	653	. 8932	1	7.4730
332	1.594	3	7.477	822	. 8807	1	7.4730
422	1.526	25	7.476	831	. 8687	3	7.4728
510	1.466	5	7.475	662	. 8573	1	7.4738
521	1.364	8	7.471	752	. 8462	1	7.4734
440	1.321	4	7.473	910	. 8252	1	7.4725
530	1.282	3	7.475	842	. 8153	1	7.4723
600	1.246	1	7.476	921	. 8058	1	7.4727
611	1.213	2	7.477	664	. 7966	1	7.4728
620	1.1817	1	7.474	930	. 7877	1	7.4728
541	1.1531	3	7.473				
631	1.1025	1	7.478	Average for last five lines.			
444	1.0788	1	7.474				7.4726

2.53. Magnesium Silicate, $\mathrm{Mg}_{2} \mathrm{SiO}_{4}$ (Orthorhombic)

Two patterns for magnesium silicate (forsterite) in the ASTM file (see table l) are compared in table 54 with a pattern prepared
at the NBS. The NBS was furnished with a sample of high purity, labeled X-9, by the Radio Corporation of America. The material had been prepared in connection with a phosphor project [135] as a solid state reaction, at $1,500^{\circ} \mathrm{C}$. The large unit cell of magnesium silicate furnishes a large number of the possible planar reflections for an X -ray diagram with copper radiation. Thus, indexing becomes increasingly difficult with increasing Bragg angle. As θ increases, Cl ark's interplanar spacings diverge more and more widely from the values calculated for indexing the NBS pattern. The last 20 lines of his pattern were omitted from the table because the divergence combined with the multiplicity of possible lines makes indexing purely arbitrary. The Geiger counter intensity measurements of the NBS pattern show 112 to be the strongest line, 131 second, and 222 third, rather than the order 222, 131, and 112 estimated by Clark himself, 222, ll2, 131 given on the ASTM card for Cl ark, or $222,021,130$ on the pattern of Hanawalt, Rinn, and Frevel.

Forsterite is orthorhombic with a space group presumably the same as that specified by Bragg and Brown [32] for olivine, $\mathrm{V}_{\mathrm{h}}^{16}$, or $\mathrm{D}_{2 \mathrm{~h}}^{16}$ (Pbnm). There are four molecules in the unit cell. Although several sets of unit-cell dimensions are available for the closely related mineral olivine (iron-bearing), only one was found for forsterite. Rinne [193] in 1923 examined a natural forsterite from Vesuvius, for which he found dimensions which agree very closely with olivine measurements. Converting from $k X$ to angstrom units, his values compare with those derived from the NBS pattern thus:

Unit cell, angstroms

		a	b	c
1923	Rinne [193] ----------------	4.75	10.28	6.00
1951	Swanson and Tatge ($26^{\circ} \mathrm{C}$)-	4.76	10.20	5.99

From the NBS data the cell dimensions were calculated from spacings only of planes parallel to one or more axes. The density
calculated from the cell dimensions of the NBS determination is 3.213 at $26^{\circ} \mathrm{C}$. The material was too finely powdered to determine the indices of refraction.

Table 54. Magnesium silicate, $\mathrm{Mg}_{2} \mathrm{SiO}_{4}$ (orthorhombic)

$h k l$	1938 Hanawalt, Rinn, and Frevel Mo, 0.7093 A		$\begin{gathered} 1946 \\ \text { Clark } \end{gathered}$			$\begin{gathered} 1953 \\ \text { Swanson and } \\ \text { Tatge } \\ \mathrm{Cu}, \begin{array}{l} 1.5405 \mathrm{~A}, \\ 26^{\circ} \mathrm{C} \end{array} \end{gathered}$	
	d	I	d	$I^{\text {a }}$	$I^{\text {b }}$	d	I
	A		A			A	
020	5.1	11	5.1	vvw	10	5.11	26
021	3.90	40	3. 86	ms	70	3.88	69
101	3.73	5	3.71	vw	20	3.73	25
111	\} 3.50	20	3.49	vw	20	3.487	21
121	3.00	13	2.98	vw	20	3.000	17
002			2.87	vvw	10	-------	---
130	2.78	40	2.75	ms	70	2.768	53
131	2.52	32	2.50	s	80	2.513	73
112	2.45	40	2.45	s	90	2.458	100
041	-------	------	2.34	vvw	10	2.348	9
210		------	2.31	vvw	10	2.316	9
122	2.26	40	2.26	w	40	2.268	59
140		------	2.24	w	40	2.250	33
211	2.15	11	2.15	vw	20	2. 161	15
132	2.02	2	2.03	vvw	10	2.034	5
042	1.95	2	1.934	vvw	10	1.945	4
150	1.88	3	1.864	vvw	10	1.878	5
113	1.81	3	1.798	vvw	10	1.811	2
151		------	1.776	vvw	10	1.792	3
222	1.74	100	1.737	vs	100	1.748	60
240		------	1.729	vvw	10	--	-----
241	1.67	10	1.661	vw	20	1.670	13
061	1.62	11	1.624	vw	20	1.636	12
133			1.607	vw	20	1.618	15
152	1.57	8	1.579	vvw	10	1. 589	2
043	------	------	1.560	vvw	10	1. 572	10
301			1.523	vvw	10	1.531	1
311)						
213	\}		1.504	vvw	10	1.514	10
320							
004	1.493	32	1.487	*	40	1. 497	27
062			1.471	ms	70	1.479	30
330	-------	------	1.424	vvw	10	1.438	4
170	1.398	20	1.385	vw	20	1. 396	13
233				---	---	1.394	9
322	1. 353	28	1.341	w	40	1.351	17
134	1.318	10	1.305	vw	20	1. 316	9
332		------	1.285	vvw	${ }^{\text {c }} 10$	1.295	2
204				---	---	1.266	1

[^14]2.54. Magnesium Tungstate, MgWO_{4} (Monoclinic)

Four patterns, all from the literature, of magnesium tungstate are compared in table 55 with a pattern prepared at the NBS. Two of these are by Broch [39], one by Fonda [70], and one by Dunning and Megaw [65]. Broch supplied most of the indices. In addition to the indices his data include diffraction angles and, for the second pattern, estimated intensities. The interplanar spacings listed in table 55 were computed from his reflection angles so that they appear in angstroms. The Fonda and the Dunning and Megaw interplanar spacings were converted from presumed kX units to angstroms.

For the NBS pattern, material of exceptionally high purity was obtained from the Radio Corporation of America, marked No. 4, prepared at $1,000^{\circ} \mathrm{C}$.

There is not notable agreement among the patterns on the strongest lines, chiefly because of the large number of lines of high intensity and the fact that the intensities are only estimated except for the NBS pattern. For the pattern of the Bureau the three strongest lines are the 111,011 , and 100.

Broch's 1930 paper [39] gives the space group as $C_{2 h}^{4}(P 2 / c)$, two molecules in the unit cell. The unit-cell constants of the monoclinic magnesium tungstate crystals were given by Broch from his first pattern as $a=4.67$, $b=5.66, c=4.92, \beta=89^{\circ} 35^{\prime}$, from his second pattern as $a=4.68, b=5.66, c=4.93, \beta=89^{\circ} 40^{\prime}$. Converted from kX units to angstroms, the later values compare with those derived from the NBS pattern thus:

Unit cell, angstroms

1930	Broch [39] ..-.-.---------	a	b	c	β
1951	Swanson and Tatge $\left(26^{\circ} \mathrm{C}\right)$	4.69	5.67	4.94	$89^{\circ} 40^{\prime}$
		4.92	$89^{\circ} 40^{\circ}$		

The density calculated from the NBS lattice constant is 6.897 at $26^{\circ} \mathrm{C}$. The material was too finely powdered to determine the indices of refraction; it is known that they are higher than 1.75.

Table 55. Magnesium tungstate, MghO_{4} (monoclinic)

[^15]
3. References

[1] American Society for Testing Materials, X-ray diffraction Data Cards, Philadelphia, Pa. (1939); first supplement (1944); second edition, including second supplement (1950). For a description of this file see Bull. Am. Soc. Testing Materials No. 135, 64 (1945); No. 160, 18 (1949).
[2] G. Aminoff, On beryllium oxide as a mineral and its crystal structure, Z. Krist. 62, 113 (1925).
[3] F. W. Ashton and Raymond Wilson, The preparation and optical properties of calcium hydroxide crystals, Am. J. Sci. 213, 209 (1927).
[4] H. J. Axon and W. Hume-Rothery, Lattice spacings of solid solutions of different elements in aluminum, Proc. Roy. Soc. London A 193, 1 (1948).
[5] F. A. Bannister, The crystal structure and optical properties of matlockite (PbFCl), Miner. Mag. 23, 587 (1934).
[6] Tom. F. W. Barth, The cristobalite structures; II, Low-cristobalite, Am. J. Sci. 24, 95 (1932).
[7] Tom. Barth and Gulbrand Lunde, Der Einfluss der Lanthanidenkontraktion auf die Gitterdimensionen der kubischen Platinmetalle, Z. phys. Chem. 117, 478 (1925).
[8] Tom. F. W. Barth and E. Posnjak, Silicate structures of the cristobalite type; III, Structural relationship of high-cristobalite, a-carnegieite, and $\mathrm{Na}_{2} \mathrm{CaSiO}_{4}$, Z. Krist. 81, 376 (1932).
[9] Guy Bartlett and Irving Langmuir, The crystal structures of the anmonium halides above and below the transition temperatures, J. Am. Chem. Soc. 43, 84 (1921).
[10] T. Batuecas and J. I. Fernandez-Alonso, Pycnometric precision method for liquids and solids, IV, Redetermination of the density of pure potassium bromide and sodium bromide at 0°, Z . phys. Chem. A 190, 272 (1942).
[11] H. N. Baumann, Jr., The X-ray diffraction examination of material having the composition SiO , Trans. Electrochem. Soc. 80, 95 (1941).
[12] K. Becker, Eine röntgenographische Methode zur Bestimmung des Wärmeausdehnungskoeffizienten bei hohen Temperaturen, Z. Phys. 40, 35 (1926).
[13] Karl Becker and Fritz Ebert, Die Kristallstruktur einiger binärer Carbide and Nitride, Z. Phys. 31, 268 (1925).
[14] A. J. Bijl and N. H. Kolkmeijer, Investigation by means of X-rays of the crystal structure of white and gray tin, Proc. Acad. Sci. Amsterdam 21, 494 (1919).
[15] J. M. Bijvoet, A. Claassen, and A. Karssen, The crystal structure of red mercuric iodide, Proc. Akad. Wetens. Amsterdam, Sec. Sci., 29, 529 (1926).
[16] V. Billiet and A. Vandendriessche, Sur l'hydroténorite; son identité avec la ténorite, Bull. Soc. Belge Geol. 48, 333 (1938).
[17] W. Boas, Röntgenographische Bestimmung der Löslichkeit von Kadmium in Zink, Metallwirtsch. 11, 603 (1932).
[18] H. Bohlin, Eine neue Anordnung für röntgenkris tallographische Untersuchungen von Kristallpulver, Ann. Physik 61, 421 (1920).
[19] A. K. Boldyrev and others, X-ray determinative tables for minerals, Part l, Ann. Inst. Mines Léningrad 11, No. 2,157 pp. (1938).
[20] H. Boochs, Genaue Bestimmung von Gitterkonstanten mittels Elektronenstrahlen bei vershiedenen Kristallitgrössen, Ann. Physik 35, 333 (1939).
[21] H. Bose and B. B. Ray. Allotropes of tellurium by X-ray diffraction method, Indian J. Phys. 15, 233 (1941).
[22] Richard M. Bozorth, The crystal structure of potassium cyanide, J. Am. Chem. Soc. 44, 317 (1922).
[23] Richard M. Bozorth, The crystal structure of cadmium iodide, J. Am. Chem. Soc. 44, 2232 (1922).
[24] Richard M. Bozorth, The crystal structure of the cubic forms of arsenious and antimonous oxides, J. Am. Chem. Soc. 45, 1621-7 (1923).
[25] A. J. Bradley, The crystal structures of the rhombohedral forms of calcium and tellurium, Phil. Mag. 48, 477 (1924).
[26] H. Bräkken and L. Harang, Zur Kristallstruktur einiger rhombischer Verbindungen $\mathrm{MX}_{2}-\mathrm{I}, \mathrm{Z}$. Krist. 68, 123 (1928).
[27] H. Braekken and W. Scholten, Die Kristallstruktur des Quecksilber Chlorids HgCl_{2}, Z. Krist. 89, 448 (1934).
[28] W. H. Bragg and W. L. Rragg, X-rays and crystal structure, p. 1l0, London (1918).
[29] W. L. Bragg, The structures of some crystals as indicated by their diffraction of X-rays, Proc. Roy. Soc. (London) A 89, 248 (1913).
[30] W. L. Bragg, The analysis of crystals by the Xray spectrometer, Proc. Roy. Soc. (London), A 89, 468 (1914).
[31] W. L. Bragg, The crystalline structure of copper, Phil. Mag. 28, 355 (1914).
[32] W. L. Bragg and G. B. Brown, The structure of olivine, Z. Krist. 63, 538 (1926).
[33] W. L. Bragg and J. A. Darbyshire, The structure of thin films of certain metal lic oxides, Trans. Faraday Soc. 28, 522 (1932).
[34] F. Martin Bravo, Determinación de la estructura cristalina del oxido de 'níquel, del oxido de cobalto y del sulfuro de plomo, An. Soc. Española fís, quím. 24, 611 (1926).
[35] J. Brentano, focussing method of crystal powder analysis by X-rays, Proc. Phys. Soc. London 37, 184 (1925).
[36] J. Brentano and W. E. Dawson, Determination of the lattice spacing and of the rhombohedral angle of magnesium carbonate from a microcrystalline powder, Phil. Mag. 3, 411 (1927).
[37] G. W. Brindley, X-ray investigations of atomic vibrations in zinc, Phil. Mag. 21, 790 (1936).
[38] Einar Broch, Ivar Oftedal, and Adolf Pabst, Neubestimmung der Gitterkonstanten von $\mathrm{KF}, \mathrm{CsCl}$ und BaF_{2}, Z. Physik. Chem. B 3, 209 (1929).
[39] Einar Broch, Úber die Gitterart einiger monoklinen Verbindungen vom Typus $\mathrm{MgWO}_{4}, \mathrm{Z}$. Phys. Chem. B 1, 409 (1928); Untersuchungen über Kristallstrukturen des Wolframittypus und des Scheelittypus, Skrifter Norske Videns.-Akad. Os lo I, Mat.-Nat. Klasse 1929, No. 8 (1930).
[40] L. T. Brownmiller and R. H. Bogue, The X-ray method applied to a study of the constitution of portland cement, Am. J. Sci. 20, 241 (1930).
[41] G. Bruni and G. R. Levi, Soluzioni solide fra composti di elementi a valenza diversa, Rend. Ac. Naz. Lincei 33, 377 (1924).
[42] Wilhelm Büssem, M. Bluth, and G. Grochtmann, Röntgenographische Ausdehnungsmessungen kristalliner Massen I, Ber. Deut. Keram. Ges. 16, 381 (1935).
[43] W. Büssem, C. Schusterius, and A. Ungewiss, Ueber röntgenographische Untersuchungen an den Zwei stoffsystemen $\mathrm{TiO}_{2}-\mathrm{MgO}, \mathrm{ZrO}_{2}-\mathrm{MgO}$ und $\mathrm{ZrO}_{2}-\mathrm{TiO}_{2}$, Ber. Deut. Keram. Ges. 18, 433 (1937).
[44] C. W. Bunn, L. M. Clark, and I. L. Clifford, The constitution and formation of bleaching powder, Proc. Roy. Soc. (London), A 151, 141 (1935).
[45] W. G. Burgers, and J. A. M. van Liempt, Zum Verhalten des Thoroxyds in Wolframglühdrähten, Z. anorg. Chem. 193, 144 (1930).
[46] R. W. Cairns and E. Ott, X-ray studies of the system nickel-oxygen-water I, nickelous oxide and hydroxide, J. Am. Chem. Soc. 55, 527 (1933).
[47] A. Claassen, Die Kristallstruktur von Berylliumoxyd, Z. physik. Chem. 124, 139 (1926).
[48] C. Burton Clark, X-ray diffraction data for compounds in the system $\mathrm{CaO}-\mathrm{MgO}-\mathrm{SiO}_{2}, \mathrm{~J}$. Am. Ceramic Soc. 29, 25 (1946).
[49] G. L. Clark, W. C. Asbury, and R. M. Wick, An application of X-ray crystal lometry to the structure of nickel catalysts, J. Am. Chem. Soc. 47, 2661 (1925).
[50] G. L. Clark and W. Duane, A new method of using X-rays in crystal analysis, Phys. Rev. 20, 84 (1922).
[51] M. U. Cohen, The elimination of systematic errors in powder photographs, Z. Krist. 94, 288 (1936).
[52] L. F. Connell, Jr. and H. C. Martin, Jr., Reported discrepancies between X -ray and microscopic measurements of thermal expansion of some alkali halides, Acta Cryst. 4, 75 (1951).
[53] P. A. Cooper, The X-ray structure of potassium cyanide, Nature 110, 544 (1922).
[54] Lucienne Couture and Jean Paul Mathieu, Spectres de Raman et structur de chlorure d'anmonium, Compt. Rend. Acad. Sci. Paris 226, 1261 (1948).
[55] James A. Darbyshire, Diffraction of electrons by thin films of nickel and copper oxide, Trans. Faraday Soc. 27, 675 (1931).
[56] W. P. Davey, The absolute sizes of certain monovalent and bivalent ions, Phys. Rev. 19, 248 (1922).
[57] W. P. Davey, Precision measurements of crystals of the alkali halides, Phys. Rev. 21, 143 (1923).
[58] W. P. Davey, Crystal structures and densities of oxides of the fourth group, Phys. Rev. 23, 763 (1924).
[59] W. P. Davey, Precision measurements of the lattice constants of twelve cormon metals, Phys. Rev. 25, 753 (1925).
[60] W. P. Davey, Präzisionsmessungen der Gitterkonstanten verbreiteter Metalle, Z. Krist. 63, 316 (1926).
[61] W. P.•Davey and E. O. Hoffman, Crystal analysis of metallic oxides, Phys. Rev. 15, 333 (1920).
[62] P. Debye, Die Atomanordnung von Wol fram, Phys. Z. 18, 483 (1917).
[63] P. Debye and P. Scherrer, Interferenzen an regellos orientierten Teilchen im Röntgenlicht, I, Phys. Z. 17, 277 (1916).
[64] P. Debye and P. Scherrer, Atombau, Phys. Z. 19, 474 (1918).
[65] N. J. Dunning and Helen D. Megaw, The crystal structure of magnesium tungstate, Trans. Faraday Soc. 42, 705 (1945).
[66] Hans Esser, Walter Eilender, and Karl Bungardt, Röntgenographische Untersuchungen von Metallen bei höhen Temperaturen Arch. Eisenhüttenw. 12, 157 (1938).
[67] Hans Esser and Heinrich Eusterbrock, Untersuchungen der Wärmeausdehnung von einigen Me tallen und Legierungen mit einem verbesserten Di latometer, Arch. Eisenhüttenw. 14, 3341 (1941).
[68] G. J. Finch and S. Fordham, The effect of crystal size on lattice dimensions, Proc. Phys. Soc. (London) 48, 85 (1936).
[69] G. J. Finch and A. G. Quarrell, The structure of magnesium, zinc, and aluminum films, Proc. Roy. Soc. (London) A 141, 398 (1933).
[70] Gorton R. Fonda, The magnesium tungstate phosphor, J. Phys. Chem. 48, 303 (1944).
[71] Frank Foote and Eric R. Jette, The fundamental relation between lattice constants and density, Phys. Rev. 58, 81 (1940).
[72] Frank Foote and E. R. Jette, X-ray study of the solid solubility of lead, bismuth and gold in magnesium, Trans. Am. Inst. Min. and Met. Eng. 7, Inst. Metals Div., Tech. Pub. 1248, 8 pp. (1940).
[73] J. R. Freeman, Jr., F. Sillers, Jr., and P. F. Brandt, Pure zinc at normal and elevated temperatures I and II, Sci. Papers U. S. Bur. Standards 20, 661 (1926).
[74] Ludo K. Frevel, Chemical analysis by powder diffraction, Ind. \& Eng. Chem., Anal. Ed. 16, 209 (1944).
[75] L. K. Frevel, H. W. Rinn, and H. C. Anderson, tabulated diffraction data for tetragonal isomorphs, Ind. \& Eng. Chem., Anal. Ed. 18, 83 (1946).
[76] R. Fricke, Über die Oberflächenenergie von Metallkristallen, Naturwissenschaften 29, 365 (1941).
[77] Walther Gerlach, Die Gitterstruktur der Erdalkalioxyde, Z. Phys. 9, 184 (1922).
[78] W. Gerlach, Das Ka-Dublett, nebst einer Neubestimmung der Gitterkonstanten einiger Kristalle, Physik. Z. 23, 114 (1922).
[79] W. Gerlach and O. Pauli, Das Gitter des Magnesiumoxyds, Z. Phys. 7, 116 (1921).
[80] V. M. Goldschmidt and L. Thomassen, Die Krystallstruktur natürlicher und synthetischer Oxyde von Uran, Thorium, und Cerium, Skrifter Norske Videnskaps-Akad. Oslo I, Mat. -Nat. Klasse 1923, No. 2, $48 \mathrm{pp} .(1923)$.
[81] V. M. Goldschmidt, F. Ulrich, and T. Barth, Geochemische Verteilungsgesetze der Elemente; IV, Zur Krystallstruktur der Oxyde der seltenen Erdmetalle, Skrifter Norske Videnskaps-Akad. Oslo I. Mat. -Nat. Klasse 1925, No. 5, 24 pp. (1925).
[82] Alexander L. Greenberg and George H. Walden, Jr., Studies of equilibrium solid solutions in ionic lattices; systems $\mathrm{KMnO}_{4}-\mathrm{KClO}_{4}-\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{MnCl}_{2}-\mathrm{H}_{2} \mathrm{O}$, J. Chem. Phys. 8, 645 (1940).
[83] G. Greenwood, Fiber texture in nickel wires, Z. Krist. 72, 309 (1929).
[84] G. Grime and W. Morris-Jones, An X-ray investigation of the copper-magnesium alloys, Phil. Mag. 7, 1113 (1929).
[85] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. \& Eng. Chem., Anal. Ed. 10, 457 (1938).
[86] M. Hansen and W. Stenzel, Die Lös lichkeit von Cu in Zn , Metallwirtsch. 12, 539 (1933).
[87] W. C. Hansen and L. T. Brownmiller, Equilibrium studies on alumina and ferric oxide, and on combinations of these with magnesia and calcium oxide, Am. J. Sci. 15, 225 (1928).
[88] G. Alan Harcourt, Tables for the identification of ore minerals by X-ray powder patterns, Am. Min. 27, 63 (1942).
[89] E. A. Harrington, X-ray diffraction measurements on some of the pure compounds concerned in the study of portland cement, Am. J. Sci. 13, 467 (1927).
[90] R. J. Havighurst, Crystal structure of the mercurous halides, Am. J. Sci. 10, 15 (1925).
[91] R. J. Havighurst, X-ray reflections from mercuric iodide, Am. J. Sci. 10, 556 (1925).
[92] R. J. Havighurst, E. Mack, Jr., and F. C. Blake, Precision crystal measurements on some alkali and ammonium halides, J. Am. Chem. Soc. 46, 2368 (1924).
[93] Sterling B. Hendricks, M. E. Jefferson, and J. F. Shultz, The transition temperatures of cobalt and of nickel, some observations on the oxides of nickel, Z. Krist. 73, 380 (1930).
[94] Peter Hidnert, Thermal expansion of tantalum, J. Res. Nat. Bur. Standards 2, 887 (1929).
[95] S. Holgersson, Röntgenographische strukturuntersuchungen von einigen Metallegierungen, Ann. Physik 79, 35 (1926).
[96] F. Hubbard Horn and Waldemar T. Ziegler, Superconductivity and structure of hydrides and nitrides of tantalum and columbium, J. Am. Chem. Soc. 69, 276 (1947).
[97] H. Huber and S. Wagener, Die kristallographischer Struktur von Erdalkalioxydgemischen; Untersuchungen mit Hilfe von Röntgen- und Elektronenstrahlen an Oxydkathoden, Z. tech. Phys. 23, 1 (1942).
[98] M. L. Huggins, The crystal structures of anatase and rutile, the tetragonal forms of TiO_{2}, Phys. Rev. 27, 638 (1926).
[99] M. L. Huggins and P. L. Magill, The crystal structures of mercuric and mercurous iodides, J. Am. Chem. Soc. 49, 2357 (1927).
[100] A. W. Hull, The crystal structure of magnesium, Proc. Nat. Acad. Sci. 3, 470 (1917).
[101] A. W. Hull, The positions of atoms in metals, Proc. Am. Inst. Elec. Eng. 38, 1171 (1919).
[102] A. W. Hull, The crystal structure of Al and Si , Phys. Rev. 9, 564 (1917).
[103] A. Y. Hull, A new method of X-ray crystal analysis, Phys. Rev. 10, 661 (1917).
[104] A. W. Hull, X-ray crystal analysis of thirteen common metals, Phys. Rev. 17, 571 (1921).
[105] A. W. Hull, The crystal structures of vanadium, germanium, and graphite, Phys. Rev. 20, 113 (1922).
[106] A. W. Hull and W. P. Davey, Graphical determination of hexagonal and tetragonal crystal structures from X-ray data, Phys. Rev. 17, 549 (1921).
[107] William Hume-Rothery, Structure of metals and al loys, Inst. Metals, Monograph No. 1, London (1945).
[108] W. Hume-Rothery and K. W. Andrews, The lattice spacing and thermal expansion of Cu, J. Inst. Metals 63, 19 (1942).
[109] William Hume-Rothery, George Fraley Lewin, and Peter William Reynolds, The lattice spacings of certain primary solid solutions in silver and copper, Proc. Roy. Soc. (London) A 157, 167 (1936).
[110] Clyde A. Hutchison and Herrick L. Johnston, Determination of crystal density by the temperature of flotation method. Density and lattice constant of LiF, J. Am. Chem. Soc. 62, 3165 (1940).
[111] Dwight A. Hutchison, Density of potassium chloride, Phys. Rev. 66, 144 (1944).
[112] Egil Hylleraas, Die Anordnung der Atome in den tetragonalen Kristallen der einwertigen Quecksilberhalogenide $\mathrm{Hg}_{2} \mathrm{Cl}_{2}, \mathrm{Hg}_{2} \mathrm{Br}_{2}, \mathrm{Hg}_{2} \mathrm{~J}_{2}$; Berechnung der optischen Doppelbrechung von $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$, Z. Physik 36, 859 (1926).
[113] A. Ieviņš, M. Straumanis, and K. Karlsons, Präzisionsbestimmung von Gitterkonstanten hygroskopischer Verbindungen (LiCl, NaBr), Z . Phys. Chem. B 40, 146 (1938).
[114] A. Ieviņš, M. Straumanis, and K. Karlsons, Die ${ }^{2}$ Präzisionsbestimmung von Gitter konstanten nichtkubischer Stoffe ($\mathrm{Bi}, \mathrm{Mg}, \mathrm{Sn}$) nach der asymmetrischen Methode, Z. phys. Chem. B 40, 347 (1938).
[115] F. M. Jaeger and F. A. van Melle, On the symmetry and structure of the cubic nitrates of calcium, strontium, barium, and lead, Akad. Wetens. Amsterdam, Proc. Sec. Sci. 31, 651 (1928).
[116] F. M. Jaeger and J. E. Zanstra, The allotropy of rhodium and sane phenomena observed in the Xray analysis of heated metal wires, Proc. Acad. Sci. Amsterdam 34, 15 (1931).
[117] A. H. Jay, Röntgen-ray pattern of low-temperature cristobalite, Mineral. Nag. 27, 54 (1944).
[118] W. P. Jesse, X-ray crystal measurements of nickel at high temperatures, Physics 5, 147 (1934).
[119] Eric R. Jette and Frank Foote, Precision determination of lattice constants, J. Chem. Phys. 3, 605 (1935).
[120] E. R. Jette and F. Foote, X-ray study of $\mathrm{Fe}-\mathrm{Ni}$ alloys, Am. Inst. Min. Net. Eng., Metals Technology 3, Tech. Pub. 670, 14 pp. (1936).
[121] A. Jeviņš and M. Straumanis, Die Gitterkonstante des reinsten Aluminiums, Z. phys. Chem. B 33, 265 (1936); Nachtrag zur Arbeit "Die Gitterkonstante des reinsten Aluminiums," Ibid. B 34, 402 (1936).
[122] Louis Jordan and William H. Swanger, Properties of pure nickel; VI, Physical properties; 8, Thermal expansion (by Peter Hidnert), Nat. Bur. Standards J. Res., Res. Paper 257, 1306 (1930).
[123] August Otto Jung, Die Raumgitterstruktur und Gitterkonstanten des künstlichen und natürlichen Nickeleisen, Z. Krist. 65, 309 (1927).
[124] H. Jung, Röntgenographische Untersuchungen über Kupfer, Silber und Gold, Z. Krist. 64, 413 (1926).
[125] Paul F. Kerr, The occurrence of andalusite and related minerals at White Mountain, California, Econonic Geol. 27, 614 (1932).
[126] H. P. Klug, A redetermination of the lattice constant of lead, J. Am. Chem. Soc. 68, 1493 (1946).
[127] A. Kochanovská, Investigation of thermal dilatation of cubic metals, Physica 15, 191 (1949).
[128] W. Kohler, Strukturuntersuchungen an galvanisch abgeschiedenen Zinkriederschlägen, Korrosion und Metal ls chutz 19, 197 (1943).
[129] Hans König, Struktur und Aufbau dünner Germaniumschichten, Reichsber. Physik. 1, 4 (1945).
[130] N. H. Kolkmeijer, The crystal structure of germanium, Proc. Acad. Sci. Amsterdam 25, 125 (1922).
[131] G. F. Kosolapov and A. K. Trapeznikov, X-ray determination of the thermal expansion coefficients of De and Sn, Z. Krist. A 94, 53 (1936).
[132] C. M. Kotin and J. Losada, Factor atómico del cinc, Anal. fís y quím. 33, 597 (1935).
[133] G. A. Kovalev, [Etalon Debye diagrams of the principal oxides, hydroxides, and sulfides], Materialy Tsentr. Nauchno-Issled. Geol.-Razv. Inst. Geokhimiya, Sborn. 2, (1937).
[134] C. J. Ksanda, Comparison standards for the powder spectrum method; NiO and CdO, Am. J. Sci. 22, 131 (1931).
[135] H. W. Leverenz, Phosphors versus the periodic system of the elements, Proc. Inst. Radio Engineers 32, 256 (1944).
[136] G. R. Levi, Struttura cristallina dell'idrato di calcio, Giorn. chim. ind. applicata 6, 333 (1924).
[137] G. R. Levi, Struttura cristallina del piombo e del tallio, Nuovo Cimento 1, 137 (1924).
[138] G. R. Levi and A. Reina, Sulla peptizzazione dell'ossido di torio (meta), Rend. Acc. Naz. Lincei 5 , 174 (1927).
[139] G. R. Levi and G. Tacchini, Sulla non esistenza del sottossido di nichelio, Gazz. chim. ital. 55, 28 (1925).
[140] F. Lihl, Präzisionsbestimmung der Gitterkonstante von $\mathrm{As}_{2} \mathrm{O}_{3}, \mathrm{Z}$. Krist. 81, 142 (1931).
[141] S. S. Lu and Y. L. Chang, The accurate evaluation of lattice spacings fron back reflection powder photographs, Proc. Phys. Soc. (London) 53, 517 (1941).
[142] H. Mark and M. Polanyi, The space lattice, glide directions and glide planes in white tin, Z . Physik 18, 75 (1923).
[143] H. Mark and J. Steinbach, Ïber das Raungitter und die Doppelbrechung des Kalomels, Z. Krist. 64, 79 (1926).
[144] L. Mazza and A. G. Nasini, The crystal structure of nickel, Phil. May. 7, 301 (1929).
[145] James D. McCullough, The crystal structure of selenium dioxide, J. Am. Chem. Soc. 59, 789 (1937).
[146] J. D. McCullough, An X-ray study of the rare earth oxide systems; $\mathrm{Ce}^{\mathrm{iv}}-\mathrm{Nd}^{i \mathrm{ii}}, \mathrm{Ce}^{\mathrm{iv}}-\mathrm{Pr}^{\mathrm{iii}}$. $\mathrm{Ce}^{\mathrm{iv}}-\mathrm{Pr}^{\mathrm{iv}}$, and $\mathrm{Pr}^{\mathrm{iv}}-\mathrm{Nd}^{\mathrm{iii}}, \mathrm{J}$. Am. Chem. Soc. 72, 1386 (1950).
[147] L. W. McKeehan, The crystal structure of beryllium and of beryllium oxide, Proc. Nat. Acad. Sci. 8, 270 (1922).
[148] J. C. McLennan and R. J. Monkman, On the thermal expansion of z inc and cadmium crystals and on the crystal structure of erbium and niobium, Trans. Roy. Soc. Canada III, 23, 255 (1929).
[149] T. N. McVey and C. L. Thompson, X-ray investigation of the effect of heat on china clays, J. Am. Ceramic Soc. 11, 829 (1928).
[150] M. Mehnel, Kristallchemische Betrachtungen zur I. und VII. Gruppe des periodischen Systems der Elemente, Optik 3, 41 (1948).
[151] Georg Menzer, Debye-Scherrer-Aufnahmen an Pulverplatchen, Z. Naturforsch. A 2, 336 (1947).
[152] Jean Michel, Rehavior of refractory metals, in particular molybdenum, at high temperatures. New electric furnace with a molybdenum resistor, Bull. Classe Sci., Acad. roy. Belg. 24, 333 (1938).
[153] V. I. Mikheev and V. N. Dubinina, Etalon powder patterns of some minerals in the oxide class, Zap. Len. Gorn. Inst. (1938).
[154] R. D. Miller, Geiger-Müller counter measurements of reflected molybdenum $\mathrm{K} \alpha \mathrm{X}$-rays from powdered zinc, Phys. Rev. 51, 959 (1937).
[155] K. Moeller, Üter Präzisionsbestimmungen von Gitterkonstanten nach der Methode von DebyeScherrer, Z. Krist. 97, 170 (1937).
[156] G. Natta and L. Passerini, Soluzioni solide per precipitazione, Gazz. chim. ital. 58, 597 (1928).
[157] G. Natta and L. Passerini, Soluzioni solide, isomorfismo e sinmorfismo tra gli ossidi dei metalli bivalenti; sistemi: CaO-CdO, CaO-lmo, $\mathrm{CaO}-\mathrm{CoO}, \mathrm{CaO}-\mathrm{NiO}, \mathrm{CaO}-\mathrm{MgO}$, Gazz. chim. ital. 59, 129 (1929).
[158] G. Natta and L. Passerini, Sulla costituzione del verde di Rimann del bleu di Thenard e di altri derivati colorati degli ossidi del cobalto, Cazz. chim. ital., 59, 620 (1929).
[159] G. Natta and L. Passerini, La struttura dei cianuri alcalini ed il loro isomorfismo con gli alogenuri, Gazz. chim. ital. 61, 191 (1931).
[160] M. C. Neuburger, Fräzisionsmessung der Gitterkonstante von kubisch-raumzentriertem β-Wolfram, Z. anorg. Chem. 217, 154 (1934).
[161] 11. C. Veuburger, Präzisionsmessung der Gitterkonstante von sehr reinem Tantal, Z. Krist. 93, 312 (1936).
[162] W. Nieuwenkamp, Die chemische Zusammensetzung von Matlockite, Z. Krist. 36, 470 (1933).
[163] W. Nieuwenkamp, The crystal structure of low cristobalite, Z. Krist. A 92, 82 (1935).
[164] W. Nieuwenkamp and J. M. Bijvoet, Die Kristallstruktur von Bleifluochlorid PbFCl, Z. Krist. 81, 469 (1932).
[165] P. Niggli, Die Kristallstruktur einiger Dxyde I, Z. Krist. 57, 253 (1922).
[166] H. Vitka, Debye-Scherrer Aufnahmen an Germanium zwischen 20° abs. und 1110° abs., Physik. Z. 38, 896 (1937).
[167] J. Obinata and E. Schmid, Röntgenuntersuchungen an Antimon-Blei und Blei-Zinn-Legierungen, Metallwirtsh. 12, 101 (1933).
[168] I. Cbinata and G. Wasserman, Röntgenographische Untersuchung der Löslichkeit von Aluminium in Kupfer, Naturwiss. 21, 382 (1933).
[169] A. Ölander, An electrochemical and X-ray study of solid thallium-lead alloys, Z. physik. Chem. A 168, 274 (1934).
[170] S. v. Olshausen, Strukturuntersuchungen nach der Debye-Scherrer-Methode, Z. Krist. 61, 463 (1925).
[171] A. Osawa and Y. Ogawa, X-ray investigation of iron and zinc alloys, Sci. Repts. Tohoku Imp. Univ. 18, 165 (1929).
[172] H. Ott, Die Strukturen von MnO, MnS, $\mathrm{AgF}, \mathrm{NiS}$, $\mathrm{SnJ}, \mathrm{SrCl}_{2}, \mathrm{BaF}_{2}$, Präzisionsmessungen einiger Alkalihalogenide, Z. F́rist. 63, 222 (1926).
[173] E. A. Owen and J. Iball, Precision measurements of the crystal parameters of some of the elements, Phil. Hag. 13, 1020 (1932).
[174] E. A. Oven and J. Iball, Thermal expansion of zinc by the X-ray method, Phil. Mag. 16, 479 (1933).
[175] E. A. Owen, Llewelyn Pickup, and I. O. Roberts, Lattice constants of five elements possessing hexagonal structure, Z. Krist. 91, 70 (1935).
[176] E. A. Owen, and G. D. Preston, Modification of the powder method of de:ermining the structure of metal crystals, Proc. Phys. Soc. (London) 35, 101 (1923).
[177] E. A. Owen and Edgar Wynne Roberts, Factors af fecting the limit of solubility of elements in copper and silver, Phil. Mag. 27, 294 (1939).
[178] E. A. Owen and E. L. Yates, Precision measurements of crystal parameters, Phil. Mag. 15, 472 (1933).
[179] E. A. Owen and E. L. Yates, X-ray measurements of the thermal expansion of pure Ni , Phil. Mag. 21, 809 (1936).
[180] Charles Palache, Harry Berman, and Clifford Frandel, The system of mineralogy of James

Dwight Dana and Edward Salisbury Dana, Ed. ?, Vol. I, P. 621, New York (1944).
[181] L. Passerini, Analisi coi raggi X dell'arseniuro di cadmio e dell'anidride arseniosa, Gazz. Chim. Ital. 58, 775 (1928).
[182] L. Passerini, Soluzioni solidi, isomorfismo e simmorfismo tra gli ossidi dei metalli bivalenti, II, Sistemi CoO-NiC, CoO-Mgo, CoO-MinO, CoC-CdO, NiO- Ng O, NiO-InO, NiO-CdO, Gazz. Chim. Ital. 59, 144 (1929).
[183] L. Passerini, Isomorfismo tra assidi di metalli tetravalenti; \mathbf{i} sistemi $\mathrm{CeO}_{2}-\mathrm{ThO}_{2}, \mathrm{CeO}_{2}-\mathrm{ZrO}_{2}$, $\mathrm{CeO}_{2}-\mathrm{HfO}_{2}$, Gazz. Chim. Ital. 60, 752 (1930).
[184] W. M. Peirce, E. A. Anderson, and P. van Dyck, An investigation of the alleged allotropy of zinc by X -ray analysis and a redetermination of the zinc lattice, J. Franklin Inst. 200, 349 (1925).
[185] G. Phragmén, X-ray investigation of certain nickel steels of low thermal expansion, J. Iron and Steel Inst. 123, 465 (1931).
[186] E. Posnjak and G. Tunell, The system cupric oxide-sulphur trioxide-water, Am. J. Sci. 18, 1 (1929).
[187] Eugen Posnjak and Kalph W. G. "yckoff, The crystal structures of the alkali halides, J. Washington Acad. 12, 248 (1922).
[188] G. D. Preston, The structure of oxide films on nickel, Phil. Mag. 17, 466 (1934).
[189] L. L. Quill, Über die Gitterdimensionen des Niobs, des Tantals und einiger Niobate und Tantalate, Z. anorg. Chem. 208, 257 (1932).
[190] Geoffrey Vincent Raynor, The lattice spacings of the primary solid solutions in magnesium of the metals of Group IIIB and of tin and lead, Proc. Roy. Soc. (London) A 180, 107 (1942).
[191] G. V. Raynor and W. Hume Rothery, A technique for the X-ray powder photography of reactive metals and alloys, with special reference to the lattice spacing of magnesium at high temperatures, J. Inst. Metals 65, 379 (1939).
[192] H. Th. Ringdal, Über Mischkristalle von Erdalkalinitraten, Z. Krist. 82, 50 (1932).
[193] F. Rinne, Bemerkungen und röntgenographische Erfahrungen uber die Ungestaltung und den Zerfall von Kristallstrukturen, Z. Krist. 59, 230 (1923).
[194] H. P. Rooksby, A note on the structure of nickel oxide at sulnormal and elevated temperatures, Acta Cryst. 1, 226 (1948).
[195] A. Roux and J. Cournot, Sur quelques resultats d'essais cristallographiques pap rayons X, Rev. Metallurg. 26, 655 (1929); Étude cristallographique par rayons X de la structure de dépôts électrolytiques simultanés de deux métaus, Compt. Rend. Acad. Sci. Paris 186, 1733 (1928).
[196] Otto Ruff, Fritz Ebert, and Fritz Luft, Röntgenographisches Verfahren zur Ermittelung adsorbierter Stoffe an Kohlen, Z. anorg. Chem. 170, 49 (1928).
[197] O. Ruff, F. Ebert, and H. Woitinek, Das System $\mathrm{ZrO}_{2}-\mathrm{ThO}_{2}, \mathrm{Z}$. anorg. Chem. 180, 252 (1929).
[198] Erich Rumpf, Über die Mischkristallreihe $\mathrm{CaF}_{2}-\mathrm{SrF}_{2}$, Z. Phys. Chem. 7, 148 (1930).
[199] Alexander liusterholz, Die Streuung von Pöntgenstrahlen an Metallen, Helv. Phys. Acta 4, 68 (1931).
[200] G. Sachs and J. Vieerts, Die Gitterkonstanten der Gold-Silber legierungen, Z. Phys. 60, 481 (1930).
[201] H. Saini, Dilatation thermique de l'argent mesurée aux rayons X, Helv. Phys. Acta 6, 597 (1933).
[202] P. Scherrer, Das Raumgitter des Aluminiums, Physik. Z. 19, 23. (1918).
[203] F. Schossherger, Über die Umwandlung des Titandioxyds, Z. Krist. 104, 358 (1942).
[204] Alfred Schröder, Beitrage zur Kenntnis des Feinbaues des Brookits und des physikalischen Verhaltens sowie der Zustandsänderungen der drei natürlichen Titandioxyde, Z. Krist. 67, 483 (1928).
[205] Hilmar Schumann, Zur Dimorphie des Bleifluorides, Centr. Mineral. Geol., A 1933, 122 (1933).
[206] Shunji Shirai, Oxidation of a thin nickel single crystal film, Proc. Phys. Math. Soc. Japan 25, 637 (1943).
[207] S. S. Sidhu, The structure of cubic crystals as revealed by X-rays, Am. J. Phys. 16, 199 (1948).
[208] M. K. Slattery, The crystal structure of metallic tellurium and selenium and of strontium and bar ium selenide, Phys. Rev. 25, 333 (192.5).
[209] N. Smith, The structure of thin films of metallic oxides and hydrates, J. Am. Chem. Soc. 58, 173 (1936).
[210] D. Solomon and W. M. Jones, An X-ray investigation of the lead-bismuth and tin-bismuth alloys, Phil. Mag. 11, 1090 (1931).
[211] K. Spangenberg, Dichte und Lichtbrechung der Alkalhalogenide, Z. Yrist. 57, 494 (1923).
[212] W. Stenzel and J. Heerts, Präzisionsbestimmung von Gitterkonstanten nichtkubischer Stoffe, Z. Krist. 84, 20 (1932).
[213] W. Stenzel and J. Weerts, Lattice constants of silver-palladium and gold-palladium alloys, Siebert Festschrift, 288 (1931).
[214] A. R. Stokes and A. J. C. Wilson, The thermal expansion of Pb from $0^{\circ} \mathrm{C}$ to $320^{\circ} \mathrm{C}$, Proc. Phys. Soc. (London) 53, 658 (1941).
[215] M. Straumanis, Lattice constants and coefficients of expansion of selenium and tellurium, Z. Krist. 102, 432 (1940).
[215a] M. E. Straumanis and E. Z. Aka, Lattice parameters, coefficients of thermal expansion and atomic weights of purest silicon and germenium, J. Appl. Phys. 23, 330 (1952).
[216] M. Straumanis and A. Ieviņ̌̌, Präzisionsaufnahmen nach dem Verfahren von Debye und Scherrer, II, Z. Phys. 89, 461 (1936).
[217] M. Straumanis, A. Ieviṇš and K. Karlsons, Hängt die Gitterkonstante von der Wellenlänge ab? Präzisionsbestimmungen von Gitterkonstanten des $\mathrm{LiF}, \mathrm{NaF}, \mathrm{As}_{2} \mathrm{O}_{3}, \mathrm{TlCl}$ und $\mathrm{TlBr}, \mathrm{Z}$. Phys. Chem. B 42, 143 (1939).
[218] Howard E. Swanson and Eleanor Tatge, Standard X-ray diffraction patterns, J. Res. Nat. Bur. Standards 46, 318 (1951).
[219] Henry Terrey and Cyril Maynard Wright, The crystal structure of mercury, copper and copper amalgam, Phil. Mag. 6, 1055 (1928).
[220] Erich Thilo, Chemische Untersuchungen von Silicaten, IX, Die Urwandlung von Tremolit in Diopsid beim Frhitzen, Z. Krist. 101, 345 (1939).
[221] F. Thilo, Röntgenographische Intersuchung und eutropische Beziehungen der Fluoride der Erdalkalireihe, Z. Krist. 65, 720 (1927).
[222] C. E. Tilley, Portlandite, a new mineral from Scawt ilill, Co. Antrim, Miner. Mag. 23, 419 (1933).
[223] Jean Jacques Trillat and Arlette Laloeuf, Étude de la structure des fumées de chlorure d'ammonium par diffraction et microscopie électroniques, Compt. Rend. Acad. Sci. Paris 227, 67 (1948).
[224] Yuching Tu, A precision comparison of calculated and observed grating constants of crystals, Phys. Rev. 40, 662 (1932).
[225] G. Tunell, E. Posnjak and C. J. Ksanda, The crystal structure of tenorite (cupric oxide), J. Wash. Acad. Sci. 23, 195 (1933).
[226] G. Tunell, E. Posnjak and C. J. Ksanda, Geometrical and optical properties, and crystal structure of tenorite, Z. Kírist. 90, 120 (1935).
[227] N. Uspenski and S. Konobejewski, Die Beugung der Röntgenstrahlen in mikrokristallinischen Strukturen, Z. Phys. 16, 215 (1923).
[228] A. F. Van Arkel, Over de kristalstructuur van het witte tin, Verslag Akad. Wetens. Amsterdam, Afd. Nat. 32, 197 (1923); also On the crystal structure of white tin, Proc. Acad. Sci. Amsterdam, Sec. Sci. 27, 97 (1924).
[229] A. E. van Arkel, Kristal bouw en physische eigenschappen, Physica 4,286 (1924).
[230] U. van Bergen, Präzisionsmessung von Gitterkonstanten mit einer Physik 39, 553 (1941).
[231] L. Vegard, The structure of silver crystals, Phil. Mag. 31, 83 (1916).
[232] L. Vegard, Results of crystal analysis, Phil. Mag. 32, 65 (1916).
[233] L. Vegard, Results of crystal analysis III, Phil. Mag. 32, 505 (1916).
[234] L. Vegard, Results of crystal analysis, Phil. Mag. 1, 1151 (1926).
[235] L. Vegard, Die Konstitution der Mischkristalle und die Raumfüllung der Atome, Z. Physik 5, 17 (1921).
[236] L. Vegard, Die Struktur der isomorphen Gruppe $\underset{\substack{\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \\(1922)}}{ }, \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{Z}$. Phys. 9, 395 (1922).
[237] L. Vegard, Investigation into the structure and properties of solid matter with the help of Xrays, Skrifter Norske Videns-Akad. Oslo, I, Mat.-Nat. Kl. 1947, No. 2, 83 pp. (1947).
[238] L. Vegard and Leif Bilberg, Die Kristallstruktur der Nitrate von Ca, Sr, Ba und Pb , Avhandl. Norske Vidensk.-Akad. Nslo, I. Mat.-Nat. Kl. 1931, No. 12, 22 pp. (1932).
[239] L. Vegard and K. I. Roer, Verfahren zur röntgenonetrischen Bestimmung des Temperatureinflusses auf Kristallgitter mit Verwendung auf Nitraten zweiwertiger Metalle, Avhandl. Norske Vidensk.Akad. Oslo I, Mat.-Nat. Kl. 1941, No. 17 (1942).
[240] H. J. Verweel and J. N. Rijvoet, Die Kristallstruktur von $\mathrm{NaCN}, \mathrm{Z}$. Krist. 100, 201 (1938).
[241] G. R. Waitkins and C. W. Clark, Selenium dioxide; preparation, properties and use as oxidizing agent, Chem. Rev. 36, 235 (1945).
[242] Allen W. Waldo, Identification of the copper ore minerals by means of X-ray powder diffraction patterns, Am. "!in. 20, 575 (1935).
[243] J. A. Wasastjerna, Eine röntgenometrische Untersuchung von Kaliumbromid und Rubidiumchlorid, Acta Soc. Sci. Fennicae n.s. A, 3, No. 6 (1944).
[244] J. A. Kasastjerna, Eine röntgenometrische Untersuchung von Natriumfluorid, Kaliumjodid und Caesiumjodid, Acta. Soc. Sci. Fennicae n.s. A, 3, No. 7 (1944).
[244a] J. A. Wasastjerna, A quantitative study of the reflexion of X-rays by sodium and potassium chlorides, K. Svenska Vetensk. -Akad. Handlingar 21, Vo. 5, 21 pp. (1944).
[24.5] Harry B. Weiser and W. O. Milligan, X-ray studies on the hydrous oxides, J. Phys. Chem. 36, 3030 (1932).
[246] Harry B. Weiser and W. C. Milligan, X-ray studies on the hydrous oxides; IV, Titanium dioxide, J. Phys. Chem. 38, 513 (1934).
[247] F. Wever, Die Atomanordnung des magnetischen und des unmagnetischen Nickels, Mitt. Kaiser Wilhelm-Inst. Eisenforsch. 3, 17 (1922).
[248] W. H. Willot and E. J. Evans, An X-ray investigation of the arsenic-tin alloys, Phil. Mag. 18, 114 (1934).
[249] R. B. Wilsey, The crystalline structures of silver iodide, Phil. Mag. 46, 487 (1923).
[250] A. N. Winchell, The microscopic characters of artificial inorganic solid substances or
artificial minerals, New York, John Wiley \& Sons (1931).
[251] E. O. Viol lan and G. G. Harvey, Effect of temperature on the intensity of reflection of X-rays from zinc crystals, Phys. Rev. 51, 1054 (1937).
[252] S. Wronski, Über den Einfluss der Temperatur auf die Intensität der von verschiedenen Ebenen des Zinkkristalls reflektierten föntgen-Strahlen, Acta Phys. Polon. 7, 357 (1938).
[253] R. W. G. Wyckoff, The crystal structures of the alkali halides, J. Washington Acad. 11, 429 (1921).
[254] Ralph W. G. Wyckoff, The crystal structure of the high temperature form of cristobalite (SiO_{2}), Am. J. Sci. 9, 448 (1925).
[255] Ralph W. G. Wyckoff, Die Kristallstruktur von β Cristobalit SiO_{2} (bei hohen Temperaturen stabile Form), Z. Krist. 62, 189 (1925).
[256] Ralph W. G. Wyckoff and Alice H. Armstrong, The scattering powers of the atoms in magnesium oxide and sodium fluoride, Z. Krist. 72, 433 (1929).
[257] Ralph W. G. Wyckoff and Alice H. Armstrong, The X-ray diffracting power of chlorine and armonium in armonium chloride, Z. Krist. 72, 319 (1929).
[258] W. H. Zachariasen, Über die Kristallstruktur von BeO, Norsk. Geol. Tidssk. 8, 189 (1925).
[259] W. H. Zachariasen, Die Kristallstrukturen von Rerylliumoxyd und Berylliumsulfid, Z. Phys. Chem. 119, 201 (1926).
[260] William Zachariasen, Üßer die Kristallstruktur der wasserlöslichen Modifikation des Germaniumdioxyds, Z. Krist. 67, 226 (1928).
[261] S. Zeidenfeld, Hilger X-ray crystallograph and the cubic crystal analyser, Proc. Phys. Soc. 43, 512 (1931).
[262] E. Zintl, and U. Croatto, Fluoritgitter mit leeren Anionenplätzer, Z. anorg. allgem. Chem. 242, 79 (1939).
[263] E. Zintl and A. Udgård. Über die Mischkristallbildung zwischen einigen salzartigen Fluoriden von ver schiedenem Formeltypus, Z. anorg. Chem. 240, 150 (1939).
[254] Anonymous, The Conversion factor for kX units to angstrom units, J. Sci. Inst. 24, 27 (1947).

4. Cumulative Index to Volumes I and II

Aluminum, Al
Aluminum oxide, alpha (corundum), $\mathrm{Al}_{2} \mathrm{O}_{3}$.-
Anmonium bromide, $\mathrm{NH}_{4} \mathrm{Rr}-$
Ammonium chloride (sal-ammoniac), $\mathrm{NH}_{4} \mathrm{Cl}--$
Arsenic trioxide (arsenolite), $\mathrm{As}_{2} \mathrm{O}_{3}$
Barium carbonate (witherite), BaCO_{3}
Barium fluoride, BaF_{2}
Barium nitrate (nitrobarite), $\mathrm{Pa}\left(\mathrm{NO}_{3}\right){ }_{2} \cdots$
Beryllium oxide (bromellite), BeO-
Cadmium oxide, CdO-
Calcium carbonate (calcite), CaCO_{3}
Cal cium fluoride (fluorite), $\mathrm{CaF}_{2}-$
Calcium hydroxide (portlandite), $\mathrm{Ca}(\mathrm{OH})_{2}$
Calcium oxide, CaO- 43
Carbon (diamond), C- II 5
Ceric oxide, CeO_{2} 56
Cesium chloride, CsCl 44
Copper, Cu 15
Cupric oxide (tenorite), CuO- 49
Cuprous oxide (cuprite), $\mathrm{Cu}_{2} \mathrm{O}$ 23
Gallium, Ga- 9
Germanium, Ge 18
Germanium dioxide, GeO_{2} 51
Gold, Au 33
Lead, Pb 34
Lead bromide, PbEr_{2} 47
Lead carbonate (cerussite), PbCO_{3} 56
Lead chloride (cotunnite), PbCl_{2} 45
Lead fluochloride (matlockite), FbFC. 76
Lead oxide (litharge), PbO (red) 30
Lead oxide (massicot), FbO (yellow) 32
Lead sulfide (galena), PbS 18
Lithium chloride, LiCl 62
Lithium fluoride, LiF 61
Magnesium, Mg. 10
Magnesium aluminate (spinel), $\mathrm{MgAl}_{2} \mathrm{O}_{4} \cdots-$ 35
Magnesium oxide (periclase), MgO- 37
Magnesium silicate (forsterite), $\mathrm{Mg}_{2} \mathrm{SiO}_{4}$ 83
Magnesium tungstate, MgWO_{4} I 84
Mercuric chloride, HgCl_{2} 73
Mercuric iodide, HgI_{2} 74
Mercurous chloride (calomel), $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ 72
Molybdenum, Mo 20
Nickel, Ni
Vol. Fage Vol. Fage 11 11 II II II II I 59 I 51 I 51 II II I I 70 70 I 81 I 81 36 36 27 27 51 51 69 69 I 58 I 58
Nickelous oxide (bunsenite), NiO-
Nickelous oxide (bunsenite), NiO- 47 47
Palladium, Pd
Palladium, Pd 21 21
Platinum, Pt
Platinum, Pt 31 31
Potassium bromide, KBr
Potassium bromide, KBr 66 66
Potassium chloride (sylvite), KCl
Potassium chloride (sylvite), KCl 65 65
Potassium cyanide, KCN
Potassium cyanide, KCN 77 77
Potassium fluoride, KF.
Potassium fluoride, KF. 64 64
Potassium iodide, KI
Potassium iodide, KI 68 68
Rhenium, Re
Rhenium, Re 13 13
Selenium dioxide (selenolite), SeO_{2}
Selenium dioxide (selenolite), SeO_{2} 53 53
Silicon, Si
Silicon, Si II II
Silicon dioxide (cristobalite, low or
Silicon dioxide (cristobalite, low or alpha), SiO_{2} alpha), SiO_{2} 39 39
Silicon dioxide (cristobalite, high or beta), $\mathrm{SiO}_{2}-$ 42
Silver, Ag 23
Sodium chloride (halite), NaCl - II 41
Sodium cyanide, cubic, NaCN 78
Sodium cyanide, orthorhombic, NaCN 79
Sodium fluorióe (villiaumite), NaF- 63
Sodium sulfate (thenardite), $\mathrm{Na}_{2} \mathrm{SO}_{4}$ 59
Stannic oxide (cassiterite), $\mathrm{SnO}_{2}-$ 54
Strontium nitrate, $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ 80
Strontium sulfare (celestite), SrSO_{4} II 61
Tantalum, Ta- 29
Tellurium, Te 26
Thallium oxide, $\mathrm{T1}_{2} \mathrm{O}_{3}$ 28
Thorium oxide (thorianite), ThO_{2} - I 57
Tin, alpha, Sn- II 12
Tin, beta, Sn 24
Titanium dioxide (enatase), $\mathrm{TiO}_{2}-$ I 46
Titanium dioxide (rutile), TiO_{2} I 44
Tungsten, W- I 28
Uranium dioxide, UO_{2} II 33
Zinc, Zn I 16
Zinc aluminate (gahnite), $\mathrm{ZnAl}_{2} \mathrm{O}_{4}$ II 38
Zinc borate, $\mathrm{ZnB}_{2} \mathrm{O}_{4}$
Zinc oxide (zincite), ZnO O II 25
Zinc pyrosilicate hydrate (hemimorphite),
$\mathrm{Zn}_{4}(\mathrm{OHi})_{2} \mathrm{Si}_{2} \mathrm{O}_{7} \cdot \mathrm{H}_{2} \mathrm{O}$ II $\quad 62$
Zinc sulfide, alpha (wurtzite), ZnS - II 14
Zinc sulfide, beta
(sphalerite), ZnS 16
Zirconium, Alpha, Zr 11

[^0]: ${ }^{1}$ Figures in brackets indicate the literature references at the end of this volume. They are in alphabetical order.
 ${ }^{2}$ The Joint Committee represents the American Crystallographic Society, American Society for Testing Materials, and the Institute of Physics (England).

[^1]: ${ }^{\text {a }}$ Average of last three lines.
 ${ }^{\mathrm{b}}$ Average of last two lines.
 ${ }^{\text {c }}$ Average of three lines preceding last line.
 ${ }^{d}$ Average of four lines.

[^2]: ${ }^{\text {a }}$ Unit not known.

[^3]: *Average for three lines only.
 ${ }^{b}$ Average for four lines only.

[^4]: ${ }^{\text {a }}$ Unit not known.

[^5]: ${ }^{\text {a Myckoff pattern combined with that of Barth and Posnjak }}$ on ASTM card II-588.

[^6]: ${ }^{\text {a }}$ Eleven additional lines omitted.

[^7]: ${ }^{\mathrm{b}}$ Averaged from lines not shown.

[^8]: ${ }^{3}$ Peak height intensities are considered preferable in the ASTM card file to integrated intensities because most of those using the file for routine analyses measure peak height or its equivalent.

[^9]: ${ }^{a}$ Published. $\quad{ }^{b}$ On ASTM card; first fourteen lines recalculated (converted to angstroms). ${ }^{c}$ Published.

[^10]: ${ }^{\text {a }}$ Publ ished.

[^11]: ${ }^{\mathrm{b}}$ ASTM card.

[^12]: ${ }^{\text {a }}$ Average for last three lines only.

[^13]: ${ }^{a}$ Published data. ${ }^{b}$ As recorded on ASTM card.

[^14]: ${ }^{8}$ Publisbed.
 ${ }^{b}$ ASTM card.
 ${ }^{c}$ Twenty additional lines omitted.

[^15]: ${ }^{\text {a }} 18$ additional lines have been omitted.
 ${ }^{\mathrm{b}} 7$ additional lines have been omitted.

