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Foreword

The year 1951 marked the fiftieth anniversary of the establishment
of the National Bureau of Standards. As part of the scientific program
of the National Bureau of Standards for this year, twelve symposia
were organized on scientific and technical topics of considerable
interest. The Symposium on Electron Physics was the tenth of this

series and was organized under the general chairmanship of Dr. L.
Marton of the NBS Electron Physics Laboratory.

Electron physics for the purposes of this symposium was interpreted

to mean the physics of the free electron, in distinction to physical
electronics, which is a study of the bound electron. For many years
work has been conducted at the National Bureau of Standards on the

different phases of the physics of the free electron, but recent years
have seen a more organized effort toward some of the objectives of

research in this branch of physics. This symposium was arranged
around two such topics in which NBS activities have been carried out;

i. e., electron scattering and electron optics. These topics have been
the subject of some earlier research conferences, but it is believed that
this is the first time that a symposium has been devoted in its entirety

to these subjects. That such a specialized symposium was timely is

attested to by the list of distinguished scientists of nine nations who
attended, and by the fact that a significant new trend in electron

physics was indicated in their contributions. For the first time a large

percentage of the papers in electron optics were concerned with
electron-wave optics. A concerted effort seems to be under way to

bridge the gap between wave and particle classification, or methods of

attack, and thus to create a virtually new field for investigation.

The generous cooperation of the Office of Naval Research in making
this symposium possible is gratefully acknowledged.

A. V. Astin, Director
,

National Bureau of Standards.
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Preface

The manuscripts in this volume were submitted by the authors

after the symposium and hence are more or less revised accounts of

the proceedings. The discussions at the end of the papers have been

edited to remove questions arising from misunderstandings, and in

many cases questions and answers have been paraphrased in the

interest of brevity and clearness. Those involved in lengthy discus-

sions were given the opportunity of reviewing their remarks; in the

shorter exchanges, editorial liberties were taken.

The editing of this volume was done by J. Arol Simpson, aided by
the staff of the Electron Physics Section of the National Bureau of

Standards.

L. Maktox, Chairman,

Committee for the Symposium on Electron Physics.
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Introductory Remarks

By L. Marton 1

Tlie systernatics of geometrical electron optics has been firmly
established for the past twenty years. In a way this symposium
could be regarded as a twentieth anniversary meeting if we consider
the experimental and theoretical development of geometrical electron

optics, or a twenty-fifth anniversary meeting if we look upon a classical

paper of Busch 2 as the inception. While geometrical electron optics
has been clearly defined, surprisingly enough no systematics have
been established for physical electron optics in close analogy to

that distinction made in the optics of light. This Symposium is

devoted to electron optics in its very generalized meaning including
both the geometrical and physical.

I should like to describe briefly some of the activities of the Electron
Physics Section of the National Bureau of Standards. The activities

of this section started with geometrical electron optics, but there
has been a gradual shift of emphasis toward subjects of physical
electron optics. I should like to mention first the electron optical

method of field mapping that we have developed in the last few
years. The technique is applicable to the mapping of magnetic
or electrostatic fields that are inaccessible with other types of measure-
ments. In this sense, inaccessible means either that the probes used
in conventional field-mapping methods may be too large as compared
with the physical dimensions of the field to be explored, or that these

probes fail because of a possible interaction between the probe and
the field. In both cases an electron beam offers a very valuable
tool for field measurements. This fact in itself is not new; almost
fifty years ago J. J. Thompson proposed to use the deflection of an
electron beam for simple studies. The newness lies in the applica-

tion of wide beams instead of narrow pencils. In its first application

the method resembled very closely the Scldieren method of light

optics (fig. 1). A distant electron source is imaged by an electron

lens at the point C. If an obstacle is placed at this point, all rays
are intercepted as long as there is no variation of the electron optical

index of refraction along the trajectory. If, however, a field is

placed in the plane passing through point D, some of the electrons

will be deflected beyond the obstacle at C. If the plane of the image
screen, S, and the plane of the field, D, are conjugate planes, a dark-
field image of the field in question will appear on the screen. Figure
2 shows a typical image of this kind. The dark central strip repre-

sents the shadow of a magnetized wire. The bright spots on each
side of it are dark-field images of the magnetic fields produced by a

sinusoidal excitation of the moving wire.

1 Chief, Electron Physics Section, National Bureau of Standards.
2 H. Busch, Ann. Phys. 81* 974 (1926).
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This method is not completely satisfactory for a quantitative
evaluation of the patterns because it involves a photometric de-
termination of the intensity distribution across the pattern together
with all the uncertainties and complications of that kind of measure-
ment. For this reason we modified our method in a manner shown
in figure 3. Again, an image, of a distant source is formed by the
lens at point F, but the intercepting obstacle is placed behind that
image. The image, acting as a virtual source of small dimensions,
projects an enlarged shadow on the image screen as indicated by the
dotted lines. In the presence of a field, the deflection of the electron
beams will produce a measurable displacement of the shadow.
Furthermore, if the field that we are investigating is inhomogeneous,
the displacement of the virtual source will be not only lateral but
axial; resulting thus not only in a displacement of the shadow but in a

change of its magnification. Complications encountered in the
quantitative interpretation will be dealt with by Simpson and Laclien-
bruch in their papers.

Figure 4 illustrates how the results look when applied to the same
magnetized recording wire as shown in figure 2. For obvious reasons,

Figure 2. Schlieren 'pattern of field

about a magnetized wire.

Figure 3. Electron-optical diagram of shadow method.

In the absence of a deflecting magnetic field, a parallel incident beam of electrons
(dashed rays U, U+) converges to the focus F of the electron lens and then
diverges past the thin obstruction GG+, which casts a shadow NN+ on the
fluorescent screen S. However, when a deflecting field is placed in the midst
of the incident beam, a different pair of rays (D, D+) determines the shadow
boundary. The crossover point is displaced from F to some point E, and the
resulting displacement of the shadow NN+ to the position AA+ may then be
measured and substituted into theoretical formulas to obtain the field strength.

2



the single obstacle shown in figure 3 is replaced by a multiple structure
of periodic nature such as, for example, a fine wire mesh. Figure 5
shows the application of the method to a small field produced by a
single ferromagnetic domain. The word “small” refers to the physi-
cal dimensions of the field as indicated by the scale on the figure.
Another example is the application of this method to the measure-
ment of space-charge distribution in a d-c cut-off magnetron. A
paper dealing with this subject was published by D. Reverdin,3

formerly of this laboratory. In addition to the static fields described
above, the method is applicable to time-variable fields up to rela-
tively high frequencies (probably 300 megacycles).
The instrumentation for this type of work is relatively simple;

and as an illustration, figure 6 shows an electron optical bench con-

Figure 4. Photograph of a typical

pattern.

Superposed, on the image of a magnetic recording
wire is the electron shadow of a fine wire mesh
placed just beyond the back focus of an elec-

tron lens. From the displacement and reduced
magnification of a selected part of the mesh,
the absolute value of the magnetic field inten-
sity at a corresponding point in the field can be
accurately computed.

Figure 5. Shadow pattern of the magnetic
field at the edge of a cobalt crystal,

showing large domain structure.

Figure 6. Electron-optical bench , open .

A, Bench; B, specimen and aperture mounts; C, lens carriages; D, electrical

connections; and E, “Wilson” seals.

8 D. L. Reverdin, I. Applied Phys. [3] 22, 275 (1951).
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structed in the Electron Physics laboratory. The original purpose

in building the bench was the measurement of optical constants of

electron lenses; however, due to its versatility, it has been used for

carrying out field mapping and other types of experiments.

As far as future prospects of this method are concerned, we are

pushing at present in three directions. One is toward its quantitative

aspects, and I refer for details to papers presented later in this program.
The second is the exploration of the ultimate limits of the method.
These are two-fold: One consists in the measurement of the weakest
possible field of large extent that can still be detected; and the other

is the exploration of fields that are not necessarily very weak, but are

restricted in their extent in space. We tried to detect fields around
single ferromagnetic colloidal particles of about 200 A diameter,

but these first attempts were not completely successful. If in

repeating the experiment we do succeed, we may proceed to an electron

optical study of the fields existing on surfaces of catalytic agents.

The third is a continued exploration of space-charge fields in a

magnetron.
Lately an increasing effort in the Electron Physics Section has

been devoted to a study of electron scattering phenomena. Such
investigations are limited to single scattering in medium- and low-

energy ranges. Furthermore, we are more interested in inelastic

scattering than in the elastic, although the experimental investigation

will necessarily include both. Our first experiments in this study
include measurements of energy losses in the forward direction within
only a very narrow angular range. We are following the experiments
originally described by Mollenstedt, 4 who used the off-axis chromatic
aberration of an electrostatic lens to produce a high-precision velocity

analyzer. Preliminary experiments have established that, indeed^

extremely good sensitivity of such a velocity analyzer can be attained.

We can distinguish without difficulty a change of 1 v in 30,000. We
have found some difficulty, however, in reproducing the dark-field

experiments of Mollenstedt and are continuing our investigations.

Parallel with this we are developing the instrumentation for a very
comprehensive survey of single scattering in medium- and low-energy
ranges for a great number of scatterers. For this survey we intend
to collect data on scattered intensities by measuring both the angular
and velocity distributions of the scattered electrons. One of the

chief objectives of this survey is to produce reliable intercomparable
data. For this purpose great care will have to be taken in the prepara-
tion of the scattering samples and careful attention paid to the condi-

tions under which scattering occurs. To indicate the scope of the
survey, I should mention that we intend to go down to very low
energies and that within the framework of low-energy investigation,

we plan to repeat the classical Davisson-Germer experiment. Special
attention will also be given to the question of internal potential,

which has caused considerable confusion over a number of years.

The instrumentation for this survey is at present in its development
stage. A circular scattering chamber, about 35 cm in diameter,
has the scattering sample mounted at its center. The sample holder
allows an adjustment of the sample with five degrees of freedom.
An electron gun is mounted on the periphery of the chamber in such
a manner that the beam generated by it enters the chamber radially.

4 G. Mollenstedt, Optik. 5, 499 (1949).
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At the bottom of the chamber a turntable is mounted with its axis
of rotation coinciding with the axis of the chamber. On the turntable
are mounted the velocity analyzer and the beam receptor. The
analyzer is an electromagnet mounted close to the edge of the turn-
table. The electrons, scattered in a horizontal plane, enter the
analyzer and are deflected 150°. That deflection sends the selected
velocities back toward the axis of the turntable where the receptor,
consisting of a 12-stage electron multiplier, is located.

In addition to these experimental investigations, we are actively
studying the theory of scattering, as attested by a paper to be given
later by Dr. Engel, of our laboratory.
Another phase of our work is conerned with the application of

electron interference phenomena for measurement purposes. For
about fifteen years, I have hoped one day to be able to build an
electron interferometer in close analogy to the interferometers of light
optics. A simple argument shows why an electron interferometer
has to be somewhat different from the usual conception of a light

interferometer. Let us assume that we want to repeat Young’s
experiment and build an electron interferometer on the principle of
the double-slit method. It is easy to calculate that we require first

of all a very small source, whose dimensions probably will have to be
achieved by means of an inverted electron microscope. The dimen-
sions of the slits and their spacing is a difficult problem because a
reproducible double-slit arrangement, having for example only 1 ,000 A
separation and 100 A slit width, is rather difficult to realize. In
addition, the fringe spacing in such an instrument is of the order
of 100 A and therefore requires another microscope for its viewing*
The total result is an instrument consisting of two electron microscopes
put together end to end with something rather complicated in

between.
About a year and a half ago it occurred to me that the solution lies

not in using narrow-beam interferences but patterning an electron

interferometer on the wide-beam interference methods used in the
construction of the Michelson or the Mach-Zelmder interferometers of

light optics. Fortunately, the problem of beam-splitting in such an
interferometer can be very well handled by the use of diffraction on
thin crystal lamellae. To explain this method let us consider figure 7.

A parallel beam, limited by a convenient aperture, is directed at normal
incidence onto a thin lamellar crystal. Part of the beam is transmitted
and part of it is diffracted. At a certain distance a second crystal is

placed parallel to the first, and the direct beam is again partially

transmitted without change and partially diffracted. The diffracted

part of the first beam itself is partially transmitted and partially dif-

fracted at the second crystal. The beams meet on a third crystal

where the same phenomenon is repeated and we now have two beams
superimposed that have /equal path lengths, having each been dif-

fracted twice. We thus have an arrangement in all respects equiva-

lent to the wide-beam interferometers of light optics. It is possible

to produce a path difference by a superimposed electric or magnetic
field gradient.

It has been demonstrated that such a scheme is a workable one.

We have at present two types of confirmation. Interference fringes

were observed on lamellar crystal material, first by Dr. IJyeda 5 of

8 Mitsuishi, Nagasaki, and IJyeda, Proe. Japan Acad. 27, 86 (1951).
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Figure 7. Interferometer schema.

Japan, and later by Dr. Rees of Australia, and Dr. Hillier of Radio
Corporation of America, who will present a paper on the subject at

this symposium. We obtained further evidence by setting up an
analog experiment with light, in which we used transmission grating

replicas and observed, as expected, a fringe structure. Although
such an arrangement seems to offer a complete equivalent to the con-
ventional type interferometers, it does not seem to be more advantage-
ous than the instrumentation in use at present in light optics. The
experiment, however, enabled us to draw conclusions about some of

the requirements on accuracy of alignment of the individual gratings,

and these conclusions have been confirmed and expanded by calcula-

tions. We find that the proposed system will have very reasonable
tolerances and the electron beam interferometer should not be difficult

to construct.

One important aspect of this type of experiment is the preparation
of the necessary thin lamellar crystals. There exist natural crystals

that may be useful for such experiments, but the reproduction of such
crystals in case of loss or damage would be a serious problem. To have
a safe reproducing method we investigated the growth of such thin

crystals by means of epitaxy, that is, the oriented growth of a crystal

lattice on a substratum having a different lattice. Without going into

detail, I should like to say that we now have gold crystals of about 100
to 200 A in thickness and several square millimeters surface area that
exhibit the diffraction pattern shown in figure 8. Until now our
experiments have been limited to gold and nickel, but we hope to

extend this investigation to many substances and produce good
specimens not only for the interferometer study, but also for the scat-

tering investigations that we have started.

The uses of an interferometer can be twofold. One application
consists in its use as an extremely sensitive field-measuring instrument.
It is easy to see that this type of instrument can detect extremely
weak field gradients : and, if we succeed in developing it into as prac-

6



Figure 8. Electron diffraction pattern of lamellar gold crystal.

tical a device as some of tlie light interferometers, its usefulness may
he quite extensive. In addition, it may be the only instrument that

can easily answer questions of purely fundamental interest, such as

the coherence of the de Broglie wave. Preliminary calculations

indicate that under easily attained laboratory conditions coherence
should be observable up to about 105 wavelengths, i. e., up to about
1 micron path difference. An experimental confirmation of these

calculations should be highly interesting.
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1. Diffusion of Electrons in Infinite Media
'

By C. H, Blanchard 2

During the past year an effort has been made to describe the
distribution of electrons as they penetrate, diffuse, and slow down in an
infinite medium. The points of departure are the formal theory of

Lewis 3 and the parallel study of X-ray distributions that has been
completed by Spencer and Fano. 4 Although the study of electron
distributions is far from complete, enough has been learned, especially

in the way of approximate schematizations, to obtain a fairly good
qualitative understanding of the phenomenon. Accordingly, we
present here a summary of initial results.

We consider the distribution of electrons from a given source under
multiple elastic scattering and continuous energy loss. We wish to

describe this distribution in space, energy, and direction of travel.

We use Lewis’ solution of the transport equation, in which a formal
expression is given, in terms of the scattering cross section, for the
angular distribution : and a procedure for deriving the moments of the
spatial distribution from this angular distribution is indicated. The
purpose of this paper is to point out a simple schematization of the

cross section that should give quite accurately the main features of

the distribution ; in particular, it exhibits the tendency for the distribu-

tion to depend only on the fractional energy loss. The discussion

follows the actual method of solution in that we consider first the angu-
lar distribution, and then the derivation of the spatial distribution

from the angular distribution. Finally, some preliminary numerical
results on the spatial distribution are discussed briefly.

The energies considered here are low enough for radiation energy
loss to be neglected, and well above atomic binding energies. We use

for the rate of the continuous energy loss the average excitation-

ionization stopping power. (This formulation implies a unique corre-

spondence between the kinetic energy, T, of the electron and the path-

length distance, s, which the electron has traveled since it had the

source energy, T0 .)

If 0 is the angle between the directions of travel of an electron and
its initial direction (at the source), and if 7b is the usual Legendre
polynomial, then it is easily shown/ that

<P,(C0B 0)>s=<fJ>W, (1)

with

Kt(s)=N
| ^

<r elastic(cos 6) [1 — P*(cos 0)]2trd cos d, (2)

1 This work was supported by the Office of Naval Research.
2 National Bureau of Standards, Washington, D. C.
3 H. W. Lewis, Phys. Rev. 78, 526 (1950).
* L. V. Spencer and U. Fano, J, Research NBS 46, 446 (1951) RP 2213.
* See footnote 3.
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where ( ) s denotes the average over all electrons that have traveled

a pathlength distance s (regardless of position in the medium), and N
is the number of scattering atoms per unit volume. Kt (s) is a function

of s because the cross section depends on the energy. Using the

stopping power formula, dT/ds= — 27rNZe AB/mv2
,
to relate T and s,

we find

j*K<(s')ds’=zj*° Ci mc2dT
B T(TJ

r 2mc 2

)

(3)

We have introduced the quantity

n _ f
1

q-eiascic(cos 6) 1 — P;(cos 6) ,

' 1

J -1 0-Rutherford(COS d) (1 — COS df
(4)

By taking the ratio of <r elastic to the Rutherford scattering cross

section (ZV/pV(1— cos 6)
2
), the most violent T and Z dependences

of 0
-

ela8tio fail to appear in Ch and leave the C% as slowly varying
parameters characteristic of the shape of the elastic cross section.

We call Ci the Zth “scattering number” because it contributes to the

decrement of (P
t (cos 6)) s with s in much the same way as the stopping

number B contributes to the decrement of T with s. The relationship

between the two quantities is stronger than this formality, since

both Ci and B are integrals over Coulomb cross sections, and, as a

matter of fact, the ratio CJB tends to be much more constant than
either Ci or B alone (both logarithmically energy dependent). There-
fore, for an initial approximation, we remove the factor CJB from the

integration, which is then elementary, giving the result 6

[Pi (cos 6)) t=-[
P T0+2mc 2

T0 T J
r 2md ]

ZCi
2B

(5)

from which the angular distribution at the energy T may be con-
structed. Ci/P^0.6 for all Z, so, with energies in Mev, we have
the useful rule of thumb 7

T To+11
To T+ 1_

0.3Z

(6 )

Note that for energies much below 1 Mev, this angular distribution
depends only on T/T0 and not on T and T0 separately.
Lewis 8 has given a formal solution of the problem of finding the

distribution of electrons in space. He presents a procedure for gen-
erating successive moments of the spatial distribution, starting from
the angular distribution. One can calculate the average over all space
of successive powers of the penetration variable for all electrons with
a given s, regardless of direction. In order to use this formal solution,

the angular distribution must be written as a function of s (rather
than T, as above). It can be shown that the essential features of the
scattering and stopping processes should be given by

K, (*)
=Z Ci 1

4 B R-s (7)

6 Similar considerations have been published by Danzer, Z. Physik 128, 79 (1950).
7 This result was given by C. H. Blanchard and U. Fano, Phys. Rev. 82, 767 (abs. G13).
8 See footnote 3.
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where B is the average total pathlength executed by an electron in

losing all its initial kinetic energy (“true range”); and where, as

above, we will treat CJB as energy independent. This form is just

what would be expected in a very simple nonrelativistic formulation
with a~T~2 and dT/ds^ T~ l

. It is to be emphasized, however, that
the validity of the schematization (7) can be shown, from the detailed

form of the energy dependences of the scattering and stopping, to

extend well into the relativistic range of energies. Equation (7)

implies that the “mean free path for l scattering” is proportional to the

residual range. This proportionality is sufficient to insure that the

solutions of the transport equation will have the property that the

shape of the distributions, for a given 5
,
does not depend on B (i. e.,

the initial energy) and s separately, but only on s/B (i. e., on the

fraction of the energy that has been lost); and, of course, on Z. Thus
we have a formulation that embodies the scaling property of electron

distributions, well known from experiment, especially from the ob-
servation that fractional backscattering is independent of incident

energy. 9

We have derived depth moments of the distribution of electrons

from a plane, monodirectional, monoenergetic source. Algebraic
complication precludes in practice the use of more than the first few
moments. These moments can be exhibited as functions of ,9 analyt-

ically. From these functions, the corresponding first few moments of

the distribution of the ionization in a medium can be derived. For
this type of distribution, the first few moments determine only the

gross features and do not specify very closely a detailed form. Initial

numerical results, on comparison with experimental “depth-dose”
curves 10 (which are of necessity for semi-infinite media), give good
agreement for the extrapolated range, but both the depth of the maxi-
mum dose and the ratio of maximum dose to surface dose are predicted

substantially higher than experiment, for low Z elements. Refine-

ments and improvements of the theory are in progress.

6 W. Bothe, Z. Naturforsch. 4a, 542 (1949); H. H. Seliger, Paper No. 9 in this symposium and Phys. Rev.
(paper to be published).

10 J. Fleeman, Paper No. 10 in this symposium, and Frantz and Fleeman (paper to be published).
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2, Scattering of Electrons by Nuclei
1

By Herman Feshbach 2

Introduction

In this paper we shall review the present status of the theory of the
scattering of electrons by nuclei. This phenomena is of interest be-
cause of the light it throws upon (1) electrodynamics—the interaction
of the electron with the electromagnetic field, and the (2) properties
of the target nucleus.

Let us elaborate on (2). For electron energies less than about 10
Mev (the actual figure depends upon the nuclear radius) the elastic

scattering of electrons may be treated accurately by considering the
nucleus as a point charge. The other electric and magnetic properties
such as the magnetic dipole and electric quadrupole moments affect

the scattering in a very minor way and thus are unobservable with
present techniques. Nuclear information is provided, however, by
the inelastic scattering of electrons in which the target nucleus is left

in. an excited state.

Above 10 Mev, the elastic scattering becomes sensitive to the
finite size of the nucleus since for these energies the electron wave-
lengths become comparable with the nuclear radius. This generally

results in a decrease in the scattering as well as the appearance of

typical diffraction phenomena analogous to the Ramsauer effect in

atomic scattering. As the electron energy increases, the electron wave-
length becomes comparable with the interparticle distance in the

nucleus so that the model picturing the latter as a smeared-out current

and charge distribution is no longer valid. The passage from the

smeared-out picture to one in which the total scattering is simply the

sum of the intensities of scattering from each nucleon depends very
naturally upon the correlation in position which exists along the pro-

tons of the nucleus, very similar once more to the atomic case. We
may expect these effects to become important for E ~ 50 Mev.
By roughly 300 Alev the coherent scattering becomes small except

for small angle scattering. Elsewhere the observed scattering just

equals Z (the nuclear charge) times the scattering from one proton.

In this energy range, we therefore begin to investigate the structure of

the proton. Assuming that this fundamental interaction is known
(by measurement of electron-proton scattering) further nuclear

information may be obtained by examining the electron energy spec-

trum, at a given scattering angle. The electron energy, if the protons

in the nucleus were at rest, would be unique. The effect of nuclear

motion is to spread this “line” out into a broadened “Compton line”

whose shape and width would indicate the nature of the velocity dis-

1 This work was supported in part by the Office of Naval Research and the Atomic Energy Commission.
2 Laboratory for Nuclear Science and Engineering, and Department of Physics, Massachusetts Institute

of Technology, Cambridge, Mass.
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tribution of particles within the nucleus. One Sould be careful to

remember that at these energies both meson production and brems-
strahlung have cross sections comparable with elastic scattering cross

sections. The large energy loss in the first of these and the continu-
ous energy spectrum of the second may permit the experimental
separation of this background if a detector with good energy resolution

is employed. One should also remember that our understanding of

nuclear structure is incomplete, that this last picture in which
scattering from the separate nucleons is considered may be too naive,

for it may be the case, as, for example, the esistence of exchange
currents indicates, that the nucleons are too strongly coupled to be
considered as separate entities. In this listing we have also omitted
special effects, such as a large polarizability, which the Goldhaber-
Teller [l]

3 model would give.

To obtain quantitative results for these nuclear effects, it is essential

that the dynamics of the electron be completely understood. Fortu-
nately, an energy region (£'<[10 Mev) exists for which the deviations

from point-charge scattering is negligible. However, the motion of

an electron in the field of a point charge is not exactly given by the
Dirac equation because of the modifications introduced by “radiative”
forces that arise from the vacuum fluctuations of the electromagnetic
and electron-positron fields. An example of the effects of the first of

these is represented by the figure 2.1, a, in which an electron radiates

a virtual photon represented by the wavy line, is scattered by the
nuclear potential, V, and reabsorbs the photon. These virtual emissions

and absorptions result in fluctuations in position giving rise to a

“smearing out” of the Coulomb potential, thus reducing the scattering.

The effect of the electron-positron field is contained in part in the
modification of the Coulomb law of force arising from the polarization

of the vacuum. This type of correction is shown in figure 2.1, b, in

which the nuclear potential produces a virtual pair, which annihilates,

the virtual photon thus produced being absorbed by the incident

electron. It is important to note that these very same processes are

responsible for the Lamb shift in the 2S level in hydrogen where
quantum electrodynamics has been found to hold very closely.

Verification by scattering experiments would extend confirmation of

the theory to the relativistic domain.
In addition to the above virtual effects, it is necessary to take into

account the real emission of photons, as all electrons radiate upon
scattering. Hence, the measured cross section will depend upon the
energy resolution of the detection apparatus. This last effect to-

gether with the virtual effects form the radiative “correction” to the

scattering of electrons.

Figure 2.1. Radiative effects in electron scattering.

3 Figures in brackets indicate the literature references on p. 23.
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We have outlined the phenomena that are important for electron
scattering and shall now proceed to summarize the present state of
knowledge. Consider first the simplest problem, the scattering of
electrons by point nuclei, omitting any radiative effects.

Scattering by a Point Nucleus

The exact solution of the Dirac equation for this problem Avas given
by Mott [2], the differential cross section being expressed in the form
of a series, which is, however, poorly convergent. The series has
been summed by Bartlett and Watson [3] for Z=80 and by Massey [4]

for positron scattering by the same element. A simple formula [5]

exists for low Z,

0
-

c=<tr [1 — (3
2 sin 2

#/2+ 7r aZ(3 (sin d/2)(l —sin #/2)], (1)

where aR=Rutherford scattering, fi=v/c, a=fine structure constant.
This is a first term in an expansion in powers of aZ and aZ/(3 that is

valid for medium Z. Recently we [6] have summed the Mott series

directly for v/c^l. An indication of the accuracy of our method is

given by the comparison of our results with those of Bartlett and
Watson in table 2.1. The notation is that of Mott. Generally, the
ratio of Mott scattering to Rutherford is greater than unity for small
angles, but becomes less than unity as the angle increases.

Table 2.1. Comparison of values of G\ for Hg with those obtained by
Bartlett and Watson 1

BeCn In Ci

e

Bartlett and
Watson

Computed
by Feshbac.h

Bartlett and
AV atson

Computed
by Feshbach

deg.

30 1.349 1.349 0. 020 0. 027
45 .851 .851 .292 .290
60 .538 . 538 .331 .330
90 .213 .213 .227 .228

120 . 0734 . 0735 .107 .107
150 .0159 .0158 .0272 .0272

1 See reference [3],

These results have not been tested experimentally in a very complete
manner until recently [7]. For small angles #<50° and for energies

between 1.3 and 2.3 Mev the agreement obtained by Van de Graaff’s

group is indicated in figure 2.2. Agreement has also been found by

Figure 2.2. Comparison of theory
and experiment at electron energies

of 2 Mev.

The solid line is given by theory. The triangles
give the experimental points as obtained by
Van de Graaff, Buechner, et al.

0 i .2 .5 .6.3 4

°< 5 Z/137
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Figure 2.3. Ratio of the scattering of
positrons to the scattering by electrons.

the same group for Be and A1 for #<70°. Recently Paul [8] with
electrons of 2-Mev energy and Bothe [8] with electrons of 0.245-Mev
energy have extended the measurements to larger angles. They found
agreement for #<60° for all elements. At larger angles there is a

gradual departure from theory as Z increases to 79, the experimental
values falling below the theory. At 120°, Z=79, Paul reports a

deviation of about 13 percent. . The effect seems to be energy independ-
ent and quite similar for angles 90°, 120°, and 150°. Such deviations
are very small compared to those reported in prewar experiments.
No explanation of this effect has as yet been given, although a devi-

ation in the same direction is to be expected to arise from radiative

effects.

The scattering of positrons is another prediction of the theory. The
Lipkin and White experiments [9], which are difficult, have yielded
only an approximate agreement. The ratio of the cross section for

positron scattering to Rutherford is always smaller than unity and
decreases monotonically with increasing angles. The variation of

(cr+ /cr_) for several elements is shown in figure 2.3. Calculations for

Z=80 have been performed by Massey [4].

Radiative Corrections to Electron Scattering

The most complete discussion has been given by Schwinger [10].

These calculations evaluate the correction to the Born approximation
for point coulomb scattering. The correction is applied as a multi-
plicative factor e~ b

. For a slowly moving particle,

5= 8a

3 7T
£

2
me 2

2AE (2)

AE is maximum energy loss’ permitted by the detection apparatus.
This formula can be readily obtained from the Lamb shift calcula-
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tions, wherein an approximate potential is derived [11]:

V= a

*7T me [V
2F]

'

C',mc2 dk , 0 .

19'

,J t0 T“ln2+
30.

(3 )

The symbol JcQ ,
the Bethe lower limit, is in the present connection

replaced by AE, the energy resolution. Calculation of the additional
scattering arising from this term gives Schwinger’s result, indicating
the close connection of the radiative corrections to the Lamb shift.

For relativistic energies (2E 2/mc 2 sin J#^>1) Schwinger gives:

-.a

7

r

,
E 13\ A 2E . & 1\

, 17 . 1
In ) ( In—o sin i

AE 12 me +wx+o siir> <V2/W2 2/
1

72
1

2
(4)

where /(d) is a rather complicated function. For d= *72,/= 1.167,

for d= 7r, /= 7r
2
/12. Some representative numerical values are given

in table 2.2. The logarithmic terms are dominant so that 5^(ln£’) 2
.

Table 2.2. Radiative correction to electron scattering

AE
~E

= >40 kev; £7=3.1 mev.

a 5

7r/4 0. 042
7t/2 . 063

37r/4 .072

It is clear that these radiative corrections reduce the discrepancy
between theory and the experiments of Botbe and Paul, but that a

sizeable gap still remains. An additional Z dependence may arise if

the distortion in the wave functions coming from the coulomb field is

taken into account. These calculations are still in progress.

We turn now to the nuclear properties that may be investigated by
means of electron scattering.

Inelastic Scattering

The prediction of the cross sections for the excitation of the nucleus
for dipole (magnetic and electric) and for electric quadrupole transi-

tions was first given by Wick [12] who employed the Born approxi-

mation expressing this result in terms of the transition electric and
magnetic moments. More accurate calculations taking coulomb efiects

into account have been made by Guth, Mullin, and Tliie [13]. Pre-

cise experimental data is as yet not available.

Effects of the Finite Size of the Nucleus

At 15 Mev the electron wavelength is about 2.5 X10“ 12 cm, winch
is between 2 to 10 times larger than the radii of most nuclei. Hence,
it should be possible to detect the effect of nuclear size. This has
been done by Lyman, Hanson, and Scott [14]. The results are shown
in figure 2.4, where a c is the scattering from point nuclei. The cross
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Figure 2.4. Experimental results shown as ratios to

Coulomb scattering.

The solid curves represent the reduction in scattering arising for a uni-
form-distribution charge except for gold where the curve for a surface-
charge distribution is also shown.

section is of course reduced from that of a point nucleus, the decrease
being greatest for the heavier nuclei. Theoretical calculations employ-
ing the Born approximation and assuming that the nucleus can be
represented by a smeared-out charge distribution have been performed
by Guth and Rose [15]. Precise calculations have been made by
Elton [16] for Au and E=40 me2

,
by Parzen [17] for Pb at 100 Mev,

and by Acheson [18] for Al, Au, Ag, and Au for 15 Mev <E<30
Mev. The theory as well as the analysis of the experimental results

may be simplified considerably by taking advantage of the fact that

the electron energy is much greater than its rest mass and that on the

other hand the electron wavelength is large compared to the nuclear
radius. In symbols e^l, ei?<C 1. We are using units of energy me2

and length (h/mc). From the first of the above inequalities, it imme-
diately follows that the phase shift for a given j, total angular momen-
tum of the electron, is independent of /, the orbital angular momentum
which may be associated with this j. There are, of course, two such
values of l, j±i. The corresponding phase shifts are equal.

Vl=rl-(l+2)’ (5)

The notation here is that of Mott. This arises formally from the fact

that in the high-energy domain the “small” component and “large”

component Dirac wave functions become equal in magnitude. This
relation may be verified for point coulomb scattering where

exp f[77
(c)
_ (?+2 )

—

iafety+l). (6)
e»l

If we write

Vi= Vi
c) + Vi, (7)

where t][ then measures the charge in phase shift arising from the
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finite size of the nuclear radius, then

Vi — v - (

l

+2 * (8 )

The accuracy with which this relation holds may be seen from table
2 .3 .

Table 2.3: Comparison of rj[ and i?-w+2 )

l Author

0 -0.196 —0. 195 Elton.
1 -.002 -.001 Do.
0 -.271 —

. 26S Do.
1 -.004 -.004 Do.
0 -.5339 -.5307 Parzen.

1 .2064— 7T . 2991 — 7r Do.
2 .2507— tr .2572-tt Do.
3 .9678-tt .0711— 7T Do.
4 .0115-tt .0124-tt Do.
5 . 0013— 7T .001 5- 7T Do.

6 0001 7T ,0001-tt Do.

The second simplication, which follows from O 1, has to do with
the potential associated with the finite charge distribution.

Let

U(p) = -(Zalp)[l-q(p/R)], (9 )

where R is a parameter measuring the nuclear radius, and g(x) is a

function that goes to zero rapidly once xf> 1 . It then follows that

rji= r]i(eR, Za). ( 10 )

In words, the phase shift depends upon energy and nuclear radius

through the dimensionless combination eR . This relation shows that

a change in radius with energy constant is equivalent to a change in

energy with radius constant.

The next result requires not only that e^>l but also L?<0. We
ask under what conditions are two models for the nuclear charge
distribution equivalent. It may be shown that the equality of the

phases pi for two models requires that

C qMunGndPip=r qMtn+Gndp/p. ae

The requirement that the energy derivative of pi be model independ-
ent is given by

Jo
9rj^(ff+0J)dp=J“qt j^Ut+6!)dp. (12)

We see that these conditions can be met if, in the region occupied by
the nucleus,

(/?+<??) ~ p‘.
(13 )
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For ei?<C 1, only tj0 is important, and for that- case for nonsingular
potentials it is a good approximation to place t= 2; i. e., the potential

is not strong enough to make the wave function have any appreciable
curvature over the volume of the nucleus. Going back to the poten-
tial U, we see that if Bx and B2 are chosen so that

f[UM+ (*lp)]p
2dp= f[

U

2 (p)+ (alp)]p>dp, (14)

then rj'i is the same for both U’s. This result shows that the scattering

essentially measures the volume integral of the perturbing potential.

These results have been checked by comparing Achesons’ calculation

for the homogeneous and shell models.
For this case B s =(6/10)*Bh . Figure 2.5 demonstrates jtlie" great

accuracy with which this relation holds.

We learn from this that in the energy range ei?<^Cl, that elastic

scattering experiments determine only the value of one parameter;
that for any charge distribution a radius may be chosen which permits
reproduction of the experimental data. In this energy range electron

scattering cannot choose between models, it can only tell us what the
appropriate radius for a given model is. However, it would obviously
be of great interest to compare the scattering of isotopes.

We have started an analysis of the experimental data and we can
only quote first results now. These indicate a homogeneous dis-

tribution with radius somewhat smaller than the usual (1.37X10
-13

cm) HI. This can only be a rough statement, because the error on
the phase shift determined in this fashion is quite large.

In concluding this part of the discussion, it should be noted that
only the effect of a smearing out the charge distribution has been
investigated. In addition, there may be effects due to current dis-

tributions and polarizability. That part of the current distribution

that gives rise to thejmagnetic moment has very little effect on the

scattering. H However, in electron scattering we are not dealing with
the expectation value of the magnetization alone, so additional effects

might occur. I

O 10 20 30 40
ENERGY, Mev.

Figure 2.5. Comparison of phase shifts tjq for the shell

and homogeneous models .

The solid line gives Acheson’s results for the shell model, the radius R.

is taken from (l.SXlO-^cmlU 3
. The circles are computed from Ache-

son’s curves for the homogeneous model employing, however, a radius

Rh equal to (10/6 f?,.
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Approach to Incoherent Scattering

As the energy increases, we approach an electron wavelength of

the order of the distance between particles in the nucleus. The
nucleons then scatter separately so that the net scattering from a
nucleus will be sensitive to the correlation in the motion of the indi-

vidual nucleons. The approach to incoherent scattering may be dis-

cussed in much the same way as the scattering of electrons or X-rays
from atoms. If we make the approximation that all final states are
permitted, one may use the sum rule (closure) and obtain in the Born
approximation

J
Ap-(r,-r,~)

p(ri,rj)e % dVtdVj.

Here p is the probability that particles i and
j

will be at r t and rp
f

\Ap\= 2p sin while jB is the Born approximation amplitude.
The correlation integral goes to one if all the particles are at one point,

p=8(r i
— rj) or if (Ap/fi)R<^l, where R is the nuclear radius so that it

is always unity for zero angle scattering. The angular region in

which it is appreciable narrows as p increases. A rough calculation

indicates that the correlation integral is approximately given by

From this factor we see that, as the energy increases, the coherent

cross section will decrease while the incoherent will increase relatively.

However, since the latter is proportional to Z, it will be some time
before the incoherent term will dominate. This will occur at about
300 Mev, as is indicated by table 2.4, which is based on the approxi-

mate formula given above.
Amaldi [19] and his coworkers have carried out a more elaborate

calculation in which a rather definite model for the nucleus is employed.
His results for lithium are shown in figure 2.6. We note that the

cross-section is completely incoherent for $>50°.

Figure 2.6. Scattering of 300 Mev
electrons from lithium .

T designates the total cross section, I the incoherent

cross section while ro is the assumed proton radius.

The ordinate is the ratio to the Rutherford scat-

tering.
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Table 2.4. Comparison of coherent and incoherent electron scattering

Energy (0**11 c/tf’co) 90° GW?’2
) 90° (f»no/foo)a u at 90° (fine/cr co) A1 at 90°

Mev
10 0. 98

20 .93
50 .64

100 (3IZ) .25 0. 038 0. 23
200 (24/E) .30 1.8
300 (99/Z) 1.24 6

Incoherent Scattering

Above about 300 Mev, the scattering is incoherent and is thus equal
to the sum of the scattered intensities from each nucleon in the nucleus.

The fundamental electron-proton cross section is most clearly deter-

mined in scattering from hydrogen. As the wavelengths here are only
several times the Compton wavelength of the proton, such experiments
will be probing the internal proton charge and current distributions.

These presumably arise from the interaction of the proton and charged
meson fields. Unfortunately, the description of this interaction is not
yet known quantitatively. However, the qualitative features may
be seen in the calculations by Rosenbluth [20], in which perturbation
theory was employed for theories in which the proton is coupled with
either scalar or pseudoscalar mesons. The coupling constant is

adjusted so as to give the experiment magnetic moment. His results

are given in figure 2.7 and figure 2.8, in which the effective magnetic
moment and the effective charge are given in terms of a quantity that
is closely related to the impact parameter. We see that both of these

quantities decrease with energy or increasing angle of scattering.

This may be interpreted as arising from the finite proton radius. In
the long wavelength range, the major effect arises from the spreading

0 12 3 4
E sin 0/2

Hl/r7|psin2 e/2

Figure 2.7. Ratio of the effective

anomalous proton magnetic moment
to its zero-energy value for charged-
meson theories.

0 12 3 4

E sin e/2

MjX+ -fpsin
2 9/2

Figure 2.8. Effective proton
charge for charged-meson
theories with coupling constant
chosen to fit the magnitude of
the observed proton anomalous
magnetic moment.
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of the proton electric charge. We may there employ the theory
described earlier, for the effects arise from finite nuclear size, and obtain
a model independent theory. We may, moreover, employ Rosen-
bluth’s results to obtain a number for the proton radius. If we assume
a homogeneous charge distribution, we obtain {}{) the meson Compton
wavelength, or about 3.5 X10 -14 cm.
The scattering in an actual nucleus will be modified by the motion

of the scattering nucleons giving rise to a “Compton line” at a given
angle of scattering, instead of a unique electron energy. We may
expect that the experimental energy distribution may be analyzed to

give the nucleon momentum distribution.

Experiments on this energy require that sufficiently fine energy
analysis of the scattered electrons be made so that the effects of

inelastic processes such as meson production, electron-electron scat-

tering and bremsstrahlung of hard X-rays be accounted for.
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Discussion

Dr. W. Bothe, University of Heidelberg, Heidelberg, Germany:
In connection with the very interesting nuclear interferences, can one

be quite sure that, with a wavelength comparable to this so-called

length, one can stiff apply motion of charge distribution and motion of

charges within the border?
Dr. Feshbach: There are some possibilities for deviation. For

example, although the magnetic moment effect is small, the magnetic

moment is the expectation of the current in the ground state. In

electron scattering we are interested in high components of these, and

it is not altogether clear that these will be small.
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Dr, Bothe: If the basis of all these calculations is the Mott
theory for point of charge, I am not sure it is applicable, because there

may be a smallest length beyond which the Mott theory does not
apply.

. . . .

Dr. Feshbach: That is what the radiative corrections do. They
take into account the fact that there is a change when the distances

get small and that is what the present point of electrodynamics would
predict. If the present point of electrodynamics is wrong, then this

is, of course, extremely interesting.
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3* Low Electron-Energy Losses in Zinc Oxide

By Olive G, Engel 1

We have been interested in the energy losses 2 sustained by bom-
barding electrons as an electron beam passes theough a section of zinc

oxide that is thin enough so that plural and multiple inelastic scatter-

ing can be neglected. When the accelerating potential of the beam is

sufficiently high, these losses correspond to the excitation and ioniza-

tion energies of each of the electron shells of the atom. We have re-

stricted the present approximate treatment to losses of 20 ev or less and
have made the simplifying assumption that scattering takes place
from atoms whose wavefunctions have not been modified by the pres-

ence of neighbor atoms. We have some vindication for this in the

conclusion of Coster and Kiestra [1]
3 that atomic wave functions are

much more maintained in the oxide than in the solid metal, but we
are aware that, while this assumption is good for ionization from inner

shells, it is poor for energy losses resulting from excitation of the outer
electrons. Nevertheless, as is pointed out by Massey [2], it is usually

only possible to work to this approximation in making a theoretical

estimate of the probability of inelastic scattering.

The divalent zinc ion has completed shells through the 3d shell.

The two 4s electrons of the neutral zinc atom were lost in the ioniza-

tion process. Excitation and ionization of the 3d electrons should take

place as is indicated schematically in figure 3.1. Assuming that

atomic selection rules apply, the 3<i-Mp excitation is allowed, but the

3d—>4s excitation is forbidden. This allowed transition involves

losses of 18 electron volts 4 to the bombarding electrons. Ionization

of a 3d electron would involve a loss of 40 ev. This, however, is in

excess of the arbitrary limit of 20 ev that we have set and the cross

section for it will not be calculated.

As will be shown in a moment, the presence of monovalent zinc ion

is also to be anticipated. It has one 4s electron that may be excited

to the 4p state, or to the 5p state if this state exists as such in the solid.

These excitations, also shown schematically in figure 3.1, would in-

volve losses to the primary electrons of 6 ev and 12.6 ev, respectively.

Furthermore, ionization of the 4s electron may occur involving a loss

of 17.89 ev.

The state of the divalent oxide ion is not clear. It is usually con-

ceded that a gain of two electrons gives the neutral oxygen atom the

stable neon structure in which the second shell is complete. Yet
O’Bryan and Skinner [4] state that the oxide ion is unstable in the

1 National Bureau of Standards. This work was carried out under contract with the Office of Naval
Research.

2 Energy losses of the bombarding electrons correspond to energy gains of atomic electrons. We shall look

at the scattering problem from the viewpoint of the bombarding electrons because it is the energy losses of

these electrons that we shall observe experimentally.
3 Figures in brackets indicate the literature references on p. 30.
4 With the exception of the transition from the oxygen full band to the empty band of zinc ion, all excitation

and ionization energies are taken from Bacher and Goudsmit [3].
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Figure 3 . 1 .

free state and question its existence in the crystal lattice. In addition
to this, Hartree, Hartree, and Swirles [5] have abandoned their attempt
to obtain the Hartree field for the divalent oxide ion and have con-
cluded that, to the accuracy of thisffipproximation to the structure of a
many electron atom, the 0 =

ion cannot exist in the free state. We
may assume that it is stabilized by the lattice and that it exists in the
lattice at least initially. Then one of its 2p electrons may be excited

to the empty 4s state of the divalent zinc ion producing monovalent
zinc ion in the lattice.

5 The energy required for this transition was
estimated first by Seitz [6] and later by Hahn [7]. Seitz neglected the

width of the bands and the polarization energies. Hahn estimated the
band widths and included polarization energies found by Wright [8].

Both Seitz and Hahn neglected the repulsive potential of the lattice

energy. Now the formation of bands in a solid is a direct consequence
of the overlapping of the outer shells of the ions and so is related to the
repulsive potential. We shall therefore use a modification of Seitz’s

procedure and take the repulsive potential into account in determining
the energy required for this transition.

First, the energy required to remove an electron from a free oxide
ion and place it on a free zinc ion is considered. This is shown dia-

grammatically in figure 3.2. Seitz, using the total electron affinity of

oxygen found from the Born-Haber cycle, and the affinity of neutral
oxygen for one electron found experimentally by Lozier, lias estimated
the energy needed to remove one electron from the divalent oxide ion
at about —9 ev. From spectroscopic data, the first ionization po-
tential of the monovalent zinc ion is 17.89 ev. The energy to remove
an electron from the free oxide ion and place it on a free zinc ion is the
total energy separation or approximately 27 ev where the zero of en-

ergy is taken to be Zn+0“.
The lattice energy F(r) consists of two parts, namely, the attractive

electrostatic potential and the repulsive potential that arises in the

overlap of the outer shells.

2 “
ft,

F(r)= -+6r0

~n
. (1)

r0

6 This may be regarded as a first step in reduction. The second step would produce the free metal and in
the case of thin films this would be favored by the escape of free oxygen. The extent to which this takes place
under electron bombardment has not been ascertained. O’Bryan and Skinner found that most oxides were
stable to X-rays although aluminum oxide decomposed slowly to give the metal.
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Figure 3.2.

In the attractive potential z is the charge of the ions, e is the electronic

charge, a r is the Madelung constant, and r0 is the equilibrium cation-

anion distance. Born [9] has stated that the repulsive potential can
be developed in power series in powers of 1/r. Assuming that only
one term in the series gives an important contribution, he has written
the repulsive energy in the form br~ n where b and n are constants.
When the ions are brought into their characteristic lattice configura-

tion, they approach until the repulsive term of the lattice energy just

balances the attractive electrostatic potential. The amount by which
the negative ion energy is lowered and that by which the positive ion

energy is raised is less than the Madelung potential to the extent of

the repulsive energy. This lowering and raising is shown by the

dashed lines in figure 3.2.

In the lattice the energy of the oxide ion and the energy of the zinc

ion are given by the expressions

— —
- 9+ |

z
2
e
2a r

r0

bro
n

> (2)

E Zn+ +— 17.9 2

z
2
e
2a r

r0
br0 (3)

The energy to take an electron from the oxide ion in the lattice to a
very distant zinc ion in the lattice is the difference in these two equa-
tions plus an additional term. As this transition occurs, the oxide ion

and the zinc ion involved are each left with unit charge. An addi-
tional energy is involved when the process is carried out in the lattice

because of the polarization of the medium about a lattice site to which
an electronic charge has been added or from which an electronic charge
has been subtracted. This is indicated by the dotted lines in figure

3.2. The energy to take an electron from the oxide ion to a less

distant zinc ion is less than this result by e
2
/r

,
where r is the distance

between the ions. This has been shown by Seitz [10] who points out
that the Madelung potential at the cation is decreased by e

2IR if an
electron is removed from an anion at distance R. It is indicated by
the series of horizontal lines in figure 3.2. To obtain the energy to

take an electron from an oxide ion to its very nearest neighbor zinc

ion necessitates the further term of e
2
/r0 ,

where r0 is the equilibrium
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cation-anion distance. The energy of the gap between the oxide ion

full band and the zinc ion empty band is then given by the following

equation, where EvoXslVi represents the sum of the absolute values of

the anion and cation polarization energies which in the case of zinc

oxide is estimated to be about 4.5 ev [8].

£,

gap=“26.9+ (4)polar

All quantities are known in eq (4) except r0 ,
b, and n. The constant b

is eliminated by use of the equilibrium condition that the derivative

of the lattice energy per ion pair with respect to displacement is zero.

We proceed to evaluate r0 .

Zinc oxide has the wurtzite structure [11]. Each zinc ion has about
it a tetrahedron of oxide ions but is nearer by 0.1 A to one of the

oxygens than to the others [12]. This has been construed as indicat-

ing homopolar character. Similarly, each oxide ion has about it a

tetrahedron of zinc ions. Ions of the same kind form a hexagonal
close packed system. Consequently, we may take the equilibrium
distance r0 to be the sum of the Goldschmidt radii decreased by the

factor 0.93 because of the coordination number of four [13]. In this

way the equilibrium distance is found to be 2 A.
Born’s [14] method can be used to find the value of the constant n,

and the lattice energy can then be calculated by making allowance
for the homopolar character of zinc oxide. On the other hand, the
value found by Sherman [15] by means of the Born-Haber cycle may
be used as well. Sherman’s value of 42.1 ev includes the repulsive

potential that was neglected by Seitz and Hahn. On substituting

this value for the lattice energy in eq (4) the energy of the gap be-
tween the oxide ion full band, and the zinc ion empty band is found
to be approximately 2 ev.

This is a reasonable value. It compares with the cathodolumines-
cent peak of zinc oxide [16], with the excitation energy of ZnO:(Zn)
phosphor [16], and with the conductivity measurements of Hahn [7].

We may, however, question whether or not a loss of 2 ev will be ob-
served for zinc oxide under our experimental setup. The sensitivity

is such that it certainly could be observed. On the other hand, the
crystal system may be energetically more stable after the transition

has occurred than before, and the return to the initial state may be
slow. The sample is exposed to the beam over a considerable period
of time before a photographic observation is made so that possibly

the observed losses should be interpreted in terms of a Zn+0~ lattice.

The experimental observations are being made by Harold Mendlo-
witz of the Electron Bhysics Section with 30,000-v electrons and by
use of dark-field illumination. Use of dark-field illumination limits

the scattering angle to the aperture of the microscope, which is 0.001
radian. It is necessary then to have an equation which will give the
cross section for excitation of zinc to a state n, the scattering angle
being 0.001 radian, and the accelerating voltage 30,000 v. The
single inelastic scattering cross section of Mott and Massey [17] is

(5)

where the energy of the colliding electron is &2
/f

2/2m and its energy
after the scattering incident is &2

ft
2/2m. Massey [20] has derived the
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expression for the scattered amplitude jn {B, <f>) by writing the Hamil-
tonian for the system atom plus colliding electron. This is

fn(0,<p)
= STr

2me 2

k 2K2
i Kn-r, dr i (6)

where n*0 and n x are unit vectors at angle 0, the change in momentum
is Kn=1m0

— Jcn[, . . . Vn) is the wave function of the atom in

its ground state, and 4> n (fi • • • rv) is the wave function for the atom
in the state n. Substituting this expression for the scattered ampli-

tude into the equation for the cross section, Qn ,
expanding the ex-

ponential, using the orthogonality condition, and the expansion of

the function of 6 results in the equation

0= 0.001

Q = /
32ttV
h2

v‘

e=-
E„ -En

2E

(7)

where En—E0 is the binding energy of the electron to be excited and
E is the accelerating potential. On integrating, we have for 30,000-

volt electrons and a scattering angle of 0.001 radian,

<?„= 0.0261|(x;zs\ l

2 Iog
60

• (8)

IV s /Orel \Ej n --LLq)

When only a single electron takes part in the transition, only the

off-diagonal matrix element associated with this one electron need be
computed. The other electrons are left unchanged and so do not
contribute anything to the cross section. Consequently, for this case

we have,

<3»= 0.0261|2o»
1

2 log 0)

where |Z0n |

2
is the square of the dipole moment.

The values of the square of the dipole moment for discrete transi-

tions were computed by using the Coulomb approximation of Bates
and Damgaard [18]. In the case of ionization, a plane wave was
used for the final state as was done by Rudberg and Slater [19], and
integration was carried over states in the continuum to the extent of

an ionization energy. Lorenzo P. Greene and Morton Lutzky, both
of the Electron Physics Section, assisted with the computational work
involved in evaluating the integral. In the case of the transition of

an electron from the full band of the oxide ion to the empty 4.$ band
of the divalent zinc ion, the square of the equilibrium cation-anion
distance was used for jZ0ra |

2
. The results are given in table 3.1.

Our calculations have indicated that the most probable transition

is that of an electron from the oxide ion full band to the 4s band of

divalent zinc ion. After this, the most probable transitions are
excitation of the 4s electron of monovalent zinc ion to the 4p state and
the complete loss of this electron by ionization. About 10 times less

probable than these is the excitation of the 3d electrons. Excitation
of the 4s electron of monovalent zinc ion to the 5p state, if, indeed,
this state exists as such in the solid, is a thousand times less probable
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Table 3.1

Transition Energy loss Cross section

ev cm 2

Zn++ 3<21° ->Zn++ 3

d

9 4p 18 4.4X10- 19

Zn+ 3di° 4s ->Zn+ 3d>° 4p 6 1.4X10-18
Zn+ 3d10 4s -»Zn+ 3d 10 5p 13 6.9X10-22

Zn+ 3di° 4s H>Zn++ 3di° 18 1.2X10-18
0~ 2p6+Zn-H- 3d 10-»O- 2

p

5

+Zn+ 3d 10 4s

2 1.5X10-1?

than the excitation of the 3d electrons. It will be interesting to see

what justification experimental results may give to the assumption
that atomic states continue to exist in the solid oxide and to the use of

this simple model.

I acknowledge the suggestions and assistance of my associates at the
National Bureau of Standards, and several very helpful conversations
with Dr. K. F. Herzfeld of Catholic University and with Dr. R. W.
Gurney of the Institute of Fluid Dynamics of the University of

Maryland.
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4. Summary Calculations of Multiple Scattering

By W. T. Scott 1

Tlie recent and successful theories of Moliere [1, 2]
2 and Snyder-

Scott [3, 4] for the small-angle multiple scattering of fast charged
particles have not been presented in a form as convenient for com-
parison with experiment as the approximate Gaussian form of the

older theory. It is the purpose of this paper to present calculations

that summarize the newer theories in a convenient form.
Any theory of multiple scattering involves, first, a satisfactory

single-scattering law, second, a satisfactory statistical study of the
result of a random multiplicity of single events, and third, an adequate
numerical computation, including some types of mean-value quanti-
ties, that can be directly compared with experiment or used to evaluate
experimental errors. We shall consider here the single-scattering law
as calculated by Moliere, the statistical theory common to both treat-

ments along with the Snyder-Scott extension to cover the lateral

distribution, the two differing methods of numerical computation,
and some new and convenient mean-value results. In addition, we
shall give an indication of the degree of departure from the Gaussian
approximation, a discussion of other methods of measuring scattering

than use of tangents and chords, a brief comparison with E. J. William’s

[5] scattering, and finally some values of the so-called scattering

constants for photographic emulsions.
The statistical theory depends on the use of a single scattering law,

which has a reasonably simple Fourier-Bessel transform. Moliere
has used the same form of scattering law as have Snyder and Scott
and a number of other authors, namely, that the differential cross

section per unit solid angle is

Q(x)=
/2Z'Ze2

\ pv

1

(x
2Jrxlf

( 1 )

The parameter Xy depends on the screening of the atomic nucleus
by its electrons, and Moliere has evaluated it by fitting eq (1) to an
accurate calculation based on two improvements over the usual
Born approximation. For small angles, he used a combination of

WKB ray optics near the atom and strict wave mechanics for the

scattered waves beyond the atom. For angles up to 90°, a partial

wave analysis, using Legendre functions was employed. Both
methods were evaluated for Tliomas-Fermi atomic wave functions,

using a sufficiently accurate analytic approximation to the latter.

Unlike the Born approximation, which is valid only when the parameter

ZZ f

7 “137/3

* Smith College, Northampton, Mass.
2 Figures in brackets indicate the literature references on p. 37.

(2)
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is much [less than 1 (Z, Z' are atomic^ numbers of scattering

atom and scattered particle; (3=v/c for the particle), these calculations

of Moliere are valid for all 7.

To evaluate \y, he calculated a root-mean-square angle, with an
arbitrary cut-off, using the accurate theory, and fitted the same value
from (1) for each of several values of 7. A simple analytic interpo-

lation formula welded finally

777,/?2Vl/3

Xt
=1.13-C— (1.13+ 3. 767

2
)
1/2

, (3)

where m and e refer to the electrons and p is the momentum of
f n a QPQ tf *TT T'f'l O I PQ

The Snyder-Scott ^ is me2Z^hp. The 1.13 factor in front of this

formula arises from the use of the Thomas-Fermi atom radius instead
of the Bohr radius multiplied by Z1/3

. The radical is Moliere’s interpo-

lation formula. The results are certainly accurate enough for our
purposes since the multiple-scattering distribution is relatively

insensitive to Xy We shall therefore use eq (3) in what follows.

The statistical methods used by both Moliere and Snyder and
Scott are mathematically equivalent, and were derived in a straight-

forward way by Bothe [6] in 1921. One calculates, in fact, the prob-
ability of a given angle 6 occurring as a result of exactly one, exactly
two, exactly three, etc., scatterings, and performs an infinite sum.
Each term has the form of an n-fold faltungs-integral over the single-

scattering curve, so that the use of Fourier-Bessel transforms reduces
each term to a power of the transform of the single-scattering function.

An exponential series results, and the summation is immediate.
Bothe used this method to show the limitations of the Gauss error

law, and, of course, the deviations from Gaussian behavior are clearly

discernible.

Moliere used the Bothe method directly. Snyder and Scott used
a diffusion equation whose solution is identical. However, the Bothe
method is simple only for the problem of the tangent angle distri-

bution at the end of the track, whereas the Snyder-Scott method is

equally good for the laterial distribution of the end of the track, or,

what is the same thing, the distribution of chord angles with respect

to the initial direction.

Figure 4.1 shows the two angles in question. It is proved in the
paper of Scott and Snyder [4] that the chord angle distribution for

two chords in a given cell or length of track is independent of the
division point of the cell, so the lateral distribution yields also the
distribution between adjacent chord angles.

These results, of course, apply only to the small-angle approxima-
tion. Lewis [7], and Wong and Guth [8], have shown how our theory
can be derived from a calculation valid for all angles.
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Moliere’s numerical calculation was based on a clever choice of an
expansion parameter. Now, the simplest physically significant para-
meter for the scattering in a given thickness of material is the mean
number of scatterings that occur. We shall call this number 12,

omitting Moliere’s subscript b, and distinguish 12 from the Snyder-
Scott 2

,
which has the same significance but was not accurately cal-

culated. Using eq (1) and (3), we obtain

2
4riW(Z0»Z(Z+l)

(PVfXy

N is the number of atoms per cubic centimeter, and t is the thickness
of the scatterer in centimeters. Z2 has been replaced by Z(Z+1) to

account for the electron-electron scattering, in accord with the recent
work of Hanson, Lanzl, Lyman, and Scott [14].

Moliere’s expansion parameter is a quantity B, related to 12 by

1.167^=0- (5)

Lt turns out that if the Fourier-Bessel transform for the multiple-

scattering distribution is expanded in inverse powers of B
,
the separate

terms can be evaluated by rather simple calculations. Moliere’s
second paper gives numerical results to three-figure accuracy valid

for a fairly wide range of angles and a wide range of values of 12.

Results are given for both the actual spatial angle and the angle
projected on a plane of observation.

The Snyder-Scott calculations were performed by direct, numerical
integration involving considerable effort, including the use of ten-

place cosine tables, and are somewhat more accurate than Moliere’s

results. Tables are available for both tangent and chord angle dis-

tributions for the projected case, and are nearly complete for the

tinee dimensional case. These tables were, of course, based on a

different value of x7 than that given here, and a different value of 12.

However, by suitably defining the dimensionless variables of the
tables, they become a numerical evaluation of Moliere’s results.

In fact, we simply take the dimensionless angle rj to be the actual

projected angle divided by Xy, and we use 12 for 2 .

We have compared our tables with Moliere’s results, and find

excellent numerical agreement in the projected tangent angle case
for six values or 12 from 100 to 84,000—in most cases better than 1

percent and always within about 2 percent. Moliere’s functions /O
and /(

2

) are not tabulated to much greater accuracy, and one or two
of his numbers may be in error. We have also extended his tables of

these functions for his dimensionless angle <£(<£= <h/xT (I>12)
1/2

) from 4

to 13.5 in order to compare the tails of our curves, and again find

excellent agreement. His asymptotic formulae agree with ours, but
the terms are rearranged because of his expansion in inverse powers
of B as well as of <p.

Butler [9] has an asymptotic expansion which is almost identical

to Moliere’s /(*) term. The /(
2
) term, which Butler does not have,

contributes, at 12=100, 3 percent for <^=4 and 1 percent for <p= 13;
and one-half as much at 12= 24,000.
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Miss Jean Snover of the computing staff at the Brookhaven Labora-
tory has recently reported to me that similar close agreement exists

for the three-dimensional case.

Now, while there are some experiments that yield distribution

curves directly comparable with the tables, in most cases some mean-
value quantity is obtained, and compared. The root-mean-square
has frequently been used, largely because of the well-known theorem
that the mean square angle for multiple-scattering is just 12 times
that for single scattering. However, this is a bad choice experi-

mentally, since it overweights the large angles for which the statistics

are poor. Furthermore, the rms value for single scattering can only
be found by cutting off the single scattering law in a somewhat
arbitrary and ambiguous way, leading to a minor uncertainty in the
theoretical results.

If, however, a mean absolute value is calculated, the effect of any
such cut-off (such as is produced by the finite size of the nucleus) is

completely negligible. The use of a median absolute value in cases

where it is practical allows even less influence of the poor statistics

at large angles. If background counts, as in some experiments,
prevent counting the numbers of large angles, a measure of half-

width would be more practical. If the experiments allow it, the
1/e width might be even more useful.

The four above-mentioned quantities have been calculated for

both tangent and chord projected distributions, and in addition we
have included two more. The fifth is the angle measured by the ratio

of intensity at, zero angle to the total number of observations, an
angle that could be defined as the 1/e width of a Gaussian curve of the
same total area and same maximum height. This angle is equal to

1/P 0 7r
1/2

,
where P 0 is the normalized intensity per unit angle at zero

angle. Lastly, we give the somewhat arbitrary, but very practical,

mean absolute angle taken when the distribution is cut off at 4 times
this mean angle, by a relaxation calculation.

The mean absolute values were calculated by numerical integration,

and the results checked closelv with an analytic formula for the mean
value obtained by Moliere. The \ and 1/e widths were found by
using a linear interpolation between <4 and log P, an accurate pro-

cedure because of the approximate Gaussian behavior of the curves.

The medians were found by integrating a not-quite-normalized Gauss
curve fitted to the central maximum and to the J width. The error

in this procedure was shown to be quite small. The other two
calculations were straightforward.

All of these twelve quantities, six for each distribution, have
remarkably simple dependencies on the mean number of scatterings 12.

These were discovered by considering that if the distribution were
truly Gaussian, any one of the quantities—call it \p—would vary
strictly as 12k A plot of some of the quantities ^/12

1/2 against log 12

yielded curves that were nearly straight, and just as a guess ^
2
/12 was

plotted against log 12. For the range of 12 from 10 2 to 1

0

5
,
lines straight

to 1 percent resulted, and the coefficients are listed in table 4.1.

We call the various (\p
2
/12) ’s for the tangent distribution, T’s, and

the quantities for the chord angle distribution, C’s. Figures 4.2 and
4.3 show the calculated points and the lines fitted to them by a least -

square-relative-error method. Only three points in all these curves
deviate by more than 1 percent, and they by less than 2 percent.
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Table 4.1. Coefficients for the relations T or C=^212=A+ A' logioO.

Mean-value angle,
<

P

Tangent values Chord values

A A' A A'

Arithmetic mean 1.044 0. 809 0. 299 0. 269
Arithmetic mean cut-off at 4x_ . __ .418 .818 . 090 .272
Median absolute angle .222 .596 .033 .200

i width - .035 1.831 -.123 .613
l/e width _ . .253 2.636 -.105 .879

tv*=P(o)]-» .806 2. 656 .088 .885

Figure 4.4.

The results are not very good for 12 very much below 100. However,
for 12 from 10 5 to 109 we believe they are good. The mean absolute
angle for the tangent case fits Moliere’s analytic formula to 1 percent
out to 12 equal to 1

0

7

,
and to 3 percent out to 109

. One expansion of

Moliere’s, good for small angles, has a Gaussian term plus corrections,

and the l/e width of this Gaussian is just B. B is thus closely related

to Ti/2 ,
T 1/e ,

and TQ ,
and a linear relation for it is good to 3 percent for 12

out to 109
. Figure 4.4 shows Moliere’s values of B

,
marked by circles,

and more accurate calculations, made by Miss Snover, marked by
crosses. The linear relationship

F>— 1.153+ 2.583 log1012, (6)
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which was fitted to the crosses is seen to fit fairly well over a wide
range. The deviation for 12=10 is, however, about 10 percent and
will get rapidly worse above 10.

The extent to which the Gaussian approximation is valid is partly

shown by the slow logarithmic variation of the P’ s and C’s. A
Gaussian expression in which the various p s propagate like the root-

mean-square value would show no such variation. However, a
Gaussian expression with a different law of propagation should still

have certain particular relations between the various mean value
quantities. Let us characterize a Gauss curve by its 1/e width w, so

P($)=P0e~ q?2/w2
. Then|T|avg=w/7r 1/2

;
h med=0.477w; $ 1/2= w^\og t 2 ;

$0=w and Tavgcut.off=0.561w. If we calculate w for large 12 from the

formulas given for the P's, using the coefficients of log 12, we get, in

order of the table in the abstract, 2.593, 2.595, 2.637, 2.642, 2.636,

2.656. The last four values in this list are pretty much independent
of the tail of the curve, and show a good agreement. The same
thing is true of the C’s. However, no simple relationships hold
for the constant terms, i. e., for small 12. We see that for large 12

the distribution becomes Gaussian in form, but with a different law
of variation for w than would be calculated from an rms value.

In the Gaussian approximation, it is easy to derive a relationship

between the P’s and C’s. The mean angle between tangents is V3/2
times the mean angle between successive chords for the same cell

length. We have here the case of half cell lengths for the chord

angles, which reduces the mean chord angles by ^2, and the P’s and
C’s involve the squares of angles. Thus the P’s should be three

times the C’s. The coefficients of the logarithms obey this rule within
0.4 percent, but the other terms do not, showing that this frequently
quoted relationship is only accurate for large £2.

Although as stated before, a root-mean-square angle is not very
useful, the estimations of errors in a sample mean is most easily made
b}r use of a mean-square error. Therefore, we calculated the mean-
square angle with the same cut-off that was used for the cut-off mean
absolute angle. Similar results occur when the same plots are made,
although the deviation from linearity is greater. If we calculate the
rms deviation from the mean absolute angle, we find values in both
tangent and chord case that vary from 0.77 to 0.82 times the mean
value. If several successive chords or tangents are measured on a

track, one can estimate the error in the mean arithmetic angle by use
of the well-known theorem of the sample mean; namely, that the
rms deviation of the sample mean is n~ l/2 times the expected rms
deviation for a single observation. The result is not strictly true in

this case, for the successive angles are correlated, but an earlier

calculation [12] on 8 chords showed that the effect of correlation is to

increase the standard deviation by about 5 percent. Hence we feel

justified in quoting 0.85 n~ 1/2 for the relative rms deviation when n
chord angles are measured on a track.

A comparison of our results with Williams’ [5] theory can be made
by fitting formulas of our t3'pe to his results. We find

Tl =1.63+ 0.79 log10 £2

P^0 = 1.18+ 0.79 log10 £2

(7)
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which agree fairly well with our results for large 0 but not for small ft.

Lastly we shall discuss the scattering constant K. In photo-
graphic emulsions we have a mixture of nuclear species, and must
employ the appropriate average values for ft and i/v The work of

Moliere [2] indicates that the appropriate quantities to average are

x

2

ft and (Z 2 log x
2
)(Z*)av rather than xl& and ft/7 as indicated by

Scott and Snyder [4] and used recently by Snyder [13].

The scattering constant K has usually been defined for mean chord
angles a

,
and in our case can be expressed in terms of Cm . However,

other C’s can be used. The relation, for a mean-value type \p is

Kj=2pVX2
ftC^/t. (8)

The 2 results because the cell length s=tj2.
Using eq (3) and (4) and the results in the last paragraph, we have

then

K+= [8 ire* (Z')
2S iNtZt (Z,+ 1 ) ]

C+ . (9)

Using the manufacturer’s data for Ilford G-5 emulsion, we find the

bracket in (9) to have a value 25.25. We also find for this emulsion
11= 631 s0 ,

where s0 is the cell length in microns. (This value con-
trasts with ft=1248s0 given by Snyder [13]). Several results are

obtainable, according as we calculate the C from chord angles, from
tangent angles with a factor 3, from smoothed-out successive chords,

or from alternate smoothed chords, and are quoted, in the accompany-
ing table:

Scattering constant K for 100-micron tracks

From C From T/3
Smoothed-
out chords

Alternate
smoothed
chords

Complete mean value _ _ 25. 9 26. 5 27. 3 30. 3

Cut-off mean value.

_

23. 3 24. 0 24. 6 27. 5
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Discussion

Dr. W. Bothe, University of Heidelberg, Heidelberg, Germany:
Have you made comparison between your results and Williams’
formula?
Dr. Scott: Yes. What I did was to take mean values and calcu-

late similar formulae. The Williams’ theory was recently summarized
in a paper submitted by Voyvodic and Pickup to the Physical Review.
Using that theory one can get the quantity I call T for the mean value:

Ymean= 1-63+ 0.79 log 9
;
and the cut-off value is Tcut . off= 1.18+ 0.79

log 9 . The numbers in table 4.1 indicate that in our case the coefficients

of log 9 are nearly the same, but the first numbers are smaller, so for

large values of 12 the expressions agree.

Dr. L. Marton, National Bureau of Standards, Washington, D. C.:

You mentioned that you don't have an explanation for the results in

that relation. Do you have something physical to offer for it?

Dr. Scott: As to why it is a straight line? Of course, why it is

slowly varying is quite clear. It ought not to have much variation.

Snyder and I tried to see from our theory how one would get this linear

relation, but we could not. It might be that by studying the way in

which this quantity B of Moliere leads to a simple expansion, one could
see that the quantity ought to vary in this way. For instance, Moliere
would give for the mean value a formula of this sort: A0 -\-Ai/B. I

don’t really see why this comes out a straight line, but the fact that

it does is very helpful.

Dr. E. Guth, University of Notre Dame, Notre Dame, Ind.: Are
your computations more complete than Moliere’s?

Dr. Scott: Yes. Moliere gives a brief table from which you can
cover nearly all of our tables but not very far out. We extended his

tables for his <£, which he takes up to 4. We extended them from 4 to

13K and calculated to another decimal place, and his tables would be
easier to carry in your pocket than ours and give actually the same
results. Although ours are more complete, I am not sure there is a

great advantage to them.



5. On the General Theory of Multiple Scattering,

Particularly of Charged Particles'

By Ming Chen Wang 2 and Eugene Guth 2

The general theory of the elastic multiple scattering of particles with a strongly
anisotropic scattering function is investigated without making the small-angle
approximation. The rigorous transport equation is used and approximations are
introduced at a later stage. First the general formulation of the problem is given.
Some of the approximations involved in the existing theories of small-angle for-

ward scattering are discussed. The solution for the problem of anisotropic scatter-

ing is derived by means of the spherical harmonic method. The general nth
approximation is given, and is shown to be equivalent in all details with the nth
approximation obtained by means of the gaussian quadrature method. Finally,

the problem of anisotropic multiple scattering is reduced to a quasi-isotropic one
by using the Goudsmit-Saunderson distribution function (defined for all angles)
as a first approximation. Three different methods are given for forward scattering
(including large angles). The first method is a perturbation treatment. The
second method is based on the approximate delta-function character of the single

scattering function, and employs a Fokker-Planck-type development for the
peaked part of the scattering function. The third method is a Liouville-Neumann
type of iteration applied directly to the transport equation. For back scattering
the second and third of these methods also apply. In addition a special method is

developed, based on the smallness of the back single scattering cross section. The
Goudsmit-Saunderson distribution function is developed in powers of the thickness
of the scatterer, and it is shown that all three methods lead to the same single

scattering tail.

1, Introduction

The theory of multiple scattering has been developed in the past
primarily for three groups of problems, namely, (1) radiative transfer,

(2) multiple scattering of neutrons and (3) multiple scattering of

charged particles, in particular of electrons. In any problem of mul-
tiple scattering we have two steps to consider: (a) the law of single

scattering, and (b) the statistical problem of obtaining the spatial and
angular distribution of the multiply scattered light or particles, which
is properly governed by a Boltzmann integro-differential equation.

We shall be concerned with the case of axial symmetry in the single

scattering law, and multiple scattering in a plane-parallel stratified

medium. The distribution function will then depend only on two
variables: a cartesian and a polar coordinate describing the spatial

and angular behavior respectively.

A. method of expanding the distribution function into Legendre
polynomials (spherical harmonic method, called SH in the sequel)

has been applied by Gratton [1]* and Chandrasekhar [2] to the prob-
lem of isotropic scattering. Unfortunately these authors did not go
far enough to get the general wth approximation so that, at that time,
this method seemed to be inferior to the method of gaussian quadrature

1 Supported in part by ONR. This is an abbreviated version of a paper which appeared in Dec. 15, 1951,
Phys. Rev.

2 University of Notre Dame, Notre Dame, Ind.
* Figures in brackets indicate the literature references on p. 59.
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(called GQ in the sequel). We shall derive the nth approximation for

anisotropic scattering by means of the SH method and show the rela-

tion between the SH method and the GQ method.
In both the SH and the GQ method, there is an ambiguity in the

way of defining (a) successive approximations and (b) approximate
boundary conditions. This ambiguity does not seem to have been
recognized in the literature. The usual procedure for (a) and (b) in

the GQ method was chosen for its analytical simplicity. We shall

show that for the SH method (a) can be chosen in a natural way so

that the GQ and the SH methods give exactly the same solution.

Our (b) was chosen among other reasonable choices to give the best
approximation to the exact solution for the isotropic case

The simpler features of the multiple scattering of charged particles

have been described in a very instructive manner in a recent paper
by Bohr [3]. For this reason, we shall restrict ourselves to a brief

summary of the attempts toward a more rigorous theory Bothe [4]

started with the correct Boltzmann integro-differential equation, but
did not state the exact boundary conditions. From the Boltzmann
equation he derived a Fokker-Planck type of differential equation.
Though the transition “from Boltzmann to Fokker-Planck’ ’ assumes
the small angle approximation, Bothe retained in the latter a factor

(cos 6) which goes to unity in that approximation. He then tried to

solve this Fokker-Plancktype equation with an inexact boundary
condition. Recently he [5] has given elementary considerations on
back scattering. Betlie, Rose, and Smith [6] have tried to obtain a
solution of the same differential equation with the exact boundary
conditions. However, it seems doubtful whether such a solution does
exist. They also derived a diffusion equation for back scattering from
thick foils by a procedure similar to the “age” theory of neutron dif-

fusion. Williams [7] developed, a consistent theory in the small angle
approximation based on the Fokker-Planck equation, putting the fac-

tor mentioned (cos 0) equal to unity and using an approximate bound-
ary condition neglecting back scattering. Goudsmit and Saunderson

[8J developed a more accurate theory, which can be formulated as

follows: One applies the small angle approximation (putting cos 6=1)
to the Boltzmann equation (instead of the Fokker-Planck equation
of Williams), and uses the same approximate boundary condition as

Williams does, neglecting back scattering.

Goudsmit and Saunderson pointed out that a parameter in their

theory can be considered either as the thickness of the medium or as

a path length, and that their solution is an exact one for the latter

case. Moliere [9] used an old theoiy of Wentzel [10] to derive an
expression which is just that of Goudsmit and Saunderson if one re-

places a series by an integral, and evaluates the integral. Snyder
and Scott [11] derived essentially the same integral from equations
equivalent to the approximate Boltzmann equation which leads to the
Goudsmit-Saunderson theory. These authors give the most extensive
numerical evaluation of their formulas. For thin scatterers both
Moliere and Snyder-Scott showed how the multiple scattering ap-
proaches the single scattering tail. A. different approach by Butler [12]

leads, for thin scatterers, also to a separation of the gaussian multiple
scattering and the single scattering tail in the small angle approxima-
tion. Butler’s procedure was generalized to larger angles, still neglect-

ing back scattering, by Teichmann [13]. Lewis [14] treated multiple
scattering in an infinite medium using the path-length as a variable.
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He rederived the Goudsmit-Saunderson solution and showed the tran-

sition to the Snyder-Scott integral form. Weymouth [15] obtained
some approximate formulas for the spatial, angular and path-length
distribution, in the form of integrals, in a semi-infinite medium with
isotropic sources uniformily distributed in the medium.
One may solve the problem by getting a joint distribution of path

length and actual thickness of the foil, since we already have the
distribution of path length and angle, the Goudsmit-Saunderson dis-

tribution. This is, of course, just as complicated as the original

problem. Yang [16] has derived such a joint distribution in the

small angle approximation. The average value of path length

obtained by him is the same as that obtained previously by Rose [17],

2. General Formulation

2.1. Law of Elastic Single Scattering for Axially Symmetric
Scattering Potential

Let a be the angle between the incident velocity and the scattered

velocity, and <t>(cos a) be the single scattering law. The total scat-

tering cross section a is given by

C2tt C*tt

<r= c/0 <f>(cos «) sin ada,
Jo Jo

where
<f>

is the azimuth angle,

tion by

p(c0S a)

Then we define our scattering func-

4 TT

<J

<t> (cos a), 0 )

so that, when we develop ^(cos a) in Legendre polynomials

oo

J) (cos a)= 22 °>iPi (cos a)
> (

2 )
l=

o

we have co0
= 1.

Now with reference to an arbitrary spherical coordinate system,
the directions of the incident velocity and the scattered velocity

can be specified by the angles 6
, 0 and d', 0', respectively. These

angles are related to the angle a by the equation

cos a=MM'+ [(l — M
2)(l— (m')

2
)]* cos (

'), (3)

where /z=cos 6 and //= cos O'. Equation (2) then becomes

2>(m,0,/G0')=22 &iPi{ ju/+ [(l— m
2
)(1— m' 2

)]" cos (0—0')}.
1=0

Expanding the Legendre polynomials by the addition theorem and
integrating over the variable 0, we get

'1 f*2ir oo

2?(/X,Y)=— ^(m,0,M 00^0= 22 UlPl(»)Pl(j*')- (4)
-7T Jo Z= 0
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2.2. Boltzmann Equation

An axially symmetric beam of particles is incident on a plane
slab of scattering material with two of its dimensions infinite. Let
the axis parallel to the finite dimension be the £-axis, which is also

the axis of symmetry of the incident beam. The beam is incident

on the surface £=0, and the other surface is z=a:>0. The steady
state distribution function of the scattered particles obeys the well-

known Boltzmann equation

M ^+/=7j (5)

where \x is the cosine of the angle between the velocity of the particle

and the z-axis, t=N<jx
,
and N is the number of scattering centers

per unit volume, a and are defined above. The problem
is to solve eq (5) with the boundary conditions

/(0,m)=7tF5(m— Mo) M>0 (6a)

T o M<0, (6b)

where t~Nca and mo^> 0. For simplicity, we have used a 5-function

as the incident beam. As the integral equation is linear, the solu-

tion for any arbitrary axially symmetric incident beam is just a

superposition of such fundamental solutions. The integral of the

5-function over the whole solid angle is normalized to unity, while
the strength of the incident beam is governed by the constant F.

If we define the integral in eq (5) by the function i- e.,

eq (5) becomes

(8)

The formal solution of eq (8), satisfying the boundary conditions,

eq (6), is clearly

/(r,-f F) =e~ T,ti f —+ 7rFe -r/^50u— Mo) (9a)
Jo M

f(r,-p)= er» f J(r
•

(9b)
Jr m

Here ^ is an absolute value. The expressions (9a) and (9b) corre-

spond to the range and m<C 0, respectively. 3

2.3. Approximations for Forward Scattering

If the single scattering is mainly in the forward direction, a reason-

able approximation is to replace the factor fi in the first term of eq (5)

3 The notations /(t,+m) and /(t, —p) were used by Chandrasekhar. We use them in some of the equations
in this paper so that our results can be readily compared with his.
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by no and neglect back scattering in the boundary condition. If we
take /z0=l for simplicity, the problem now becomes

^+/=7j J
(10)

with the boundary condition

J(0,h)=ttF8(h— 1 ),
— 1 < M < 1 . ( 11 )

The exact solution of this approximate problem is

y(r, /») =7 S(2J+1)P, (12)
4 i=o

where Arj= [1— co*/(2Z+l)] with a>i given by eq (2). This series was
first derived by Goudsmit and Saunderson [8] without explicit use of

the Boltzmann equation. Their assumptions are thus equivalent to

eqs (10) and (11).

Another kind of small-angle approximation is to replace the exact
integral equation, eq (5), by a differential equation of the Fokker-
Planck type. Using the definition of the function pin,/), we can
rewrite eq (5) into the form

4tt J"
c^? (cos (13)

The three angles a, 0=cos“V and 6'= cos
-V form a spherical triangle

as shown by eq (3). Now let us use the edge opposite the angle 0' as

the polar axis. We then have a relation similar to (3)

cos 6'= cos 8 cos a -f sin 0 sin a cos (3, (14)

where (3 is the azimuth angle in this case. Then one develops /(r,//)

into a Taylor series around /i, keeping terms up to a2

,
and gets

^(um')=/(^m)+-^[(1— /r) H aCOS p—^72]+^-^ (1 — /r')ar COS 2

0 . . .

(15)

By putting the last expression for /(r,//)into eq (13) and integrating
over the angles a and jS instead of //and <P, we get a constant,

_d/=iA n _ 2n A
M
dr XdM M 1

dM
’ (16)

where 1/X=
(1/8)J

2>(cos a) a2 sin a da. This is the differential equation

that Bethe, Bose, and Smith have tried to solve with the exact
boundary condition, eq (6), but did not succeed, since eq (16) is

incompatible with eq (6).

If one applies the same “forward” approximations to the Fokker-
Planck equation, eq (16), as we did to the original integral equation,
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i. e., putting n=l in the right-hand member of. eq (16) and using the
approximate boundary condition eq (11), one gets the solution

=-.± (21+1) P l (+)e
-' <*+»"*,

4 i=o

which is, of course, an approximate form of the Goudsmit-Saunderson
solution, eq (12). This type of small-angle approximation leads to

Williams’ theory of multiple scattering.

3. Anisotropic Scattering by Spherical Harmonic
Method

It is convenient to reformulate the boundary value problem defined

b}T eq (5) and (6). Let

f(t,h) =T(t,h)+ ttF8 (m— mo) e~
T/

(17)

Putting eq (17) into eq (5), we get the integral equation for T(t,h)

M T(t ,ii')v(ny)d/ ^(m,m°)^
-
t/mo

‘ (18)

The boundary conditions, eq (6), become

T(0,m) =0 m> 0 (19a)

T(t,n) = 0 M<0. (19b)

Here we define J(t,m) as

^(rjM)=y j + ~p(ix,^o)e~ r/^ (20)

Then the formal solution, similar to eq (9), is

T(t,-tm) = e~ T M f — (21a)
Jo M

T(t,— ju)=e r/M
(
J (t ,— n)e~ r/tl -— (21b)

Jr m

3.1. Approximate Boltzmann Equation

We have made a small-angle approximation for eq (5) and (6) to

get eq (10) and (11). Now if we make the same approximation for

eq (18) and (19), we get

dii' -\r^ pin, l)e~T (22)

and

T(0,m)
= 0 — 1 <m<L (23)
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Although we know the exact solution of this approximate boundary
value problem, yet we shall work out the approximations of this

problem by the SH method, and compare them with the corresponding
approximations of the exact problem later.

First we develop both functions and p(v,n') in eq (22) in

series of Legendre polynomials. The development for T(t,iu) is

1)T
z (t)Pz(m) (24)

2i =

u

and that for £>(ju,/P) is given by eq (4). Substituting both develop-
ments into eq (22), and equating coefficients of /fi(ju), we get the
infinite system

(^J= -k lT t

+F
(1 -k,)e~% 1= 0,1,2 . . . (25)

where k 7==l The system eq (25) can be immediately in-* x
2/+1

tegrated, and we define the nth approximation as the solution with
Ti(t) equal to zero identically for l>2n and

TM=?{G*r*-(T'), 1= 0,1,2 . . . (2m— 1) (26)

where the C% s are integration constants to be determined by the

boundary condition, eq (23). From eq (24) we have

TM=j V(0,n)Pib)dvi, (26a)

which, in view of eq (23), gives 7
7

fi0)=0. Therefore, Ct= 1. Putting
eq (4) and (24) with finite upper limit into eq (20) and using eq (26),

one gets
y 2n—

1

(27)
4 1=0

The formal solution, corresponding to eq. (21), in this case is

T(t,+ /x) =e~ T

J*
J(T,ix)eTdr (28a)

T(t,— n)=e~ T

^
J(t,— ii)e

Tdr. (28b)

Putting the expression eq (27) of J(r,ju) into eq (28), and then from
eq (17) (with j* 0=l) we obtain the final solution

Jp 2n—

1

/(r,+ M)=z T,(2l+l)P,(li)(e-
ii'-e-0+ irFS^-l)e-' (29a)

4 ;=o

y 2n— 1

y(r,-/.)=f S(-l)'(2J+l)P,(M)(e-V-«-0.
4 1=0

(29b)
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When 7i->oo
?
the two expressions of eq (29) reduce to the identical

form

/(r,M)=xS(2l+l)P,G*Hfc<r, (30)
4 i=o

which is the exact solution, eq (12).

3,2, Exact Boltzmann Equation

In this section we will get the solution of the exact integral equation
eq. (18), with boundary condition, eq. (19), by the SH approximation.
We develop the functions T(r,y) and in eq. (18) in series of

Legendre polynomials as in section 3.1, and reduce the whole equation
into an infinite series of Legendre polynomials with functions of r as

coefficients by means of the recursion formula and the orthogonality
relation of Legendre polynomials. Since the resulting infinite series

is an identity in ju, we can equate coefficients of the Pi(ixYs and thus
obtain the infinite system

l ‘^Y+S,Tl+ {l+l)^l
=f e-’/'WW 1= 0,1,2.... (31)

where
Si=2l+l-a h S0=0. (32)

The associated homogeneous system of eq. (31) is, in matrix form,

r 0 D 0 0

D Si 2D 0

0 2D S2 3D

0 0 3D S2

rr0

Ti

t2

^ rcn

0

0

0

or [A7]= 0, (33)

V.

• • • J V J v. J

where D=d/dT,[A]= [A(D)] andj[T] is a column matrix.

We define the nth approximation as the solution obtained by re-

taining the left upper corner submatrix of 2n rows and 2n columns in

eq. (33), and putting all the other elements equal to zero. This
finite system of 2n linear differential equations with constant coeffi-

cients can be easily solved. All the T{s are solutions of the differen-

tial equation

An(D)Tt
=0 1= 0,1,2, . . . (2n— 1), (34)
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where

An(D)

0 D 0 0 ....

D s1 2D 0 ....

0 2D s2 3D ... .

0 0 3D S, ... .

• • •

• • • • —

1

(35)

It can be shown that the roots of An (D)— 0 are in pairs with same
absolute value but opposite in sign. One pair of the roots is obviously
D= 0, and let us denote the other n— 1 pairs of nonvanishing roots by
ka with k- a——ka and o:=±l,±2, . . . ±(n-—l). Then the general
solution of eq. (34) is

n—

1

Ti= Ai ae~
kaTj

r 1= 0,1,2 . . . (2n—T), (36)
a= — (Jl— 1 )

where the constants are related by

A la=p l
(ka)A0a ,

A0a arbitrary (37a)

Pi+i(k a
) £ "

(j
_j_"

jy
Pi(ka}~\~

^ ^
Pi—i(,ka) — 0, Po— 1 (37b)

B0 arbitrary, B 1=B2= . . . =B2n_ l= 0 (37c)

CQ arbitrary, ^=— 7?0/(3— co x ) ,
C2—C2= . . . =C2n-i=0. (37d)

For the nth approximation, the particular integral is obtained from
the first 2n equations of the nonhomogeneous system, eq. (31). We
get

Z==0,l,2 . . . (2n— 1), (38)

wh ere

F r.P2w (p o)(2n)!

2 LMo"A w (l/po)
PiCIpo)-Bi(po)

The complete solution is the sum of eq. (36) and (38).

Thus we have

n—

1

Ti
= Ai ae~kaTjr Bit Ci

a= — in— 1
")

F rP-2 n(po) (2n)\

^2 Lpo
nA w (l/p 0)

pl(l/po)— Pi(po) g-r/MO. (39)

The constants in the solution obey the conditions of eq. (37a) to (37d),
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which leaves only 2

n

independent arbitrary constants to be deter-

mined by the boundary conditions.

We shall approximate the boundary conditions of eq (19) by the

2n equations

4

P l(p)T(0,p)dn=0,
J*

Pi(v)T(t,n)dn= 0, 1= 1,3 . . . (27i—l)

or

2n—

1

23 e ikTjc(Q) = 0> 23 = 0 1= 1,3 . . . (2?i 1), (40)
ft-0 & = 0

where

/Ja=^2

The system, eq (40), provides the 2?i equations to determine the 2n
independent arbitrary constants, A0a[a= ± 1, ±2 . . . ±(n— 1)], B0

and C0 . The function J(t,p) defined by eq (20) is, in this approxima-
tion,

1 271— 1 2n—

1

= w^dM)^
7iW+T e_r/M0S uiP^Piino)- (41)

1=0 1=0

Putting the expression, eq (39), for Ti into eq (41) and making use of

eq (37a), (37c), and (37d), we have

I 1“ 71—1 2n = l

23 A0ae~^ T^2 UiPi(ll)pi(Ka) -\-BqT-{-Co —P0COim/(3— COi)

-U=-(n-l) 1 = 0

FP2n(vo)(2n)\

2p 2
0
n A n(l/p 0)

271— 1

e t/mo 23 w iP
1 = 0

(42)

We then get the final solution by substituting the expression, eq (42),

into eq (21) and in turn into eq (17)

^4+ m)=^
AQa{e'k^ T—e~ T,ti

)

1 fJ, 1b cc

277— 1

23 coipi(ka)Pi(fj.)
1 = 0

-\-BqT +
3 — coi/ 2p~0

n An(l/no) 1 — m/mo

271— 1

x 23 °>ip
1=0

i(l//i 0)Pi(p.)J+'irF8(p—p 0)e
T/^ (43a)

4 Here we choose the equations with odd l, because we have found that the odd-? choice, among other
reasonable choices, gives the best convergence in the problem of isotropic scattering, for which the exact
solution is known.
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f(T J
—n)=^

t— T\n—1 (p~kaT— p-kJ~ )2n-l

S ^ .A * S (- 1 )'«,p.(*,)P«GO
U=-(»-l) IfM^a 1=0

,
fP2„(Mo)(2ra)! v , ,

, p , .

T+W^ S(-l) “.p«(1/mo)^i(m>

(43b)

3.3. Comparison with Gaussian Quadrature Method 6

The GQ approximation of the exact integral equation (18) has
been worked out by Chandrasekhar [18]. Using his expression of Ij

in the quadrature formula

ri m

J - 1 j=~n

where the a/s are the gaussian weights, and the fx/s are the roots of

P2ra (ju) — 0, one gets an expression for J(t,h) which can be shown to

be identical with eq (42). To prove the identity of these two expres-
sions, we have to redefine the arbitrary constants in the following
way:

and to show that the ka s are the same and

P2re (Mo) (2/1)

!

Mo”Aw(l/g 0)

/TGu 0)tf(-Mo> (44)

In the SH method, our system of equations (34) can be written
in the matrix notation

/3T= 0

with

=
(

1 — 2^-|-i^
Zm ~^2Z+ 1

+ l)<h,m+i+

m8i, m _ i], i=0,l,2 . . . (2/i—l).

In the GQ method, Chandrasekhar’s system 6 of 2n equations can

5 Chandrasekhar’s way of defining successive approximations of the SET method for the isotropic case (refer-

ence [2]) can be shown to lead essentially to the same explicit form of the nth approximation as our procedure.
The equivalence of the SH and the GQ methods persists also, if one uses odd Legendre polynomials for the
latter.

6 The difference in sign between Chandrasekhar’s system (reference [18], eq (95) with m= 0) and the
system which we will put down in the following is due to the fact that he measures angles from the negative
instead of the positive r-axis.
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be written as al—0 with

2U—

y S a)iPi(ni)Pi(nj), )=±1,±2 . . . ±77-
- 1=0

Now if we define a matrix S with elements

^i=J(2«+l)'P,W, 1= 0,1,2 . . . (2n-l),

± 1, ± 2 . . . it n,

the inverse matrix S -1 can be shown to have elements

Slk
1= (llcP lifj-k) )

l— 0,1,2 . . . (277 1),

k=± 1,±2 ... ±77.

Then it is easy to show that

SpS l= a . (45)

The characteristic roots of the SH and the GQ method are deter-
mined by ||S| = 0 and |<^|

= 0 respectively. Since (3 and a are connected
by the transformation equation, eq (45), it is well-known that the
characteristic roots must be identical.

To prove the identity eq (44), we need the explicit expression for

H(po)H(— no) as given by Chandrasekhar, i. e.,

n-l 1 n .2 2

Mo)= (— l)
n n q II 2

’

•

Now since the Mi’s are the 2n, roots of P2„(m) = 0, it is clear that

" ni-tf P2n (n 0) 2-4.6 . . . 2n

j=

1

m? (— 1)"P2„(0) 1-3-5 ... (2w-l) 2 ” U‘ o; '

Since the &j’s are the 2n—2 roots of A u (D)/(
—D 2

)
= 0,

n—

1

II (1-m^,2)=(m?)
71 —1

to—

1

II
i=l

/ 1 Mo
n 2

^«(1 /mo)/(— 1/Mo)

Vm? V (-lr- 1^^.? ... (277- 1)]
2
'

where the denominator is the coefficient of the highest power of

D in —A n (D)JD
2

. Combining these results we get eq (44) immedi-
ately.

Since we have proved that the GQ approximation of Chandrasekhar
gives an expression for J identical in form with our eq (42), it follows

that the final solution /(r,± p) and/(r,— m) must be also identical in

form with our eq (43a) and (43b). However, the numerical values of

the arbitrary constants are slightly different because of the different

ways of approximating the boundary condition in the two methods.
Consequently, for any finite approximation, the two methods will give

slightly different numerical values for the final solution, too. Table
5.1 gives the forward scattering in the first three approximations for

both methods, and the corresponding approximations for the approxi-
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mate integral equation. The parameters used in constructing table 5 .

1

coincide with the first case of Goudsmit-Saunderson’s table I [19]

(i. e., log £=4, a= 0 . 0 0 2 5 .)

Table 5.1. a Values of
-p

[/(£, + /*)
— tF8(ix— l)e-< ] from eq (4-?a)

n= 1 n= 2 7Z = 3

GQ SH Ap b GQ SH Ap b GQ SH Ap b

0 2. 292 2. 430 1.0 -3. 60 -4.01 -1.26 3. 35 3. 89 1.29
0.1 -4.39 -4. 65 — 1. 76 4. 13 4. 47 1.86
.2 -4.85 -4.95 -2. 04 4.05 4.20 1.82

.3 -4.86 —4. 83 — 2.01 2. 99 3.01 1.05

.4 -4.31 -4. 17 — 1. 59 1.08 1.07 -0. 34

.5 -3. 07 —2. 85 -0. 67 -1. 24 -1. 17 -1.97

.6 -1.03 —0. 79 .81 -3. 09 -2. 84 -3.09

.7 1.93 2. 13 2.96 -3. 11 -2. 62 -2. 55

.8 5.94 6. 02 5. 85 0. 67 1. 33 1.30

.9 11. 10 10. 98 9. 58 10. 87 11.49 10. 69
1.0 6. 256 6. 075 3.9 17. 54 17. 11 14.23 30. 90 31.04 28. 47

a Parameters: coi = 2.9941, w2 =4.9741, <o3 =6.9343, om = 8.702, «5= 10.778, £= 19.46.
b The values in these three columns are from the solution of the approximate integral equation [eq (29a)

instead of eq (43a)].

4. Reduction of the Anisotropic Problem to a Quasi-

Isotropic One

4.1. Forward Scattering

Theoretically the expression eq (4.3a) gives the forward scattering
to any degree of accuracy one wants. But if the single scattering
function is extremely forward, one has to carry the approximation to

a large n in order to get some sensible result. This means a tremen-
dous amount of numerical work, so it is not very desirable in practice.

Now since the Goudsmit-Saunderson solution eq (30) gives a pretty
good approximation for forward scattering, we can consider this as
the first approximation of a perturbation treatment. First we
rewrite the integral equation eq (5) as follows:

^+/=
7>J'

m) (46)

The parameter e, which is inserted here to indicate that the term is

small, will be set equal to unity eventually. Ijet

./—/i+ e/2 .

Putting this into eq (46), we get one equation with terms free from e

^+ /i=7yj (47)

and another one involving e (with e put equal to unity)

M U+/2=iJ^/2(r,M
1
)p(iU,M

,)^'+ (l-lu) |k (48)

df i

d'
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If ji and j2 satisfy the boundary conditions .

= 1), — 1</*<1 (49a)

/2(0,m) = 0, m> 0 (49b)

= m< 0 (49c)

/will satisfy the original boundary condition eq (6), with /x 0= 1 - Up
to this point everything is still exact. Equations (47), (48) and (49)
are just another way of defining the original problem given by eq (5)

and (6).

The solution of eq (47) with boundary condition eq (49a) is just

the Goudsmit-Saunderson eq (30). With /i given, one then wishes
to find the correction term j2 satisfying eq (48), (49b), and (49c).

Here we will make the approximation by taking the finite series

solution eq (29) for/i instead of eq (30) in eq (48), and then solve the
problem to the same SH approximation with the corresponding ap-
proximation in the boundary condition. This approximate solution

for/2 is simply the difference of the two series solutions eq (43a) and
(29a), with ju 0=l and r~t. Thus we have for forward scattering

/ (£, p)= Goudsmit-Saunderson solution, eq (30),+ [(43a) -—(29a)] (50)

Table 5.2 gives both the Goudsmit-Saunderson value (or/i) and the
correction (or/2) for the special case which is treated in table 5.1. In
calculating j2 one does not need to carry the approximation to a large

n as in the case of calculating the original /, because the extremely
anisotropic part has been taken care of by the first approximation j\.

Here the correction term is calculated with n— 3, which is, of course,

just the difference of the last two columns of table 5.1. One notices

from table 5.1 that in the region with positive values (the negative
values in the table are meaningless), the percentage difference be-
tween the solutions for the exact and the approximate integral equa-
tions decreases steadily with the increase of approximation, and for

the third approximation it is only about 8 percent for p= 1. There-
fore, the Goudsmit-Saunderson value there probably would not be
more than 8 percent off from the exact value. Our correction in

table 5.2 is about 2 percent at ju= l or 0= 0°.

Table 5. 2. a Forward scattering

0

Goudsmit-
Saunderson
solution b

Correction
term ®

O

0 120.9 2. 57
6 72.6 2.45
12 26.3 2. 08
18 8.3 1.55
24 2.7 0. 97
30 1.1 .44
45 0.1 -.08

» Parameters have same values as in table 5.1.
b Values from reference 19.
o Difference of last two columns in table 5.1.
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Another simple approximation for/2 is to make use of the fact that
the single scattering function is extremely forward, which means the
function has a sharp peak at approximately. 7 So we
develop the functionj2 under the integral of eq (48) in a Taylor series

around that is

f2(r,n
/

)=f2 (T, (/— m) . . (51 )

Then we get

where ^1= 1— (o?i/3) . Using (52), eq (48) becomes

M (1— m) (53)

For a first approximation, we omit the second term of eq. (53),

since . Then the solution which satisfies the boundary condi-
tions, eq (49b) and (49c), is

/i(t, m) /l(U))
M

M> 0

M<0

For the second approximation, we let

f2=gi+g-2 (54)

with gi^>^>g2 - We find the solution that satisfies eq (53) and (54),

and the boundary conditions eq (49b) and (49c) to be

gi=-—~fi (r ?

— i < m< i
,

g2=—ki
(It -- flit, M),

M

M<0,

M<0.

Then we have the final solution

Hj} m)=/i +/2=
f‘(

M Jo V

VI
fX dfl fl )

dr, m> 0,

M Jr V M C>M MV

(55a)

M<0,

(55b)

7 The peak is usually not at g=ju, but a little distance off. For example, in the case we used for construct-
ing table 5.1, n'= 1.000082^ for values of n2 not too near unity.
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where /i is the solution, eq (30). The forward scattering is given by
eq (55a) with r=t, i. e.,

f(l, m)
/ife/0 H/ l — m d/i

M JoV M
M>0. (56)

The result given by eq (55) diverges for /i=0. Since as
i
u—>0 the

terms neglected in eq (53) might be larger than the ones retained, the
whole approximation breaks down. But away from n=0 the solution,

eq (55) might give a reasonable approximation.
A third way of getting an approximate expression for /2 is by an

iteration method. Using /i as the first approximation for/, we can
calculate the function J from eq (7). Then we obtain /(£,+/*) by
eq (9a). The result is

(2Ul)^/zW T yr (e
— e '/). (5 7)

4 z = o i—flfii

4.2, Back Scattering

The expression eq (43b) gives the back scattering, but here again
it is impractical for cases with a very anisotropic single scattering

function. The perturbation treatment that we are going to give for

this case is based upon the extremely small cross-section of the back
scattering.

First we make a Taylor development of the scattering function

p (cos a) defined by eq (1) around any backward direction, say
cos a=cos aQ with a0)> 7r/2, i. e.,

p (cos a)=p (cos a0
)-\-p' (cos o:0) (cos a— cos a0) . . .

. (58)

Rearrange the terms to make a series of Legendre polynomials

n

p (cos a)=en 2 ufPi (cos a), . (59)
1=0

where co*= l. Though the function p (cos a) is extremely forward, it

is much more isotropic in back scattering. Therefore, we need only
a few terms of the development, eq (58) or (59), i. e., n is small. The
factor en depends upon n and aQ ,

and it is small for small n. From
eq (59) we get a development for p(n,/) similar to eq (4)

P(v, /)=eraS PMP i(ju') • (60)
2= 0

Putting eq (60) into eq (18), we have (setting /x0
= 1)

^+T=^p(li,l)e--+^± atPM P TMPfo'W. (61)
Or 4 1 2=0 J-1

Now multiply eq (61) by exp (— sr)cZr and integrate r from 0 to t.
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Also let ip (s,m )
=
X dre StT(t,h). Then eq (61) becomes

AT(t,n)e
st— T(0,^)]-\-Sfup(s,^) Jr(p(s,n)

TP 1 — p~ (l+s)« , n f* 1=-
a ?m +%s«rfioo

J

vM'pmw. (62)l+s i=0

In first approximation we will omit the sum in eq (62). Then we put
s= — l//z, and introduce the proper boundary condition eq (19), for

T(r,p). Thus we get

M>0 (63a)
M

r(i,M)=o,r(1) (o,M)=f
1 f

, ‘ >% o*,i), m<o. (63b)
4 1 — /d

T (l)

(0 ,ja) is, of course, the first approximation for back scattering.

In order to get the second approximation for T(r,p), we have
to get the first approximation of <p(s,n). One just substitutes the

two expressions, eq (63a) and (63b), into eq (62), still omitting the
sum, and gets

1 — p U
_

m) */m^
g
— t/n-st

^ g- (i +s)t (1 m)/m
( 1 ) ( o \

F 'pip. ,
1 )

* T+PP 1+s
]_ — p (1—m) */m

(1 — m)/m

M> 0

(64)

<0

Putting eq (64) into the integral in eq (62), and carrying out the

integration in p, we get the second approximation by again setting

s= — l/p and using the boundary condition for T(j,p)

r^M )= (o
, M )

'M Z=0 J ^
(1)

(s,/i
/

)Pi(M
/

)^M
/

J^
=— i/m,

(65)

One can go to higher approximations in a similar manner.
For a semi-infinite medium, t—> co

;
the first approximation of back

scattering becomes

r(1)
( m<o. (66)

Now if we make the development eq (58) around the direction where
we wish to calculate the back scattering, that is, put cos a0=p,

2>(m,1)=p(m)

exactly. Thus we get finally

ra)
(o,M)=ffN m<o.

4 1— /d

(67)

(68)
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With t-> co
;
the expression eq (64), reduces to a very simple form from

which one can calculate T {2)
(0,ju) by eq (65).

To give some idea about the order of magnitude of the first ap-
proximation and the convergence of the method, we have calculated
a few values for the semi-infinite case with the Rutherford scattering
function

p(cOS a)
4/?(l + /?)

(1+2/?— COS a) 2
’ (69)

which is normalized according to the definition, eq (1). /? is the
screening constant, usually much smaller than unity. Using eq (69),

we get the first approximation immediately from eq (68)

r(i) (o,+
+/?(!+ /?) _ F(3

(1+2/?-+ 2(1-+-(1- m)
3
' M< 0. (70)

If the second approximation is written in the form

T{2)
(0,m) =T{1)

(0,+) (1 +&„/?), (71)

the constant kn ,
which determines the convergence, changes with

the number of terms taken in the development, eq (58), besides the
first constant term. Table 5.3 gives the values of kn for n<4 at

fi= — 1 and cos a0
=— 1, too. The last two columns, giving the

difference between and the ratio of consecutive kn ’s, show that the
kn probably would not diverge as n increases.

Table 5 . 3 . k n of eq (71)

n kn kn+l kn kn+llkn

0 0. 09 1.89 3. 72
1 2. 58 2.31 1.89

2 4. 89 2. 26 1.46
3 7.15 2. 06 1.29

4 9.21

From a physical point of view, one would expect that such a develop-
ment is good only for thin foils. However, the results of table 5.3

seem to show that this development may be useful for thick foils,

too. Further numerical work would be necessary, however, to make
this conclusion safe. Physically, this conclusion would mean that in

back-scattering a large number of small angle deflections is less prob-
able than a small number of large deflections.

The calculation for finite t is a little longer, but there is no essential

difficulty. Only some of the integrals involved must be understood
in the sense of Cauchy principal value. We have calculated the first

and second approximation only for n= 0 and /i=— 1. We get

T(1) (0,-1) =F(3(l— e~2t
)/8

T(2)

(0,-1) =

r«>(0 -1) {l+^+r, ^ln2+E1 (2t)-2E1 (t)e-‘-(y+lnt)e-^,

(72)
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where y is the Euler constant and E
t
.(*)=- r

J X

du
u

For the case we

treated in constructing table 5.1, t is of the order 20. Then eq (72)

gives practically the same result as the case of infinite t.

Equation (55b) gives another approximation for back-scattering,

i. e.,

/(Ojm)
j\($,») h

,C(
l—fibji fi

djj,

dr
, m<0- (73)

The function /i(f,/i) in the form of the infinite series eq (30) is not
very practical for numerical calculation, since for extremely forward
single scattering function one has to take a tremendous number of

terms. For the case of small t, several authors [9, 11, 12] have made
developments of this function which are more suitable for numerical
calculation than the series. However, they all made the small-angle
approximation, so their developments are not suitable for ju<0 as

required by eq (73). We shah give another development here that

approximates better for smaller ix.

The function /i/i(r, n)(r,ju) is a solution of eq (47) and (49a).

We first develop /i(r,g) in a Taylor series of r, i. e.,

D + +£(££')_, .... (7*.

in which we have made use of the boundary condition, eq (49a).

Pinting eq (74) into eq (47) and equating coefficients of different

powers of r, we get

(§7^) 0

==
f

— 2^(g)|+ 7rF5(g— 1), (75)

where £>(g), which is written for P(jx, 1), is just the single scattering

function defined by eq (1). Combining eq (74) and (75), we get

ji l ttF8(h— 1)

F ( t
2

+ 4-
|
^P(m) + g P(pfn')!P(l*')dn'—2p(n) (76)

The first term inside the curly brackets of eq (76) is the well-known
single scattering tail for a thin foil. To evaluate the integral, we
notice that the integrand is the product of two extremely peaked
functions with one peak at ii

r

==ix and the other at /= 1. So we
break the integral at /F=(1 +m)/2, and develop the slowly varying
function in both intervals into Taylor series around the peak of the
other function. Using the single scattering function, eq (69), and
keeping terms of first power of j3 }

we get, combining with other terms
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/i (^m)=( 1~^+| )
irFSifi— 1)4

fit

Ftp(fi)

X H
1 M

27 m
3-15m 2-27 m+ 47
'4(1- m )

2

2(3-\~n)lnl/2fi— (3 ix)Iti

1 M

(77)

In calculating eq (77) we have taken the Taylor series up to the term
with third derivative. The above result is incorrect if 0/(1— p) is not
small. The deviation from single scattering, given by the term with
square brackets, reduces to

2fit(lnl/fi—ln2— l/2) (78)

for /!= — 1 in our approximate expression eq (77). For this special

value of fj.,
the integral in eq (76) can be evaluated exactly. We

found the exact value for the deviation up to the first power of (3 to

be 20£(ln 1/0— 1) instead of eq (78).

We can get an expression for back scattering, similar to eq (57) for

forward scattering, by iteration. The only difference in calculation

is that here we use eq (9b) instead of eq (9a). Thus we get

/(0 5—m)=j-S(— 1 y^iPi(fx)
,

7 > M>0- (79)
4;=0 1 -f- (J.Ki

4.3, Final Remark

Making use of the development, eq (76), one can show, in the case

of forward scattering, that for small t the solution, eq (56), reduces to

/(«,m)s[1-«(1-*i)]^(m-1)+^^! (80)

and the solution, eq (57), reduces to

(1— t)irF8(fx— 1 )

Ftp(n)

4m
(81)

The two expressions, eq (80) and (81), are approximately the same,
since In the case of back-scattering the three kinds of

approximations lead to the same expression

Ftp(p)—

;

M<0

for small t.

/(0,m)
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6. Multiple Scattering of Electrons and Positrons in a

Gas

By Gerhart Groetzinger 1

Introduction

In measuring the momentum of a particle by means of the average
curvature of its track in a magnetic cloud chamber, difficulties arise

because of the obscuring effect of multiple scattering. In an investi-

gation of this problem it was found, however, that a careful analysis

of the track allows one to obtain not only an estimate of the magnetic
curvature, but also the extent of the multiple scattering

[ 1 ]

.

2 If the

relation between multiple scattering and the momentum is known,
measurement of the multiple scattering thus provides an independent
estimate of the momentum. In general, the value of the momentum
obtained from the mean curvature is better at higher energies, and
that obtained from multiple scattering better at lower energies.

Equally, the magnetic cloud chamber is a useful tool for the determi-
nation of an experimental scattering law. If, for example, the scat-

tering of electrons is to be studied, it is sufficient to introduce a
beta-ray emitter into the chamber and thus have a source of electrons

in a certain momentum range. This is, however, not the best way
to obtain such a law because the determination of the momentum of

an individual particle is subject to errors introduced by multiple

scattering. These errors will, however, cancel to a certain extent

because in a set of determinations the momentum will be in some
cases underestimated, in some cases overestimated.
A determination of the experimental scattering law has been carried

out for the case of electrons and positrons in a momentum range
between approximately 2,000 and 10,000 Gauss-cm in the manner
discussed subsequently

[ 1 ]

.

In order to obtain an estimate of the momentum and of the mul-
tiple scattering, a track as projected onto a plane perpendicular to

the magnetic field has to be divided into several sections in the manner
indicated in figure 6.1. A0 ,

Alt . . . ,
An and An+1 are dividing points

separated by chords of equal length x, which is very close to the length

of a section of the track. The n angles between the (yi+ 1) succes-

sive chords are designated as to 1? w2 ,
. . . oo

ra ,
while the angles between

the tangents at successive dividing points of the track are designated
at ^o, ^i, • • (fn • The angles <p t are the ones usually referred to in

the theories of multiple scattering. The angles are introduced
here, since they can be obtained from a track with greater accuracy.

It follows from the theory of multiple scattering that the angles

co
j
and the angles obey a normal distribution about the true magnetic

• Lewis Laboratory, National Advisory Committee for Aeronautics, Cleveland, Ohio.
2 Figures in brackets indicate the literature references on p. 69.
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Figure 6.1. Geometrical analysis of a
cloud-chamber track used in determin-
ing multiple scattering.

mean deflection y=x/ p with a variance of \p
2 and a 2

,
respectively, where

p is connected with the momentum p of the particle and the magnetic
field II in the chamber by the relation

eHp—pc. (1)

It can be shown that

I
2= 2cr

2
/‘S. (2)

In case the true mean deflection (momentum) is unknown, the best
estimate for it, based on a measurement of the angles oo* of one track
(which is done in this investigation) is the sample mean

o?=(lM)Xi cof. (3 )

i
= 1

The best estimates for the variance \p
2 of the co/s are the sample

variances

m Av =(l/n)i2(ui-d-)
2

(4)
i= 1

for the case in which the true mean is known or

(cO
2
) Av=\l/(n— Diy^CcOj— Co)

2
(5)

i=

l

for the case in which the true mean is unknown. Correspondingly
the best estimate for a

2
is

s
2=3(or9W2. (6)

For a large number of sections (i. e., n—> c°), co approaches p, and
(fl

2

)A v and (w
2
)av approach

\J/

2
.

For a normal (multiple scattering) distribution of the quantities

cOf the variable (n— 1) (co
2
)^/^

2
is distributed “x

2 ” with (n— 1) degrees
of freedom for particles that are of the same nature, but may have
different momenta, provided that the tracks of the particles are divided
into the same number of sections of length x.

As in our case the true mean (correct momentum) is unknown,
use has to be made of eq (5) for the determination of the extent of

multiple scattering. The use of the cloud chamber makes it possible

to eliminate the plural and single scattering tail by excluding deflec-

tions co i in excess of 2.8 times the root mean square angle [(co
2)^Jh

The difference between the variances of this truncated distribution

and those of the normal distribution is negligible.o o
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Scattering of Electrons

The experimental procedure employed was varied slightly during the
course of the investigation, but the basic techniques are given in the fol-

lowing description of the study of electrons from a P32 source 3 in the
lower energy range (2,000 to 7,000 gauss-cm). In this case, the mini-
mum length of the tracks was 12 cm, the average length 14 cm. They
were obtained in a horizontal cloud chamber with a diameter of 24
cm, and an illuminated region 2.5 cm deep, filled with argon at a
pressure of 1 atm at 25° C. The source was mounted about 4 cm
from the rim of the chamber in the center of the illuminated region.

The magnetic field was produced by a set of Helmholtz coils and ranged
from 330 to 355 gauss for different exposures.

Table 6.1 gives the minimum path length in 1 atm of argon for which
true multiple scattering is said to occur according to Moliere’s theory
[2], For our experiments we adopted a section length x=2 cm,
so that the condition of multiple scattering is satisfied even for the
electrons of the highest energies. It was this consideration, rather
than the difficulty of measuring that puts a lower limit on the length
of the sections.

The angles co< were measured as follows: The image of the track on
the 35-m.m. photographic negative was projected on a sheet of drawing
paper at an enlargement giving the original size of the track, and
2-cm sections were then laid off along the image of the track by
dividers. The sheet containing the set of division points was mounted
on a drafting table, the points were connected by straight lines rep-

resenting the chords, and the angles between successive chords were
measured by means of a drafting machine.

Table 6.1. Minimum path length in argon ( 1 atm, 25° C)

vie :rm ;n (cm) vie Zmiu (cm)

0.5 0. 40 0. 90 1.33
.6 . 63 .95 1.47

. 7 .83 . 97 1 . 54

.8 1.04 1.00 1. 01

The experimental error due to optical distortions, emulsion distor-

tion, and inaccuracy of angular measurement was estimated as follows:

Circular arcs of radii 5, 10, 15, and 25 cm were drawn on a sheet of

drawing paper and photographed in various orientations in a horizon-

tal plane in the position of the sensitive portion of the cloud chamber,
using the same optical arrangement employed originally to photograph
the tracks. Each circle was then measured independently by three

observers, in the same manner as the cloud-chamber tracks. The
resulting error, the apparent root mean square angular scattering

deflection, was averaged for all observers for each radius, and found
to be almost independent of the radius. The average angle was 1.05°.

In a separate investigation concerning the accuracy that can be
obtained in measuring angular deflections, the same circular arcs

were also measured directly on the films by means of a microscope

3 The P 32 source and the Ru 106 source mentioned later were obtained from the Isotope Branch of the AEC,
Oak Ridge, Term.
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with a mechanical stage, adapted for accurate angular measurements,
the magnification used being 51. It was found that this method, while
more laborious, will make the experimental error less than 0.3°.

The error due to the turbulence in the chamber is negligible. A few
high energy cosmic-ray meson tracks that occurred incidentally in the
course of the experiment were investigated. They appeared to be
slightly curved. By measuring the deviation from a straight line an
upper limit of the spurious curvature due to turbulence can be deter-

mined. The deviation was measured by means of a micrometer
arrangement at points along the track 1 cm apart, and a circle was
fitted to the resulting plot of these deviations. The smallest radius
of curvature so obtained was larger than 250 cm, which corresponds
to a negligible error not exceeding 0.3° per 2-cm section.

The experimental results are shown in figure 6.2, in which the
individual root mean square multiple scattering deflections

are plotted against Hp, each of the 132 points repre-

senting one track. Ninety percent of these tracks have 6 to 8 sections,

the rest 9 to 13. One hundred points corresponding to apparent
momenta above Hp= 2,000 gauss-cm were fitted to a smooth curve by
the method of least squares. The lower limit for the momenta was
chosen so as to avoid unduly large errors resulting from our only
approximately correct manner of projecting and measuring the tracks.

a
2 can be approximated very well by a second-degree polynomial in

1 (Hp) 2
. Therefore the least-square curve was obtained by fitting

the experimental mean square angles s
2
to such a polynomial.

As mentioned before, the random experimental error due to optics,

photography, and personal error in measurement will introduce a

spurious root mean square deflection sE= 1.05°. On the assumption
that the multiple scattering deflections and the “error deflection’' sE
are statistically independent, one can set the corrected root mean
square deflection

Sc=(*L2-SE
2
)
1/2

. (7 )

This correction was applied to the least-square curve. The result is

DEO
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Figure 6.2. Multiple scattering of electrons in 1 atm of argon at 25° C.

Individual rms scattering deflections s in degrees for 2 cm path length plotted against
measured Hp, and corrected curve s c .



indicated by the solid curve of figure 6.2, which shows s c as a function

of Hp. The curve was broken off at Hp= 7,300 gauss-cm, which
corresponds to the upper limit of the P32 beta-spectrum. Actually
there are a few points with an apparently higher Hp (due to statistical

fluctuations) that were included in the fitting of the curve.

Finally, it must be mentioned that sections of track, over which the

multiple scattering deflection was more than 2.8 times larger than s

for the given momentum, as well as sections with a noticeable single

deflection (>0.1 rad.), were excluded from consideration in order to

vouchsafe the Gaussian form of the angular scattering distribution.

In fact, this exclusion came about almost automatically, since such
large deflections were quite rare, and, moreover, tended to make the
track ill-defined and difficult, if not impossible, to measure at the
position where they occurred.

The dispersion of the experimental points about the “least squares”
curve sL is indicated in figure 6.3. To each experimental point, with
a certain value of apparent Hp and a root mean square scattering

angle, s, there corresponds for the same Hp a point sL on the “least

squares” curve. For every number k> 0, there is a certain fraction

of points such that s>ksh . This fraction is plotted for the 100 points
above Hp— 2,000 gauss-cm, as a function of k (curve A). Theoreti-
cally this fraction is given by the integral of the x

2 distribution of

(n— 1) degrees of freedom from (n-l)k2
to co

}
where n is the num-

ber of angles an per track. For the tracks considered here this num-
ber was between five and six. Therefore the integrated x 2-distribu-

tions of four and five degrees of freedom are also plotted in figure 6.3

as functions of k (curves B and C). It is seen that for most values of

k, the experimental curve falls well between the two theoretical

K

Figure 6 .3 . Statistical fluctuations of multiple scattering.

Curve A (experimental), fraction of tracks from figure 6.2 with s>ks\.. sq
plotted against k; curves B and C (theoretical), integrals of r2 distribu-
tions of n-l degrees of freedom, respectively, between the limits of (n—
1) /c

2 and co, plotted against k (with n= 6, and n= 5, respectively).
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Figure 6.4. Comparison of experi-
mental- root-mean-square angle in
1 atm of argon with that following
from various theories of multiple
scattering.

Curve A, experimental; curve B,

curve C, 'Williams (<t>m*x

Bothe;

(me/p) (Z 3
/137)); curve D, Williams-

Bethe (0ma x= O.l radian, Omin = ( mc/p)
•

1
(Z 3

/181); curve E, Goudsmit and Saunder-
son (Thomas-Fermi potential); curve F,
Moliere.

curves, which confirms that

[(n-l)^L2

] (8)

is distributed x
2

>
and indirectly that the angular scattering is dis-

tributed normally. Only for values of &>1.3 is the experimental

frequency somewhat too high, which may indicate the presence of a

small single-scattering tail.

Figure 6.4 shows the experimental scattering law together with
the results of various theories of multiple scattering. In all theories

the variance a 2 (mean-square angular deflection) can be represented
as a product of two factors Q and G with

Q
4ttNxe*Z 2

(9 )

being the same for all theories. Bothe [3] replaces G by the constant
value of 4.25,

4 which he derived experimentally (curve B). Curve
C shows the results of Williams [4] theory with C=log (<£>max/<Anin)=

logo with a being mcZJ
'f 137 p. Curve D represents Bethe’s [5]

modification of William's theory in which he puts for dmin ,
0.1 radian

and for 0mlni 0.757 a (the angles 6 being spatial scattering angles).

Curve E represents the results of the theory of Goudsmit and Saunder-
son [6] with G being log (150, 137a) and finally curve F displays the

results of the theory of Moliere [2] with

e
G/(Gy' 2=1.3lQ^dmin with 0 mln= 1.142* ] 1 3 _|_ ( \

' 3
' \1 3 7

2

/3 /

J

The theory of Snyder and Scott [7] gives in this energy range similar

results as Moliere’s. The probable error in the experimental curve A
is estimated to be 10 percent.

In order to obtain the experimental scattering law for electrons of

higher momentum a pressure of 2 atm of argon and a magnetic field

of approximately 680 gauss were used. The 54 electrons studied under
these conditions resulted from the decay of 30 sec Rh 106 (maximum
beta-ray energy 3.55 Mev), which in turn is a decay product of Ru 106

.

In these and subsequent experiments, the correction for the experi-

mental errors was done in a somewhat different manner than before.

The individual scattering variances were first corrected before they

i According to more recent experiments this value has to be replaced by a value of 2.75 (private communi-
cation) .
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Figure 6 . 5 . Comparison of experi-

mental root mean-square angle in 2
atm of argon with that following
from theories of multiple scattering.

Curve A, experimental; curve B, Bothe; curve

c, Williams (0max=
2

, <f>mm = (mc/p)

(72/137)); curve D, Williams-Bethe (0,nax=O.l
1

radian, Om in= (mc/p) (Z 3
/181); curve E,

Goudsmit and Saumlerson (Thomas-Fermi
potential); curve F, Moliere.

were fitted to the curve sL versus IJp instead of the resultant curves
being corrected as was done previously. Figure 6.5 shows the experi-

mental scattering law (curve A), and the results of the theories dis-

cussed before. Again the theories seem to overestimate the energy
dependence of multiple scattering.

Scattering of Positrons

A comparison of the multiple scattering of electrons and positrons

is of interest in view of two recent investigations in which new differ-

ences between the particles are reported. First: Du Mond [8] and
Hedgran and Lind [9] have reported results indicating that the mass
of the positron is smaller than that of the electron by about one
part in ten thousand. Second: Seliger [10] observed that the ratio

of the back-scattering coefficients /3

-
and (3

+ for electrons and positrons

resulting from beta-decay with a maximum energy of about 0.5 Mev
is approximately 1.3 in several media of atomic number between
4 and 82. It follows from theoretical considerations that large angle
single scattering for relativistic particles is more pronounced for

electrons than for positrons [11]. One might expect that this effect

would account for the observed difference in the back-scattering but
will hardly affect the multiple scattering since tracks displaying large

angle deflections are eliminated from considerations. However,
W. Miller [12] remarks that back-scattering also results mainly from
the “ cumulative effects of small angle single scatterings” but obtains
nevertheless a theoretical ratio /3“ to /U of 1.16. Consequently,
it is possible that a similar difference might occur also for the case of

multiple scattering.

Positrons of momenta between 2,000 and 6,000 gauss-cm were
investigated in 1 atm of argon with an applied magnetic field of

approximately 340 gauss, varying somewhat from exposure to exposure.
For the investigation of the scattering of positrons of momenta between
5,000 and 9,000 gauss-cm, a magnetic field of approximately 680
gauss, varying somewhat for different exposures, and a pressure of

2 atm were used. A source was prepared by bombarding iron with
deuterons in the University of Chicago 33-inch cyclotron. The main
positron emitter obtained in this way is the 21 min isomer of Mn52

with a maximum energy of 2.66 Mev [13]. The bombarded piece

of iron was put into a cylindrical tube extending four centimeters
into the chamber and closed inside the chamber by a thin aluminum
foil. The source was then used for one to two hours after a
bombardment.
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Figure 6.6. Root mean-square angle of multiple scattering

for electrons and positrons as a function of Hp.

The solid curves, in connection with scales s 1 ,
refer to electrons and posi-

trons in 1 atm of argon, and the dashed curves in connection with
scale S2 ,

refer to electrons and positrons in 2 atm of argon. The scales
are matched on the basis of theoretical pressure dependence of multiple
scattering.

The upper solid curve in figure 6.6 represents in connection with
scale .Si the experimental mean square angle of scattering for electrons

of momenta between 2,000 and 7,000 gauss-cm in 1 atm of argon and
the upper dashed curve in connection with scale s2 the experimental
mean square angle of scattering for electrons of momenta between
6,000 and 10,200 gauss-cm in 2 atm of argon. In connection with
scale Si the dashed curve represents the root mean square angle of

scattering to be expected on the basis of theoretical considerations in

1 atm of argon. Strictly speaking, the two scales Si and s2 should be
matched by taking into account the pressure dependence of both
factors 0 and G whose product is equal to the mean square scattering

angle a 2
. However, since the pressure dependence of G varies from

theory to theory and is at most slight, the matching was done by
taking into account only the pressure dependence of Q, which is the

same for all theories. The two lower curves represent the results

obtained from an analysis of tracks of 115 positrons with momenta
between 2,000 and 6,000 gauss-cm obtained in 1 atm of argon and
52 tracks of positrons of momenta between 5,000 and 9,000 gauss-cm
obtained in 2 atm of argon. The matching of the high and low
energy curves in the overlapping momentum range provides an
estimate of the errors involved in the method of studying multiple
scattering. Arguments based on the matching of these curves neces-
sarily neglect possible systematic errors. Such errors are, however,
of little importance in the comparison of electron and positron scat-

tering and the curves obtained for these two cases are sufficiently

different from each other to indicate that the rms angle of multiple
scattering of electrons is greater by an amount of the order of 10

percent than that of positrons of the same momentum.
The nature of back-scattering is sufficiently different from multiple

scattering that it is difficult to make a quantitative comparison of the
present results with those of Seliger. It should be noted, however,
that the effect is in the same direction and of the same order of

magnitude.

This work was done in conjunction with M. J. Berger, W. Humphrey
Jr., L. Leder and F. L. Kibe.
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Discussion

Dr. W. T. Scott, Smith College, Northampton, Mass.: I would
like to ask whether you consider the root mean square angle a good
measure of the multiple scattering in view of the fact that it is strongly

affected by statistical errors resulting from the relatively small number
of large deflections. Would it not be better to use mean absolute
angles?
Dr. Groetzinger: Sections that contained large single deflections

as well as those in which the multiple scattering deflection exceeded the

root mean square angle by more than a factor of 2.8 were excluded.
This made it possible to use the root square mean angle without en-

countering the difficulties mentioned by you. Our primary purpose,
of course, was to cut off the single scattering tail of the distribution

since we were interested only in the part connected with multiple
scattering, which is Gaussian.
Dr. Scott: Does not the fact that you use a truncated rather than

a complete Gaussian distribution affect the root mean square angle for

multiple scattering?

Dr. Groetzinger: Very little. The Gaussian is cut off sufficiently

far out that the root mean square angle differs only slightly from that

of the whole distribution.
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7. Scattering of Electrons (Experimental)

By W. Bothe 1

Nuclear Single Scattering of Negatrons

This is meant to be a general, though brief, survey of the present
experimental situation in the fields of electron and positron scattering

by nuclei and electrons, single as well as multiple scattering, with a
light emphasis on recent work that is not yet published or otherwise
less known in this country.
From a theoretical point of view, single scattering deserves the

higher interest. It is a fact that, though work in this field started

some 30 years ago, the interest in single scattering of electrons was,
later on, overshadowed by problems of scattering of nucleons. This
lias experimental as well as theoretical reasons. It is rather difficult

experimentally to realize conditions under which pure single scattering

is guaranteed, the mass of the electron being so small that plural or

multiple scattering and energy losses are appreciable even in very
thin layers of matter, except for very high energies. On the other
hand the theoretical formulae for scattering of electrons are rather
complicated and awkward to handle.
Coulomb scattering of electrons by nuclei, which shall be considered

first, is described by the well-known Mott formula, which is a series of

generally very poor convergence. First approximations in aZ of the

Mott formula have been derived but turned out to be useless except
for the lightest nuclei. As late as 1948 McKinley and Feshbach [1]

2

undertook the tedious work of computing fourth order expressions for

the scattering cross sections of higher nuclei for electrons. These,
combined with straightforward calculations which Bartlett and
Watson [2] had made a few years before for the Hg nucleus, offer a

sound basis for comparison with experiment. It must be kept in mind
that all these theoretical predictions are based on the Dirac theory of

the electron, radiation effects being neglected, which ought to be
allowed according to prevailing theoretical views of a few years ago.

Therefore, experiments on single scattering of electrons may be con-
sidered as a touchstone for the adequacy of the Dirac theory, and their

fundamental importance cannot easily be overestimated.
There is no point in discussing all the earlier experimental work,

which has been done chiefly by the cloud chamber method, because
the results were very contradictory and confusing. Repeatedly, devi-

ations both sides of the Rutherford or Mott formulae have been
claimed; even discrepancies in order of magnitude have been reported.

There is no doubt that in nearly all of this work the experimental
difficulties and errors, especially those inherent in the cloud chamber

1 Institut fur Physik im Max-Planck-Institut fiir med. Forschung and I. Physikalisches Institut der
Universitat, Heidelberg.

2 Figures in brackets indicate the literature references on p. 81.
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method, have been greatly underestimated. To give only one ex-

ample: Several cloud chamber experiments, including some performed
in our laboratory, seemed to indicate that nuclear large angle scatter-

ing is connected with energy losses far greater than can be accounted
for by ordinary bremsstrahlung. This point was checked 2 years
ago by analyzing scattered electrons by means of a magnetic spectro-

graph [3]. Figure 7.1 shows the experimental arrangement: A spe-

cially constructed nionochromater, M, selecting a fairly monochro-
matic collimated beam out of the /3-radiation of a RaE source, P, the
scattering foil, F, and the spectrograph, Sp, with a G. M. counter
for analyzing the electrons scattered at about 110°. Figure 7.2 shows
the results for different thicknesses of the Al-foil, and for different

electron energies. It turns out that, with foils not very thin, the
electron line is broadened on the low energy side to a surprisingly

large extent, but no energy loss is observed if sufficiently thin foils

are used. Obviously, the influence of the general slowing down of

electrons in passing through the gas of a cloud chamber has frequently
been underestimated

.

Now a very brief account will be given of the few experimental
investigations of the last years that seem to have yielded reliable

information on single nuclear scattering. The careful work that Van

P, RaE-source; M, monochromator; F, scattering foil; Sp, analyzer; Z, G. M.
counter.

Figure 7.2. Momentum distribution of electrons scattered

from thin Al-foils.

Intensities are reduced to thickness of the thinnest foil.
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de Graaff, Buechner and Feshbach [4] did in 1946-47, which is well

known in this country, covered the range of energies from 1.3 to 2.3

Mev and the angular range from 20° to 50° (in part 60°). It was
the first time one of the modern high voltage plants had been utilized

for this kind of work. Monoenergetic electrons were produced by a
belt generator and allowed to enter a cylindrical scattering chamber
which, at its center, contained the scattering foil. Scattered electrons

were measured with a small ionization chamber whose window was
covered with filters of sufficient thickness to absorb all stray radiation.

These filters have proved, in our own experiments, to be essential.

Without them the results were severely distorted by stray radiation.

The results confirmed the Mott theory within some 10 percent.

The experiments that Schulze-Pillot [5] performed at Heidelberg
covered about the same range of energies (1 to 2.4 MeV) but went
down to scattering angles as small as 12°. The arrangement (fig.

7.3) had cylindrical symmetry. It consisted of a magnetic lens mono-
chromator, Ri, furnishing a hollow cone-shaped beam, and a scattering

chamber R 2 with fixed angular range. Primary and scattered elec-

trons were counted by a point counter covered with suitable filters.

Again agreement with the Mott theory within 10 percent was stated.

So far the situation seems quite clear. But the picture changes as

one passes to larger scattering angles. The first indication that with
a scattering angle of about 110° the Mott formula is no longer ade-
quate was obtained, as a byproduct, with the arrangement shown in

figure 7.1 [6]. The dependance of single scattering on the atomic
number of the scatterer was investigated for energies of a few 100

kev. The accuracy was poor due to lack of intensity, but it could be
clearly shown that, at this angle, the Z-dependence is less pronounced
than predicted by theory. Much better work is now being done by
Kinzinger [7] in our laboratory, using an arrangement similar to that

used by Van de Graaff and his coworkers (fig. 7.4). The magnetic
analysis of the scattered electrons has proved to be unnecessary, so

they are directly counted by G. M. counters arranged around the

cylindrical scattering chamber. Figures 7.5-7 show some of the re-

sults so far obtained. Here the observed ratio of cross section of the

atom Z to that of A1 is plotted versus the scattering angle (Z=28, 47

and 79). The theoretical curves are also drawn. The electron energy
was 245 kev. In each case there is perfect agreement with theory for

angles up to about 60°. This is just as far as the experiments of Van
de Graaff and coworkers went, so their results for energies of more

Figure 7.3. Arrangement for single scattering at small
angles.

P, Rn-source; L, monochromator lens; F, scattering foil' Z, point counter.
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Figure 7.4. Arrangement for
single scatter ing at large
angles.

Figure 7.5. Ratio of differential scat-

tering cross sections of Au to that of
Al versus scattering angle.

The electron energy is 245 kev. Full curve is

theoretical.

Figure 7.6. Ratios of differential scat-

tering cross sections of Au, Ag
,
and

Ni to those of Al versus scattering
angle.

The electron energy is 245 kev. Full curve is

theoretical.

Figure 7.7. Ratio of differential scat-

tering cross sections of Au to that of
Al versus scattering angle.

The electron energy is 245 kev. Full curve is

theoretical.

than 1 Mev still hold good in the 100 kev region. But for larger

scattering angles, the experimental ratio az /<rA1 more and more lags

behind its theoretical value, the more so the higher Z. This is most
clearly shown in figure 7.8, which gives the ratio a o-Rutherf. for two
fixed angles, 90° and 150° as a function of Z; for Al the theoretical

value of this ratio has been assumed. In fact, figure 7.9 shows that
for Al the angular distribution of scattered electrons is exactly that
predicted by theory, so there is little doubt left that for Al the Mott
theory holds good even with energies as low, and scattering angles as

large as used here (the absolute cross-section measurements of Kin-
zinger are not yet finished). In any case it turns out that for the
higher atoms the angular distribution is steeper than predicted by
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Figure 7.8. Ratios of differential scat-

tering cross sections to Rutherford
cross seetio7is for scattering angles
90° and 150° versus atomic number.

The electron energy is 245 kev. The full curves
are theoretical.

Figure 7.9. Angular distribution of
singly scattered 2f5 kev-electrons

from Al.

| The curve is theoretical, adapted at 90°.

Figure 7.10. Ratios of differential

cross sections to Rutherford cross

sections for scattering angles 60°,

90°, and 120° versus atomic num-
ber.

The electron energy is about 2 Mev. The full

t u curves are theoretical (H. Reich).

theory. Practically the same picture has been obtained with electrons

of about 400 key.
Similar results (fig. 7.10) have been obtained, quite independently,

by Paul and Reich [8] in Goettingen with electrons of about 2 Mev
produced by a small betatron. 3

The total outcome of this group of experiments can be summarized
as follows: For energies from 0.2 to 2.5 Mev and for Al the Adott for-

mula is confirmed with an accuracy of about 10 percent or better over
the whole range of scattering angles. With heavier elements, the

same holds for angles up to about 50°; but for larger angles the ob-

served cross section is smaller than given by the Mott formula, the

3 The authors were kind enough to let me see their results before publication.
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deviation increasing with scattering angle and atomic number. The
energy dependance of this effect seems not to He very pronounced.
These deviations deserve some interest. Without going into any
detail it can be said that it is doubtful whether they can be explained
by the well known complications, such as screening effects, crystal

interferences, the magnetic moment of the nucleus, and ordinary
bremsstrahlung. With regard to screening and interference effects

from the electronic shell the theoretical situation seems not quite

clear. Bartlett and Welton [9] as well as Mohr [10] have made calcu-

lations indicating considerable effects of this kind even for large scat-

tering angles. But whereas Bartlett and Welton seem to have some
doubt whether these calculations are reliable in the large angle region,

the results are taken seriously by Mohr. In any event the calcula-

tions made by Mohr, when applied to our case, would point to the
wrong direction. Another point that may be worth mentioning is

that exchange of the beam electron with one of the atomic electrons

has been neglected so far in screening theories. This does not seem
to be serious since this exchange effect turns out to be negligible as

long as the beam energy is larger than the binding energies of all the
target electrons, which is the case in all the experiments mentioned
before. So the possibility must be kept in mind that the failure of

the Mott formula might have some deeper cause. Of course, one will

be very reluctant to conclude that something is wrong with the Dirac
theory, but a solution might possibly be found in the following direc-

tion. The Schwinger radiation correction [11] has so far only been
calculated to the first approximation in a, and so far would be small in

our case, but McKinley and Feshbach [1] have shown that, in develop-
ing the Mott formula into a series in a, even the 4th order approxima-
tion is not quite sufficient for the highest nuclei. In the same way
the Schwinger correction, when extended to higher orders, might be-
come considerably larger. In any event this point ought to be cleared

up before farther reaching conclusions are drawn from the experiments
described here.

Quite a different point comes up as one moves on to electron energies

of the order of 10 Mev or more. When the wavelength of the beam
becomes comparable with nuclear dimensions, nuclear interference

effects are to be expected, similar to the Ramsauer effect with slow
electrons when their wavelength is comparable with the dimensions
of the atom. This is the interpretation given by Lyman, Hansen
and Scott [12] to their very interesting recent experiments on single

scattering of 16 Mev-electrons (X/27r=1.2X 10 -12cm) on the basis of cal-

culations made by Rose, Elton, Parzen, and Acheson [13]. In prin-

ciple, it must be possible in this way to obtain direct information on
the charge distribution within the nucleus. A detailed report on this

question will come from a more competent side in the course of this

conference. Let me only mention two points. Calculations on this

effect are necessarily based on the assumption that for scattering by
an atom with point nucleus the Mott formula is strictly valid. But
the single scattering experiments in the 1 Mev region described before

have thrown some doubt on this assumption. Apart herefrom it

seems that one has always to take into account the possibility that in

experiments in this energy region the “smallest length" might begin
to play a part, so that the basis of the Mott theory will become some-
what shaky.
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Multiple Scattering of Negatrons

Multiple scattering in itself is not of very fundamental interest, but
has gained considerable practical importance as a means for deter-

mining particle masses from cloud chamber or photographic tracks.

In the last 30 years many formulae, of increasing intricacy, have been
derived for multiple scattering (Bothe, Williams, Goudsmit and
Saunderson, Moliere, Snyder and Scott, Blanchard and Fano [14]

and others). Numerous experiments have been performed in order
to check these formulae, either using thin foils, or by evaluating cloud
chamber tracks. The latter procedure has the advantage that large

single deflections (not included in multiple scattering theory) are

easily eliminated. As an example of this kind of experiment the care-

ful investigation of Groetzinger, Berger, and Ribe [15] may be men-
tioned. Best, fit was stated with the Moliere and the Snyder-Scott
formulae. Multiple scattering by thin foils lias been studied by
Kulchitsky and Latyshev [16] with 2.2 Mev electrons. Both the
Williams, and the Goudsmit-Saunderson formulae fit pretty well,

except for the highest elements, where the theoretical values of the
width of angular distribution are high by about 13 percent. Similar
experiments with electrons of a few 100 kev done in our laboratory by
O. Kneclit [17] yielded similar results (fig. 7.11). Here foils of ap-
proximately equal number of atoms per cm2 have been compared,
whereas Kulchitsky and Latyshev have compared foils of equal scat-

tering power. Again the width of angular distribution as calculated

after the Williams formula is too large. This can, at least partly, be
explained by the fact that the Williams formula applies to the projected

angles of deflection, whereas the experiments of Kulchitsky and Laty-
shev, and of Kneclit deal with the spacial distribution of deflections.

The Moliere theory of spacial distribution fits the results of Kneclit
perfectly (fig. 7.11).

The derivation of reliable multiple scattering formulae is rather

complicated, and becomes still more complicated when nonsymmetri-
cal experimental arrangements are considered. Asymmetric prob-
lems arise in connection with single scattering experiments, where
corrections for the contribution of multiple scattering are nearly
unavoidable. Therefore, Kneclit has also made some measurements
on multiple scattering in oblique foils. An example of his results is

given in figure 7.12, where the “isophots” are drawn for a 730 kev

Figure 7.11. e-width of multiple scat-

tering of 830 kev-electrons for 1

g-atom/cm2 versus atomic number.

Measurements were made with g/A« 1.7-10~4

g-cm-2
.
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Figure 7 . 12 . Angular distribution of 730
kev-electrons after passing through a

f3 p. Al foil inclined by fO°.

The curves represent cones of constant intensity.

Figure 7 . 13 . Intensity per unit mass of
the foil, of 300 kev-electrons scattered

at 90° from a Au foil inclined by 1+5°

,

versus mass of the foil.

R reflection position, T transmission position of the
foil.

electron beam passing through a 43 pt Al foil inclined at 40°. The
intensity maximum is shifted in the direction away from the foil.

This shift, \p, can be calculated under simplifying assumptions; the
FT

calculated value is \p=\ 2tga—— \Hg3a . . . (X=most probable multiple

deflection, a= inclination of the foil). This is in satisfactory agree-

ment with the experimental results. Calculations of this kind may
serve as a starting point for generalizing the correction formula given
by Chase and Cox [18] for the multiple scattering contributions in

single scattering experiments. Calculations along this line, though
far from being satisfactory in every respect, have yielded two interest-

ing results. The first one is that the Chase-Fox formula should hold
good for scattering angles as large as 90°, provided the “symmetrical
transmission position” of the foil is chosen. On the other hand, if

the foil is in the “symmetrical reflection position,” the calculated

contribution of multiple scattering becomes much larger. This is a

qualitative explanation of the “reflection-transmission-effect” first

observed by Chase and Cox. Reich [19] in Goettingen and Kinzinger

[7] in our laboratory have studied this effect in some more detail.

Figure 7.13 gives an example of Kinzinger 's results. It seems that

in the transmission position the scattered intensity per unit foil

thickness even decreases with increasing thickness, the effect of mul-
tiple scattering being negative. This strange fact has so far not
found an explanation.
Another form of nonsymmetrical multiple scattering, the “back-

scattering” from thick layers, is of practical interest, too. Figure
7.14 shows the energy distribution curves of back-scattered 370 kev
electrons taken with the arrangement of figure 7.1 [20]. It can be
seen that in the region of large energy losses the nature of the back-
scattering substance is of little consequence, whereas electrons with
nearly the full primary energy are much more abundant from heavy
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Figure 7.14. Energy distribution of
hack-scattered 370 kev electrons.

The angle of incidence is about 28°, the angle of

emergence is about 50° in the plane of inci-

dence.

than from light elements. This clearly demonstrates the importance,
in all scattering work, of lining chambers with low atomic material,

and of proper filtering. The theory of back-scattering is still in a
rudimentary state, though a few approaches have been made [21].

Nuclear Scattering of Positrons

In the classical (Rutherford) approximation, negative and positive

electrons would be expected to behave exactly the same way. But
effects of relativity and spin ought to reduce considerably the scatter-

ing cross sections of heavy nuclei for positrons as compared with
negations [22]. Qualitative experimental evidence of this effect lias

been given by Lipkin and White [23] who, by a direct comparison of

negatron and positron scattering, have observed a ratio of cross

sections of more than 3 for 1-Mev particles in platinum at 58°.

In multiple scattering such large differences cannot be expected,

because here one lias mostly to deal with great numbers of small
deflections, for which the difference in scattering cross sections is not
so pronounced according to theory. It is, therefore, a little surpris-

ing at first sight that Seliger [24] has observed marked differences,

up to 30 to 40 percent, in the back-scattering coefficients of positrons

and negatrons. Rough calculations made by Miller [25] on the basis

of a very crude theory of back-scattering lead at least to the observed
order of magnitude. I think we will hear more about this interesting

subject from Dr. Seliger.

Scattering by Electrons

The most complete theory of negatron-negatron collisions, though
necessarily in the first approximation only, has been given by Mpller
[26]. Experiments on this subject are still very scarce. Groetzinger,
Leder, Ribe and Berger [27], in a cloud chamber investigation, have
stated agreement with the Mpller formula, though other formulae
are not excluded. Here, again, counter experiments appear more
promising. Page [28] has used two counters in coincidence, each of

them receiving one of the two fast electrons present after collision.

His results fit the Mpller theory within 10 percent, which proves that
the spin terms are essential. On the other hand a surprising dis-

crepancy lias been reported by Deutschmann [29] in connection with
cloud chamber experiments on cosmic ray showers, and on slow sec-
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ondaries (5-rays) produced by cosmic ray particles. The differential

energy distribution of slow secondaries ought to follow a £’_2-law,

since the Rutherford approximation is quite sufficient here. This
has been confirmed by Deutschmann for single cosmic ray particles,

presumably mesons, but for shower particles, which are mostly elec-

trons, the exponent was found to be 2.8 instead of 2 (figure 7.15).

No explanation can so far be given.

Collisions between a fast positron and a negatron at rest offer some
points of special interest. The first point is that after the collision the
two particles can be identified by means of a magnetic field, therefore

head-on collisions can be distinguished from grazing collisions, which
in the case of two equal particles is impossible. It is obvious that
head-on collisions, though much less frequent, are most interesting,

because they are most sensitive to changes in theoretical assumptions.
The second point is that positron-negatron collisions offer a check on
the Dirac hole theory of the positron. As first shown by Bhablia [30]

on the basis of the Mpller theory, Diracs conception requires, apart
from direct scattering, the existence of an exchange process consisting

in annihilation of the original positron and negatron and creation of a

new pair. This exchange process ought to have a nearly isotropic

angular distribution, so changing considerably the overall angular
distribution. Though this additional effect will be overcompensated
by interference between the two processes, still it should be possible,

bv examining the angular distribution of scattered positrons, to decide
whether the exchange process does exist or not. A preliminary cloud
chamber study of positron-negatron collisions has been made by Ho
Zah-wei [31] in our laboratory. Continuation of this work by the

Heidelberg group [32] has yielded ampler statistic material. The
cloud chamber was filled with methane, and positrons of 100 to 400
kev were sorted out from the Cu64 radiation. Altogether 2900 m of

well-defined positron tracks were evaluated. Figure 7.16 presents the

Figure 7 . 15 . Differential energy dis-

tribution of sloiv secondaries from
cosmic rays.

Upper curve, shower particles; lower curve,
single particles (M. Deutschmann).
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Figure 7.16. Distribution of
relative energy transfer A in
positron-negatron collisions,

for positrons of 100 to fOO kev.

The full curve has been calculated from
the complete Bhabha formula. In the
dashed curve the exchange process
and interference effects have been
neglected.

result. Here the number of observed collisions is plotted for each
interval AAl=0.1, where A is the relative energy transfer, which, of

course, is closely connected to the scattering angle. The full curve has
been computed from the complete Bliablia formula. The agreement,
even in absolute values, is as close as can be expected. In computing
the dashed curve the exchange process and interference effects have
been disregarded. The deviations from experimental values are

clearly greater and more systematic. Though we have learned to be
very careful in interpreting absolute cloud chamber results, one can
say that these results lend support to the hole theory of the positron.

Nevertheless, more accurate measurements on positron scattering

are highly desirable with regard to the fundamental importance of

these problems. For the rest, it is always possible that quite unex-
pected features of electron interaction may be revealed by experiments
of this kind. In the last-mentioned series of cloud chamber photo-
graphs one very clear case of a collision between one positron and two
negatrons has been observed. The energy-momentum balance seems
to be fulfilled in toto, but the process cannot be split up into two
independent collisions between two particles without violating con-
servation of momentum in each case, so a genuine “ triple collision”

must have occurred.
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8. Back-Scattering of Positrons and Electrons

By H. H. Seliger 1

Introduction

There has been relatively little recent experimental work on me
back-scattering of fast electrons in matter and none on the back-
scattering of positrons. Brand [l]

2 has studied the back-scattering
cathode rays up to 32 kev in energy, and Bothe [2] has extended the
measurements to 680 kev, using radioactive sources in a magnetic
analyzer.

Recently the author reported an excess of electron back-scattering
over positron back-scattering [3]. This excess of electron back-
scattering over positron back-scattering is to be expected indirectly

on the basis of the single scattering cross sections as calculated by
Bartlett and Watson [4] for electrons and Massey [5] for positrons.

A further study of the back-scattering process has provided several

very interesting results from which one is able to deduce a qualitative

understanding of the general hack-scattering process.

Experimental Procedure

The geometry of the previous experiment (see [3] is indicated sche-

matically in figure 8.1, a. If one defines an angle 6 as the angle
between the plane containing the front surface of the backing and the

plane containing the axis of the detector and the source, then in

figure 8.1, a, d= 90°.

The present experiments can be divided into two parts. In the
first part the back-scattering coefficients for both positrons and elec-

trons as functions of the atomic number Z of the backing material
were measured for a 27r solid angle, in contrast with the solid angle of

roughly 1 steradian in figure 8. 1 ,
a. These 2t back-scattering coefficients

were determined in 4 x absolute beta counters
1 6] . The geometry of

the measurement is indicated schematically in figure 8.1, b. In the

second part the angular distributions of the back-scattered electrons

and positrons, both in number and in energy, were measured as

functions of Z. The arrangement of figure 8.1, a, was modified so

that the solid angle subtended was only 0.01 steradian. The source
approximated a point source, and the backing on which the source
was mounted was constructed so that it could rotate, with its axis

of rotation lying in the plane of the front surface of the backing and
perpendicular to the line containing the axis of the detector. Thus
by rotation of the backing relative to the counter one could sample
the back-scattered radiation at various angles 6. Estimates of the

1 National Bureau of Standards, Washington, D. 0.
2 Figures in brackets indicate the literature reference on p. 90.
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l-o |-b

Figure 8.1. a, Schematic drawing of geometri-
cal arrangement of the previously reported
experiments; h

,
schematic drawing of fir

counter arrangement

.

energy distribution of the back-scattered electrons were made by
means of absorption curves in aluminum. These absorption curves,

extrapolated to zero total absorber, also gave the correction for the

absorption due to the thickness of air and counter window.
P32 (Ekaxl.71 Mev) and Na 22(Emax 0.58 Mev) were used as sources

of negative and positive electrons, respectively. The back-scatter-
ing was measured for lucite, aluminum, copper, silver, platinum, and
lead.

2?r Back-scattering Coefficients

The 2 7r back-scattering coefficients were measured in the following
manner: The absolute disintegration rate, N0 ,

of the source was de-

termined in the 4^ counter by the method outlined in reference [6].

Then the source, mounted on a thin polystyrene film, was placed
on the polished face of the backing, and the counting rate in the top
half of the counter was measured.

This is given by

V;=^[1+/3(1-t) 2
], (1)

where N[ is the counting rate in the top half of the 47t counter, (3 is

the back-scattering coefficient, and r is the fractional absorption in

the mounting film, (r<^Cl). The factor (1 — r) is taken squared
because a particle must pass through the mounting film twice if it is

back-scattered. The procedure for determining r is also given in

reference [6]. (3, defined by (1), can be written as

1
N:

, N0

P
(1 — r)

2 L No J’

r^O for P32 electrons, so that (3 reduces to

2n;
Nn

1 .

(2 )

(3 )
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In the case of Na22 positrons r is not zero and a further correction

is necessary because of the associated y and annihilation radiation.

It is possible that a y or annihilation quantum accompanying a
positron that is stopped in the backing will produce a count in the
top half of the lx counter, thereby making /3

+ appear larger than the

true value. The presence of cascade or annihilation radiation does
not affect the determination of No since the entire process occurs well

within the resolving time of the proportional counter and amplifier

for the original beta particle ionization pulse.

A new set of 4x counter equations was derived, following the same
line of reasoning as in the original paper on 4x counting, but this time
taking into account the y and annihilation radiation from the Na22

positrons. The final result for d gave

0
1

(1-r) 2

n:
n0+n:

Nn—N[ (4)

where N'b ,
the counting rate in the bottom half of the 4x counter

with the semi-infinite backing in place, is due entirely to the effect

of the photons. The total correction, including that for film absorp-
tion and for y and annihilation radiation, amounted to roughly 5

percent.

Another possible correction involved in the case of the Na22 posi-

trons is introduced by the finite probability that a positron will be
annihilated in motion. However, even in the case of lead, this

probability is of the order of 1 or 2 percent [7]. For lower Z it would
be still smaller. No corrections were made for this effect.

Angular-Distribution Measurements

An arrangement was used here whereby the point source was
evaporated on a thin film and supported below the detector. The
backing could be brought up directly in contact with the thin him,
and then backing and film could be rotated so as to sample the
radiation at various angles 6. A complete absorption curve in alumi-
num was measured for the source mounted on the thin him with no
backing behind it. The angular distribution of this unscattered or

direct radiation was effectively isotropic from 0=-f-10° to 6= — 10°,

the limiting angular range of the experimental arrangement. A
slight asymmetry due to difficulty in exact centering of the source
was present, but the average of the values for plus and minus 6

removed this effect. Next, similar absorption curves were measured
for 0=±1O°, ±20°, ±30°, ±60°, and 90° with the various backings
in position. At each angle, 0, the difference between the latter set

of readings and the former or unscattered readings gave the net
back-scattered radiation reaching the detector through that par-
ticular absorber. These differences plotted as functions of the
thickness of aluminum absorber represent the absorption of the net
back-scattered radiation. Corrections were made in the case of

Na22 for the 7-ray background.
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Results

Except for quantitative values, the positrons exhibited the same
characteristics as electrons so that the discussion will be limited to

electrons.

The final results for the 2t back-scattering coefficients as measured
in the 4^ counter are shown by the solid lines in figure 8.2. The
dashed-line curves are the results of the previous measurement
with the geometry of figure 8.1, a. The differences in back-scattering
between the two types of geometries and especially the lower values
of j8 at high Z and higher values of (3 at low Z measured over the 2tt

solid angle point up the anisotropy of the angular distribution of the
back-scattered radiation. The magnitude of this anisotropy is shown
more clearly in figure 8.3, where the back-scattering coefficient /3 is

plotted as a function of the angle d. Here (3(d) is defined by

m=N(6)
. -—

;

(5)

where N(d) is the net extrapolated back-scattered radiation at the
angle 6, and Nu is the extrapolated value of the unscattered radiation,

both at zero total absorber.

From the 8(d) curves of figure 8.3 one can infer the results of

figure 2, since

f */2

j3(0)=
J

(3(6)cos Odd.

Therefore jS(0)<J3(90°) for high Z and (3(d)^>(3(90°) for low Z.

In addition to the values of N(d), the absorption curves in aluminum
of the net back-scattered radiation give very important results

concerning the relative energy degradation of the back-scattered
particles as functions of d and of Z. Figures 8.4 and 8.5 show curves

Figure 8.2. Backscattering coefficients for positrons

and electrons as functions of Z, measured with 2-rr

geometry (solid curves) compared with previously

measured hackscattering coefficients.
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Figure 8.3. Angular distribution of the

backscattering coefficients for positrons

and electrons for high, medium, and
low Z backing materials.

Figure 8.5. Absorption in aluminum of
the net backscattered P32 electrons from
a Lucite backing.

The energy loss can be estimated by comparison
with the unscattered absorption curve.

Figure 8.4. Absorption in aluminum of
the net backscattered P32 electrons from
a lead backing.

The unscattered absorption curve is shown for

com parison.

representing the absorption of P32 electrons back-scattered from lead

and from Lucite, respectively.

It is seen that electrons emerging at 0—90° from low-Z materials

are tremendously degraded in energy, while those emerging at 0=10°
are only slightly degraded. In the case of high-Z materials the

electrons emerging at 0= 90° are only slightly different in energy
from those emerging at 10°. The relative energy degradation as a

function of 6 and Z is brought out more clearly by figure 8.6, where
the fractional transmission from lead, copper, and Lucite backing is

plotted for 6= 10° and 0= 90°. Here one can see that the particles

emerging at small angles 9 have a similar energy spectrum to the

original unscattered electrons, while the spectrum of those emerging
at large angles 6 is quite different and lias a large Z dependence.
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Discussion

An important feature and a fortunate simplification in the interpre-

tation of the present experimental results is the fact that the back-
scattering is approximately energy independent in the energy range
considered. This was shown in abundant detail by Brand[l] and
Bothep] for monoenergetic electrons and by Burtt[S], Zumwalt[9],
and the author[3] for heteroenergetic radioactive sources with widely
differing end points. C. H. Blanchard and U. Fano have shown[10]
that the shape of the distribution function that describes the angular
distribution of an electron inside a scatterer with respect to its original

direction at any point along its path depends on the energy loss

E0—E and the original energy E0 principally as the ratio (E0
—E)(E0 .

Although a 100-kev electron beam will penetrate deeper into a scat-

terer than a 50-kev electron beam, both beams will lose their original

“sense” of direction, or become isotropic at the same fractional loss

in energy. Therefore, the same fraction of each should be reflected

in any given Z element. However, the ratio of elastic to inelastic

scattering is proportional to Z, so that an electron in a high-Z material
will become isotropic with much less energy loss than it would in a

low-Z material, thereby increasing its probability of escape from the
high Z material. The angular distribution of diffusing electrons

emerging from any plane surface follows a cosine <f law, where the

angle 4> is defined by <f= (90°— 0).

A qualitative estimate of the diffusion effect can be obtained by
normalization of the experimental curves to a cosine distribution

at 0=90°. In figure 8.6 this is represented by the dashed concave
downward curves. The difference between the experimental or

solid-line curves in figure S.6 and the cosine distribution curves is

given by the dashed concave upward curves. This distribution is

due to the incompletely diffused or sidescattered electrons. Electrons
initially incident and subsequently emerging at small angles with the

surface lose only a small fraction of their original energy in being
deflected, and it is to those electrons that the adjective “side scat-

tered” is applied. Since the ratio of scattering to absorption cross

sections is still proportional to Z, the sidescattered electrons will

lose less energy in the liigh-Z material than in the low-Z material.

However, since little energy is lost even in low-Z materials, the

Figure 8. 6. Relative contributions to (3 {9 ) of the diffusion effect

{concave downward dashed curves) and the side-scattering effect

{concave upwards dashed curves), assuming a cosine distribution

for the diffusion effect.

The solid lines are taken from figure 8.3 for electrons.
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Fi fiURE 8.7. Relative transmission of P32 backscat-

tered electrons from low
,
medium and high Z for

0=10° and 6=90°.

degradation for the sidescattering effect will he very much less than
the degradation for the complete diffusion effect. In figure 8.7 the
10°-transmission curves show that electrons sidescattered from
Lucite are only slightly less energetic than those sidescattered from
lead, while at 90° electrons diffusing from Lucite are almost totally

degraded, being very much lower in energy than electrons diffusing

from lead.

Figure 8.6 indicates that the diffusion effect increases materially
with Z, while the side-scattering remains relatively constant. It

can be argued that at small angles of incidence and emergence, while
the mean deflection necessary for emergence will be reached after

many more collisions in a low-Z material than in a high-Z material,

the electron has roughly the same probability of emerging from a
low-Z material as from a high-Z material, although it will be slightly

less energetic upon emerging from the low-Z material.

W. Miller[ll] has made calculations of the ratio using Bartlett

and Watson’s and Massey’s cross-section calculations in a classical

multiple-scattering theory originally given by Bothe[12] for electrons.

He estimates (3~/f3
+= 1.16 for mercury. The experimental results

show (3~/(3+= 1.3 for Z=80, which is in fair agreement with Miller’s

results, especially since the initial conditions in Bottle’s derivation
are not exactly those of the present experiments. In any case an
excess of electron back-scattering over position back-scattering is

to be expected.
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The isotropic initial conditions of the experiments are those most
commonly encountered in actual practice bn radioactivity measure-
ments. It is therefore quite important to recognize that the back-
scattering is anisotropic, so that the proper back-scattering correction

can be made, depending on the geometry used. The curves of figure

8.2 should be especially helpful to those working with C 14
,
S35 and

other low-energy beta emitters, where a 2tt windowless counter is often

used.

The author thanks Misses L. Cavallo and S. V. Culpepper for their

valuable assistance in making these measurements, and Drs. U. Fano
and C. H. Blanchard for many stimulating and enlightening dis-

cussions.
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9. Range of Electrons in the Energy Interval 0.5 to

1.3 Mev

By Jerome Fleeman 1

I would like to report on the results of some range-of-electron ex-

periments that have been performed at the National Bureau of Stand-
ards. The work is part of a program in the diffusion and penetration
of electrons in materials. In this report, we shall focus particular

attention on the value of the extrapolated range of electrons in the
energy interval 0.5 to 1.3 Mev with regard to the Z dependence of the
range. It is the usual custom in physics to express the range of

electrons as a function of the energy of the incoming electrons when
measured in aluminum. Our problem has been to extend the measure-
ments of range to include materials of varying Z.

The range of electrons was measured in the usual manner. Mono-
energetic electrons, obtained from an electron accelerator, were col-

limated to a beam 1.0 in. in diameter, and incident upon metallic

absorbers. The absorbers were placed perpendicular to the incident
beam, and the transmitted beam was measured by a parallel plate

ionization chamber. The plates of the ionization chamber were made
of polystyrene of thickness 2 / mg/cm 2

. To measure the range, ab-
sorbers of various thickness were used, and the ionization current pro-

duced in the chamber was determined. A plot was made of the
ionization current as a function of the thickness of absorber. These
graphs are each characterized by an initial rise in the ionization current
to a maximum value after which there is a linear decrease of current

for increasing absorber thickness to a region where the ionization

current decreases slowly to zero current. By extrapolation of the
linear portion of the ionization curve to zero current one obtains the
thickness corresponding to the extrapolated range.

We have measured the ionization current after absorption in beryl-

lium, aluminum, copper, cadmium, and gold. The ranges have been
determined for three energies 0.5, 0.9, and 1.3 Mev., and the results

of these measurements are shown in figures 9.1 through 5 respectively.

The feature that 1 would like to point out in these curves is that the
extrapolated range Rp is nearly equal to the greatest range for- light

materials as shown in figure 9.1. However, as Z increases, it will be
noted that the curves trail out until for gold the extrapolated range is

located well below the greatest range. The term “greatest range”
means roughly the thickness corresponding to zero current. However,
for currents near zero we are almost at the limit of measurement of

the apparatus as determined by background currents and fluctuations

in our meters. As a result the “greatest range” isn’t too well deter-

1 National Bureau of Standards. Now at Brookhaven National Laboratory, Upton, N. Y.

257899—54 7 91



mined experimentally. It is more reasonable to compare the ex-

trapolated range with the greatest range, say, as determined by
integration of the Bethe-Bloch formula, R bb . Figure 9.6 shows the
ratio of the measured range Bv divided by i?bb plotted as a function of

the atomic number Z. This ratio represents the reduction in the
theoretical range as a result of multiple scattering. It is to be noted
that the ratio is only slightly less than unity for beryllium and equal
to about 0.3 for gold. The dotted curve is drawn so as to give a

reasonable fit to all the points.

Dr. Blanchard has recently completed some calculations on the

shape of the ionization-depth curve from which we can get values for

the reduction in the range. It turns out that the curve of figure 9.6

is drawn a little too high for beryllium and a little too low for gold.

For beryllium the curve should have gone through 0.94, and actually

it is drawn for 0.96, and for gold it should have gone through 0.32,

and it actually goes through 0.30. However, this fit is as good as

can be expected in view of the difficulties of the calculation as well

as the measurement.
Finally, figure 9.7 is a plot of the Z dependence of the extrapolated

range in which the points are plotted for the three energies used in

the experiment. We find that we can match our results for the range
by use of the formula

where

667

Z 3
' Bq8(8 + 1 ), mg cm 2

,

8=E0 -\-mc
:

E7 me
E o in Mev.

Actually, this formula fits our data only moderately well at low
energies and at low Z, but it exhibits a good fit at the higher energies

and for the intermediate Z’s. We have been able to determine range
formulas that fit our data with a smaller error. However, these

turn out to be more complicated and the one used has the virtue of

simplicity.

Figure 9 . 1 .
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10. Measurements of Electron Scattering

With the Electron Microscope

By C. E. Hall 1

The intensity variations in an electron microscope image are influ-

enced by two principal factors: The electron optical properties of the
imaging system, and the scattering processes occurring in the object.

In seeking an adequate description of the significant scattering

phenomena, we are interested mainly in beam potentials from about
30 to 100 kv, in specimen thickness of about 1000 A or less, and in

the character of the transmitted beam at angles of less than about
10~ 2 radian. Quantitative experimental evidence of this kind has
been almost entirely lacking, although qualitative evidence is present
in all electron micrographs. Theoretical calculations for scattering at

these small angles have been presented on several occasions. The
first serious attempt to account for image intensities through the
application of scattering theory was made by Marton and Schiff in

1941. 2 Later works of von Borries,3 Boersch, 4 and of Hillier and
Ramberg 5 are also particularly to he noted. Whether the theoretical

scattering cross sections can be used with confidence under practical

circumstances cannot be decided, however, without experimental
evidence. The work to be described is concerned with the measure-
ment of effective scattering cross sections made with the electron

microscope itself, under practical operating conditions.

The primary consideration in electron microscope image formation
is that, owing to spherical aberration, only electrons contained within
a relative aperture of about 10

-2
radian or a little less will reach the

image plane sufficiently close to their proper image point to form a

sharply defined image. The intensity at large angles reaches the
image plane as a diffuse background intensity or is lost against the

walls and diaphragms of the instrument. The incident intensity is

generally of considerably smaller relative aperture than the effective

aperture of the objective lens. Within the effective aperture of the
objective lens we recognize two components of intensity: A trans-

mitted intensity, IT ,
of very small aperture approaching that of the

incident beam, and a scattered intensity, Ik- We assume that in

traversing a layer dw, where w is the mass per unit area, that a frac-

tion, k, of the intensity lost to IT is scattered within the effective

aperture of the lens and so contributes to IK while the remaining
fraction (1— k) is permanently lost to the imaging beam. Similarly,

it is assumed that the probability that an electron will be permanently
lost from IK in a layer dw is the same as for those in IT ,

ignoring the
possible angular dependence of such an event within the very small

1 Massachusetts Institute of Technology, Cambridge, Mass. This investigation was supported in part
by research grant G-3396 from the National Institute of Health, Public Health Service.

2 L. Marton and L. I. Schiff, .T. Applied Phys., 12, 759 (1911).
3 B. von Borries, Z. Naturforsch. 4a, 51 (1949).
4 H. Boersch, Z. Naturforsch. 2a, 615 (1947).
5 J. Hillier and E. M. Ramberg, Z. angew. Physik 2, 19 (1950).
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effective aperture of electron microscope objectives. With these

assumptions the following equations 6 have been derived for the
intensities IT and IK ‘

IT=he~sT«, (1)

and
IK=I0e-

a -*> sT*-I0e-
sT«

J (2 )

where ST is the specific cross section in square centimeters per gram,
and iv is the mass thickness of the film traversed in g cm

-2
. IT pro-

duces an image of high resolution superimposed on one produced by
IK of lower resolution like those seen in dark-field images. The total

intensity. Ic is IT -\-IKf or

I c=I0e~ ScE (3)

where
s c=a-k)sT .

Equations (1), 2 a and (3) are essentially empirical and required
experimental confirmation. They have been verified as to form by
measuring the relative values of IT , Ic . and I0 through SiO films

ranging in thickness up to S0X10 -6 gm-cm" 2
. Specific cross sections.

Sc . for elements may be measured from a photographic determination
of Ic Iq for films of known mass thickness, w. In the initial experi-

ments w was determined from the increase in weight of glass cover
slips placed beside electron microscope grids on which films of various
materials were deposited by vacuum evaporation. Fluctuations in

weight of the glass cover slips, probably due to their slightly hygro-
scopic nature, however, rendered them unreliable for the determina-
tion of small weight increments. Aluminum foil was later found to

be much more reliable for the purpose.
A new method of measuring the scattering power of thin metallic

films is shown in figure 10.1. This figure shows a 2X10 in. photo-
graphic plate recorded at 20.000 x. The first three frames are micro-
graphs of polystyrene spheres on a collodion film, shadowed with Ge at

an angle of 3 to 1. The mass thickness of the metallic deposit was
obtained from the weight increment of an aluminum foil placed
beside the specimens in the vacuum evaporator. Each frame is

recorded near the edge of an opaque nickel grid wire so that the
relative background intensity IB can be measured and subtracted
from the intensities in the image field. The final 3-in. portion of the
plate is a series of stepped exposures made by displacing the plate at

10-sec intervals with the specimen removed. A plot of the plioto-

Figurl 10.1. Typical photographic plate of Ge-shadowed polystyrene spheres from
which the scattering power of the metal film can be measured.

*C. E. Hall, J. Applied Phys. 22 , 655 (1951).
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graphic density of the steps versus their exposure time provides a

graph from which relative intensities in any frame can be found from
the corresponding photographic densities. If Is is the intensity in the

shadow of a sphere (after subtraction of background) and A the

intensity through the Ge film, then according to eq (3), a plot of

logJs /./i versus w should be a straight line whose slope is Sc for Ge. A
plot of the results for three different film thicknesses is shown in figure

10.2. The line should, of course, go through the origin. The three

points within circles were made with the lens previously described.

A point obtained from the Philips microscope, which has a lens of

different structure, is also shown in the graph for comparison at one
film thickness. Cross sections probably do not vary greatly for

different lenses since the effective relative aperture is not sensitive to

differences in the spherical aberration constant. The method shown
in figure 10.1 lias also been used for Cr, since the values originally

reported for Ge and Cr were most suspect owing to the instability of

the glass cover slips.

Another experiment for the determination of the electron scattering

of polystyrene is shown in figure 10.3. Images of polystyrene spheres
about 2600 A in diameter like those shown in figure 10.1, but without
shadowing, were recorded along with a stepped exposure. The in-

tensities at distances from the edges of the spheres were measured
with a microphotometer slit width of 30 A to obtain the intensities h
and I2 (minus background) as indicated in figure 10.3. Plotted
circles with dots represent measurements from one edge and circles

with crosses from the opposite edge. The plot should be a straight

line but the devation is large for x greater than about 1500 A. The
reason for the discrepancy is not known, but it could be accounted for

by a gradual increase in background into the particle. There is thus
some uncertainty as to where a line should be drawn for the determina-
tion of $c for polystyrene. The maximum slope yields a value of

Sc= 5.5X104cm2

g
-1

,
as indicated. (The density of polystyrene 7

is

Figure 10.2. Test of eq (3) and measurement of S c for Ge.

Scattering power of germanium films 65 kv.

7 D. G. Sharp and J. W. Beard, J. Biol. Chem. 185, 247 (1950).
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Figure 10.3. Results from a microphotometer tracing of the image

of a polystyrene sphere.

0 1.0 2.0 3.0

Log
lo

Z

Figure 10.4. Dependence of a c on atomic
number

The line has been drawn for a slope of unity.

1.05 and the composition is (CH) Z ).

In table 10.1 the current data for the scattering cross sections of

various materials are listed. The values for carbon were taken from

the polystyrene tracings. The magnitude of Sc is relatively insensi-

tive to atomic number, while the cross section per atom, <j c ,
increases

steadily with Z, as would be expected. Since previous theories

indicate that <jc should increase approximately as Z n
,
where n is a

number close to unity, the data in table 10.1 have been plotted on a

log-log scale in figure 10.4. To the order of accuracy of the measure-

ments, the data are representable by the equation

o- c=0.14X 1

0

-18Z cm2
,

(4)
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although the data are not sufficiently accurate to fix the value of n
reliably within 10 or 20 percent.

Table 10.1. Electron scattering constants 65 kv

Substance z
Sc

104 cm 2
/g

C c

lO-i « cm 2

Be 4 3.

0

0.45
C 6 5. 5 1 . 1

SiO 14+8 3. 7 1.4
Cr 24 3.5 3.0
Ge 32 3.3 3.9
Fd 4fi 4. 5 8.0
Pt 78 3.0 9.8
U 92 3.3 13. 0

Since all the preceding measurements were made at 65 kv, it is

desirable to test the dependence of effective cross sections on beam
potential. At present, only one series of measurements have been
made. Records like that shown in figure 10.1 were made of a single

Ge film of 23X10 _6
g cm -2

at 40, 60, 80, and 100 kv with a Philips

microscope operated with a large objective diaphragm. The results

are given in table 10.2 and show about a 40-percent decrease in cross

section in going from 40 to 100 kv. It is not possible to deduce the

effect of voltage on image quality from the dependence of a c on voltage

alone since, as was pointed out previously (see footnote 6), the relative

magnitudes of IT , /a-, and background will also vary with beam
potential.

Table 10.2. Germanium film 23n10~ 6
^ cm 2

Beam
potential

Relative Se

lOge/s./Ti

kv
100 0.6
80 . 7

60 . 9

40 1. 0

In a recent publication, Hillier and Ramberg have calculated the
angular dependence of cross section for representative elements
according to formulas given by von Borries and others. At an
aperture angle of 10~ 2 radian the cross sections in cm2 per gram are

relatively insensitive to atomic number, in qualitative agreement with
the results in table 10.1, but the magnitudes of their cross sections at

this aperture are between 8xl04 and 1.5x1 OVnrg-1
,
which are roughly

2 to 3 times greater than the experimental values in table 10.1.

Hillier and Ramberg made their calculations for 50 kv, but the
difference in beam potential cannot account for the discrepancy.
The reasons for the differences between theory and experiment are
not apparent at present.

In concluding, the author wishes to emphasize that the experimental
evidence is far from adequate as it now stands. There is need for

measurements of the factor, k, for various film thicknesses and for

various materials, to test whether there is justification for assuming
the factor to be a constant within limits. Further data are also
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desirable concerning the dependence of cross sections on aperture,

state of chemical combination and on beam potential. If these and
other problems are worked out satisfactorily, there should be the
possibility, in certain instances, of measuring amounts of materials
in electron microscope specimens through microdensitometry.

Discussion

Dr. D. Gabor, Imperial College, London, England: Have you
any evidence regarding the coherency of the transmitted part?
Dr. Hall: Yes, I think so. If there is a heavy particle on a film,

you can still see clear-cut Fresnel fringes around it. However, some
of the films are so thick that it is barely possible to distinguish an
opaque edge through them because of the high background intensity.

One can see Fresnel fringes through films that electron microscopists
would consider quite “ thick.” I believe it is only the intensity IT
which can produce such fringes, and the cross section for decay of this

component is roughly three times as great as those given for the
intensity within the effective aperture.

Question: Did you use an aperture of 10
-2 radian?

Dr. Hall: Yes, that is approximately what I would consider the
effective aperture of the objective. The actual physical aperture of

the lens is of course much larger.

Qu estion: Don’t you get. an overlap (of velocities) when you go
from a very thick to a very thin area? When you take a micropho-
tometer tracing at an edge, you actually get a fairly high intensity

just inside the edge of a very thin portion.

Dr. Hall: 1 lumped all the scattered intensity together without
regard to whether it has altered significantly in velocity or not. The
evidence is that the probable energy losses are about 20 electron

volts and that they are mostly within the effective aperture of the
instrument. If greater losses occur, they are probably outside the
effective aperture and would simply contribute to background.
Dr. F. A. Hamm, General Aniline and Film Corporation: I

presume you averaged your pnotometer tracing for the background
over quite a large distance. It seems to me you would get a significant

difference in the value of the transmission just outside the thick part
or just inside the thin part.

Dr. Hall: The microphotometer traces are taken at the edge of a
nickel screen, which is completely opaque. The intensity inside the
shadow of the edge is all background. The decrease of background
intensity from the bright side into the shadow is gradual, and the
slope is practically the same on both sides of the edge. I have taken
the useful image intensity as the sudden drop at the opaque edge of

the nickel screen.

Dr. Hamm: I am surprised that you did not get a little dip in the
curve.

D r. Hall: The image of the edge is over-focused because the
microscope was focused on the level of the film, which is some distance
below the edge. Since the aperture of illumination is finite, this

results in some unsharpness in the image of the edge.
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11. Experimental Study of Limits Imposed by Plural

Scattering in Electron-Diffraction Studies

By S. G. Ellis 1

Introduction

It Inis been known for a long time that, in the study of thin films

by electron diffraction, the contrast of the rings with respect to the

background increases as the accelerating voltage is increased, and is

reduced as the film thickness is made larger. The aim of the present

study was to obtain quantitative information on this phenomenon.

Experimental Procedure

A preliminary requirement is to ensure that the electron diffraction

camera does not influence the results either by increasing the ring-

width, or by increasing the background. The latter effect can occur
if the electron scattering from the walls of the instrument is not sup-
pressed by suitably disposed diaphragms. The camera employed
was optically similar to that described by Hillier and Baker. 2 In
addition to the diaphragm system they describe, another diaphragm
was placed below the specimen to prevent electrons scattered in the
specimen from reaching the walls of the camera.
The contrast was measured in the following manner: Using the

standard method for establishing the characteristic curve of the

photographic emulsion, it is possible to determine the current density
at the peak of the most intense line in the pattern; the background
current density, /«, is also found by extrapolating the background
to a point below the peak of the line. The difference of these current
densities, I'R ,

is the peak ring current density. Ir/Ib is then taken
as the peak contrast C of the ring. Using Kodak medium lantern
slide plates, it was found that the rings could be observed satisfactorily

provided 0^0.1.
Films of aluminum and thallium chloride were evaporated upon

thin films of collodion. The thicknesses of the films were found by
multiple-beam interferometry. Electron diffraction patterns were
then obtained from these films at 50, 100, and 150 kv, and were an-
alysed as described above.
The collodion films did not contribute significantly to the electron

scattering in the range of total thickness employed here, the region
of major interest being that in which the contrast falls to low values.

Results

In general, an increase in electron speed produced an increase in

contrast, and this was often very marked (table 11.1). On the other

1 RCA Laboratories Division, Princeton, N. J.
2 J. Hillier and R. F. Baker, J. Appl. Phys. 17, 12 (1940)

.

101



Table 11 . 1 .

1

Aluminum

-

Thallium chloride

Vkv

f = 1000 A 2000 A 1000 A 2000 A

50 C' = 2. 3 0. 55 1.3 0.2
100 5.8 1.9 2.5 0. 65
150 10.

1

3.8 3.2 1.2

hand, the contrast fell rapidly with increasing film thickness. The
film thickness, Tmax ,

for which the contrast C' becomes 0.1, is the
greatest film thickness that will yield useful electron diffraction pat-
terns with the photographic emulsion employed in this work. The
variation of Tmax with accelerating voltage V is shown in table 11.2.

Table 1 1.2. Tmax in A

Tb Aluminum Thallium
chloride

50 2900 2500
100 4600 3700
150 5600 4400

It will be seen that for voltages up to 150 kv, Tmax increases less

rapidly than the voltage. This is in qualitative agreement with the
results of Mollenstedt. 3

While these results are suggestive, they do not warrant generaliza-

tion since the specimens encountered in electron diffraction studies

seldom have the form of thin films. With this in mind, I'R and TB
were measured, independently for different film thicknesses, t. Ele-
mentary considerations suggest that

and the experimental results supported this view. Here, I'0 is the

current density in the incident beam, k[ measures the probability of

diffraction, and K gives the attenuation of the primary beam due to

all causes. The background current presents a more difficult problem.
From some work which E. G. Ramberg did on the subject, it seemed
possible that it might be approximated by the expression

rB=r0k'2e-Kt (t+atn
). (2)

This was found to be the case. The parameter k'2 measures the

probability of incoherent scattering through twice the Bragg angle,

and a and n are parameters dependent on the nature of the film. The
term at

n gives the contribution of the plural scattering. From the

experimental results it was found possible to obtain k[/k2 ,
K

,
o, and n.

The results for aluminium are given in table 11.3, for which n= 5 to

the nearest integer.

3 G. Mollenstedt, Nadir. Wiss. Gottingen 1, 83 (1946).
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Table 1 1 .3.

^ kv 50 150

K cm- 1 2. 22X10 5 1.37X105
a cm"1 4.46X10 19 6.45X1018

k’JK 2.9 8.4
K~i A 450 730

Conclusions

The experimental results show that the contrast decreases with
increasing film thickness because I'R falls off very rapidly. VB also

falls with increasing t, but this occurs at higher values of film thickness

where I'R is already very small. In a polycrystalline wedge of alu-

minium, for example, the major contribution to the rings, at 150 kv,

comes from the part with thickness between 250 and 2500 A. The
major contributions to the background comes from the part with
thickness between 1000 and 5000 A.
Equations (1) and (2) can he integrated for polycrystalline wedges

and spheres. If the maximum thickness of these bodies is taken to be
very large, it is found that detectable rings (C' 0.1) will he obtained
only if k'Jko is large enough.
For speciments which have very thick regions, the calculations

suggest that the contrast will increase less rapidly than the voltage
for voltages up to 150 kv. It does increase in all cases, however,
where the specimen has no very thick regions and its thickness is of

the order K-1
the contrast increases very rapidly with voltage. In

reflection studies the implication is that the contrast will increase very
slowly with voltage if the specimen is smooth, and a little more rapidly
if the specimen is rough. This again is in general agreement with our
experience.

The results are of interest from two points of view. In the first

place, by studying the variation of ring intensity and background
intensity with film thickness, it is possible to compare the coherent
and incoherent scattering in the same film and to form some idea of

the contribution of plural scattering. Secondly, we can estimate the

advantages that may be expected from using higher accelerating

voltages on electron diffraction cameras. Broadly speaking, up to

150 kv we may expect a rather general increase in contrast in the
patterns but not a very spectacular increase in the number of speci-

mens that can be examined. In fact, careful specimen preparation
may often give more improvement in contrast than an increase in

accelera ting vo 1tage

.

Discussion

Dr. C. E. Hall, Massachusetts Institute of Technology, Cam-
bridge, Mass.: Do you have any ideas concerning the velocity
distribution in the background?
Dr. Ellis: No, it was not measured in these experiments. How-

ever, there was no lens between the specimen and the photographic
plate so that the current distribution was not changed by the chromatic
aberration of the lenses.

103



Dr. A. C. vax Dorstear Phillips Research Laboratory, Eindhoven,
Holland: How would the crystal size influence.your measurements?

Dr. Ellis: This is a difficult question to analyze because the ring

width depends not only on the crystal size but also on the refraction

due to inner potential which in turn depends on the crystal size and
orientation. Thallium chloride was chosen as a specimen because it

gives very narrow rings compared with aluminium, presumably
because there are smaller refractive deviations. The variation of

ring width with voltage was not the same with these two specimens.
The contrast increased more rapidly with voltage in the case of

aluminium, in which the refractive effects were probably larger.

Aluminium is considered to be a more typical specimen, and the con-
clusions reached are based largely on the results from the aluminium
films.
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12. Electron Diffraction and Average Vibrational

Motion of Gas Molecules

By J. Karle

In the past few years quantitative measurements have replaced
visual estimates of the scattered electron intensities due to inter-

atomic interference (molecular scattering) [1,2, 3, 4, 5]
2

. As a con-

sequence, improvements have been made in the accuracy of measuring
equilibrium interatomic distances, and, in addition, it has been possible

to evaluate the average vibrational motion of these distances.

The experimental features of the quantitative method involve the

use of a rotating sector and a microphotometer. The rotating sector

removes the steeply falling background from the scattering pattern
and therefore accentuates the maxima and minima of the molecular
scattering. It is possible to treat the molecular scattering data to

obtain an intensity curve representing essentially the scattering from
bare nuclei. It was shown by Debye [6] that the Fourier transform
of th e scattering from bare nuclei gives the probability distribution

for the interatomic distances according to the formula

(1)

where P tj is the probability distribution for the distance, r, between
the 7th and jth atoms, c is a scale factor equal to unity if the areas

under the probability curves are unity, k tj is a constant equal to the

product of the atomic numbers of the 7th and jth atoms, /mo i
is the

experimental molecular scattering and s is equal to 47r sin (0/2)/\, where
6 is the scattering angle and X is the electron wavelength. Generally,
the probability distributions for interatomic distances have a Gaussian
shape, as predicted from theoretical considerations. [7]. In these
cases the maxima of the Gaussian distributions give the equilibrium
interatomic distances occurring in the molecule, and the shapes of

these distributions are related to the average deviations of these
distances from equilibrium owing to the vibrational motion of the
molecule.
The application of eq (1) to the study of several molecules is illus-

trated in figures 12.1 to 12.5, inclusive. The radial distribution curve
for CH 2CFf is shown in figure 12.1. It should be noted that this

curve, a Fourier sine transform computed from experimental data, is

non-negative as is to be expected from its interpretation as related
to the probability distribution of the distances occurring in the
molecule. The curve is decomposed into the component distances on
the basis that the components have a gaussian shape, and that their

areas are related in terms of the atomic numbers of the atoms involved.

1 U. S. Naval Research Laboratory, Washington 25, D. C.
2 Figures in brackets indicate the literature references on p. 110.
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A

DISTANCE C-H C-C C-F C-H F-F C-F H-F H-F
n Zj Hj 4 12 36 4 27 36 6 6
ACTUAL AREA 4 2 12.1 360 41 272 360 54 7

Figure 12.1. Radial-distribution curve for CFFCF2

showing component distances.

All radial-distribution curves illustrated here are related to true prob-
ability distributions by means of a folding theorem.

DISTANCE C-F C-C F-F C-F F-F F-F

nZ.Zj 36 6 27 36 27 27

ACTUAL AREA 359 60 272 361 268 270

Figure 12.2 Radial-distribution curve for CF2CF2

showing component distances.

Figure 12.3. Radial-distribution curve for C-iCU showing component distances.

Figure 12.4. Radial-distribution curve for benzene
showing component distances.
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The upper curve shows the unsatisfactory distribution of distances at
the third peak for the crown model. The lower curve shows the correct
tub form.

Figure 12.6. Theoretical distribution Junction, ti (r) ,
for trans-distance affected

by torsional oscillation and general vibration of the molecular frame.
The separate distribution functions for torsional oscillation, P(r), and for the contribution from the
vibration of the molecular frame, 11 (r), are showm. The dotted line at 4.3 A indicates the shift of

the maximum of the ti(r) curve from the equilibrium position. These distributions are related to

true probability distributions by means of a folding theorem.

These two criteria are quite restrictive. Distances involving hydro-
gen appear clearly resolved in figure 12.1, and the structure and inter-

nal motion of the molecule are readily obtained. The same analytic

features are seen in the radial distribution curves for CF 2CF 2 [5],

figure 12.2, CC1 2CC1 2 [8], figure 12.3, benzene [9], figure 12.4, and
cyclooctatetraene [9], figure 12.5.

In special cases, such as for molecules with internal torsional

oscillation [10], the probability distributions are not Gaussian and
their analysis is somewhat more complicated As indicated in figure

12.6, the probability distribution for the trans-position is asymmetric,
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being a combination of the over-all vibration of the molecular frame
and the internal torsional oscillation. It is also seen from figure 12.6,

that the equilibrium distance is displaced from the maximum of the

probability distribution. Figure 12.7 shows the approximate shape
of the potential hindering rotation in a symmetric di-substituted

ethane such as 1 ,2-dichloroethane. The radial distribution curve for

1,2-dichloroethane [11] is shown in figure 12.8. The £ra7is-Cl—Cl peak
at about 4.30 A shows the characteristics exhibited in figure 12.6. A
detailed study of the radial-distribution curve and the theoretical

intensity curves showed that the equilibrium value for the trans-Cl-Cl
distance was about 0.02 A larger than the maximum of the trans-

Cl-Cl peak. Experimental uncertainties prevented an accurate
evaluation of the torsional motion in this molecule. However, a

similar analysis applied to other molecules may give more information.

A Cl-Cl peak is seen to appear at about 3.35 A in figure 12.8. This
corresponds to the gauche -form wherein a Cl atom is rotated about
120° from the trans-position. The gauche -form is found to occur to

the extent of 27-percent, which is in good agreement with spectro-

scopic measurements based on the temperature variation of infrared

bands [12] and dipole moment measurements [13].

It is of interest to compare the values for the average vibrational

motion of the interatomic distances obtained from electron diffraction

with those which may be computed from a force model and a measure-
ment of the fundamental frequencies. For performing the spectro-

scopic computations, the following relations are required [4, 7],

se/25„, (2 )

Figure 12 . 7 . Idealized potential func-
tion restricting internal rotation

in 1,2-dichloroethane.

Only the regions around the minima affect the
electron diffraction patterns.

Figure 12.8 Radial distribution curve

for 1,2-dichloroethane showing com-
ponent distances.
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(3 )

4r2 ’

ft =wis t ., n hit,
n

}h
tan

2k‘T

(-'ll [%ij(a in ajn) 4" Vij(@in ftjn) ij()f in~\~ jn)\h iji (4)

where 1*? is the root mean square amplitude of vibration projected
on the line connecting the atoms at equilibrium, vn is the frequency
of the nth normal vibration, h is Planck’s constant, k is the Boltzmann
constant, T is the absolute temperature, £#, p ih and k

a

tire the com-
ponents of the equilibrium distance, rih projected on the x, y, z axes
of some cartesian coordinate system, and a in ,

(3 in , y in are the coeffi-

cients of the nth normal coordinate in the transformation of the
x, y, z components of the displacement of the ith atom to normal
coordinates.

Some of the very few results obtained so far are shown in table

12.1 The spectroscopic computation for CC1 4 was based on a central

force model which has since been shown to be incorrect [14]. The
lack of agreement with the electron diffraction results was to have
been expected and the spectroscopic computations should be repeated
with a general force model. In the case of C0 2 ,

there is no question
about the validity of the spectroscopic computations and the good
agreement with the electron diffraction results is gratifying.

Table 12.1. Comparison of electron-diffraction and spectroscopic determinations of
the average vibrational amplitudes, in CC1 4 and C0 2

ecu

ro

1

l-

2

Electron-
diffraction

Spectro-
scopic

C-Cl 1. 770±0. 010
Cl-Cl 2. 877±0. 010

0.041 ±0.005
. 054±0. 005

0. 055
.071

C0 2

C-0 1. 162±0. 010
0-0 2. 310±0. 020

0. 034±0. 003
. 040±0. 007

0. 034
.041

At present we are comparing l
22 values from spectroscopic and

electron-diffraction methods for CX2-CX2-type molecules. A prelim-

inary result is shown in table 12.2. For two somewhat different inter-

pretations of the fundamental frequencies the values are obtained for
1

lc\-c\

2
in the CCl2-group. They are seen to be considerably different.

In this case the electron-diffraction result falls between the spectro-

scopic ones and the question of the correct fundamental frequencies
is not resolved. However, in the complete spectroscopic analysis, the

amplitudes of all the distances in the molecule will be computed and
compared with the electron-diffraction results. In general, such com-
parisons should present new information concerning assignments of

fundamental frequencies and choices for force models.
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Table 12.2. Spectroscopic and electron-diffraction investigations of the average
amplitude for the ( T-Cl distance in a CC1 2-grou-p of detrachloroethylene

Spectroscopic

v\\ V\2 ,2
1

‘Cl-Cl

A
Bernstein _ 913 318 0.076
Torkington . _ 782 387 .063

Electron-diffraction= 0.070 A
,2

2

Wl-Ct
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13. Fundamental Problems of Theoretical Electron

Optics

By W. Glaser 1

The image on either the fluorescent screen or on the photoplate of

the electron microscope is given by the distribution of density of

electron current existing there. It is the fundamental problem of

theoretical electron optics to determine this distribution of current
density from given data pertaining to the object and the image-
forming field. Figure 13.1 shows this situation schematically.
Electron rays as near to monochromatic as possible strike upon the
object and are scattered. In the plane z=z0 immediately behind the
object, there exists a distribution of current-density with the 2-com-
ponent Jz(z0 ,Xo,yo).'
The determination of this function is the task of the theory of

scattering, which forms one of the subjects of this symposium. The
specific problem of electron optics, with which we shall deal, is the
calculation of the distribution Jz (z,x,y ) in the different reference

planes from the distribution Jz {xo,y0 ,z0 ) in the object plane. It is

true that a direct relation between these two distributions exists

according to geometrical optics, but does not exist from the point of

view of wave mechanics, which is valid here. Such a relation, how-
ever, exists according to Schrodinger’s equation for the corresponding
wave functions

\f/
from which the current density is deduced through

the well-known relation

The wave mechanical treatment of scattering yields the wave func-
tion in the object plane. From that we must calculate the solution

of Schrodinger’s equation in the reference plane.

Demonstration of an Object-True Image Formation
Based on Schrodinger’s Equation

Generalization of Kirchhoff’s Diffraction Formula in Space
Containing a Field

In light optics, provided the index of refraction is constant, and in

wave mechanics, in the case of the field-free space, our problem is

solved with satisfying accuracy by Huygens-K irchhoff ’s principle.

Together with my collaborator, F. Schiske, in Vienna, we have estab-

lished a formula that has the same significance for the paraxial range

1 Technische Hochschule, Wien, Austria.
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Figure 13.1. Electron-optical image-formation wave mechanically considered.
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Figure 13.2. Proof of object-true image formation resulting from Schrodinger'

s

equations.



of a field of rotational symmetry. This paraxial Schrodinger equa-
tion reads as follows

h
fx?+ dyJ+L2

e/
Biy^+hp'

flbxjy
\p-\-2p——=Q p =^2ernft.

i dz

(2)

This equation admits an exact integration and leads to the solution

Pq3
/2 / *

x
>

=
J J

*<*•> ?/o) exp [~{P<r’(x
2+y2)-

<

2po(xxo-\-yyQ)-\-p0p(xl Jryl)] ) dxody0 . (3)

Here \f/(z0 ,Xo,yo ) is the given wave function in the object plane, while

p and a represent the solutions of an ordinary differential equation
of second order. This equation coincides with the known differential

equation for paraxial trajectories, pander fufill the initial conditions

a(z0)=(); a'(z0)
= l

pOo) = 1; p'(zq)= 0 (figure 13.2). (4)

According to formula (3) and to formula (1) we are able to determine
the current density in the different reference planes as long as the

function a not vanish.

Let Zi be next zero of <r, the first being the object position z=z0 .

Moving the reference plane into the plane 2=21 and proceeding to

the limit 2—>2^ we obtain by means of (3) the relation

Iz (z,x,y)=—2 Iz

Pi

x y— 1
-

—

Pi Pi
(5)

for the current density. Choosing in the image plane 2= 2 L a pi-times

greater length unit, than in the object plane and measuring the in-

tensity there in a pi-times greater unit, we learn that the distribution

of current density in the image plane is completely identical with the
distribution in the object plane. The image position 21 and the
magnification pi coincide with the corresponding attributes of the

geometrical electron optics. Herewith is demonstrated the object-

true image formation based on the wave-mechanics.

Fresnel’s Diffraction Phenomena

In each reference plane other than the image plane z=zh there is in

general a Fresnel-diffraction phenomenon. Since for the magnetic
bell-shaped field—with which L. Marton and his coworkers have made
such interesting applications [1, 2]—the trajectories p and a are known
exactly, we are able to evaluate our formula for various objects. As
an example we chose, because of its simplicity, the image formation of

a narrow fringe (zinc oxide crystal or split diatom) by parallel illumina-

tion (fig. 13.3). In this case the Fresnel diffraction fringes were first

observed by H. Boersch, J. Hillier, and E. Ruska [3, 4, 5]. In accordance
with our general considerations, the distribution of intensity in the
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Figure 13.3. Fresnel’s diffraction 'phenomena.
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image plane is an image of the corresponding intensity distribution in

the object plane. The intensity distribution in a few different refer-

ence planes have been evaluated numerically. It is to be seen dis-

tinctly, that with the approach to the image plane, the diffraction

fringes come closer to each other until at the boundary of the beam, as

determined by geometric optics, they form a sharp edge in the image
plane. In the plane, where p vanishes, we have a Fraunhofer diffrac-

tion phenomenon. We call this plane (generally different from the
focal plane) the “Fraunhofer plane.” Only in the case where the
object lies in a field-free space does this plane coincide with the focal

plane, as in the light optics. We imagine now that this slit will be
illuminated by a parallel beam with the inclination 7. Instead of

\f/(zo,Xo,yo) = const, we must now write

z0,x0,y0)
= x/y0e

2po
-r- xo sin 7
n (9)

From this calculation it follows that in the different reference planes

0= const there exist the same distributions of intensity as in the first

case, but they are displaced by the distance 8 (2,7)= v sin 7 If we
illuminate the object by a few more parallel beams, the inclinations of

which vary in the aperture 0, we have to superpose the corresponding
intensities in the different planes of reference (fig. 13.4).

Also the influence of an aperture, for example, the aperture of

contrast, can be comprehended in the way that one first ascertains the

wave function in the aperture plane according to formula (3). The
wave function in the image plane will be obtained by a second applica-

tion of our formula, whereby we have to integrate only over the

aperture.

Since every wave function can be represented by superposition of

plane waves

•Ac Vo) JJ
A(a, (3)e ft

tp {]—jr (aXo+ft/o+TZo)

dadfi, ( 12 )

we are able to extend our considerations to the general case. Thus by
means of our formula we can translate the corresponding considera-

tions of wave theory in light optics.

Our formula can immediately be extended to an image forming system
with axial astigmatism, since the paraxial Schrodinger equation admits
exact integration also in such a field.

One can further establish a consequent wave-mechanical theory of

aberrations, either generalizing the Kirchoff principle or proceeding
from the paraxial Schrodinger equation and using one of the well-

known perturbation methods of wave mechanics. The calculations

pertaining to this are still in progress.

Question of Resolving Power

The formula

Q.6X

n sin 7
(1)

for the limit of resolution according to Helmholtz [5a] and Lord
Rayleigh [6], is for a self-luminous point, radiating equally in all

directions (fig. 13.5). However, from the point of view of the wave
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theory, it is not permissible to speak about a radiating “point.”

It follows, especially from the work by M. v. Lane [7] on the degrees
of freedom of radiation bundles, that there are only radiating surfaces

which send out neither exactly monochromatic nor exactly parallel

bundles. Nevertheless, in light optics it is possible on account of the

great wavelength to realize a point source by illuminating a small

aperture in an opaque screen.

Since in electron optics the wavelength is a great deal shorter than
the atomic radius, it is impossible in this wav to realize an object point
radiating equally in all directions. There is a further difference in

that the existence of an aperture in light optics is essential, whereas in

electron optics one usually works without an aperture. Both facts

are intimately connected. Objects commonly used in electron optics

to measure the resolution power are large relative to the do Broglie

wavelength, and scatter the greater part in the direction of illumina-

tion. In spite of these essential differences, this resolving formula has
been repeatedly and uncritically transferred from light optics into

electron optics.

We should proceed more correctly in the following way [8]. Let us
suppose the surface element df0 of the object emits in unit time into the

solid angle (Kl the number

-fa
=Kdf0cm0dU (2)

of electrons with velocities in the range dl . The radiation character-

istics K is dependent upon the scattering angle and has to be taken
from the theory of scattering. Without dealing with details, we can
use the fact that K decreases rapidly with the scattering angle. In
order to interpret it schematically we have used for our calculations

the formula

K=K0e~ Tdo. (3)

The exponent r characterizes the rapidity of decrease with the scatter-

ing angle. It is related to the half-aperture by the formula

In 2

dl
(3 )

We further used the fact that the image space of high magnification
electron lenses is practically field free. Consequently, it is possible to

apply P. Debye’s optical formula for the wave function of a bundle of

rays with sperical aberration

S,=MCM (4)

to electron optics. From these numerical calculations, which were
carried out by my coworkers Krammer and Titze, we obtained the
resolving power as a function of the halfaperture, the plot of resolving
power against halfaperature is represented in figure 13.6. We see

that the resolving power is a minimum where the halfaperture is

(0m)opt=O.92 (6)
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We get ft for the bell-shaped field, choosing* the most favorable
distance of pole pieces from the formula

ft=34 Mi
Bn

mm (8 )

Substituting this value ft and the de Broglie wavelength into

dmln= 0.783 yCsK (5)

we get the optimum resolving power as a function of the voltage ft
and the magnetic field strength Bn in the form

6.93. 1

0

-5

^min / in rj mm. (9)
A Aw T

For the value ft= 60 kv and a magnetic field strength of 20,000 gauss,

we obtain from that formula dm[n— 4A.
We must remember, however, that the optimum conditions were

assumed in three places: (1) optimum halfaperture; (2) the bell-shaped

magnetic field, favorable in itself with respect to spherical aberration;

and (3) optimum distance of pole pieces. Naturally, a perfect

rotationally symmetrical field was under consideration. But 9 years
ago we showed quantitatively the deciding effect of an axial astigmatism
on the resolving power [8a], which 4 years ago J. Hillier and E. Ram-
berg [9], in an elegant way, were able to eliminate in great part.

On the other hand a little better value could result by another choice

of reference plane. A comparison of our estimation of the resolving

power with the commonly used linear or quadratic superposition of

spherical aberration, and diffraction-discs (giving a little more un-
favorable values) was not carried out because this procedure seems to

be without a physical meaning as in the optical case where leading-

opticians, among them Capski [10] and Straubel [11] pointed this out

many years ago.

Relation Between Particle Size and Resolving Power

We can use the above results to estimate approximately the particle

radius most desirable for a determination of the resolving power.
Let us suppose that we have a disc of the radius p, which we take to

be perfectly opaque for simplicity. The radiation characteristic of

such an object is given by the diffraction pattern of a circular disc

and corresponds to the well-known Airy distribution. In proximity
to the main maximum, which is solely important, we replace the

Airy distribution by the Gauss curve (3) and we obtain the relation

between particle radius and halfaperture

6m=0.n — • (12)
P

From the above calculated optimum halfaperture, we now obtain

the optimum radius for the determination of the resolving power
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given by

01 )Pop I

2.35- 10-5

^

SjBJJr
mm.

Such an optimum particle size checks physically in that very small

particles yield large apertures and therefore a great deal of spherical

aberration, whereas larger particles yield smaller apertures and there-

fore larger diffraction errors. Naturally, we should have in mind
the conditions necessary for the validity of the result. The more
closely the condition of opaqueness is approximated, the more accurate
the estimation will be. For small particles, consisting only of a few
heavy atoms, the above formula for the most favorable particle size

can be a certain guide only as long as the exact law of scattering of

such particles is not known.

Meaning of Focal Length in Electron Optics

In light optics the relation between object position and image
position and the magnification is given by the formula

Vo z0 J 1

(1)

We will call it the “Newtonian Equation for Image Formation.” In

electron optics the corresponding relation is far more complicated
and given by formula

u Oo) w(z0 )

(2)

whereby u and w represent any two independent electron trajectories.

If obj ect and image are in the field-free space, as is commonly the

case for electrostatic lenses, then it is possible to replace the electron

trajectories by their asymptotes

M= Um +ZiU'm
U OO

|

ZqU 00

W 00 + ZiW ,

00

W- 00 + Z0w'- CO

Jo= Zi

Zo j\
(3)

This leads to a Newtonian equation for image formation, the focal

distance of which is defined by figure 13.7. For distinctness we will

call it “virtual” focal distance. Another definition of focal length

is represented in the same figure. We speak in this case of the

“real” focal-length, and we shall see that this is the most important
definition in electron microscopy. If object and image are in the

image forming field, the Newtonian equation is not generally valid

and both focal distances just defined are without meaning. It is,

therefore, not permissible in all cases to operate with focal distances

and lens equations as it happens repeatedly in electron optics (Never-
theless, the existence of an optical image formation, which is our sole

concern in electron optics is not affected by this fact).

One can try as well as possible to represent the general electron

optical equation for image formation (2), at least in the neighborhood
of a certain point, by a Newtonian equation (1) [12]. This is indeed
possible and one is led to the concept we have called (together with

O. Bergmann) the “Osculating Newtonian Image Formation”. This
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is characterized by the fact that it represents the general electron

optical image formation by Newtonian equation (1). But, in con-
trast to light optics, the osculating focal distance depends on magnifi-

cation, in the neighborhood of which it approximates the electron

optical image formation. Only for certain special image-forming
fields—we called them “Newtonian fields”-—the osculating focal dis-

tance does not depend on the chosen magnification. In this case the

general electron optical image formation is represented, whatever the

object position may be, by the same lens equation. Some time ago,

together with E. Lamm el, we determined all N ewtonian fields [13]. The
simplest field of this type is the simple bell-shaped magnetic field.

The focal distance of this field, and generally of every Newtonian
field, is identical with the above-defined real focal distance.

In figure 13.8 the dependence of the osculating focal distance upon
the magnification for a certain value of T1!UK

is represented for the
field of the ring circuit and for two bell-shaped fields with /x= 1 and
ii= 2 [14]. While for the simple bell-shaped field, which belongs to the

Newtonian class, the focal distance is constant, the osculating focal

distance of the field with \x= 2 and of the ring circuit is dependent
upon the magnification and varies particularly in the neighborhood
of the magnification 1. From this representation one sees that the
field of the ring circuit is not a Newtonian field, as was repeatedly
asserted. It is also obvious from the figure that for high magnifi-

cations, the graph of osculating focal distance becomes a straight line,

parallel to the 2-axis, i. e., it becomes constant. This can be shown
generally. In this way we are able to give an answer to the question,

what is the physical meaning of the above-quoted real and virtual

focal distance? The answer is that for a small magnification, if

object and image are in the field, these focal distances do not have a
meaning as far as the equation of image formation is concerned.
Only if the field is Newtonian, the common lens equation is valid.

In this case the real focal distance must be taken. However, for the
highest magnifications, such as are of interest in electron microscopy,
and where the object plane is near to the real focal point, the real

focal distance is identical with the osculating focal distance for this

case, and, therefore, is to be used in the representation of electron

optical image formation. At the same time the question of which of

the two definitions of the focal distance is the correct one is settled.

There are limiting cases, mutually exclusive where one or the other
shall be used.

Electron Optical Image Formation as a Problem of

Eigenvalue

The determination of paraxial electron trajectories in the general

equation for image formation by means of numerical integration is

laborious and wearisome. One can, however, avoid these calculations

by formulating the electron image formation problem as an eigenvalue
problem in which the lens power or the current intensity in the objec-

tive represents the eigenvalue [14a]. This point of view corresponds
precisely to the procedure in practice, because here is also given the
object position z=z0 and the position z=zi of the screen and one
regulates the current intensity in the objective so that a sharp image
formation results upon the screen. Translated into mathematics this
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means one postulates that the solution a (z) of the differential equation
of the paraxial trajectories

/+W),=o;TO=|;f=^ (1)

has zeros at z=z0 and z—Zi

a(z0)=0; a(zi)=0. (3)

This is the case only for a certain eigenvalue k 2

,
which is calculated.

For determination of k 2 there can be used any one of the numerous
methods for approximate calculation of eigenvalues; for example the
Rayleigh-Ritz method, etc. It has been shown, that even the simple
Rayleigh method (4) (fig. 13.9) yields a very accurate equation for

image formation in the form

k2
=f(zo,Zi) (6)

if one puts in (4) as an approximate electron trajectory (i. e., as an
approximate eigenfunction a (z)) the known trajectory of the bell-

shaped field (fig. 13.9) shows the graph of the real focal distance of

the ring circuit determined in this way. In order to test the accuracy
of the method, three values were also used, which had been determined
by means of a numerical path integration, which was carried out as

accurately as possible.

Differential-Equation of

Paraxial - Trajectories

(D Trajectory of the Belt-Shaped-Field

1

{

<S*+k F(z)6 - 0 i
sin K

d(z)* —TtzY* Zmdctgw
.

smtf
(S)

Eigen value -Parameter

f-eBja*-
8m Ur

U)

1

Boundary Conditions

dfeo) **0 j
<f(Zf)ss 0 .. (3j

Equation for Image- Formation

Rayleighs Method /I to

Z fd'^dz
k - iz-— (V

F̂(z)d*dz

Calculated after (k)

Calculated by

Numerical Integration

Figure 13.11. Geometric-optical distribution of electron density.

Image of a point, not on axis, for a typical reference plane. Number mean J z /I0

(percent)

.
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Figure 13 . 9 . Electron-optical image formation as a problem of eigenvalue.

Geometrical Optical Image of a Luminous Point

In finishing my exposition, 1 would like to say a few words about the
calculation of the electron intensities in image space from the point of

view of geometrical optics. The pattern of concentration formation
of rays leaving a certain object point is a sharp point only to the first

order. In general, however, it is a more complicated pattern, which
is called the “caustic”. It is the geometrical locus of the points of

intersection of neighboring trajectories in the beam and is a kind of

surface with two jackets. Figure 13.11 shows the formation of the

caustic. To every cross section of the caustic, two “basic curves”
generally correspond in the aperture plane. The general form of the
caustic has been determined with my workers H. Griimm and G.
Hofmann. The main result is that the basic shape of the caustic is

the same as in light optics. However, on account of the anisotropic

abberations of magnetic lenses, its position in space is different and
the caustic surface as a whole is rotated through a certain angle. For
the bell-shaped field of which the aberration coefficients are known as

a result of calculations, together with E. Lammel, the contour lines

were calculated by H. Griimm and the caustic represented in actual
size as a model of plaster. The lines of equal electron density in

different reference planes, the analog of the isopliots in light optics

were also calculated.* These graphs determine directly the real

geometric optical image on the photoplate by the image formation of a
point, by means of an electron lens. It is our intention to determine
the corresponding image by means of wave mechanics where a certain
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Figure 13.10. Caustic of electron lenses.

atom or a small particle with its actual radiation characteristic shall

be chosen as physical object.
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Discussion

D r. M. E. Haine, Associated Electrical Industries, England: I

wonder if Dr. Glaser would tell us what the actual value of spherical

aberration constant was?
D r. W. Glaser: Two tenths to one millimeter, corresponding to

the values of voltage and magnetic field strength, according to our
general formula in our lecture.

Dr. D. Gabor, Imperial College of Science and Technology, City
and Guild College, London, England: The reference plane is the

Gaussian plane?
Dr. Glaser: Yes, the reference plane is the Gaussian image plane.

This choice is the most natural one, and the general formula can be
worked out in the easiest way in this case. But calculations concern-
ing other reference planes are still in progress. It must yet be con-
sidered that our scattering characteristic is a hypothetical one, and,
therefore, it does not seem to be so important to take into account
other reference planes also.

Dr. Gabor: Well, we will see how that compares with the figures

of Dr. Marechal, who determined the optimum position of reference

plane in light optics.

Dr. Glaser: It is not possible to transfer considerations of light

optics to electron optics directly. In light optics, the resolution is

commonly calculated for a spherical wave, which radiates in all direc-

tions. Spherical aberration is not considered. This case is not real-

ized in electron optics. Here you have a natural decay of intensity

with scattering angle, and therefore you can work without an aperture.

In light optics, the radiation characteristics commonly are not taken
into account.

Dr. Gabor: Well, except in very high apertures. There are some
calculations that will help you.
Dp. Glaser: Yes, of course, I know the interesting papers of

H. Hopkins and others. But, although they are fully adequate to

light optics, they can’t help me in electron optics, because they do
not take into account the spherical aberration, which is of deciding
influence in electron optics.

Dr. V. E. Coslett, University of Cambridge, England: I did not
understand the concept that you put forward of the optimum size

of the test particles with respect to resolution. From the figures

you gave there, it appeared that the optimum size was distinctly

smaller than the resolution you obtained.
Dr. Glaser: Our calculations have shown that there exists, on

account of spherical aberration, an optimum aperture. The aperture
is dependent upon the size of the scattering particle. Therefore, you
get an optimum size of two particles in order to distinguish them in

the best, way. In light optics, where you have corrected objectives,

the resolution is the better the greater the aperture, and therefore
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the particle size is smaller. Condition is, of course, a sufficient

contrast.

Dr. Coslett: From a practical point of view, your resolution

here is a separation of two objects. You take a photograph and say
the resolved distance is so and so. On your figures the actual particle

diameter needs to be two-thirds of that size.

Dr. Glvser: Yes, the diameter is two thirds of the distance of

the particles. This condition cannot be perfect for small particles

that contain only a few atoms. In this case, we must take into

account the real scattering characteristics of such a particle.
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14. Uber die Bildentstehung im Elektronenmikroskop

von H. Boersch

2

Auflosungsvermogen und Kontraste sind, abgesehen von Prapara-
tionsfragen, die Hauptprobleme der mikroskopischen Abbildung.
Beide Problemkreise sind eng miteinander verkniipft. So wird z. B.

durch Anderung der Objektivapertur gleichzeitig Auflosungsvermogen
und Kontrast geandert. Diese Untersuchung ist nun hauptsachlich
dem Kontrastproblem gewidmet, allerdings endet sie, fast zwangs-
laufig im Auflosungsproblem.

Die Bildung der Kontraste im Elektronenmikroskop kann unter
gewissen Umstanden sehr einfach auf den Intensitatsverlust durch
Streuabsorption [1—16]

3 zuriickgefuhrt werden. Diese Art der
Kontrastbildung ist fur die Objekte gegeben, deren Ausdehnung gross

gegen das Abbe’sche Auflosungsvermogen ist. Im anderen Extrem-
fall, wenn das Objekt klein gegen das Abbe’sche Auflosungsvermogen
ist, fiihrt die Methode der Streuabsorption jedoch zu unrichtigen
Resultaten. In diesem Fall mufi zunachst die Lichterregung in der
hinteren Brennebene des Objektivs bestimmt werden. Durch Inter-

feres ergibt sich hieraus die Lichterregung im Bilde.

Vom Standpunkt der Bilderzeugung durch Interferenz mub natlir-

lich auch der vorerwahnte Fall des Ivontrastes durch Streuabsorption
erklart werden konnen. Durch bier nicht wiedergegebene Rechnun-
gen hat sich der Verfasser versichert, dab im Fall ausgedehnter Amplitu-
den- und Phasengitter Ubereinstimmung zwischen beiden Methoden
besteht.

Der Fall kleiner Objekte ist fur die Flektronenmikroskopie insofern

von besonderem Interesse, als zwar die Auflosung von Atomabstanden
mit schnellen Elektronen noch nicht gelungen ist, aber vom Stand-
punkt der Weiterentwicklung des instrumentellen Auflosungsver-
mogens durchaus moglich erscheint.

Zwar sind fiber die Kontraste von Atomen schon einige Unter-
suchungen veroflentlicht [7, 8, 17-19]. Solange jedoch keine voll-

standige Losung dieses schwierigen theoretischen Problems vorliegt

scheint es von Interesse, an einigen Extremfallen die zu erwartenden
Kontraste zu studieren und gewisse Grenzen aufzustellen, an denen
der theoretische und experimen telle Fortschritt in der Behandlung des
Problems ermessen werden kann.
An dem Beispiel der Abbildung von einfachen Gittern und Kreis-

schirmen werden die Beziehungen zwischen der Beugungs- und der
Bild-Amplitude dargestellt und auf die Abbildung von Kristallgittern

und Einzelatomen ubertragen. Hierbei wird vorausgesetzt, dab die

Ausdehnung der Atome, gemessen an ihrer Wirkung auf den Elek-
tronenstrahl, klein ist gegen die Atomabtande, und dab nur der
Beugungsfehler das Auflosungsvermogen beschrankt. Der Einflub
der spharischen Aberration kann durch Verringerung der Objektiv-

1 Vortrag gehalten auf dem Symposium on Electron Physics des National Bureau of Standards in Wash,
ington am 7.11.51.

2 Physikalisch-Technische Bundesanstalt, Braunschweig.
3 Figures in brackets indicate the literature references on p. 144.
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apertur unterdruckt werclen. Hierbei tritt selbstverstandlich eine

entsprechende, aber nicht sehr ins Gewicht iallende, Verminderung
des Auflosungsvermogens ein. Auber dem Wunsch nach klaren und
ubersichtlichen Verhaltnissen besteht ein weiterer Grund fur dieses

Vorgehen darin, dab die Beugungserscheinungen von Atomen unci

Kristallgit tern relativ gut bekannt sind, so dab die Nutzanwendung
dieses Verfahrens auf der Hand liegt.

Die folgenden Abschnitte sind den kontraststeigernden Verfahren
gewidmet, namlieh der Ubertragung des Phasenkontrast-Verfahrens
nach Zernicke, des Amplituden-Kontrast-Verfahrens und des Filter-

verfahrens auf die Elektronenmikroskopie. Besonders eingegangen
wird auf das Elektronenfilter-Verfahren und die experimentelle
Durchfuhrung dieser Methode im Netz- und Linsenfilter. In speziel-

len Fallen hatfdiese Methode jbereitsjzu beachtlichen Kontraststeige-
rungen gefuhrt.

Besondere Bedeutung besitzt der Kontrast fur die Abbildungsdosis.
Aus statistischen Betrachtungen folgt namlieh dab das Objekt mit
einer bestimmten Elektronendosis bestrahlt werclen mub, um eine

Abbildung durchzufuhren. Diese Abbildungsdosis ist kontrast-
abhangig.

Andererseits wird das Objekt clurch die Elektronenbestrahlung
zerstort. Dieser Einwand wurde schon gleich zu Beginn der Entwiek-
lung des Elektronenmikroskops erhoben. Obwohl diese pessimisti-

sche Einstellung damals nicht durch entsprechende Erfahrungen
gestutzt werclen konnte, bedeutete sie einen sehr unangenehmen
psychologischen Faktor in cler Entwicklung des Elektronenmikroskops
zum Ubermikroskop. Es war daher sehr beruhigend, als sich zeigte,

dab dieser Einwand in dem damals erhobenen Ausmab nicht zutraf,

sondern dab man Bilder erhielt, die nicht durch die Beobachtung
selbst verandert erschienen. In der Folgezeit hat sich jedoch ergeben,
clab cler Optimismus, cler sich daraufhin als Gegenspieler cler erwahnten
pessimistischen Einstellung bemerkbar machte, auch nicht ganz zu
recht bestand. Das Objekt wird tatsachlich durch die Beobachtung
im Elektronenmikroskop verandert, wie die in den letzten Jahren sich

haufenden Beobachtungen zeigen. Diese Objektanderung bedeutet
in Fall cler Abbildung von Atomen einen Platzwechsel des Atoms.

Dieser Platzwechsel des Atoms ist ebenfalls von cler Dosis abhangig.
Es wurde daher versucht, einen Eindruck von der Grobenordnung cler

maxim alen Platzwechseldosis zu gewinnen.
Damit nun die Abbildung eines Atoms zustande kommt, darf es

naturlich seinen Platz wahrend des Abbildungsvorganges nicht
wechseln. Die Platzwechseldosis mub also grober als die Abbil-
dungsdosis sein. Falls diese fundamental Bedingung verletzt ist,

tritt eine neue Art cler Auflosungsbegrenzung, namlieh durch Platz-

wechsel, ein. Hier aubert sich auch die voile Bedeutung des Kontras-
tes fur das Auflosungsvermogen, denn der Kontrast bestimmt in

erster Linie die notwendige Abbildungsdosis.
Ob eine Abbildung der leichten Atome cler organischen Chemie, die

ja von besonderem Interesse ware, mit schnellen Elektronen moglich
ist, kann auf Grund der jetzigen Unterlagen nicht entschieden werclen,

zumindest ist sie, wie sich auf Grund der Diskussion ergibt, unter
bestimmten Bedingungen fraglich. Es bedarf daher noch weiterer

intensiver Arbeit cler Theoretiker und Experimentatoren, um diese

wichtige Frage definitiv zu entscheiden.
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1. Kontraste von Schirmen

a. Amplitudenschirm

Zunachst wurde der Ivontrast eines absorbierenden Schirms
bestimmt, (lessen Radius r klein gegen das Abbe’sche Auflosungs-
vermogen d.A ist. Dieser Schirm befmdet sich im Mittelpunkt eines

freien Objektfeldes vom Radius R, das grob gegen das Abbe’sche
Aufiosungsvermogen ist. Es gilt also:

\<r<C(/A= X/tf0<£ (1)

(X= Wellenlange, $o=Objektivapertur). Durch den Schirm wird
die Amplitude der einfallenden Strahlung (^0=1) um den Faktor p<^ 1

geschwacht. Aus der Kirchhoff’schen Formel ergibt sich unter diesen

Umstanden die Amplitude der Erregung im Beugungsbild (hintere

Brennebene des Objektivs) zu:

2ttR2 I1 (2ttR&/\) / ^
2irr

2 Il (2irrd/\) /rA0=ur 2rB&/\ —2^pr (2)

(/i(x)=Bessel-Funktion 1. Art, 1. Ordnung,# = Streuwinkel). Die
Erregung setzt sich also aus zwei Gliedern zusammen:

0= (/>/B+ 0r (2a)

von denen das erste nur von R, das zweite nur von r abhangig ist.

Bei der weiteren Bilderzeugung nimmt gemab der Yoraussetzung
Gl.(l) das gesamte erste Glied der Gl.(2a) an der Bilderzeugung teil

wahrend vom zweiten Glied wegen der Yoraussetzung Gl.(l) (#<^#o

<^CX/r) nur der konstante Teil des Zentralmaximums <j> r (0) zur Bilder-

zeugung beitragt. Die fur die weitere Bilderzeugung maGgebende
Erregung in der hinteren Brennebene des Objektivs kann also durch

den Ausdruck:

<A= ^>z2 -|- Cp

—

l)r-7r/X= 0^+ 0,(0) (3)

dargestellt werden.
In der Gauss’schen Bildebene ergibt sich die Amplitude der Erre-

gung aus der Anwendung der Kirchhoff’schen Beugungsformel auf
Gl. (3) zu:

'W'Abb— 1 "F^)r(0)
2t\ Ii(2Trp/dA)

d2
A 2wp/dA

(4)

fur den Fall der Abbildung 1:1 (p= Abstain! vom Mittelpunkt des
Bildfeldes). Ftir p= 0 wird der maximale Bildkontrast:

A/(0) 2Art(0) Abb o jl
^

~T-
=-^r=2rM0)

di

(I=
|

uAhh
|

2= Bildintensitat)

.

(5)

129



b. Phasenschirm

Ein niclitabsorbierender Sckirm in der Objektebene. der nur die

Phase urn den TTinkel schiebt, ergibt unter sonst gleicken

Yoraussetzungen folgende Beziehungen:

$_(0) = (e
if— l)rV X ~

i

sin p-rV/X (6)

, ,

2ttX Ii(2tp Ida)
Abb

di 2trp/dA
(7)

A/(0) 0 |

\ ,
X

. /o
~j - u

.
Y 1 j-sm C? — (8)

Der Phasenschirm fiihrt also, gleichen Betrag der Streuamplitude
bzw. gleiche Strevintensitat vorausgesetzt, zu einem um den Faktor
sin <p/2 geringeren Kontrast als der Amplitudenschirm . Falls, wie in

dem Pliasenkontrastverfahien von Zemicke [20], in der Bengungsfigur
die Phase des Primarstrahls (<t>R) gegeniiber der Phase der Beugungs-
fignr (F r ) des Pliasenschirms um 90° verschoben wird, werden die

Bildkontraste des Phasenschirms um den Faktor l/sio^/2 verstarkt
und durch die gleichen Beziehungen wie die des Amphtudenschirms
beschrieben. Z. B. lautet der Maximalkontrast ia diesem Fall

^A=2T>7 (0):\/rf| (5 a)

c. Anwendung auf die Kontraste von Einzelatomen.

Fin die Abbildung von Einzelatomen ist die Renntnis ihrer Streu-
verteilung ($Atom) beziiglich Amplitude und Phase notwendig. Im
allgemeinen werden Amplitude und Phase eine Funktiou des Streu-
winkels sein. Zur Vereinfachung der Bechnung rnoge daher zimachst
angenommen werden, dab die Phase im Beugungsbild so korrigiert

werden kann, als ob die Beugimgsfigur von einem nur absorbierenden
Teilchen stammt. Der auf diese tVeise berechnete Kontrast ist der
maximale Kontrast, den das Atom erzielen kann. Als Beispiel ist in

Figur 14.1 die Streuamplitude des Thomas-Fermi-Atoms dargesteht.

Demnach ist bei selir ldeinen Streuwinkehi & bzw. selir groben TVerten
des Abbe’schen Auflosungsvermogens dA die Amplitude der Streuver-
teilung konstant, so dab die Voraussetzungen der vorlier behandelten
Abbildung kleiner Schirme fiir diesen Fall zutreffen.

Die Streuamplitude des Thomas-Fermi-Atoms lautet fiir #= 0

bzw. f=0:

Utom(0)=TJP'U(0) =3,8-10-^ (9)

Dieser Ausdruck hi Gl.(5) eingesetzt, ergibt den maximalen Kontrast
des Tliomas-Fermi-Atoms:

:A^=24-10-
sZ1/3 X di (10)
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Figur 14.1 Streuamplitude des Atoms. Figur 14.2 Elastischer Streuquer-
schnitt des Atoms.

Voraussetzungsgemab kann diese Beziehung jedoch nur gelten, solange
F einigermaben konstant ist, also schatzungsweise in dem Bereich

0= 0(0) bis 0= 0(O)/2. Dies
o
ist nach Figur 14.1 fur f <0,05 bzw. Z 1/3 >

10- 7Ma der Fall. Fur dA=3A gilt also Gl.(10) nur fiir Z^>37. Um fiir

kleinere Ordnungszablen zu einer Kontrastabschatzung zu kommen,
moge angenommen werden, dab die in die Objektivoffnung gestreuten

Elektronen diese mit einer konstanten mittleren Amplitude FAtom(0)
ausleuchten. Diese Amplitude ergibt sich aus der Differenz des totalen

elastischen Streuquersclmitts <je (0) und des elastischen Streuquer-
schnitts <je (d0 ) fiir die Objektivoffnung d 0 bzw. fiir den entsprechenden
Wert c/A zu:

^AtomCO) — (ID

Unter diesen Voraussetzungen ergibt sich der maximale Bildkontrast
des Beugungsfehlerscheibchens:

^P=~j^MO)-cre(&o))
m

(12)

<7e (0) und cre ($o) konnen Figur 14.2 und Tabelle 14.1 entnommen
werden.

Tabelle 14.1. Elastischer (a e) und unelastischer (<r u ) Streuquerschnitt und der

Kontrastgewinn s durch Filterung bei diinnen
,

ausgedehnten und amorphen
Objekten. (Fig. 14-8, Gl.23

, 24) (A= O,05A, dA= 3A,#o= A/^a)

z 1 6 20 90

^,(0)/X2

a.(t>0)/X3

ffn (0)/\2

„ 0u(O)-|--<r«(#o)

<7e(#o)

0,18
0,12
3,2

29

6,5
2,7

14

6,3

32
19

47

3,5

241
180
210

2,2
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2. Kontraste von Gittern

a. Amplitudengitter

Durch ein quadratisches Kreuzgitter mit der Gitterkonstanten d
werde in der Objektebene die Amplitude der Lichterregung:

u=\-{-Au cos 2irxld-{-Au cos Siry/d (13)

hervorgerufen (Au<Cl). Diese Liehtverteilung bedingt naeli der
Fourier-Analyse ein Interferenzdiagramm, von 4 Interferenzstrahlen,

deren Hauptmaxima im Abstand d-g=\jd vom Primarstrahl liegen.

Die maximale Amplitude dieser Interferenzstrahlen ist

(14)

(Lx ,
Ly=Kantenlange des Gitters in Richtung der Aehsen x, y).

Wenn alle Interferenzmaxima an der Abbildung teilnehmen (dg<^d 0 ),

wird in der Gauss’schen Bildebene die gleiche Liehtverteilung wie in

der Objektebene (G1.13) entstehen, Der maximale Bildkontrast ist

dann gegeben durch:

Alg SAu
I u

(15)

b. Phasengitter

Durch das Phasengitter werde nur die Phase <p der Lichterregung
m der Objektebene periodiscli beeinflufit. Fur 1 gelts:

u=l J
ri<Po cos 2Tx/dJri<Po cos 2tty/d (16)

Entsprecliend Gl. (14) wird die Maximalamplitude der Interferenz-

strahlen:

(17)

Die Interferenz dieser Stralilen zusammen mit dem Primarstrahl
ftihrt im Bilde zu der in Gl. (16) beschriebenen Erregung. Es treten
also keine Bildkontraste auf. Erst eine Phasenschiebung der Inter-

ferenzstrahlen um 90° gegenuber dem Primarstrahl naeh dem Yer-
fahren von Zernicke ergibt gemah Gl. (15) die gleichen Maximalen
Bildkontraste wie die des Amplitudengitters

:

^=16/^)/tY=8^o (18)

c. Anwendung auf die Kontraste von Kristallgittern

Die Intensitats- bzw. die Amplitudenverteilung der Beugungser-
scheinung eines dreidimensionalen Kristallgitters wird durch die Laue’-
sche Gleichung besclirieben. Es werde vorausgesetzt, da 13 die z-Achse
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eines einfachen kubischen Raumgitters in Richtung des Primarstrahls
liegt, und dab die Zalil der Gitterebenen in dieser Richtung sehr gering
ist. Infolgedessen wird das nullte Hauptmaximum dieser Periode so
breit, da 13 die Interferenzen 1. Ordnung der beiden anderen Perioden
nocli in einem angenahert konstanten Bereich dieses 0. Hauptmaxi-
mums liegen. Es ergibt sich die maximale Beugimgsamplitude in den
Interferenzmaxima 1. Ordnung:

0 ($g) == A'Uom-Y yA7z (19,)

wobei Ni die Anzahl der Atome in Richtung der Achsen i bedeutet.
Falls nur die Interferenzmaxima 0. und 1. Ordnung das Bild aufbauen

,

ergibt sich naturlich die durcli Gl. (13) gekennzeichnete einfache
Lichtverteilung. Der maximale Bildkontrast [3,8] des Kristallgitters
ergibt sich dann durch Einsetzen von Gl. (19) in Gl. (15) zu:

j
~ 1 9 </>Atom^2’Nz (20)

In Tabelle 14.2 sind einige Zahlenwerte des Kontrastes fiir den Fall
Ar

z=l angegeben. Yoraussetzung ist hierbei allerdings, da R das
Verfahren von Zernicke angewendet wurde, d. li. dab die Phase der
Interferenzstrahlen in optimaler Weise gegen den Primarstrahl vei'-

schoben ist.

Tabelle 14.2. Maximaler Kontrast der Beugungsfehlerscheibchenvon Atomeninfolge
elastischer und unelastischer Streuung (Index u), (Gl. 10, 12, 25), \=0,05 A,

d= d\= S A).

7 1 6 20 90

Ybt (Einzelatom) 0, 015 0, 02 0, 22 0,45
I

(Kristallgitter).. _ -- 0, 031 0, 06 0, 37

0,6

0,9

(Einzelatom) 0, 0028 0, 012 0, 043 0, 19

3. Phasenschiebung

In einer friiheren Untersuchung [7, 8] wurde die Moglichkeit der
Phasenschiebung nach Zernicke [20] im ideal abbildenden Elektronen-
mikroskop durch Folien mit innerem Potential bzw. durch zusatzliche

elektrostatische Felder diskutiert. Auch wurde darauf hingewiesen

[8, 19] dab bei nichtidealer Abbildung die spharische Aberration und
die extrafokale Abbildung ebenfalls Phasenschiebungen herbeifiihren.

Die spharische Aberration mit der Aberrationskonstanten Co hat
bekanntlich im Zusammenhang mit der Beugung eine Auflosungsbe-
grenzung zur Folge Bei optimaler Objektivapertur wird die Auflo-
suogsgrenze

:

do= c xCl^ (21 )

(c-^1). Diese Beziehung kann auch so gedeutet werden, als ob der
Strahl maximaler Ablenkung durch den Einflub der spharischen Aber-
ration um den Winkel a ^90° gegen den Primarstrahl in der Phase
verschoben ware.
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Auch infolge Defokussierung um die Strecke A/ tritt bekanntlich

eine Auflosungsbeschrankung ein. Fiir F^/F>do wird bei optimaler

Bemessung der Objektivapertur die Auflosungsgrenze

:

dAf=c2Af /2 \ 1/2
(22)

(c2 ^l) . Sie kann ebenfalls als Folge eienr Phasensehiebimg von
ca. 90° des maximal gestreuten Strahls gegen den Primarstrahl

gedeutet werden. Offnungsfehler und extrafokale Abbildung flihren

also im Grenzfall und fiir die extrern abgebeugten Strahlen zu den
gewiinschten Phasenschiebungen

.

4. Amplitudenschiebung

Falls die Intensitat des Primarstrahls in der Frauenhofer’schen
Beugungsfigur durch ein Absorptionsplattchen um den Faktor r<0
geschwacht wird ergibt sich nach Gl. (5, 15) innerhalb der Vorausset-

zungen eine Verstarkung des Kontrastes um den Faktor l/yr.

5. Unelastische Streuung

In den vorstehenden Ausfiihrungen wurde nur die Wirkung der
koharenten (elastischen) Streuvorgange auf die Bildkontraste berlick-

sichtigt. Unberiicksichtigt blieb die Wirkung der inkoharenten oder
unelastischen Streuvorgange. Nun ist nach den bisher vorliegenden
Untersuchungen [5-9] der mittlere Streuwinkel der unelastischen

Streuung wesentlich kleiner als der elastischen, sodah unter den
iiblichen Bedingungen und bei diinnen Objekten (Einzelstreuung) fast

samtliche unelastisch gestreuten Elektronen in die Objektivoffnung
und an den zugehorigen Bildort gelangen und daher nicht zu Koatrasten
Anlah geben. Eine Kontrasterhohung durch Ausschaltung der
unelastisch gestreuten Elektronen kann durch das Elektronenfilter [21]

oder durch Verringerung der Objektivapertur [10] erzielt werden. Da
die Verringerung der Objektivapertur auf die notwendigen Werte mit
einer entsprechenden Verringerung des Auflosungsvermogens gekop-
pelt ist, soil im folgenden nur die Wirkung des Elektronenfilters

behandelt werden. Durch das Filter konnen samtliche unelastisch

gestreuten Elektronen unabhangig vom Streuwinkel ausgeschaltet

werden. Es interessiert daher hier nur der unelastische Gesamt-
streuquerschnitt o-M (0). Die in Tabelle 1 angegebenen Werte von o-a (0)

wurden aus einer schon friiher [8] mitgeteilten Beziehung:

FX2

o"m(0) =24 —jjj (23)

ermittelt, die das experimentell abgeleitete Widdington’sche Gesetz
iiber den mittleren Energieverlust (gemittelt auch liber die elastisch

gestreuten Elektronen) mit dem experimentellen Resultat [22, 23]

liber den mittleren Energieverlust AU der unelastisch gestreuten
Elektronen miteinander verkulipft. Diese Streuquerschnitte stim-

men grohenordnuogsmahig mit den theoretisch ermittelten Resultaten
von Marton nod Schiff [6] und von v. Borries [9] liberein. Da nocli

sehr wenig Elemente vermessen sind, wurden nicht die individuellen
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Werte, die sich in der Grobenordnung von AL = 5—25 eV bewegen,
benutzt, sondern ein Mittelwert von 10 eV. Die o- M (0)—und o-u (#o)

—

Werte von Wasserstoff der Tabelle 14.1 sind der friiheren Unter-
suchung des Verfassers entnommen, die ae—Werte der Figur 14.2.

Unter diesen Umstanden ist der Kontrastgewinn durch Filterung
bei der elektronenmikroskopischen Abbildung diinner Praparate,
deren Kontraste durch Streuabsorption zustande kommen, gegeben
durch:

g«(Q)+^W
O'e(^o)

(24)

In Tabelle 14.1 sind einige Werte fur den Kontrastgewinn durch
Filterung angegeben fur eine Objektivoffnung, die einem Abbe’schen
Auflosungsvermogen von 3 A entspricht. Es sind also besonders bei

leichten Substanzen durch die Filterung erhebliche Kontrastgewinne
gegentiber den Ivontrasten durch Streuabsorption zu erwarten. Bei
den Ivontrasten durch Streuabsorption ist angenommen, dab es sich

urn amorphe Objekte handelt. Objekte also, in denen die Atome
unabhangig voneinander streuen (Intensitatsiiberlagerung) im Gegen-
satz zur Streuung an kristallinen Objekten [3, 8, 12-16]. Sowie aber
die Kontraste nicht durch Streuabsorption sondern durch Inter-

feres der koharenten Streuung zustande kommen, ist eine derartige

Steigerung der Kontraste durch das Filterverfahren nicht zu erwarten,
denn der Maximalkontrast durch inkoharente Streung:

A/(0) (7,(0)

ur =x^r (25)

ist klein gegen den durch elastische Streuung (vgl. Tabelle 2).

5. Elektronenfilter

a. Netzfilter

In einer friiheren Untersuchung [21] war liber ein Elektronenfilter

berichtet worden, das unelastisch gestreute Elektronen aus Elek-
tronenbeugungsdiagrammen und elektronenmikroskopischen Ab bil-

dungen ausscheidet. Dieses Filter besteht im wesentlichen aus einer

netzartigen Elektrode, die etwa auf Kathodenpotential aufgeladen
ist (Figur 14.3) Elektronen, die das Objekt ohne Energieverlust durch-
setzt haben, konnen gegen das Feld soweit anlaufen, dab sie das
Netz erreichen, durch die Maschen hindurchtreten und anf der

Figur 14 .3 . Netzfilter.

1, Wand des Vakuumge-
faGes (Erdpotential); 2,

Immersionslinse; 3, 4,

Gegenspannungs- Elek-
trode mit Netz (Kathod-
enpotential); 5, 6, Immer-
sionslinse und ruagnet-
ische Linse.
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anderen Seite des Netzes durch das Feld wieder auf ihre urspriingliche

Geschwindigkeit beschleunigt werden. Elektronen mit verminderter
Geschwindigkeit werden dagegen durch das Feld vor dem Netzreflek-
tiert und so aus dem Strahlengang ausgefiltert.

Neben der Einhaltung gewisser elektronenoptischer Mabnahmen
war flir die Gtite der Abbildung die Qualitat des Netzes entscheidend.

Es fanden gewebte Drahtnetze mit einen Drahtabstand von ca 0, 1

mm und einer Durchlassigkeit von ca 30% Verwendung. Das
Schattenbild dieser relativ grobmaschigen Netze iiberlagert sich dem
Bilde und beeintrack tigt die Bildqualitat, besonders aber die Bild-

kontraste. In der zitierten Untersuchung wurde daher eine “kom-
pensierte Verschiebung” des Bildes vorgenonnnen, um das Schatten-
bild des Netzes zu verwischen. Diese Filterungsversuche wurden
inzwischen mit einem Netz von 0,02 mm Maschenabstand und einer

Durchlassigkeit von ca. 70% weitergefiihrt. 4 Infolge der kleineren

Maschenabstande, der hoheren Durchlassigkeit und der gleich-

massigeren Netzstruktur geniigte schon eine leichte Defokussierung
von L2 ,

um eine Abbildung der Netzstruktur zu unterdrucken, so dab
die Methocle der kompensierten Verschiebung unter diesen Umstanden
nicht angewendet zu werden brauchte.

b. Anwendung des Netzfilters

In Figur 14.4 wird die Wirksamkeit des Filters durch die Gegenuber-
stellung eines gefilterten und eines ungefilterten Elektronenbeugungs-
diagramms demonstriert. Da es sich um ein relativ starkes Objekt
handelt, ist der Untergrund in dem ungefilterten Diagramm so inten-

siv, dab die Kontraste der Kristallgitterinterferenzen dadurch auber-
ordentlich reduziert werden. Der Untergrund im ungefilterten

Diagramm besteht aus unelastisch gestreuten Elektronen von ca. 15

eV Geschwindigke itsverlus t ,
die Kristallgitterinterferenzen dagegen

aus elastisch gestreuten Elektronen. Im gefilterten Diagramm kom-
men nur Elektronen zur Wirkung, die einen Geschwindigkeitsverlust
von weniger als 4 eV erlitten haben. Dadurch verschwindet der
gesamte inkoharente Untergrund und eine auberordentliche Kon-
traststeigerung ist die Folge. Beide Aufnahmen wurden in gleicher

GEFILTERT (flUi 4eV) UNGEFILTERT

Figur 14 .4 . Anwendung des Netzfilters auf das Elek-
tronenbeugungsdiagramm einer relativ dicken Alumi-
niumoxyd Folie (U=27 keV).

4 Dieses Netz wurde dem Verf. von Herrn Prof. Dr. Nils Hast, Nobelinstitut for fysik, Stockholm zur
Verfiigung gestellt, wofiir ihm auch an dieser Stelle bestens gedankt sei.
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Weise entwickelt unci kopiert, jecloch wurden die Belichtungszeiten
so gewahlt, dab der Untergrund in beiclen Elektronen-Diagrammen
etwa gleiche Schwarzung aufwies. Die Kontrastclifferenzen beider
Aufnahmen sind also allein durch die Wirkung des Elektronenfilters

und nicht durch Umkopieren verursacht. Der noch verbliebene
Untergrund in der gefilterten Aufnahme ist auf die Auflosung von
Sekundar-Elektronen aus dem Gitter durch lonen-Aufprall zuriick-

zufiihren f2 1 1.

Mit dieser Filtermethode wurde auch das Problem der Kikuchi-
Linien und -Bander in Elektronenbeugungsdiagrammen wieder aufge-

griffen. Nach von Laue [24] miissen an der Entstehung derartiger
Interferenzerscheinungen inkoharente Streuvorgange beteiligt sein,

die den Phasenzusammenhang der austretenden mit der eintretenden
Strahlung aufheben, da sonst nur die bekannten diskreten Xnter-

ferenzmaxima entstehen konnten. Es blieb aber offen, welcher Art
diese inkoharenten Streuvorgange sind, ob es sich um Anregung von
Elektronentermen handle, die im allgemeinen mit Energieverlusten
von einigen Volt bis zu einigen 20 V verkntipft sind, oder um die Anre-
gung von thermischen Gitterschwingungen, die nur Energieverluste
von einigen Zehntel Volt zur Folge hatten. Nach Emslie [25] soilten
namlich die Kikuchi-Bander eine unmittelbare Folge der Anregung
von Gitterschwingungen sein, wahrend nach von Laue die Kikuchi-
Bander auf die dynamische Wechselwirkung der inkoharenten ge-

streuten Elektronen mit dem Gitter zuruckzufuhren waren. Seiner-

zeit wurde versucht [26], durch Beugung an Eisen- und Diamant-
Einkristallen (Debye’sche Temperatur 420°K bzw. 2340°K) [27]

und Anderung der Temperatur (+20°C bis — 180°C bei Diamant
und +20°C bis +800°C bei Fluhspat) die Anregungsbedingungen
fiir die thermischen Gitterschwingungen moglichst extrem zu ge-

stalten. Merkliche Unterschiede in den Diagrammen wurden
hierdurch nicht hervorgerufen. Mit aller Vorsicht wurde clamals

daher nur geschlossen dab es auf dem beschriebenen Wege nicht
gelingt, die Anregungsbedingungen fiir die Warmeschwingungen
genligend zu variieren, um eine experimentelle Entscheiclung fiir oder
gegen Emslies Erklarungsversuch zu erhalten.

Die jetzt durchgefiihrten Filterungsversuche fanden an Kikuchi-
Diagrammen von sehr diinnen Glimmereinkristallen statt, so dab
gleichzeitig eine grobe Zahl von Laue-Interferenzen auftrat. Es
zeigte sich, dab das gesamte Kikuchi-Diagramm mit dem Filter

(AP<4 eV) zu beseitigen war und nur das Laue’sche Interferenz-

fleckensystem bestehen blieb.

Hiermit ist cler unmittelbare Nachweis dafiir geliefert, dab un-
elastische (inkoharente) Streuvorgange am Aufbau des Kikuchi-
Diagramms beteiligt sind, und dab das Kikuchi-Diagramm auf

Anregung von Elektronentermen mit Energieverlusten von mehreren
eV und nicht auf Anregung von thermischen Gitterschwingungen
zuruckzufuhren ist. Die friiheren Versuche des Verf. stehen mit
diesen Resultaten im Einklang. Damit ist aber eine experimentelle
Entscheiclung gegen den Erklarungsversuch von Emslie und fiir die

Laue’sche Theorie gefallen.

c. Linsenfilter

In der vorangegangenen Untersuchung [27] (Anmerkung 9) wurde
auch darauf hingewiesen, dab Arbeiten im Gange sind, die normale
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elektrostatische Einzellinse zu einem Filter weiter-zuentwiekeln. 5

Schon die norrnale Linse mit negativer Mittelelektrode stellt ein

Filter dar. Indessen ist ihre Filterwirkung ftir diese Zwecke unge-
ntigend, da das Achsenpotential nur auf ca 90% des Kathoden-
potentials ansteigt. Es werden also nur Elektronen ausgefiltert, die

mehr als 10% Geschwindigkeitsverlust erlitten haben. Das Achsen-
potential soli aber etwa Ivathodenpotential erreiehen und darf es nur
urn wenige Volt untersehreiten.

Diese Erhohung des Aehsenpotentials kann entweder durch Erho-
hung des Elektrodenpotentials urn den restlichen Betrag von 10%
bei den tiblichen Linsen erfolgen oder durch Veranderung dieser

Linsen, indem der Durchgriff der Mittelelektrode verringert wird.
Da die Einftigung einer Spannungsquelle von mehreren tausend Volt
zwischen Kathode und Mittelelektrode leicht Anlab zu Spannungs-
schwankungen geben kann, wurde die Verringerung des Durchgriff

s

bevorzugt, indem der Durchmesser der Offnung der Mittelelektrode
auf 0,1. bis 0,3 mm Durchmesser verringert wurde (vgl. Fig. 14.5).

Diese Offnung befand sich in einer Platinfolie von 0,1 mm Starke.

Um den Felddurchgriff durch diese Offnung noch weiter herabzusetzen,
wurde die Feldstarke vor der Platinfolie durch Vorblenden und
Nachblenden groberen Durchmessers (3 mm) verringert. Diese
Blenden bilden ihrerseits Potentialgebirge aus, die wie Immersions-
linsen wirken. Die Brennweite dieser Linsen kann durch entspre-
chende Wahl ihres Abstandes von der Platinfolie wunschgemab
eingestellt werden.

Die Brechkraft des resultierenden Linsensystems nimmt wie bei

den tiblichen elektrostatischen Linsen [29] mit waehsender Spannung
zunachst zu, erreicht ein Maximum, geht liber Null zu negativen
Werten, erreicht dort wieder einen Extremwert und strebt dann
wieder tiber Null einem dritten positiven Extremwert zu usw. Auch
bei diesem Linsensystem ist es—wie bei den tiblichen elektrosta-

tischen Linsen-—vorteilhaft, als Arbeitspunkt ein derartiges Maximum
der Brechkraft zu wahlen, denn einmal ist dort die Verzeieknung am
geringsten (Ubergang von kissen- zu tonnenformiger Verzeichnung),
zum anderen besitzt dort aber auch der chromatische Fehler ein

Minimum. Diese ftir die Einzellinse geltenden experimentellen
Erfahrungen wurden erstmahg in einer Patentschrift [29] niedergelegt

und spater von anderer Seite [30] bestatigt.

Durch entsprechende Dimensionierung der Vorblende wurde
erreicht, dab sich der Arbeitspunkt dieses Systems im dritten Maxi-
mum befindet, etwa 3 V vom Sperrpunkt der Linse entfernt (bei 27 kV
Linsenspannung)

.

Durch diese Mabnahmen sind die Linsenfehler gegentiber clenen

der tiblichen Linsen erheblich gesteigert, z.B. wachst der Offnungs-

Figur 14.5. Linsenfilter mit
zentrierbarer Vorlinse.

5 Diese Arbeiten mussten Ende 1948 wegen Demontage des Institutes abgebrochen werden und konnten
erst nach Aufbau eines neuen Laboratoriums wieder aufgenommen werden. Inzwischen bat nacb Ver-
offentlichung der zitierten Untersuchug auch die AEG (SDL/Mosbach) ein Linsenfilter entwickelt [28].
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fehler derartig, daB die Linse im allgemeinen nicht als hochauflosendes
Objektiv verwendet werden kann, sondern ahnlich wie das Netzfilter

nur als Projektiv. Flir geringere Anspriiche, wie z.B. fur die in Figur
14.6 wiedergegebenen Abbildungen, kann das benutzte System
selbstverstandlich auch als Objektiv verwendet werden. ZweckmaBig
ist es jedoch auch bei diesen Aufnahmen die Divergenz der Primar-
strahlung, z.B. durch eine vorgeschaltete Linse kurzer Brennweite,
auf einen optimalen Wert herabzusetzen. Auch die ubrigen Bilcl-

fehler werden durch die Verkleinerung der Offnung der Mittelelek-
trode erheblich vergroBert so z.B. der besprochene Verzeichnungs-
fehler, und vor allem der chromatische Linsenfehler. Der chromatische
Linsenfehler begrenzt letzt.en Endes auch das Auflosungsvermogen,
wie sich anschaulich sehr einfach aus deni Verhaltnis der thermischen
Geschwindigkeitsverteilung (Utherm— 0,5-5- 1 eY bei Wolfram-
Ivathoden) zu der Minimalgeschwindigkeit im Filter von A £7=3-5-10

eY ergibt. Eine Reduzierung cles chromatischen Fehlerscheibchens
ware also durch Reduzierung der thermischen Geschwindigkeitsver-
teilung moglich, also z. B. durch Senkung der Kathodentemperatur,
indem die jetzigen Wolfram-Kathoden durch Kathoden niedrigerer

Austrittsarbeit (z.B. BaO) ersetzt warden

.

Wie bei alien Linsen war auch hier eine Gesichtsfeldblende not-

wendig, um Storungen durch Randstrahlen auszuschalten. Diese
Gesichtsfeldblende muBte wegen cler geringen Ausdehnung des ver-

wendungsfahigen Bildbereichs relativ klein gehalten werden (0,05-5-0,1

mm 4> ) und wahrend des Betreibes durch einen Kreuztisch justiert

werden konnen.
Da der Elektronenstrahl durch einen sehr hohen und schmalen

Sattel des Potentialgebirges hindurchgefadelt werden muB, ist das
Linsenfilter gegen Dezentrierung der Elektroden und gegen geringste

Neigungsanderung des Primarstrahls sehr empfindlich. Um derartige

Einflusse zu kompensieren wurde auch die auf Hochspannung
befindliche Yorblende auf einen Kreuztisch gesetzt, der wahrend des

Betriebes justiert werden konnte.
Enter diesen Voraussetzungen betrug die Zahl der Bildpuokte

150 bis 300 liings eines Bilddurchmessers. Bestimmt wurde diese

Zahl aus deni Durchmesser der Bildfehlerscheibchen. Die Brenn-
weite dieser Linse ergab sich im Arbeitspunkt zu etwa /= 2,6 mm.
Hierbei befand sich die abgebildete Objektebene noch im abgeschirm-
ten Raum der auf Erdpotential befindlichen Linsenelektrode.

d. Anwendung des Linsenfilters

Die Wirkung des Linsenfilters wird in Figur 14.6 demons trier t.

Das Objekt, eine geatzte Goldfolie mit einigen Lochern, ist relativ

dick und daher, wie die beiden normal belichteten Aufnahmen auf

der linken Seite der Figur 14.6 zeigen, fur Elektronen relativ undurch-
sichtig. Die Wirkung der Filterung macht sich in diesen beiden
Aufnahmen nur dadurch bemerkbar, dah die ohnehin schwache
Aufhellung in einigen Bereichen auBerhalb der Locher durch das
Filter noch weiter reduziert wird. Die eigentliche Wirkung des
Filters kommt jedoch erst in den beiden anderen Aufnahmen (rechts)

zuiii Ausdruck, die wesentlich langer mit Elektronen belichtet sind,

so daB die Elektronenclichte gewisser Bereiche mittlerer Schwarzung
in beiden Aufnahmen ungefahr ubereinstimmt. Die Wirkung des
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NORMAL BELICHTET UBERBELICHTET

GEFiLTERT (U = 5eV)

Figur 14.6. Elektronenmikroskopische Abbil-
dung einer dicken Goldfolie. Anwendung des

Linsenfilters ( U=27 ekV).

Filters dokumentiert sich in einer auberordentlichen Steigerung der
Kontraste und, soweit erkennbar, auch in einer Steigerung des

Auflosungsvermogens.
Das Filter ist also nicht nur ftir dtinne Objekte geringer Ordnungs-

zabl sondern auch ftir dicke Objekte, also wahrscheinlich auch Gewe-
beschnitte, in dem Bereich der Mehrfach- und Vielfachstreuung zur

Konstraststeigerung geeignet. Die Versuche zeigen, dab die

Ausschaltung der inkoharenten Streuung in hinreichendem Make
gelingt, so dab die Voraussetzungen ftir die theoretische Behandlung
der Kontraste durch unelastische Streuvorgange wenigstens in dieser

Hinsi cli t zu treffen

.

6. Dosisprobleme

Damit ein Gegenstand abgebildet werden kann, darf er seinen Ort
wahrend des Abbildungsvorganges nicht andern. Auch der Abbil-
dungsvorgang selbst darf nicht Ursadie eines solchen Platzwechsels
sein. Es liegt hier das gleiche Problem vor, das Heisenberg in seinem
berulmiten Gedankenexperiment—Abbildung eines freien Elektrons
durch einen Lichtquant—zur Begrundung der Unscharfe-Relation
diskutierte. Zum Unterschied aber das Objekt im Elektronenmi-
kroskop nicht frei, sondern mit einer gewissen Bindungsenergie an
seinen Ort gebunden. Die Frage, ob das Objekt abgebildet werden
kann, fiihrt daher zu der anderen Frage, ob die Zalil der Elektronen,
die im Mittel zur Abbildung der Atome notwendig ist (Abbildungs-
dosis), kleiner ist als die Zalil der Elektronen, die im Mittel zu einem
Platzwechsel des Atoms fiihrt.
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a. Abbildungsdosis

Fiir die Frage nach der Abbildungsdosis (nB=Anzahl der Elektro-
nen pro Flacheneinheit im Bild) ist der Ivontrast von entscheidender
Bedeutung; denn aus schwankungstheoretischen Uberlegungen [31]

folgt, dai3:

(k 1 k 2)
2

'

1

rlir
(26)

sein mub, urn den mittleren Kontrast des untersuchten Bildelements
v
2
B • 7r von den statistisch bedingten Kontrastschwankungen des Unter-
grundes unterscheiden zn konnen. Die Konstante k x

ist eine Funktion
der Wahrscheinlichkeit W, mit der Bildkontrast von schwankungs-
mabig bedingten Untergrundkontrasten unterschieden werden kann.
Z. B. ist W= 68% tiir ki= 1 ,

W=95% liir Z"i= 2, W=99,7% fiir

ki=2>. In den bier angefiihrten Beispielen wurde k2= 2 und A
1

,

—3
gesetzt, so dab 0,3% der Bildflache die statistisch fiir bedingten Ivon-

traste fiber den Bildkontrasten liegen.

Um den Anschlub an die friiheren Uberlegungen zu gewinnen, soli

als Bildelement die Flache des Bildfehlerscheibchens des Atoms
gewahlt werden. Im Falle der Abbildung von Einzelschirmen wird
r
2
B Tr= poTr gesekt mit p^O^OI-c/a, wobei pn die erste Nidlstelle der
Besselfunktion bedeutet; im Fall der Gitterabbildung dagegen
r
2
B ir= d2

/2 (halbe Flache der Elementarzelle) . Der mittlere Bildkon-
trast (A///) b der Gl.(26) ergibt sicli durch Mittelung des Bildkon-
trastes fiber die untersuchte Bildflache. Im Fall der Abbildung eines

Einzelschirms wird daher:

(t)b
=°’ 14 ^W (27)

und im Fall des Kreuzgitters

^)b

= 0,2 (27a)

In Tabelle 14.3 ist die so ermittelte Dosis fur die Abbildung von
Atomen verschiedener Ordnungszahl bestimmt worden.
Um die Dosis, die zur Abbildung notwendig ist, mogliclist herabzu-

setzen, sind also mogliclist starke Kontraste notwendig. Mit grobem
Vorteil wird bier daher das Phasenkontrastverfahren Anwendung
finden. Dagegen bringt das Verfalnen der Amplitudenschiebung in

diesem Fall keinen Vorteil. Es hat zwar eine Reduzierung der
Bilddosis um den Faktor 1/r zur Folge, gleiclizeitig steigt aber die im

Tabelle 14.3. Abbildungsdosis fiir Konirast-Werte der Tabelle 14.2.

(Gl. (26), d=dA= 3 A)

z 1 6 20 90

nB /cm 2 (Einzelatom)

nfjcm 2 (Kristallgitter) . . . _

8, 6.10 2i

2,1.10 2 i

1,4.10 20

0.78.10 20 0,15.10 20 0,025.10 2°
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Objekt notwendige Dosis wegen der Absorption des Primarstrahls
um den gleichen Faktor, so dab sich beide Wirkungen aufheben.

b. Platzwechseldosis

Objektanderung durch Elektronenbeschub kann einerseits eine se-

kundare Folge der Temperatursteigerung, andererseits eine direkte

Folge der Wechselwirkung des Elektronenstrahls mit dem Objekt
sein. Abhilfe kann im ersten Fall durch Verminderung der Elektro-
nenintensitat oder durch Verbesserung der Warmeableitungsbedin-
gungen im Objekt geschaffen werden. Im zweiten Fall ist die Objekt-
anderung nur eine Angelegenheit der auf das Objekt fallenden Elek-
tronendosis und daher unabhangig von der Bestrahlungsintensitat.

Ein klassisches Beispiel daftir ist die direkte Schwarzung von Bromsil-
berschichten olme Entwicklung. Andere Beispiele stellen die biologi-

schen Wirkungen dar, wie die Abtotung lebender Organismen oder
die Auslosung von Mutationen. Ein weiteres bekanntes Beispiel ist

die Dissoziation zweiatomiger Molekiile (H2 ,
N2 ,

etc.) durch Anregung
von Elektronentermen infolge unelastischer Streuvorgange. Massey
und Mohr [32] haben theoretisch die Dissoziationswahrscheinlickkeit
von WasserstofY in neutrale Wasserstoffatome bis 25 eV berechnet.
Fur lioliere Voltenergien und andere Zerfallsprodukte liegen noch
keine Angaben vor.

Da dem Verf. aucli keine anderen Angaben liber Dissoziations oder
Platzwechselwahrscheinliclikeiten bekannt waren, war es notwendig,
an einern moglichst einfachen Objektmodell die Dosis zu bestimmen,
die das Atom ertragen kann, ohne seinen Platz zu wechseln, also den
reziproken Wert des Platzwechselquerschnitts (oder Dissoziations-

Querschnitts)
Es mubte hierbei auf die Beriicksichtigung der Wirkung unelas-

tischer Streuvorgange, die zur Anregung von Elektronentermen
fiihren, verzichtet werden, da deren Wirkung in auberordentlichem
Mabe und in ganz unubersichtlicher Weise von dem speziellen Ob-
jektmodell abhangt. Es blieben flir diese Betrachtungen also nur die

sogenannten elastischen Streuvorgange iibrig.

Aus dem Impuls- und Energiesatz folgt namlich, dab aucli bei der
elastischen Streuung des Elektrons um den Winkel & Energie uM (in

Elektronenvolt) auf das Atom der Masse M libertragen wird:

um=600
h2 sin2

1?/2

eM X 2 (28)

Falls die Bindungsenergie des Atoms ^D i S 8 ldeiner als die beim Stob
iibertragene Energie uM ist, kommt es vom klassischen Standpunkt
aus zu einer Abtrennung oder zu einem Platzwechsel des Atoms, d.h.,

wenn gemab Gl. (28) $>$D iss ist. Die Platzwechseldosis, d.h. die

mittlere Zahl von Elektronen pro Flacheneinheit, die einmal zu einem
Stob #>#diss flihrt, ergibt sicli aus dem Integral der Rutherford ’schen
Streuformel von d= dD iSS bis ^=180° zu:

^diss 420,
M
rnD

^Disa

MZ2

(mp= Masse des Protons).

(29)
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c. Diskussion

Die so ermittelte Platzwechsetdosis ist natiirlich viel zu grob, da
die gesamten unelastisclien Streuprozesse nicht berucksichtigt sind.

In Ubereinstimmimg hiermit stehen die experimentellen Erfahrungen
von Konig [33], der eine um mehrere Zehnerpotenzen geringere Platz-

wechseldosis feststellt. Andererseits ist die Abbildungsdosis zu klein

gegeniiber den praktischen Werten, da hier noch die Dosis erhohenden
Eigenschaften des photographischen Aufnahmematerials eine Rolle

spielen. Sicher sind also die hier benutzten Werte fiir die Platz-

wechseldosis zu grob und fiir die Abbildungsdosis zu klein gegeniiber

den tatsachlichen Werten. Wenn also die errechneten Werte zu
einer Abschatzung des Auflosungsvermogens benutzt werden, so wird
sicher ein zu giinstiger Wert fiir das Auflosungsvermogen erzielt.

Auch die meisten anderen Vernachiassigungen wirken sich in dieser

Weise aus.

Fiir den Fall des Wasserstoffs z.B.
obetragt bei einer Bindungs-

energie i/D188=4,2 eV und fiir \= 0,05 A nach Gl. (29) die Dissozia-

tionsdosis 7iD i ss/cm
2= 7,4.10

21
. Sie ist also von der gleichen Grobenord-

nung wie die in Tabelle 14.3 angegebene Abbildungsdosis. Bei der Bewer-
tung dieser Zalil ist zu beriicksichtigen, dab einerseits die Abbil-
dungsdosis wachst, wenn der tatsachliche Wert des Atomabstandes
(Wasserstoffradius= 0.56 A) anstelle des Vergleichswerts von 3 A
der Tabelle 14.3 berucksichtigt wird. Auberdem wird es sicher

nicht moglich sein, den optimalen Wert des Kontrastes zu erreiclien,

so dab hierdurch eine weitere Steigerung der Abbildungsdosis eintritt.

Ferner ist bei der Dissoziation die Anregung von Elektronentermen
durch unelastische Streuvorgange nicht berucksichtigt. Der gesamte
unelastische Streuquerschnitt ist um etwa den Faktor 27 grober als der
elastische. Alle diese Faktoren wirken sich einerseits in einer Vergro-
berung der Abbildungsdosis andererseits in einer Verkleinerung der
Dissoziationsdosis aus, sodab eine Abbildung von Wasserstoffatomen
mit sclinellen Elektronen unter den geschilderten Umstanden sehr

unwahrscheinlich wird

.

Fiir Kohlenstoff in hpmopolarer Einfachbindung (tiDiss=4,2 eV)
ergibt sich fiir A= 0,05 A nach Gl. 29 eine Dissoziationsdosis ^Diss=
2,4. 10 21 cm -2

. Die Abbildungsdosis nach Tabelle 14.3 ist um melir
als eine Zehnerpotenz niedriger, so dab die Abbildung von Kohlen-
stoffatomen zunachst durchaus moglich erscheint. Wenn allerdmgs
die beim WasserstofT diskutierten Umstande auch im diesem Fall

berucksichtigt werden, so erscheint es trotz dieser Tatsache zumindest
zweifelhaft, ob eine Abbildung von Kohlenstoffatomen oder von
anderen leichten Atomen der organischen Chemie mit sclinellen

Elektronen moglich ist.

Eine weitere Einschrankung der Wahrscheinlichkeit der Abbildung
ergibt sich bei Berucksichtigung tatsachlich vorliegender Abbildungs-
probleme. Z.B. ist bei einfachen Kristallgittern die regelmabige
periodische Anordnung der Atome fiir die Abbildung ganz ohne
Interesse. Diese Anordnung kann sehr einfach ohne jedes Ab-
bildungsgerat aus deni Beugungswinkel der Rontgenoder Elektronen
interferenzen 1. Ordnung mit beliebiger Genauigkeit bestimmt
werden. Interessant ware fiir die Abbildung nur die Page der Fehl-
stellen oder die Abweichung der Lage bestimmter Atome (z.B. eines

Eckatoms) von der mittleren Atomlage, die auf anderem Wege nicht
festzustellen ist. Die Fehlstellen sind jedoch mit einer um Zehner-
potenzen geringeren Platzwechsel-Energie an lhren Ort gebunden als
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die hier verwendeten Bmdungsenergien des Wasserstoffs und des
Kohlenstoffs. Da naeh Gl. (29) mit der Platzwechselenergie auch
die Platzwechseldosis abnimmt. sinkt dementsprechend auch die Wakr-
scheinlichkeit des 2s achweises dieser Fehlstellen. Im Fall der Be-
stimmung der genauen Page individueller Atome bedeutet die Forde-
rung nacli Erhohung der Mebgenauigkeit einfach die Erhohung der
Zald der Mebakte, also der Abbildungsdosis. Es wird also hier der
Erfolg der Messung imiso ungewisser und unwahrscheinlicher je

hohere Anspruclie an die Mebgenauigkeit gestellt werden.
Eine Besserung der Situation tritt dagegen ein, wenn nicht die

Page einzelner Atome sondern ganzer Atomgruppen, z.B. der Atome
langs einer Kristallkante, gemessen werden soil. Da es sich hier um
ein statistisches Problem handelt, wird die Abbildungsdosis im
Verhaltnis zur Wurzel a.us der Zahl der vormessenen Abstande gesenkt
werden konnen. Auch der Einflub sterischer Faktoren ist von
Vorteil, da er sich in einer Erhohung der Dissoziationsdosis und dam it

einer Erhohung der Abbildungswahrseheinliclikeit auswirkt.

Zusammenfassend mub bemerkt werden, dab die vorstehenden
Betrachtungen nur als erster Schritt gewertet werden wollen. Sie

sollen nur auf einige Probleme aufmerksam maehen, die bei der
Abbildung von Atomen mit schnellen Elektronen auftreten konnen.
Eingehendere Entersuchungen werden notwendig sein, um die hier

angeschnittenen Fragen einem definitiven Entscheid zuzuftihren.
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15. On a Phase-Contrast Theory of Electron-Optical

Image Formation

By H. Bremmer 1

1. Introduction

In electron-microscopy the contrast in the image depends on the
scattering undergone by the primary electrons when they pass through
the object. This scattering is partly elastic and partly inelastic. In
practice the contrast is nearly always produced by the elastically

scattered electrons. In fact, for the high voltage applied, the devia-

tion of electrons that suffer inelastical scattering is in general too

small for them to be stopped by the aperture of the system. 2 Actually,

the aperture is adjusted for a control of the elastically scattered

electrons. In order to get an insight into the mechanism of the
image formation, it is therefore reasonable to consider the effect of

elastic scattering in the first instance.

The usual theories concerning elastic scattering start from the
scattering produced by a single atom, the latter being represented
by the Thomas-Fermi model. This scattering by a single atom
may be computed either by classical or by wave-mechanical
methods. The scattering effect of an object consisting of a large

number of atoms is thereupon obtained by adding up in some way
or other the scattering originating from the single atoms. When
dealing with the wave-mechanical method, however, it is not necessary
to restrict the Schrodinger equation in question to an isolated atom.
This equation may just as well be applied to the entire space occupied
by the scattering object; the electrostatic potential <p (x, y ,

z) occurring
in it should then refer to the complete set of scattering atoms.
The method we have in mind here will clearly show the essential

properties of the resulting potential field governing the scattering;

these properties may be independent of the atomic structure, atom
models and so on. As a matter of fact, the modification imposed by
the object on a primary wave e

ikz describing electrons arriving in the

direction of the symmetry-axis of an electron lens (2-axis), can be
described approximately as follows. The phase kz„ for an undis-

turbed wave, to be observed at the point P(x, y, za ) of the object
plane z=zc (this plane is situated immediately behind the object),

will be increased in a first approximation by an amount <f> proportional

C z<r

to <p(x, y, £)d£. The integration, to be extended along a line
J — CO

drawn through P parallel to the incident beam, can actually be
limited to the section of this line that is inside the object (continuous
line in figure 15.1). The fact that the only object points influencing

F are situated on such a line, indicates a shadow effect caused by the

object.

1 Philips Research Laboratories, N. V. Philips Gloeilampenfabrieken, Eindhoven, Netherlands.
2 Compare figure 92 in Bodo v. Borries, die Ubermikroskopie, Aulendorf 1949, p. 180.
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Incident beam

^p(Xc'Yo,Zc

Figure 15 . 1 .

The approximation indicated here is the better the faster the

electrons are and the less the wave function changes in the object

plane over distances comparable to a de Broglie-wavelength. The
influence of the scattering object on electron waves proves to be very
similar to that of a transparent object on optical waves; the former
case leads to phase shifts proportional to f <p(x, y, £)df, the latter to

phase shifts proportional to f ii(x, y, d)clf, when i±(x, y, z) is the optical

refractive index in the object point (x , y, z). The results stated

above wih be derived in the next sections.

2. Series Development of the Wave Function Describing
the Elasticaliv Scattered Electrons*

The wave-mechanical picture of a homogeneous beam of electrons,

moving in vacuo in the direction of the 2-axis, consists of a plane
wave \po=e

ikz
. The wave number k=2ir X depends on the de Broglie-

wavelength in vacuo, viz.

V being the accelerating emf in volts.

We shall define the electrostatic potential cp(x, y, z) inside the object

as the energy of a charge of +1 esu in the point under consideration

{x, y, z), relative to the energy of the same charge far away from the

object. The Schrodinger equation then reads

( 1 )

The notation has been chosen so as to show clearly the disturbing

effect of the object: Only inside it does the right-hand member differ

from zero. An essential feature of eq (1) is that <p can be considered
as a function given a priori; this does not hold for inelastic scatterings.

The form of eq (1) is that of the equation for harmonic retarded
potentials in Maxwell’s theory. We obtain at once the following

• “solution” if we treat the right-hand member of (1) as if it were a
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known function

MP)=ei^+
2^fjjdrQV (Q)HQ)^ (

2 )

The integral in eq (2) extends over the entire object, a special point

QX£,v,t) of which has a distance QP to the point of observation P;
the volume elements of the object are given by drQ =d^dnd^ . As a

matter of fact, eq (2) constitutes an integral equation 3 in which we
have allowed for the role of the primary wave: This would represent

the complete solution if there is no scattering object.

The well-known procedure of successive approximations 4 leads to

a series of the following form (if convergent) for the complete solution

of eq (2):

*(P)=S*n(P);
77=0

\J/0(P)=e
ilczp represents the primary wave, while any two consecutive

terms are connected by the relation

By combining these recurrence relations we arrive at the following

explicit form for
\f/n as an 3n-fold integral

xl/n(P)=(—^^ j- • . i (It^To . . . dTn (t)(QA )<t>(Qt 2) • <p(Qn) X

exp ik (f I H~Q lfe-ffeft-f- • • • -j-Qn-lQnX-Q.nP)
_

/ O

\

Q1Q2Q2Q3 • • Qn-lQnQnP

The integration extends over the 3n coordinates of the n
points Qj(j= 1,2, . . ., n) each of which is situated in a volume-
element dT

j=d£ j
dr)jd£

j
of the object; Q tQs indicates the distance be-

tween the two points Q t
and Qs .

The splitting of the total scattered wave into the terms of the series
co

J2MP) can be interpreted physically as follows. Any of the n
77=1

volume-elements in (3) points to the scattering caused by such an
element. The final expression for

\f/n thus represents the effect of n
successive' scatterings. Therefore, the contribution described byji/^

may be termed asj/rth-order scattering. It is to be emphasized, how-
ever, that one or (more of the

t
volume-elements concerned with |one

nth-order scattering may belong occasionally to one and the same
atom because so far the atomic structure of the object has not come
to the fore at all.

Before discussing a proper approximation of
\f/ n ,

to be worked out
in section 4, we shall investigate a limit connected with it.

3 Compare N. F. Mott, Proc. Roy. Soc. London [A] 127, 659 (1930).
4 The same method was applied by Born, Z. Physik. 38, p. 816 (1926), when investigating the behavior at

great distance of the wave scattered by a single atom.
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3. A lemma concerning the limit of two-dimensional
diffraction integrals for infinitely small wavelength

The integral (3) may be considered as referring to n linear integra-

tions in the direction of the 2-axis (integration variables ki,£2 , . .

and to n double integrations over the planes z— £j(j= 1,2, . . .,n)

perpendicular to the 2-axis (pairs of integration variables ^rp). In
order to prepare for the approximate evaluation of

\J/n in the next
section, we shall now discuss the asymptotic behavior of double
integrals such as occurring in eq (3) for k tending to infinity (de

Broglie wavelength 2irjk tending to zero). What we actually need, is

an investigation of the limit 1= lim I(k) for
k — co

/•» r* oo ikQP

I{k)=ke
~,u

jj
dxQdyQu(Q) 'Qp> (4)

in which D=\zP— zQ \

represents the distance between P and the plane
of integration z—zQ while u(Q) does not depend on k.

The integral is of a type frequently occurring in diffraction theories.

By changing over to polar coordinates pQ ,vpQ with origin at the projec-

tion P0 of P on the integration plane z= zQ (see fig. 15.2) we obtain

r 2 tt p
00 AkQP

m=ke-tu

J o

d+Q
J o

dpQpQu(Q) ~Qp’ (5)

Now we replace pQ by the variable £=QP—P0P=(pl+D2

)
l/2—D,

which is also connected with the division of the Q-plane into Fresnel
zones in the case of a virtual point source at P. After a transforma-
tion of the inner integral in eq (5) we get, in succession
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In the first term the contribution from °° vanishes if the inte-

gration over Q concerns a finite part of the (Lplane only. This hap-
pens to be in our case due to the finite dimensions of the scattering-

object. Hence (f=0 corresponding to the position P0 of Q)

I(k) = 2*iu(P0)+i£
W

d<pQj~di; em
t (6)

in which the upper limit of integration of the inner integral can also

be considered as finite. Therefore, this integral tends to zero for

k—>co according to Riemann-Lebesque’s theorem

Lim Ux(r)^0. (7)

This relation 5
is of essential importance for the derivation of

geometrical optics as the limiting case 5 of wave optics. The function

X may become infinite provided its integrability is guaranteed. As a

matter of fact the function du/diT of (6) behaves like £~ 1/2 as f—> °o in

view of the formula

c)u

dr
^COS <p

du
,

.—h Sill (£>

OX

o u \ (t

i>y) V2df+f2

provided u (x, y) can be expanded into a Taylor series at x=y= 0.

The final result then proved, viz.,

Lim ke ikD

k—> oo

dz QdyQu(Q

)

g
ik.QP

w 2wiu(P0)

may also be given in the alternative form as the asymptotic expres-

sion
/‘/•co

e
ik.QP 9

•

(*-»»)• (8)

The sign ^ indicates that the ratio of both sides does tend to

unity for k—>oo

.

4. The asymptotic value of 4n for k^> <*>

The general formula (8) can be extended to multiple integrals

depending on n different (Lplanes instead of on a single one. The
case of two planes z=zx ,

and z=z2 ,
for instance, deals with

1

2

= dxQ2dyQ2u(QhQ2)

gi k . Qi Q2 gi k . Q2P

Q2Q2 Q 2P '

In order to derive the asymptotic value for k-> °°
t
we invert the

order of integration and substitute for the double integral referring

to Q x
its approximate value according to (8). It follows that

P
9 TVl

k
gik

\

z x — z2

SI
dxQ dyQ u(Q2,Q 2)

e
ik. Q2P

~QSP~’
(fc—>a>),

5 For a proof see, e. g., S. Bochner, Vorlesungen iiber Fouriersche Integrale, Leipzig 1932, p. 4.
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Q2 (xq2} yQ2 ,
Zi) being the projection of Q (xq2 , yQ2 ,

z2) on the plane

z=Zi. Another application of (8) to the remaining integration over

Q2 results in

/2 ~ e ik (\ zi~z2\ + \

zv- zp Vu(pi,p2), (k-> oo

)

when Pi (xP , yP ,
z{) and P2 (xP , yP ,

z2) are the projections of P on the

planes z=Zi and z=z2 ,
respectively. The extension of this formula

to an integration over any number of planes z=z1} . . . ,
z=zn is

obvious. In the corresponding expression, viz.,

dx Qn dy Qnu(Qi, . . . ,

>

gik.QiQ2 pk.Qn-iQn pk.Qn P

Qn)
QiQs Qn — lQn QnP

n

exp {ik(\zi— z 2
\
+ 1

\z n — 1
— Zn\P\z n— 2p|) }

U(P1, • • • , Pn), (k~> oo) (9)

occur the projections Pu . . ,
Pn of P on all the planes of integration.

This formula can be applied straight away to the 2n integrations

over ft, rii, . . . , fn ,
n n of the multiple integral (3) for \pn by substi-

tuting <p(Pi) . . <p(P n) for u (Pi, . . ,
Pn). Taking into account the

remaining integrations over fo, . . , £n we find

&*(P)~
j
d

£

01+ > • • +ir»-r»-ii+|2!i*-rni)}

X <p(P i) . . .
*>(P,), (*-»»). (10)

The domain of integration of this multiple integral can be divided
into 2n subdomains each of which is characterized by fixed signs of

the n expressions = zh — Tj?) • Of all the corresponding
subintegrals, so far as they are different from zero, only a single one
shows an exponent that is independent of all the integration variables.

This special subintegral is characterized by the domain of integration

zP>L>kn- 1 . . ->r2>ri, (H)

whence its value becomes

rtn
d kntpi.Xp, y pi kid) I d ^ n— l <p(x p, y p , fn-l) • • •

J — CO

r?2
X I d ki(p(xP , yP , k i).

J — CO

( 12 )

The lower limits of integration may be replaced by a finite number e

if the object is situated wholly beyond the plane z=e.
The subintegral (12) is zero for points P in front of the object

because ^>(xP,yP,kn ) in the first integral then refers to points outside
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the object. For P beyond the object, however, we may compare
(12) with other subintegrals, for instance with the following one that
has only a single sign, that of ^3—

f

2 ,
which differs from the corre-

sponding one according to (11) (^<^2 instead of ^X^)

e
ikzp I

p
d£ n <p(xP , yP , $ n)

|

d£ n_np(xP , yP , f„_i) . . .

J — °0 J — 00

X
J

d^e ~ ,k
^(p(xP , yP , £ 3) ( dk2^

2lk^2(f(xP , yP , £ 2) ( d£iip(xP , yP , fi).
J — 00 d f3 d — CO

( 13 )

A comparison of (12) and (13), while omitting the common factor

e
ikZp shows (13) to be infinitely small relative to (12) for &—> °o owing

to the exponential factors still remaining in (13); in fact, these factors

cause the limit of (13) to vanish in view of the basic property (7).

The same result holds for any other subin tegral of (10), each of

which shows at least one exponential factor (apart from e
ikozp

Hence it follows that 1p n (P) is represented asymptotically by the single

integral (12). In its turn the latter can be simplified considerably
with the aid of the identity

47r
2ime\ n

Iclr )

d^npi^n) \
d i<p(

X

n — l) f d^ n — 2 (p{^n— 2) • •
•

J

d £
d— 00 d — « d — 00 d — °°

(«>

This identity is easily proved by induction while using the following

recurrence relation, which applies to either of the members Kn (z)

of

dKM
dz

= cp(z)Kn _ l (z). (14)

An application of (14) to (12), the only remaining subintegral of

i'n for k— oo
}
leads to the following final asymptotic expression

MP)
£

zJczp 4:Tr
2ime CZp

W j:
d£<p(xP,yP £) (15)

As to the derivation of (15), we emphasize the essential role played
by the reduction of the domain of integration of (10) to that of the
subdomain characterized by (11). This reduction for > oo can be
interpreted physically by the fact that the source Qj of the jth scat-

tering should be beyond the source Q}_ i of the preceding scattering;

in other words, forward scatterings are only to be taken into account
if k tends to infinity.

We remark that (15) might also be derived from the exponential
integral (3) with the aid of the saddle-point method. This method
(which will be used in section 6) is based on the fact that the main
contribution to an exponential integral such as (3) does arise from the
vicinity of the saddlepoint S. The situation of this point is generally

to be derived by equating to zero the partial differential quotients
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of the exponent with respect to the integration variables. In the case

of (3), however, this method is less convenient because we have an
infinity of saddlepoints. In fact, any set of positions of the points

Qu . . . , Q n on the line drawn through P parallel to the 2-axis cor-

responds to a saddlepoint of the exponent of (3) provided each point

Qj is situated beyond the preceding one Qj-\. The physical meaning
of these saddle-point positions is that the scattering is most important
when effected in the forward 2-direction by n successive volume-
elements.

5. The summation over the contributions due to

scatterings of different orders

The approximations (13) of the nth order scatterings (n= 1,2,3 . .)

constitute the terms of an exponential series. A summing of these

terms, completed by the zero-order term \p0 (primary wave), yields

for points P beyond the object

f(P)~ gi{kzp+ (f)

^

with
e

dt<p(xP , yP ,

The latter expression can be replaced by

A Tra ffic

HP)=
kh z

j
d$<p(xP,yP,f),

(16)

(16a)

if the potential field of the object is entirely situated between the
planes 2= — e and 2= 0 .

The modification imposed by the object thus results in a mere phase
shift as far as the approximations for k-> °° are concerned. The
remarkable thing is that the terms of the series

: U (P) =S
71 = 0 n\

just represent the n-th-order scatterings, that is the contributions re-

sulting from a fixed number n of successive elastic scatterings. A sim-
ilar interpretation of the individual terms of an exponential series is

essential in the corpuscular theory of elastic scattering by Bodo von
Borries 6 in which the atoms and not our volume-elements drj are the
scattering units. A related series also occurs in D. L. Dexter and
W. W. Beeman’s theory of small-angle scattering of X-rays. 7

The simple form of (16) allows the following remarks:
(a) The coherence of the scatterings of different orders is obvious.

In fact, in the case of complete incoherence we should have to add up
the squares of the moduli of (15) in order to get the square of the final

amplitude of the resulting wave function. This summation leads to

the series development of a Bessel function (of order zero and imagi-

6 Compare S. Bochuer, Vorlesungen uber Fouriersche Integrate, Leipzig, 1932, formula (77) on p. 175.
7 Phys. Rev. 76, 1782 (1949).
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nary argument) instead of that of an exponential function. The
modulus then obtained exceeds unity, which*signifies

T
that the coher-

ence does cause an attenuation of
\f/
and not a magnification,

(b) Apart from the factor e
ikzp the individual terms (15) are either

positive (for n equal to a quadruple 4m) or negative (for 7i=4m+ 2)

or positive imaginary (r&=4ra+l) or negative imaginary (?r=4m+ 3).

The scattered waves thus disintegrate into four groups each of which
is composed of contributions having identical phases.

6. The Effect of the Aperture in Electron Microscopy

In the case of electron microscopy we are particularly interested in

the distribution of the wave function in the object plane which may be
a plane directly beyond the object. For simplicity’s sake we take this

plane as the coordinate plane 2=0. The wave function then is

represented there by e
i,i>{x ’ v) with

4-Tr~7fi6 r®
Hx,y)=

kh 2

j
_y f), (I")

as far as the above approximation is concerned.
In the case of an ideal lens without any aberrations and any aperture

the corresponding wave function in the point P(x, y) of the image plane
equals (apart from a constant factor and a phase factor corresponding
to the optical path length between the two conjugated points in object

and image plane)

e
i<f>(x/M,y/M)

( 18 )

M being the magnification. Such an image does not show any con-
trast, the modulus of the wave function being constant throughout
the image plane. The role of the aperture in causing the contrast will

now be described in terms of wave theory.

The role of the aperture becomes apparent in the easiest way when
it is placed in the back focal plane, that is, the plane conjugated to

that containing the source (which lias to be supposed at infinity in

accordance with our assumption of a parallel beam of primary elec-

trons). The paraxial diffraction theory of lenses leads to values of the
wave function at the points (x }1 yt ,) of the back focal plane that are

proportional to G(kxi/f, kyjf), where G(x, y) is the Fourier transform

G(x, y)=JJ e~ i(x^ +Vri)

of the distribution e
Ui{x' v) valid in the object plane (j= focal distance).

This wave function represents the mathematical formulation of the
physical ideas in Abbe’s primary image.
Now the aperture causes special parts of the frequency spectrum

to be eliminated. The contribution 1/(47r)G(u, v)e
i(ux+vy)

is then
suppressed for all values of u and v (the frequencies of e

i<i? in the
x- and y-directions) for which the corresponding points (fu/k, fv/k) in

the focal plane happens to be situated outside the edges of the aperture.

Hence the wave function at the point (x, y) of the image plane is
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proportional to the following expression instead of (18).

^u^ve,M
^ +V

i{$u+ * v\ A(ju/kJv/k)<C 0,

(19)

if A(x,y)<C 0 characterizes the domain of the focal plane that is inside

the aperture.

An approximate evaluation of (19) is possible with the aid of the

saddle-point method. The saddlepoint has to be derived in this case

by equating to zero the partial differential quotients of the exponent
of (19) with respect to u, v, £ and rj. The corresponding relations read

—=iM S! ’

ii
Co (20a)

d<F)=u s , (Br- (20b)

According to (20a) the saddlepoint values £s and t]s of £ and rj

represent the coordinates of the point P' in the object plane that is

conjugated to P(x,y ) in the image plane. Further, the geometrical
significance of (20b) is clear from the foliowhig construction. At each
point (£,?;) of the object plane z= 0 we plot a perpendicular in the

negative ^direction having a length $(£,^)/Ar. The locus of the end-
points of these perpendiculars constitute a surface z=—${x,y)jk
which may be called the phase surface (<r in fig. 15.3. In this figure the

lens has been drawn, for convenience, as an optical lens). From (20b)

we infer that the rays parallel to the normal n of a at P[ (the point of a

having P' as projection on the object plane) are imaged by the lens in

the back-focal point K(fus/kjvslk). This is simply verified by observ-

ing that the image of any paraxial direction with directional cosines

cos a, cos (3 ,
cos y is situated at the point (J cos a,/ cos (3) in the focal

plane, while the cosines of n are given (in the paraxial approximation)
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In these considerations £s and r] s appear to be representative for the
point P' (conjugated to the point P of observation), u s and vs for the
focal point of rays parallel to the normal n of the phase surface at the
point corresponding to P'. An appreciable numerical value of an
exponential integral such as (19) now is only to be expected of the
saddlepoint is situated inside the domain of integration. In our case
this holds exclusively if A(fus/k,fvs/k)<^ 0, that is if K is inside the
aperture. If this happens to be we can evaluate the so-called second-
order saddlepoint approximation. The latter is here obtained by
expanding the exponent into a Taylor series of four variables around
the saddlepoint, by stopping this series after the second-order terms
and by extending the domain of integration until infinity. It is

easily verified that the approximation thus derived is identical with
(18). However, if K is outside the aperture, the corresponding
approximate value of (19) has to be taken as zero.

The approximation concerned can be summarized as follows: The
wave function in the image plane does differ from zero only at special

points P, which depend on the normal to the phase surface at the

corresponding point P'

.

The rays parallel to the normal must be
focused at a point inside the aperture. The angles between these direc-

tions and the 2 axis depend on the phase shift
<f>
caused by the object

due to elastical scattering. In other words, the phase contrast

arising from the elastically scattered electrons reduces those areas of

the object plane that contribute to the image formation. This is the

wave-mechanical formulation of the statement in corpuscular lan-

guage, that the scattering mechanism reduces the number of electrons

that pass through the aperture. It lias thus been shown how the

complete imaging mechanism, as far as it depends on elastic scattering,

can be described with the aid of wave theories. The wave treatment
includes the explanation of the scattering by the object, the formation
of Abbe’s primary image, and the role of the aperture.

7. Corrections to the phase-contrast theory

The theory outlined above is essentially based on the limit (8) which
has been applied to the integrations perpendicular to the z-axis that

occur in the multiple integral (3) for
\f/n . We can obtain a better

approximation to
\J/n by using more accurate approximations of the

two-dimensional integrals

dxQ dyQ u(Q )

e
ik-QP

~QP'

Such approximations can be obtained from any finite number of

terms of the asymptotic series

oo

jj
dxQ dxQ u(Q)

,ik-QP

QP

oo J)2n + 1 /

2
’’’S

w(Po)
|

~ 1

n / „ik

d(ikD) s

e
ikD
ik
I)

(*-»), (2D
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in which D=\ZP— ZQ \\ A 2 indicates the two-dimensional Laplace
operator, for instance,

A 2u(x,y)=
d'

2u
k>x

2

Alu(x,y)=
dy 2

) V d.r
4 dx 2dy 2

d 4

Iw.

The derivation of (21) is completely analogous to that of the series

for the corresponding integral

1 d

2tt()z ;JJ
dxQ dyQ u(Q)

e
ik.QP

QP

which will be published elsewhere. 8 Obviously the expression given
in (8) represents the first term of (21). The next few terms are given
by

oo

ss
p
ik-QP o

dxQ dyQ u(Q)

e

,UD

|

u(P0y
w,

1

2 k\

FtS 3 i 3

8P'\kD k 2D 2

kD A2U{Po)

(A*—> oo
).

With the aid of this series, it is possible in principle to derive an
expansion for each i

J/n that shows terms of decreasing orders of magni-
tude with respect to k~ 1= \/(2ir) . The first term of such a series is of

the order k~ n and is represented by (15), the next term is the order
of k~ n ~ 1

,
and so on. Contributions proportional to a fixed power k~m

occur in each of the terms
\f/ l , \p2 ,

. . \

p

m .

The actual computation of the correction terms is very tedious.

We only mention the first two terms of ipi (P beyond the object).

P(P)

=

i
4:

\^
e
eikZp

| J
* d r <p(xP) yP , k)

+ 2^
|* dk(zP— k)A 2<p(xP , yP , r)+ • •

•

|

• (22)

This formula illustrates how the first correction term depends
on the two-dimensional Laplace operator of the potential field in

a plane perpendicular to the symmetry axis. The k+ th order
correction term of \[/n ,

which is proportional to k~ n ~ k
,

is in general

composed of contributions of the first k iterated Laplace operators
A2 ,

AS . . ., A2 . These terms may also be connected with the electron

density P (x, y, z) according to Poisson’s equation

A2<P=~ 4 7T6 p .

8 Sea H. Bremmer, On the asymptotic evaluation of diffraction integrals with a special view to the theory
of optical contrast, Physica (to be published).
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It is thus possible to reduce the second term of (22) with the aid of

two partial integrations into the following expression if we assume P
to be outside the potential field.

8 ir
3me 2 C zp , . . .

The influence of similar terms may disturb the simple-pliase-con-
trast conditions according to (16).

8. Final Remarks

The theory leading to the phase-contrast formula (16) is directly

applicable to all propagation problems concerning the forward scat-

tering caused by a plane wave e
ikz that passes through a dispersive

medium having a refractive index /j, given by

p\x,y, z)= 1
k 2

(k= 2ir/\ wave number in the regions where /=0). The complete
differential equation then reads

(A+ k 2)U=f(x,y,z)U. (23)

Our problem of elastic scattering due to fast electrons is included as

the special case for which

\ 87rme
j(x,y, s)= 1— <p(x, y, 2).

The theory is particularly suited for the investigation of the scat-

tered waves directly beyond the scattering space. The theory of the
scattering observed at great distances shows different features because
it depends completely on Fourier analysis.9 Our main result (16)

concerning the total wave function beyond the scattering object for

great values of k, has the following form for the general problems
described by (23)

n(P)~e ik*re-^ y,P , f). (24)

Here again, the individual terms of the exponential series for the

second factor do represent the contributions produced by a special

number of successive scatterings.

Some other problems to which the above theory may be applied are:

(a) The scattering of radio waves in the ionosphere. Here we have

4-ttC
2

j{x, y, z)=—2- N(x, y, z),

8 The case of a two-dimensional object has been treated thoroughly by Booker, Rat-cliffe and Shinn, Phil.
Trans. Roy. Soc. of London [A] 242 (1950), p. 579-009.
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N being the number of electrons per unit volume;
(.b ) The optical scattering by media having a refractive index n slightly

differentfrom unity. In this case we should substitute

f(x,y,z) = —k 2 {^(x,y,z)—l}.

The fundamental formula (24) here becomes

For a nondispersive medium (fi independent of k) the terms cor-

responding to the different orders of scattering are now proportional
to increasing powers of k instead of decreasing powers in the case of

scattering by fast electrons. Therefore, the dominating order of

scattering is very different in either case.

(c) The elastic scattering of X-rays. The exact differential equation
to be applied here 10

is a bit more complicated than (23) so that the
above theory has to be modified accordingly.
The theory may possibly be extended to problems with a complex-

valued/, in which the imaginary part of/ corresponds to an absorption.
This may be important in order to include the effects of inelastic

scattering in our electronic problem.

10 See M. von Laue. Rontgenstrahl-Interferenzen, Berlin 1941, equation (26.17) on p. 246.
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16. Theoretical Study of Quality of Images

By A. Marechal 1

Introduction

The following study of the quality of images has been performed for

immediate application to light optics. 2 Although the orders of magni-
tudes of the resolving power and wavelengths, and the way in which
the objects produce absorption or retardation are different in light and
electron optics, the results give an account of the effects of aberrations
in electron optics.

In light optics the objects to be considered are composed of luminous
sources that can be either perfectly incoherent (photography, astron-

omy, etc.) or partially coherent as is the case in microscopy. We
have studied the two extreme cases of perfect incoherence and perfect

coherence of phase, for which the basic principles of the formation of

the images are very simple.

Formation of Images

Let us consider first the case where the object is incoherent; the

various points act as independent sources. Let 0(y,z) be the repar-

tition of luminance in the object (fig. 16.1), and let

D(y' ,z') = \A(y f

,z')\
2=\

JJ^
exp

|

~j (A+ /3y'+ 7z')J d(3dy\
2

be the repartition of illumination in the diffraction image of a single

point. A is the distortion of the wave front in the exit pupil; X is the

wavelength; y' and z' are coordinates in the image; and /3 and y are

angular coordinates in the exit pupil.

The repartition of light will be

/ (y'
}
z') = Jf°D(y'—y, z'- z)0(y,z)dydz.

Various objects can be studied for example: (1) Isolated bright

point, (2) isolated dark point, (3) isolated bright line, (4) isolated dark
line, and (5) edge of a bright area.

For each of those cases the function 0(y,z) is different. If we repre-

sent by a surface the function D(y'z') (sometimes called the diffraction

solid), the contrast of the image of an isolated bright point will be
obviously related to the maximum illumination in the center of the
diffraction solid. The case of an isolated dark point will be cornple-

1 Institut d’Optique, Paris, France.
2 The detailed computations are to be found in a paper presented to the Symposium on Optical Image

Evaluation (NBS C526, paper No. 2), or in a book, Diffraction, to be published by the Revue d’Optique.
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Figure 16.1

mentary to the preceding. Given a uniformly illuminated area, pre-

senting a dark spot of small surface s the image will be obtained by
subtracting from a uniform illumination the “diffraction solid” multi-
plied by a factor proportional to s. In that case, the contrast will

also be related to the maximum illumination in the center of the solid

(fig. 16.2).

Let us now consider the case of a bright line parallel to the Oz'
axis; D(y'z') is zero everywhere, except for 0<b/<T. The resulting

illumination in the image will be:

I(y',z')=e
(

D(y',z'— z)dz=e f D(y',z')dz'= eS(y'),
J — CO J — 00

where S(y') is the surface of section of the diffraction solid by a plane
of ordinate y'

. It could be shown very easily that in cases 4 and 5 the
contrast will also be related to that quantity.

If now we consider the case where the illumination is no longer
incoherent but coherent, the same treatment leads to similar conclu-
sions, provided we represent the image of an isolated point by a
repartition of complex amplitudes and not of intensities.

The Losses of Contrast Due to Small Aberrations

The problem is now to express the effects of small geometrical
aberrations, producing various distortions of the wavefront. The
case of points is the simplest, because it is easy to express the maxi-
mum illumination in the image. 3 The cases of lines, edges of areas,

etc., would need a supplementary integration on the diffraction solid:

but, thanks to Dr. M. Duffieux’s work, 4
it is easy to transform those

integrals into integrals performed on the exit pupil. It is then possible

to express easily the effects of small aberrations; if those aberrations
are known by the distortion A(/3,y) of the wavefront, the repartition

of amplitude on the exit pupil will be, for a single object point

.2xA(/?,7) .27tA
exp j r^=1 +j

O 2
Z7T

X X X*
A 2

3 A. Marechal, Rev. Opt. 26, 257 (1947).
4 P. M. Duffieux L’integrale de Fourier et ses applications a 1’Optique (Besancon, 1945), and Rev. Opt.

(1947 and 1948)
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The contrast for various cases can then be expressed by the follow-

ing expressions, provided the aberrations are small:

Points:

(a) Bright point, or dark point incoherent background,

(b) Dark point in coherent background,

Lines:

(a) Bright or dark line in incoherent illumination,

A 2
d(3

&-|8i

Ad(3

02-0

(b) Coherent illumination,

Bright line,

We notice that, within the approximations used, the losses of

contrast vary as the squares of the aberrations. The losses of contrast
will be inversely proportional to the squares of the tolerances which
we shall now determine.

The Case of Third Order Aberrations

The application of the preceding formula to the case of third order
aberrations leads to various expressions for loss of contrast. If we
apply them to the Rayleigh limit for various aberrations (distortion

of the wave front equals to X/4), we find losses of contrast varying
from 0.1 to 0.3. In fact those expressions allow us to define a more
precise tolerance than the Rayleigh limit, by writing a priori that the
loss of contrast is exactly 0.2. The various tolerances obtained are

tabulated on table 16.1.

In the case of spherical aberration we have quoted the maximum
distortion of the wavefront (refered to a sphere centered in the par-
axial image) for the two cases where we either use the paraxial image,
or the best image obtained by a small axial displacement from the
paraxial focus. The second tolerance is obviously the value to be
used practically. The tolerance obtained is of the order of 1-X for the
different objects or illuminations. Consequently if a is the half

angular aperture of the bundle of rays, the tolerable longitudinal
spherical aberration will be 4X/(a') 2

*
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Table 16 . 1 . Values of third-order aberrations leading to a loss of contrast of 0.2

Aberrations

Incoherent illumination Coherent illumination

Point Line Dark
point

Dark line Bright line

Defect of focusing __ 0. 25X 0. 29X 0. 17X 0. 22X 0. 24X

Astigmatism ( 0= ~
)

. 17X 18X . 25X 00 DO

3rd order spherical:
Paraxial focus . 25X 28X . 22X 30X 27X
Best focus,. . . 95X 1 . 04X . 9X 1.0X 92X

3rd order coma: 0=0 0= ir/2 0= 0 0= 7r/2 0 = 0 ©- II to

Paraxial image . 20X 0. 29X 1.3X . 28X 0. 26X OO 0. 19X OO

Best image .. . . 60X . 85X 1.3X . 85X . 66X OO . 47X CO

In the case of coma we have mentioned by
<f>

the azimuth of the
comatic flare with respect to the object line, in the case of spherical

aberration we have determined the tolerance for the image obtained
in the paraxial focus, or for the best image which is laterally shifted

from that focus. Let us consider for example a coherent bright line

perpendicular to the direction of the comatic flare The dis-

tortion of the wave front can be 0.47X on both sides of the paraxial

sphere, which means that the maximum geometrical comatic flare

(which will not be perciptible by the coexistence of diffraction effects)

could be as a maximum (3 x 0.47X)/a'.

In the case of astigmatism,
<f>

is the angle between the linear object
and one of the focal lines when one of the focal lines is parallel to the

object (<f>= 0 or tt/2). The effect of astigmatism is zero when we focus
on that line and any displacement from that position has to be con-
sidered as a defect of focusing. In the case of <£=7r/4 the best focusing
is located midway between the lines and the tolerances are expressed
for that case. We notice that the tolerances on astigmatism are much
more severe than the tolerances on coma or spherical aberration: The
slightest astigmatisms produce a noticeable loss of contrast (except

when the tolerances are infinite, which means that the aberration has
no effect in the specified conditions). We will see in the case of larger

aberrations that the astigmatism has also the worse effect.

The mechanical computation of diffraction patterns

When the aberrations are either very small or very large it is possible

to compute the distribution of energy in diffraction patterns by using
mathematical expansion. 5,6 We have already mentioned that the
losses of contrast can be expressed as functions of various pupillar

integrals that can also be easily computed in the case of small aber-
rations. When the aberrations are neither very small nor very large

(in the transition between diffraction and geometrical optics) these
mathematical procedures may fail. It is then useful to perform the

integration expressed in the formula for the case of a point source by
means of a special mechanical device (fig. 16.3).

5 B. R. A. Nijboer, (1942).
6 Van Kampen, Physica XIV, 580 (1949).
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Figure 16 . 3 .

Figure 16 . 4 .

The principle of such a machine has already been described else-

where .

6 The real and imaginary parts of the complete integral are

developed by two integrating wheels whereas the distortions of the

wavefront (of any order) are given by cams, amplifier levers, adding
tape, etc. The machine has been used for solving the following

problems:
(a) The distribution of energy in the presence of third order aberra-

tions. The goal of that study was mainly the knowledge of the

6 A. Marechal, Rev. opt. 27, 73 (1948); and J. Opt. Soc. Amer. 37, 982 (1947).
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Figure 16 . 5 .

transition between diffraction patterns and geometrical caustics.

The transition is very rapid in the case of astigmatism when the focus-

ing is done on a focal line. The diffraction pattern is already similar

to the geometrical pattern even when the aberration is as small asX/4.

The transition is more gradual for coma, and still more gradual for

spherical aberration.

(b) Determination of the proper aperture of correction of geo
metrical aberration when the aberrations are of the order of 2 or

times the Rayleigh limit.

(c) Special studies of practical cases of microscope objectives,

Schmidt cameras, etc.: Fig. 16.4 represents the example of the study
of spherical aberration of 4A. Curves of equal illumination are drawn
in a meridional plane and are able to give the illumination in various
planes of focussing. Fig. 16.5 represents the example of astigmatism
of ± 0.5X for two different foci. The lower part of the figure represents

the repartition of light in the plane of a geometrical focal line, the

upper part in a plane located midway between a focal line and the
“circle of least confusion”. We notice that even with that weak
astigmatism of ±0.5X the loss of illumination is very severe: The
astigmatism has a very bad effect on the contrast of point sources.

It is possible with that machine to study the effect of any aberra-
tion, isolated or superimposed and to obtain an evaluation of the
quality of the image.

Discussion

Dr. L. Marton, National Bureau of Standards, Washington, D. C.:

How far do you think these can be directly translated into electron

optics?

Dr. Marechal: What we have studied is the two extreme cases of

perfect coherence illumination and perfectly incoherent illumination.

Dr. Glaser said that what is not taken into account is the way that
one point diffracts. If we consider the case of perfectly incoherent
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illumination, I would like to ask Dr. Glaser whether we can’t consider

that the illumination is practically uniform in the aperture open to

the electrons, and, in the reverse case, in the case of coherent illumina-

tion, those computations take into account the weight of diffraction

of the structure of the object by taking a division of amplitudes and
taking account of the diffraction bj' the division of the amplitudes
in the object plane.

Dr. D. Gabor, Imperial College, London, England: Do you mean
the diffraction by the distribution in the object plane?
Dr. Marechal: Yes, we suppose that the amplitude in the object

planes are represented, and we take account of the diffraction of that
aberration even to the entrance pupil. So, for example, if we have a

certain structure we would give the entrance pupil two points, two
vibrations. That is what we have taken into account, incoherent
illumination.

Now, in the case of incoherent illumination we have only supposed
that the division of amplitude on the pupil is uniform for any of

the points.

Dr. W. Glaser, Technische Hoclischule, Wien, Austria: We
have often discussed with Dr. Marechal his lecture at Paris in Septem-
ber, and it is possible to use, I think, very useful calculations in

electron optics the influence of aberrations, because we get general
formulas that can be translated in this form, but there is one difference.

The wavelengths are much greater.

Since the wavelengths of light are great and it is possible to get

some accurate forms, but some wavelengths are so much smaller than
the light wavelength that it is not comparable with mechanical
devices, and therefore I think it would be necessary to generalize on
this. It would be a great deal more work in order to apply it to elec-

tron optics.

Dr. Marechal: I would like to say only that, of course, the wave-
length is very much less than for ordinary optics, but in any case the
structure of the images depends only on the number of the wave-
lengths of aberrations that you have got.

If you get, for example, ten wavelengths aberrations, you arc

practically in the geometrical case so it probably would not be any
use to try to compute those diffraction patterns, and, moreover, in

the question of diffraction of a given single-point source in the pupil,

this might be complicated if that diffraction pattern should be com-
posed of many oscillations, but that would also be a case probably
less interesting than would be the case of a large disk. The object
would then be great with respect to the resultant pattern. When the

object is of the order of the resulting pattern or smaller, we probably
get only one oscillation of the maximum.





17. Lentilles Electroniques

Par P. Grivet 1

I. Introduction

Les proprieties essentielles cles lentilles electroniques sont solide-

ment etablies et clairement comprises; leur connaissance a permis de
delimiter le domaine oil chaque type de lentille doit etre utilise.

Nous les supposerons connues du lecteur qui, au besoin, pourra se

reporter a une revue recente de la question [l].
2 Aujourd’hui il

faut aller plus loin et nombre d’ applications delicates requierent une
connaissance detaillee et approfondie des proprietes optiques de
chaque modele, pour P adapter au mieux a sa fonction. En general,

les qualites optiques d’une lentille sont definies par les elements car-

dinaux de Gauss: distances focales, position des foyers, qui suffisent

pour determiner l’image d’un objet quelconque en grandeur et en
position. Les coefficients d’aberrations ne sont que plus rarement
utiles: lorsqu’il devient necessaire d’estimer la finesse on la fidelite

de l’image. Le probleme de l’heure est done de determiner les ele-

ments cardinaux (cf. appendice I) connaissant la structure geome-
trique de la lentille (dimensions et positions des electrodes) et les

donnees electromagnetiques: tension d’acceleration des electrons, ten-

sions appliquees aux electrodes on courants magn6tisants (aimantation
d’excitation s’il s’agit d’aimants permanents).
Des methodes sures existent depuis longtemps pour resoudre ces

problemes, mais elles exigent un travail considerable de calcul nume-
rique, qui excede en general les possibilites des laboratoires ordinaires,

meme lorsqu’ils sont bien equipes, et pourvus de machines a calculer:

un bureau de calcul specialise serait necessaire et il devrait consacrer
a chaque probleme quelques semaines voire quelques mois. Une
solution de ce genre est de pen de secours surtout dans le stade initial

du choix d’une lentille. C’est pour subvenir a ce defaut que la

theorie se developpe aujourd’hui dans une nouvelle direction. Le
but est de represen ter par des formules simples les proprietes de
toute une famille de lentilles en partant des donnees premieres. Ce
sont quelques solutions apportees par ces recherches recentes dans ce

sens, que je vais passer ici en revue; et pour mieux mettre en evi-

dence la progression des idees, je commencerai par les questions les

plus rebelles, dont la solution releve encore largement des anciennes
methodes.

L’elaboration de ce travail, m’a amene a quitter la division tradi-

tionelle entre electrostatique et magnetique. C’est pourquoi j’ai

change le titre initial de Particle: Electrostatic lenses, qui est devenu
electron lenses.

1 Laboratoire de R.adio61ectricit6, Universit6 de Paris, France.
2 Figures in brackets indicate the literature references on p. 196.
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II. Machines Simples

Description du Champ

Le calcul d'une lentille comporte deux etapes:

Partant de la structure de la lentille, on calcule le champ agissant

sur les electrons,

Connaissant le champ, on calcule les trajectoires puis les elements
cardinaux.
Nous avons rappele qu’il n’est pas necessaire de donner une expres-

sion detaillee des trajectoires et qu’on se contente de les caracteriser

optiquement par les elements cardinaux. De meme il n’est pas utile

de connaitre la repartition du champ dans tout le volume de la lentille,

mais seulement au voisinage de l’axe. On montre (cf. reference [1],

p. 56, 64 et 70) que les elements cardinaux resultent de la resolution de
l’une ou Pautre des equations differentielles suivantes:

Lentilles electrostatiques:

Equation des rayons

d2
r <P

' dr
r r

dz 2 2 ^ dz 4 <p

Equation des rayons reduits

d2B . 3

r= 0

r=B(p 1/4

Lentilles magnetiques:

d2
r

dz 2
1 6 \ <p

^)
2

b=o

dt2 \8m<p0/

B2
(z)r= 0

( 1 )

(2)

(3)

II suffit done de connaitre avec precision, les fonctions <p (z) et <p' (z)

(<p{z), etant lepotentielsur l’axe) dans le cas electrostatique, B(z) champ
sur Paxe dans le cas magnetique.

Mesure du Champ sur l’Axe

Dans les cas ou la determination est difficile et echappe encore au
calcul—nous en donnerons deux exemples—il est indispensable de
mesurer le champ et il serait alors tres utile de reduire les mesures a

leur plus grande simplicite, e’est-a-dire a la mesure directe de <p(z),

ip' {z) ou H(z) et a cette mesure seulement.
Il est difficile de mesurer directement <p(z) et <p' (z) dans le cas

electrostatique. On peut il est vrai y parvenir a 1: L’aide d’une
cuve electrolytique, mais on est oblige de recourir a une cuve profonde,
ou l’on plonge une reproduction de la moitie de la lentille, coupee par
un plan meridien; et alors les electrodes sont encombrantes et difficiles

a realiser; l’utilization d’une cuve plus simple en forme de coin est

possible [2] mais la mesure est alors indirecte et delicate. Au contraire,

dans le cas du champ magnetique B(z) et B' (z) sont faciles a mesurer
avec Pappareil de Le Poole [3] sous la forme pratique que lui a donnee
FERT [4] et qui livre directement Penregistrement des courbes
B(z) et B'(z ).

168



C ?

est pourquoi, au laboratoire de hauteur, Septier essaie actuelle-

ment d’employer Panalogie champ magnetique—champ electrique en
sens inverse des habitudes acquises (figure 1): au lieu d’etudier le

champ magnetique d’une lentille magnetique, a la cuve electroly-

tique [5, 6] il essaie de mesurer magnetiquement—par une methode
derivee de celle de Le Poole—le champ electrostatique dans une
lentille electrostatique. Pour cela les electrodes sont representees 10

a 20 fois agrandies par des feuilles de metal tres permeable (fer

Armco, ou mieux hypernick) et sont excitees magnetiquement par un
courant (figure 17.1) qui correspond a une tension electrostatique V
(en unites Giorgi rationalisees) par les formules:

E=mB (ra, coefficient arbitraire),

—
- V=m n 0nl ((nl) amperes-tours magnetisants.)

Ici on peut se placer dans une region ou le fer est tres permeable et

Paimantation faible; Pechauffement du circuit magnetique par hys-
teresis est faible dans ce domaine si Pon pratique une mince coupure
meridienne dans le circuit magnetique ou si Pon emploie un materiau
magnetique isolant. On peut simplifier les mesures en employant
un courant d’excitation alternatif; v(z) et ip' (z) sont alors mesures
par simple effet d’induction dans une bobine d’exploration, longue
pour <p(z), courte pour ip'(z).

Les Cas Difficiles

Deux exemples typiques nous montreront la nature des difficultes

auxquelles se heurte la theorie:

1. Lentille Magnetique a Blindage Sature

Dans ce cas la coure B(z) a la forme simple d’une cloche et Glaser
a montre des 1941, qiPon pouvait la representer par Pequation

\ -j- (s
2
/(z

2

)] (cf. [1] p. 73) et qu’il etait facile d’en tirer les

elements cardinaux et les aberrations. Mais la solution s’arrete la

car, bien que cette courbe soit simple, il est difficile de la relier aux

Figure 17.1
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dimensions du circuit magnetique anx caracteristiques du fer et an
courant magnetisant. On se heurte a une - difficulty classique, rnais

encore insurmontee: Comment decrire simplement la saturation du
fer?

2. Lentille Electrostatique & Immersion

C’est la un organe fondamental de l’optique electronique: le canon
a electron. Les difficultes tres reelles dues a la charge d’espace ne
semblent pas pres d’etre resolues par la theorie et conventionnellement
on les neglige en envisageant la lentille sans charge d’espace. C’est

un cas qui se trouve rigoureusement realise dans le microscope elec-

tronique a emission et dans le transformateur d ’image, mais qui

n’est qu’une approximation—mal definie—dans l’oscillographe.

Malgre cette simplification draconienne on ne connait cependant pas
encore de solution complete, car on se heurte a deux difficultes.

1. La courbe <p(z) est compliquee comme on en pent juger d’apres

le releve de Duchesne [7] (figures 17.2 et 17.3), et par consequent,

1’equation des rayons est difficile a traiter directement. Mais simul-

tanement la courbe ip'j

v

est compliquee aussi et l’equation reduite

Figure 17.2. Potentiel et gradient de potentiel pour differentes

valeurs de V6cartement b.

Figure 17.3. Potentiel et gradient de potentiel pour
differentes valeurs d’6cartement b.
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n’apporte pas d’avantages parce qu’au voisinage de la cathode <p(z)

est petit et le quotient <p')<p est important bien que paraisse n6gli-

geable.

2. Dans la region de 1a. cathode la marche des rayons est tres

sensible a une petite variation de la force focalisante, c’est-4-dire k
de petites variations de tension appliqu6e a la premiere Electrode, et

a de legers changements de forme de cette electrode ou de la cathode;
ces petites perturbations ont de grosses repercussions, parce que la

vitesse des particules est faible. Ainsi Duchesne [7] a montr6 que
la courbure de la cathode employee couramment dans les telescopes

electroniques, pour reduire la courbure de champ, avait une influence

notable sur la mise au point de 1 ’image et son grossissement; c’est ce

qui ressort bien de la comparaison des figures (2) relative a une
cathode plane et (3) pour laquelle la cathode etait spherique.

C’est pourquoi aucun calcul complet de l’objectif a immersion n’a

6te encore publie. On ne connait que des solutions partielles, cer-

taines fort utiles comme celle proposee par Jacob [8]; cet auteur a

observe a la cuveApi’avec les proportions que Ton donne babituelle-

ment aux canons d’oscillographe, on avait de maniere tr£s approch^e
(p(z)= sh(Kz) entre la cathode et le cross-over et il a remarqu6 que
Faction de cette seule region determinait des proprietes importantes
des oscillographes: finesse et luminosite du spot.

Les difficulty que nous venons d’analyser sont purement th^oriques;

bien que le fonctionnement des lentilles a immersion soit difficile a

analyser, ces organes fournissent d’excellentes images, comme on
pourra en juger, par les images des figures 17.4 et 17.5 obtenues par

Sep tier & Gauzit avec leur microscope a emission; les images d’une
source ionique obtenues avec le meme appareil, ne sont pas encore

aussi bonnes, mais comme le montre la communication de Couchet,
Septier & Gauzit au present Congres il s’agit surtout la de difficultes

auxiliaires d’observation.

Figure 17 . 4 . Molybdene thorie.

257899—54 12 171



Machine a Integrer les Trajectoires

Une machine a integrer h equation des trajectoires reste done utile

dans de nombreux cas. II est certain que les grandes machines a

calculer classiques satisfont a cette exigence, mais elles sont peu

accessibles et il serait interessant de disposer d’une machine simple

et rapide. L’auteur en collaboration avec Y. Rocard [9] a esquisse

un projet que Septier etuclie actuellement. C’est une machine
analogique basee sur la similitude entre l’equation qui donne la

tension le long d’une ligne electrique alimentee a une extremite

par une source sinusoidale de pulsation co (figure 17.6) et les equations

Figure 17.5. Flux du baryum le long des lignes de ghssement
sur la surface de fer.

R —

Figure 17.6.
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(1), (2), on (3). L’equation du potentiel Fie long crime ligne formee
par exemple d’une self longitudinale repartie avec la densite L(x) par
unite de longueur et d’une capacite transversale repartie avec la

densite C(z) par unite de longueur, s’ecrit:

d?V_L'(z) dV
dz 2 L(z) dz

LCo>
2F=0, (4 )

Essayons par exemple de copier electriquement 1’equation (2); nous
voyons qu’il suffit de constituer la ligne avec une self par unite de
longueur L(z) et une capacite par unit6 de longueur C(z) tel que:

L {Z)=L, SLC(Z)=±($gy=T‘(Z ). (5)

Naturellement on renonce en pratique a une variation continue de
L(z) et C(z) et on emploie une ligne artificielle, discontinue contenant
de nombreuses cellules LK ,

CK Une solution simple consiste &
choisir LK=L constant, et les elements CK variables, la fonction
T(z) est alors representee par une suite de capacities CK facile a
mesurer done a ajuster aux valeurs voulues et on obtient R(z) en
mesurant la repartition de V(z) le long de la ligne artificielle

;
l’espace

objet correspond a la sortie de la ligne et un rayon principal parallele

a Taxe y est represente par une extremite ouverte; Tespace image
correspond au cote source de la ligne et dans cette region la pente du
rayon emergent est proportionnelle a oiLKiQ (

%

courant d’alimentation).

La meme machine peut servir au calcul des coefficients d’abera-
tions par la methode des perturbations. La fonction de perturbation
correspondant a Vaberration choisie soit e(z) est represent^e par une
tension u(z) injectee entre le pied de chaque capacite et la terre coniine

on peut le cleduire facilement de la reference [9].

III. Lentille Independante a Trois Diaphragmes

Champ sur l’Axe

La lentille independante a trois electrodes, a ete calculee complete-
men t par Regenstreif [10]; cet auteur a reussi a determiner ip(z) a
partir des dimensions de la lentille et de la tension appliquee entre

Pelectrode centrale et les electrodes exterieures par une methode semi-
empirique. La lentille similaire formee par 3 morceaux de cylindre

de revolution de meme diametre, coaxiaux peut etre calculee rigou-

reusement et la fonction <p(z) y apparait comme une combinaison
lineaire de fonctions relatives au cas simple de deux cylindres. Regen-
streif a transpose cette idee, au cas des diaphragmes plans et a essay6
si Ton ne pourrait pas simplement representer la fonction de la lentille

totale, comme une combinaison lineaire des trois fonctions \p(z) qui

chacune representerai rigoureusement un diaphragme unique, en
Tabsence de ses deux voisins: ^(z) est bien connu et s’ecrit

y(z)=a Jr bz-\-cz arctg
R’ (6)
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Figure 17 . 7 .

R etant le rayon du diaphragme considere. On essaie done

<p(z) — A\J/(z— z0) (7)

La fonction <p ainsi batie satisfait rigoureusement a Pequation de
Laplace, mais ne s’adapte qu’approximatiYemen t aux conditions

aux limites. Regenstreif determine les constantes A, B, C, a, b, c pour
que le champ soit bien represente au centre de la lentille region

d’action d6terminante car e’est la que les electrons sont les plus lents

done les plus sensibles aux forces d4viatrices. Regenstreif obtient
ainsi

<p( z) = a J
r b f(2 + zo) arctg ~^°+(z— z 0) arctg - ^

-

"

\

a

b=

Vi~2b
^
R\ Zo arctg

V2
— Vi

— 2 2 arctg „R ,]

Zo

r2

M8)

2o
2Ri jt2zq arctg ^

Ri etant le rayon du diaphragme interieur porte au potentiel V\,

R 2 celui des deux diaphragmes exterieurs port6s au potentiel V2 ,
z0

distance mutuelle des diaphragmes (figure 17.7).

II est ainsi parvenu a des formules maniables pour la fonction <p(z);

leur comparaison aux mesures faites a la cuve electrolytique dans
ces cas typiques montra qu’elles representaient fidelement le potentiel.

II est a remarquer que la precision requise est beaucoup moins grande
que pour Pobjectif a immersion: Une erreur de quelques pour cent
est de peu d’importance car les electrons ne tombent pas a une vitesse

inf4rieure a 20% de leur vitesse maxima, tandis que pres d’une
cathode ils auraient une vitesse equivalente qui peut descendre a
moins de 1/100 de celle qu’ils auront au passage de Panode.

Elements Cardinaux

La formule du potentiel (8) est trop compliquee pour qu’on puisse

Pintroduire dans Pequation (1) ou (2) avec quelques chances de
succ&s. Regenstreif s’inspirant d’un travail de Rudenberg [11] a

assimil4 la courbe <t> (2 ) a Pensemble de trois arcs de parabole tangents.

On peut alors int£grer Pequation (1) par des fonctions sinus hyper-
bolique ou cosinus hyperbolique, morceaux de courbes que Pon rac-

corde ensemble tangentiellement a la frontiere des regions paraboliques.
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Les calculs sont faciles mais longs; ils ont davantage de livrer des
formules maniables car on constate que les donnees physiques nfinter-

viennent dans les resultats finaux que par l’interm6diaire d’un para-
metre x, unique, done tres commode

Ri+
V2—V1

x
<p(0)

1+| ar^|
<P(Zo) vl+(y2-vl )

i — (R2/2R1)

1 +^ arctg ~

(9)

x est simplement le rapport du potentiel au centre 0 (0) k celui qu’on
observe sur 1’axe a l’aplomb des electrodes exterieures 0 (0O ).

Parmi les nombreux resultats de Regenstreif nous choisirons les

exemples suivants:

1. La distance focale des len tilles de convergence faible ou moyenne
(figure 17.8)

f __8 x

20
~3 (1— x)

2 (10)

2. La distance focale des len tides fortes / (figure 17.9) et la position

de leur foyer ZF

S _ 0>72

20 sin (0,707 log^+ 0,355)'
v ;

Figure 17 .8 . Distance focale
d'une lentille d une Elec-

trode centrale mince (len

-

titles faibles)

.

Figure 17 . 9 . Distance focale
d'une lentille d une Elec-

trode centrale mince (len-

tille fortes).
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—= 1+ 0,764
Zo

sin (0,707 log e x— 0,887)

sin (0,707 log e 0,355)
(12)

3. Le potentiel critique Vc de l’electrode centrale pour lequel la

lentille devient miroir

V, _fo

Ri
arctg (

~
(13)

4. La distance focale des miroirs convergents on divergents (figure

17.10)

y = , ( 14 )

z0 sin [0,707 loge (
— x) + 0,355]’

5. Les elements cardinaux des lentilles, oil P electrode centrale est

positive et acceleratrice (figure 17.11).

Figure 17 . 12 . Lentille electrostatique

epaisse.

Figure 17 . 11 . Distance focale d’une
lentille a une Electrode centrale mince
0Electrode centrale positive (xf>l)).
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Figure 17.13. Distance focale d'une lentille a
une electrode centrale Epaisse (lentilles fortes)

.

Figure 17.14. Distance focale d'une lentille a une
electrode centrale epaisse (lentille faible)

.

On dispose done maintenant d’un arsenal de formules qui decrivent
de maniere extremement complete le comportement de cette famille

de lentille. La confrontation de ces precisions theoriques avec le

resultat de mesures faites au laboratoire et avec celles de Heise &
Rang [121 montre un accord satisfaisant.

Enfin, le cas oil Lelectrode centrale est tres epaisse, se traite sans
nouvelle difficult^, mais mene a des formules plus complexes; dans ce

cas la courbe du potentiel presente au centre de la lentille un plateau
etendu; on le represente par un quatrieme morceau de courbe : une
droite horizontal et on obtient encore des resultats en bon accord avec
I’experience. La figure 17.12 donne le schema de la lentille, les figures

17.13 et 17.14 les valeurs de / et de ZF ;
le parametre y est defini par

y=zilz2 .

Aberrations—Astigmatisme d ’ Ellipticite

Les resultats precedents ont une importante consequence dans le

domaine des aberrations car depuis les recherches de Bruck [2] et de
Heise [12] on savait que lorsque la distance focale est minima, les
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aberrations de distorsion et de sphericite passent par un minimum.
On peut done par les tommies de Regenstreif determiner facilement

ces conditions qui correspondent a la valenr zm= 5,8.10~ 3

(Jm= 0,7730)
lorsque l’eiectrode centrale est mince. Regenstreif a fait progresser

r^cemment cette theorie d’un pas important en montrant que 1’aber-

ration un peu singuliere mais qui en pratique est souvent la plus

importante, l’astigmatisme d’ellipticite passait aussi par un minimum
en meme temps que la distance focale. On le comprend intuitivement
en remarquant que les distances focales sont les memes pour deux
lentilles rigoureusement rondes, qui auraient pour rayon du trou

central, soit le grand axe, soit le petit axe de la lentille reelle. La
proposition est plus difficile a demontrer; Regenstreif y reussit en

faisant le calcul approche mais complet d’une lentille dont le trou

central est faiblement elliptique [13].

II est meme parvenu recemment a traiter le cas ou le trou central est

fortement elliptique, ce qui pourra faciliter beaucoup l’usage des

lentilles fortement elliptiques dont Scherzer [14] a montre tout

l’interet pour corriger les abberrations spheriques et chromatiques.
Nous renvoyons sur ce sujet aux deux communications de Regenstreif
au present Congres.

Application au Microscope Electrostatique

Les r4sultats precedents se sont montres tres precieux pour nous
guider dans le perfectionnement de notre microscope electrostatique:

1. Objectif

En particular les formules mettent en evidence ^existence d’un type
remarquable d ’objectif:

(a) Son foyer affleure la face d’entree k quelques dixiemes de milli-

metres de distance, si bien que sa “distance de travail” est minima.
(b) Simultanement sa distance focale est situee au minimum de la

courbe donnant/en fonction de x
,
si bien que:

L’objectif est extremement stable, il est tout a fait insensible aux
petites variations de tension, telles celles, difficilement evitables, qui

proviennent des petits courants de fuite,

Son aberration spherique, et son astigmatisme d’ellipticite sont
minima.

(c) Des objectifs de cette sorte peuvent etre construits sur le type
unipotentiel ou le potentiel de l’41ectrode centrale est egal a celui de
la cathode, l’61ectrode centrale etant alors assez epaisse.

(d) Mais il est encore preferable d’utiliser leur stabilite vis-a-vis

des variations de tension, en utilisant une polarisation negative de
1’eiectrode centrale (quelques milliers de volts obtenus avec une
resistance d ’autopolarisation) vis-a-vis de la cathode: dans ces condi-
tions, et a distance focale egale, on diminue encore 1’astigmatisme
d’ellipticite, pour une precision de fabrication constante, parce que le

trou central peut etre choisi sensiblement plus gros.

2. Lentille de Projection

Les formules permettent de calculer une grande variete de lentilles

de projection denimes de distorsion: L’emploi d’une electrode centrale

epaisse s’avere toujours precieuse mais on dispose maintenant d’une
bien plus grande latitude dans le choix des dimensions.
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3. Evolution Generate du Microscope

Cette etude nous a araenes a reviser sensiblement la conception

de notre microscope, ou nous avons cherche a distribuer les fonctions

importantes a des organes specialises: C’est pourquoi nous le munis-
sons de quatre lentilles,

—Pobjectif et la lentille de projection (premiere et quatrieme
lentilles) ont pour but de grossir,

—la deuxieme lentille, immediatement apres Pobjectif est faible,

et sert a mettre au point, puisque maintenant l’objectif a une conver-

gence rigoureusement fixe,

—la troisieme lentille, de moyenne convergence sert a faire varier

le grossissement,

L’appareil est actuellement a Pessai et donne des resultats

encourageants.

IV. Un Nouveau Modele Mathematique de Lentille

Lentille a Deux Cylindres

11 est connu depuis longtemps [15] que le potentiel le long de
Paxe d’une lentille formee de deux cylindres de meme axe et de meme
diametre, separees par une coupure infiniment mince est donne par
la formule

v’C)= !£l~?

[
1+rS tl1 "*]» as)

(pi et (p2 etant les potentiels des deux cylindres de rayon unite,

y= pi/p2 ', co=l,318; mais on ne sait pas integrer les equations des
rayons correspondant a cette forme de p(z). Hutter [16] a remar-
que que la courbe p(z) avait la meme allure que

4'(z)=4/
K arctg (z/a)

j (16)

qui mene a une equation (2) resoluble, celle de Glaser (cf. [1] p. 73)
Mais il a essaye de representer au mieux la fonction p (z) par \p ( z

)

et n’a pu y parvenir que grossierement, ce qui le mena a des resultats

optiques pen precis. Au contraire, si comme Bernard et Pauteur [17]

Pont propose, on renonce a representer p (z) avec une exactitude
inutile, mais qu’on s’attache a trouver une cloche de Glaser B(z)=
B0/\l-\- (z/a)

2

]
qui se rapproche le mieux de la courbe reelle (V3/4)

(p' ]p), on obtient des resultats tres precis car il se trouve que la

cloche reelle est naturellement symetrique et fort voisine du modele:
Le lecteur se reportera a la communication de Bernard & Grivet sin-

ce point, et y verra aussi que la lentille a interstice de meme forme,
ainsi que la lentille formee de deux plans paralleles perces de trous
egaux, penvent et.re traitees de la meme maniere.

Utilite d’un Autre Modele

Cette etude fait apparaitre un defaut du modele de Glaser [17] qui
se manifeste egalement dans son application a la lentille magnetique,
lorsque son blindage est loin de la saturation. La representation est

bonne au centre de la lentille, mais mauvaise sur ses deux bords: En
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effet le champ de fuite reel decroit tres vite dans ces deux cas, suivant
line loi exponentielle comme le montre^ bien la formule (15) dans
Pexemple electrostatique et comme on le constate aussi, sur Jes

courbes experimentales de lentilles magnetiques. Cette loi exponen-
tielle parait etre caracteristique, de la decroissance du champ chaque
fois qu’elle est produite par un effet de “blindage” marque.
Au contraire, la courbe (17) a une decroissance tres lente, beaucoup

trop lente.

On rattrape naturellement largement l’ecart entre la courbe (17)

et la realite, en choisissant habilement le parametre a. Une methode
simple et efficace pour cela, consiste a definir a de maniere que:

ce qui revient a assurer la meme valeur au premier terme, dans le

developpement de la distance focale, qu’a donne Picht [18] ;
ce develop-

pement etant tres convergent, le procede est bon. Mais il s’agit la

d’une compensation dont Pexactitude est difficile (de l’ordre de
quelques pour cent) a evaluer, et il vaudrait mieux Peviter. C^est ce

qui a conduit hauteur a etudier un modele plus satisfaisant sur

ce point [19].

Le Nouveau Modele

1. Le Nouveau Modele

1. L’auteur a propose le nouveau modele

B(z)=B0 .sech-(z/b), (18)

pour lequel on a:

6= 0,7593a, (19)

a etant la demi-largeur de la cloche a mi-hauteur.

2. Rayons de Gauss

En prenant 6 pour unite de longueur (z/b= x
;
B=rjb), l’equation des

rayons gaussiens est

R"ch2(x)+h2R= 0 (20)

avec h= 0,7593 K
,
K= parametre classique defini clans (1) par

K2
eB2

8m^ 0

& (21 )

Le changement de variable: u=th(x) ramene cette equation au type
de Legendre

(
1-0 dm

du2
2u

dR
du

v{y-\- l)i?= 0, (22 )
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et Pexpression clu rayon general s’ecrit

R=A.P„[th (x)]-\-BPP[—th (x)],

P„(u) etant fondion de Legendre cl’ordre v avec rp+l )=h2
. Les

cas v=n entier sont physiquement significatifs et mathematiquement
singuliers; alors la fondion P„(u) devient le yolynome P

re
(u) et Pw(— u)

doit etre remplace par Q n {\\) fondion de deuxieme espece.

3. Valeurs Remarquables vzzn Entier

Que v soit entier on non, le rayon r=PAh(x) est toujours un rayon
principal, parallele a Paxe a la distance 1, pour x—>-f oo car on a

toujours P„(l)= l et P'„(l) est fini; la dependance u=th(x) assure le

comportement asypmtotique convenable. Mais si v est un entier n,

ce rayon principal emerge encore de la lentille parallelement a Paxe
pour r—>— oo

,

car Pn(—

1

)
= 1 si n est entier: la lentille est alors

afocale au sens classique du mot. A Pinterieur de la lentille le rayon
coupe n fois Paxe, donnant lieu a n foyers immerges Gn symetricjues

par rapport au centre optique, qui est Pun d’eux lorsque n est impair;
c’est le seul lorsque n= 1,

r=A tli (x) f-Bx th (x). (23)

Les valeurs v=n pour lesquelles le systeme est classiquement afocal,

separent les valeurs de v correspondant aux systemes convergents
(0<^r<^l; ?><fv<f4:] . . .) de cedes donnant des systemes
divergents (2<fv<^3; 4<^r<(5: . . .) Dans les instruments actuels on
evite toujours les foyers multiples et nous pourrons limiter Petucle par
la condition 0<^<1, 0<p/P<2.

4. Elements Cardinaux Classiques

Ils definissent la correspondance homographique entre les deux
asymptotes de chaque rayon. Or le developpement de Pv {u) au
voisinage de u=— 1 est connu (cf. [20] p. 224) et donne apres quelques
transformations:

P,( {2a:+2[^W + C]+ T cotM} ) (24)
7

r

C etant la constante d’Euler, f(v) la derivee logarithmique de v\.

On obtient finalement pour la position du foyer zF ,
la distance focale

/, et la rotation de Pimage <p:

7T

(zF/b) = \p(v) cot (7tv)

Pb
7T

2 sin (pit)

<p= 7rh.

(25)

(26)

(27)

Ces lois different peu de cedes de Glaser quand les lentilles sont faibles,

mais les ecarts deviennent importants lorsque la convergence est

181



Figure 17.15. Elements cardi-

naux classiques.

forte. On note en particulier que la lentille de projection la plus

convergent^ est definie par v=lj2, k=l, 14 /=1, 19a au lien de k= 1,

/= 1, oa.

La fonction \f/(v) est bien tabulee en particulier dans les tables de
Jahnke-Emde; elle ne varie d’ailleurs que de zero a 1, lorsque v passe

de 0 a 1. La figure 17.15 montre l'allure des courbes zF et /, en
fonction de K.

5. Immersion

Lorsque l’objet ou l’image (ou Tun et V autre) sont immerges dans le

champ, il n’existe plus de correspondance homographique rigoureuse
entre objet et image: le champ consider^ ici n’est pas “newtonien” au
sens de Glaser [21] et il n’existe plus d’elements cardinaux valables pour
tons les couples objet-image; il est facile de le verifier dans le cas simple
v=l. Mais les elements cardinaux definis par Glaser [22] et que nous
appellerons brievement “immerges” restent precieux pour deerire la

correspondance objet-image au voisinage du couple conjugue: Foyer-
infini (cf. [21] p. 373). La position du foyer G est donnee par

P v (u v)= 0 uv=th(xG) zG= bxG (28)

u etant l'une des v racines reelles de P„(u) = 0, racine unique si 0<Cv < 1.

La distance foe ale immergee g est alors

b_= Pl(uv ) _ 2 sin (vtt)

g ch 2
(xG ) trP v (

— u P
)’

la seconde expression etant commode lorsque v est petit. La distance
focale g differe de/classique dans la mesure ou P v (—uv ) s’ecarte de 1 et

rimmersion est negligeable tant que r<0,3 (P^>0,98); la position de
G tend vers celle du foyer classique F quand v est petit (zF— zG— 1 2^).

La rotation de l’image depend de la position de hobjet; entre le foyer
et Tinfini elle est:

<p= [(tt/2) — arctg (sh xG)]h. (30)
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1

Figure 17 . 17 .

La valeur minimum cle g caracterise un type important d’objectif
de microscope; elle vaut ici: g=0,7593a, pour v=l, k 2=2, valeurs
sensiblement diff^rentes de g=a, k 2= 3 pour le modele de Glaser et
qui serrent de plus pres la realite en partimber la relation entre les

amperes-tours (A t ), la demi-largeur a (millimetres) et le champ au
centre de la lentille B (kilo-gauss) s’ecrit ici:

B0a= 5,27A
t , (31)

alors que les valeurs experimentales du coefficient num4rique s’4che-
lonnent entre 4,4 et 5,8 dans les mesures de Ruska [23], le modele

183



Figure 17.18a. Figure 17.18b.

de Glaser dormant 4. Les valeurs de k qui rendent la lentille afocale

sont faeiles a mesurer; leur repartition fournit un test experimental
commode, permettant de choisir le modele approprie: La suite de ces

valeurs est ici 3,469; 10,404; 20,808 n(n-\- 1). 1,7344 au lieu de 3; 8; 15;

n'(n'+ l).

Schelkunoff (cf. [24] p. 423-424) donne un reseau de courbes tres

precieuses representant P„(cos 9) en f'onction de 6, pour les valeurs de v

echelonnees de 0,2 entre 0 et 2; ce sont les trajectoires principales

legerement deformees a leurs extremites par la transformation
cos 0= th z

;
ces diagrammes sont reproduits figure 17.16 et 17.17 avec

une echelle des abscisses graduee en x. Les courbes figure 17.18

donnent g et zG ;
pour les calculer on peut s’ aider des formules d’approxi-

mation de l’appendice II.

Le Nouveau Modele et les Theories en Cours

II est interessant de situer notre modele au milieu des theories en
cours:

1. Modele de Glaser

Nous pouvons subvenir au defaut de la cloche de Glaser de la

maniere suivante. Nous remarquons que l’equation differentielle dont
l'integration fait le succes de notre methode, se reduit lorsque 2 est

grand, au type:

(PR
Jrihh-^R^Q (32)

dz2

dont la solution est:

R=AJ0 (2he~
x
) +BN0 (2he~

x
), (33)

Jo etN0 etant les deux functions de Bessel, d’ordre 0 ;
solution commode

car les functions J0 et N0 sont bien tabulees. On peut done remplacer
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2

a
completer la trajectoire classique de Glaser valable dans la region

centrale, par deux morceaux de courbe (31) qu’on lui raccorde
aux deux points ou la caracteristique reell© commence a devenir
exponentielle.

2. Methodes de Minimum

les deux ailes de la courbe 1/(1 + 2
^

par deux exponentielles et

Recemment Glaser [25] a cherche a integrer l’equation des rayons par
une methode variationnelle; il se donne, a priori un point objet et le

point image, et cherche a determiner un parametre de la courbe de
champ, h par exemple ici, pour qu’il existe effectivement un faisceau

de rayons joignant 1’objet a l’image. On doit avoir alors (cf. reference

[24], p. 224):

F

C'i :

J,
K ' dx

J
R2 sech2(x)dx

(34)

et comme le remarque d’abord Lord Rayleigh, on a une tres bonne
precision sur h, en calculant le deuxieme membre a l’aide d’une fonction

R grossierement approchee.
Cette methode est excellente pour determiner la distance focale

immergee g, car le choix du rayon principal approche est facile; il ne
peut evoluer qu’entre des limites tres etroites car il doit entrer dans
la lentille parallelement a l’axe a la distance 1, et couper Faxe au point

G{xg ) donne a l’avance et oil il a une tangente d’inflexion.

Au contraire, si Ton desire F le foyer normal, on a une beaucoup
plus grande latitude et la determination d’une fonction approchee
est bien plus delicate; la methode est moins efficace. C’est ce que
montre bien notre modele: On peut pour chaque valeur de / et de g ,

calculer la valeur de 1+ de Glaser qui nous fournirait les valeurs exactes

de/et g: on trouve deux fonctions coRK) et co 2 (K) fort differentes pour

/ et pour g.

V. La Lentille Magnetique

Champ Axial

Le type le plus simple de lentille magnetique est represente figure

17.19, et a ete etudie experimentalement par Le Poole & Ments [3],

' /
/ / //

S S' 's
s s s' s

Figure 17.19.

185



Nous allons lui appliquer la theorie du paragraphe IV.
Nous nous limiterons au cas ou la permeabilite du fer reste tres

grande en tout point des pieces polaires et nous la supposerons infinie.

Nous pouvons alors essayer de representer le champ par la formule
donnee par Bertram [15]. Dans le cas du champ magnetique, la loi

d’Ampere donne la difference de potentiel magnetique scalaire entre

les deux poles, 0 2
—

<£i sous la forme:

r* + co

(f)2
— (

f) l=nl= Bdr (35)
J — oo

nl etant le nombre d’amperes-tours magnetisants et la formule de
Bertram s’eerit:

to Mo^-7b=^r
shcoe

(36)

avec e=s/R, s etant la valeur de l’entrefer, co= 1 ,3 18 formule qui s’ecrit

en utilisant la valeur maxima du champ sur l’axe, Bm ,
observee au

centre de la lentille:

B=B,

car la valeur de Bm est

7 9dr — e

chco
(
2+^ ch co

(

Bm=
T
th b e

non! 2

R

(37)

(38)

qu’il est commode de comparer a la valeur du champ
B0 :

BqS—wl,
d’ou

Bm i&= th
C06

2

dans l’entrefer

(39)

(40)

La demi-largeur a de la courbe reelle a mi-hauteur, resulte de la formule

(35) on obtient:

ch (2a) |)=2+ ch(o>-|) (41)

les valeurs de a/R et de BJBq sont representees figure 17.20.

On verifie que la formule (39) donne des resultats en excellent ac-

cord avec le graphique experimental de Le Poole (figure 17.20); la

courbe theorique en est indiscernable tant que s/R<^2 et Pecart seule-

ment de 5% environ pour s/i?=4 Le Poole n’a pas publie la courbe
donnant B0 en fonction de e, mais nous verifierons indirectement la

formule (38) en calculant les proprietes optiques et en les comparant
aux graphiques de Le Poole.
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Adaptation du Modele

Pour calculer les elements cardinaux, nous adopterons notre modele
du paragraphe IV a la courbe (18) en choisissant meme valeur de B0

et en calculant la largeur a' du modele par la condition

ce qui donne:

(42)

(43)

L ’evaluation de a' montre que le modele est bon, car a' se confond
avec a (on a par exemple pour s= 0, a'0= 0,667, a0

— 0,669)

Proprietes Optiques

On verifie sur les courbes de Le Poole que les formules donnees
precedemment an chapitre IV donnent une prevision precise des
valeurs observees pour/, ZF , g, ZG .

En particulier si 1/ on designe avec Le Poole par K

K= (niy

u (44)

nl amperes-tours magnetisants, U tension d’acceleration des electrons
f

on obtient:

K= 28,706
R2

(45)

en bon accord avec Pexperience.
On verifie aussi que cette formule donne bien la valeur de Kmln

correspondant a la valeur minimum de la distance focale d’une
lentille projective: il suffit dans la formule precedente de faire k2

m{n
=

1,3; on obtient un pen plus de precision en distinguant entre k' du
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modele et k de la realite ce qui mene a

Kmm= 1 15,184 th 2
. !L

T

2 [we COtil (coe) — 1
(46 )

Les valours prevues pour lo minimum de f, /miu sent bonnes aussi.

On peut faire un calcul analogue pour le foyer immerge et determiner
la valour k0 pour laquolle G vient au centre de la lentille et la valeur

(jm in correspondante; il v a encore accord satisfaisant avec l’experience,

comme on peut le verifier en comparant le tableau suivant aux
graphiques de Le Poole et il semble bien que les ecarts soient attri-

buables a la saturation du for, les ecarts les plus grands s’observant
aux valours elevees de 1 ’induction.

Le tableau suivant donne quelques valeurs numeriques ainsi

calculees.

Tableau 17.1. Cardinal elements in the new model.

V A* ZgIo 0la f/a 2’f/a

0, 1 0, 1908 3. 787 3,86 3. 850 3. 787
0.2 0, 4163 1, 861 2. 025 2, 029 1,860
0,3 0, 6765 1, 190 1,450 1, 474 1, 176

0,4 0, 9539 0, 8302 1. 180 1, 254 0, 779

0, 5 1,301 0, 5914 1, 0276 1. 193 0, 466

0,6 1,659 0, 4200 0, 932 1. 254 0, 1464

0, 7 2, 065 0, 2847 0, 864 1, 474 -0, 2700
0,8 2, 496 0, 1745 0, 820 2, 029 -0, 987
0,9 2, 965 0. 0810 0. 786 3. 860 -2, 962

0, 95 3,211 7, 525 —6, 796

1 3, 469 0 0, 7593 CO OO

1,

1

4, 007 0. 0717 0, 739

1, 2 4, 579 0, 1359 0, 722
1.3

1.4
4, 186

5, 828
0, 1359

0, 2477
0, 708
0.697

T(z) =sechh 317!)
1, 5 6, 504 0, 2968 0, 688
2 10, 407 0. 500 0, 658

Tableau 17.2. Calculated element of a magjietic lens.

s/R a/R K/k- -A. m i n /min/R Ki) <7o/R

0 0, 669 148, 5 193,2 0, 798 515,

1

0, 508

0, 5 0. 698 146,3 190, 35 0, 833 507, 6 0, 530
1 0, 783 141 183. 4 0, 934 489 0, 596
2 1, 104 126 164 1,317 437 0, 838
3 1. 515 122 158, 7 1.807 423 1. 151

4 2. 008 116, 7 152 2, 396 404. 8 1. 516
5 2, 5 115, 9 151 2, 982 402 1,9

Appendice

1. Plan des Calculs

Les fonctions P„(u) d’indice v non entier et petit (ici pratiquement
0<r<il,5) sont pen connues en physique. C’est pourquoi nous
donnerons ici quelques formules qui en facilitent l’usage: elles nous ont
servi a etablir les courbes et les tableaux de eet article.

Bien que le rayon electronique soit donne par la formule Pv (th x),

il est commode de baser les calculs sur la fonction plus usuelle Q v (6)=
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P^(cos 0): le recours a la litterature mathematique et aux formulaires
s’en trouve facilitee et la representation des proprietes physiques n’est

en rien obscurcie; en effet 1a, correspondance th;r=cos #est tres simple,

et les lois en 0, ont l’avantage de dilater la region la plus interessante an
point de vue de la formation des images; l’interieur de la lentille ou les

rayons sont courbes, les espaces objets et images exterieurs a la lentille

sont alors contractes a Vextreme mais ce defaut est de pen d’impor-
tance, car les rayons sont des droites bien representees par les ele-

ments cardinaux.

Les quantites qui nous interessent ici sont:

Physi({ue

Les elements cardinaux classiques

Position des foyers immerges

Distance focale immergees

Mathematique

Asymptotes de 7A(th x) pour
x—>+ co

Valeur de la racine dG de
Pv {cos dG )= 0

AT 1
, dPv {cos 0)

Valeur de V pour 0=0G

2. Asymptotes des Rayons

Schelkunoff donne le developpement de P v {cos 0) lorsque 0 est

voisin de ir (formule 71, p.432 de la reference [16]). Limite an terme
principal on a

P„(c° s 0)
= ^ -

[log cos + —
^'(OjJ+ cos vtt. (47)

On passe facilement aux x (x->— oo
)
par:

cos 0= th x= (— 1 + 2e 2x
)

.

On obtient

Pv(th x)
2 sin vi

v

7T ['
'

-p yp{v) -\-C -\-^z cot 7TV

d [log Or!)]

avec

i(x)
dx

(48)

0=0,577215

d’ou les formules (25) et (26) du texte, d’ou Ton deduit les valeurs
representees graphiquement en se rappelant que

—=0,7 593 x. (49)
a

On a ecrit ces formules en changeant le signe de x pour faire corres-

pondre l’espace image a x-^>-\- oo
.
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3. Racines 0o de P v (cos 0G)
= 0

II est commode de distinguer deux domaines de valeurs de v

0<v<%

1/2<v<%

et les valeurs limites v=y2 ,
v=l, v=%, v=2.

3.1—Valeurs Limites ^-1, v~2

Alors les Pv ont une expression tres simple

Pi (cos 0)=cos 0 (50)

P2 (cos 0) — }2 (3 cos 0—1) = % (3 cos 20+1) (51)

et V on a v=l, 0g =7t/2
v=l,5 9g= oo

.

3.2—Valeurs Limites v— V— :i
/2

Les fonctions P 1/2 et P3/2 s’expriment alors a 1’aide des integrates

elliptiques completes E et K de module &=sin 0/2. II en va de meme
pour P1/2 qui est utile comme auxiliaire dans les formules de recurrence
a trois termes relatives a P ]/2 et P3/2 .

La formule de Mehler (reference [20] p. 27) donne

P1/2(cos 6)=— r C0S t= di. (52)
^ Jo J cos

\f/
— cos 6

0
En posant: sin sin p sin — on rainene l’integrale a

9
1— 2 sin2 sin

2

P1/2 (COS 0)—
7
=

7T Jo

9

1 — Sill
-

<p sm- -
0

avec des notations classiques que Ton trouvera decrites dans la

reference [26] p. 170 et suivantes.
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Par des raisonnements analogues on etablit que

P_i /2(cos 0)=— k ^sin (54)

(55)

et les relations de recurrence des P (cf. reference [24] p. 433)

(2 v-\- 1) cos ePv— {v+ 1) Pv+l -vPv_ x= 0,

donnent

P3/2 (cos 6)=^-
[
8 cos OE ^sin ^— (1 +4 cos 6) k ^sin^ • (56)

Les tables de fonctions elliptiques permettent alors de determiner
facilement, par interpolation les racines:

^=132°42'5
dG= 68°9'.

r= /2 ,

3.3— Faibles Valeurs de v: 0<^v<^y2

Si v est inferieur a 0,2 le foyer classique F et le foyer immerge G
sont confondus a 1/1000 pres. On a

6q

—

dp (57)

et Op est fourni par Vasymptote, d’eqnation (48).

Lorsque v est compris entre 0,2 et 0,6, cette formule du premier
ordre n’est plus assez precise (erreur de 5% a Pextremite de l’intervalle

environ); il faut completer Yequation (48) par un terme correctif qu’on
obtient par la methode des perturbations (cf. ref. [24] p. 196-199).
En notant de maniere abregee Vequation de Pasymptote (48):

Vi— ax-\-p, (58)

on a pour la deuxieme approximation y2 ,
x etant negatif:

y2= ax Jr (3—h
> C

J (x-t) (at

J- co ch2
(t)

dt (59)

l’integrale s’evalue aisement par integration par parties, en utilisant

successivement les fonctions l+ th(t), puis t th t-log ch t jusqu’a ce

qu’on parvienne a: log ch (t) dt que l’on integre par un developpe-
J — 00

ment en serie de e
2t

,
e
4
*, etc . . . On obtient

*—i

e
2x

•——
1

g" . .

.J>

2 Sill VIr
a= j

7T

K2=v{v Jr 1 ),

2 sin vtt
r . / \ i

|

(3= [^WtOtCOS vir,
y (60)

7T
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et en particular on a tres simplement la difference xG— xF

XG— XF=

X= Xq .

ah 2

Ax

4

1— h2 log (1 -\-e
2x

)

"N

(01)

3.4—Valeurs Moyennes^V2<4<i 3
/2

All voisinage de 0= t/2, Pv (cos 0) pent etre developpe en serie de
puissances de cos 0 (formule (72) de la reference [24], p. 432), mais les

valeurs interessantes de 6, s’etendent de 1 4 a 37t/4 et la serie converge
tnal aux deux bords de cet intervalle. Nous nous en servirons

seulement pour determiner les elements initiaux dome representation

plus commode. En 0= 7t/2 on a

PAo)

dP v (cos 0)
j

_ 1 sin vtt

do
1
0= tt/2 7T PA0)

(62)

(63)

la fonction x\ est de variation tres lente dans le domaine envisage ici

0 < v < 1,5, car Vargument dans les formules precedentes est toujours
voisin de celui qui rend x\ minimum: xm= 0 ,46163 u*m t= 0,88560. On
pent toujours se ramener a des factorielles comprises entre 0,8856 et 1

en utilisant la definition (r+1 )!= (x+ 1 )
.
(a?!) valable aussi pour x

negatif (v <A 1).

II est facile d'interpoler la fonction (r!) par une formule parabolique
dans cette region mais c’est a peine necessaire car elle est tres bien

tabulee.

Nous utiliserons les formules (62) et (63) pour fixer les const antes

<

p

et A dans la representation approchee (cf. [24], p. 417 et suivantes)

On obtient

Pv{cos 0)
A sin (yd— <p)

A sin 0

tg ( tt \ 7

V~2 y
)
=

2

7TV

2

oG =<i>h'

(64)

(65)

(66 )

(67)
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La connaissance cle A n’est pas necessaire pour le calcul de 0G ,
inais

se montrera utile pour celui de dPvjdO, on a

T A

TV V
Sill —

(I
— n

A 77
COS0H(V>

(68 )

Ces tommies sont tres precises et donnent 0G avec une erreur relative

bien inferieure a 0,001 dans tout l’intervalle utile.

4. Pente clPv (cos Q)/d0

Nous distinguerons ici les memes domaines en v, que pour le calcul

de da .

4.1—

v

Entier

Alors les formules (50) et (51 ) donnent directement

dPi (cos 6)

So — l
dP2{cos 0)

de

4.2— |/=y2 , c = 3
/2

-1,5.

Les formules donnant la derivee des integrates elliptiques par rap-

port. a leur module sont simples et connues (cf. ref. [26]), formules
789-1 et 789-2, p. 173). On obtient avec leur aide en derivant notre
formule (53)

O'

1
9— (Og) 1/2,

dPi,2

de

sin

tv sin 9
0,9746. (69)

Pour v=%, il est. d’ailleurs plus simple d’utiliser la relation de
recurrence:

dPv

elle inene a:

dO sin 9
Pv- 1, 9—

(

Oa)v j (70)

9— (9G) 3/2,

dP3/2 — 3 (2E-k
do TV Sill 9

4.3 ^—

v

Petit 0<^ v<V2 (Bord de la Lentille)

1,1884. (71)

Alors on utilise le Wronskien de Pequation de Legendre (cf. ref.

p. 424) qui donne en 9=6G :

dPv(cos 0) 2 sin yr 1

d9 tv sin 9 Pv(—cos 0)’
(72)

oil 0G est assez voisin de tv pour qu’on puisse utiliser le deceloppement.
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en serie classique

Pv {cos 6)=l—v(v-\-l) sin
2

^
(v— l)v(y+ 1) (y+ 2)

4
sin 4

0

2

(*'— 1)0<? (sin 0- (73)

4.4.—Interieur de la Lentille~-^<^<^

L’expression (64) est suffisamment exacte pour qu'on puisse la

deliver ce qui donne.

6— dG ,

dPv (cos 6) yA
de sm eG

(74)

Neanmoins aux bords de I'intervalle, l’erreur atteint plusieurs mil-

liemes, mais on peut utiliser la deuxieme approximation obtenue par
la methode des perturbations. On Tobtient le plus simplement en
integrant 1a, formule classique

^ [sin dPv (cos d)] = — v(v Jr 1) sin 0P„(cos 6).

Si nous posons

m
dP v {cos 0)

~de

(75)

(76)

et que nous appelons, la valeur de m, en d=dG donnee par (74),

?7i2 la valeur amelioree et m0 la pente en 6=tt/2, nous obtenons, en
substituant (64) au deuxieme mernbre de (75)

m 2 cos ot=m0 -\-h
2mn cos a

1 — COS ya

7
2

a= 6

(77)

5.—Table Numerique des Valeurs de P (-cos 6) pour les

Valeurs Demi-Entieres de n

Cette table nous a ete aimablement communiquee par Miss Marion
Gray and Mr. Schelkunoff, des Bell Telephone Laboratories, qui Pont
calculee des 1940 pour resoudre un probleme de rayonnement elec-

tron!agnetique.

194



LEGENDRE

FUNCTIONS

OF

FRACTIONAL

ORDER

Ph

4 GO CO
4 O 03
4 00 CO
> O* os
> oo co
> Os Os

CO CO (

00 S c

) © 00 t*4 io CO 00
4 CM O0 CM os o
> CM CM CO CO Os
• ^t4 -p CO CO CO 00
( co »o CO N 00 o o

I I II I I II

TfiO'rttCMCOOCOt^CMt^OOTticOt^Oit'^
LO Tt4 *0 CO *—

< OS 1^ C l 00 CM r-< *Tp 00 CO
CO O CO CO CO CO O CM CO 1^ lO CO CO CO rH 00
00 H to co N CO CJ CO rH co CM 00 ^
I'* d ^ 00 CO N O CO CO O CM CM CO Os OS 00
CO Cl O 00 MO ^ CM O H o^ lO co D- 00

CM CO
CM O
co o
oo
^t4 00
os os

I I I

O' I - N I'* 00 1^* Ol 05 CO Ol CO iO o *o CO h fO oCOOCOOOOiOuO^OOOcO^OOhhOOiOO O 00 h o >C co 00 CM O lO N Tt4 N o O CO O
CM 00 03 l - ^ I - 03 CO © 03 O 03 iO *o 00 CM CO 03lOI^CO^iOCOOOHiOOcOOKNcOCMOiOOOCDCOOOOCO^CMrtOlMcO'^CDt^OOOJOO

I I I

HOiOOCOXiOOcOd^ONiOOCOiON
CO co 40 O' rt* co os CO H»ONCOOCONCOO^OrHCOOON^OldONCO^OO^HOOO)H o O 03 GO OJ h O CO C5 ^ C; lO 00 N Cl CO o
O3 CMh^WC0>OhNhiON00N»OhcOO3N^ONiOcOHOhCO^iOcONOOOICIOI

I I I

COCMXt^-f^N^^OOOOOOOiOClOOCMCO
-t<r-<iOCMCO^HCO*OCOOOCO»O^CO>^CMCMO

-os os o co oo © h co co o »o oo co
Tf CO 00 CO CO O CMNnOCOOHOl^rfOCM
1^ ’t X C3 C N O lO O CO Tf 1C' r)i rH x CO N 03I^XX‘CMHOHX T1i,0^0I'XX030303

I I

in
COOCOCMCOCM^>—l^OCOOiOOCOr-HLOOOOiiOOOXXhXCOCOiOOO^NCMCOcOXlOOHCO^OOCMOXCOiOCMCOXCOr-iCl
03 O' co H o CM os o 03 co H lO I >- 00 '00 I^ rf4

'03 lO X '03 h CO o X X X w 03 lO O *f N 03i0HC0XHOHC0^*0C0NNX03030303

I I

co'^C^OiOOcO’^CM'^OOOOiNCMCM’HT^NJOO CO 00 CO CM 00 CM 00 00 CM *0 CM Ttn CM CO
Tf CO CO H O X X O O X CTO N *0 *0 ‘03 DCMNHiOh03WcON*OhXiOC^hhCM»0

t^Tfr-H-^iOOTfiOiO'^fCMOO'^fOiCOcOOOO
CM GO Tt4 HOCMC0^iCONNXX03030303

CO CM X I - O 03 CO H o 03 03 CM TfH Tt4 03 O lO Xhco^COhcOOCOhXcOCShOiO^OiCMXOJiO^’tX^OWOOOXOOHOO
CO CO 00 O 03 rt4 00 CO *—h CO CM O © '*rtH CM CO 00 t**-

lO x M X ^ H o X o *c 03 Cl IO D GO Os
a0-t4 ©^HCM''^4 ‘OcO©t^G0G©G0O3O3O3O3O3

H^XOCl^HCMCOI^dcOClCMCMXOrH
X030C103 ^X(M^CMNhOWOCMcOI^iOXCICOO'-hO^XOIX^^COCO^O^^>OXX^OOXN030CO!MCOOXCMX
•O' O CO Cl CO Cl 03 -t4 03 CO N O CO *0 N X 03 03
CM o CM Tt4 *0 CO CO' l- X X 03 03 03 03 o 03 03

HNXOHTt4 'rt4 lOCOCOHHt'.HCMNlOHOHIQ03HONICXXNN03NCDXXCO(MNC0Hi0NC003XOHi0i0 ,ct4 XXC0H
lO rH x X ^ N CM O -t4 »C Cl CO X X O CM O 03COOCOhNhiOXOCMtJ4 iOCONX030303
COiOtOt^t^OOOOOCOsOsOsOsOsOsOsOsOsOs

oooooooooooooooooolOOOOOOOOOOOOOOOOOO
HCMX'?t4 *OCONX030rHCMXTl4 >OCON

H03XOCO^ CO Os
*o co co © co co cocoXMOOCMI^ ON
03 ^ lO O 03 O Tt4X *0 Cl CM x r-H CM CM *0
03 03 X CO CO i 4 CO ^ *0 TjH co 1

03 co Tt4 CO CO 03
CO CO co CO CO co
i- in r- cm lo i-i4 ^ 1C 03 O *0 rt4 -I4
LO Cl CM H x Cl CM LO

4 CO co 00 03 o
I II II I I

tD®OO^OJCOMO«NwiONMNOOtDTt<
ii5S 0 S l?ri H ''c,N ®®®ooiioNioN
ONHCCON^NIOCOOOWOHIMNOOKOOCHCOtDOCOOOlONNNNNiOCOiONOOOOOIOW^^io^WOH-^CDXOX

+

t

-

4 CM C 3 I - CO '

_ ,
- • - - — - . - ^ l ^t4 co *o O CO X O N

4 Cl o LO X CO C r-iCMH’Xc003Tt4 C003ClX03C0CMC0C0XL00303OC0C0C0L0L0C0L003XOLONX03XXrHlOdCOX^X03HrH
CO CO CO © *-h CO CO CO Cl 03 03 Cl t—4 CM CO *o CO
Tt4 rHt^Tt4 HrHXTt4 l0^4 XC10CMTt4 COX03!

I I I I II I I +

)GrHONCMXClL0Tt4 XXC00303HC0
) X Cl Cl CM lO X 03 ^ 03 O CM O Cl o rH c3NXCMC003N03NC0C0L003L0OC0C0CftCOCMOrHOXXNXOt^^O^O
. 03 Tt4 Tf4 1^ co CM X N rf4 co Tt4 c c o O’)*OC10Cl^iO»Or}4 cOHOCDONX030

+

LOI^03X‘ON0^4 LOOiONiOTt4 CMcOCOOXOGi4 XNCMiOrHd03i4 ClX03iOrHCO
Tt4 003COCMLOLOCMCOQOQOt^COLO(X)LOCO»0
LO o Cl h C1 Cl O LO o 03 X LO X H -t4 H co XXXHOOOiHLOXXOiOOX’tXNO
CO 03 ^t4 © CM CO *0 *0 *0 Tt4 Cl i—( r—

i CO *0 t>* X 03 o
+

1

I I I I II I +

ClXOO'Cli00003l'-XC003Tt4 XXI^03CO^XClLOCOO^C^CliOCO^XXCMO
03 03 'X CO CM CO LO CO ^t4 00 CO ^-t4 r-4 -t4 Cl rf4 co
LO CO- CO lO O O H o X H X Cl *0 Tt4 CO 00 i—

I

O 03 X X LO o N N H 03 « X N X X LO X Nh CO H H x LO lO LO lO M CM o H co LO D X a :

+ +

N o 03 Tf Tf4 CO N o CM ^ 03 H N N o X ^
CO CO LO CO 03 H 03 03 o O H x LO CO LO CO 'Ct4CMrHHlO^X^HN^ClC^^^rHMNLOXLOXHXI'XNXLOCICINXXOOS-I4

X03C0C003XOC0NC0C0C0C0C0dX03NXXOX-^LOCOLO^XHOCI^COI^XOSO
I I I I I I II I +

CM «

OX^HCUOOiCOClN'
- __ ' ^ ‘ - I -V—

S

‘ « _ - .-,OMNOXCl»00*OXXdHNH lo-c-wX l^03Tt4 NXHCl-HirJ LONXHOXONH Tt4 —4 h h Tp CM rt4 CM CO X o O 03 CO- O »-h t -
Tl4 OXLOcOcOcO*O^CMOr4 X^cOX0303

++ +

00 00 CO H CO 00 N 00 00 03 CO Cl CM O O 03 CM h
LO GO I - LO 1-H 03 LO CM CM Cl Cl h o co CO 03 x 1^
tJ4 th03CMhC103hc0c0NCMX03C1ON03XXCMCM‘0CNC0Cli0XTt4 03CMI^'0O03
lO h co N O X 003 LO XOXC -t 03 CM Cl DO X LO CO N co co Tt4 X H c H X LO CO’ X 03 ’03 o

I I I I I I 1111 +

3 COH^HOLONONClXClONXOXiOtLOCMLOCIN^XOXCOCOO^OLOX'
O' x ^ *0 X CM Tt4 03 o- O rH N o CM X O O
C l CM LO Cl O ' 03 N x 03 O X CM LO X CM O O ClTfNNC^LONOClOOXOXOX^XX
LC O N N N o LO ^ Cl 03 O CM rr LO N X 03 03 o

I I I I I I I I I +

ooooooooooooooooooo

195



Bibliographie

(1) P. Grivet, Advances in Electronics 2, 47-100.

(2) H. Bruck, Cahiers phys. 24 , 1-14 (1944).

(3) J. B. Le Poole & M. J. Mentz, J. Appl. Sci. Research, Netherlands 1, 3-17
(1947).

(4) C. Fert et P. Gautier, C. R. Acad. Paris 233, 148-49 (1951).

(5) V. K. Zworykin and ah, Electron optics, p. 477-480,

(6) G. Liebmann, Advances in Electronics 2, 115.

(7) M. Duchene, Le telescope electronique, these (Paris
,
1948).

(8) L. Jacob, J. Appl. Phys. 21,, 966-970 (1950).

(9) P. Grivet et Y. Rocard, Rev. Sci. 88, p. 86-87 (1949).

(10) E. Regenstreif, Ann. Radioelectricite 6, 62-94 (1951); 1-31 (1951).

(11) R. Rudenberg, J. Franklin Inst. 246 , 311-339 (1948); 377-408 (1948).

(12) F. Heise et O. Rang, Optik 5, 201-216 (1949).

(13) E. Regenstreif, J. Phys. 12 , 760-761 (1951) et C. R. Acad. Paris 232 , 181 8—

20 (1951).

(14) O. Scherzer, Optik 2, 114-132 (1947) et Communication n° 28 au Congres
international de Microscopie de Paris, septembre 1950.

(15) S. Bertram, Proc. Inst. Radio Engrs., 28 , 418-420 (1940) et J. Appl. Phys.
13 , 496-502 (1942).

(16) R. G. E. H utter, J. Appl. Phys. 16 , 680-699 (1945).

(17) M. Bernard et P. Grivet, C. R. Ac. de Paris 233 , 788 (1951).

(18) J. Picht, Electronoptics, p. 115-121, Edwards 1944.

(19) P. Grivet, C. R. Ac. de Paris 233, 971 (1951).

(20) E. W. Hobson, Spherical and ellipsoidal harmonics, Cambridge Univ. Press.

(21) W. Glaser et O. Bergmann, Z. angew. Math. u. Phvs. 1, 363-379 (1950).

(22) W. Glaser, Z. Phys. 285-315 (1941).

(23) E. Ruska, Arch. Elektrotechnik 38, 102-130 (1944).

(24) Schelkunoff, Appl. mathematics (New-York, 1948).

(25) W. Glaser, Ann. Phys. 7, 213-227 (1950).

(26) H. B. Dwight, Tables of integrals and other mathematical data (McMillan
Book Co., New York, N. Y.).

196



18. A Property of the Paraxial Ray Equation and Some
Consequences

By P. A. Clavier 1

Introduction

Progress in the field of electron optics is hampered much too often
by the fact that the paraxial ray equation is solvable in general only
by iterative means. Graphical iteration will not give reliable results

because it cannot be carried out with the required accuracy. If the
path is determined by means of an algebraic computation, one type
of error will be introduced that depends on the number of significant

figures used in the calculations. Errors will also be introduced by
the fact that the intervals in which the field plot is replaced by a

known function are not infinitely small. Since both these types of

error are present, it is difficult to estimate the total error. The pur-

pose of this paper is to show that one can find means of integration

that avoid inherent errors.

It is shown first that the characteristic equation of any linear dif-

ferential equation of the second order can be transformed into a par-

axial ray equation so that the proposed integration may be used for

the solution of more general cases.

General Equation Into Standard Form

The characteristic equation of the general second-order linear

equation

A (x)y"+

B

(x) y

'

+ C(x)y=D (x) a)

is defined as

A(x)y"-\rB(x)y'+ C(x)y=0. (2)

If R is solution of the paraxial ray equation

<Ut"+^4>'R'+\<t>”B= 0, (3)

one can find
<f>
such that the solution of eq (2) is

y=a(x)R . (4)

By substitution, one finds

0=^„exp±£|[l2|-6(|) -3(J)’_ dx (5)

i Sylvania Electric Products, Inc., Bayside, N. Y.
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(6 )y= \^dx.

A Property Derived from Equations (5) and (6)

Because of the + or — sign in eq (5), one sees that if 0 X and 02 are

two potentials

0i02= const., (7)

the corresponding solutions Bx and B> of the paraxial ray equations are

£i=/>A
1/4

.

B2 \4>iJ
(8 )

This theorem can be extended to the following one:

If </>! and 02 are two potentials, oli a2 two constants, B 1 one solution

of the paraxial ray equation corresponding to 0i and 02 is such that

the solution B2 ,
corresponding to 02 ,

is

B2=B1(t>h
2

( 10 )

in which A0 and Ai are integration constants. The same procedure
may be used again replacing 4> 1 by 02 and B x by any solution i?2 ,

and
thus a series of “integrable fields” may be obtained.

A Property of the Paraxial Ray Equation

The paraxial ray equation, eq (3), is a linear second-order equation
in

<

p

as well as in B. It permits one, when knowing a solution R1} corres-

ponding to a potential 0i, to find the general form 02 of the potentials

for which Bi will be a solution

02 01 ai T" a2 (ii)

where a
x
and a2 are constants. The solution B2 corresponding to 02

is known

B2=B, ( 12 )

A0 and being integration constants. Using now 02 for 0 X and a

solution B2 ,
which is linearly independent of Bu for R1} one can use the

same method again and generate another series of “integrable fields”.

This series and the one found in the last paragraph may be combined,
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meaning that at any time one can use one or the other form as the

next step and thus increase considerably the number of “integrable

fields.”

Fringing Fields

The generation of a series of “integrable fields” would be of no great

use, if such fields were physically not realizable. Restricting our-
selves to electron optics, the potential (f>(x ) must be positive, never
infinite, and continuous; the first derivative must be continuous.
It is always possible to divide the axial coordinate into sections, the
potential in each section representing a lens, and the total lens be-
coming the sum of the different arbitrarily created partial lenses.

It is, of course, possible also to build a total lens by placing adjacent
partial lenses along the axis. In such case the potential and its first

derivative must be continuous at the boundary between any two
adjacent lenses. One of the “integrable fields” can be used between
two abscissae if the required boundary conditions are fulfilled. One
way of fulfilling those conditions is to add on each side of the “in-

tegrable field” a “fringing field” for which the corresponding paraxial

ray equation is integrable and which can fulfill the required boundary
conditions. Such fields do not have to extend over large axial lengths
nor show any rapid variations.

The simplest fringing field is given by

(f)=a0+a2x
2

. (13)

The corresponding paraxial ray equation yields

R=A 0 exp I
Oz C dx

V 2 J + a 2x
4

A 1 exp-VIs
dx

y a od
- a 2x

i

(14)

A0 and being integration constants.

Double Riccati Transform

Let / and g be defined by:

and
(f>
— effdx

f (15)

R=efgdx
. (16)

One can replace 0 by eq (15) and R by eq (16) in the paraxial ray
equation, eq (3). This new equation is solvable in functions of S,

which are defined by

S=g+£- (17)

It yields

,
4 fV-3£2(£2+S')

7 , 1CA
0= 0 o exp± -

I ^ L dx, (18)

R=(t>- l'*eSsd*[A
0+A 1 fe- 2Ssd*dx], (19)
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vl 0 and A\ being integration constants. One can thus derive two
“integrable fields” from any function S

;

this function may be chosen
real or complex.

Equation (18) is the formal integration of

Mj)2+S2+s '=0
’ (20)

which is of the form

S2JrS' JrX=0. (21)

In electron optics X is real and positive. When this method is used
to solve the unidimensional Schrodinger equation, X can be kept
real but may be negative. The integration of eq (21) which follows

is restricted to the case X positive. The case of X negative can be
solved also but by somewhat different means.

Integration of eq (21) when X is real and positive

If S0 is one solution of eq (21), the general solution is

S= S (

xJ .

n

exp— 2 I

S 0dx
TO

J

^X f*X

exp—

2

Sodxdx
xo Jro

where K0 is an integration constant. If S is complex,

S=Re JrjI,

r
one gets from eq (21)

Re=~
21

If So is real, and $ is complex, K0 must be complex:

and

I=
b exp — 2

[*x

S0dx
bo

![
a+

jC—

J

S0dx
xo _

2+» 2

|

(22 ;

(23)

(24)

(25'

(26)

The use of a complex S simplifies the form of the solution of the

corresponding paraxial ray equation. From eq (19),

K 7|)
i ^4 0 cos

[
IdxJ-AiSin ( Idx

_ Jxo J TO
(27)

where the vertical bars around / mean absolute value and ^40 ,
A\ are

integration constants.
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It is now necessary to find one particular real solution S0 . If the
field extends from x0 to xh one can particularize the solution by
assuming

S0 (x0)=0. (28)

One can always divide the total lens into adjacent partial lenses and
start afresh at each boundary between partial lenses. If one of those
partial lenses extends from x t to Xj, one can use between those abscissae

an So such that the limit of So is zero if x—>Xi and xj>x t .

Assuming the integration to extend in one step from x0 to x\ and
assuming eq (28), one gets from eq (21)

S'0<-x . (29)

In the present case one can integrate both sides of eq (29); it yields:

SoA - r

.

Xdx •

Combining eqs (21) and (30), one gets:

S'0<-X-[J>'1
both sides of which can be integrated as follows:

Xdx— Xdx d x
xo Jxo\_Jxo

(30)

(31)

(32)

The same procedure may be used again.

The method can be condensed in the following manner: Let

Si= — (
Xdx (33)

J x0

CO1IIGQ
(34)

J x0

(35)
JxO

Sn+1=— ( + (36)
JxO

One gets

S^X-fo+ Sn l

2
(37)

and

S<^SiJ-Sn+ i. (38)

It is easy to prove that

£3+ A gq (39)

From eq (38) the S'ns must have a limit if S is not infinite; this

limit can be shown to be S—S\.
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If one writes:

(40)

the maximum error will occur for x=X\.

Example
For

X=l—x2 (— 1<X< + 1); (41)

the integration may be restricted because of the symmetry to

0<x< +1. (42)

The solution S0 is known; it is

$0 == 3X (43)

Using the method of the last paragraph, one can find successive
approximations for S0 and compute the maximum error existing for

each approximation. The maximum errors are:

Approxi-
mation

Percent

1 33. 4
2 11. 7

3 3. 5
4 0. 77
5 . 14
6 . 02

Another Approximation

One may sometimes with advantage stop the approximation on S
at an early stage, compute the potential </>i for which the approximate
S is the true solution, find the solution JR i of the corresponding paraxial
ray equation and then use the following well known method.
One can write

4)= 4> 1
— e. (44)

The difference e must be small enough to assure the convergence of

the series

+ • • • X nJR, (45)
n= l

the terms of which are defined later.

Let

and

iR =jA.\Ri.

(46)

(47)
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In the paraxial ray equation, eq (3), one replaces </> by eq (44), R
by R2 in the term involving <y and R by Rx in the terms involving e.

eq (3) becomes

which yields

iR=Ri
C* dx

r
R>

r
i rO Rl^(f) 1 ,hO-\/0! -

eRi Ar— e R^—e 'R^dx.

Let now

and
R3—R2 ~\~2^—Ri JTiR-\-2^

2R ==-A2R2 •

(48)

(49)

(50)

(51)

One replaces in eq (3) <f>
by eq (44), R by R3 in the terms involving

4>i and R by R 2 in the terms involving e. Equation (3) becomes

A2 4>iR2 ~\~A 1 ^e0]i?2+ — — e(iR)" -\~2 e ' (iR)' (iR)

.

(52)

Equation (52) is of the form of eq. (48). It makes it possible to con-
dense the successive approximations in the following manner.
The successive approximations for R are

R2
=RiT iR (53)

R3=R2 Jr2R=Ri JriR JT2R (54)

witn:

nR=Rn

Rn—Rn-\ JTn-\R—Rl Jlr\R Jr2R • • • A n-\R

,

1
r=r

1
r ~^= c r\r[+\ ^i <&
J Rl-yJ(t> x

J x
o V01 L 2 4 J

2r=r2
r * r^= b(,fi)"+L' gbj'+L'gb)'1 &
J x

o Rl^<t>i J x
o y</>i L 2 4 j

r x dx r

JtoRZJfa J 1V° V<#>I

(55)

(56)

(57)

(58)

Conclusion

A noniterative method of approximating the solution of the paraxial

ray equation is discussed. This method requires fewer numerical
computations than iterative methods to give results with the required
degree of accuracy.
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19. Etude Theorique de la Lentille Formee de Deux
Cylindres Coaxiaux de Meme Diametre a 1’Aide
d’Une Representation Approchee du Potentiel Axial

Par Pierre Grivet 1 et Michel Bernard 1

Etude du Potentiel Exact

Les electrodes sont constitutes par deux cylindres coaxiaux de
meme diametre (figure 19.1); l’unite de longueur sera le rayon commun.
Ils sont separes par une coupure infiniment mince et portes respec-

tivement aux potentiels <L et <P2 ;
dans la suite on posera 7= <h 1 /<f>2 -

Nous considerons les cylindres coniine s’etendant indefiniment de
part et d’autre de la coupure.
L’equation de Laplace peut, dans ce cas particular, s’integrer

rigoureusement. On separe les variables, ce qui conduit a prendre la

solution sous la forme

<b=— + j
A (k ) -Jo (kr) sin kz-dk,

et Pon determine A(k ) en ecrivant que pour r= 1, la fonction est egale

a $1 lorsque 2 est negatif et a $2 lorsque 2 est positif. Les theoremes
classiques de Pintegrale de Fourier conduisent a:

A{k)
^

($2 <!>,)

2kl-^k)

et finalement

$2+
<P=—-

—

[
1 +r+^^(2)

]
H(z)=-

KJ 0

2 r

TT Jo

sin kz

kW) dk

II est curieux de constater que II est tres bien representee par la

fonction simple th u>z avec qj= 1 ,3 18. Ce resultat, signale par Gray
[ 1 ]

2

nous permet d’ecrire

^1 ~P L2
9

expression simple et pourtant approchee a moins de 1%.
Mais il n’est. quand meme pas possible d’integrer Pequation de

Gauss avec cette expression du potentiel, sinon par les moyens de
Panalyse numerique.

1 Laboratoire de Radioelectricite de l’Ecole Normale Superieure, Paris, France.
2 Figures in brackets indicate the literature references on p. 211.
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Figure 19.1. Allure des electrodes

.

Nous utiliserons dans la suite, Pequation reduite de Picht [2]

3 * lB"+^T2B= 0, avec B=r&; T=i~
16 7 P az

Nous sommes done conduits a etudier la fonction T=& qui sera

la caracteristique de la lentille.

Nous posons 2co£=log t, ce qui nous donne

T= 2co(l y)t .

(1+ 0 (y+0
?

il apparait alors un maximum pour tm= \ y

Cm a Yj T

m

2 CO til GJc m .

4 co

Nous allons translater l’axe des ordonnees de fagon a annuler Pabscisse
du maximum, ce qui conduit a poser

Z: - m; s=e i T=yTm ,

apres quelques transformations algebriques simples, on obtient une
equation reduite donnant les deux valeurs de 5 qui correspondent a
une valeur de y,

s
2

- 9 <

Vt )

2

1 + y
2,A7 1-

A Y-J
+ 1 — 0

,

ce qui donne, pour les abscisses z,

cli 2coZ
(f+Aj)

2

+/a Y

1 + Y

2a+

et coniine la fonction ch 2coZ est paire, cette formule montre que la

courbe representative de T est symetrique par rapport a l’ordonnee
passant par le maximum.

Ainsi la dissymetrie de la lentille reelle a disparu dans la caracteris-

tique. La courbe T=<1>'/<£ possede encore un axe de symetrie mais
celui-ci est decale par rapport au plan de symetrie des cylindres. La
figure 19.2 illustre ces result ats.
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Figure 19.2. Potentiel axial.

Representation Approchee du Potentiel

La courbe en T est une courbe en cloche; si nous comparons l’equa-

tion cle Picht et Pequation de Gauss dans une lentille magnetique oii

le champ est celui de Glaser [3]

r Jr
III

0K Z_\
2

a )

2-12
#"+—• r-R= o,

on constate que si Ton represente la fonction T=d>7$ avec une fonction
de la forme

on pourra representer les trajectories par des fonctions simples et

conduire a son terme Petude theorique de la lentille sans rencontrer
de calculs trop complexes.

II nous faut done determiner les deux parametres T0 et a, ainsi

que Porigine des coordonnees de fagon a representer la fonction T le

mieux possible.

Nous ferons tout d’abord coincider le maximum de la courbe reelle

et de la courbe approchee; nous aurons done

r0=-2cotll 7 , 7= j log 7

,

Porigine des nouveaux axes etant a la distance z 0
= log 7 du plan

4co

de symetrie.

Quant a a, nous pourrons tout d’abord le clioisir de fagon que la

demi-largeur de la courbe exacte et de la courbe approchee soit la

meme ce cpii donne

et par suite

V=\ ch 2o>Z,=2+i )-

4-argch[2+i(V7+i)_
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Mais une meilleure approximation s’obtiendra avec une condition
plus physique: On choisira a de fagon que rintegrale

soit nulle. En effet, si la 1entitle est mince, la convergence est

donnee par

i 3 r +o°

—=—

7

T2dz-\- . . . ,
(terrnes d’ordre superieur).

/ loj-co

La serie, utilisee par Goddard, est tres rapidement convergente, de
sorte qu’en choisissant les parametres de fagon a rendre egaux les

premiers terrnes on egalise pratiquement les distances focales. La
valeur de a ainsi calculee sera done certainement bien superieure a
celle obtenue en faisant coincider les courbes a mi-hauteur.
Nous avons sans difficult e, en posant z=a ctg <p

Le calcul de 1’ autre integrate est plus complique mais Goddard [4]

a donne le resultat. Nous Lavons verifie en calculant par deux
methodes differentes: Tout d’abord en posant theoz=t, ensuite en
posant e

2uZ= u. On trouve

T*ds= + a,[r±ilog7-2l;

finalement la seconde approximation donne, en remplagant T0 par
sa valeur

La comparaison avec l’experience permettra de choisir entre a x et a2

et l’on verra plus tard que e’est la seconde hypothese qui conduit
au meilleur resultat, comme les considerations precedentes havalent
laisse prevoir.

/

Elements du Premier Ordre

Nous pouvons integrer Tequation de Picht en remplagant T par
sa valeur: On obtient une representation simple pur la trajectoire

reduite.

z= a ctg <p, j^= ^
sin K(<p+B)

sin <p

K=
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si 7 est voisin de 1, on pent poser 7/7= 1 + e; il vient alors

)-

Les distances focales sont donnees par les formnles classiques

r _ #(+ 00
) /02V 1/4

r _ R(— 00
) / </)2\

1/i

Jo ’ Ji R\+ oo)W '

qui verifient bien la relation de Lagrange-Helmoltz.

K= 1+0,0675 -=>

Vt
et « = 0,644 (

1 +
10

Avec les resultats precedents on a

aky 1/4 _ aKy lli

U~~ sin (&/ °~ sinl/lV)

‘

Si Ton pent negliger e
4 on obtient. les formnles simples

ji= 3,036
1 /

7 fo= — 3,036
<y

3/4

2
6
“

Pour obtenir les abscisses des foyers il faut faire un developpement
limite de 1a. trajectoire reelle au voisinage de l’infini. Ce developpe-
ment donnera l’equation de Pasymptote c’est-a-dire le “rayon”
dans Tespace image.
Apres quelques calculs on obtient

(lK ctg Kir
Tm (1

‘

0 >

en recommengant le meme calcul du cote objet on obtient

Zf
{

= — oK ctg Ktt— +£’().

Nous sommes done capables de calculer tons les elements du premier
ordre de la len til le.

Resultats Numeriques

Nous avons calcule la distance focale image ji et Tabscisse du plan

principal image z
¥[

pour des valeurs de 7 allant de 1 a 10. Les

courbes de la figure 19.3 illustrent ces resultats qui sont donnes
par le tableau ci-joint. Les points experimentaux de Spangenberg [5]

montrent que les meilleurs valeurs de a sont celles donnees par la

seconde liypothese (a 2) que nous conserverons desormais.
Le tableau contient aussi les resultats calcules par Goddard [4].

L’accord est bon, pour les distances focales, il est moins correct pour
les abscisses des plans principaux.
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Figure 19.3.

Tableau 19.1. Valeurs numeriques de fi et de Zp

7 2 3 4 5 6

U:
Bernard-Grivet 1

. 30. 4 13, 9 9. 88 8, 13 6, 99
Goddard 2 . 30. 5 13.8 9, 57 7, 71 6, 65

B ernard- Grivet .... -4.4 -3,3 -2, 95 -2. 79 -2, 67
Goddard. -5.0 -3. 55 -3, 11 -2. 93 -2. 83

7 8 9 10 11

/»:

Bernard-Grivet_ 6. 20 5,81 5, 46 5. 09 4,89
Goddard- . _ - 5. 98 5, 53 5, 20 4. 95 4, 75

Zp
i

:

Bernard-Grivet--. - -2. 45 -2. 30 -2. 18 -2, 11 -2, 07
Goddard -2, 75 -2, 70 — 2, 65 -2, 62

1 Correspondant aux resultats de Bernard-Grivet calcules par la methode de
I'article.

2 Correspondant aux resultats de Goddard.

Lentille a Coupure Large et Lentille a Deux
Diaphragmes

En supposant, que le potentiel varie lineairement le long de la

coupure, depuis T>i jusqu’a <h2 on peut trouver le potentiel axial par
une methode analogue a celle du texte. Apres quelques calculs, on
obtient [8]

<F

1 — 7

1 + 7
log

cli co(z-\-d)

ch co(z—d)_

oil d est l’epaisseur de la coupure.

210



Tant que d est inferieur a 0,5, cette fonction compliquee est bien

representee par

9
7
th co'

z

1 + 7

avec a/= th corZ/c/ et co= l,318 la precision est de 2% environ. Les
formules du texte sont done valables, il snffit de remplacer co par a/.

Si d est plus grand que 0,5, Fapproximation precedente n’est plus

bonne. II faut refaire le calcul de T avec la valeur exacte du po-
tentiel. Les formules sont plus compliquees mais Failure generate de
la courbe est conservee. IFanalyse detaillee de ce cas sera publiee
incessamment.

Enfin la lentille constitute par deux diaphragmes plans, distants de
d, portes aux potentiels dq et <J> 2 ,

perces de trous circulaires de rayon
unite releve encore de la meme methode, car le potentiel est encore
represente par

^1+^2

[
1 + 1 7

log
1 + 7

ch co (z+ (/)

ch u(z-d-)

La fidelite de cette representation est un pen moins bonne que dans
le cas precedent et sera discutee dans la publication detaillee des
resultats.

Conclusion

Nous sommes done arrives par des calculs beaucoup plus sini])les

que ceux de Goddard a des resultats au moins aussi precis sous forme
d’expressions tres maniables.

D’autre part, l’obtention d’une representation parametrique simple
pour le rayon, rend possible le calcul des abberrations en utilisant les

formules nouvelles de Sturrock [6].

Les resultats de Glaser et de Glaser & Lammel [7] peuvent s’etendre

aux lentilles electriques et rendre des services en tons points com-
parables.

Enfin, Inexactitude des resultats pent etre considerablement aug-
mentee en representant T(z) par secli {zfb) ainsi qu’il est expose dans
la communication de P. Grivet.
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20. Etude Theorique des Lentilles a Grille a 1’Aide

d’llne Representation Approchee du Potentiel

Par Michel Bernard 1

1. Introduction

11

—

Les lentilles electroniques classiques presentent la propriety
bien connue d’etre a la fois convergentes en certains endroits et

divergentes en certains autres; cela est du ail fait que la composante
radiale de la force qui agit sur la particule, proportionnelle a 3>",

change de signe a chaque point d’inflexion de la courbe $( 2 ).

Cela cree certains inconvenients dont les deux principaux sont: (1)

La difficulty d’obtenir de tres fortes convergences puisque il y a

obligatoirement des parties divergentes dans le montage, et (2)

l’impossibilite de realiser des lentilles divergentes avec des potentiels

moyens, car on demontre que les parties convergentes sont pre-

ponderantes.
11 est done interessant de chercher a realiser des lentilles qui n’au-

raient pas ces inconvenients; elles seront caracterisees par une courbe
de potentiel dont la concavite est to uj ours tournee du meme cote.

12—

La plus simple de ces lentilles est constitute par un simple
diaphragme, an potentiel d>0 separant deux regions de champ unijorme.
Elle presente un intere't historique puisqu’elle fut la premiere etudiee
par Davisson et Germer 2

.

Ces lentilles sont interessantes theoriquement car elles donnent un
exemple simple de lentilles a rayons courbes; en effet les “rayons” de
l’espace objet et de l’espace image sont des paraboles. Mais elles

n’ont pas trouve d’application jusqu’a present, sans doute parce
qu ’elles utilisent mal le potentiel et ne sont que faibles. Aussi nous
nous limiterons aux lentilles pour lesquelles l’espace objet et l’espace

image sont des regions oil le potentiel est constant.
13

—

La courbe de potentiel doit done avoir une concavite tonjours
de meme sens, et posseder des asymptotes horizontales

;
il est aise

de se rendre compte que ces conditions sont incompatibles si la courbe
a une pente continue, il doit necessairement y avoir des points angu-
leux.

La maniere la plus simple de realiser un champ discontinu sera de
placer au milieu de la lentille, une grille assez transparente aux
particules, portee a un potentiel plus haut 011 plus bas que les poten-
tiels exterieurs. Nous arrivons done aux lentilles a grille niises en
valeur par Cartan 3 dans son spectrographe de masse et etudiees a sa

suite par Knoll & Weichart. 4 Le texte qui suit contient une etude

1 Laboratoire de Radioelectricite de l’Ecole Normale Superieure, Paris, France.
2 Davisson et Germer, Phys. Rev. 38, 585 (1931).
3 Cartan, Jour. Phys. Rad. 8, 111 (1937).
4 Knoll et Weichart, Z. Phys. 110, 233-236 (1938).
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Figure 20.2. Allure du potentiel <E> [2 ].

Figure 20.1. Modele de lentilles

ci grille.

precise de ces lentilles, menee jusqibau bout grace a un modele simple
de potentiel qui a permis bintegration de l’equation des trajectoires.

14—Nous etudierons deux types de lentilles dont la figure 20.1

indique la forme des electrodes et la figure 20.2, Failure du potentiel

axial:

Lentilles d cylindres. Deux cylindres, de rayon unite, coaxiaux, sont

portes au potentiel Ils sont separes par la grille an potentiel <J>0 .

Lentilles d diaphragme. Deux electrodes planes, distantes de 2d
sont portees au potentiel <L; elles sont percees d’ouvertures circulaires

de rayon unite. Entre les deux, a mi-distance se trouve la grille au
potentiel 4>o.

Le premier modele facile a construire est moins souple que le second
qui contient un parametre supplement aire. Nous verrons par la

suite, qu’au point de yue electrique, ce n’est qu’un cas particulier.

Conime la grille constitue un ecran electrostatique nous n’etudierons
que le potentiel pour z^> 0. La partie negative se deduira par syme-
trie.

/

2. Etude du Potentiel sur l’Axe

21—Lentille a cylindres

Nous integrons Vequation de Laplace en separant les variables;

nous prenons la solution sous la forme

(F=4>o+ J
A(k)I0 (kr) sin Jcz-dk,

et nous determinons A(k) par la condition aux limites imposee, a
savoir <t>= 4>

1 pour r= 1 quel que soit z. Le calcul classique de l’inte-
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grale de Fourier conduit a

A{k)=- (4>,— <£„) ttoa'7T fCl 0 {/C)

Nous poserons dorenavant a=$ 1 . _ $
Le potentiel s’ecrira alors:

p— 1 +((x 1)F (z ),

sin kz

kl0(k)
dk .

La fonction F(z) est assez simple a calculer si Ton prend la precaution
de la transformer auparavant en une serie en integrant par la methode
des residus. Lc contour d’integration est indique par la figure 20.3.

On integre la fonction
2 e

jkz

tr kl0(k)

de— ooa+oo le long de l’axe reel, encontonrnant l’origine par un
petit cercle de rayon e, et l’on termine en integrant le long du cercle

de l’infini. La figure 20.3 donne la forme du contour d ’integration,

ce qui conduit a

9 7T >SB-iSZw, + §;+&- 2«a>+r+L
les poles sont situes sur l’axe imaginaire et correspondent aux racines
de J0 (u)= 0. Les residus s’obtiennent par l’emploi des formules
classiques; enfin, on calcule l’integrale le long du cercle de rayon e en

posant k= ee
j<f

,
on trouvej

^
=— 2j, et celle du cercle de rayon R en

posant k= Re jip

,
on trouve qu’elle tend vers 0 si R tend vers l’infini.

Finalement
»= °° p~^n2

F(x)= 1- 2S T ,
s > Jo(m „)= 0

.

Nous avons calcule les valeurs de cette fonction pour les principales

valeurs de 2 (tableau 20.1) il est interessant de remarquer que la

fonction th cos coincide pratiquement avec F si V on prend u= 1.315.

L’erreur ainsi commise n’atteint pas 1 %.
Nous poserons done dorenavant <p= 1 + (or— 1) th cos.
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Tableau 20.1. Valeurs numeriques des fonctions F(z) et th l,315z

7 F (-) th 1,3152

0 0 0

0, 25 0, 319 0,318
0, 50 0, 575 0, 573

0, 75 0, 752 0, 756
1 0, 859 0, 866

1, 25 0, 922 0, 929

1, 50 0, 957 0, 963
1,75 0, 977 0, 981
2 0, 988 0, 991

2, 25 0, 994 0, 996

2, 50 0, 997 0, 998

22—Lentille a diaphragmes

Nous faisons le meme raisonnement qu’au paragraphe precedent
mais les conditions aux limites sont plus difficiles a exploiter. Aussi
ferons nous la meme hypothese que Bertram 5 dans un cas semblable:
Nous posons que, pour r= 1, le potentiel varie lineairement de <f>0 a <N,

lorsque 2 varie de 0 a d, puis reste ensuite constant et egal a <3q,

$=$o+($i—

$

0)^, 0 SzSd, T= T
( ,

z}td.

Les resultats qui s’en deduisent ont ete bien verifies a la cuve rheo-
graphique dans un cas analogue. Nous pouvons alors calculer A (A")

coniine an paragraphe 21; on trouve

A(k)
9

7

r

(0i 0o)

sin led

de sorte que le potentiel sur I’axe va s’ecrire, avec les memes notations
reduites

<p— 1 + (a— 1)G(z,d) }

sin led. sin Jez

~dk%W dk.

La fonction G(z,d ) ne va pas necessiter de nouveaux calculs car il

est facile de la transformer en introduisant la fonction F(z). On a

cos k{z -d)

~wmr
cos k(z-\-d)

2k%W
et si 1’on pose

on est conduit a

G(s,d)=\\^(a))l+Jd ,

mais il est evident que la fonction T' n’est qu’une primitive de A" que

5 S. Bertram, Proc. Inst. Radio Engrs. 28, 418-420 (1940).
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nous garderons par la suite

G(z,d)
1 ch co (2 -1- d/)

2c7d
l0g

ch^tz^d)

Si d tend vers 0, on montrera facilement que G tend vers F si bien

que la lentille a cylindres n’est qu’un cas particulier de la lentille a

diaphragmes, et a partir de maintenant, c’est sur cette derniere que
nous raisonnerons.

23—Etude de la courbe T=&'/<&

Nous prendrons 1 ’equation de Gauss sous la forme de Picht 6
il

nous faut done etudier la fonction caracteristique $'/$. 11 y a deux
cas a distinguer suivant que la lentille est convergent^ ( <r <d) 011

divergente (o->l):

Si la lentille est convergent^', la courbe possede un extremum dans
sa partie utile, e’est-a-dire pour 2 positif, dont l’abscisse est. donnee
par la racine de Pequation

1 , ch oi{z-\-d) _ 1 sh 2wd 1

2 ood °g ch w(z—d) l — o- 2cod sh 2 co2

qui peut etre resolue graphiquement.

L’ordonnee du maximum est

rji sll 2 CO ,2/t1

W
ch CO (zm+ d) .ell co (2 m— d)

et enfin l’ordonnee a l’origine vent

T,= {g- 1)
tli cod

nr

Quant a la partie de la courbe valable pour 2 negatif il est evident
qiPelle est. symetrique de la precedents par rapport a 0. La figure 20.4

Figure 20.4. Caracteristiques
des lentilles 71=$'/4>

Lentille convergente.

6 J. Picht, Ann. Phys. Leipzig 15, 926 (1932).

T

Figure 20.5. Caracterisiiques
des lentilles T= &'/$>.

Lentille divergente.
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indique l’aspect de cette courbe.

Si la lentille est divergent e, il n'y a plus d’extremum dans la partie

utile de la courbe, celle-ei est constamment decroissante. L'ordonnee
a l'origine vaut toujour Ti= (<r— 1) th udjd et l’aire limitee par la courbe
et l'axe des 2 est egale a: Log a. L'autre moitie de la courbe s’obtient

toujours par symetrie. La figure 20.5 donne 1’ allure de la courbe T
dans le cas de la lentille divergent^.

Signalons pour terminer que la lentille a cylindres est regie par des
equations plus simples, obtenues en faisant tendre d vers 0 dans les

relations precedentes. On trouve les valeurs

zm=j— log (——

—

\ Tm=— 2w til Cx>Zn ,
T1=(a— l)co.

4 co \ <j J

3. Representation Approchee de T Par Une Courbe de
Glaser

31—Necessite d'une representation du potentiel.—Aussi simples que
soient les expressions precedentes elles sont cependant trop complexes
pour permettre de tenter l’integration de l'equation de Gauss avec
quelques chances de succes. Aussi allons-nous representer chacune
des moities de la courbe par une cloche de Glaser,

'/'=r„[i+(
Z
2—

dont une partie seulement sera valable. Une telle fonction perrnet
d'integrer l'equation de Gauss, et la forme de sa courbe representative

est tres analogue a celle de la fonction prealablement etudiee. II

nous faut determiner les parametres TQ ,
z0 ,

a, de fa^on a obtenir le

moins d’ecart possible.

32—Lentilles convergentes

Nous faisons coincider le maximum et l'ordonnee a l'origine. Ces
conditions nous donnent: T0=Tm ,

z0=zm ,
a=z0(T0/Ti— l)

-1
,
pour la

moitie positive et T'o=— T0 ,
z'0= — Zo, a'=a ,

pour la moitie negative.

Pour ehaque valeur de a plus petite que 1 il est ainsi possible de
trouver une representation de T qui soit assez proche de la valeur
reelle et qui permette Pintegration par des fonctions simples.

33—Lentilles Divergentes

Ici les conditions a remplir sont moins imperatives, car il n'y a plus

d’extremum. Nous faisons toujours coincider l'ordonnee a l’origine

et nous choisissons les autres parametres de fagon que l’aire limitee

par la courbe et l'axe des 2 soit egale a celle limitee par la courbe
reelle.

Cela ne fait que deux equations pour trois parametres; il nous faut

prendre une troisieme condition la plus simple possible; nous prendrons
z0= 0 ce qui conduit a

1=0, r0=(a-i)^
llv/

, a=—rW log a.
7T i 0
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II est evident cjue la troisieme condition est artificielle et qne l’on

pourrait la remplacer par d’autres plus physiques; mais il ne semble
pas que la precision de la representation soit beaucoup augmentee,
tandis que les calculs sont passablement plus complexes. La partie

negative de la courbe s’obtient toujours par symetrie.

4. Elements du Premier Ordre

41

—

Les rayons de Tespace objet et de Tespace image sont les

asymptotes aux trajectoires. En effet, on ne pent rien immerger
dans un champ electrostatique, sous peine de modifier le potentiel et

par suite de perturber la lentille. Tantquela trajectoire a un rayon
de courbure non negligeable, nous sommes a “lfinterieur” de la lentille,

espace ou il n’est pas possible de penetrer.

Les objets et les images seront definis par les points de rencontre
des asymptotes. 11s seront reels si ils sont a l’exterieur de la lentille

car trajectoire et asymptote sont confondues; ils seront virtuels

dans le cas contraire.
42

—

L’equation de Gauss s’integre dans chacune des moities de la

lentille et fournit pour la trajectoire la representation:

R= y sin K(<f>+B') \ R=A—
sin 0 >—-oo<+<+ sin 4>

>0+ 2+ + °o

2— z'0=a ctg (j> ) z—Zo= a ctg </> /

K est donne par K=^ 1 + (3/16) Tl

a

2
. A' et B' sont determinees par les

conditions initiates de la particule. Quant aux constantes A et B
elles seront determinees par les conditions qui regleront la traversee

de la grille par le corpuscule. Au premier ordre, nous admettrons
que la trajectoire ne subit pas de deviation sensible lorsqu’elle tra-

verse la grille. Nous avons alors

J. i 2
7

=constante, i?= constanteR dz 4

de part et d’autre de la grille.

Les conditions permettent de calculer la totalite de la trajectoire.

Dans le cas particular ou nous sommes, elles s’ecrivent

A' sin K(-ir— aAB') =A sin K(aAB)

—K ctg K(a-\-B) =—K ctg K(tt— a +B') — 2 ctg a+
T0a
9

est defini par ctg a~—z0/a.

43—Les distances focales sont ici egales et de signe contraire. On
les obtient par les formules classiques

1 1 R'(+ 00 )

ir R(—y
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qui conduisent apres calculs a

ji~ fo

sin 2 Ka
~Ka~ ctg Ka— ctg a)

]

Pour avoir les abscisses des foyers, il faut faire un developpement
limit e de la trajectoire an voisinage de Pinfini. Si l’on a

r

on en deduira

Apres calculs on obtient

T0a
2

zf — — zf
0
—zo—

4
-r

fi sin2 ka Ka-ctg a— ctg2 Ka—

Nous avons conduit les calculs numeriques jusqirau bout pour une
lentille particuliere, correspondant a d— 1, pour laquelle on possede

des valeurs experimentales de/< mesuree par Knoll et Aeichart.' La
figure 20.6, donne les deux courbes de f~

l et de ZF i en fonction dey
pour les lentilles convergentes, calculees par nos formules. On voit

que les points experimentaux se placent dessus. Le tableau 20.2

qui contient les valeurs calculees et les valeurs mesurees permettra

de rendre compte de la precision de la methode. Le graphique cor.-

, Q OL
,— az-j-

ZF =— fila.

7 See footnote 4.
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Tableau 20.2. Valeurs numeriques des elements du 'premier ordre d'une lentille

a grille avec d—

1

Les valeurs experimentales proviennent de mesures faites par Knoll et Weichart; elles ne s’etendent que
sur l’intervalle 0,8 a 0,5

<T 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2

l//ral 0, 044 0, 097 0, 162 0, 233 0, 311 0, 392 0, 470 0, 515
l//rnea 0, 095 0,162 0, 233 0, 310
Zp.

1
22,8 10,3 6, 23 4, 38 3, 30 2,66 2, 23 2,05

tient aussi les valeurs calculees par Knoll et celles calculees par
Cartan; 8 Paccord est moins bon, mais il ne faut pas oublier que leurs

calculs sont moins longs et leurs formules plus maniables.
44—Nous n’avons considere que des lentilles a electrodes syme-

triques par rapport a la grille. La theorie precedente s’etend sans
difficult^ au cas des electrodes quelconques; seulement les formules
sont beaucoup plus compliquees puisque les coefficients sont entiere-

ment differents de part et d’autre de la grille.

Nous ne donnerons pas les formules correspondantes car il est im-
possible (Fen tirer rapidement des resultats numeriques relatifs a

une classe de lentilles. Elles ne presentent d’interet que dans Petude
d’un cas particulier.

Par contre, revenant au cas de la symetrie, nous etudierons rapide-

ment les simplifications qui peuvent etre apportees aux formules si

K est voisin de 1 (lentille faible).

En negligeant le produit T%a2 on a K— 1 et la distance focale devient

1 0i— 0o til CO (1

J 0o 2 d

formule qui est analogue a celle proposee par Cartan. Si Ton vent

tenir compte de Tla2 mais si Pon neglige en posant Vl + ^= 1

on obtient des formules aussi complexes que les formules primitives.

5. Conclusion

Nous avons done ainsi obtenu des formules precises et cependant
assez maniables, pour calculer a priori les elements du premier ordre.

Independamment de Pinteret special des lentilles a grille, il est inte-

ressant de remarquer que le modele de Glaser est aussi utile en electro-

statique qiPcn magnetisme et que grace a Pequation reduite de
Picht il joue un role exactement symetrique.

8 See footnote 3.
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21. Note sur la Theorie de la Lentille Electrostatique

a Electrode Centrale Elliptique

Par Edouard Regenstreif 1

1. Introduction

L’influence de Povalisation du champ magnetique on electrique sur
le pouvoir resolvant de la lentille electronique a 6te mise en Evidence
pour la premiere fois par les experiences de Hillier [l]

2
. Glaser [2] a

attire Pattention des theoriciens sur ce probleme et les travaux de
Bertein [3] ont fourni les bases d’une comprehension solide des phe-
nomenes en jeu en meme temps que des propositions pratiques sur
les moyens exterieurs a mettre en oeuvre pour combattre les effets

nefastes des dissymetries axiales.

Cependant, on n’etait pas encore parvenu a etablir des formules
finies et explicites donnant directement les propriety optiques
fondamentales de la lentille elliptique en fonction de sa structure
geometrique et electrique. D’un autre cote on lie s’etait occupe que
tres pen des possibility oft’ertes par les relations entre les parametres
internes de la lentille pour agir sur son fonctionnement et amener
celur-ci a l’optimum compatible avec une ellipticite donnee.
La presente Note resume un travail en cours de publication et dont

le but est de fournir d’abord des relations explicites pour les ca-

racteristiques optiques de la lentille elliptique et de preciser ensuite
les conditions optima de fonctionnement.

2. Bases du Calcul

Considerons d’abord une lentille electrostatique independante,
formee de trois electrodes planes, minces, paralleles et percees de
trous rigoureusement circulaires et coaxiaux.
Les parametres mecaniques de la lentille sont z0 ,

distance entre les

electrodes exterieures et l’electrode centrale et hfi et R2 ,
rayons des

trous des electrodes. Les parametres electriques sont Vx et V2 ,

tensions appliquees aux electrodes centrale et exterieures.

La theorie de la lentille ronde, etablie anterieurement [41 fournit
alors pour la trajectoire de Gauss d’un rayon initialement parallele

a I’axe, des expressions de la forme:

r=r0 arc sin /3(y+ 20) dans la region d ’incidence

r= cos

r=Bll

_V 2
arc sli az— p

1

j= arc sin (3(z—z0)
— \p

_A/2

dans la region centrale
y a)

dans la region d ’emergence]

1 Ecole Norraale Superieure, Paris. France.
2 Figures in brackets indicate the literature references on p. 230.
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avec

0= 1

1 -k (1—Lb
4>(0 )

^(sb)
(2)

Dans ces relations k est on facteur numeriqne, determine par la

position do point d ’inflexion sor la eoorbe de potentiel (d’one maniere
osoelle k^%) et $(0) et $(z0 ) sont les potentiels ao centre de la lentille

et a 1’aplomb des electrodes exterieores. <t>(0) et 4>(20 ) sont calcolables

[4] a partir de z
0/
R 1R2 et V2 .

La manipolation mathematiqoe des eqoations (1) permet de deter-

miner les caracteristiqoes optiqoes de la lentille, savoir la distance
focale,

7
=
xV^
^ i8°~^

XL
'

sl12 ^ sin 2 (a°~ 7o),

et l’abscisse do foyer gaossien, X

^=i +J-
2Xzo

4X 2+(X 2+1) sir 2/30 sin 2(a;0 +<50 )

avec

(3)

arc sli akz0 ,

et

1
30=—= arc sin /3(l—k)z0 ,

V 2

tg y0= X th do, tg 2d0=^f^j
1

th 2 do

(4)

Considerons maintenant one lentille elliptiqoe, d’ellipticite relative

r}=ARi/Ri. La distribotion do potentiel s’ecrit alors [5]

2

cf)(z,r,d)=(f)(z)—
7- <t)"(z)[l— e(z) cos 26}. (5)

La fonction e (z) a ete etodiee notamment par Bertein [3] qoi a troove
qoe € acqoiert des valeors importantes seolement dans la region cen-

trale de la lentille oil €(0)^r?, et tend vers zero ao voisinage des elec-

trodes exterieores. L’hypothese fondamentale qoe noos faisons dans
ce travail est de sopposer e constant dans la region centrale de la lentille

et nol dans les regions d ’incidence et d ’emergence. Cette hypothese
pent se jostifier aisement en pratiqne. En effet, la marche des tra-

jectoires dans les regions extremes de la lentille est tres pen affectee

par modification de sa stroctore; par contre, il est indispensable de
representer correctement e(z) ao voisinage de 2=0, oil la trajectoire

est tres sensible a toote variation des parametres geometriqnes et

electriqoes de la lentille.

224



3. Equations Differentielles des Trajectoires

Gaussiennes dans la Lentille Elliptique

En partant des bases ainsi exposees, les equations generales du
mouvement de Velectron

m
e
(r—rd2

) dr

m d

e dt
>

m .. dcj)

e dz

(6)

fournissent pour le regime gaussien de ia lentille elliptique les relations

r$(«)r+[2r'm+^’iz)

f\2
<f>"{z) cos 20 J

r(f)(z)(6')

6' ~{-—r4>"(z) sin 20=0

qu’on pent ecrire sous forme cartesienne

4>(z)rx~\~ \ 4>' {z)rx -\- \ <//' (z ) (1
— e)rx= 0 f

<t> {z) r
'y Jr i <t>' (z)ry

-\- J 4>" (z) (1+ e)ry=Q.

)

(7)

(8)

Le systeme (7) permet de se faire immediatement une idee qualitative

de la marche du rayon de Gauss dans la lentille elliptique.

Si bon considere un rayon initialement parallele a l’axe
;
il cheminera

dans la region d’incidence exactement coniine dans une lentille ronde
puisque e est, par hypothese, mil dans cette region. En particular,
1 ’electron restera constamment dans son meridien d ’entree 0o . Dans
la region centrale par contre, e possede une valeur finie. Le rayon
de Gauss subira alors une rotation autour de l’axe et quittera par
consequent son meridien initial. Dans la region d’emergence e est.

a nouveau nul, mais a l’entree dans cette region la vitesse de l’electron

n’est plus situe dans un plan meridien. On aura done a faire a une
trajectoire gauche dans une lentille de revolution.

Toutes ces questions peuvent etre precisees mathematiquement.

4. Trajectoires dans les Plans de Symetrie

Le systeme (7) montre que les solutions de la forme 6= Cte sont

donnees par sin 0= 0, soit 0=6o=K —
• En d’autres termes les tra-

jectoires situees initialement dans les plans de symetries, et ces tra-

jectoires seulement, restent planes.
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En resolvant le systeme (7) on (8) pour 9= 0 et 9=t/2 on trouve
pour les equations explicites des trajectoires -situees dans les plans
de symetrie de la lentille elliptique.

region d ’incidence:

r(0)=r(~)=r 0 ch

region centrale:

La/q
arc sin (3(z-\-z 0)

r(0)=-4(0) cos
A 1 —

€

arc sh ai -4<i)

region d’emergence:

fVH^e—-— arc sn a z — (py M9)

[:
r(0)= !?(())*

|

— arc sin j8(s— « 0)
—

<Pz Ml

=*
o:

1

LA
— arc sin (S(z — z 0)

—
\py

Les coefficients A a \p peuvent etre determines par des considerations
de continuity

.

5. Etude des Proprietes Focales

Le traitement mathematique des equations (9) permet de determiner
les caracteristiques optiques de la lentille elliptique.

On trouve pour les distances focales dans les deux plans de symetrie
des formules generalisant (3i)

d

jx Xx
a 2

(clr doffiX
2
sir do) sin -(«ov— Tox)

(clr do+X2
sir do) sin 2(a0Y— y0Y ).

Jy K
y\2

Le calcul fournit pour la difference Af=fx—fY

[(2a0+sin
2
70) cos 2(a0~ To)

A/ d ch2
do

f X A/ 2 cos2
to

( 10 )

+ cos 2 To sin 2 (

a

0— To)

]

e ~L term.es en

La figure 21.1 montre 1’ allure de la variation de A/ en fonction de x.

Aux termes en e
2

,
pres A/ est nul pour

tg 2(a0— To)
2a0+sin 2 tq

cos 2 to
( 11 )
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ce qui fournit 5,8.1

0

-2
c’est la valeur meme qui rend minimum la

distance focale [4\ de la lentille non perturbee.

Le fait que A/ peut etre nul en depit d’une valeur finie de la difference

entre les deux axes du trou central est du a la forme bi-branche de la

courbe focale /=/(:r) (ref [4]). Dans le fonctionnement habituel de la

lentille le point figuratif est situe sur le branche droite de la courbe et

la distance focale la plus grande correspond au rayon le plus fort.

Par contre, sur la branche gauche de la courbe, la distance focale sera

d’autant plus forte que le rayon du trou sera plus faible. On congoit

done que pour une certaine valeur de x, il puisse y avoir egalite entre

les deux distances focales. De 1’ egalite A/=0, il ne faut pas conclure a

la nullite des aberrations d’ellipticite. Elle montre seulement que
pour une certaine valeur de x, la difference entre l’abscisse du foyer et

celle du plan principal (f=zF— zP )
est la meme pour les deux plans de

symetrie. Par contre, si la difference AzP=zFX— zFY ,
passe par un

minimum, les aberrations d’ellipticite passeront bien par un minimum.
La figure 21.2 montre que la difference AzF passe effectivement par un
minimum du essentiellement au caractere constamment decroissant de
la fonction zF . La question peut etre traitee par le calcul; on trouve
en generalisant (3 2 ) au cas elliptique et en explicitant la difference

AzF ,
une expression de la forme AzF=[A(x)f-\-B(x)Af] e+ termes en e

2
.

A zF est minimum pour A/=0; il en resulte que le minimum de la

courbefocalej=j(x) constitue un point de fonctionnement remarquable
qui rend effectivement minima les aberrations d’ellipticite.

On peut generaliser ce raisonnement et montrer que toutes les

aberrations sont minima en ce point. Cette demonstration theorique
a ete corroboree par des preuves experimentales dans le cas de la

distorsion [6] et des aberrations de sphericite [7].
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6. Trajectoires Situees dans un Meridien Initial

Qnelconque

En explicitant le systeme [8] dans les trois regions de la lentille, on

trouve pour les trajectoires de Gauss les equations explicites

Region d 'incidence:

/ x— 1 y— ^ 0 ell arc sin p(z+z0)

La -

Region centrale:

rx=Ax cos
1 —

e

arc sh az—

ry=Ay cos

R egion d 'emergence

:

Lv
1 + e

1

- 9
- arc sn az — (py

r

rx=Bx

ch
~

sh

ch

LA 2

Ty By
sh LA —

arc sin p(z— z 0)
—

\Jsx

arc sin (3(z— z 0)^v

( 12 )

Les coefficients A et ^ peuvent encore etre determines par des conside-
rations de continuity et les trajectoires peuvent ensuite etre ealculees

numeriquement en fonction de Tellipticite relative e, du parametre x

qui caracterise la structure de la lentille non perturbee et des condi-

tions initiales r0 ,
d0 .

En developpant les equations (12) en fonction de e, on pent mettre
le rayon gaussien de la lentille ellipitique sous la forme

rx=rT (x, z)[l+ eg(x, z)] cos d0

ry=rr {x, z)[l— eg(x,\z)] sin 60

(13)

ou rT (x, z) represente le rayon gaussien de la lentille ronde calcule

une fois pour toutes [4] et g(x, z) est calculable numeriquement a
partir des caracteristiques de la lentille non perturbee.

Pour 7>= 0 c’est-a-dire si Ton considere la region exterieure de la

lentille au foyer gaussien de eelle-ci, la quantite G(x,z)=rr (x,z) g(x,z

)

reste finie et r(rT=0)= G(x,z) represente le cercle de moindre con-
fusion ou Paberration transA^ersale. Le rayon de ce cercle depend de
x et est calculable pour une lentille donnee; il est minimum en meme
temps que Paberration longitudinale.

Les considerations qui precedent montrent qu’il est possible de
predeterminer par le calcul le point de fonctionnement optimum c’est-

a-dire celui ou les aberrations d’ellipticite sont minima.
La verification experimentale de cette theorie est actuellement en

cours au laboratoire du Professeur Pierre Grivet.
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7.

Quelques Considerations sur les Images Gaussiennes
Fournies par une Lentille Elliptique Eclairee en
Lumiere Paralleie

Un faisceau paralleie, s’appuyant a Fentree de la lentille sur un
cercle de rayon r0 ,

possedera encore une section circulaire dans la

region d’incidence (en conformite avec notre hypothese fondamentale)
mais presentera une section elliptique dans toutes les autres regions.

Les axes de cette ellipse sont entierement determines par les relations

que nous avons etablies et calculables numeriquement en function de
la structure de la lentille. Les equations donnees montrent egalement
que Fellipse peut degenerer en une droite focale X=0 on en une droite

focale Y= 0 et les valeurs de 2 pour lesquelles ces degenerescences ont
lieu sont tres voisines et situees de part et cFautre de la valeur de 2

qui correspond a Fintersection avec Faxe du rayon rr . Les calculs

que nous avons effectues permettent de determiner numeriquement la

position des focales et la distance qui les separe en fonction de x et de
€ . Pour rT= 0, F ellipse degenere en cercle de moindre confusion dont
nous avons calcule le rayon.

Si Fon considere maintenant une droite coupant Faxe Oz, son image
sera en regime elliptique gaussien encore droite. Mais cette droite

aura subi une rotation donnee par tg6= (1— 2eg)tg60 et calculable

numeriquement.
Si la droite est paralleie a OX on OF son image sera encore paralleie

a OX et OF.
Un carre centre sur Oz et dont les cotes sont paralleled aux axes

OX et OF et egaux a 2a, aura pour image un rectangle dont les cotes

sont donnes par des expressions de la forme 2ah{x,z)[l-\-eg{x,z)] et

2ah(x,z)[l— eg(x,z)] calculables numeriquement.
Enlin, une droite ne coupant pas Faxe de la lentille et ayant pour

equation r0=d/[cos (70+ 60 )] aura pour image une courbe cFequations
tg d={l—2eg) tg d0 et

dli(x,z)

cos (7+ ^0)

(IX eg cos 20o).

Cette courbe differera cFautant plus d’une droite que e sera plus fort.

8. Le Miroir Elliptique Gaussien

En posant a =ia\i=-y[— 1 ) et en procedant a quelques legeres

retouches, la theorie precedemment etablie peut etre etendue au
miroir elliptique gaussien. Ses proprietes optiques peuvent alors

etre etudiees coniine dans le cas de la lentille, c’est-a-dire en poussant
jusqu’aux valeurs numeriques.

9, Symetries d’Ordre Superieur

La theorie peut etre generalisee aux symetries de repetition d’ordre
m. On peut mont'rer clans ce cas que les trajectoires situees initialement
dans un plan de symetrie restent planes et admettent des solutions

analytiques. Pour les autres trajectoires les solutions sont analytiques
seulement pour m= 2. Le probleme peut neanmoins etre resold par
des integrations numeriques.
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10. Lentille Decentree

La theorie peut etre appliquee au cas m=l, a condition d’y regarder
e coniine le decent-rage relatif e=e/R 1 ,

e etant la distance entre l’axe

des electrodes exterieures, supposees alignees, et l'axe de P electrode
centrale. La lentille aura tin senl plan de symetrie, le plan XOz
passant par les deux axes mentionnes. On peut montrer qu’a la sortie

de la lentille, les trajectoires cheminant dans ce plan de symetrie sont
de la forme

r{Q)=rc+ig c {x,z)

>'U'< =rc—egc {x,z

)

oil rc represente la trajeetoire de Gauss dans la lentille centree et gc

un terme eorrectif, imputable au decentrage de Pelectrode centrale.

Si Pon fait subir maintenant a P'axe Oz une translation d’amplitude
egc dans le planXOs, r(0) et r{r) deviendront egaux. aux termes en c
pres, par rapport a ce nouvel axe de symetrie. On peut montrer
alors que dans un azimut quelconque la distance de la trajeetoire de
Gauss au nouvel axe de symetrie est r c -re

2

g c

2

. En particulier au foyer
gaussien (r c=0) elle sera eg c

2

. Par consequent, le pouvoir separateur

de la lentille, qui etait proportionnel a e dans le cas de la lentille

elliptique est proportionnel a e dans le cas de la lentille decentree.

L’effet sur la qualite de la lentille peut done etre neglige. Le seul

resultat pratique est un deplacement de Pimage d’une quantite
proportionnelle a e.
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22. Note sur la Theorie de la Lentille Electrostatique

Elliptique Eonctionnant en Regime Transgaussien

Par Edouard Regenstreif 1

1. Introduction

Le regime transgaussien de la lentille electrostatique elliptique a

fait jusqu’a present Pobjet (Pun nombre extremement reduit de
publications et se presente par consequent comme un domaine a peu
pres inexplore de Poptique electronique. Les raisons de cet etat de
choses sont imputables premierement aux difficultes mathematiques
du probleme: le regime gaussien de la lentille elliptique s’avere deja
tres rebelle au calcul et Pimpression generale etait qu’on n’arriverait

pas a resoudre les equations du regime transgaussien. Deuxieme-
ment, du cote experimental la recherche a tres peu avance, probable-
ment a cause du fait qu’on s’etait limite aux lentilles perturb ees,

c’est-a-dire aux faibles valeurs de Pellipticite e; le phenomene ellip-

tique transgaussien est ainsi completement masque on tres peu
observable.

Actuellement, un programme de recherches est en cours au labora-

toire du Professeur P. Grivet au sujet de la lentille elliptique. La
premiere partie de ce programme comporte Petude theorique poussee
de la lentille elliptique, non seulement en tant que systeme perturbe
mais aussi en tant que phenomene principal. La deuxieme partie

du programme est consacree a Petude experimental des lentilles de
forte ellipticite (lentilles cylindriques au sens optique du terme) dont
le but est de realiser sur 1’ecran un phenomene “macroscopique” on
tout au moins observable. L’objectif final de ce programme est. la

connaissance approfondie des elements cylindriques constituant les

systemes corriges d ’aberrations spheriques proposes par Scherzer. 2

La presente Note resume un travail en cours de publication sur la

theorie de la lentille electrostatique elliptique fonctionnant en regime
transgaussien. Un autre travail montrera les resultats de recherches
experimen tales.

2. La Lentille Elliptique Transgaussienne: Hypotheses
et Definitions

Les calculs qui suivent sont articules sur la theorie du regime
transgaussien de la lentille ronde 3 et sur Petude du regime gaussien
de la lentille elliptique (objet de la communication No. 21).

Nous garderons l’hypothese fondamentale suivant laquelle la

lentille peut etre decomposee en trois morceaux suivant l’axe, les

1 Ecole Normale Superieure, Paris, France.
2 O. Scherzer, Optik, p. 114-132 (Juillet 1947).
3 E. Regenstreif, Ann. Radio 6, 51-83, 114-155 (1951).
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fractions extremes etant des elements de revolution et la region centrale

etant affectee d’une ellipticite constante 77. .

Le regime transgaussien sera caracterise par le fait cpie la distance

a l’axe r0 du rayon incident initialement parallele a l’axe n'est plus
consideree comme negligeable par rapport aux dimensions z0 de la

lentille, et qu’en outre les quantites r
2
et (r')

2 ne sont pas considerees
comme negligeables par rapport a r et r'

.

Dans ces conditions, les

equations de Gauss cessent d’etre valables et pour etablir la theorie

des rayons ainsi definis il est necessaire de recourir aux equations
generates de l'optique electronique. Toutefois, le procede qu’on
utilise frequemment et qui consiste a poser r=rgauss+Ar et a

calculer l’aberration A r ainsi definie n’est pas legitime lorsqu’on
approche des zones ou les trajectoires oscillent autour de l’axe et a

fortiori lorsqu’on passe au miroir. En effet, Thypotliese Ar<rgauss est

erronee dans ces cas et le seul procede exact est de resoudre jusqu’au
bout les equations generates des trajectoires. Nous allons montrer
qu’une telle solution est possible, meme dans le cas de la lentille

elliptique fonctionnant en regime transgaussien.

3. Equations des Trajectoires Transgaussiennes dans
la Lentille Elliptique

En designant par rx et rY les projections de la trajectoire sur les

deux plans de symetrie, les equations generates du mouvement de
Velectron s’ecrivent:

rn

e
r x

s

dX

dY y

.

(a

Des transformations appropriees conduisent alors aux equations

{
— 4$ (2) + [r

2+rj— e(r
2
x
— r

2
y)]&'(z) }ry

= ( 1 + (/-02 -E (r ');)[( 1 — 0 ' (^) + 2r'ct>' (^) ]

{
-4c^{z)Y[rlYrl~e{rl-r^W\z) }r’J

= (1+ {Y) 2
x -\- (r')

2

y e)ry§" (z) + 2r'<t>
/

(z)] (2)

Nous 11’avons pas a nous occuper des regions d'incidence et d’emer-
gence ou, par hvpothese e est nul. Par eontre, dans la region centrale

(2) devient:

[

[

9

2a

2 2
2+rx+ f‘l— e (r

2

x— /'
2

)J
rx

'

2 z
2
-\- r

2
x+ r

2— e (r
2
x—

r

2

)J
r'

'

(1 + (r')x+ (r/)31(i — € ) rz+22rJ

(l+ (ryx+(r')l)[(l+e)rv+2z/^ (3 )
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C’est un systeme differentiel non lineaire, du deuxieme ordre, a

variables non separables. A priori il ne semble pas possible de tronver

des solutions a ce systeme. Nous chercherons cependant—en

generalisant les formules obtenues dans 1’etude du regime trans-

gaussien de la ientille ronde et du regime gaussien de la lentille

elliptique—des solutions de la forme:

rx=Ax cos
1 —

arc sh yz—(px

ry=Ay cos arc sli yz—<p„ (4)

Le calcui conduit alors a une solution univoque qui s’ecrit:

D ans la region d ’incidence:

rx=ry=r0 ch arc sin (z+ z0)
9

' • -v2+ rjj8
2

jV:
2/3

2

Dans la region centrale:

/ y A.X> y COS V¥ £arc sh 2 '

2 a2

2-A2
xa

2(l-e)-A2

ya
2
(l+ e)

*Px,

Dans la region d’emergence:

ch

T =B1 x, y -LJ x, y
sh _

arc sin (z—z0)-\ (

2(3
2

2 +5;/3
2+52A

(5)

Telles sont les equations des trajectoires transgaussiennes dans la

lentille elliptique. Les coefficients A a 4/ peuvent etre determinees
par des considerations de continuity.

4. Garacteres Physiques des Trajectoires Transgaus-
siennes dans la Lentille Elliptique

L’etude des equations (5) conduit aux consequences suivantes:

(a) Les trajectoires situees initialement dans un plan de symetrie et

ces trajectoires seulement restent planes.

(b) Les trajectoires qui ne sont pas situees initialement dans un plan
de symetrie subissent une rotation dans la region centrale de la lentille

et de ce fait se comportent dans la region d ’emergence conime des
trajectoires gauches dans un systeme transgaussien de revolution.

(3) Considerons une lentille electrostatique dont l’electrode centrale

est legerement negative par rapport a la cathode. Les rayons chemi-
nant au voisinage de l’axe seront entierement deciits par la theorie des
rayons paraxiaux de la lentille elliptique. Par contre lorsque l’inci-

dence r0/20 croit, le rayon rencontrera dans la region centrale de la len-

tille des zones oil le potentiel est de plus en plus negatif. La quantite
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2— A^.a2
(l — e) —B2

va
2
(l +e) sera alors de plus en plus voisine de zero

et la trajectoire effectuera un nombre de plus en plus grand d’oscilla-

tions.

(d) Pour une incidence superieure a une certaine valeur limit e roh
le systeme fonctionnera en miroir, le nombre des oscillations decrois-

sant lorsque rincidence augment e.

(e) En raison de la rotation generate des trajectoires dans une
lentille elliptique, l’on pourra trouver, et surtout pour e assez fort, des
zones ou le systeme fonctionne comme lentille pour une certaine

incidence r0/zo et un certain azimut d0 et des zones ou, pour la meme
incidence rQ/z0 et un azimut different, le systeme fonctionne en miroir.

Les equations des trajectoires transgaussiennes dans les zones fonc-

tionnant en miroir et dans le miroir lui-meme peuvent etre obtenues
a partir de (5) en tenant compte du caractere imaginaire du radical

dans (5 2 ).

Remarquons que dans la theorie precedente nous n’avons fait

aucune hypothese sur la valeur relative de e. Cette theorie pourra
done servir de base a Petude detaillee des lentilles cylindriques (au

sens optique du terme) et des assemblages de lentilles cylindriques

proposes pour la correction des aberrations de spherieite.

/

5. Etude Particuliere de la Lentille Perturbee

Cette fois on a a faire a une lentille ronde dont e constitue seulement
un parametre perturbant. On peut admettre que e est une quantite
tres faible et proceder par consequent a un developpement en serie

des expressions (5). On trouve alors en negligeant les termes d’ordre

superieur en e, des expressions de la forme

1 — e

cos 2#0

cos 26

cos 60

K

sin 2

6

0

(6)

Les projections de la trajectoire transgaussienne elliptique sont ainsi

exprimees en fonction de r T ,
trajectoire transgaussienne de la lentille

ronde, et de deux fonctions g et h dont la deuxieme est due essentielle-

ment au regime transgaussien, la premiere exist ant meme dans le

fonctionnement gaussien de la lentille elliptique sous la forme g(x.z).

Le calcul fournit des formules explicites pour g et h et les trajectoires

puevent ainsi etre caleulees numeriquement et jusqu’au bout.

Pour rT=0, e’est-a-dire au point d 'intersection avec l'axe du rayon
transgaussien de la lentille ronde, les quantites

r T z xg et Xh

restent finies et les expressions (6) deviennent

rx=e(G-\-H cos 2do) cos d0

ry
= — e(G—

H

cos 2(90) sin d0

(7)
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Ce sont les equations d’une hypocycloide a 4 rebroussements. La
“figure de moindre confusion/’ generalisation au regime transgaussien
du “cercle de moindre confusion” est ainsi une hypocycloide a 4

rebroussements pour une lentille elliptique, en bon accord avec
1 ’experience.4

6. Formation des Images

Les formules donnees permettent d’etudier en detail le mecanisme
de la formation des images en regime transgaussien elliptique. Pour
donner un seul exemple l’image de deux fils croises X est lln huit 8
en bon accord avec l’experience.

Enfin des proprietes focales peuvent etre definies dans les deux
plans de symetrie. Cette fois les distances focales dependront non
seulement du parametre fondamental x mais aussi de l’incidence r0/20

et de l’ellipticite e.

Disons pour finir que l’etude du regime transgaussien de la lentille

electrostatique elliptique est en plein travail et que les resultats deja
obtenus permettent de prevoir un developpement assez considerable

de la question.

* P. Grivet, F. Bertein et E. Regenstreif, The use of marginal rays for the study of assymetry in electro-

static lenses (Proceedings of the Conference on Electron Microscopy, Delft, Netherlands, juillet 1949).
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23. Progress in Microscopy by Reconstructed

Wavefronts

By D, Gabor 1

Microscopy by Reconstructed Wavefronts, or “Diffraction Micros-
copy” is an attempt to overcome the limitations of the electron

microscope in a roundabout way. As it is impossible to take a perfect

image with imperfect lenses, we produce first an imperfect one, in

which the information is present, though in a distorted form. This
is “decoded” in a second step, the reconstruction, which is carried out
by optical means, and which restores the original, as if it had been
imaged with a perfect optical system.
The information is never completely destroyed if the first electron-

optical image is taken with a coherent electron beam; it appears, in

a not easily recognizable form, in the diffraction fringes. If a strong
coherent background is superimposed, the diffraction pattern will not
only contain a maximum of information on the object, but will allow
its reconstruction by a very simple method: If one illuminates the

photograph by a wave that has suffered distortions corresponding to

those of the background in the original electron-optical system, a

correct image of the object will appear in the beam. In addition

there will appear also a second or “conjugate” image, but this can be
separated to some extent by focusing sharply on the correct image.

This principle has been demonstrated by light-optical experiments
three years ago, and has been described in detail in several publica-

tions. 2 The realization of the electron-optical scheme has been, for

the past two years, in the hands of Mr. M. E. Haine, and his col-

laborators, who will report on its progress, and on its difficulties.

Most of these difficulties would have to be overcome in any scheme
that aims to penetrate into the region of 5 A and below, and they will

not concern us here. There are others, chief of which is the question
of obtaining sufficient intensities with coherent electron beams to

avoid excessively long exposures, which are peculiar to diffraction

microscopy, but which will have to be overcome by electronic im-
provements. We will talk here only of optical improvements in the

reconstruction process, and of certain new applications of the basic

idea of diffraction microscopy.
The reconstructions that have been obtained so far from diffraction

patterns produced in the electron microscope appear decidedly in-

ferior to those that had been previously produced in optical experi-

ments. This may be due in small part to differences in the optical

and photographic techniques, but making all allowances for these,

there remains a deficiency which is evidently due to the difference

in objects . In the optical experiments the objects were of the type
that obscure only a small fraction of the field, and allow a strong

1 Imperial College, London, England.
2 D. Gabor, Proc. Roy. Soc. [A] 197 , 454 (1949); Proc. Phys. Soc. [B] 64, 449 (1951).
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background intensity to fall on the photographic plate. The theory
predicts the best results for objects of this type-

We thought until recently that in electron optics the reconstruction

principle could be applied only to self-supporting objects, as the thin

supporting membranes used in electron microscopy were believed to

destroy the coherence of the transmitted electron waves almost com-
pletely. Consequently the objects used for the tests were mostly
self-supporting zinc oxide crystals. Apart from the fact that such
objects tend to grow under the electron beam, rather rapidly, by
contamination, the}' are also sensitive to vibrations of the apparatus,
and ultimately the recognition of fine details might be frustrated

by the appreciable amplitude of their thermal vibrations, due to their

small strength. It has now been realized that sufficiently thin

membranes do not destroy the coherence, though they somewhat
reduce the contrast of the diffraction fringes, and appreciable progress

may be expected in the near future by using the right type of thin

objects, on sufficiently thin supports.

It has been recently realized that in light optics it is possible to

obtain good reconstructions even with the wrong type of objects,

which obscure a great part of the field and thus cut out most of the
coherent background, by adding a background wave that has not
gone through the object but around it. This will be discussed later.

To some extent this artifice could be used also in the “projection
method" of diffraction microscopy, as originally proposed. This,

however, had many disadvantages, and has now been replaced by the
“transmission method" of Haine and Dyson

,

3 which consists simply
in taking a defocused image of the microscopic object, using coherent
light. Let us see whether improvements in the reconstruction process
are possible if we take a hologram obtained by this method as the
starting point.

The spurious part of the reconstructed image has always been
interpreted up to now as caused by the presence of a “conjugate”
image. There is, however, an alternative interpretation: The re-

construction is imperfect, because two wave fields appear in it,

superposed. One is due to the “amplitude contrast,” the other to

the “phase contrast" of the original, plane object. This is by no
means an obvious result, and we will explain it, assuming for sim-
plicity that there were no geometric-optical errors present in the taking
of the hologram.

If we illuminate such a hologram by a plane wave, as shown in

figure 23.1, the two conjugate objects appear at both sides of it, at

equal distances z0 . Let us place a lens of focal length/ in the emerg-
ing beam, and consider its focal plane, which can be called the “Four-
ier-plane." If the transmission of an object (in any plane) is a func-
tion t(x,y) of its transversal coordinates, the amplitudes in the Fourier
plane will be, apart from a constant factor

( 1 )

that is to say the Fourier transform of t. £,77 are the “Fourier coordi-
nates," which are connected with the transversal coordinates xF ,

y

F

3 M. E. Haine and J. Dyson, Xature 166, 315 (1950).
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Figure 23 . 1 . Principle of full reconstruction by interpolation .

A, Parallel illuminating beam; B, beam diffracted in a certain direction; C, first
conjugate image; D, plane of hologram; E, second conjugate image; F, focal plane
of exploring lens “Fourier plane”; G, zones in Fourier plane. Solid line, amplitude
contrast; broken line, phase contrast.

in the Fourier plane by

xF=f\£, yF=f\y. ( 2)

We should obtain the same wave as in eq (1), if instead of a photo-
graph we had a “complex hologram” in the H-plane, whose trans-
mission function is

t{X,Y)=
fj

T(£, rj)e~ Titip2
e
2wHX^+Yri) d^dri. (3)

X and Y are the transversal coordinates in the H-plane. For proof see

Gabor (1951). pl=z0\ is the characteristic parameter of the trans-

formation. p=(£2+ ’t)' is the radius in the Fourier plane.

We do not, however, possess the function r, but only its real part,

which is the amplitude transmission of the hologram

\ (r+r*)=i
( (

(4)

In the second line we have written this in the form of a standard
Fourier transform, which can be compared with eq (3).

Let us now decompose the object transmission into an “amplitude
contrast” and a “phase contrast” part

t—tiYit2 , (5)

where both t x and t2 are real functions. Let Tx be the Fourier trans-

form of h, T2 the transform of it2 ,
so that T=Tx -\-T2 ,

where Tx and T2

are not of course, necessarily real. They have the symmetry properties

m, y)
=m- n), t2(l r?)

= -n(- l- 1?) . (6)

Substituting T=Tx -\-iT2 into eq (4), and using the relations (6), we

239



obtain

(r T r*)=
J J

[Tj cos tvp
p~— iT2 sin ivpp 2

]e d^drj. (7)

The expression in square brackets under the integral sign gives the

amplitude in the Fourier plane, and it is clear that this differs from
the correct function T. We notice, however, that on all those radii p

in the Fourier plane for which

pp
2=n (n integer) (8)

this amplitude is the same, apart from a factor (— l)
n as if the original

object were present, but with amplitude contrast alone. Similarly

on the radii

p p
2=n-\--> (9)

Ti is suppressed, and the amplitude is as if the object had only phase
contrast, again apart from a factor (— 1)L In short, we possess the

correct values of T, but only on certain circles
,
which are spaced like

Newton fringes, and contain information on amplitude contrast and
on phase contrast alternatively.

In order to utilize this fact we could think first of masking the whole
Fourier plane, except on the circles where the wave amplitude has its

correct value. That is, we admit only the circles as given by eq (8)

if we want the amplitude contrast image, or the circles given by eq (9),

if we want phase contrast, in both cases with n an even number.
Next, we could also utilize the circles with n odd, if we reversed the

sign of the amplitude in these zones, by advancing or retarding the
wavefront by half a wave. This could be done, for example, by a
glass plate into which a groove of suitable depth is etched at every
second circle, but it can be done much more simply by backing the
mask with a lens of suitable strength, positive or negative.

This way we obtain narrow annuli, cut out of the correct wavefront
corresponding either to the amplitude contrast or to the phase con-
trast- in the object. The idea naturally suggests itself that we might
obtain a further improvement by interpolating the wavefront between
these circles.

Before discussing means for realizing this interpolation, let us

estimate the error in the imaging of a point. Let this be a “ Gaussian
point”, at a distance xQ ,yQ from the axis of the Fourier lens, with a

transmission

t(x,y)a exp [—ira 2
[(x— x0)

2+(y— yo)
2
]\, (10)

whose Fourier transform is

1 exp (— Trp-/a-)e . (11)

We can now go over to a sharp point, by making <7—> 00
. Introducing

polar coordinates p,6 in the Fourier plane this is

T(p,$)=exp [2 iripr0 cos (8— 0O)L (12)
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where O0 is the azimuth of x0 ,y0 . Using a well known formula, we can
convert this into a Fourier-Bessel series

T(p,0)= Jo(2 lrrop)+2i± .U2irr0 p)e
iH>

(13)
1

We possess the value of this for any 0, but only on the circles tt p
2= n.

The question is therefore how well we can approximate the Bessel
functions Jk by interpolating at these points.

This question can be decided without much calculation. It is

known that the “half period,” i. e., the distance between consecutive
zeros of Bessel functions is always larger than tt, which is their limit

for large values of the argument. Thus we can expect good inter-

polation only if we have at least one interpolation point per interval 7r

of the argument 27rrn p. This gives

ro ( Pn+i Pn )
— rb 9

'

(14)

On the other hand either eq (8 ) or eq (9) give approximately

2npnAp=l. (15)

It is sufficient to consider only pre= pmax=YmaxA, where 7 max is the
aperture angle, because it is well known that a narrow annular aperture
gives practically the same resolution as a full one. Combining eq (14)

and (15) we now obtain the necessary criterion for good interpolation

f 0— PPmax ^oTmax- (lb)

This means that we can simultaneously reconstruct only a small part
of the image; not more than the area that has contributed to one
point of the hologram in the transmission method. This area is

traced out by the aperture cone whose apex is a point of the H-plane.
Even better results can be obtained if the object area is smaller.

This means that, in order to obtain good results by the interpolation

method, the object must be gradually reconstituted by scanning.
An optical method of interpolation is sketched out in figure 23.2.

From the mask the light enters a number of fine, transparent laminae,
with boundary layers of slightly different refractive index. By
multiple reflection it appears as if the light were coming, not from a
point, but from a patch with approximately Gaussian distribution of

light amplitude, but the same phase. Such an interpolator may be
perhaps realized by means of a tightly wound reel of film behind the

mask. It would be premature to enter into the discussion of details

at this stage.

Figure 23.2. Optical interpolation.
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The conclusion is that, at least mathematically, it is possible to

eliminate the “conjugate image’’ in the reconstruction, even if we have
only one ordinary hologram at our disposal. This conclusion is

somewhat surprising because of our instinctive belief that we must
pay in some way for the loss of information by the suppression of

phases. The reason that the reconstruction nevertheless succeeds (at

least in theory) is that we have not dealt with any kind of objects but

only with plane objects. Our mathematical process presupposed the
knowledge of the object distance z0 ,

and in principle one would have
to use a different mask for every z0 . It may be hoped that in practice

it will be possible to search for the right object position as we are now
searching for the errors of the electron-optical system. The right

distance is found if the object shows the sharpest details.

Our best hope is, however, that it may not be necessary to go to the
complications of the interpolation method, as the masking method,
especially in its perfected form with phase reversal in every second zone,

may give us sufficient improvement in the reconstruction of our more
difficult holograms. 4

When the idea of wavefront reconstruction first emerged, there

seemed to be little advantage in applying it to light microscopy,
where we have lenses at our disposal that are nearly perfect. It was
only recently that the author became aware of a distinct advantage
of the reconstruction method: In diffraction microscopy it is not
necessary to illuminate the object as strongly as in ordinary micros-

copy. Paradoxically, the illumination need be only a small fraction

of what is required for seeing or for photographing the object.

The principle is illustrated in figure 23.3. The instrument is

essentially a Jamin-Mach interferometer, with a special beam-splitting
prism at one end, which will be explained later. Otherwise the

apparatus differs from an ordinary interferometer mainly in that its

two branches carry very unequal light intensities. The object is

introduced in the branch in which the intensity is very low, for ex-

ample, 0.01 to 0.001 of the total. The rest goes through the other
branch, and constitutes the coherent background, which carries no
information on the object, and serves only to amplijy the weak image
carrying beam, with which it is united only at the photographic plate.

In order to explain this amplifying effect let us consider first only one
photograph. At one point of this plate let A be the large back-
ground amplitude, a the weak image-carrying amplitude. The
photographic plate records the resulting amplitude, whose square is

A2+a2+2Aa cos </> (17)

where <j> is the phase angle between the vectors A and a. If, as we
have assumed, A is large compared with a, we can neglect the small
term a2 in eq (17). The third term will be relatively large. For
instance, if the intensities A2 and a2 are in the ratio 100:1 in the two
branches, A and a are only as 10:1, and the contrast between the
maxima and the minima in the interference fringes will be (l.l/0.9)

2=
1.50, which is more than sufficient for photography. It can be ex-

pected that it will be possible to take photographs even if only 1/1000
of the light that reaches the plate has gone through the object. This

4 Note added in the proof, Feb. 2, 1952. In the meantime I have found that it is, in fact, possible to construct
zone filters that reduce the disturbing effect of the conjugate image to a small fraction, without having to go
to the complications of the interpolation and without using the necessarily very slow scanning process.
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Figure 23 . 3 . The principle of full reconstruction from
two complementary holograms.

The two holograms record two components of the image wave amplitude
at right angles to one another. A, Hologram I; B, hologram II; C,
quadrature prism (produces 90° phase shift between the two back-
grounds relative to the image waves); D, diffracted waves; E, object;
F, weak illuminating wave; G, strong background wave; J, back-
ground I; K, amplitude of image wave; L, background; M, amplitude
of image wave; N, illuminating the two holograms with waves in
quadrature reproduces the original image amplitude; O, resulting
background.

may enable us to take photographs of objects that are far too light

sensitive for ordinary microphotography.
The strong background assures in itself that the reconstructions will

be of good quality, but the scheme is capable of a further improve-
ment, by which the conjugate image is completely eliminated, and the
object becomes visible in three dimensions.
As seen from eq (17), and also from the vector diagram in the top

right corner of figure 23.3 in a photograph taken with a strong coherent
background only that component of the image-carrying amplitude
will be recorded that is in phase with the background, the component
in quadrature will be surpressed. Assume now that we take a second
photograph, in which we produce a 90° phase shift between the
amplitudes A and a. This photograph will record exactly that part
of the wave which had been suppressed in the other. If now we
illuminate the two photographs, with two background waves again at

right angles to one another, we obtain the original wavefront, added to

a uniform background. This is full reconstruction (in which no refer-

ence whatever is made to the position of the object) by means of two
“complementary” holograms.

Figure 23.4 is a sketch of the experimental instrument, under con-
struction. One of the two branches contains the object and the
objective. A dummy object plate and objective are introduced into

the other, to make the light paths approximately equal. The most
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Figure 23.4 Interference microscope utilizing the recon-
struction principle.

The elements shown in interrupted lines are used in the reconstruction
only. A, Hologram I; B, hologram II; C, mirror, backing the plate,

used in the reconstruction; D, photographic plate; E, tilting screw
used in the reconstruction; F, eyepiece for observing the reconstructed
image; G, sandwich layer for producing a quarter-wave phase shift

between the two backgrounds; H, objective; J, object; K, dummy
objective for symmetrizing the two branches; L, compensator; M,
illuminating wave containing 1 percent or less of the energy; X, back-
ground wave containing 99 percent or more of the energy; 0, beam-
splitting prism with very small reflection coefficient; P, condenser;

Q, pinhole; R, light source.

important element of the instrument is the “quadrature prism”,
which is to produce the 90° phase shift between the two photographs.
This may be obtained, according to the theory which we will not
detail here, by a “sandwich" reflecting layer, consisting of two semi-
reflecting coatings, separated by transparent material of suitable

thickness. Two further prisms are attached to the quadrature prism,
so designed that the two complementary photographs appear side by
side on the same plate.

In the reconstruction the object is taken out, and the double holo-

gram is backed by a mirror. The plate and the mirror are now tilted

until there is a 90° phase difference between the two backgrounds, and
the resulting wave is observed by means of the viewing device, shown
in hatched lines. The correct phase shift reveals itself by the vanish-
ing of the conjugate image and its accompanying fringes.

It is hoped to obtain three advantages over ordinary microscopy:
1. Once the double photograph is taken, it preserves the image of

the object in three dimensions. Moreover, this image can still be
viewed in bright-held, dark held, or phase contrast. We must,
however, mention the disadvantage, that coherent illumination is not
very suitable for deep objects, as every object leaves a “wake” of

interference fringes behind it.
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2. Only a small fraction of the light required for the exposure of the
photographic plate need go through the object.

3. Moreover, it is not necessary to destroy light-sensitive objects by
the illumination required for focusing, as there is no need for focusing,

and a blind shot can be taken.

Though this new interference microscope exists as yet only on
paper, 5 and some instrumental difficulties may have to be overcome,
the electron microscopist might well feel a pang of envy at the thought
of what can be done with light, and not with electrons. But is it

really impossible to realize at least the second advantage, the small
illumination? Two years ago I thought that this must be answered
in the negative, as I believed that efficient electron-beam splitters are

impossible. I am not so sure now, after some experiments with
electron reflection on graphite, which we have carried out recently

at the Imperial College. But. at this point I must break off*, as al-

ready I may have ventured too far into the realm of speculation and
conjecture.

Discussion

D r. L. Marton, National Bureau of Standards, Washington, D. C.:

Which face was used on the graphite reflector, and what were the re-

flection angles?

Dr. Gabor: It was microcrystalline graphite, polished in a cer-

tain way, so that the cleavage faces were alined with the surface.

The angles were of the order of 1 to 2 degrees.

Dr. J. Hillier, RCA Laboratories Division, Princeton, N. J.

In regard to using a supporting membrane and having a large amount
of coherent radiation coming through—if you are talking about it

coming through in the sense that it has not lost, any energy and in the

sense that nothing much has happened to the diffraction fringes, I

will agree with you, but their contrast will be appreciably reduced
with supports of perhaps 100 angstroms thickness. Besides, you
will have local phase shifts of the order of half a wavelength. I

wonder if that is not a serious disturbance.
Dr. Gabor: Originally we feared that coherence would be quite

destroyed by such local phase shifts as Dr. Hillier mentioned, but
now it appears that coherence, defined as the number of discernible

interference fringes, is not much altered by the supporting membrane.
The local phase shifts introduced by the support do not really matter
very much. If this structure does give an extra set of fringes, it

merely means that when you come to reconstruct them by the phase
contrast method the variable optical thickness of the support will

appear superimposed on the object. On the other hand, of course,

it is too much to hope that one will be able to get away with a sup-
porting film if we come down to resolutions of one or two angstrom
units because the atomic structure of the support may become visible

and obscure the structure of the object.

5 This work is now in progress at the Imperial College, London, with the assistance of the Paul Instru-
ment Fund of the Royal Society.
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24. Problems in the Realization of Diffraction Micros-

copy with Electrons

By M. E. Haine 1 and T. Mulvey 1

Many of the practical problems connected with the realization of

diffraction microscopy with electrons are essentially common with or
extensions of those associated with high resolution electron microscopy
by classical methods. There are, however, certain additional diffi-

culties which arise as a result of the high coherence of illumination

required for the new method. Basically these result only when the
new method aims at a higher resolution, though even for comparable
resolution practical necessities result in some increased difficulties.

It is the purpose of this paper to discuss some of the practical aspects

and difficulties of the method as we see them at the present time.

At the Paris Conference last year we showed that the projection

method of diffraction microscopy originally suggested by Gabor was
severely limited by practical difficulties introduced by chromatic
effects. A new method, the transmission method, previously pro-

posed, was shown to be free from these effects. The new method
comprises the recording of the Fresnel diffraction pattern produced
under conditions of high coherence suitably magnified to enable the
fine high order fringes not to be lost in the record as a result of the

finite photographic plate resolution. Optical reconstruction of these

transmission diffraction images, or holograms, are possible by methods
such as suggested by Dyson and by Gabor. The reconstruction
process has, in fact, certain advantages over the old method.
The apparatus used for the transmission method is essentially

identical with the transmission electron microscope. The main dif-

ference is that the illuminating system must be arranged to give a

highly coherent or parallel beam which results in lower illumination

densities and therefore longer exposure times. The diffraction process

only compensates for geometric aberrations and all other disturbing
factors such as variations in lens strength, movement of object or

microscope column and stray field effects must be reduced by the

amount which would be required for the same improvement in

resolution of the classical instrument. The elimination of such dis-

turbances is actually rendered more difficult by the increased exposure
times. Fortunately, the diffraction process itself provides very pow-
erful means for testing the instrument for the presence of these
disturbing factors. The diffraction test methods were also described
in Paris last year.

The important fundamental conditions necessary for the recording
of the diffraction pattern fringes out to an angle a corresponding to a
resolution d, defined by d=\/2a, can be derived from a geometrical
path difference equation. The derived expressions are shown in

table 24.1 compared with the corresponding requirements for classical

1 The Associated Electrical Industries Research Laboratory, Aldermaston, Berkshire, England.
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electron microscopy where clV/V and dl/I are the permissible frac-

tional variation in voltage and current during exposure; /, the objec-
tive lens focal length; X, the wavelength; ac ,

the maximum angle of

illumination; 7, the angle subtended by the effective source at the
object; Z, the axial off-focus distance; Cs ,

the spherical constant; q,

the ratio of the maximum to the actual angle of illumination; and 12, a
factor depending on the source brightness (|S) the photographic plate
resolution T and sensitivity rj given by

P
’

Table 24.1.

Classical Diffraction

Longitudinal coherence

^VEZ-V/A

Same as column 2.

Transverse coherence. a c<\/2d 7<
^

Exposure time _ __
4q'-V

tc~^T
Z2

U~l

Practically, the important factor is the exposure time. The trans-

verse coherence is a condition which must be met, while the exposure
time is an inevitable result which must be tolerated. It is seen that

the exposure increases rapidly with reduction in resolution instead

of being independent of resolution as in the classical instrument.
On the other hand, some control of exposure is possible through the
value of Z which is, within limits, under control of the operator.

In the classical instrument, the exposure time worked out from the
expression shown for a value of q= o and for typical values of the other
parameters is 0.05 sec. In practice, of course, this is inconveniently
short and lower intensities are used with the corresponding reduction
in damage to the object, also full use is not normally made of the

photographic plate resolution.

Diffraction microscope exposures (in seconds) for various values

of d and Z are shown in table 24.2.

Table 24.2.

\
\d{A)
\

Z{jj.) \
1 2 4 8

1 130 32 2 0. 125

10 13, 000 3, 200 200 12.5

100 1, 300, 000 320, 000 20, 000 1,250

These figures assume \f/= 20/z, 77=4X10 -11 coulombs and /3= 100,000

amp/cm2
ster. It is seen that in order to keep exposures to a reason-

able value, the off focus distance must be kept small.

Our experience so far has shown that much is to be gained by reduc-
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ing exposure times to a minimum to overcome the disadvantageous
effects of slow drifts in object position, etc. The logical conclusion
would seem to be to work on focus. In fact, although the exposure
time required is a minimum for best focus, incidental disadvantages
result. In the first case the difficulty of obtaining accurate focus for
object detail of the type that might be usefully observed by diffrac-

tion microscopy would be very great because of the very small contrast.
Also, within the aberration caustic of the objective lens some peculiar
secondary effects complicate the diffraction fringe pattern by folding
it over on itself. It would seem practicable to use a value of Z down
to 3 or 4 fi which already gives reasonably small exposure times
(e. g., a few minutes for d= 2 A).

The part played by the photographic plate is important. The
plate must record the diffraction fringes in such a way that reconstruc-
tion is possible. The photographic resolution is determined largely by
the path of the electrons in the emulsion, a minimum value of 10 to

20 (i is obtained for reasonable voltages. The effect of the random
distribution of grains in the plates is of interest. For a given area
of plate the randomness of the recorded signal will be at least as
large as the randomness in the number of electrons falling on that
area. We have made measurements of this randomness, or noise, and
the measurements show the noise to be approximately equal to that
which would be expected from the random distribution in the electron
beam. Consider an object consisting of a circular opaque disc of dia-

meter equal to the resolution limit, calculation shows that the fringe

contrast in the hologram of such an object would be such that for

resolutions of 1 to 2 A the noise over the area of one fringe would
exceed the fringe contrast. This would be very much more so for a
practical object of much less than 100-percent contrast. Thus, the

hologram would appear to the eye or to a microdensitometer of infinite

sensitivity and resolution as a completely random distribution of

photographic grains. The question arises as to whether such a holo-

gram would reconstruct. Irradiation of a completely random dis-

tribution of scattering points with coherent radiation will produce on
a subsequent screen no contrast variation. However, any degree of

order in the distribution will produce a contrast variation or image.
The diffraction pattern, although constituting a negligible departure
from randomness over small areas, will, when treated as a whole,
produce a pattern. This pattern will under the correct focusing con-
ditions be the reconstructed image of the original object. The con-
trast and noise over the area of the reconstructed image will be the
same as would be expected in a directly formed image. In practice,

it is very desirable to stop out the background wave in the recon-

struction apparatus and so obtain a dark field image, since particles

only a few angstrom units in size will otherwise give a contrast too

small for observation.

In our experiments, by paying careful attention to mechanical stage

design and general instrument stability both mechanical and electrical,

we have so far been able to obtain a resolution of 5 to 6 A in the
diffraction image.

.Reconstruction of such images is rendered difficult by the unsuit-

ability of the type of object that it has so far been possible to use.

Diffraction microscopy does not take kindly to an object that occupies
too much of the total area of the field. The ideal object is very small,

as, for example, a small collection of single scattering atoms or atom
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clusters. On the other hand, the object should be freely supported
without the usual film which would tend to destroy the coherence of

background wave. The objects so far used have been metal oxide
crystals or carbon black. In fact, whatever objects have been used
rapidly contaminate. In theory, contamination should not neces-

sarily be any worse than in the classical instrument, as the same
coulomb loading is required for an exposure. However, in seeking a

higher resolution, a reduction of contamination is important. Also,

since the current density at the object is less, the object operates at

a lower temperature with a resulting increase in contamination.
The final object never departs significantly from straight edges

which are far from ideal as test objects. Further progress depends
very much on eliminating contamination and devising suitable means
of mounting specimens. Supporting films need not be entirely ruled

out as experiments have shown the loss of coherence may not be as

serious as might be expected.

Dr. Hillier: You said, and I quite agree with you, that the noise

in the electron beam is a fundamental limitation—That also agrees

with some work we have been doing recently. However, you say that

your mechanism integrates out the noise within the range, but is that

not defeating your purpose? Is it not the noise from the diffraction

range that constitutes the information that is going to give the high
resolution?

Mr. Haine: No. At one time we thought actually that it was
the noise, particularly in the last ring, that determined whether we
could get the resolution. More recently we have come to realize that
you integrate the noise over the whole hologram. If you carry out
this integration, you find that the signal gives a contrast that is exactly

the same as the contrast in a transmission microscope, and the noise

again is exactly the same. The signal noise ratio is then identical.

Dr. Hillier. Yes, but you are referring to a single point.

Dr. Gabor: The hologram for each point overlaps the whole plate.
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25, On the Theory of the Magnetron

By L, Brillouin 1

A rather complete report on the theory of the one anode magnetron
was recently published in “Advances in Electronics”, vol. Ill (1951),
and the reader will find in this report 2 the detailed calculations.

Since experiments do not seem to check too well with the theory, it

may be useful to specify that the assumptions made in the discussion

were the usual ones: I, electrons leaving the cathode with zero initial

velocity; II, space-charge limited current, when the electric field is

zero on the cathode, or saturation current, when the field is not zero

on the cathode; III, steady conditions with a well defined electric

potential at all points between cathode and anode; IV, The space
charge modifies the electric potential distribution between cathode
and anode, and it is assumed that direct collisions or interactions

between electrons need not be introduced. The average potential is

supposed to represent the only important effect of electron interac-

tions, through space-charge.
Condition III implies that electrons may strike back on the cathode,

but in doing so they come back to the same potential from which they
started—lienee they must have a back velocity equal to their initial

velocity, which is zero (assumption I). Back bombardment by elec-

trons with large velocities is thus forbidden. We must of course
admit that assumption I is only an approximation. There may be
small initial velocities. In such a case the back bombardment
velocities will also be small.

Two different types of solutions were proved to be theoretically

possible: A, double stream solutions with part of the electrons moving
away from the cathode with a velocity +Wr ,

at a certain distance r,

and part of the electrons moving back with a velocity — VT \
B, single

stream solutions with no electrons moving backwards.
The discussion was first carried out for a plane magnetron, and this

was found to represent a good approximation whenever the cathode-
anode distance was small compared to the cathode radius. Prac-
tically, the plane solution is a good first approximation when

£!=—<1.4
rc

ra is anode radius, and rc ,
cathode radius. If the ratio R becomes

larger, the cylindrical model must be discussed, and gives very dif-

ferent results when i?> 2.3.

This point should be noted in connection with some recent experi-

ments performed by L. Marton and D. L. Reverd in at the National

1 TBM Watson Scientific Computing Laboratory, New York, N. Y.
2 L. Brillouin, Plane Magnetron, p. 85-144; L. Brillouin and F. Bloch, Cylindrical Magnetron, p. 145-181.
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Bureau of Standards, 3 where magnetrons with a large value of B were
used in the investigation. Two different kinds of space-charge dis-

tributions, apparently corresponding to solutions A or B, were ob-
served, and these results check with theoretical predictions. For
large B values, it appears that both solutions may take place. For
low B values, when the plane approximation can be used, the condi-
tions for excitation of either A or B are clearly defined. 4

If the current
never reached saturation since the time when operation of the tube
was started, the single stream B solution should obtain. If saturation
has been reached at some time or other, the double stream A solution

has great probability of being established.

In addition to these results, the conditions for negative resistance

were computed, and the peculiarities of the corresponding trajectories

discussed. The stability or instability of trajectories was discussed
only for motions maintaining the cylindrical symmetry, with a space-
charge density p (r) independent of the angle 6. Experiments 5

clearly indicate some results which are not accounted for by the
theory: I, large noise level; II, anode current below cut-off; and III,

large back bombardment on the cathode.
The third result clearly indicates that the motion is not actually a

steady motion, and that our previous assumption III cannot be main-
tained. There must be large oscillations in the space-charge with an
average potential V depending on r and maybe also on d. The
mechanism for the excitation of such internal oscillations may be
found in the interaction between electron beams, discovered by A. V.
Haeff. 6 This interaction may greatly amplify the initial small per-

turbations in electronic emission, and explain the three experimental
results just described.

It might be interesting to check whether similar experimental
anomalies could not be discovered in a triode with positive grid and
low potential anode, which may also exhibit either single-stream or

double-stream solutions. 7

3 J. Applied Phys. 21, 42 (1950) and 22 (1951).
< L. Brillouin, Phys. Rev. 70, 187 (1946). Elec. Commun., 22, 110 (1944); 23, 458 (1946.)
5 R. L. Jepsen and M. W. Muller, J., Applied Phys. 22, 1196 (1951); D. Gabor and G. D. Sims, NBS Circ.

527, p. 253.
6 A. V. HaefT, Proc. Inst. Radio Engrs. 37 , 4 (1949); Phys. Rev., 74 , 1532 (1948).
7 C. E. Fay, A. L. Samuel and W. Shockley, Bell System Tech., J. 17 , 49 (1938).
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26. On the Theory of the Magnetron

By D» Gabor 1 and G. D. Sims 2

The most elementary fact about a cylindrical magnetron in dc-
operation is the absence of a sharp cut-off. It is also the most difficult

to explain. All theories about the “steady state” of the magnetron
agree in the point that there must exist a maximum orbit, determined
by the energy theorem and by the momentum integral. If this orbit

does not reach the anode, there should be no current, and the cut-off

ought to have a width of the order of the emission velocities, i. e., a
small fraction of a volt. In fact, one finds a tail, which a steady-
state theory could explain only by an “electron temperature” of the
order of 10-20 volts.

It has been suspected for a long time that the tailing-off of the cut-

off curve is in fact due to internal oscillations of the magnetron. Since
the tail appears also if the a-c impedance of the outer circuit is zero,

i. e., at short circuit, measurements by ordinary methods are impossi-

ble. One can only approach the short-circuit case by leaving a small
impedance sufficient for measurement and extrapolate these observa-
tions. These show a “noise” in the region of the operating frequencies
of the magnetron, not sharply defined. It is also known that the noise

increases sharply at certain critical values of the magnetic field.

Another observation is the self-heating of the cathode in the cut-off

state, where there is only a d-c current flowing to the anode. These
are essentially all the experimental data at our disposal.

On the theoretical side the situation was long obscured by our
ignorance on several fundamental points. Perhaps the most impor-
tant is the question whether we are at all justified in applying “self-

consistent,” i. e., “single-electron” theories to the magnetron? This
was assumed from the start by Brillouin and by Hartree independently.
Hartree made first a rough estimate of the effect of “electron-

collisions,” using the formulae of L. H. Thomas, and justified it a
posteriori by showing that the average time spent by an electron in

the cloud is not sufficient for the electron-electron interaction to

become important. This procedure appeared also justified by the
good agreement with experiments of the theory of the oscillating

magnetron.
In view of the evident clash of theory and experiment in the case of

the nonoscillating, almost cut-off magnetron one must ask two
questions: 1. Is Thomas’ formula correct? 2. Even if the interaction

is as small as given by the Thomas formula, can we neglect it in the
cut-off condition, in the region where, according to Brillouin’s theory,
electrons describe extremely long, almost circular trajectories around
the cathode?
The first question can now be answered. Mr. E. A. Ash, at Imperial

College, London, has recently measured the diffusion of a weak electron

1 Imperial College, London, England.
2 General Electric Co., Wembley, England.
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beam in a plasma, and found that it agreed closely enough with
Thomas’ formula.
The second question is more difficult to answer, but it appears that

we can evade it, because electron interaction is not the only thing which
has been neglected in the single-stream theory. The initial velocities

have been also neglected, and, though this appears a small matter at
first sight, it has serious consequences.
One of us 3 has investigated the theory of the steady state with

initial velocities, but neglecting electron-electron interaction. The
results are rather surprising. They depend quite essentially on how
many degrees of freedom one allows at the start for the initial veloci-

ties. If one allows none, one obtains the Brillouin single-stream
solution. If one allows two, one obtains a double stream, at all

anode-cathode ratios (not only where, for example, the Page-Adams
theory postulates them). If one allows three degrees of freedom, and
if one makes in addition the assumption that the electron trajectories

are so long that “ergodic disorder” can be postulated, one obtains
again a solution rather similar to the Brillouin steady state in appear-
ance, though the space charge density falls off towards the anode with
a somewhat different law from Brillouin’s. This is a somewhat simpli-

fied representation of the results, valid for small initial velocities. At
large initial energies one can obtain a confusing variety of equilibrium
states of the electron cloud.

It is very striking that finite initial velocities, however small
,
give

results so strongly dependent on the degree of freedom. An unex-
pected feature of magnetron theories with zero initial velocity is

revealed: They relate to a degenerate case. In order to make them
physical one must use criteria which could not be even suspected.
One of us (G. I). S.) has found recently that at a cathode temperature
of 1,000° K and a magnetic field of 1,700 gauss the emission current
must exceed 1.2 X10 6 amps/cm2 for a single stream state to be possible.

Before trying to clear up all the questions that arise in connection
with the questions of initial velocity and electron interaction, we have
made an attempt at an investigation of the stability of the two-stream
steady state. For reasons such as the above mentioned, we expect this

to apply to a wide variety of magnetrons, possibly to all which are of

practical importance.
It is to be understood that this steady state will exist only so long

as the electron cloud keeps at a safe distance from the anode, and is

undisturbed, because once disturbances of a certain type are produced,
they will grow and maintain themselves automatically in a state of

more or less steady oscillation.

We investigated first the possibility of radially symmetrical pulsa-

tions of such a cloud, but we found that these will always be damped
out if there is an outer short circuit. But when we tried azimuthally
periodic disturbances the result was quite different (fig. 26.1). It was
found that beyond a certain azimuthal number (number of periods

round the circle) there was always a tendency for the cloud to start

self-oscillations . The mechanism is roughly this: The electrons that

reach the anode will have energies smaller than corresponding to the

voltage between the cathode and the anode.
Such an electron leaves a part of its energy behind, in electro-

magnetic form. This in turn is passed on to one or several electrons

3 D. Gabor, Stationary electron swarms in electromagnetic fields, Proc. Roy. Soc. [A] 183, 436 (1945).
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Figure 26 . 1 . a, Steady state; b, preoscillating

state with n= 5.

that return to the cathode with more than their initial velocity. As
the anode potential is completely steady, no oscillating energy appears
in the outer circuit. The result is merely a deficiency in anode heat,

and an equal excess of cathode heat.

One can imagine such a mode as a wheel with n spokes, rotating in

the same direction as the electrons. The spokes oscillate a little

radially, and they touch the anode always near the instant when the
electrons have minimum velocity.

The frequencies are very nearly integer multiples of the inverse

transit time of an electron, from the cathode back to cathode. For
any such frequency any number of oscillating modes are possible,

provided that the spoke number n is large enough. This, of course, is

only a first approximation; in reality, one must expect the frequencies
somewhat dependent on n. The noise-like character of the pre-

oscillation is explained by this near-degeneracy, as in general no mode
can be excited in its pure form for any length of time, and the energy
probably pendulates between them, in a complicated manner.
One can expect these oscillations to grow particularly easily if the

time taken by an electron for an excursion to the anode and back
resonates with the cyclotron frequency or one of its multiples. One
must therefore expect certain critical combinations of potential and
magnetic field, for which the noise is maximum. This seems to be
borne out by observations.

This is a short preview of our results, and necessarily of a pro-
visional nature. Further progress is expected to be difficult, because
while the critical frequencies and the stability criteria can be, at least

approximately, obtained from a linear theory, the coupling between
these modes requires a nonlinear treatment, which will have to be also

statistical, in order to account for the width of the noise-spectrum.
The most difficult problem is the calculation of the cut-off curve,

resulting from these oscillations, which shows that this most ele-

mentary of observations on magnetrons relates in fact to the most
intricate phenomena. It is likely that the theory will have to stop

somewhere short of a complete quantitative explanation, until new
experiments enable us to make useful simplifying assumptions.
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27. A Point X-ray Focus for Shadow Microscopy

By V. E. Cosslett 1 and W. C. Nixon 1

Introduction

A number of schemes have been proposed for high resolution

microscopy with X-radiation. The wave-length being of the order of

1 A it is in principle possible to obtain a much higher resolving power
than that of the best optical microscope, which gives about 1000 A
when ultra-violet radiation is employed. The simplest arrangement
is that in which X-rays are allowed to illuminate a thin specimen
placed in close contact with a photographic plate at some distance
from the source (fig. 27.1a). The resulting negative is then enlarged
photographically for observation, so that the limiting resolution is

essentially that of the grain of the recording emulsion. Engstrom [1]
2

in particular has refined this method and obtained resolutions of the
order of 1 /jl, as also have Elirenberg and Spear [2]. It appears to be
impossible to equal optical resolving power by this means, however.
The second system is that proposed by Kirkpatrick and Baez [3], and
since investigated by several other workers, in which curved crystals

are used to focus X-rays incident at glancing angles (fig. 27.11)); this

is directly analogous to reflecting optical microscopes. Its practical

realization encounters mechanical difficulties, as pointed out by
Elirenberg [4], and it is doubtful again whether the optical resolution

limit can be approached.
The remaining possibility is to use X-radiation simply to project

shadowgraphs of objects, magnification being obtained partly geo-
metrically, by recording at a distance, and partly by subsequent
photographic enlargement. The system was originally proposed by
Sievert [5], with a conventional X-ray source (fig. 27.1c). Later
von Ardenne [6] suggested the use of an electron lens to reduce the
electron beam to a minute spot on the target, since the obtainable
resolution depends in the first place on the size of the X-ray source.

An alternative system [7, 8] is to form the electron spot on a Lenard
window as target, utilizing the transmitted radiation (fig. 27. Id); this

allows the specimen to be brought very close to the source, giving a
large geometrical magnification with short camera length and mini-
mising diffraction effects in the specimen. Such an arrangement has
the advantage over electron microscopy that the object may be kept-

in air, so that biological specimens can be examined without being
dried and exposed to vacuum, which normally kills them. It is this

last system that has now been investigated in some detail, and from
which a resolution of optical order has been already obtained from a
variety of specimens. The work was begun at Oxford in 1939 by one
of us (V. E. C., with the aid of a Research Fellowship from the Uni-

1 Cavendish Laboratory, University of Cambridge, Cambridge, England.
2 Figures in brackets indicate the literature references on p. 264.
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Figure 27 . 1 . Methods of obtaining X-ray micro-
graphs.

a, Contact photography on fine-grain film; b, true focusing by
reflecting surface; c, shadow projection from normal target;
d, shadow projection by X-rays transmitted through thin
target.

Figure 27 . 2 . Schematic arrangement of X-ray shadow micro-
scope.

Figure 27 . 3 . Constructional details of X-ray shadow microscope (diametrical
section).

versity of London), and was taken up again after the war; the main
development has taken place subsequently in Cambridge.

Experimental Apparatus

The experimental arrangement is shown in outline in figure 27.2,

and in detailed cross section in figure 27.3. A beam of electrons is

obtained from a triode gun of normal construction. A tungsten
hairpin filament is situated at the centre of an aperture (diameter,
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1.0 mm) in the surrounding grid cylinder, which carries a negative
bias potential. The emitted electrons are accelerated towards the
anode, by a potential difference that is variable from 3 to 15 kv, and
pass through a hole in its surface of 3.5 mm diameter. The electron
beam thus formed passes down the axis of the evacuated metal tube
into the pole-pieces of an electron lens, which focuses it into a small
spot on the metal foil that closes the end of the tube. It. is found
convenient to employ a first lens as condenser, to collimate the beam;
the cross section of the beam is then visible on an intermediate viewing-

screen covered with fluorescent material. The second electron lens

is of high power and narrow bore (6 mm). The magnification of such a
system is a minimum, in the absence of intermediate image formation,
when the beam forms a parallel bundle between the two lenses, and is

then given by the ratio of their focal lengths. The focal length of

the first lens was 15 cm and that of the second was 2.5 mm at mini-
mum; the minimum magnification, M, was thus 1/60. The electron

gun gives a beam having a minimum cross section, somewhere between
cathode and anode, of about 0.05 mm diameter. The minimum spot
size to be expected would then be 0.8

To ensure that the focused spot remains stationary during exposures,
the applied potential and the current in the lenses must be constant
to a high degree. The former is obtained from a high frequency
rectifying set of conventional design, and the latter is supplied from
6 v accumulator batteries. The sharpness of the photographs shown
indicates that the requisite stability is obtained. The several com-
ponents of the apparatus are provided with transverse adjustments
working about flexible metal bellows (fig. 27.3), so that accurate
alinement can be carried out and maximum brightness of the focused
beam be assured. During this procedure a small fluorescent screen is

placed at the end of the tube instead of the metal foil. With the target

in position, the emitted X-rays are still powerful enough at 10 kv for

the shadowgraph of an object to be visible on a screen placed at the

position of the recording plate.

The size of the electron spot is determined by the aberrations of

the final electron lens as well as by the size of the source. It is there-

fore necessary to limit its aperture by means of a stop of small diameter;
a platinum or copper aperture of 0.25 mm diameter was used in most
of the work. At a focal length of 2.5 mm and spherical aberration

coefficient (Cs ) 1.5 mm (cf. van Ments and Le Poole [9]; Liebmann
[10]), this would limit the spot in the paraxial plane to a diameter
0.4 n, or to about one-third of this in the plane of least confusion, well

below the minimum spot size as fixed by the diameter of the effective

cathode.
The target used for most of the work was a tungsten foil of about 1

n thickness, supplied by the Philips Laboratories, Eindhoven, the

unsupported area had a diameter of 0.25 mm. Careful search with

an optical microscope enables pieces of foil to be chosen that have no
visible holes and that hold vacuum overlong periods. The comparison
made by Oosterkamp [11] of the relative merits of various metals as

X-ray targets showed that tungsten has a distinct advantage over all

others, including copper, so far as thermal properties and efficiency

of X-ray production are concerned. Some advantage would accrue

from the use of copper, in the form of its strong characteristic radiation,

if voltages greater than 10 kv were to be employed. However, longer

wavelength X-rays were desirable because of their stronger absorption
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Figure 27.4. Experimental X-ray shadow micro-
scope.

in biological material. Wavelengths of around 1 A were used in most
of this exploratory work, for reasons of experimental convenience,
but photographs have also been taken with longer wavelengths, up to

4 A. Beyond this wavelength, the absorption of the radiation in the
air path of the camera becomes appreciable.

The camera is a small light-tight box, normally of length 2.5 cm for

an image 1.5 cm in diameter, but extending to 8 cm in length for a

larger image of 4 cm diameter. The specimen to be examined is

mounted close to the target in such a way that it can be moved across

the axis in two directions at right angles, and also along the axis for

varying the magnification. With an accelerating voltage of 10 kv,

the exposure time is of the order of 1 min on slow, fine-grain X-ray
emulsions, with a beam current in the order of 10 pt\ on a spot of about
1 p diameter. The complete apparatus is shown in figure 27.4, being
mounted vertically on a tripod support, with the electrical gear at

the rear.

Preliminary Results

The initial experiments have thrown light on the possible range of

application of the method, and its probable ultimate resolving limit.

Figure 27.5 shows test grids, the finest being 1,500 meshes per inch,

along with a 100 p thick section of frog kidney impregnated with
phosphotungstic acid; the fissures are drying artefacts. Clearly the
contrast in biological tissues is so poor at a wavelength of 1 A that
thicknesses considerably greater than 10 p are needed to give an ade-
quate picture, unless dense structures or heavy elements are present.

Figure 27.6 and 27.7 are a comparison optical and X-ray pair of a
small insect (Cyclops). The resolution is rather better in parts of the
optical picture, but the depth of focus is limited. The X-rays render
visible certain of the internal structures and also show the whole
specimen in focus at the same time. Figure 27.8 shows greater
detail in the rat flea (Xenopsylla cheopis). In both figure 27.7 and
8 the reference grid is composed of silver bars of width 2.5 p and 3.5 p
in the respective directions. The resolution in the shadowgraph
thus may be estimated as approaching 1 p.
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Figure 27.5. X-ray micrograph of
section of frog kidney

,
100 n thick

and stained with phosphotungstic
acid.

Also 200-mesh copper grid and 1,500-mesh silver
grid (x40).

Figure 27.7 Light optical micro-
graph of cyclops specimen with
1,500-mesh silver grid (x55).

Figure 27.8. X-ray micrograph of rat

flea (Xenopsylla cheopis), and 1,500-
mesh silver grid (x30).

Figure 27.6. X-ray micrograph of Cy-
clops specimen with 1 ,500-mesh silver
grid (x55).

The present exposure time is too long for successive pictures of an
insect to be taken without immobilising it temporarily. However, it

is cpiite practicable to anaesthetize it from time to time for photog-
raphy, then to permit it to revive and continue development between
exposures. Figure 27.9, 10 and 11 are a series thus obtained of a red
mite, the second photograph being taken four days, and the third

seven days after the first. Considerable change lias visibly taken
place in the interim, but it is probable that it is mostly due to inade-
quate feeding and partial desiccation in this first experiment. The
effect of the X-radiation on the insect needs also to be investigated;

the dose rate is of the order of 50 roentgen per minute. All these
matters, are now under active examination.

It is readily possible to take stereo-micrographs of an object, by
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Figure 27 . 9 . X-ray micro-
graph of anesthetized red

mite
,
and 1 ,500-mesh sil-

ver grid (xfO)

.

Figure 27 . 10 . Same red mite

4- days later (x40).

Figure 27 . 11 . Same red mite

7 days later (xfO).

Figure 27 . 12 . Stereographic X-ray micrographs of Aphis
Fahae, and 1,500-mesh silver grid (x28).

moving it slightly between two exposures or by tilting its support oi

that of the recording plate. The first method has been used on several

subjects, and a typical pair of pictures is shown in figure 27.12. It is

thus possible to get an accurate three-dimensional view of a specimen,
which is particularly important in the case of insects, the total volume
of which is large compared with the size of detail to be seen.

Resolution Limit

The electron spot in the work here described was designed to be
1 p. in diameter, and the results show that a resolution of this order can
be obtained. In the first place the resolution limit is set by the size

of the X-ray source, taking into account the spread of the incident
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electrons within the target. In tungsten the range of 10 kv electrons
is appreciably less than 1 fj,; in copper it would approach this figure.

Consideration of the practicable limit of resolution for this type of
microscope rests finally on the tolerable length of exposure. By using
two stages of demagnification, an electron spot of the order of 100 A
diameter can be obtained without great difficulty (Hillier and Baker
[12]). The intensity then becomes so small that the exposure might be
impracticably long, especially for biological specimens. It becomes a
question of what intensity can be drawn from an electron gun, and
whether the incident energy can be dissipated from the spot without
melting the target metal.
For a spot diameter, small compared with the area and thickness

of the target, Oosterkamp [13] has shown that the permissible loading
(energy per unit area) is inversely proportional to the diameter; the
energy input is then directly proportional to the diameter. Although
correction is necessary when the spot is of similar dimensions to the
thickness of the target, the relation still proves to be nearly linear in

the region of interest. A more exact consideration, taking into

account the penetration of the beam into the target, does not change
the result appreciably (Cosslett [14]).

The electron beam has to be delivered to the target through an
aperture, the size of which must be reduced with the spot diameter so

as to ensure that the spherical aberration is always smaller than the
latter. If the reduction in spot size is effected by increasing the lens

strength, rather than by reducing the cathode size or distance, it

fortunately appears [14] that the aberration coefficient of practical

lenses falls in such a way as to ensure that the energy delivered through
the aperture is approximately proportional to spot size, and not to

some higher power.
The question remains whether the energy delivered by the X-ray

beam can be dissipated in the target without melting it. Application
of Oosterkamp ’s figures shows at once that electron beams of normal
intensity would not raise its temperature appreciably when the spot
size is of the order of 1 n, provided that the target is not thinner than
this. In order to approach the melting point of tungsten, the beam
intensity must approach a value of 106 amp cm-2

steradian
-1

,
corre-

sponding to a filament temperature of 3,000° K. With (3= 10 5 amp
cm-2

ster
-1

,
the load on the target is of the order of O.lw, or 10 7 w/cm2

,

the current density being approximately 10 amp/cm2
at the filament

and 10 ix amp/ju 2 at the target. Intensities of this order have been
drawn from the gun in the present work, to keep the exposure time
small. Further reduction in spot size would lead to more favorable

conditions still in the target, so that forced cooling is unnecessary in

this apparatus provided that the spot size is never allowed to become
larger than a few microns. At the same time, there is little point in

overheating the filament still further, since its life would soon fall

below the required exposure time at high resolution, as mentioned
above.

It thus appears that a further reduction of 100-fold in spot size is

entirely feasible, giving an equivalent resolution limit for X-ray
microscopy, which is some ten times beyond the limit with ultra-

violet light. The exposure time, however, would then be 100 times
greater and hence in the order of hours. Apart from the iong immo-
bilization of biological specimens, the exposure time now becomes of
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the sameorderTasJthe life of the filament. There may well be speci-

mens/* especially those impregnated with heavy elements and thus
already killed, for which such long exposures could be tolerated. It

would appear more useful, however, to aim in the next stage of

development at a resolution in the same order as that of ultraviolet

microscopy; with a spot of 0.1 n ,
exposures would be of the order of

10 min. For optimum efficiency the target would need to be
about 0.25 ju thick, but it could be strengthened to withstand atmos-
pheric pressure by a layer of beryllium or other light metal, which
would not seriously weaken the X-ray beam.

During the course of this work one of us (V. E. C.) has been sup-
ported by a Keddey Fletcher-Warr Research Studentship of the
University of London (at the Electrical Laboratory, Oxford, 1939-41)
and by an I. C. I. Research Fellowship (at Cambridge, 1946-49), and
the other (W. C. N.) by a Scholarship of the Research Council of

Ontario. Our thanks are due also to D. A. Taylor and Major S. S. D.
Jones, who assisted in the preliminary experiments. We are indebted
to Electrical and Musical Industries, Ltd., for fine silver grids, to

the Philips Laboratories for thin tungsten foil, and to Metropolitan-
Vickers for the magnetic electron lens used in the early work.
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28. X-ray Shadow Microscope

By L. Marton 1

Several attempts at microscopy by X-rays have been reported in the
literature. One of the latest is that of Burgers, who employed a method
originally proposed by Borsch and later employed by Bragg. The
Borsch-Bragg-Burgers method is a two-step method giving the highest
resolution of all possible attempts at X-ray microscopy. Its essential
limitation, however, is that it can be applied only to such periodic
structures as crystal lattices.

Another attempt by Kirkpatrick and collaborators is based on graz-
ing reflection on curved surfaces. Up to the present its resolution lias

been rather poor, not even attaining that of light microscopes.
A third approach to X-ray microscopy consists in producing an

extremely small source of X-rays, from which a shadow image is

formed by central projection. The original idea was conceived about
twelve years ago. At that time I had calculated the feasibility of such
an instrument. My own manuscript on the subject, however, was held
back from publication because of the publication of the same idea at
the same time by von Ardenne. With the technical means at our dis-

posal at that time, however, the available intensity was extremely low,
and exposure times of several years—even as long as one hundred
years—could be expected. For this reason both von Ardenne and I

dropped the idea at that time. Furthermore, no similar research was
performed elsewhere

.

One of the chief limitations of the whole project was the low current
density emitted by the electron source. Since that time considerable
progress has been made in the development of emitters of high current
density. The chief reason why the project, which seemed utterly
impractical twelve years ago, is today a sound one is the availability

of field emitters producing a current density as high as 10 8 amp/cm2

,

instead of 0.1 amp/cm2 as in the old project. It is this tremendous
increase in emission, by the factor of 10 9

,
which makes it advantageous

to revise completely the entire calculations and, indeed, an instrument
of this kind is today a perfectly feasible one.

The proposed X-ray microscope, in its present conception, consists

of a held emitter, an electron lens, and a suitable target. The held

emitter is of the tungsten point type, which has been very thoroughly
investigated by a group of workers of whom particularly E. W. Muller
in Germany, j. A. Becker at Bell Telephone Laboratories, and W. P.

Dyke at Linheld College, Oregon, should be mentioned. Figure 28.1

summarizes some of the data on the total emission from a point, as a
function of the reciprocal voltage (taken from Dyke and Troian’s

ONR Report, Contract NSonr-72400, dated June, 1950). Part of the

total current passes through the aperture of an electrostatic lens, which
forms, on the target, a one-to-one image of the point. Figure 28.2

1 National Bureau of Standards, Washington, D. C.
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Figure 28 . 1 . Field emission from Dyke &
Troian

,
ONR-Report, June 1950.

, Measured by Dyke & Troian;
,
assumed

averaged.

gives the total target current as a function of applied voltage. This
target current is concentrated into a spot whose diameter, in absence
of aberrations, can be computed to be of the order of 5 to 10 A. Spheri-
cal aberration will enlarge this image considerably, and it can be
assumed that the total diameter of the image, as spread by spherical

aberration, will be of the order of 50 A.
The graphs of figures 28.1 and 2 are plotted only for relatively low

accelerating potentials, because the X-rays are emitted not only from
the area of the target hit by the electrons, but from the whole volume in

which the electrons loss energy. It follows that the next step in com-
puting the X-ray emitting area is to determine the effective range of

penetration of the electrons into the target material. Figure 28.3

indicates the dependence of the range on beam energy for different

target materials. As can be seen from that graph, the penetration is

considerably larger than the computed dimensions, not only of the
Gaussian image, but even of the image as enlarged by aberrations.

In the preceding paragraph no mention was made of the spreading of

the beam by space charge effects. The reason for the omission is that
a reasonable estimate of space charge effects has been made, and the
total widening of the beam due to space charge has been found to be
a secondary effect as compared to the spreading of the X-ray source

due to scattering of the electrons in the target material. For a similar

reason, furthermore, the effect of thermal distribution of the initial

energies of the electrons has been unmentioned, being also entirely

negligible as compared to the scattering effect.

Essentially then, the size of the X-ray source being determined by
the range of penetration of the electrons, we can estimate the resolving

power of such an instrument for two types of operation. One type of

266



Figure 28.3. Electron range extrapolated

from data by Bleuler and Zunti.

operation consists in having the beam strike the target obliquely, and
placing the specimen on the same side of the target as the incident
beam but outside of the incident beam itself. In that case, the least

resolvable distance can be estimated to be, to first approximation,
twice the range of penetration. For practical purposes, the specimen
must be brought as close as possible to the X-ray-emitting surface,

and hence the incident beam should make a relatively small angle with
the emitting surface. If one takes into account, also, that the specimen
must be in the same vacuum as the electron emitter and electron lens,

it turns out that this type of operation is rather disadvantageous,
particularly in view of the extremely high vacuum requirements.2

A better way of operation consists in producing a thin target, which
is bombarded by electrons from one side and the X-ray emission ob-
served from the other side. Such a thin target could consist of a thin
evaporated layer of tungsten or of gold. The thickness of this layer
should be approximately equal to the range of penetration of the
electrons at the required beam potential. Thus, for example, for

4-kev beam energy, a tungsten target will have to have a thickness of

approximately 300 A. To maintain the required vacuum, a sealed-off

tube should be used, and the question arises whether or not it is feasi-

ble to have a 300-A-thick layer of tungsten sufficiently vacuum-tight
to maintain such a good vacuum for long periods. The answer is

twofold. First of all, the total window area need not exceed the
dimensions of the geometrical image. While the feasibility of such
an extremely small hole in a supporting structure of the window seems
to be out of the question, it appears reasonable to assume that a

2 The required vacuum is about 10~14 mm of Hg. This extremely high vacuum is necessary for a stable
emission of the tungsten point in absence of any absorbed oxygen layers. Vacuum estimates are based on
table IX of Ashworth’s paper in volume III of Advances in Electronics, p. 35.
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Figure 28.4

tapered hole of the kind indicated in figure 28.4, ending in an opening
of approximately 0.001 inch, is well within the practical limits. For
that reason it is worth trying to see whether or not such a thin layer

alone will be vacuum-tight. If not, it is reasonable to expect that
covering it with a layer of low-X-ray-scatering material such as a

few hundred angstroms of beryllium, or 50 to 100 A of SiO 2

,
could

make the window sufficiently vacuum-tight for the purpose of the
X-ray tube.

Figure 28.4 then, illustrates the over-all features of the X-ray tube
of the microscope. The sealed-off tube with a thin window target

can be used in conjunction with a specimen and a photographic plate

placed outside of the vacuum. By assuming a distance of 0.1 mm
between the X-ray source and the specimen and 100 mm between the
X-ray source and the photographic plate, a linear magnification of

1,000 is easily obtained. Further enlargement of that negative will

give magnifications up to 10,000 to 30.000 diameters.
The least resolvable distance in that type of operation will again be

roughly equal to twice the range of penetration. This figure will have
to be modified by taking into account the absorption of X-rays in the

target. Due to the hemispherical shape of the emitting volume (see

fig. 28.5) this absorption will have a tendency to reduce the effective

Penetration Range

Figure 28.5
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diameter of the X-ray source and thus to improve the resolving power.
That effect may be counterbalanced, however, by the added scattering

of the X-rays in the target and in the added protective layers for

vacuum -tightoperation

.

For a calculation of the exposure times, the first step is to determine
the efficiency of X-ray generation as a function of electron beam en-

ergy. The efficiency can be assumed to be equal to

€=2.5X10-M/32

v
where A is the atomic weight of the target material and /3=— is the

c

ratio of the beam velocity to the velocity of light. By using this

equation we can calculate the total number of quanta emitted and
determine the number of quanta per unit area reaching the photo-
graphic plate. The quantum efficiency of different photographic ma-
terials has been determined as a function of X-ray energy (see, for

instance, H. Hoerlin, J. Opt. Soc. Am. 39 , 891-97, 1949). Figure
28.6 gives the calculated exposure time as a function of electron beam
energy for two different distances of the photographic plate (that is,

two different linear magnifications).
Two more effects remain to be discussed that may limit the useful-

ness of the instrument. One is a possible spreading of the bombarded
area of the target due to charging up of that area. The electrical con-
ductivity of the target being finite, it is conceivable that, at the very
high current densities employed, a potential barrier can be built up in

front of the bombarded area and spread the electron beam. Estimates
were made, using the data employed in calculating the exposure times,

and it was found that potential barriers of the order of 1 v may be
expected, which can be considered negligible as compared to the
several kilovolts beam energy.
A much more serious effort is due to the limited heat conductivity
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of the target material. This can be overcome by intermittent rather
than continuous operation. If one assumes that the target loading

increases inversely as the focal spot diameter below the 40 n size which
permits 11 kw/mm 2

,

3 the maximum average power dissipation for a

50 A spot is 8.8 X 10 4 kw/mm 2
. Suppose that a potential of 6 kv is

used with a target current of 0.75 amp giving a target loading of 2.3

by 108 kw/mm 2
. This means that the target current can flow for

0.04 percent of the time. From figure 28.6 the resultant exposure
time is 25 and 2,500 sec for the two magnifications.

3 Ehrenberg and Spear, Proc. Phys. Soc. 67 (January 1, 1951).
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29. Marton’s Schlieren Method and Weak Lenses

By F. Bertein 1

The basis of the paper is the method devised by L. Marton to

determine electric and magnetic fields by means of a grid and electron

beam. We study whether it can be approached from a systematic
point of view as the action of weak lenses on monokinetic electrons.

We shall consider only weak fields, that is, those having a short
range, and the potential function <p(xyz), which is small compared to

the particle accelerating voltage V; we shall put V=1 in order to

simplify the formulas.

Then according to a first approximation, rays may be considered
as straight, but undergoing a refraction in the midplane of the field.

Supposing, as is the usual case, that the beam direction is not very
different from Oz, the ray passing through the field at the point
M(xy) exhibits an angular deviation 8 (xy) . This angular deviation
has two components along the transverse axes (Ox, Oy) and can be
written as a vector or complex quantity (fig. 29.1). The problem is

thus to determine this function 8. This determination is as follows:

First in the case of the electric held putting

J

'. + OD

(p(xyz)dz (1)
— CO

(function <p integrated along a parallel to Oz),

5= 1 grad T. (2)

d> is a harmonic two dimensional function, from which some simple
features result.

Let us consider an incident beam parallel to Oz; the equation

2=i (3)
JmJ

is the one of a wave surface S for the emerging rays; S has a mean
curvature equal to zero. Now it is clear, and may be accurately
stated, that this curvature, at each point M(xy), appears as a mean
convergence of the emerging beam around M (fig. 29.2). Thus the
held gives a null mean convergence to all the pencils crossing it,

assuming that these pencils do not surround singular points, that is,

free charges.

For a magnetic held, formula (2) differs only by the grad <f> coeffi-

cient; this coefficient is here purely imaginary. The same observa-
tions are valid concerning the mean convergence. Besides, it can be

1 Ecole Normale Superieure, Paris, France.
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Figure 29.1.
Figure 29.2.

observed that the structure of the emerging beams are similar in both
cases, electric and magnetic, if the area does not contain charges or
poles. That is, the shadow diagram cannot point out, by itself, the
kind of field involved.

On the other hand, the neighborhoods of simple charges or poles
are different. The shadow has a dilatation (or contraction) in the
first case, a rotation in the second. It can then be shown that,

putting s=xJriy, 8= a/s, with a real if charges are present, purely
imaginary if poles are present.

But on the other hand, electric and magnetic dipoles show no
difference 8= b/s

2

,
where b is complex.

Now it is possible to extend our point of view to take into account
devices in which the potential distribution <p(xyz) is not alone, but
superposed on uniform fields. Let us consider, for instance, the
particular case of a flat metallic plate, thin or thick, perpendicular to

Oz and separating two uniform fields, E
{ and E2 ,

parallel to Oz. One
or more apertures, of any shape, in this plate will result in a potential
<^(xyz) superposed on fields El and E2 (fig. 29.3). The same holds
with several parallel plates near each other.

Such devices are electron lenses. It must be pointed out that rays
on both sides are parabolas because of the uniform fields, but if, as

we assumed, the field g(xyz) is weak, then both parts of a ray are
again connected by a deviation <5(xy), and formulas (1) and (2) are

valid. However, <F(xy) is no longer an harmonic function; it is

determined by A$=E2—E1 .

The surface S is again a wave surface in the condition previously
mentioned: S is now a surface having constant mean curvature,

equal to (E2—Ei)/2.
Thus one may say that the lens gives a mean convergence having

the same value at every point in its aperture. This value depends
only on (E2—E1 ) and equals zero if E2—Ex= 0 (Marton’s method).

Let us consider a particular case. The simplest one is that of a

long slit directed along Oy; S is a part of a. symmetric cylinder that
gives the focusing properties. The beam converges on a focal line,

the cylinder axis. Supposing <p to be symmetric about the plane
x=0

E2~E x

8 0 x
, (4)

that is, a focal length



Figure 29.3.

This is a well-known result. We even see that the focusing is valid

up to the extreme rays at the aperture boundary, in spite of singu-

larities possibly existing in the field.

The other important case is an axially symmetric aperture. S is

part of a sphere, and the beam converges on a point, the center of the
sphere. The focal length is /=4/E’2—
We see why the convergence is smaller than in the first case;

(Eo—Ex) being the same, the mean convergence is the same in both
lenses. However, in the first one, it concerned only the x coordinate,

instead of being shared between the two coordinates as in the second
case.

The case of a slit applies for instance, to ion sources in mass spec-

troscopy. We see that in the calculations of first approximation, the
slit being totally filled by the beam, the focusing holds.

Now it is important to check the validity of this approximation by
computing a better one that will give us the deviation from the
focusing, that is, the aberrations, in the above cases.

Such an approximation of higher order can be obtained by closer

resolution of equations of the electron other than the aberration
calculus of strong electron lenses, because we have now to consider

the whole aperture, not only the paraxial region. The simplification

comes from this fact that lenses are supposed weak; thus here the
calculus takes into account developments in term of powers of <p(xyz).

One can get formulas without supposing symmetry of any kind in

the lenses; but we only shall consider one interesting case, the case

of one or more plane electrodes with long slits parallel to Oy, being
symmetric about the plane x= 0.

The first approximation formula (4) must be replaced by the

following

where w and ^ are functions related to ip.

The integration is ovei z and can be computed in the following form

The first term gives exact focusing; the other gives aberrations.

1. If Ei=E2= 0 (for example, in a weak microscope lens), focusing
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Figure 29.4.

depends only on a, that is, terms of second approximation. Conse-
quently aberrations of marginal rays are of the same order of magni-
tude. The lens can be used only with paraxial rays.

2. If Ei—E2 9£ 0, focusing appears with the first order; aberrations

always are of second order. The lens can be used with all its rays.

For instance, on the axis of a slit in this plate, the extreme angular
aberration is am= 8

2

J2 (fig. 29.4).

However, one must take into account the fact that the rays to be
connected by 8 here are parabolas. That adds a supplementary
aberration, but not of a larger order of magnitude. One can then see

the focusing properties of slits and its limitation, which will be taken
into account in questions involving the thinness of image, when
properties like resolving power are concerned.
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30. Achievement of Accuracy in Electron-Optical

Shadowgraphs of Electromagnetic Fields

By J. Arol Simpson 1

The electron-optical shadow method of investigating magnetic
fields developed in this laboratory under the direction of Dr. Marton
consists of measuring the deflections of an electron beam as a function
of position in the plane of the object magnetic field. This is done
by a method similar to the Ronchi test method used in light optics.

The optics of the system and the instrumentation have been described

in the literature 2 and are again reviewed in Dr. Marton’s introduction

to this Symposium. From this measured deflection versus distance

curve, or a series of them, the field may be calculated. The question
of obtaining precise quantitative measurement of magnetic fields

resolves into three parts: (1) Does the shadowgraph give an accurate
representation of Kfll dx through the object field? (2) Can K be
precisely determined from instrumental constants? (3) Can the
field be synthesized, given the curves of fll dx ? I will speak of the
first and second problems. Mr. Lachenbruch will discuss the third

at some length.

The fact that the electron-optical shadow method is most applicable
to fields beyond the reach of conventional field measurements causes
no little difficulty in investigating the first two questions. It was
hoped at first to make use of a small electromagnet with pointed
pole pieces to give a field of small extent and containing sharp
gradients. Such a magnet was constructed and Mr. VanBronkhorst
and others of this laboratory attempted to measure the field with a
small rotating coil magnetometer. After considerable time and
labor were expended on it, it was found that the calibration could not
be made exact enough and a great deal of difficulty was experienced
due to specimen-lens interaction because of the iron of the magnet.
We then turned to a small Helmholtz coil of 1 mm radius wound on a
copper form with 100 turns per coil of 0.05 mm wire. This was by no
means an ideal test object since the field is too large and neither the
field integral, amounting to about 0.5 gauss cm, nor its gradient was
strong enough to be a severe test of the method. But it contains no
iron to cause difficulty and no calibration is needed.
The field in the meridian plane was calculated using well-known

formulas. The field was plotted to large scale and the values of

fH dx for various values of y were obtained by planimeter integration.

This work was done by Mr. Mendlowitz and Mr. Stewart of our
laboratory.

The coil was mounted in our modified electron microscope and a
series of shadowgraphs taken.

1 Electron Physics Section, National Bureau of Standards, Washington. D. C.
2 L. Marton and S. H. Lachenbruch, J. Appl. Phys. 20 , 1171 (1949); J. Arol Simpson and A. VanBronk-

horst, Rev. Sci. Instr. 21, 669 (1950).
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The usual technique at this point is to plot the position of the
shadow measured from an arbitrary base line,' which we call a

,
versus

arbitrary mesh numbers. In the absence of a field this will be a
straight line whose slope is a measure of the magnification and the
constant of the mesh. The ordinate of a point on this straight line

for a given mesh number is called A0 . The curve of (A-Aq) versus
A where both A and A0 are taken at the same mesh is then the
measure of the beam deflection versus position in the object plane
that we sought. In this case, however, the field was of so large

extent that several shadowgraphs were necessary to cover it and there
was no undistorted mesh visable to give us A0 . Hence we used
current-no-current pairs and obtained the distortion caused by the
field, (A-Aq), by subtraction. A set of fiducial wires was set axially

in the Helmholtz coil, and these allowed us to overlap successive

plates. This tedious work was carried out by Messrs. McCraw and
Suddeth.

It was in this overlapping process that we discovered the first

effect of lens aberrations. As the exposures were made the fiducial

wires fell alternately in the center and the two extreme edges of the
field of view. Figure 30.1, show the effects of this use of different

zones of the lens at different angular apertures obtained by varying
the condensor current. Note that both the slope of the lines and the
divergence due to the two types of zoning vary with the aperture.

The change of slope with illuminating aperture is of no great
importance since it is possible to write valid formulas giving deflection

as a function of field integral that is independent of source position,

which we at first assumed to be at infinity. The divergence due to

zoning on the other hand can lead to grievous errors if care is not
taken to work with beams of small aperture.

The question of the effect of inexact focus was made the subject
of a separate investigation by Air. Moreland. In this case the

Helmholtz coil was mounted in the electron-optical bench and a

through focus series of exposures was made. Figure 30.2 shows the

results of this work. The best visual focus, as determined when there

was no visual movement of the fiducial wire when the current was
switched, corresponded to an objective current of 52 ma ±5. This
corresponds to the position of minimum A~A0 as shown on the graph.
A tedious but positive way to determine exact focus would be the

Figure 30 . 1 .

, Wire; ,
wire 1 and 2.
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Figure 30.2.

Figure 30.3.

determination of this minimum. The minimum is flat enough, how-
ever, to focus visually for all but the most exacting work.
The final results of the determination of KfHdx is shown in

figure 30.3. The agreement with theory is shown by the extent of

the shaded portion. The maximum error is 20 /z where the experi-

mental and theoretical curves were matched at only one point. The
resetting error in the travelling microscope used to measure the
plates is about 5 ju. The systematic deviation at the end of the curve
near wire 4 is due to the finite extent of the winding that was not
corrected for in the calculation of the field of the coil.

In the case of the second problem, the determining of the scale

factor K, the formula we use to determine the value of the constant
K involves determination of the magnification of the objective, the
distance from object to principal plane of the objective, and the total

magnifications of object and the mesh.
All the formulas are inexact to the extent that electron lenses are

not thin and hence their principal planes are not easy to define.

The formulas require, moreover, that the magnification of the objec-
tive must be determined in the object plane of the projector. We
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accomplish this in a way made possible by the construction of the
RCA EMB microscope by moving the objective and everything above
it a measured distance, measured on a dial indicator, by use of the
alinement adjustment, and measuring the resulting movement on the

final plate by use of a travelling microscope. This gives the projector
magnification that divided into the total magnification gives the
objective magnification. If care is taken with these measurements
(the distortion of the projector is very bothersome), it is possible to

obtain agreement between the calculated and measured value of K
within the uncertainty of the position of the principal planes. We
have determined K to within an error of 8 percent.

We have thus shown that when proper precautions are taken, the

electron-optical shadow method will give the value of KfHdx along
a straight line to within 5 percent and the value of J'Hdx to within

10 percent for fields totally inaccessible to other methods of measure-
ment. The greatest error is the lack of precision of measurement of

instrumental constants.
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31. Interpretation of Electron-Optical Shadowgraphs

By S. H. Lachenbruch 1

Mr. Simpson lias given a description of the experimental portion
of the shadow method. He has shown how the deflection of electron

paths by an unknown magnetic field is determined using an electron-

optical system. There remains only the problem of deriving from
these results the actual field distribution.

Figure 31.1 summarizes this theoretical problem. The coordinate
system is attached to the magnetic field, which is directed normal to

the plane of the figure (just as it would be if the figure were an
equatorial plane). The relative orientation of field and optical

system may be varied experimentally. The curve L represents a
typical electron trajectory through the field. It may be considered as

approximately straight, since the deflection angle (/> is necessarily

small—otherwise the method, which involved geometrical optics,

would not have been applicable.

Thus for each of a certain set of directed lines L in the plane, each
identified by coordinates (p,(3), we have an experimentally determined
deflection angle </>, and hence a value of

I(p,P)= f H(r,$)ds=J-^<t>, (1)
L(p, (3) V Z/ttP

the integral of II along that line. We want to derive from this the

magnitude and sign of the unknown II at an arbitrary point Q with
polar coordinates (r,0).

For the frequent case where the field is known to have axial sym-
metry, we can choose the origin as the center of symmetry. Then I is

independent of (3, and also II is independent of 6, so the problem is

greatly simplified.

The methods that have been used or considered in this laboratory
might be divided into two general categories.

The first category consists of those methods in which we assume at

the start that II may be expressed in some specific analytical form

H(r,d)=F(r,e,a1}a2 , . . . ,
an), (2)

involving one or more unknown parameters or constants cij. This
form is generally chosen from known or predicted properties of the
field.

Integrating the specified function F in advance gives a predicted
analytical form for I—as a definite function of (n-\~ 2) quantities:

f F{r,d,ai, . . . ,
an)ds=G(jJ,(3,a 1 , . . . ,

an). (3)
£(P,0)

1 National Bureau of Standards, Washington, D. C.
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Figuke 31 . 1 .

We wish to solve for the n quantities a} by matching this function
against the values of the /-function obtained experimentally for

different values of p and /3. One way to do this is statistical, by
applying least squares to the experimental results, as indicated by the

equation

m
SI4— • • • , <)]

2

=minimum. (4)
k=

l

Another way which is sometimes possible is to choose n electron paths
in such a way that the resulting equations

G(Z>k,P&,ai, . . . ,0=1*, £=1,2, . . . ,
n (5)

can be solved for the a’s.

In the statistical method, the closeness of fit can usually be used as

a partial check on the validity of the functional form F chosen. But
how good a check is not known until we consider the question of

uniqueness, which will be mentioned later.

The following are examples of the widely different techniques in-

cluded under the category just described: (In each case the resulting

/-function, as obtained by integration, is also given.)

(1

)

H may be taken to be a simple continuous function involving
two parameters, for example.

H(r)=a1/(r
2+aiy'2

(6)

I{p)=2a 1/(p
2j
r a

2
2). (7)

(2)

H may be expressed as a series, the unknown a’s being the
coefficients:

H(r)=al/r
2+a2/r

i+ . . ., (8)

I(j)) = 7rallp
Jr2a2/p

2j
r .... (9)

(3)

The plane may be somehow divided up into regions Bk ,
and H

taken to be a step-function constant in each region, the a ’s being these
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constant values:

Hifyd) =ak where (r,6) is within Rk ;
k=l,2,3, . . n (10)

n

I(p,P)=T,aMv,P)- ( 11 )
k— 1

In eq (11), X
fc
refers to the length of the segment of intersection of a

trajectory with the region Rk .

We shall return later to these examples. Meanwhile we turn to

an entirely different approach, of an analytical nature. Here the
unknown function II is obtained directly, theoretically at least, by
mathematical operations on the experimentally obtained function I,

with no a priori assumptions regarding the functional form of H
,
and

no unknown constants for which to solve.

We take first the case of axial symmetry, so that II is a function of

r alone. By definition, I is given in terms of H by

I{p)= 2 f ,H(r)rdrl(r
2—p2

)
ll2=T(H(r)). (12)

J hi

But this can be reduced to a standard integral equation, Abel’s
equation. From the known solution of that equation, we find that
the only continuous function II satisfying this equation is

H(r)=~ (13)
TTjr

So we have, at the start, an explicit expression for the desired field

function in terms of the function I which is known from experiment.
The only remaining problem is the practical one of devising simple
methods of evaluating the integral of this empirical function for

different values of r.

Note that we obtained II essentially by inverting a linear integral

operator T in function-space. Also, the questions of existence and
uniqueness are answered at once.

Finally we turn to the general case, removing the symmetry con-
dition. For any fixed r, the field II must be a periodic function of 6

(with period 2r), and so it has a unique Fourier series expansion with
functions of r as coefficients:

H(r,S)= Hn {r) exp (ind). (14)
n= — co

Similarly, I has a unique Fourier expansion with functions of p as

coefficients:

I(p,P) = S hip) exp (in0). (15)
71= co

If we substitute (14) and (15) into the definition of I, and equate
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Figure 31 . 2 .

coefficients of like powers of exp (i(3 ), we get the integral equations

« T(lr
H-„(r) cos (n cos 1 p/r) (16)

We find that these have unique solutions and may be solved in turn
for the Hn . If, then, we have enough experimental data to define

the function I (p,(3), and therefore its Fourier coefficients, we will

have the desired function H (r,d ) in the form of a Fourier series.

As a byproduct we have again settled the question of existence

and uniqueness, this time for the general case. It is to be observed
that in this general case we must use what amounts to a 2-parameter
family of rays; otherwise the solution obtained for II by any method
would not be unique.
We now return to the first category, for further comment on the

examples (6), (8), and (10). The first method is most appropriate
when our knowledge of the field-producing object tends to suggest a
certain analytical form. The particular form given by (6) and (7)

is for the field in the equatorial plane between two point poles an un-
known distance apart. When a2

= 0, it reduces to the dipole field.

The second method, while it has a certain amount of generality,

must be used with some caution. A series of form (8) could never be
used in the neighborhood of r= 0, for example.

In the third method (10), with any mode of subdivision, each ex-

perimental measurement gives rise to a linear relation (11) among
the cq. Figure 31.2, prepared by Mr. Simpson and Mr. Ford of our
laboratory, shows how one may go about choosing a set of n trajec-

tories such that the resulting simultaneous linear equations have a

triangular matrix and so can be solved readily, one by one.

Although the choice of subdivision is not in general critical, some
times known properties of the field suggest a special one. If the field

is known to have axial symmetry, for example, it is constant along
any circle about the center of symmetry, and so the most appropriate
type of subdivision would be into rings bounded by such circles. The
field surrounding a magnetized wire lias been computed by this meth-
od, and shows good agreement with the result obtained by the

first method, in which we assumed that the field was that of a pair of

point poles.



32. Characteristics of Symmetrical Magnetic Electron

Lenses
1

By G. Liebmann 2

At the Electron Microscopy Conference in Delft in 1949, the author
described improved numerical and experimental methods for the in-

vestigation of electron lenses. The field distribution is measured to a

high degree of accuracy (1 to 2 parts in 10,000) with a resistance net-

work analog, figure 32.1.

The electron trajectories and lens aberrations are then found
by step-by-step methods. In this way, accurate information can
be obtained on any given electron lens used in practice, without
appeal to mathematical idealizations or the use of approximations.
These methods have meanwhile been applied, partly in collaboration

with Miss E. M. Grad, to the investigation of a series of symmetrical
magnetic lenses of varying relative pole piece separation S/D (fig.

32.2); this figure also shows the axial field distributions. The main
objects of this study were the collection of working data and design

rules for electron lenses used in electron microscopy, and the investi-

gation of questions of the best possible practical electron microscope
objective and the best projector lens.

There is no difference in the lens constants if a lens is used as an
objective or as a projector in electron microscopy, as long as the lens

excitation is weak or only moderately strong. At high values of lens

excitation, however, one has to distinguish between the focal length,

etc., of the lens used as projector (called / 0 ) and used as objective

(called / 1 ), as shown in figure 32.3.

The excitation parameter used here is

k2= 0.022HIR2V~ 1

, (1)

where Vr is the relativistically corrected accelerating voltage, IR is

measured in gauss and the lens radius R in centimeters. One can
also write

k 2=f3(NI) 2V~ 1
(la)

where (3 is a known function of the ratio S/D.
A comparison of the four lenses S/D= 0.2 to S/D= 2, used as

objectives
,

is given by the next two figures in which fi/R, Zi/R (fig.

32.4), and C S/R (fig. 32.5), are plotted as function of A:
2

. It is seen
that in all cases the stronger the lens the shorter its focal length and
the smaller its spherical aberration constant Cs/R. Most practical

electron microscope objectives are worked with excitation parameters
around F^0.5 to k2^l. Near this excitation value, the lens

1 The full results of this study are being published in the Proceedings of the Physical Society, London.
2 Research Laboratory, Associated Electrical Industries, Ltd., Aldermaston, Berkshire, England.
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S/D= 1 happens to have a spherical aberration constant Cs/B which
is very nearly the same as that calculated by Glaser for his assumed
bell-shaped field distribution if the half-width value for this lens,

a=1.13R, is inserted: Hence, the many earlier discussions of possible

electron microscope performance based on Glaser’s “bell-shaped”
field distribution (with assumed numerical values of the half width a)

are confirmed by our evaluation of the lens constants of “real” lenses.

Projector lenses are mostly operated near the point of minimum
focal length; a comparison of four lenses S/D= 0.2 to 2 is given in

figure 32.6. If for each lens the focal length is expressed relatively,

as the ratio ///min, and plotted against the relative excitation param-
eter k'

2
/k

2
min, one finds that all these four lenses, as well as the longer

lens S/D=4l, can be represented by one single curve. This “general
/-curve” is shown in figure 32.7.

The shortest focal length is given by

max; (2)

where the factor B depends only on S/D, and 1IP max is the highest

field strength in the pole-piece gap that iron saturation will allow.

In figure 32.8, curve 1 gives a plot of the factor B, and we see that the
higher the ratio Sjl) the shorter the obtainable absolute focal length.

Curve 2 shown in figure 32.8 gives the optimum lens radius, which
is uniquely determined for each value of S/D. As numerical ex-

ample, take T7=60 kv and 7^=26,000 gauss. Then /mln=0.075
cm, which is exactly Ruska’s measured value for these excitation

data.

An important fault in projector lenses is distortion. The radial

distortion is proportional to the square of the distance of the image
point from the axis and to the distortion constant Cd . If the distor-

tion constant is plotted relatively, as the ratio Cd/Cd0 ,
where Cd0

is the distortion constant for weak excitation, one obtains the set of

curves shown in figure 32.9. The significant point is that for an
excitation value around k2

m -m ,
Cd changes its sign, i. e., the usual

pincushion distortion changes to barrel distortion. Any projector
lens can therefore be operated such as to be free from radial distor-

tion (provided that iron saturation does not limit the maximum
value of k 2 that can be used).

We return now briefly to the question of the objective lens, and the

conditions for the lens of lowest (absolute) spherical aberration and
lowest chromatic aberration. The earlier figure shows that Cs/B falls

rapidly at first with increasing value of k 2

,
but only slowly for very

high values of k 2
. As k2 oc 7?

2
,
Cs (in absolute units) will at first

drop as the lens radius is increased, go through a minimum (for

B=B0) and then rise again. The value of k2=kl for which the mini-
mum of Cs is reached depends on S/D; this is shown by table 32.1

We find then (in a similar way as for the projector lens of shortest

focal length) that there is an expression

Csmhl=bV?H;' (3)

where the constant b depends on S/D. We see that the longer lenses

are more favorable, but the number of ampere turns increases rapidly
for S/D^l, and the immersion of the specimen in the lens field be-
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comes rather deep, which is undersirable as then a large part of the
objective lens field becomes part of the illuminating system. A
practical compromise would be to use a lens geometry S/Dc^l, and
figure 32.10 shows the value of Cs mln which could be reached in a

practical electron microscope objective. We see that values of

(7.s=0.04 cm to <7S= 0.06 cm would be practicable. These are values
smaller by a factor of 10 to 20 than have been used hitherto. The
combination of spherical aberration error and diffraction error, set-

ting a fundamental limit to the resolving power of electron micro-
scopes, would lead to a resolution limit of 3.5 to 4 A, for accelerating
voltages of 60 to 90 kv. (Similar values had been predicted by Coss-
lett and by Glaser, on the basis of the “bell shaped” field, but in our
estimate we adhered strictly to measured lens field distributions.)

Table 32.1.

SID Ho/Hp
n

(approxi-
mate)

Cs/R b
NI

(relative)

0. 2 0. 263 9 0. 170 13.

1

0.85
0.6 0. 648 6.5 0.220 5.8 0. 88
1 0.834 5 0. 267 4.8 1

2 0. 964 4.5 0. 300 4.5 1.60

The old problem of the objective of shortest focal length, which
would give low chromatic aberration as Cc </, was taken up recently

by Le Poole and van Dorsten; our lens data can be applied to this

question, and in a similar way as in the case of the lens of lowest
spherical aberration one can show that there is for each value of

S/D a value of k2 that yields the shortest possible (absolute) focal

length, and another slightly higher value of k 2 which gives the lens

of smallest (absolute) chromatic aberration constant Cc . The result

is shown in figure 32.11. If we insert the following numerical values:

y=80 kv (Fr=86 kv), /7P= 24,000 gauss, we find fm in
= 0.084 cm, in

excellent agreement with van Dorsten’s experimental value of 0.085

cm. Figure 32.11 also shows that the spherical aberration constant
Cs of a short focal length objective is fairly small.
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Figure 32 . 1 .
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Figure 32.4.



Figure 32 . 5 .

Figure 32 . 6 .



Figure 32.7.

Figure 32.8. Minimum possible focal
length of EM projector lenses for
given II p and VT .

Figure 32.9. Relative scale distortion constant.
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Figure 32 . 10 .

Figure. 32 . 11 .



33. Present Trends in Electron Microscopy

By V. E. Cosslett 1

Introduction

My intention is to discuss the directions in which electron micro-
scopy is moving at present, and to try to forecast how far it may
progress along them. It is always a little difficult when one is in the
middle of developments to see directions clearly, but I feel that we
have begun to recognize, in the past year or so, the lines along which
the most fruitful developments are likely to take place. The field is

large, and the abstract of this contribution promised more than I can
possibly cover. I shall restrict myself, in tune with the general

character of the conference, mainly to the electron optical aspects
of the future of electron microscopy, with some reference to instru-

mental factors. Indeed, since most of those actively advancing the

subject are assembled here, my paper inevitably becomes largely a

survey and commentary on many of the contributions appearing on
the program. It may help to put them in perspective, and in some
cases to provide an elementary introduction to new ideas.

Limits of Present Methods

In the first place let us consider how far present techniques will

carry us. It seems that we find difficulty in getting beyond a prac-

tical resolution limit of somewhere between 10 and 20 A—the exact

figure depends on one’s degree of optimism and perhaps also on
nationality. It is difficult to estimate precisely what resolution is

obtained in this region of size, but there is no doubt that 20 A has
been exceeded by several workers. The immediate question is what
limitations stand in the way of achieving better resolving power, and
indeed whether existing instruments can be expected to do better?

It is necessary to be rather more precise as to what is meant by
resolution. Professor Glaser’s paper in a previous session has clarified

considerably the distinction between the limit of detection and the

true resolution according to the accepted optical definition. A single

opaque object will be imaged as a diffuse blur, the radius of which will

be greater than that of the true image; the disparity in radius will

increase as the size of the object is made smaller and smaller. But
the presence of some sort of object will be detectable so long as the
contrast of this blur against tlie general background in the image is

above the discriminating power of the eye or of a photometer. On
the other hand, the classical method of defining resolution is to con-
sider two neighbouring object points, and to assume them to be sepa-
rately distinguishable so long as the drop in intensity between their

1 Cavendish Laboratory, Cambridge, England.
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two images is greater than 25 percent of the peak intensity. The
separation of the two peaks when this limit is reached is said to be
the linear resolution. Clearly it will be considerably greater than the
size of the smallest detectable isolated object, as Glaser has pointed
out; he gave a factor of three for a circular object. However, the
individual peaks of the pair are themselves much broader than the
object points which formed them, so that it will remain true that
when we have a resolution limit of (say) 12 A, we may be distinguish-

ing particles as small as 4 A, or they may be larger particles which
are only semi-opaque. A resolution of atomic dimensions would
thus call for test objects of sub-atomic size; fortunately the nucleus,

opaque to electrons, fulfills this demand.
It is thus clear that we must be careful about relating an observed

linear resolution to the true size of the particles resolved. There is

the further question as to whether this problem lias any real meaning
where atoms are concerned. It is very doubtful if individual atoms
can ever be imaged, even if one succeeded in laying them down in

isolation on a supporting film. It is not easy to think of suitable

test objects for such a high resolution. A two-dimensional lattice

might be more readily obtained, but resolution would not then have
the same meaning owing to the special nature of the interaction of

electrons with a periodic structure [l].
2 The best prospect for utilizing

an atomic resolution seems to be for spotting a heavy impurity atom
in a lattice or amorphous group of lighter atoms. This would involve
the limit of detection, rather than the true resolution. It is another
question whether the isolated atom could be at all closely localized,

owing to its disturbance by impact of the imaging beam, as de Broglie
has discussed [2].

Leaving this problem to the future, let us now consider some of

the efforts made to discover how high a performance is to be expected
of present lenses. Glaser’s work on the bell-shaped field is well

known, which gave the aberrations in detail and the focal length in

different operating conditions [3]. Towards the end of the war I

used his data to calculate prospective resolutions [4], and found one
could expect a limiting value as small as 5 A. Glaser has shown in

this meeting that a more refined treatment gives 4 A. However, such
estimates were open to the objection that the bell-sliaped field is not
that of an actual lens, being taken for reasons of mathematical con-
venience. It is satisfactory that results are now available for the
sort of magnetic lens used in practical electron microscopes.
Liebmann has latelv made a detailed investigation [5] of the focusing

properties of a typical magnetic lens in which the pole-piece separation
is of the same order as the bore. Careful measurement of the field

by the resistance network, followed by computation, gives the focal

length and aberrations. Fig. 33.1 shows how the focal length, plotted
against the lens power parameter k2

,
falls continuously without

reaching a minimum value as in a bell-shaped field. Different ratios

of gap to diameter give curves differing only in gradient. The prac-
tical limit to the focal length is about B 3, where B is the internal

radius of the polepiece. Fig. 33.2 shows similarly the spherical aber-
ration coefficient, which again shows no minimum such as appears for a

bell-shaped field. The limiting value of the coefficient proves to be
slightly smaller than that deduced by Glaser. The chromatic aber-

ration curves are of similar shape.

2 Figures in brackets indicate the literature references on p. 303.
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Figure 33.1. Variation of focal lengths (divided by lens radius R )

with lens power in magnetic lens, for different ratios of gap width
S to bore 1).

Liebmann and Grad, Proc. Phys. Soc. London [B] 64, 956, (1951), figure 15.

X, S/D= 0.2; A, S/D= 0.6; •, S/D= 1.0; Sffi S/D= 2.0.

O.l 0.2 0.5 I 2 5 10 20 50 100 500

k
2

Figure 33.2. Variation of spherical aberration
(divided by R) with lens power in magnetic, lens
for different ratios of gap width S to bore D.

Liebmann and Grad. Proc. Phys. Soc. London [B] 64, 956 (1951),
figure 20.X, S/D= 0.2; A, S/D =0.6; •, S/D= 1.0; H, S/B= 2.0.
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From these data, Liebmann finds a limiting resolution of 3 A when
the optimum compromise between spherical aberration and diffraction

is adopted. We are thus justified in the belief that even with the
imperfect lenses now available we should be able to reach a resolution

three or four times better than the best so far reported. The residual

astigmatism can be corrected, and the chromatic error made almost
negligible by attention to the stabilization of the electrical supplies,

so that we must enquire further as to what are the limiting factors in

practice. It seems probable, as Haine will show in a later contribu-
tion, that the main difficulty is mechanical and thermal instability

of the specimen. There are also some residual electrical troubles,

since a stabilization of the order of 1 in 10 5
is called for over a period

of a minute. These matters are now receiving detailed experimental
investigation, but we have to recognize that they may prove intract-

able, so that we may not be able to utilize a resolving power that has
been made potentially available.

Correction of Spherical Aberration

These difficulties will be discussed in a later session, so that we may
proceed to enquire wliat prospects exist for eliminating spherical

aberration altogether, so as to make possible a resolution approaching
the limit set by the wave-length of the electron beam (1/20 A for 60kv
electrons). As was shown by Sclierzer [6], spherical aberration cannot
be reduced to zero in a system that has rotational symmetry, contains
no space charge and to which static fields only are applied. Many
workers have reviewed the consequences of relaxing one or more of

these conditions, and foremost Scherzer himself [7]. It is typical of

the present stage of development that the possibilities that have been dis-

cussed theoretically since 1947 are now in process of experimental trial.

One possibility has been investigated by Marton,—the introduction of

a controlled space charge. If the charge density varies radially in the
right way, the marginal rays will be repelled further from the axis,

so that the greater refractive power of the outer zones of the lens

(which is responsible for spherical aberration) may be neutralized.

Such a charge distribution occurs in a magnetron, but the practical

difficulties of controlling it with precision are great. However, it is

encouraging to learn from Gabor that recent work by Ash and himself
has shown that such a cloud of charge would not have the diffusing

effect on the image, similar to the action of ground glass, that was
indicated by the results of Marton and Reverdin [8]. But it still

remains to be shown that practical use can be made of such a system.
The second possibility is even more difficult to realize in practice—to

apply rapidly varying fields to the lens. Looking upon the beam now
as a spherical wave front approaching the lens, it is in principle con-
ceivable that the strength of the lens could be varied in the short time
between the arrival of the central and outer parts of the front. If the

outer zones of the lens were made progressively weaker as the wave
reached them, the spherical aberration could then be compensated.
However, not only are the technical requirements very severe in the

millimeter wavelength region that would be involved, but it lias been
shown that the magnitude of the effect would not be sufficient to

correct completely the degree of spherical aberration encountered in

practical lenses [9].
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The remaining alternative is the abandonment ot rotational

symmetry in the lens system, which may take two different forms.
It may either mean making the apertures of the lens elements of non-
circular shape, in effect introducing cylindrical lenses in the optical

sense of the term, or it may involve curving the lens axis instead of it

being straight as in normal optical devices. The latter procedure
involves new methods of mathematical treatment, and it is encourag-
ing that such attempts have recently been made by Gabor [10] and
by Sturrock [11]. I shall not pursue this in detail, except to say that
reliable methods are now available for discussing the motion of

electrons in arbitrary electromagnetic fields. It will be enough to

explain the physical principles of the proposed correction devices, and
to indicate how far experimental work has progressed.

The most important work on the use of noncentered systems has
been done by Scherzer himself. He has shown that it is possible to

introduce astigmatic components into an imaging system in such a
way as to correct the spherical aberration, and then to remove the

astigmatism again. The essence of the method is to introduce a set

of 8 radial electrodes bearing alternately positive and negative poten-
tials (fig. 33.3). In the planes of the positive electrodes the electron

beam will be attracted outwards from the axis, and it can be shown
that the radial variation in this force is just that required to overcome
spherical aberration. But, so long as the beam is of symmetrical form
in cross section (i. e., is cylindrical in this region), the effect of the

negative electrodes will be such as to double the spherical aberration
in the diagonal planes. Scherzer’s brilliant idea was to make the

beam highly asymmetrical, by making the objective astigmatic and
placing the correcting electrodes at one of the line foci thus formed
(fig. 33.4). Correction is then obtained in one of the positive planes,

and the effect on the beam is small in all other planes. A second set of

electrodes at the other astigmatic focus will correct the aberration in

the second positive plane. Scherzer showed that such an arrangement
also ensures correction in all other planes, except for a small residual

increase in aberration in the diagonal planes, which is removed by
inserting a third set of correcting electrodes. The whole train of

lenses is shown in figure 33.5, in horizontal and vertical section so as

Figure 33.3. Correction element with radial

electrodes.

Seeliger, Optik 5, 490 (1949), figure 1.
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Figure 33.4. Forces on flat elec-

tron beam, passing through cor-

rection element.

Scherzer, Optik 5, 497 (1949), figure 1.

Figure 33.5. Components of complete correction system, in
horizontal and vertical section, with ray paths.

Seeliger, Optik 5 , 490 (1949), figure 4.

to distinguish clearly the cylindrical' components. The objective O
is followed by two cylindrical lenses, Ai and Bi, which produce longi-

tudinally separated line foci at Z a and Zb respectively, at which are

placed the rings of correcting elements, indicated by arrows. The
succeeding cylindrical lenses A2 and B2 are needed to remove the

astigmatism introduced by Ai and Bi. The third correcting ring is

placed at Z c to correct the diagonal planes.

It will be seen that the objective with its correcting system consists

of 8 lenses in all, which makes it complicated to construct and aline,

apart from finding the conditions for correction. An electron micro-
scope embodying such lenses has in fact been built by Scherzer and
his collaborators at Mosbach-Baden [12], and was described at the

International Congress on Electron Microscopy in Paris in 1950 [13]

(Fig. 33.6). He showed convincing proof that it was possible to

introduce a pronounced astigmatism into the imaging beam, and then
to remove it so as to give a stigmatic final image. He also claimed
that the lenses and correcting elements had been adjusted so as visibly

to reduce the spherical aberration, but lie confessed that the difficult}"

was to maintain everything constant for a long enough period to

focus the image with precision and obtain a photograph. It seems
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Figure 33 . 6 . Electrostatic microscope
with correcting components

.

Scherzer, in Report of Paris Congress by Grivet,
Biochim. et Biophys. Acta 7, 1 (1951), figure 11.

possible that Scherzer has, indeed, attempted too much: He has
broken down the problem into its ultimate elements and employed
separate lenses for each required function. This allows in principle

the correction of any degree of spherical aberration at any magnifica-

tion and accelerating voltage, but so many degrees of freedom in-

evitably bring in complications. It might be more practicable to aim
at correction only within a restricted range of working conditions, or

even just in a single prescribed state. With this in mind, Burfoot in

my laboratory has been investigating how far it is possible to combine
the functions of some of the lenses of figure 33.5, for instance, by
taking a unipotential electrostatic lens and making the apertures in its

electrodes noncircular. The investigations of Regenstreif [14] bear
on the same problem. There may be some hope that a system can be
found of only 3 or 4 lenses, which would correct spherical aberration
in one set of working conditions. In any case, it seems that the
investigation of these noncentered systems offers the best hope of

attaining such an end, which must be accounted the chief task of

practical electron optics in the immediate future.

Lenses With Curved Axes

The other direction in which a relaxation of symmetry is likely to

lead to practical results is that of using systems with curved instead
of straight axes, so that rectilinear propagation of the beam is aban-
doned. The design of an objective system, in which the beam is curved

297



and focused by a specially shaped magnetic field, is now being investi-

gated by Le Poole at Delft, but it is in a stage too early for more to be
said than that such systems are now seriously looked on as practical

possibilities. Curved beam paths have often been used, of course, in

beta-ray and mass spectrometers. I wish to mention here a simpler
system, a lens with helical beam path which is designed to correct

chromatic aberration [10].

It has long been known that a beam moving in a circular orbit in

the annular space between two concentric electrodes, appropriately
charged, will be focused at intervals of 127° in the plane of its motion.
It was shown by Wendt that focusing can also be produced in the per-

pendicular direction if the electrodes are shaped as hyperboloids of

revolution (fig. 33.7a); focusing then occurs every 180° (fig. 33.7b).

Gabor has since shown that this system can be used either as a velocity

spectrograph or as a lens with negative chromatic aberration, depend-
ing on the plane of recording. Electrons with energy in excess of the
standard value will travel in an orbit of larger radius (fig. 33.7c), so

that at the opposite end of the diameter through the source, electrons

of varying velocities will be focused at different radial positions (such

as P', P", fig. 33.7c). But, at the completion of approximately one
revolution, it is found that the points of focus fall behind each other
circumferentially, as at P, P"' (fig. 33.7d). This is equivalent to a

negative chromatic aberration, since the faster electrons are focused
before the slower. As all ordinary electron lenses have positive

chromatic aberration, with a longer focal length for fast than slow
electrons, the possibility exists of using lenses of these two types to

form an achromatic combination. Such a system would reduce the
need for costly and complicated electrical stabilizing circuits, and
ultimately give the prospect of reducing the chromatic aberration below
1A or whatever other limiting resolution would be attainable if spher-

ical aberration were corrected.

The difficulty remains of designing a practical form of the Gabor
lens, since, as it stands, the focus is in an inaccessible position behind
the source or object. Gabor has proposed to apply a longitudinal field

at the same time, so that the beam path is drawn out into a helix. The
necessary form of the electrodes and the axial trajectory for a correct-

ing lens are shown in figure 33.8a; figure 33.8b shows the use of the

system as a velocity spectrograph. The focusing properties of these

new lenses requires more detailed investigation, so as to establish what
residual aberrations (such as astigmatism) may be present. Some

Figure 33.7. Principle of helical lens.

(a), Electrode system of Wendt (1943); (b), focusing of electrons with
standard energy (c is the circular axis); (c)> the axis e for electrons

with excess energy; (d), focusing of electrons with excess energy.
Gabor, Proc. Phys. Soc. London [B] 64, 244 (1951), figure 1.
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Figure 33 . 8 . Electrode design for (a) a helical lens, (b) a
helical velocity spectrograph.

Gabor, Proc. Phys. Soc. London [B] 64, 244 (1951), figures 4 and 5.

work of Sturrock suggests that Gabor’s treatment is not sufficiently

rigorous, but does not invalidate the main conclusions. Sturrock lias

also been investigating the aberrations of more general systems with
curved axes, [11, 16] such as the double-focusing spectrometer of

Svartholm and Siegbahn [15], rather like a betatron magnetic field.

Here focusing occurs at intervals of 255°, and in both planes. Stur-
rock has shown that the second-order errors can be eliminated, and
perhaps also those of third order, by introducing an intermediate focus,

rather like the astigmatic lines in Scherzer’s system. Again it is a

far cry to anything like a practicable imaging system, especially with
prospective difficulties of alinement, but it is worth noting that these

unorthodox investigations are on foot.

Diffraction Microscopy

It remains to say something about another scheme of Gabor’s that

differs from those so far discussed in that it seeks to bypass rather

than to correct the spherical aberration of electron lenses. Diffraction

images are formed that contain the effect of the aberration, but these

are then “reconstructed” in an optical system that has exactly iden-

tical aberrations; the result should be cancellation of their disturbing
effects, and the production of a perfect image. The principle of this

“diffraction microscopy” is shown in figure 33.9, in the form originally

proposed by Gabor [17]. In the electronic stage, a point focus of elec-

trons is obtained by use of a strong condenser system. If an opaque
object is placed close to this point, a shadow of it surrounded by dif-

fraction fringes will be formed on a photographic plate placed at a
distance. This picture, or “hologram”, is printed as a positive and
placed in an optical reconstruction device, or synthesizer, which con-
tains a set of lenses identical with those of the electronic apparatus,
except that the lens parameters are all scaled up in the ratio of the
wavelength of light to that of the initial illuminating beam of elec-

trons. If light is projected through the synthesizer as shown, a virtual

reconstruction of the object should be formed in the corresponding
position close to the point source of light. It is convenient to provide a
reconstructing lens for throwing an enlarged image of it on to a photo-
graphic plate.

257899—54 - 20 299



Figure 33.9. Principle of electron microscopy by reconstructed
wave fronts.

Gabor, Proc. Roy. Soc. London [A] 197, 454 (1949), figure 1.

Figure 33.10. Electron optical systems for the two methods of pro-
ducing a hologram.

Gabor, Proc. Phys. Soc. London [B] 64 , 449 (1951), figure 5.

Gabor showed that the proposals were sound by forming the holo-

gram optically and then reconstructing it in the same system. It was
soon realized, however, that it was impossible to do the same with
electrons, owing to the difficulty of holding stable such a very small
electron focus for the long time necessary to record a hologram (about
a half hour). Haine and Dyson [18] then suggested that a practicable
scheme would be to take an out-of-focus image in the normal type of

electron microscope, so that the necessary information would be re-

corded in Fresnel fringes. Figure 33.10 shows this transmission sys-

tem in comparison with the original projection method; the broken
lines in the lower diagram show the paths of rays from the plane that
is in focus to the final screen, the objective lens being over-focused
with respect to the actual object. This system has the advantage of

requiring a much shorter exposure (order of 30 sec.) than the originally

proposed scheme, and also of needing no special apparatus, being car-

ried out in a tuned-up electron microscope of normal design.
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Figure 33 . 11 . Zinc oxide smoke.

a, Highly defocused electron micrograph (or hologram); b, optical reconstruction from
hologram. (Haine, unpublished.)

Haine will be reporting in a later session on the progress so far made,
so that, it is unnecessary to go into details here. Figure 33.1 1 shows the

type of result, with the hologram of a zinc oxide specimen (a) and its

reconstruction (b). It is claimed that a resolution of about 10 A lias

been obtained already, the limitation at the moment being as much in

the reconstruction procedure as in the actual electron microscopy. The
latter is again affected by mechanical and electrical instabilities, as in

normal operation of the machine. Haine will describe the attempts to

track down and eliminate these troubles; he has succeeded to the point
of being able to record diffraction patterns equivalent to a resolution

of 5 or 6 A. The optical problem is partly one of introducing continu-
ously variable spherical aberration and astigmatism in the reconstruc-

tion system, and partly that of judging the precise focus for reconstruc-
tion, since one does not know what the object really should look like.

It comes down again to taking a through focal series and choosing
the most convincing picture.

It is encouraging that this new method has already reached the same
level of resolution as straight electron microscopy, but it appears that
it is liable to be limited in the end by much the same factors: The
instabilities of the instrument, rather than the aberrations of the lenses.

But if th ese mechanical and electrical problems can lie solved, it holds
out a clear prospect of circumventing spherical aberration and so

allowing a resolution of atomic order to be achieved.

Observation of Living Matter

Brief mention must be made of the other main problem before
electron microscopists : The need to devise means of viewing organ-
isms in the living state, instead of in the dead and desiccated condition
imposed by present methods. It has been realized for some time that
the best chance of doing so is to employ voltages of the order of

1 million. Sufficient penetration would then be available to use a
double-walled cell in which the specimen could be kept in a liquid

medium. The lethal effect of the electron beam is reduced as the volt-

age rises, but so also is the efficiency of the photographic plate. The
complex of problems thus raised is being approached in several labora-
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tories, and in the first place by gaining experience at voltages between
those now common and those which will finally be needed. The orig-

inal project of Marton [19] for a 1.4 mv electron microscope has en-

countered serious difficulties owing to the limitations of the existing

source of high voltage. Power supplies and microscopes for around
half a million volts are now being constructed in the Philips laboratories

at Eindhoven [20], in those of Metropolitan-Vickers and at King’s
College, London. They are naturally all of magnetic type, the diffi-

culties of employing electrostatic lenses at these voltages being con-
siderable. We may therefore hope that accumulation of experience
will enable us to judge more accurately the difficulties and advantages
of operating at even higher voltages. Meanwhile, there are strong
indications from the effects of beta-rays that it would in any case be
difficult to maintain an object in a living condition under such an
electron beam for long enough to focus it and take a single micro-
graph, let alone a series for following its living processes [21]. How-
ever, we may still learn a great deal about these processes from
watching their breakdown,—indeed, possibly more than from seeing

them in action. There is also a great deal to be learned from seeing

such specimens in their natural wet state. The various projects in

hand will be followed with interest for these reasons, and we wish
them a successful outcome.
An alternative to using high voltage electron beams is to employ

X-rays for forming shadow images. Electron optical means can be
devised for making the source very small, and the resolution is then
limited primarily by the size of the electron spot. If this falls on a

target in the form of a thin foil sealing the tube, the specimen may be
placed close to it, in air, and an X-ray shadowgraph formed on a plate

at a distance. The primary magnification can be made large by
making the ratio of these two distances large, and also by subsequent
enlargement. I shall be describing such a system in a separate con-
tribution and only mention it here as being a more immediately prac-
ticable means of viewing living specimens than by a million-volt

microscope. The present resolution approaches that of the optical

microscope, being around 1 micron, but it is limited in principle only
by the exposure which can be tolerated, since an extremely fine electron

probe can be obtained. The exposure time at present is about
1 minute. In the full communication [22] are shown typical micro-
radiograplis of insects, with portions of a 1,500 mesh silver grid, in

which the wires are 3/i wide in one direction and 2 n in the other. The
practical limitations will again be the lethal dosage for the organism,
as in the case of the high voltage microscope, and the poor contrast

obtainable when X-rays are used of sufficient energy to penetrate
specimens in the wet state.

Discussion

Dr. Hillier agreed that the limiting factors on resolution at present
are largely the mechanical and thermal disturbances, but felt that even
better results than 10 A had, in fact, been achieved. He had obtained
particles well separated at this distance, whereas, the classical defini-

tion allowed them to overlap considerably. He thought that the poor
contrast was also an important limiting factor.

Dr. Cosslett agreed, and regretted that he had not been able to deal

with contrast problems, on which important work was now being done.
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There liacl been several attempts to deduce the minimum size of par-
ticle, possibly atoms, which could be detected on grounds of contrast,

but these had relied on theoretical expressions for electron scattering.

The investigations now being made by Hall [23] end by Ellis [24], on
scattering in the experimental conditions of electron microscopy, at

last gave promise of estimates based on solid facts. Unfortunately,
the indications were that only the heavier atoms would scatter suffi-

ciently to be visible.

In reply to Dr. Clavier, Dr. Cosslett said that a voltage of 10 kv was
being used for most of the X-ray microscope work, as difficulty was
experienced at lower voltages. Higher voltages, such as those of con-
ventional X-ray tubes, would give very little contrast with biological

specimens.
Mr. Haine criticized the usual treatment of resolution, since there

is almost always enough coherence in the electron beam for interfer-

ence to occur between the rays forming the images of two neighbouring
points; they should not be treated separately, as Airy disks. He also

emphasized the contrast difficulty, which seemed likely to prevent
increased resolution being obtained, even if spherical aberration could
be corrected. In these circumstances the best prospect was to employ
phase contrast, as suggested several years ago by Gabor. As regards
difficulty of focusing in reconstructing an object from the hologram,
exactly the same problem arose in focusing an electron microscope at

high resolution for normal microscopy. There was a slight difference,

but in the method that Gabor would describe, the process was abso-

lutely identical.

Dr. Gabor then discussed the possibilities of diffraction microscopy.
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34. Microanalysis by Means of an Electron-Probe

Principle and Corrections

By R. Castaing 1

The electron probe microanalyser developed in the Laboratories
of the ONERA has already been described at the International
Conference on Electron Microscopy, held in Paris in 1950. Its

principle may be summarized as follows:

A selected spot on the surface of a sample, about one micron in

diameter, is bombarded by an electron probe. The X-ray spectrum
that is emitted by this spot contains the characteristic radiation
of all the elements present at this spot. The operation consists of

determining the chemical constitution of the very small volume
of matter irradiated (about one cubic micron) by analysing the X-ray
spectrum emitted from the sample.

Figure 34.1 represents a diagram of the apparatus. The probe is

obtained by forming a reduced image of the cathode by means of two
electrostatic lenses. The accelerating voltage is 30 kv. The electron

beam current with a 1 p probe is 1.5X10
-8 amperes. Although the

incident power on the sample is about 600 w/mm2
,
yet the local

increase in temperature of the sample is only a few degrees since the
bombarded area is very small

;
so that the analysis can be performed

at room temperature.
The spectrometer includes a curved quartz crystal used in connection

with a Geiger-M tiller counter. The reflected intensity of the char-

acteristic radiation of the main elements that constitute the sample
usually measures several hundred pulses per second, whereas the

continium does not exceed one or two pulses per second . Consequently,
an accurate analysis is possible. The purpose of this communication
is to describe the experimental process of such an operation.

To start with, the various elements contained in the irradiated

volume are easily detected by the presence of their characteristic

radiation in the emitted spectrum. We will be concerned now with
quantitative analysis.

Let IA be the intensity of the characteristic radiation of the element
A, emitted by the sample. Let /(A) be the intensity of the same
radiation Ka { emitted by a sample of pure A under the same condi-

tions. An approximate calculation shows that the ratio of Ia/I(A) is

equal, to the first order, to the mass concentration cA of the element A
in the analyzed volume. This has been experimentally verified for

large samples. One can get a rough idea of this property by noticing

that the different elements have approximately the same mass absorp-
tion coefficient for electrons of the same energy. Thus the mass of

alloy irradiated by the electrons is approximately independent of its

composition, and the number of atoms of A excited by the electrons

1 Office National d’Etudes et de Recherches Aeronautiques, Chatillon, France.
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is proportional to the mass concentration of the element A in the alloy.

A better approximation is given by the relation

Ia &a£a

1(A) 'L ia iC i

where cn is the electron mass absorption coefficient of the exponential
Lenard law corresponding to each element. In fact, these coefficients

are empirically determined once and for all by an analysis of an alloy

of known composition.
Table 34.1 represents the results of four analyses performed on

copper-aluminum alloys with copper concentrations 1, 4, 53, and 88
percent. It gives an idea of the accuracy of our approximations. The
first approximation gives the copper concentration within a 2.6

percent maximum error. For the second approximation the results

Table 34.1.

Alloy
True con-
centration

First ap-
proximation

Second ap-
proximation

Ai 0. 01 0. 0099 0.01075
A 2 0.04 0. 0373 0. 0404
A 3 0. 53 0. 504 0. 525
A 4 0. 88 0.867 0. 876
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are still better, since the error can never exceed 0.5 percent. Yet
aluminum and copper are far from each other in the periodical table.

For closer elements the first approximation gives currently an accuracy
of 1 percent, and we have seen that this approximation does not require
any previous calibration.

The main advantage of this method is that the only emitted intensi-

ties that we have to compare to one another are always those of

radiations that have the same wavelength, so that the variations in

sensitivity of the counter and reflecting power of the crystals for

various wavelengths do not have to be taken into account.
The problem is not always so simple, however, and some corrections

are sometimes necessary. In the first place, when the absorption
coefficient of the sample for the characteristic radiation that is being
measured is large, the intensity that has been absorbed in the sample
itself must be computed and this correction must be applied. Let us
consider that radiation which is emitted from an elementary layer

located at the depth 2 under tbe surface of the sample. The corres-

ponding absorption is equal to e~ ,xZ cosec
\ where p is the linear

absorption coefficient of the alloy for this wavelength, and 6 the angle
between the analyzed X-ray beam and the surface of the sample. It

can be shown by a calculation, which will not be given here, that the

ratio I(9)/I0 of the total intensity which is measured to the intensity

which is actually emitted is a function of the form fy
— cosec 6

)
where

— is the mass absorption coefficient of the allov for that wavelength,
p

and f is, to the first order, a universal function, valid for any alloy,

any characteristic radiation and any angle 6. If we let the angle 6

vary, for a single given sample, we can determine the function /.

Figure 34.2 shows the curve which represents log / versus the quantity

(fi/p) cosec 6. Such a curve is valid only for a given accelerating volt-

age. In the present case, the voltage is 27.5 kv. Figure 34.3 shows the
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log f (X)

Figure 34.3.

correction curve for a 38 kv. The correction is larger for the same
value of (m/p) cosec d because the electrons go deeper into the sample
and consequently the X-ray beam goes through a thicker mean layer
of matter before emerging.

It so happens that the function f is the Laplace transform of the
function that represents the decrease in intensity of the emitted
X-rays versus the depth of emission in the anticathode. Thus, in-

formation about the law of decrease of this intensity may possibly be
obtained by performing the transformation. It is found that the
most important factor in the phenomenon is the exponential Lenard
absorption, and not the slowing down of the electrons, as it was
usually presumed. The absorption coefficients measured by Lenard
are very consistent with the results obtained by this process.

The concentrations of the various elements in the alloy can be
determined directly from the absorption correction curve by a graphic
method or by repeated approximations.

Let us say a few words now about a second correction, the correction
for fluorescence. We have only considered so far the X-rays produced
by atoms which had been directly ionized by the electron beam. But
other ionizations may be produced in the sample by the X-rays
themselves. This entails a secondary X-ray emission, which con-
tains only the characteristic radiation of the excited atom, and which
is known as the fluorescence emission. This secondary emission may
affect the result of the measurement considerably and it is necessary
to find a way of estimating its value. This tedious calculation will

not be expanded here. We have verified experimentally the

formula in the case of an iron-chromium alloy and the results were
very satisfactory indeed.

As a conclusion, we may point out that the corrections which may
be found necessary in microanalysis by means of an electron probe
are simple enough and leave the convenience and the accuracy of

this method practically untouched.
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35. Applications of the Electron Probe Microanalyzer

By R. Castaing 1

There are many possible applications of the electron probe micro-
analyzer. We were mainly concerned with its metallurgical applica-

tions. Let us mention in this field the determination of curves to

represent the diffusion of metals into one another, the study of local

variations of the concentrations in alloys, and more especially the
analysis of precipitates or of inclusions of an unknown or incompletely
known nature.

Figure 35.1 is the micrograph of a copper-zinc diffusion sample that
was obtained by heating a plating of the two metals at 400° C. for

one hour. Two intermediate phases are visible. The whole diffusion

area is about 0.1 mm wide. It is possible to perform a rapid quanti-
tative analysis of the sample at any point, that is to determine the

copper-zinc diffusion curve by simply moving the probe across the
diffusion area.

Figure 35.2 shows the curve obtained by plotting the zinc-concen-
tration across the sample, that is by adjusting the spectrometer on
the radiation Zn Kcm The abrupt variations in concentrations that
correspond to the change from one intermediate phase to the next,

and the steady variation inside a given phase are very noticeable.

The equilibrium diagram of the two metals is also given. Phase (3 does
not show in this diffusion sample. Further experiments showed that
phase /3 was actually present in the sample, but the layer was less than
1 micron thick. The intersection of the curve and the straight line

T= 400° should give the limit concentrations that correspond to the

phase boundaries. The agreement is good, except at the limit of the

phase y, on the side of high copper concentrations. This disagreement
coidd be explained by assuming a very steep decrease of the zinc

concentration in phase 7, close to this limit.

The diffusion curve can also be drawn by analysing quantitatively
the copper present in the sample, that is by adjusting the spectrometer
on the radiation Cu Km- Figure 35.3 shows the curve obtained. It

is easy to check that the sum of the ordinates of the two curves is at

any point equal to one within 1 percent. This is an excellent verifi-

cation of the basic relations between concentrations and intensities of

the characteristic radiation.

We will consider now an example of an analysis of precipitates.

Figure 35.4 represents a micrograph of a copper-tin-antimony alloy

which, in addition to big blocks of antimony about 0.1 mm wide,

contains needles with a dark central area and a brighter rim. The
problem was to determine the composition of these needles. A quali-

tative analysis shows immediately that they contain some copper;
the absorption correction being taken into account, a quantitative
analysis shows that the central part is constituted by the Cu3Sn phase

1 Office National d’Etudes et de Rechercfies Aeronautiques, Chatillon, France.
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whereas the bright rim corresponds to the formula Cu 5Sn 4 . But the
rim*may contain some antimony. This will be easily checked as soon
as the frequency band of our spectrometer is a little broadened so as

to include the characteristic radiation of tin and antimony.
The next problem is to estimate the resolving power of this method,

that is to determine the smallest diameter of the precipitates that can
be quantitatively analysed. Figure 35.5 shows a copper-aluminum
alloy that contains precipitates of AhCu about 1 to 15 ^ in diameter.
If the probe is moved on precipitates of decreasing sizes, the intensity

emitted of radiation Cu Ken remains constant as long as the diameter
of the precipitate is larger than 2 or 3 microns. For smaller sizes,

there is a loss of intensity that is due to the diffusion of electrons

outside the precipitate. We may derive from this experiment that

for a very tiny probe the minimum diameter of the precipitates that

are accessible to an accurate quantitative analysis would be about
1 id. On the other hand, a qualitative analysis can often be performed
on much more minute precipitates, close to the resolving power of a

conventional light microscope.
I conclude with a few words about the possibilities of punctual

crystallographic analysis with the same apparatus. Alien an electron

beam hits a single crystal that acts as an anticathode, the emitted
X-rays are diffracted in the anticathode itself, and what is known as

Ivossel pattern originates as in figure 35.6. The characteristic rays
which propagate from the striking point S meet in the anticathode
lattice the family of reticular planes P. All rays which have the
Bragg angle with planes P are reflected according to the so-called

selective reflection. Therefore, the reflected rays are located on cones
of revolution, the axes of which are normal to planes P and the half-

angle of which is equal to 90 degrees minus the corresponding Bragg
angle. If a photographic film is placed above the anticathode, conic

sections are printed on the negative. They are the intersections of the
plane of the film with the peak intensity cones; consequently they are

black on the negative. The operation can be performed by transmis-

sion through a thin anticathode; a film placed below it registers conic

sections, which show in white. They are the intersections of the plane
of the film with the cones of X-rays weakened by extinction. These
conic sections are usually hyperboles and are known as Ivossel lines.

They characterize the crystallographic nature and orientation of the
involved region of the anticathode. Thus the phenomenon can be
used to perform a rapid crystallographic analysis of a sample by means
of the Ivossel lines it produces under the excitation of an electron

probe. It could be feared that the low rate of the total intensity of the

X-rays would entail very long exposure times if a l-/i probe was used;
it is not so, for the film can be placed very close to the anticathode
without injuring the very good definition of the image because the

lines on the negative are extremely thin. Figure 35.7 shows the Ivossel

pattern that has been obtained through a 0.1 mm thick aluminum
leaf which had been covered by a 1 -m copper layer by vaporization in

vacuum. The film lay 2 mm from the sample and the original picture

is only 5 mm in diameter. Despite the large maginificaton, the hyper-
boles remain very thin and allow an accuracy of 2 min in the determi-
nations of orientation.

Furthermore, after a method used by Iv. Lonsdale, the tiny curvi-

linear triangles formed by some of the Ivossel lines can be used to de-

termine the crystallographic parameters of the area which is studied,
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with a 10' 3 accuracy. This result is very interesting since the method
does not require any precision in the experimental setting. The
fact that a 3 min exposure time was sufficient to obtain this pattern
is very remarkable, too. The same exposure time is necessary to

obtain a conventional Ivossel pattern with an X-ray tube when the

electron current intensity is 10 5 times higher.

Discussion

D r. L. Marton, National Bureau of Standards, Washington, D. C.:

I was very much interested in your experiments because at one time
we had contemplated something somewhat similar, but the total

energy required seemed to be excessive, and I see that, in fact, you
need 60 kw/cm 2

. How far did you observe any modification of the

samples?
Dr. Castaing: For an incident energy of 60 kw/cm2 on a 1 micron

probe, the calculated local rise in temperature is only 0.3° for a copper
sample and less than 10° for other metallic samples. I think it would
be possible to use fairly high intensities, as some experimenters have
obtained with magnetic lenses, without being disturbed by thermal
limitations. In fact, we have never observed any modification of the

samples.

Dr. D. Gabor, Imperial College, London, England: Is it carbo-

naceous contamination?
D r. Castaing: I have seen layers of contamination, but the rate

of contamination is not so fast; the layer is visible under the light

microscope after irradiating the same spot for about 5 min; it is

generally possible to perform the whole analysis before the production
of any visible layer.

a

Figure 35 . 1 .

Magnification ~X700
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36. Ions in Cathode Ray Tubes

By C. H. Bachman 1

The existence of both positive and negative ions in cathode-ray
tubes has been known for some time; both kinds contribute to shorten-

ing of tube life. The negative ions cause screen burning (decreased or

altered fluorescence), and the positive ions not only burn the screen
but bombard the cathode with a resultant loss in emission.

By magnetic separation of the focused-ion components in standard
cathode-ray tubes the identities of the negative ions were established

some fifteen years ago.

2

The components may be seen in fluorescence

and recorded as burned spots. So far some thirty negative ions have
been indicated in studies ot this kind. 3 4 5 (This total is made up from
the reports of several investigators). Some of these studies were made
with demountable systems; others with sealed-off tubes. Some
studies were made under the best possible vacuum conditions; in others
contamination was purposely introduced.

Negative-ion currents of 1
0~ 10 amp to 10“ 13 amp have been reported.

No identification of the positive-ion components has been reported
despite the fact that evidence indicated that there are many more
positive ions than negative ones.

One of the features of positive-ion destruction of the cathode is that

the ions apparently arrive at the cathode as a well focused beam.
Utilizing this feature we constructed a “hollow” cathode electron gun
as shown in figure 36.1. The “electron” side of this gun is a typical

electrostatically focused cathode-ray tube structure of the type with
which positive-ion beam effects have been observed at the cathode.

In this structure the beam arriving at the cathode passes on through
and is examined by suitable means on the “positive ion” side. The
beam may be accelerated, focused, and deflected for analyzing, or

bucking potentials may be used to study energies.

A description of this system and preliminary results have been
published.

6

From work with this setup we learned that the positive

ions are apparently formed on or close to the surface of the first

accelerating electrode passed by the electron beam. They arrive at

the cathode with energies corresponding closely to the potential of the
electrode. No ions could be detected coming from the fluorescent

screen or any electrode other than the first. We also learned that these

positive ions could be directed on to a phosphor on glass without the
charging difficulties that one might anticipate although there was
instability in some cases. Positive ions seemed about as efficient as

negative ions in burning the phosphor.
As a result of this information we turned to standard-production-

type cathode-ray tubes with guns of the type shown in figure 36.2.

1 Syracuse University, Syracuse, New York.
2 C. H. Bachman and C. W. Carnahan, Proc. Inst. Radio Engrs. 26 , 529 (1938).
3 L. F. Broadway and A. F. Pearce, Proc. Phys. Soc. London 51 , 335 (1939).
4 H. Schaefer and W. Walcher, Z. Phyik. 121

, 679 (1943).
5 R. H. Sloane and C. W. Watt, Proc. Phys. Soc. London 61, 217 (1948).
6 C. H. Bachman, H. Eubank, and G. Hall, J. Appl. Phys. 22 , 1208 (1951).
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Figure 36.2. Electrostatic gun for pos-
itive and negative ion studies.

heater outer cylinder

Figure 36.1.

This is an elctrostatically focused gun containing an extra electrode

between control grid and the first anode. This electrode normally
operates at a few hundred volts. It is seen that the cathode, control

grid and extra electrode serve as a positive ion source. By running
the first and second anode potentials at suitable negative voltages,

positive ions are attracted to the screen instead of to the cathode.
By focusing these and applving a transverse magnetic field, positive-

ion spectra can be observed and recorded as radial rows of spots just

as has been done with negative ions. In fact, by shifting the polarity

of the anode voltages the negative-ion spectra can be placed beside the

positive-ion spectra of the same tube.

Such studies have been made on many tubes of various kinds. The
most persistent ions, positive and negative, are listed in table 36.1.

Table 36.1.

M/e num-
ber

Positive ions Xegative ions

Identity
Estimated
Intensity

Identity

1 H+ 9 H-
2 Hr 10
4 0+++ 4

6 C++ .

/ X++ 4

8 0++ 6

12 c+ 8

14 x+ 6

16 0+ 8 o-
26 (CX)~ or (C-H-)—
28 CO+ 10
35- ci-

There was an inconsistent appearance of a few other negative ions

between mass numbers 40 and 100. The strongest negative ion is

mass 1, having an estimated intensity of about 6 on a scale of 1 to 10

with 10 as the most intense. The rather violent type of ionization

depicted for the positive ions leads one to suspect that these basic

atoms were originally part of a more complex system.

It is a pleasure to acknowledge the help of the General Electric

Company, which has partially supported this investigation at Syracuse
University.
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Discussion

Mr. M. Krawitz, Sylvania Electrical Products, Inc., Bayside, L. I.,

N\ Y.: In conventional cathode rays we use ion traps in order not to

burn the screen, and I have noticed time and again that on the second
grid, where you have the ion trap, you have a well-worn spot due to

ions coming back. That means they must have been formed some-
where beyond that. That is, beyond the second grid.

Dr. Bachman: There are many instances of positive-ion burns on
the back of apertures. This we encountered many years ago. With
the particular setup we are using, utilizing bucking-potential methods,
we tried to find evidences in our demountable tube of anything coming
from beyond that first aperture. We were unable to do it in this

particular case. The fact that you find them, and we have already
found them in other instances, is a problem we are still concerned with.
You also get burns on the control grid surface. I think I know what
that is, but I don’t have it ready for discussion yet.

Question: How many ions and positive ions of oxygen are there?
Dr. Bachman: The only thing that we have is this— the majority

of the ions are hydrogen. That is 10 on our estimated scale. The
other estimates are given. We are making measurements now with
d-c amplifiers.

Dr. V. E. Cosslett, University of Cambridge, Cambridge, Eng-
land: Your table gave only the estimate of the positive ions.

Dr. Bachman: I stated that- hydrogen in the case of the negative
was the strongest, and it. would be about 6 on that same scale. The
others would be way below that.

Mr. C. J. Calbick, Bell Telephone Laboratories, Murray Hill,

N. J.: Well, is that to say that the negative ion acts in the same way
on the phosphor as the positive ion?

Dr. Bachman: Yes. We have noticed one other thing: A given
phosphor will burn two different colors, depending sometimes upon the

type of ion. In other words, the burn that you might get from oxygen
would give a different type of change as evidenced in fluorescent color,

from one you would burn with carbon. What is back of this, I don’t
know. As to the relative intensities and currents, the workers in

England, I believe, found negative ions to be to the order of 1()" 10

and 10
-13 amperes. We have checked that roughly, and we are getting

positive-ion currents that are of the order of 1,000 times greater.

Mr. Krawitz: Do you get these peculiar positive-ion burns on the

cathode-ray tubes in the form of crosses?

Dr. Bachman: If you will look back at a paper I published in 1938,

1 showed pictures of some of rectangles, crosses, and other shapes.

The crosses, I am pretty sure, are due to positive ions originating in

this region and being drawn toward the screen, which may be at. a

lower potential than the surrounding anode. I think there are two
kinds of crosses involved. In the case I referred to years ago, we were
scanning with a sine-wave type of raster and I think my solution is

right as given then.

Mr. Krawitz: You get the same thing in television rasters.

Dr. Bachman: Yes, but this is a little different thing. You don’t,

get a true cone projection in television rasters. You get peculiar

shapes, including crossed arcs. This I can’t explain yet.
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Mr. Calbick: Does the use of metalized screens or metalized
phosphors affect the ion spotting very much? -

Dr. Bachman: We have made some tubes in which half of the

screen area will be aluminized. We can put negative or positive ions

on one side or the other. In general, we find that the ion burning is

decreased. In other words, it takes a longer time to get ion burns
through aluminum, but at least up through mass 14 or 16 you can still

get them. The thickness of aluminum films that are used are not
sufficient to completely stop them. It merely decreases the effect.

Mr. M. Knoll, Princeton University, Princeton, N. J.: You
mentioned that you expected positive ions to charge up the screen to

an amount you did not observe.

Dr. Bachman: We observed it, but it was not so bad but that we
could carry on. Electrons, in this case, have no place to go if they
are knocked out. This does not rule out the possibility that the posi-

tive ions might be striking these surfaces and knocking out positives.

If wliat you mean is positive-ion secondary emission, I think it could
very well be a factor.
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37. High-Voltage Electron Guns'

By M. E. Haine 2 and P. A. Einstein 2

Throughout any electron optical system free from absorption or

scattering, the product of the brightness oi* current density per unit

solid angle and the square of the refractive index is invariant. Thus,
the brightness produced by an electron gun is given by

0*=
Po<t>o

7T (
f> e

where p 0 is the cathode emission density, 0 O is the accelerating voltage
and e<t> e=KT,

the mean emission energy of electron (K= Boltzmann’s
constant and T the absolute temperature). This value is independent
of the focusing system and its aberrations. It follows that the current
density at any point is given by

P= Po
?<t>o •>

KT 01
’

(

a

small)

where a is the semiangle of the cone of electrons at the point under
consideration, a is, of course, dependent entirely on the focusing

system and its geometric aberrations.

In the electron microscope the illuminating beam angle is determined
by imaging requirements and hence the current density of the object
is left dependent only on the accelerating voltage, cathode current
density, and temperature. The beam angle must be adjusted to the
correct value through suitable variation of the focusing system.
The current density on the final screen on the electron microscope

is given by

pf=Pi/M
2 Po</>0

M2KT

For satisfactory vision of the fluorescent screen this current density
must equal at least 5X10 -11 amp/cm2

.

Figure 37.1 shows the required cathode current density plotted

against illuminating semiangle for various magnifications of an
instrument operating at 50 kv. Running the cathode at a tempera-
ture of 2,800° K should provide an emission of 10 amp/cm2

;
this is

about the maximum temperature that will give a usable life (10 hr).

For an objective lens of the spherical aberration constant of 0.1 the
optimum semiaperture angle is 2X10 -3

. With critical illumination,

focusing by direct vision should therefore be possible up to 300,000x
magnification with the cathode current density quoted. With an

1 The subject matter of this paper will appear in extended form in the British Journal of Applied Physics,
by whose permission figures 37.2 to 37. It) are reproduced.

2 The Associated Electrical Industries Research Laboratory, Aldermaston, Berkshire, England.
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Figure 37.1. Cathode current density
to give 5 x 10~ n amp/cm 2 on final
screen.

Figure 37.2. Electron gun geometries
investigated .

U) (b)

ILLUMINATING SEMI-ANGLE (RADIANS)

illumination angle of one-tenth critical as used in practice, this is

reduced to 30,000x. Thus we see that a perfect gun should give

adequate illumination for normal use of the instrument. The question
arises as to how nearly perfect is the type of gun in common use. In
a recent investigation we have been able to show that under the cor-

reel operating conditions this type of gun does, in fact, give the

theoretically predicted brightness. One may well ask how this can
fail to be the case as the brightness is invariant. It may be worth
considering this briefly before describing some of our results in more
detail. The most obvious possible cause of brightness fading short of

the theoretical value is the limitation of emission by space charge.

It is well known that this occurs if the electric field in front of the

cathode is insufficient to draw off all the available electrons. That
this does not, as has often been supposed, apply in the electron micro-
scope gun except at extreme cathode temperatures will be explained
later. The effect that does reduce the apparent brightness under
certain conditions results from chromatic aberration, or better,

chromatic-geometrie ab erra tion

.

The experiments we have performed were set up to measure the
variation of brightness, beam angle, and current density of a range of

electron gun geometries in order to relate these with theorv and, if

possible, to obtain improved performance by change of geometry or

operating conditions.

The types of electrode structure investigated are illustrated in

figure 37.2. They comprise a hairpin filament, circular grid, or shield

and anode with central apertures. Two shapes of shields were in-

vestigated, one being flat and the other a reentrant cone. The over-
all apparatus is shown schematically in figure 37.3. The general
arrangement is similar to that used by several other authors. It com-
prises the experimental electron gun, which is designed to allow ready
interchange of the electrodes, and centering and adjusting the height
of the filament while the gun is operating. The high voltage is

variable up to 100 kv and a variable bias power unit is incorporated.
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Figure 37.3. Experimental appara-
tus.

Following the electron gun is a magnetic focusing lens, which can
image the beam on to a small aperture in a Faraday cage situated at

the bottom of the apparatus. In the lens is placed an aperture that
can be centered or removed from outside the apparatus. The focused
or unfocused beam can be swept across the aperture in the Faraday
cage by means of two perpendicular pairs of deflector coils fed with
50 cycles alternating current from a Selsyn. The current collected in

the Faraday cage is passed through a load-resistance and the voltage
developed amplified and displayed on a cathode ray oscillograph

against a time base synchronous with the current in the deflector

coils. Thus, the current density distribution across the focus spot
or across the unfocused beam can be recorded. If the beam-limiting
aperture is in position, and the beam focused, the oscillogram gives

the brightness and size of the focused spot. If the aperture is out
and the beam unfocused, the distribution of current density with
beam angle is recorded. In addition, means are provided for measur-
ing the total beam count, the bias voltage and the high voltage.

If the results obtained on this apparatus are to be related to the

theoretical predictions, then it is of the greatest importance that the
cathode temperature shall be known to a reasonable degree of accuracy.
In our experiments, the cathode temperature was measured by a

modified disappearing-filament optical pyrometer. The accuracy of

the latter measurements was checked with the aid of a demountable
cylindrical diode having two guard rings. The saturated current
density obtained from samples of wire as used in the electron gun
filaments were measured as a function of temperature. The good
agreement found with figures published by Jones and Langmuir
is shown in figure 37.4. This gave us reasonable confidence in the
accuracy of our measurements. In figure 37.5 is shown a series of

results plotted graphically. These curves show the brightness in
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Figure 37.4. Comparison
between intrinsic emission
from tungsten wire as
measured by the authors
and by Jones and Lang-
m uir.

Figure 37.5. Electron gun characteristics.

Flat shield.

amperes per square centimeter per unit solid angle, the total beam
current in microamps, the beam angle, measured as a half width, and
a source diameter, again measured as a half width. All these are

plotted against the bias voltage for a constant high voltage of 50
kv. The series of curves running across the bias scale are for different

filament heights for a constant aperture diameter in the grid. It will

be seen that for all these geometries a similar t}*pe of characteristic

is obtained. The brightness rises with increasing bias to a maximum
and then falls rapidly down to zero, the total current falling over the



I Z 1 4 5 6 7 8910 20 JO 40 50 60 708090100

h (ini. x ICT
1

) »-

Figure 37 . 6 . Filament height and shield hole

size versus current at maximum f3(= 80,000
amp /cm2/steradian) (constant temperature)

.

whole range of bias; the beam angle also falls as bias is increased while
the source size remains substantially constant. At one height a
series of characteristics are shown for different cathode temperatures
ranging from 2,500 to 2,800° absolute. It will be seen that the
brightness goes up with temperature as would be expected and that

up to a temperature approaching 2,800° the value of bias for the
maximum brightness is unchanged. Thereafter the bias for maximum
brightness is decreased. The total current increases also with tem-
perature but, on the other hand, the beam angle and the source size

remain independent of temperature.
It will be seen that variation of height has little or no effect on the

maximum brightness. Indeed, this was found to be true also for

variation in shield aperture diameter and shield slope for which similar

series of curves were drawn. Such changes have no effect either on
the focused spot size, which remains remarkably constant whatever
parameter is varied.

Thus, as far as the maximum brightness is concerned, electron gun
geometry is of little importance. It is, however, of some importance
if one is interested in obtaining this maximum brightness with as

small a total current as possible. In figure 37.6 is plotted the total

current required in the gun to give the maximum brightness with
different geometries. It will be seen that for a minimum total current
it is desirable to use as small a height as possible; that is to sav, the
filament should be as far forward in its shield as possible and the
diameter of the aperture in the shield should be as small as possible.

The desirability of reducing the total current to an absolute minimum
should not be over stressed. Except in very high-voltage electron

guns it is of comparatively little significance whether the total current
is 10 microamps or 100 microamps. It is, in fact, very desirable that
some current should be thrown away in the condenser aperture.

This results from the fact that the current density distribution across

the unfocused beam is approximately Gaussian, and if all the beam
is included in the condenser aperture as would be obtained if the gun
is designed to work with very high current efficiency, then a lower

323



Figure 37.7. Plot of bright-

ness efficiency versus fila-

ment temperature at maxi-
mum jS points.

Bias not constant. Flat shield, 50

kv, d=.050 in., h = .009 in.
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Figure 37.8. Plot of beam-
current- cath ode- cur rent
density ratio versus fila-

ment temperature at differ-

ent values of bias.

Flat shield, 50 kv, d= .050 in.,

h = .009 in.

brightness is obtained at critical focus, because the outer part of the
aperture is filled with electrons of comparatively low density.

In figure 37.7 the maximum value of the brightness divided by the
theoretical brightness is plotted against temperature and it will be
seen that for temperatures up to 2,700° the maximum brightness
obtained is substantially 100 percent of the theoretical value, there-

after up to 2,800°, which is the maximum practical operating tem-
perature of the cathode, there is a small drop in this ratio. Thus,
provided the gun is run under the optimum conditions, it is possible

to obtain the theoretical brightness from it; and no improvement can
be obtained except by improving upon the intrinsic emission of the
cathode.

Part played by space charge. In the past, considerable emphasis
has been placed on the part played by space charge in this type of

electron gun. From the results described so far there is no particular

reason to suppose space charge is of any significance below a cathode
temperature of about 2,800° K., before which the brightness is equal
to the theoretical, and at which the filament life is limited to about
10 hr. by evaporation. To confirm this, some auxiliary experiments
were carried out. Space charge can be expected to have one or both
of two effects. It can limit emission and/or cause beam spreading,
which may show up as an increase in beam angle or possibly an
increase in the focused-spot size. Now any of these effects can be
detected relatively easily. If a gun is operated with all parameters
except the cathode temperatures fixed, then, in the first place, the
variation of total current with cathode temperature should follow
the known law for a temperature limited cathode if space charge
effects are not present, and should vary less if space charge effects

are present. In the limit the current will be almost entirely inde-
pendent of temperature. Any beam spreading effect due to space
charge will be observed by the change in beam angle or source size as

the temperature is changed.
In figure 37.8 is plotted the ratio of the total current to the saturated

cathode current density against the temperature. It is seen that the
ratio is substantially constant until a temperature approaching 2,800°
K. is reached. The next figure shows a series of oscillograms showing
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the distribution of current density across the unfocused beam for

different values of temperature. Again, the beam angle is constant
up to temperatures approaching 2,800°. Clearly space charge is not
significant at temperatures normally used. Not only is this so for

the optimum operating bias but for the whole range of bias over
which the gun could be operated, even very close to cutoff. It is

true that space limitation of emission must inevitably take place
before the gun is completely cut off, but it was not possible to detect
it by the methods described. Thus, the cut-off part of the character-
istic is not determined by the field strength in front of the cathode.
This may seem somewhat surprising, particularly when one considers
the well-known phenomena which takes place with most electron

microscope guns when as the cathode temperature is raised a point is

reached where the total current ceases to rise just as if emission had
reached a space-charge limited condition. The effect is in fact due
to the feedback action of the cathode bias resistor. This is illustrated

in figure 37.9. Curve A shows the total gun current plotted against

bias for different temperatures. The straight lines have slopes

corresponding to various values of the bias resistor. The operating
point for a particular value of resistor and temperature is the inter-

section of the corresponding straight line and the total current curve.

The way in which the total current varies with temperature for a fixed

bias resistor is illustrated at B. It is seen that the saturation effect

results not from space-charge limitation but from the form of the

beam current-bias curves.

The optimum value of bias resistor for a given geometry and
temperature can be determined from the curves by drawing a vertical

line from the maximum of the brightness curve (C) to intersect the

corresponding total current curve (A). The slope of the line from
the zero of coordinates to the intersection corresponds to the required

Figure 37 . 9 . Diagram illustrating operations of automatic bias with bias

resistance and filament, temperature varied.

Fixed geometry, d=.050 in, h= .009 in., kv = 50.
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Figure 37 . 10 . Potential field and electron trajectory

plots near cathode tip.

Initial velocity 0.3 volt. a. At low bias (beam current, 500 ^a); b, at

optimum bias (beam current, 100 yua)
;
c, near cutoff (beam current, lOyua).

value of the bias resistor. In practice the bias for a given gun is so

sensitive to changes in filament height that it is not normally possible

to work from the curves in this way, since the height cannot simply
be set with adequate accuracy; it is therefore desirable to arrange for

the bias resistor to be variable.

In conclusion, it is now possible to explain in a somewhat qualitative

way the mechanism of beam formation in the gun. Figure 37.10
shows tbe field conditions near the cathode for three values of bias

and a typical geometry. The field plots were obtained on the Lieb-
mann resistor network and show how the zero equipotentiai strikes

the anode when bias is applied and restricts the emission area more
and more as the bias is increased, thus accounting for the cut-off

characteristics of the gun. The cause of the aberration effect is also

clear; at large bias near cut-off (C) the electrons of high radial velocity

move into a strongly convergent field. At optimum bias (A) the
field is mostly weakly convergent, only a small proportion near the

periphery being strongly convergent. At low bias (B) the field near
the axis is divergent causing small aberrations and a corresponding
small reduction in brightness. The field near the periphery is again
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strongly convergent and leads to the well-known hollow beam effect.

At low bias the distribution across the beam is approximately Gaus-
sian. As the bias increases the hollow beam is formed, eventually
breaking up to give a complicated structure due to electrons emitted
from all parts of the filament, including the back, being permitted to

enter the beam by the receding zero equipotential.

Discussion

Dr. J. Hillier, RCA Laboratories Division, Princeton, N. J.:

You said that aberrations did not affect brightness, and yet you
proceeded to show an effect where it was aberrations that were
affecting brightness.

Mr. Haine: Brightness is invariable and cannot be affected by
geometric aberrations alone. It is the effect of the combined chro-
matic-geometric aberration in filtering out a proportion of the high-
emission velocity electrons that results in the apparent fall in bright-

ness.

Dr. Hillier: You are, in other words, saying that the large-angle

electrons are always ones of different emission velocity.

Mr. Haine: The effect is to cut out all those electrons with high
radial emission velocity. These, of course, will have a high total

emission velocity, but only part of the high emission velocity electrons

are lost, those emitted in a direction close to the exis are not lost. The
effect on the Maxwellian velocity distribution is to reduce the height
of the high velocity tail of the curve.

D r. Hillier: What is the brightness given by a biased gun
operating near the saturation current value; is this near the maximum
or on either side of it?

Mr. Haine: The brightness at current saturation depends on the

value of bias resistor used. A suitable choice will give maximum
brightness. The correct choice of bias resistor can be obtained from
the curves of figure 37.5.

Mr. M. Krawitz, Sylvania Electric Products, Inc., Bayside, L. I.,

N. Y.: How did you determine the position of the minimum beam
diameter near the cathode?
Mr. Haine: The position of the source of minimum diameter is

not necessarily the position of the minimum beam diameter. The
position was obtained from the calibration of the focal length of the

imaging lens.

Mr. J. A. Reisner, RCA Victor Division: At what pressure did

you carry out these experiments with the gun?
Mr. Haine: The gas pressure was varied from 10

-6 up to about
10~ 3 mm of Hg; no effect was observed due to space charge.

Mr. Reisner: At what pressure did you notice a difference in

the beam that was coming out of your gun? If you indefinitely

increase the pressure, you ultimately reach a point where you do have
a good focusing effect. Where did you notice this in the gun? We
have noticed this effect very definitely at about 10

-3 mm of Hg. It

is a serious effect in microscopy where you have a leaky system giving

a pressure above that value because you can make a self-bias gun;
but it seems to be rather continuous below that pressure at 10

-3
,
or

perhaps two or three times lower pressure. It is noticeable, I believe,

from the experiment we have carried out, so you must have been well

below that value.
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Mr. Haine: I can only repeat that careful experiments were
carried out to check the effect of pressure and up to 10“ 3 mm of Hg;
no effect was observed. We should not attempt to operate a micro-
scope at a pressure even as high as this. We looked particularly for

some effect, because we had observed a very big effect in the cylindrical

diode used to calibrate the emission-temperature relation of the

cathode material.
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38. Electron-Lens Raster Systems

By M. Knoll 2

1. Principle

The conventional electron-optical imaging system is used for de-
vices that magnify, demagnify, convert, or amplify electron images.

In order to avoid electron -optical errors, the diameter of th e electro-

static or magnetic electron lenses that produce the imaging field must
usually be several times greater than the beam diameter. Thus, for

reasons of convenience, electron image systems have almost always
been built hitherto with rather small beam diameters.

In cases where large images are desired, a different principle may be
used. Instead of one large beam and one large lens, a two-dimen-
sional array of minute, identical, electrostatic lenses side by side is

employed, each lens focusing a small element of the object. Because
of this, the sizes of the object and image are equal. Also, the electron

paths do not cross each other at a large angle as in conventional
imaging systems, but form a great number of nearly parallel elemen-
tary beams, in which the electron paths cross only at a very small
angle. An electron optical system (fig. 38.1) using such an array may,
for example, consist of three electrodes: One grid for collecting sec-

ondaries and providing uniform field strength for all apertures (100
to 1,000 v positive versus cathode), one lens-raster grid (near cathode
potential, to minimize secondary emission fog in the picture), and one
conducting luminescent screen (several thousand volts positive versus
cathode) . In order to maintain the tiny beams narrow as they emerge
from the individual lenses, it is essential that the field gradient E2X

between lens raster and collector grid be much smaller than the

field gradient

—

E23 between lens raster and luminescent screen

{E23/E21= 10 to 100). Practically no secondary electrons can reach

the luminescent screen from the lens -raster grid or from the collector

grid, due to their potential.

One use for such as system is for post-deflection acceleration. In
contrast to known post-deflection accelerator systems with only one

grid, however, where secondary emission and the irregular action of

grid openings have been considered a great hindrance, 3 these double-
grid systems provide a relatively high resolution. Analogous to the

lenticular rasters in color photography, such devices may be called

electron-lens raster systems.
In addition to amplifying larger images, such systems have a fur-

ther advantage: By covering the lens-raster screen on one side with
an insulating layer, image storage or image integration becomes possi-

ble, because a charge pattern deposited on the surface of such a layer

may control locally a high-energy electron viewing beam.

1 Research carried out under contract with the Evans Signal Corps Engineering Laboratories, Belmar,
N. J.

2 RCA Laboratories Division, Princeton, N. J.
3 L. S. Allard, An ideal post deflection accelerator C. R. T., Electronic Engineer 22, 461 (Nov. 1950).
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Figure 38.1. Principle of electron lens raster system.
(Intensifying, integrating, or storing of images.)

Figure 38.2b. Electron optical dot

raster.

Produced by focusing with mesh grid (made
visible by electron microscope).

Figure 38.2a. Electron optical line

raster.

Produced by focusing with parallel grid wires of

a triode (made visible by using anode with low
heat conduction).

2. Earlier Experiments

The general electron-optical conditions under which line and dot
rasters are formed by wire and mesh grids have been investigated for

triode and tetrode systems in early experiments. It was shown that
an array of apertures in a stretched parallel wire or woven grid, with
electrons entering it from one side, and provided with a plane parallel

positive final anode on the other side, produces a raster of focused
lines or dots in the space between grid and anode. As an example,
figure 38. 2A shows a line raster, made visible by electron bombard-
ment of a very thin molybdenum anode, 4 and figure 38.2B a dot
raster, produced by a woven grid with rectangular meshes, and made
visible by a succeeding electron lens.

5

4 M. Knoll, Z. Tech. Physik. 15, 584 (1934).
5 M. Knoll and G. Lubszynski, Physik. Z., 34, 671 (19331.



In addition, it has been shown by graphical construction of the

electron paths in triodes that adjacent single beams can be distinctly

separated from each other within a certain range ol grid potentials l 7;

near cathode potential (fig. 38.3). This picture also shows that near

7^21= 0 the diameter of the elementary beams has a maximum at the

anode and that for low positive as well as low negative values of E2 1

the beams become narrower. This can be understood for positive grid

potentials on account of the converging lens action. For negative grid

potentials, however, the beams cross over just beyond the grid. One
would therefore expect them to become wider at the anode. The
beams actually become narrower at the anode, however, with increas-

ing negative grid potentials, the reason being that the action of the
negative field around each hole cuts off the outside rays. The positive

grid voltage range (
—E2 1 )

6 proved to be important for the development
of beam power tubes and tetrodes with low positive grid current. In

the case of electron lens rasters, as shown below, the negative grid

voltage range (-j-jE^i) is more advantageous, especially for obtaining
suitable current modulation and for proper storage and prevention of

secondary emission.

3. Conditions for Optimum Beam Focus (Elementary
Beams Separated)

We must first define the electrical and mechanical conditions for

focusing. The field for circular and slit apertures was calculated and

plotted by Glaser and Henneberg 7 for field strength ratios
#23

e2 1

3 to

6 Negative, since by definition, E=—— •

7 A. Glaser and W. Henneberg, Die Potentialverteilung in Scblitzblende und Lochblende, Z. tech. Physik
16 , 222 (1935), fig. 7. See also A. Recknagel, Hochfrequenztechnik und Elektroakustik 51 , 66 (1938), fig. 7.

anode; + i

£

5 v.

Figure 38.3. Diameter of elementary beams in a triode as a function of potential

gradients.
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150. Along the optical axis 2 of circular apertures it is given by the
equation 8

*(s)=V,-B ( 1 )

where 0 is the potential along the axis at a distance of from the

plane of the aperture of radius R, and V2 the potential of the aperture.
The minimum (saddle) point of the potential along the axis can be

found by differentiating this equation

r

-R R‘21 T &23
9

+R E-n — E23

7

r

2

R

1 +

N

(2)

From (2) follows for the saddle point potential: (for E2zIE2i= 15,

T
t

2= 0 volt, z/R= 1.22), 0= 22.5 v.

The corresponding electron paths are given by numerical integration

of the equation for paraxial rays 9

'

P

’

where P= ^-0i
- (3)

Such electron paths (calculated and drawn by H. Borkan) for a lens

raster of 40 holes/cm, —E2^IE-2i— 15, T-
7
2=0 and distances of the lumi-

nescent screen of 1.5 or 3 mm are shown in figure 38.4.

As can be seen, the distance of the focal plane is only about one hole

diameter distant from the lens raster screen. It should also be noted
that the principal plane for the elementary lenses, because of the
relatively high field strength ratio, lies nearly 2.3 hole radii away from

8 V. K. Zworykin, G. A. Morton, E. G. Ramberg, J. Hillier and A. W. Vance, Electron Optics and the
Electron Microscope (New York 1945), p. 385, eq (11.95).

9 V. K. Zworykin et ah, Electron Optics and the Electron Microscope, p. 402, eq (12, 11) (New York,
New York, 1945).

_i , i l I 1 I I L_

-5 0 5 10 15 20 25 30 35
DISTANCE IN HOLE RADII

/
— Eo3

Figure 38 .4 . Beam paths in electron lens raster systemsl „
V Fu

= 15, Vo= 0 v)
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the lens raster plane on the cathode side of the system, as follows from
graphical construction of the tangent to the calculated electron paths.
The overlapping effect of the elementary beams, which is to be

avoided,* can be seen very clearly from this picture. For the given
field strength ratio, dots become tangent at a plane 15 hole radii away
from the lens raster grid, and in a plane 30 hole radii away the over-
lapping effect is such that the resolution suffers seriously. We define

the “tangent spot” condition as “optimum beam focus,” considering
the fact that still shorter distances of the luminescent screen, which
would not deteriorate the resolution, are usually undesirable due to

voltage breakdown caused by the increased gradient. In the case of

figure 38.4, therefore, the luminescent screen is placed 15 hole radii

distant, which for a 40 mesh/cm grid requires a 1.5 mm distance be-

tween lens raster and luminescent screen.

For brighter pictures with correspondingly higher final electron

energies, greater distances of the luminescent screen may be required
because of breakdown. As shown in figure 38.3 for the case of the
triode, less divergent beams to prevent overlapping may then be
obtained by using a more negative (especially for storage) or a more
positive (especially for intensifiers) lens-grid voltage.

4. Focusing Characteristics for Tangent Dot
Condition

Knowing the general shape of the elementary electron beams, and
applying the electron-optical laws of similarity, it is possible to predict

the optimum potentials with respect to resolution and brightness, for

the design of electron lens raster systems for various purposes. Ac-
cording to these known laws, for constant electrode potentials of an
electrostatic system the paths of the corresponding electron beams
grow and shrink as electrode dimensions are geometrically increased

and decreased, as if they were a part of the system. On the other hand,
the shape of these paths remains the same for constant electrode

dimensions if the electrode potentials with respect to cathode (in our
case Vi, V2 and V3 ) are increased or decreased proportionally. If,

therefore, dot tangency lias been observed at the luminescent screen of

a system with particular dimensions and particular electrode poten-
tials, Vi, V2 ,

and V3 ,
this condition should also hold, for example, for

other anode potentials V3 ,
where

(4)

and therefore

V3/V1=K3l (5)

and

v3/v2=k32 , (6)

where Ku K2 ,
K3i and K32 are constants, and /v :u= Tjr ,

and K32
=

.

Ai 2

For a given electron lens-raster system, we can observe the tangent
dot condition (optimum focus) for V2<^0 with a microscope at the

luminescent screen for two particular voltage ratios (5) and (6).

*It. may be noted, however, that overlapping is undesirable only if a resolution comparable to the hole
distance is desired. Otherwise, overlapping may be admitted to any degree which does not reduce the
resolution of the picture to be amplified, which is given for a post-deflection accelerator oscilloscope, for

example, by the focus size of the scanning beam. This holds especially in cases where fine, mesh grids
can be manufactured with a higher uniformity than coarser ones.
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Knowing thus the constants I\ :n and K32 we may find other values of

Vi, V2 and U3 ,
which also satisfy (5) and (6), and therefore correspond

to the same electron paths that define the condition of focusing.

Using U3/Ui or E23/E2 1
as a parameter, 10 and V3 and V2 as coordin-

ates, U3 plotted as a function of V2 for focusing conditions should
therefore follow a straight line for each field strength ratio E32/E2h all

such lines pointing to the origin: U3= 0 ;
U2= 0.

This is done in the diagram figure 38.5, indicating the electrode

potential ratios (observed microscopically) for obtaining spot tangency
at the luminescent screen in a particular system. As to be expected,
one finds straight lines with different slopes depending on the E23/E2l

ratio, which cross each other, however, at U3= 0, U2= 2.5 v, instead

at U3= 0, U2= 0 as electron optical laws of similarity would require

(dotted line). As can be seen, the actual characteristics are shifted,

parallel to themselves, to more positive U2 values, as if the lens grid

would have a surface layer with an additional negative potential of

V2
=— 2.5 v on its surface.

Probably 11 this effect is produced by the contact potential, Vct ,

between lens-raster grid and viewing-beam cathode, which is equal to

the difference of their work functions. For this case, (5) and (6) may
be written, following a suggestion of E. G. Ramberg, in the form

(5 )

(7 )

Besides the shift due to contact potential, we may conclude from the

focusing characteristic three significant facts:

10 To retain free choice of Vi, which can be accomplished by changing the distance between collector and
lens grid, the use of E23IE21 as a parameter is often preferable.

11 More accurately: (V3— TVC/V— Vct) =Ku. Usually, V3 and Ui are>100 v, and here Vet becomes
negligible.

+ 4

Figure 38 . 5 . Focusing limit characteristics (dots tangent)

for electron lens raster system.

40 holes per linear centimeter. V et= contact potential.
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(a) Separation of elementary beams can be obtained for a 40
dots/cm system at final electron energies which are sufficient to produce
bright electron images (1 to 12 kv).

(b) Focusing can be accomplished with only slight changes of the
negative raster-grid potential.

(c) The field strength ratio E23/E21 and T
r

3 being chosen, the curves
determine the value of V2 for focusing. A choice of suitable collector-

grid voltage Iff, and therefore of the energy of the beam entering the
lens-raster system, can still be made by using a suitable value of

collector-grid distance a.

So far, focusing conditions have been discussed only for negative

lens-grid potentials, which are essential for storage and current modu-
lation purposes. If the lens-raster grid is used for intensifying only,

as indicated in section 2, tangent spots can be obtained also at 'positive

V2 potentials, which are high enough to satisfy the focusing conditions

but low enough to avoid detrimental secondary emission from the lens-

raster grid reaching the luminescent screen. In the system shown in

figure 38.5, the action of the collector grid makes possible the use of

positive lens-raster potentials as high as 40 to 400 v for focusing

(TA= 1,000, F3= 7,000 v) without significant deterioration of contrast.

5. Resolution and Applications

Due to the short length of the elementary beams, the resolving

power of an electron lens-raster system is usually not limited by space
charge, but rather by three other conditions:

(a) The hole spacing of the raster grid.

(b) The focusing (tangent spot) condition, which implies that the
elementary beams should remain separated and not overlap. This
means that, in cases where fine grids are used, there should be a small
distance between lens raster and luminescent screen, which may be
limited by electrical breakdown.

(c) Suitable values of lens-raster grid potentials V2 ,
which permit

an adequate voltage range along the useful portion of the viewing
current characteristic

.

Tentative considerations have shown that the resolution of electron

lens-raster systems is limited by the hole spacing (a), rather than by
(b) or (c). At present, the mechanical limit for larger pictures

(>10 cm total diameter) of etched or electroformed lens-raster grids

seems to be of the order of magnitude of 200 lioles/linear cm, and
similar values hold for stretched parallel wires. As may be seen from
table 38.1, a fraction of this value is already sufficient for images
according to present television standards. In this table, in agreement
with experience, the actual resolution is assumed to be approximately
1 .6 times less favorable than the hole spacing.

The table shows that, for example, post-deflection acceleration oscil-

loscopes and kinescopes may be built with Vi= 1,000 v, and T
T

3= 10,000
v, which combine high deflection sensitivity and high brightness.

For viewing storage tubes
,
in order to obtain a sufficiently small spot

size with the writing gun, \\ has to be chosen usually above 3,000 v.

An example of such a tube is given in figure 38.6. Besides viewing
of a single picture during several minutes, it offers also the following
advantages for television or radar standard scanning, because each
picture element may be viewed during a large fraction of the frame
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Table 38.1. Calculated dimensions of electron lens raster systems for typica
cathode ray tubes _

Viewing electrons

Collector grid 1 1 V,

Insulating layer for storage (where needed) si

T
a
si

- V0

Metal raster orid 1

/K

Luminescent screen

3 rnm
1 _ Vs

(a) Raster with 40 holes/cm

v3 V Vi a
Image
size

Lines
resolved

Application

Volts

5, 000

10, 000

1 ~olts

0

— 2. 5

Volts

1.000

1,000

mm
20

10

cm

15X15

20X20

(25/cm)

375

500

Post-deflection accelerator oscillo-

scopes and kinescopes.

8, 000 -6 3,600 15 20X20 500 Storage oscilloscopes and storage
viewing tubes.

(b) Raster with 80 holes/cm

12, 000 -3. 5 400 3 32X40
(50/cm)
1.600 Large-size image tube, for intensify-

ing, integration, or storage.

Figure 38.6. Direct view storage tube with electron

lens raster system.

time: Increase in brightness by several orders of magnitude, lower
anode voltage for the same brightness, and a smaller signal band-
width due to reduction in frame repetition frequency without flicker

effect. A detailed description of such a tube is given in the following

paper.** With only one gun and without the storage layer, the same
kind of tube may be used as a post-deflection oscilloscope.

**See also: M. Ivnoll and B. Kazan, Storage tubes and their basic principles, p. 79, figure 22.
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For image tubes, due to the desired low field strength near the

photocathode, Id values below 500 v are desirable. It may be inter-

esting to determine the hole spacing for a photoelectric image tube
with lens-raster grid for which the same resolution may be expected,

as compared to the known image tube of Holst, deBoer, Teves and
Veenemans, 12 which consists simply of a luminescent screen parallel

to a photocathode at a distance d. For such a tube, the diameter of

the “ circle of confusion” and thus the resolution, is given by

2r„=4cty/-^ (8)

where U0 is the initial and UA the final electron energy in volts.

For a practical tube (d~ 0.3 cm, U0 ~l v, t/A ~ 10,000 v) 2r0 is approx-
imately 0.15 mm, which corresponds to a resolution already attained

with electron lens-raster grids. Therefore, their use for large-area

image tubes seems promising. For image storage tubes, the capacity
of the storage elements has to be sufficiently small to be charged in

a sufficiently short time by the writing beam, whereas the writing-

beam cathode, irradiated by a local light source, may serve as viewing-
beam cathode during the viewing time.

Electron lens-raster systems may also be useful as a final stage
for electron microscopes of the emission and transmission type, and
for electron-diffraction cameras. Using scattering data given by Von
Borries 13 for example, for a transmission-type microscope, good
contrast should be expected at voltages of 10 kv and lower, with a

specimen thickness of the order of 200 A, if sufficient brightness is

provided by an intensifying, integrating, or storing lens-raster system.
Because the resolution of these systems is limited, a higher magnifica-

tion than usual may be necessary for the preceding electron-lens

system in many cases.

I wish to express my appreciation to E. G. Ramberg and P. Rudnick
for helpful discussions and to H. Borkan and H. O. Hook for assistance

in measurements and calculations.

12 C. Holst, J. H. deBoer, M. C. Teves, and C. F. Veenemans: Physica 1, 297 (1934).
13 B. von Borries, Z. Naturforsch. 4a, 51 (1949), fig. 7.

337





39. Direct View Storage Tube
1

By M. Knoll

2

and P, Rudnick 2

Introduction

Although a few proposals for direct view storage tubes are to

be found in the literature, 3 4 5 6 7 the continuous viewing of bright
pictures for several seconds or minutes by storing transient signals

such as a few television or single radar frames, facsimile pictures or

oscillograms has not heretofore been accomplished. For many ap-
plications, especially in airborne equipment, such a technique is of

considerable importance.
Besides viewing a single picture during several minutes (practically

without decay), a viewing tube capable of such storage would also

offer advantages for television-type picture reception, as compared
with the conventional kinescope, if to the conventional scanning (now
used for writing) is added a locally modulated flooding beam. It

would have greater brightness for a given anode voltage or lower anode
voltage for the same brightness; it would also have less flicker, for a
given signal bandwidth, or allow a smaller bandwidth without flicker

effect due to reduction in frame repetition frequency.
As compared to a combination of a signal converter storage tube

with a kinescope at the receiving end of a picture transmitting system,
it would require lower anode voltage, smaller deflection circuits, and
no amplifier.

Description of Tube

An electron-lens raster system, as described in the preceding paper,
was considered to be very suitable for the purpose indicated above
because it combines the possibilities of grid control storage, 8 increased
brightness, and half-tones, with the possibilities of simultaneous
writing and viewing. The construction of a developmental viewing
storage tube with such a system may be seen from figures 39.1 and 39.2.

The bulb (figure 39.1) has the shape of an ordinary kinescope but
with two necks, one for the viewing (flooding) gun, which is normal
to the luminescent screen, and another for the writing gun, which is

slightly inclined to the axis of the tube. The target (figure 39.2) con-
sists of a fine-mesh collector grid (near ground potential), a metallic

storage grid covered with an insulating layer (near viewing-beam

1 Research carried out under contract with the Signal Corps Engineering Laboratories, U. S. Army.
2 RCA Laboratories Division, Princeton, N. J.
3 T. F. Adams, The Krawinkel image storing cathode ray tube, Fiat Final Rep. 1021, P. B.-78, 273 (April

1947).
4 A. V. Haeff, A memory tube, Electronics 20, 80 (Sept. 1947).
6 F. Schroeter, Image storage in television reception, Optik 1, 406 (1946); Image storage problems, Bull.

Schweiz. El. Verein 40
, 564 (1949).

6 M. Knoll and J. Randmer, Control grid reading type storage tubes, Archiv f. cl. Uebertragung 4, 238
(1950).

7 R. C. Hergenrother and B. C. Gardner, The reading storage tube, Inst. Radio Engrs. 38, 740 (1950).
8 Thus, the electrical charge delivered at the storage elements in writing is not removed during reading or

viewing as in earlier storage tubes that use capacity discharge reading or viewing. For a discussion of various
methods of writing and reading see B. Kazan and M. Knoll, Fundamental processes in charge controlled
storage tubes, RCA Review 12 , 702 (Dec. 1951).
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Figure 39.1. Developmental direct-view storage tube with electron lens raster system.

Figure 39.2. Storing image amplifier
system using electron lens raster.

Figure 39.3. Viewing storage system.

Left to right: Luminescent screen, storage grid,

collector grid.
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cathode potential) and a conducting luminescent screen (7 to 10 kv
positive), all three of which are stretched parallel, at a short distance
from each other. Figure 39.3 shows separately the two grids and the
luminescent screen (left).

Operation

During operation, the viewing beam is collimated and directed
towards the storage grid, maintaining the storage-layer surface at

viewing-beam cathode potential (approx. —1 kv). Due to the high
field strength on the other side of the storage grid, usually a large
amount of viewing current will pass through this grid, and will then
be focused at the luminescent screen by each hole of the mesh (elec-

tron-lens raster principle). If, then, during writing, a negative
charge pattern is established at the storage surface by the writing
beam (cathode potential approx. —5 kv), 9 this negative pattern will

modulate the viewing current so that a bright negative (black on white)
image of it appears on the luminescent screen. By a similar process,

a positive (white on black) image may also be achieved. Erasing is

accomplished by temporary connection of the storage grid with the
collector grid, or by the writing beam using a cathode potential
slightly lower than the viewing cathode.

Preliminary Results

In contrast to most previous storage tubes, the stored charges are

here not discharged during reading (viewing), so that maximum view-
ing durations of several minutes have been obtained. With the
present tube, writing and erasing of television type pictures can be
accomplished within 1 sec; further reduction of these values seems
probable. Although not yet satisfactory, due to nonuniformities of

the storage surface, half-tone presentation is possible. The resolution

of the picture is approximately equal to the storage grid hole spacing.

At present, a 100-mesh-per-inch screen with 4-in. diameter is used,

the resolution being about 250 lines. Figure 39.4 shows an enlarged
highlight portion of an image visible in bright daylight. Due to the

low current density and short length of the elementary beams, as

compared with the scanning beam in a conventional kinescope, there

is no spreading of the image dots by space charge.

The storage layer consists of silica or magnesium fluoride, evap-
orated onto a carefully etched metal grid support. With a storage

layer thickness of approximately 1 \x and a writing-beam current of

the order of 10 namp, this will give writing, viewing, and erasure

durations as indicated above and maximum writing speeds of the

order of 10 5 spot diameters per second.
Figures 39.5 and 6 show black on white and white on black oscillo-

grams (60 cycles) after 0.5 to 1 min. storage. The retention time of

the charge pattern (without viewing) was found to be several days.

Figure 39.7 shows stored television pictures, which have been written
in a fraction of a second.

We wish to express our appreciation to D. W. Epstein, F. H. Nicoll,

L. Pensak, and E. G. Ramberg for many interesting and stimulating

discussions, and to E. Apgar, H. Borkan, L. Freedman, H. O. Hook,
and M. Topke for assistance in measurements.

8 For example, using a silica storage layer with a second crossover at 3.5 kv on the secondary emission
curve.
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0.1 inch

Figure 39.4. Enlarged highlight of amplified image showing full resolution at bright-

ness of 200 foot-Lamberts.

Figure 39.5. Single transient, black on
white, 60-cycle wave, after 30-second
viewing duration.

Figure 39.6. Single transient, white on
black, 60-cycle wave, after 1-minute
viewing duration.

Figure 39.7. Stored television pictures (flying spot scanner).

White on black writing with 3 to 10 frames, a, Immediately after writing; b, 2 minutes after writing

342



Discussion

D r. L. Marton, National Bureau of Standards, Washington, D. C.:
How is the storage grid alined, and what is the writing speed of the
storage system?
Dr. Knoll: There is no mechanical alinement necessary. The

insulating material which forms the storage layer is evaporated directly

onto one side of the metallic storage grid support. As to writing speed,
we are able to obtain a picture (to be stored for several minutes) by
writing with a few standard television frames (1/30 sec. each) at

present. Higher writing speed is possible with a thicker storage layer
and therefore less capacity between the storage surface and the metal
support.

Dr. M. E. Haine, Associated Electrical Industries, Aldermaston,
England : In the last device you showed, do you still have to aline

the holes of the first grid and the storage grid in the main illuminating
beam?
Dr. Knoll: This is not necessary. The first grid merely collects

the secondary electrons and does not have to be alined with the

second (storage) grid.

Dr. Haine: So the main illuminating electron beam is falling on
your insulating surface?

Dr. Knoll: Yes; that is correct.

D r. R. G. E. Hutter, Sylvania Electric Products, Inc., Bayside,
L. I., N. Y. : Do not the viewing electrons disturb the charge pattern
deposited on the storage layer?

Dr. Knoll: No; because they are reflected by the charge pattern

and cannot land.

D r. Hutter: How thick could the storage layer be made without
danger of preventing the flow of the viewing-beam electrons?

Dr. Knoll: Possibly up to an order of magnitude of tenths of

millimeters, or 100 times thicker than at present.

Dr. Hutter: The beams would not charge up the insulator on
the inside of each hole?
Dr. Knoll: No; if you determine the surface potential of your

insulator by proper use of the secondary emission curve.

Dr. D. Gabor, Imperial College, London, England: You men-
tioned the post-acceleration tube. I suppose everybody will know
Pierce’s paper 10 in which be shows the possibilities of post-deflection

acceleration.

Dr. Knoll: Are you also referring to L. S. Allard’s paper, An
Ideal Post Deflection Accelerator Tube? 11

Dr. Gabor: What they recommend is not valid here because if

you break up the system, using instead of one lens system a number of

small ones, then the theorem does not apply and you cannot consider

the usual sort of refractive index. So it is clear in principle. Prac-
tically, what do you gain in post acceleration?

Dr. Knoll: In post-acceleration with conventional cathode ray
tubes, there is one large accelerating lens near the luminescent screen.

This tends to improve the deflection sensitivity on one hand, because
for the same brightness, as in the simple cathode ray tube, the beam
can be deflected at low energy before entering this lens. On the other
band, the large acceleration lens tends to decrease deflection sensitivity

10 J. R. Pierce, After-acceleration and deflection, Proc. Inst. Radio Engrs. 29, 28 (1941).
11 Electronic Eng. 32, 461 (Nov. 1950).
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to a certain degree by its demagnifving action. With an electron

lens raster system, this negative effect' does not occur. This is

expressed by the fact that the deflection sensitivity is constant with
respect to final anode voltage in our case, whereas in the case of the

large post-deflection accelerating lens the sensitivity decreases as a

function of final anode voltage.

Dr. Gabor: Once you break the beam up into small beams, the

theorem simply is not valid, but that is what you get practically.

Dr. Knoll: There is no special theory necessary because the length
of the accelerating field is very small (3 mm in the tube discussed

here), and therefore the simple rules for the deflection of a low-energy
beam apply.
Dr. Gabor: What sort of amplifications do you get?

Dr. Knoll: There is no theoretical limit. It depends how bright

you want your tube to be. We obtain the same sensitivity as de-

scribed by Allard. He made an experiment with an accelerating

system using two parallel positive planar mesh grids, one of which was
in contact with the luminescent screen. In this combination, he
found high sensitivity, but unsatisfactory resolution and contrast

due to secondary emission. In our case, we avoid this by addition
of a third electrode near cathode potential between two positive

electrodes (collector grid and conducting luminescent screen).

Dr. Gabor: There was a German paper, also on this subject, 25
years ago. There are at least three old ideas worked up there. I am.

glad it has come to such a success.

Dr. J. Hillier, RCA Laboratories Division. Princeton, N. J.: I

wonder if I might ask a question in which I will imply an answer to

Dr. Gabor’s practical question. The use of the high voltage, I

presume, is to get higher efficiency and higher luminosity from the
luminescent screen. At the same time, this system permits use of

lower deflecting powers.
Dr. Knoll: Yes.
Dr. Gabor: I should still like to have a numerical answer.
Dr. Knoll: For reasons of electron optics, one usually does not

deflect a beam of less than 1000 volts energy. For our tube, 20 or 40
kilovolts on the final anode is possible, so that a voltabe ratio up to

1 to 40 is possible. If one deflects at less than 1000 volts, this ratio

may be increased. Of course, a ratio of 40 is not necessary in many
cases; often 10 is enough.
Dr. V. E. Cosslett, University of Cambridge, Cambridge, Eng-

land: It occurs to me that the corresponding optical system is used
in X-ray technique, similar to a fly’s eye. Isn’t it possible to call this

a fly’s-eye electron lens system? The eye of a fly is built the same
way.
Dr. Knoll: Yes. You are still free to use any suitable name.
Dr. Gabor: There is an even older expression for it, lenticules .

12

12 This word, stemming from the Latin “lenticulum” (little lens) should, indeed, be a suitable name for

electron lens raster systems. However, the adjective form “lenticular” lost this particular meaning in the
English language and is now used indiscriminately for lenses of any size.
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40. Point Projection Microscopes

By Erwin W. Muller 1

A simple device to get pictures of a metal surface with a high resolv-

ing power and a large magnification is the point projection microscope.
Until now it was only used as an electron microscope with field electron

emission. 2 But now it is possible too to operate with positive points
and to get a sufficient current density of positive ions, thus achieving
an improved resolving power. 3

The field electron microscope tube contains a well-smoothed metal
point opposite to a screen (fig. 40.1). With a voltage of some 3,000
to 10,000 v applied to the anode ring an electrical field strength of the

order of 50 million v/cm is achieved on the tip. The field electrons

are preferentially emitted perpendicular to the hemispherical surface

of the tip and fly directly to the screen, giving a picture of the emitting
surface due to the different current densities of the various crystal

faces.

With a point radius of about 10~ 5 cm the magnification is in the range
of 500,000 times. Opposite to every emitting spot on the surface

appears a scattering disc on the screen corresponding to an objectside

diameter of about 20 A, thus determining the resolving power. A
special advantage of every emission microscope is the extreme sensi-

tivity regarding very thin absorbed layers that influence the work
function.

The clean surface of the point metal itself with the different crystal

directions as well as the absorption of many substances on this surface

may be observed in a wide range of temperature. The tip may be
cooled by immersing the whole tube in liquid air or hydrogen, or it may
be heated to more than 1 ,400° K during the observation.

The picture of a clean tungsten tip contains only the different

crystal faces, but when it is covered with a thin layer of barium as in

figure 40.2, there appears a large number of single dots. Every point

of the granulation is assumed to be the blurred picture of a single-

protruding barium atom. Similar pictures may be obtained with a
number of other large atoms, e. g., strontium, zirconium, sodium, or

uranium.
The question, if these blurred grains with an apparent diameter of

some 20 A are really pictures of single atoms or of small clusters of 10

or 100 atoms, may be decided in several ways. One is to measure the
activation energy of surface migration on a defined crystal face and
compare with the theoretically calculated value. 4

Another method is the discussion of the observed contrast. Clusters

of barium atoms, for instance, forming a small area with a degree of

1 Kaiser-Wilhelm Institut, Berlin-Dahlem, Germany. Now at Pennsylvania State College, State Col-
lege, Pa.

2 E. W. M tiller, Z. tech. Phvs. 17 , 412 (1936); Z. Phys. 106
, 541 (1937); 108

, 668 (1938).

3 E. W. M tiller, Z. Phys. 131 , 136 (1951).
4 E. W. Muller, Z. Phys. 126,642 (1949).
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covering about monoatomic, should have a low work function. These
areas should have an about 10,000 times enhanced current density
compared to the surrounding clean tungsten surface with a high work
function. The observed contrast is only in the range of 10 to 1 or 30
to 1, corresponding to a calculation for the contrast of a single atom. 5

Another method, used by M. Dreclisler and E. W. Muller, 6
is to

evaporate a well known number of barium atoms and to count the

appearing number of blurred dots. About 60 to 80% of the expected
amount is to be found as single dots, showing that only the few bright

ones can be clusters of two or more atoms. During this work Drechs-
ler and Muller 6 developed a new method of determining the polariza-

tion factor a of single particles at high field strengths. When barium
atoms are evaporated on the tip from one side, their pictures naturally
appear only on the one side towards the source of evaporation. But
when an electrical field is applied during the evaporation, the induced
dipoles will experience an attractive force in the inhomogenious field,

and they are drawn to the back of the tip also (fig. 40.3). By measure
ment of the voltage necessary to get atoms to the back side and by
some calculations of orbits and consideration of the Maxwellian
velocity distribution, the polarization factor of barium was found to be

a=6.0X10 -23 cm ::

in good agreement with other methods.
Adsorbed layers with a large degree of covering are not resolved

into single particles, as the distances between the molecules are too

small. Some examples of epithaxy may be discussed by observing
adsorbed layers of Cu20 on the 310 face of the underlying tungsten

5 E. W. Muller, Z. Naturforsch, 5a, 473 (1950).
6 M. Dreschsier und E. W. Muller, Z. Phys. 132, 195 (1952).
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tip (fig. 40.4) or of carbon layers on the 334 faces of the tungsten

crystal (fig. 40.5).

Large molecules, of course, are easier to recognize than single

atoms, especially when they are adsorbed in protruding positions.

It seems to be due to a special field distortion effect, that even the

shape of some flat molecules like phthalocyanine may be recognized

within a resolving power of 5 A (fig. 40.6).

As the pictures show atomic and molecular dimensions, there can

be seen several kinds of movement on the surface, caused by the

surface migration or by cathode sputtering by impinging positive

ions. The technique of observation has been improved to make
possible taking movie pictures from the screen. The 16 mm film

shows the adsorption of barium evaporated onto the tip. The ex-

pansion of a monoatomic layer over the whole hemisphere by surface

migration at higher temperatures and the different speed of surface

Ficure 40 .4 . Cu20 adsorbed on the 310 faces of a

tungsten tip.

Figure 40 .5 . Carbon adsorbed on tungsten.
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Figure 40.7. Electron beam
from a point of atomic di-

mension.

Stray 0\sc om Screen

Figure 40.6. Phthalocyanine molecules.

migration on various crystal faces can be observed. Then the
microscope tube with a clean tungsten tip is filled with oxygen (10

-6

Torr). Within seconds the surface is covered with a thick adsorption
layer, while the current density decreases rapidly by increase of the
work function. Several states of the surface are shown after being
heated to higher temperatures in steps of 100 deg up to 2,200° Iv, where
a clean surface is obtained again. Below 900° the pictures are always
taken with a cold tip, which has been heated previously to the indicated
temperature. A thin layer of A1 20 3 condensed at one side of the tip

spreads over the whole hemisphere at temperatures of about 1,000° K.
Suddenly monomolecular layers with protruding oxygen atoms and
a high work function are built up around the 100 faces of the under-
lying crystal. The delay of the growth due to the nuclei formation
at the beginning of a new lattice row can be observed. Thin layers

of SrO seem to be adsorbed preferentially on the steps of the tungsten
lattice, at least at temperatures between 1,200 and 1,400° Iv, thus
marking these steps during their movements and dissolution by the
reduction of the 110 lattice layers, which occurs when the point radius
increases by the heating. At last the adsorption of phthalocyanine
molecules is shown with a number of fourfold scattering discs, rotating

on the surface and being shot off by impinging ions. When the tip

is heated, only a part of the molecules evaporates, the other part

becomes cracked and remains adsorbed on special crystal faces in an
orientation which is typcial for adsorbed pure carbon.
The pictures on the screen of these insensitive objects are bright

enough to allow a direct demonstration by projecting the screen on
the wall of the auditorium at a diameter of 2 m. Thus the surface

migration of barium layers and the granulation due to single atoms are

demonstrated.
The resolving power of this field electron microscope amounts to

only 15 to 20 A except in the very special cases of adsorbed flat

molecules. The scattering disc on the screen may be described by
the tangential velocity u of the emitted electrons (fig. 40.7), which
remains unchanged during the acceleration due to the anode voltage
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(U). The object-side stray scattering lias a diameter of

d= 2-r

Thus the resolving power cannot be improved essentially because
the velocity u is determined by the inner velocity of the metal elec-

trons and the shape of the potential barrier before the surface, and U
cannot be increased very much in order to prevent a too large current
density, which would destroy the fine point.

Considering the resolving power as a wave diffraction problem the
value of about 20 A is again reasonable. An exact calculation is

difficult due to the fact that the wavelength near the surface itself

cannot be expressed in the case of the tunnel effect. Within a distance
of 12 to 15 A from the surface the wavelength drops below 10 A
due to the acceleration, thus giving a possible explanation of the
observed resolving power.
An improved resolving power is to be expected by the use of posi-

tive ions instead of electrons. Unfortunately, there exists no field

ion emission comparable to the field electron emission. Ten years
ago Muller 7 showed how to tear off adsorbed barium atoms from a
tungsten point, using positive field strengths of 80 to 120 million

v/cm. Assuming a desorption of positive ions one would achieve a

current pulse of 10~ 14 Coulombs by tearing off a monoatomic layer.

In order to get. a visible picture on the screen a on e-million-times
enhanced emission is required. This is possible by repeating the
adsorption and the desorption act very rapidly.

A simple method to do this is the following: The tube is filled with
hydrogen, the pressure being about 5 X 1

0~ 3 mm of Hg. With a nega-
tive point the well-known field electron picture may be observed prac-
tically undisturbed by the presence of the hydrogen, which seems to

give no cathode sputtering at all when quite pure. Then the voltage
supply is reversed and the positive voltage at the tip is increased about
4 to 6 times. Now the adsorbed hydrogen atoms become desorbed by
the field forces and fly to the screen on nearly the same orbits as the

electrons before, giving there a picture of the places at which their

ionization and desorption occurred. The free places on the surface are
rapidly filled up by the impinging neutral gas molecules, these being
desorbed again as ions and so on. After the conception of the idea
it was somewhat questionable if the intensity would really be sufficient.

It is not possible to increase the gas pressure over the value mentioned
before in order to prevent a gas discharge breakdown. With this pres-

sure an ion current of only 5X10 -10 amp is expected by the calculation

of the gas-kinetic frequency of molecular collision to the surface.

Thus the picture should be very faint, when sufficient magnification
is obtained.
But when this experiment was actually performed, it was encourag-

ing to observe an about, 20-times enhanced emission. The reason is, of

course, that the molecules in the neighborhood of the tip are attracted
by the polarization of dipoles in the very strong inhomogenous field.

A 20-times enhanced capture of molecules is estimated to be reason-
able. Thus the picture becomes bright enough to be observed
visually.

7 E. W. Muller, Naturwiss. 29, 533 (1941).
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The ion picture is very sharp and lias good contrasts. The diam-
eter of the scattering discs is observed to- be -about 3 A. This is in

accordance to the tangential velocity corresponding to the temperature
of the point, that is only 0.04 v at room temperature, using again the

equation d=2-r (\u/U).
After cooling the whole tube to the temperature of liquid ah one

expects only a scattering disc of 1.6 A. The De Broglie wavelength of

the ion seems not to be important. It amounts to 1.4 A for a proton
of 0.04 volts and 0.2 A for a proton of 2 v, which are reached in a

distance of 3 A above the surface.

Already at room temperature interesting lattice steps with indenta-
tions and kinks, having the size of atomic diameters, become visible.

The well smoothed surface of the tip has still many dislocations,

which may be observed visually. As the pictures are very faint,

an exposure time in the order of 1 min is required for the photo-
graphic record. As the screen had no conductive coating there were
some movements during the exposure and the photographic picture

is not as sharp as the visible picture on the screen itself. Fig. 40.8

shows an electron picture of a tungsten point contaminated with a

Figure 40.8. Electron image of a

tungsten point with adsorbed
carbon and hydrogen.

Figure 40.9. Ion image of the

same point as on figure 40 .8 .
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very small amount of carbon. The radius is about 940 A. Fig.

40.9 shows the same tip, recorded one minute later with positive

hydrogen ions. The improvement in the resolving power compared
with the electron picture is obvious. The bright lattice steps have
a distance of 30 A from each other, but the resolving power is higher.

Points with a distance of 8 A are separated.
Further improvements in photographic record may be obtained by

working with conductive screens or with direct photographs by intro-

ducing the plate into the tube. This is not quite simple in a tube
that must be baked out. Maybe the technique of image converters
can be applied for the amplification of the picture.

The ion picture on the screen becomes visible for the dark adapted
eye at field strengths of 200 million v/cm. This must be the field

strength for the beginning of field desorption. The picture grows
brighter until 300 million v/cm are reached. Then suddenly the
whole picture is quite blurred. Obviously the ionization occurs no
longer at a place that is determined by the surface structure, but in

the free space before the impinging molecules have reached the sur-

face itself. The mechanical forces on the metal surface F2
/8tt are,

of course, enormous at 300 million v/cm, about 400 kg/mm2
. It is

supposed there will be a possibility, too, to work with other ions,

e. g., helium or lithium, having a larger polarization factor a and thus
requiring a smaller field strength. In this way it is to be assumed
that this first method of getting microscopic pictures with a resolving
power of atomic dimensions may become applicable for the solution

of some surface problems.

Discussion

Dr. M. Knoll, Princeton University, Princeton, N. J.: 1 would
like to know whether Dr. Muller has any suggestions on the fringes

in the ion picture.

Dr. Muller: These are the steps of the lattice. This area con-

sists of a number of atoms in the surface of the 110 face. We must
have a step here and again another here or we cannot get the lattice.

These steps now become visible, and they are not smooth but they
have kinks and prongs.

Dr. K noll: Are there any lattice defects?

Dr. Muller: There are certainly dislocations. Some are very
small. They are the interruptions in the fringes.

Dr. V. E. Cosslett, University of Cambridge, Cambridge, England:
Have you, in fact, examined the points as far as you can in the electron

microscope? What warrant have you in any case for assuming that

the surface is a smooth curve?
Dr. Muller: In an ordinary electron microscope you cannot

see very much of the shape. You see always a quite exact spherical,

smoothed point, never any sharp corners.

Dr. Cosslett: Can you be sure of that? One would imagine,

would one not, from the thermal etching which occurs on some metals,

that after the treatment you give the surface you would in fact have
quite pronounced ridges?

Dr. Muller: No, then the intensity of these fringes must be
greater. Of course, we have not only single layers but steps of

several layers. But these steps may not be higher than about three

atom layers.
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Dr. Cosslett: Xo, but it is quite remarkable because in metals
which have been investigated for thermal etch, the steps are of the

order of 100 A.
Dr. Muller: Such surfaces were not perfectly clean. If you have

absorption layers, you get larger steps. These layers are growing out.

But if you have a clean surface, expecially of tungsten, you get
smoothed surfaces.

Dr. W. T. Scott, Smith College, Northampton, Mass.: Do these

spots that were shown on the sides of the point mean there will be
essentially a plain layer for the given face approximately parallel to

the side of the sphere so that further down you would have faces on
the side?

Dr. Muller: Well, you have here the lattice and here the atoms
lying in a direction where (Oil) is the axis. Then again you have the

same faces, Oil and Oil even with an angular distance of 90° from the

axis.

Dr. J. B. Johnson, E-ell Telephone Laboratories: In the electron

emission picture, where strontium oxide covered the surface, you had
waves travel in and out on the surface. What was the nature of

those?
Dr. Muller: I believe it was the following: If you are annealing

a point in vacuum, its radius always increases. This is only possible

by dissolving these single layers of the (110) face. The corners are

marked by the oxide as bright absorption stripes. The layer dis-

appears by surface migration to this side and the strontium oxide
remains at these steps. When the steps are going away, we see

concentric rings with decreasing diameters.

Dr. J. Hillier, RCA Laboratories, Brinceton, X. J.: I am afraid

I am horribly confused on the matter of resolving power here. In
the first place, you said the radius of curvature of this point is 1,000 A.
is that correct? If that is so, then between the (110) direction, which
is this direction, and the (100) direction, which looks like this, there

is 45-degree angle. That would imply 750 A on the surface, and
yet in that range you had only maybe 10 structures in the ion pictures

with the rings.

Dr. Muller: There was a distance of about 30 A between the

individual rings in those pictures, but the resolving power is better.

In the picture the diameter of the scattering disk is about 8 A and
along the rings we see such fine details.

Dr. Hillier: I get that impression from the picture, so it is

almost an order of magnitude discrepancy.
Dr. Dyke, Linfield College, McMinnville, Oreg.: Was the point,

which you showed in ion microscope picture, flashed at high tempera-
ture and therefore as smooth and as spherical as possible?

Dr. Muller: There was a not quite clean surface. Therefore
we have bigger lattice steps.

Dr. Dyke: One always has the question of whether it is adsorbed
impurities or ridges and high fields. Was this a built-up type?

Dr. Muller: Xo, there were some contaminations. I believe

there was some carbon as the directions (334) were somewhat preferred.

Dr. Dyke: What was the highest temperature at which this

point glowed prior to use?
Dr. Muller: Oh. between 1,400 and 1,600 degrees. Then it was

some time between taking the hydrogen picture and the electron
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picture, before I reversed the voltage. The electron picture itself is

not a picture of a clean tungsten surface; this was not the intention
in this case. It is rather tungsten with carbon and hydrogen.

Dr. Dyke: Were you able to get any quantitative data on the
surface migration?

Dr. Muller: It would be possible, of course, to measure the
velocity of surface migration, but I have no quantitative data with
me. I have measured this, particularly of tungsten atoms in the
(110) plane of tungsten, a long time ago. You cannot measure the
activation energy, or the movement of a single barium atom because
you see it only when it is adsorbed in a protruding position. You see

only the resting atoms and not the movement itself, because the
thermal movement would be too fast.

D r. Dyke: I would like to report some of the work we have done
on a closely related subject.

We have been interested in large field current densities and in part
have used pulse techniques. The field emission process offers rela-

tively direct access to the copius conduction electrons that are nor-

mally contained in the metal by its surface potential barrier. This
barrier is thinned and reduced in height by the presence of a large

surface electric field according to the theory. The current density,

J, is of the order of 10 10 amp/cm2 as predicted by the theory prior to

the point at which the classical barrier is lowered to the Fermi level

beyond which the emission becomes primarily a transmission over
the barrier instead of transmission through the barrier.

Most of the voltage drop in such a system exists in the immediate
vicinity of the hemispherical field emitter. If one has a centimeter
electrode spacing, in nine-tenths of this there is a drop of 2,000 v and
the rest of the potential difference occurs near the emitter tip so that

the electrons receive most of their energy near the emitter and the
electron trajectories are more or less radial. When the field is of

the order of 3 X 107 v/cm, Prof. Muller has shown that the distribu-

tion in energy among the field emitter electrons, is around 1 v. Theo-
retically when the field is three times this value, as it was in our
pulse work, the distribution of energy increases somewhat. It is

approximately 3 to 5 v.

In order to examine the theory one has to measure or determine
simultaneously the variables current density, electric field, and work
function. One may use the Muller projection tube to examine the
emission process for clean tungsten to check the theory. If one has
a phosphor which is metal-backed, the electrons penetrate the metal
anode and excite the phosphor. Light is given off, and this is moni-
tored photographically during a microsecond pulse. One then records

the total current, voltage, and learns the distribution of current
density over the surface from the photographic negative, which may
be calibrated and analyzed with a densitometer. If one plots relative

values of current density versus polar angle relative to the (110) crystal

direction of the hemispherical emitter, radius B, one observes that
in the (110) direction there is a minima and there are maxima in the

(116), (310), and (111) directions. If the emitter apex, the region of

highest field, is asymmetrically located with respect to crystal direc-

tions, and if we now take an azimuth that includes the (110), the (310)
directions, so that the azimuth then includes the (100) direction, there

are large indicated differences in current density for clean tungsten.
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These may be compared with those predicted by M. H. Xichols values
for the work functions of clean tungsten with good agreement, using
the field emission theory.

From these data the percent of current versus percent of area is

obtained. Thirty percent emission originates from 6 percent area.

One gets an experimental curve that looks something like this, which
may be of use for those who might consider this emitter as an electron

source. As the most profusely emitting directions are in a region
that surrounds (100) directions rather symetrically (it appears as a

doughnut and you have seen this in the pictures), the possibility

exists that if this direction is made coincident with the emitter apex,
desirable distributions in current density for practical uses may be
obtained.

Currents are stable at densities greater than 10" amp/cm2 for

microsecond pulses (single microsecond pulses). There is little data
available as to higher repetition rates.

There is considerable experimental evidence that average current
densities larger than 10’ amp cm2 may be drawn.
Those are the high points of our progress to date, which has been

largely building a laboratory and getting an experimental method
worked out. We are continuing along these lines. Thanks very much
for this opportunity to report this.

Dr. M. E. Haine, Associated Electrical Industries, Aldermaston,
England: When talking about emission of 10" amp/cnr, is it neces-

sary to modify in any way the conduction processes going on just

inside the metal where the current density is of the same order?

Dr. Dyke: We have examined the heating that one would get on
a simple classical picture by using known tungsten constants and the

observed geometry and find that an emitter of this size should support
a direct current of density of 10 7 amp/cm2

,
the implications being that

the pulse current could be larger. The voltage drop in the emitter

is small under these conditions; the temperature rise is also small.

However, both become appreciable at a current density of about 1 08

amp/cm2 for the tungsten emitter at pulse lengths greater than lyusec.
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41. On the Breakdown Between Metal Electrodes

in a Dynamic Vacuum

By F. Bertein 1 and P. Grivet 1

In this paper, Professor Grivet and I shall give some observations
about electrodes in electrostatic microscope lenses and their ability

to support high voltages. The question is considered from the point

of view of the electrical circuit and the thermal properties of the metal
electrodes.

In figure 41.1, c is the cathode at high voltage V; a is the grounded
anode. V is connected to c through a resistor R, which is of the order
of 50 megohms. It is necessary to take account of C, the interelectrode

capacitance or, more accurately, the capacitance to ground by the

electrode c and the conductor connecting it to R.
It is well known that the applicable high voltage V is limited

because of the appearance of a discharge current i taking place

between a and c as soon as V exceeds some value, for instance, 10

kv/mm.
This current is caused by the electronic field emission at the cathode

c. Actually, i is the result of this electronic emission and also of an
ionic current running in opposite direction; the ions are ejected from
the anode a (and its impurities) by the electron beam.
Such a complication due to the anode influence is well pointed out

by the following feature: i is dependent upon the surface field on c

and also on the gap length ac, that is to say, the applied voltage V.
An increase in voltage V will, indeed, give an increase of energy in

the electron collisions on the anode and accordingly in the ionic

current and i, possibly causing sudden breakdown.
Indeed, the capacity C is storing the energy W= l/2 CV 2

,
and this

energy can be wasted within the gap ac by sudden discharge; the
current i arcs during a short time, owing to the volatilization of

impurities or metal.
A localized spark is observed, able to eject the cathode and anode

impurities that caused it. This type of spark allows the lens to

reach a higher voltage V. It is this “seasoning” process that allows

up to 100 kv/mm with electrodes of small area.

Let us see first the possibility for the d-c current i causing a sudden
voltage breakdown. This will depend on the volatilization of im-
purities and therefore the electrode heating due to the incident

current in vacuum, the value of which lias i as upper limit. If this

current is striking an area of radius r0 ,
it is found that the electrode

has a temperature increase on this area in degrees centigrade,

9 <0.76—- r„K

1 Ecole Normale SupO'ieure, Paris, France.
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K denoting the thermal conductivity of the metal. The units KV,
ixA, and g are used for V, i, r0

Let us consider, for instance, stainless steel (ii~0.3); supposing
r0 ~ ly, a current i=a few fxA (under 50 kv) gives 6 reaching a few
hundred degrees.

Under the same conditions, the heating would be one-thirtieth as
large in a copper electrode (K= 1). A metal with poor thermal
conductivity sparks more easily than a good conductor.

Let us consider now the effect of a sudden breakdown at anode a.

This electrode, indeed, will take almost the whole energy W, inas-

much as the discharge is carrying chiefly electrons because they
have greater speed than the positive ions.

It thus happens that the anode a is melted around the area of

electron impact. The melted areas are left visible after cooling,

for during this melting ripples appear on the metal surface (fig. 41.2).

These ripples arise from the polishing irregularities due to electro-

static pressure. One of us established a corresponding theory.
On the two plates, the radii r\ of melted areas is about 300 y, with

F=50 kv, 0=50 mil.

Let us try to compute theoretically the value of rx . Suppose the

sudden discharge strikes a on a point O
,
the melted area will be nearly

hemispherical, its center being O. An upper limit can be obtained
for r\ (microns) by writing the whole energy W; this gives the heating
and melting of this hemisphere at the metal-melting temperature

where 8= metal density, Q= total melting heat, r x changes very little

as (7
, 8, Q vary. The same order of magnitude is found with the dif-

ferent metals under the same voltage V. Typical values are 150
or 200 fj.

if L=50 kv. The illustration (fig. 41.3) gives a larger

value; this shows the anode area struck by breakdown cannot be
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Figure 41.3.

considered as a point, but its radius is of the order of magnitude at

least 100 fx. That indicates possibly the area struck and eventually
cleaned by breakdown.
We shall see now how the anode temperature varies after such a

spark, supposing there is no melted metal.
In the preceding hypothesis of a discharge striking a on a point 0 ,

the variation of temperature in any point M of the anode surface

would be:

6=

A

CV2

(Kty/2

0= temperature increase in degrees centigrade, r=OM
,

t= time, and
K= thermal conductivity. A is a coefficient, almost the same for the

different metals, within our approximation.
From this equation, lb being given, the thermal evolution changes

according to the metal only in its speed, that is, varying as K~ l
. The

phenomenon is, for instance, 30 times more rapid in copper than in

stainless steel. However, the area struck by the beam is not a point 0
,

although the influence of K is the same.
Taking the numerical values as before and considering a very

narrow area around the center, its temperature exceeds 500° C
during 10

~ 4 sec in the case of copper, 30 times more in the case of

stainless steel. One may think the breakdown will be more effective

in the latter case, because of longer volatilization of impurities.

Thus, as far as the bulky properties of the anode are concerned the

“seasoning” process is favored by increasing capacity C and having
a metal with poor thermal conductivity, as we have seen. This last

property gives two results:

1 . It tends to make the breakdown easier by increasing temperature
under the action of field emission currents.
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2. It makes the heating of the anode of longer duration (as long as

the metal surfaces are not damaged by theunelting).

If the vacuum is poor, residual gases continuously contaminate the

electrodes and sudden breakdowns take place according to statistical

rules. It is quite clear, however, under these circumstances that the

breakdowns have little effect.
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42. Some Studies of the Contamination Induced by

Electron Bombardment in Kinematic Vacuum Systems

By S. G. Ellis
1

Introduction

“Contamination” is the term used in this paper to describe the
solid material, usually insulating, that is formed on a surface in a

demountable vacuum system when the surface is under electron

bombardment. Contamination presents the chief technical obstacle
to the further development of precision electron-optical instruments.
In the electron microscope the contaminating layers on diaphragms in

the system eventually become thick enough that the charges produced
upon them by the electron beam cause serious potential disturbances
in the column with a consequent reduction in performance of the

instrument. This is particularly true of the objective diaphragm
wherein asymmetric charge distributions destroy the symmetry of

the objective lens and hence, make it very difficult to use small
diaphragms successfully. The growth of contamination on the speci-

men leads in time to a loss of contrast and in some cases can also be
seen as an apparent growth in size of the specimen.

In the electron diffraction camera, the growth of contamination
leads chiefly to a loss of contrast. This loss of contrast is more
particularly noticeable in probe work when one attempts to obtain
diffraction patterns from small single microcrystals.

In the electron microanalyzer [l],
2 contamination at present makes

it impossible to obtain the energy losses of electrons passing through
small regions of thin specimens, for in the time required to record the

electron-energy distribution on a photographic plate, the contamina-
tion will have grown until carbon (in the contamination) forms a

major percentage of the solid through which the electrons are being
driven.

The phenomena of contamination was discovered prior to its recog-

nition in the electron microscope. It has, for example, been observed
in demountable tubes for the generation of soft X-rays [2]. Contam-
ination was also a source of difficulty in precision determinations of

e/m for electrons and in this connection the phenomena has been
given some attention by A. E. Shaw [3, 4], A very good summary
of the information available in 1934 was given by R. L. Stewart [5].

This paper is still one of the best on the subject and since that date
very little fundamental information has been added to what was al-

ready known. Hillier [6] has summarized the observations made
with the electron microscope and with the probe type of electron

optical instrument, for example, the microanalyzer. These observa-

1 RCA Laboratories Division, Princeton, N. J.

2 Figures in brackets indicate the literature references on p. 368.
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tions emphasized the complexity of the phenomenon and at first

sight suggested certain inconsistencies in its behaviour. For example,
it was found that in the electron microscope a collodion film could
be bombarded without the production of contamination, providing
that the illuminating beam did not strike the supporting copper
mesh. On the other hand, in the microanalyzer contamination was
invariably formed on bombarding a collodion film whether or not
the mesh was being simultaneously illuminated. It was also im-
possible to suggest any relation between the rate at which the con-
tamination formed and the pressure within the vacuum system, and
the current density of bombardment of the substrate.

It was therefore decided to make further studies of the contamina-
tion phenomena and in particular to concentrate attention upon these

apparent contradictions. Before describing the experiments it will

be well to say something of the conditions under which they were done
and to follow this by a description of the contamination.
The contamination has been studied by three methods:
(a) As a layer of measurable thickness on filmless mounts of carbon

or magnesium oxide in the electron microscope. In some experiments
the particles were mounted on collodion films, and the thickness of

the added layer determined at different times.

(b) Small amounts of contamination have been produced by remov-
ing the condenser diaphragm from an electron microscope and bom-
barding films of the order % cm diameter with currents of the order
100 microamps at 50 kv.

(c) It has been studied in the electron microanalyzer as small
mounds of material built up on collodion films, or as projections built

up on the copper mesh.
There is a marked difference in the conditions of bombardment in

the electron microscope and in the electron microanalyzer. The
differences are illustrated in figure 42.1 and may be described in the

following terms:

(a) With peak illumination in the electron microscope, the beam
strikes an area 20 or 30 ^ in diameter. The total current reaching the
specimen is of the order 1 microamp and the current density at the

specimen of the order 1 amp cm 2
.

(b) When the condenser current is increased to spread the illumina-

tion at the specimen in the electron microscope, figure 42.1b, the

current density drops to the order 10
-2

to 10
-4 amp/cm 2

,
and the

area of illumination can be made large enough to insure that the beam
somewhere strikes at least one mesh wire.

(c) In the microanalyzer with the probe formed at the film, figure

42.1c, the total current reaching the film is of the order 10
-9

to 10~ 10

amp. The diameter of the illuminated area is of the order a few
hundred A and the current density may be between 1 and 10 amp
per square cm.
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(d) If the probe lens is weakened or strengthened in the micro-
analyzer, figure 42. Id, so that the area of illumination increases, the
diameter of the illuminated area may become several microns and
the current density of illumination may fall to 10

~ 2 amp/cm 2 or less.

The most important difference between the conditions of bombard-
ment in the electron microscope and in the electron microanalyzer is

that in the former instrument the temperature of the him may rise

to the order 1,000°C when the illumination is peaked, whereas in the
latter the temperature will seldom rise above 100°C and will probably
be much less under normal conditions of operation. When the illumi-

nation is spread in the electron microscope (condition of fig. 42.1b)
the temperature of the him may fall to less than 100 deg centigrade
in excess of the temperature of the walls of the instrument. I am
indebted to Dr. E. G. Ramberg, who calculated these temperatures.
Another factor which may be of importance in understanding bom-

bardment induced contamination is the potential of the bombarded
area. So long as the illuminating beam does not strike the mesh, or

any other grounded conductor in the vicinity of the him, the him is

maintained at a positive potential with respect to the rest of the
instrument. For films a few hundred angstroms thick, the primary
electrons are absorbed by the him to a negligible extent, and many
of the secondary electrons escape from it leaving the him with a net
positive charge. If now the specimen is moved so that the mesh
enters the bombarding beam, the potential of the him drops to a lower
value more nearly equal to that of the walls of the instrument. The
sign but not the magnitude of the potentials reached has been deduced
from the nature of the dehections produced in the illuminating beam.

It is concluded that when the film and mesh are simultaneously
bombarded, the him is kept near ground potential because of bombard-
ment by low-velocity secondaries from the mesh. We shall return
to this point when considering the mechanism, whereby contamination
is produced on the him.

Other phenomena relevant to the present discussion are the chemical
and physical changes that take place in a collodion him under electron

bombardment. These were first studied by Konig [7], who claimed
that the film became chemically inert and thermally very stable be-

cause it had lost hydrogen, oxygen, and nitrogen to become graphite.

The matter has also been investigated by Hillier, et al. [8], who con-
clude that the film does not necessarily lose the lighter elements, but
becomes chemically stable and thermally resistent under electron

bombardment. This question, like that of contamination, is compli-
cated by the fact that under electron bombardment there is usually

some rise of temperature of the him. It is known from previous
microanalyzer studies, that upon bombardment material can be lost

from the collodion him, and it had been considered that this was loosely

bound water. In this connection the work of Cowley [9] on the elec-

tron diffraction by fatty-acid layers on metal surfaces is of interest.

Cowley concluded that as a result of electron bombardment, changes
were produced in fatty-acid layers and that, irrespective of the sub-
strate and the fatty acid that had been bombarded, there resulted

another material that he found to be thermally resistant. He suggests
that the material is akin to polythene being a long chain polymer
with strong lateral binding between small “crystallite” regions.

Perhaps the most direct evidence for the nature of the chemical and
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physical changes that take place under electron bombardment can be
obtained by placing films of organic materials on glass or metal sub-
strates and bombarding them in the electron microscope with the

condenser diaphragm removed. Collodion films on glass became white
after bombardment. Those on copper were darker after extended
bombardment, but in no case was the resistence of the film less than
10 9 ohms between two points a millimeter apart. The conductivity
of much thinner films of evaporated graphite was readily observable,
and it was concluded that though chemical changes had been produced
by bombardment they were not extensive graphitization.

While the process is undoubtedly complicated, the conclusions from
this work may be summarized in the following terms : When an organic
material is bombarded in the electron microscope, we may imagine the
valence bonds to be broken repeatedly by the incident electrons.

Moreover, one will expect considerable ionization to take place.

With an organic material, it will be unlikely that all the four valence
bonds of one carbon atom will remain simultaneously broken for a

sufficient time that the carbon atom can migrate very far or escape
from the molecule in which it is combined. At the same time that this

general ionization and dissociation is going on, we may expect com-
bination and neutralization to take place as well. The electron beam
also heats the system. Under this electronic excitation (the electronic

energies of the incident electrons being far higher than the activation

energies required for chemical combination) we may expect the system
of atoms to rapidly approach the condition of thermodynamic equilib-

rium corresponding to the temperature of the system. By chemical
standards this will be a highly stable and hence inert system, and when
the bombardment is stopped the system remains in this condition. It

is only in the case where the temperatures produced by bombardment
are very high that the thermodynamically most stable state of this

system is that of graphite, and where, as is commonly the case, the

temperatures reached are only a few hundred degrees centigrade, the

resultant product is an inert hydrocarbon.

Experimental Work on Bombardment Induced
Contamination

A balanced evaluation of the factors outlined in the introduction

had not been attained when the experimental work presently to be
described was started. At that time the hypothesis due to Stewart,

which had been supported by Watson [10] was considered to be
substantially correct and was used as a working hypothesis in designing

the experiments. As the work progressed, it became apparent that

the temperature of the substrate was playing a hitherto unrecognized
part in phenomena. It was also suspected that the material which
was polymerized to form the contamination was arriving in the bom-
barded region, not wholly from the vapour state but in part, if not in

major part, by surface migration. Attempts were then made to test

these two hypotheses. As a chronologic presentation of the experi-

mental evidence would be confusing, it will not be attempted. Hind-
sight permits a more coherent account to be given.

If the beam is concentrated in the electron microscope so that it

does not hit the mesh, then after an initial period, no contamination
will form. If the beam is spread so that the mesh is struck, contamina-
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tion will form chiefly on the side of the film that faces the mesh, and
this is true whether the film is above of below the mesh. This sug-
gests three possibilities:

(a) that the material from which the contamination forms is driven
from the mesh as a result of heating caused by the electron bombard-
ment,

(b) that low voltage secondaries from the mesh cause the contam-
ination, and

(c) that the material from which the contamination if formed
migrates on the side of the mesh away from the beam.

In the microanalyzer, contamination forms on both sides of the
film whether the mesh is being struck or not. It was considered
possible that the higher temperature to which the film is heated when
the beam is concentrated in the electron microscope is the cause for

the lower rate of contamination as compared with the microanalyzer.
When a diaphragm with a small hole (of the order 1 micron cross-

section diameter) was placed above the specimen film in the electron

microscope so as to reduce the cross section of the beam striking it,

it was found that contamination was caused at an appreciable rate

even though the beam did not hit the supporting mesh. Moreover,
by shadowing this contamination, it was shown that some of it had
formed on the side away from the supporting mesh.
Some attempts were made to study the rate of contamination (rate

of increase of thickness of the contaminating layer with time) as a
function of specimen temperature. Magnesium-oxide smoke was
mounted on a tungsten wire that could be electrically heated when
placed at the specimen level in the electron microscope. There are

two sources of difficulty in such an experiment. The thermal ex-

pansion of the specimen causes image drifts that make accurate
quantitative measurements well-nigh impossible. Moreover, there is

often some doubt as to whether the specimen is not at a lower temper-
ature than the supporting wire due to radiation losses from the speci-

men. Using carbon for the specimen, it was found that the contam-
ination that formed at lower temperatures could be removed by
heating to 900° C. The contamination could be reformed on allowing
the specimen to cool, but there was some indication that the rate of

contamination was reduced when the specimen was heated.

As the electron-microscope results had suggested that the mesh
was a source of contamination, studies were made using vacuum-fired
platinum mesh, copper mesh, stainless steel mesh and fired stainless

steel mesh. The platinum mesh that had been vacuum fired to a

temperature in excess of 1,000° C. still showed contamination. No
treatment has been found that will reduce the rate of contamination
when copper mesh is used. Neither washing the mesh with amyl
acetate nor coating it with Formvar has reduced the contamination
rate, nor, indeed, has the contamination rate shown any tendency to

decrease over long periods of use in the microscope and over long-

periods of bombardment. The stainless steel mesh has, it appears, a

somewhat lower rate of contamination, though no significant im-
provement was found on firing it before use.

Magnesium oxide mounted on copper mesh in a spare specimen
cartridge was heated to 500° C. for 1 y2 hours in an air furnace. With
the specimen cartridge carrying tool, the cartridge was transferred

while warm to the electron microscope. It was found that at first
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the contamination rate was much reduced, but after some time it

returned to the normal value. While this experiment was complicated
by condensation of zinc from the brass of the specimen holder on to

the mesh, it nevertheless suggested that the contamination rate was
reduced when the specimen and specimen cartridge were warm and
that it returned to its normal rate as these cooled, or some short time
afterwards. It lias been noticed by Turner [11], that the contamina-
tion rate in the electron microscope increases to a maximum with
increase in beam intensity and thereafter declines. Turner also

reports that prior heating of the screens was ineffective in reducing
the rate of contamination. These experiments suggest that the rate
of contamination can be considerably reduced if the temperature of

the substrate is raised, and moreover they suggest that temperatures
of a few hundred degrees centigrade, may be effective in reducing the

rate of contamination. Attempts to heat specimens in the electron

microscope and in the electron microanalyzer have so far proved
unsuccessful for technical reasons connected with thermal expansion
of the stage mechanisms and possibly because the parts under electron

bombardment were considerably cooler than the heating elements,
owing to radiation.

These results suggest that heating the substrate will reduce con-
tamination, presumably because the reacting molecules either are not
present in the area under bombardment, or are in proximity for too
short a time to be polymerized.
The experiments described above give little or no information on

how the reacting material arrives at the bombarded region. In this

connection it is instructive to consider the conditions in the vacuum
system. If the pressure is p in millimeters of mercury, the absolute
temperature is T, and the molecular weight of the residual gas is M,
then the mass G of residual gas incident per second on unit area of the
substrate is given by

If we take il/=390 (the molecular wt of Octoil), T= 298° K (or 25° C),
p=10 -5 mm of mercury, 6r=67X10 -8 gm/cm2

/sec. If then all this

material were deposited as contamination, and the density of the con-
tamination was 1 gm/cm3 the contamination rate would be 67 A/sec.

Under probe conditions a contamination rate of 60 A/sec has been
observed in the microanalyzer, and there is no indication that a higher
rate would not be observed if the current density (approx. 4 amp/cnr)
could be increased. These figures may be stated in different units:

the contamination is being built up at approximately 30 atoms/A2/sec

and the current density is approximately 3,000 electrons per A 2
/sec.

While it seems probable that the vapour pressure of the diffusion

pump fluids used in these experiments was much less than 10

"

5 mm of

mercury, the total pressure in the system remained in doubt since

ionization gauges were employed.
In the microanalyzer a liquid air trap between the diffusion pump

and the instrument had a flat, polished, metal face. This face was
cleaned and the instrument was run for 3 hr. The condensed film in

the trap was estimated, from the interference fringes, to have a thick-

ness of approximately 2 microns. This is a rate of deposition of

2 A/sec.

364



This suggests then that the rate of contamination in the probe
instrument is too high to be accounted for by the polymerization of

diffusion pump oil arriving from the vapour state alone.

It was therefore supposed that the material that polymerizes to

form the contamination arrives in the bombarded region by surface
migration over the substrate. A simple calculation shows that to

explain the contamination under probe conditions in the micro-
analyzer, the migration rate of molecules would have to be of the order

1 yu/sec. The migration hypothesis would also explain the result-

reported by Hillier [6], that surrounding the specimen with a liquid air

trap did not reduce the rate of contamination, for in this experiment
the mesh and a rod supporting the mesh were not at- liquid air temper-
ature. Had the mesli alone been cooled to liquid air temperature, it

is not certain that one should expect a reduction in the contamination
rate since it would take several minutes under probe conditions to

polymerize a monomolecular film from the 1,500 or so square microns
of the film in one mesli opening. Even had the film been cooled it is

not certain that an appreciable reduction in the rate of contamination
might lie secured. The reason for this is that it requires very much
less energy of activation to cause migration than to cause evaporation
of a molecule from a surface and therefore even at liquid air tempera-
tures the thermal energies of the substrate may be sufficient to excite

migration.
While in a 3000-A diameter probe the rate of arrival of material

across the perimeter by migration may be considerably in excess of

the amount that arrives in the bombarded area directly from the
vapour state, it must not be assumed that the material in the vapour
state does not play an important part in contamination, for it may
well be that the supply of material causing the contamination is built

up outside the bombarded region largely from the vapour state. In
this connection the observation of Hillier [6], that the rate of contamina-
tion within a small, fairly well isolated section of the vacuum system
decreased with time of bombardment, suggest a vapour source of

supply.
Where the bombarded area is larger as in the electron microscope

the direct vapour contribution to the bombarded area may exceed the

migration contribution since the former increases as the area of the

region while the latter increases only as the perimeter.

Another observation tending to favour the migration hypothesis is

that the rate of contamination under probe conditions appears to be
very little dependent upon the pressure or state of vacuum of the

system, at least within the range of pressures used in these studies.

In most of the work the pressure ranged between 10
~ 4 and 10

_6 mm
of mercury equivalent air pressure, and studies were made both with
and without liquid nitrogen traps on the system. In some further

studies the specimen was enclosed in a small chamber with apertures

just big enough to permit the entrance and exit of the electron beam.
Air, water vapour, and helium were admitted to this chamber in turn.

In some cases the local pressure became high enough to give observable
electron scattering, but in no case was there a marked change in the

rate of contamination.
Finally it should be noticed that Dunoyer [12] has obtained inde-

pendent evidence of migration phenomena on the walls and surfaces

in a vacuum system.
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We have considered the nature of the contamination process and
the means whereby the material which is polymerized to form the con-
tamination arrives at the region under electron bombardment. We
shall now consider the origin of this material. The evidence which has
been obtained is largely of negative character, in that while it sug-
gests a number of sources which by themselves are not sufficient to

account for the contamination, it does not provide quantitative infor-

mation which will permit one to pick out a major source of the con-
taminating material.

The work reported above has been done on kinematic demountable
vacuum systems employing rubber gaskets and pumped by oil diffu-

sion pumps backed by mechanical pumps. In the microanalyzer it is

possible to use a liquid nitrogen trap between the diffusion pump and
the system. It has also been run with one additional liquid nitrogen
trap in the system and with a liquid nitrogen trap between the fore pump
and the diffusion pump. In no case was a significant reduction in the
rate of contamination observed. It has been suggested that the oil

diffusion pumps are a major source of contamination. There are two
reasons for believing that this is not the case. First of all in the work
reported by Stewart [5], contamination was produced in a system
pumped by a mercury diffusion pump, and secondly there is a more
recent study by Blears [13] in which the atmosphere of a vacuum sys-

tem has been studied with the mass spectrometer. Blears finds a mass
distribution which is continuous to 300 and states that the atmosphere
was essentially the same whether using mercury or oil diffusion pumps
since it was due in a large part to the oil vapour from the backing
pump.

It has been possible to make some interesting observations of surface

contamination in a demountable vacuum system pumped by a mechan-
ical pump and an oil diffusion pump by a rather simple though quali-

tative technique. This depends on the fact that the coefficient of

friction between glass surfaces that have been cleaned by flaming them
is very high [14].

Since the chattering of a flamed glass rod upon a flamed glass

microscope slide is a sensitive indication of the degree of cleanliness

of the microscope slide, it was decided to see if this phenomena could
be used to test for the contamination of such slides in a vacuum system.
A flamed slide was placed in a demountable vacuum system (one used
for metal evaporation and shadow casting) which was then pumped
to a pressure of 10 microns of mercury with the backing pump alone.

On removal from the system it was found that the cleanliness of the

surface had been markedly reduced and the flamed rod no longer

chattered upon its surface. A similar glass slide placed in the vacuum
system, but not pumped down, and also a control glass slide left on
the laboratory bench for the same length of time still showed a marked
chattering when tested with a clean glass rod. This experiment shows
that originally clean surfaces will be contaminated during the pre-

pumping with the backing pump in such a vacuum system. This
contamination is not to be confused with that which is produced by
electron bombardmen t

.

In a second experiment, it was found that if the previously flamed
glass slide was subj ected to ion bombardment in thevacuum system while
being pumped to a pressure of 10 microns (by means of a Tesla coil)

this contamination was very much reduced, though there was still a
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suggestion of some contamination. I am indebted to Dr. James
Hillier for repeating these experiments and confirming the necessarily
qualitative estimation of the changes observed.

If now a flamed slide is introduced into the vacuum system, and an
ion discharge is directed upon it during the prepumping operation,
and if then the system is pumped to approximately 1

0

-4 mm of mer-
cury and left under these conditions for 20 minutes, the diffusion

pump continuing to operate and no liquid air trap being used on the
system, it is found that the slide has contaminated to a greater extent
than can be explained by its exposure to the fore vacuum alone. This
experiment indicates therefore that the contamination continued even
when the operating vacuum had been attained.

In further experiments it was observed that this contamination takes
place even when the slide has been flamed all over and is suspended
from a tungsten wire maintained at red heat. This observation sug-
gests that the layer deposited upon the glass arrives from the vapour
state since otherwise it would have had to migrate over the red hot
tungsten wire to arrive at the glass. It should also be noticed that in

this experiment the glass, because it was supported from a red hot
tungsten wire, became slightly warmer than the walls of the vacuum
system in which it was suspended. Nevertheless it contaminated.
Two other isolated observations are relevant to the present discussion.

As the vacuum system mentioned above, was pumped down it was
noticed that the colour of the discharge obtained with the Tesla coil

changed from the purple colour indicative of air, to a gray colour,

indicative of organic vapours, as the ultimate vacuum of the fore

pump was achieved in the pump-down period. Secondly it has been
found that if one smells the interior of a vacuum system immediately
after air has been let into it, specific odors may be detected. For
example, in an experimental electron microscope employing rather

soft rubber gaskets, a tarry smell similar to that of the gaskets could
be detected in the system immediately after it had been let down to

atmospheric pressure. The contamination rate on this microscope
appeared to be higher than that on other instruments in which the

smell of the interior of the system was less noticeable.

Conclusions

We may now summarize the foregoing experimental results and
discussion in the following terms: The contamination induced by
electron bombardment is an organic material which results from the

polymerization of simpler organic molecules whose vapor pressure

is of the same order as, or is less than the pressure achieved in the

system. The source of these materials is in part the fore pump and
diffusion pump and in part gaskets, grease, fingerprints and dirt

introduced into the vacuum system, either at its manufacture,
assembly or during its use.

These materials arrive at the bombarded region partly by migration

along the inner walls of the vacuum system and partly by the vapor
phase. We can imagine this migrating film on the walls of the vacuum
system to be replenished from the vapor phase, and at hot points

in the system we can imagine the organic molecules to vapourize from
this migrating film and condense elsewhere.

Under electron bombardment the molecules in this film are poly-
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merized by processes closely akin to those which occur during the
bombardment of a collodion film. The end product is that which is

most stable at the temperature at which it is formed. If, because the

electron bombardment is sufficiently intense and extends over a

sufficient area, the substrate becomes very hot, the population of this

migrating film is reduced by evaporation, or by the reduction in density
which would be expected on heating a two dimensional gas with a

result that the rate of polymerization is greatly reduced. It is not
clear from the results at present available, whether the activation

energy for this polymerization reaction comes mainly from the primary
electrons, or whether the reaction is activated, mainly by secondary
electrons. It requires between ten and a hundred primary electrons

to fix one atom of the contamination, when the contamination is being
formed at room temperature or thereabouts. It seems probable
that the contamination rate can only be considerably reduced by
heating to a temperature in the range 300° C to 500° C or perhaps
even higher.

Attempts to improve the vacuum, or to trap vapors have not
resulted in a significant decrease in the contamination rate. It seems
unlikely that the migration could be very much reduced by cooling the
substrate film. A partial reduction in contamination has been
obtained in the microanalyzer by running an auxiliary spray gun at

1000 volts and 20 to 40 milliamps for five minutes [15]. The con-
tamination rate was reduced to a third or a seventh of its previous
value and this improvement was maintained for five or ten minutes
after the auxiliary spray gun was turned off.

The most certain way of reducing contamination therefore seems
to be to heat the parts which are to be kept clean. If the specimen
contamination is to be reduced, the specimen must be mounted on a
conducting substrate such as a graphite or aluminium him. If the

specimen is of organic material, it should be fixed by electron bombard-
ment. before heating and then raised in temperature by several

hundred degrees centigrade before being subjected to the intense

bombardment of the illuminating beam. The technical difficulties

involved in this procedure have been mentioned above and do not

make it a very attractive solution of the contamination problem.
Similarly the reduction of the contamination of the objective dia-

phragm in the electron microscope by heating this diaphragm would
add most undesirable complexities to the design and operation of

the objective lens.
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Discussion

Mr. M. E. Haine, Associated Electrical Industries Research
Laboratory, Aldermaston, Berkshire, England: Contamination in

the electron microscope becomes of considerable importance when
very high resolutions are sought, as in the diffraction microscope.
One of my collaborators, A. E. Ennos, has been investigating the
mechanism of contamination and has been able to show with reason-
able certainty that the deposit comes from condensation of hydro-
carbon vapor and not surface migration. He has accomplished this

by irradiating a plate suspended on thin wires. The supposition is

that a stable monomolecular layer of the hydrocarbon is formed, a
thicker layer being unstable. The electron beam decomposes this

layer to form carbon on which a further layer can then condense.
The monolayer is only stable below about 100° C; above this temper-
ature the fraction of a complete layer that is stable falls rapidly.

Correspondingly, the rate of contamination also decreases. Thus
contamination can be greatly reduced by holding the bombarded
surface at 200° C.
Attempts to reduce contamination show that a very clean system

is necessary. The contamination comes not only from the oil of the

condensation pump, but the presence of any considerable area of metal
can also lead to contamination even when careful cleaning methods
are applied. Ultimately it is quite possible that the carbon may come
from the metal carbonyls.

Dr. P. A. Clavier, Sylvania Electric Research Laboratory, Bay-
side, L. I., N. Y.: Brass and copper are both highly absorbent for

carbon monoxide. Nickel-plated brass might also be good.
Mr. Haine: Copper, brass and aluminum are being tried.

Dr. J. Hillier, RCA Laboratories Division, Princeton, N. J.:

In Mr. Ennos’ experiment, what was the area of the plate compared
with the area irradiated by the electron beam?
Mr. Haine: The fraction of the total area irradiated was between

25 and 50 percent. The amount of contamination produced was
far in excess of what would have been produced by a monomolecular
layer of oil over the entire surface of the plate.

Dr. L. Marton, National Bureau of Standards, Washington, D. C.:

What current densities were used in the experiments which have been
described?

Dr. Ellis: In the electron microscope the current density was of

the order of 1 amp/cm2
,
it may have been up to 5, the beam diameter

was about 10 microns. In the microanalyser case, the beam diameter
was 1,000 to 2,000 A and the current density of the order 1 to 10~ 2

amp/cm 2
.

Dr. Marton: Was the contamination effect related to the cur-

rent density?
Dr. Ellis: Not alone. Temperature is also of importance. If

the object is thin, and hence its absorption low so that its tempera-
ture is also low, the contamination rate will be high. As the con-
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tamination increases, the energy absorption and the temperature will

increase. Eventually an equilibrium condition may be reached.

Dr. V. E. Cosslett, Cavendish Laboratory, Cambridge Univer-
sity, Cambridge, England: It is significant that in the X-ray micro-
scope that I have described, where the current density is 10 amp/cm2

for a 1 micron probe, contamination is only observed in a ring around
the spot after a long exposure. This suggests that the central part

of the bombarded region is too hot to contaminate.
Dr. Hillier: There is one other observation agreeing with this.

In examining a very heavy carbon black deposit under very high
intensities no contamination could be seen over long periods. At
first I thought the carbon black was absorbing the oil which was
migrating in, but I finally decided that the specimen thickness and
the intensity were so great that the resulting high temperature pre-

vented the migration.
Mr. Haine: For a long time the temperature effect confused our

experiments. The effect is quite critical. One may find that no
contamination appears in an experiment until the beam intensity is

greatly reduced.
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43. Controlling of Electron Beam by Means of a

Rotating Electric Field and Its Application

By Kenichi Owaki 1

Introduction

Since A. M. Skellett [1, 2]
2 announced a method of controlling an

electron beam in a tube in which the radiated electron beam is con-
trolled by a rotating field formed when voltage is supplied to several
grids surrounding the cathode or by the use of rotating electric and
magnetic fields, improved types of such tubes have been developed in

the Electrical Communication Laboratory [3] and Kobe Kogyo
Corporation [4, 5], Japan. The purpose of these tubes is to find

application to the commutation of channels in multiplex communica-
tion by time division.

The author, with coworkers, 3 proposed to utilize the tubes for

frequency multipliers, and encouraging results were obtained in the
comparatively low frequency region . In order to extend the principle

to the region of ultrahigh frequencies (particularly the microwave),
however, it is necessary greatly to improve the construction and the
operating conditions of the tubes.

In this report, the new types are described mainly from the stand-
point of electron optics. The tubes for the low frequency possess the

same problems as those found in tubes for microwave frequencies.

About the former, detailed explanation is given.

Tubes for Low Frequencies Developed by Kobe Kogyo
Corporation

Construction and Operating Principles

Figure 43.1 shows the arrangement of the electrodes for a six-channel

commutator tube SP-350 developed by the Kobe Kogyo Corporation.
Six focusing grids Gn ,

G l2 ,
. . G f6 ,

which swell out toward the
center with the shape of an arc, are arranged surrounding the cathode.

Around them is placed a screening electrode with shielding fins, which
have six rectangular windows on the same radii as that of the focusing

grids. Furthermore, outside the screening electrodes, six anodes Aj,

A2 ,
. . ., A6 ,

each of which is surrounded by a respective control grid

G c i, G c2 ,
. . G c6 ,

are set up in each section.

A six-phase sinusoidal voltage is applied to the focusing grids G f ,

thus forming a rotating electric field between the cathode and grids,

1 Kobe Kogyo Corporation, Akashi City, Japan.
2 Figures in brackets indicate the literature references on p. 387.
3 K. Takashima, T. Takagi, T. Misugi, and T. Nakamura at Kobe Kogyo Corporation, and S. Okajima

at Nagoya Institute of Technology.
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Figure 43.1. Arrangement of the electrodes for 6-channel
commutator tube.

which causes the electron beam to rotate. Therefore, current flows

into anodes A,, A2 ,
. . ., A„ in turn, and a current whose waveform

is as shown in figure 43.9 can be obtained in a circuit in which the six

anodes are connected in parallel. It is evident from figure 43.9 that
a frequency component of six times (6f) that of the focusing grids f

constitutes most of the anode current; hence, frequency multiplication

can be performed very efficiently. Moreover, in this multiplication,

frequency components other than 6nf (n is a positive integer) are very
small. In other words, spurious frequency is found to be very small
when compared with that obtained in other methods of frequency
multiplication.

Effective Angle of Cathode

The previous paragraph described how the commutator tube can
be used in frequency multiplication. In such a case, it is desirable

that, during the time that the current flows into one anode, it does
not flow into the others because the d-c component of the current must
be as small as possible in the output anode current

;
that is, it is im-

portant to build up such an electric field that the electron current may
flow in only one direction at a time. Since it is difficult to obtain such
a potential distribution or electric field by calculation, the results

obtained by experiments using an electrolytic bath are described here.

It is supposed that the voltage of sinusoidal distribution, as shown
in figure 43.2, is applied to each of the focusing grids, and that the d-c

voltages are applied respectively to the screening electrode, control

grids, and anodes as is shown in figure 43.3. For such a case, the

equipotential lines and the trajectories of the electrons are shown in

the same figure
;
it is clear that the width d of the electron beam passing

through the window of the screening electrode is about five-eighths of

the width b of the window. When the phase of the voltage is applied

to the focusing grids, the electron beam rotates successively

from the first section to the adjoining one, and when the phase leads

by 30°, the voltage distribution on each electrode, the equipotential

lines, and the electron trajectories become as is shown in figure 43.4.

In this case, the electron current almost flows into the screening

electrode.
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Figure 43 . 2 . A sinusoidal voltage waveform ap-
plied to the focusing grids.
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Figure 43 .3 . Equipotential lines and electron trajectories in the tube.
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Figure 43 . 4 . Equipotential lines and electron trajectories in the tube.

In the above consideration, the d-c voltages of the cathode and the
control grids are zero. One example in which the bias voltage is

applied to the cathode is taken into consideration in the next stage.

The equipotential lines and the electron trajectories, when the cathode
is positively biased by a d-c voltage of half of the peak value of the

sinusoidal voltage applied to the focusing grids, is shown in figure 43.5

and figure 43.6 (The voltages written in these figures are the potential

differences between the cathode and other electrodes). In this case

d is equal to one-tenth of b.

The above-mentioned is described concerning the cases when the

electron beam is at the center of one section and at the boundary of

the adjoining two sections. The electron emitting angle of the

cathode can be obtained from both cases. The electrons are emitted
from the cathode surface at which the potential gradient is positive

if the inititial velocities of the electrons are neglected; hence, when the

cathode is zero-biased, 6 is about +104° from figure 43.3. and 6 is

about ±86° from figure 43.4, meaning, in both cases that the electron

emitting angle 6 is about ±95°. In other words, 53 percent of the
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whole surface area of the cathode emits useful electrons. When the

cathode is biased, 6 is about ±75° in figure 43.5 and figure 43.6; that
is, the electron emitting surface of the cathode is about 42 percent of

the whole area.

It can be seen from these results that the higher the bias voltage
of the cathode, the better the focusing of the electrons, but the less

the anode current, because of the reduction in the useful area of the
cathode. On the other hand, the ratio of b and d influences the wave-
form of the output current as described later, therefore the operating
conditions must be decided by taking into account the desirable

value of the anode current and the waveform of the output current, etc.
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Figure 43 . 6 . Equipotential lines and electron trajectories in the tube.

Relation Between Width of Electron Beam and Shape of Window
of Screening Electrode

Before the investigation of the relation between the width of the

electron beam and the shape of the window of the screening electrode,

the mechanism by which the output current waveform is formed is

considered.

The following factors are taken into account as the elements
determining the output waveform: (a) Effect caused by rotating the
electron beam, (b) effect of electron emission control caused by change
in voltage on the focusing grids, (c) effect caused by change of the

width of the electron beam, and (d) effect of the distribution of the

electron density in the beam current.

In the ideal case, when the voltage of sinusoidal distribution is

applied on each element of the infinitely split cylinder concentrically

arranged around the cathode and the phase of the voltage rotates

with time, the electron beam of constant width and electron density
is considered to rotate around the cathode with constant angular
velocity. In such a case, there exists only the effect of (a), and effects

of (b), (c), and (d) do not exist.
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In the present case, the focusing grids are separated into six distinct

elements having curvature; moreover, they are placed near the cathode
so that the effect of the grids on the cathode surface is not unifoim;
hence the effects from (b) to (d) must be considered. To simplify

the consideration, only the effect of (a), which is greatest, is to be
taken into account: Namely, such a condition is considered that the

rectangle electron beam of constant width d and of constant electron

density J rotates with constant velocity v. Then, v=rw
,
where w is

the angular velocity of the sinusoidal voltage applied to the focusing

grid, and r is the radius, where the screening electrodes are considered
as sections of a cylinder. In this case, the waveform of the output
current is influenced by the relation between the shape of the window
and the width of the electron beam.
When the shape of the window is a rectangle or a right triangle, the

relation between the shape of the window and the width of the electron

beam can be obtained by a simple calculation, the calculated results

are shown in tables 43.1 and 43.2. Figure 43.7 and figure 43.8 indi-

cate the calculated relations between the width of the electron beam
and the waveform of the output current, and examples of the experi-

mental results are shown in figures 43.9 and 43.10.

From the results described above, it is concluded that various cur-

rent waveforms can be obtained from various combinations of the

width of the electron beam and the shape of the window; that is, the

Table 43 . 1 . Calculated results of the output current when the shape of the window
is a rectangle

(a) b>d

Time Output current
( I

)

0<t<-
V

Ja-v-t.

UtJ-
v~ ~v

J-a-d

b<
t

<b±d
V V

J-a[b+d-v-t]

(b) 6 =

b
0<t<-

V

J-a-v-t

b
<t<

2±
V V

J-a[2b—v-t]

(c ) 6<d

vW
V~ ~ V

d
<t<

h±d

V~ V

J-a-v-t

J-a-b

J-a[b-\-d—v-t]

Note: The coordinate is taken as is shown in figure 43.7a. J, the electron density of the electron beam that
is supposed to be constant; I, current by the electron beam passing through the window.
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Table 43.2. Calculated results of the output current when the shape of the window
is a right triangle

(a) b>d

Time Output current (7)

0<t<-
V \

c-J(v-ty-

Utz*
V V \ c-J[2dv-t-d2

]

b
<t<

b+l
V V \

c-J[b2—(v-t—d) 2
\

(b) 6 = 7

6
0<f<-

V
3 c-J(V’t) 2

b 26
~<t<2-
V V

3 c-J[b2-(v-t-by]

(c) b<d

b
0<t<-

V \
c-JR-ty

b <t<
d-

v~ ~v
\c-J-W

d<
t

<b+d
V V ^

c-J"[62— (v-t— d) 2
]

Note: The coordinate is taken as is shown in figure 43.8a and c=a. J, the electron density of the electron
beam that is supposed to be constant; 7, current by the electron beam passing through the window.
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Figure 43.7. Relation between the shape of the window and the output-current

waveform when the shape of the window is rectangular.

(a), the shape of the window and (b), the output-current waveform for various
values of d/6. (Calculated results.)
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Figure 43.8. Relation between the shape of the window and the output-
can ent wavejorm when the shape of the window is that of a l ight triangle

(a), the shape of the window and (b), the output-current waveform for various values of d/b.
(Calculated results.)
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Figure 43.9. The output-current wave-
form obtained by an experiment.
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Figure 43.10. The output-current wave-
form obtained by an experiment.

fact that the output waveform is changed by the width of the electron
beam even if the shape of the window is held constant means that the
various voltages applied to the focusing grids, the screening electrodes,

and the anodes cause the various shapes of the output current wave-
form. Therefore, the voltages applied to the electrodes and the shape
of the window must be chosen appropriately in order that a desirable

current waveform in practical use can be obtained.

New Type of Tube for Microwave Region

Controlling an electron beam by means of a rotating electric

field in the comparatively low frequency region is described in the
previous section. In the microwave region, however, it is impossible
to utilize a phase shifter or a goniometer to obtain a polyphase
sinusoidal voltage. To overcome this difficulty, the author proposed
the new method in which a traveling wave is utilized. As is shown in

figure 43.11, the cathode is surrounded by n grids, which are made
by folding one wavelength of rod or bar repeatedly; the traveling wave
propagates along them. The phase difference between the adjoining
griefs is 360 °/n, and thus an n phase sinusoidal electric field is formed
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Cathode

Traveling- nave Grid

Figure 43 . 11 . Assembly
of cathode and traveling-

wave grid.

around the cathode. Thus electron beam emitted from the cathode
rotates with the same period as that of the traveling wave. As
one example of the applications of a rotating electron beam controlled

by means of the traveling wave, the examination of possibilities

of a frequency multiplier tube for microwave frequencies was com-
menced. Summary of the results obtained are described mainly
from the standpoint of electron optics.

Construction and Operating Principles

Construction of the tube is shown in figure 43.12. The traveling

wave propagates along the traveling-wave grid, which operates as a

control grid. The inner wall of the output cavity serves as the screen-

ing electrode.

A radio-frequency input signal is applied between the cathode
and the traveling-wave grid, and by matching the circuit, this signal

propagates along the grid as the traveling wave. Thus an electric

field of 71-phase is produced around the cathode. In figure 43.12

(n— 7), the electron beam emitted from the cathode rotates with
the same period as that of the input voltage when a suitable negative
bias voltage is applied to the grid. The rotating electron beam
excites the output cavity through the window of the cavity wall,

and an output current whose frequency is n times that of the input
signal can be obtained. (The output cavity is excited as a coaxial

resonator and a part of the window is made to be the voltage loop.)

Since a large electron transit time between the cathode and the
traveling-wave grid is unfavorable, a virtual cathode is proposed to

be utilized in the tube.

As is shown in figure 43.13, an accelerating grid is placed around
the cathode on which a positive d-c voltage is impressed, and outside
of it is arranged the traveling-wave grid. When a suitable d-c
voltage of negative value is applied to the traveling-wave grid, a

virtual cathode is formed before it. Such construction of the tube is

supposed to be favorable in reducing the effect of the transit time of

electrons [6] and in making the perveance of the tube high. The radio-

frequency input voltage is applied between the accelerating grid and
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Figure 43 . 13 . Test tube No. 2.



the traveling-wave grid, and the negative resistance of the electrons is

supposed to be able to be utilized by adjusting the transit time of

electrons suitably between the accelerating grid and the virtual

cathode.
In the latter sentence, the term “control grid” means that part of

the traveling-wave grid that is opposed to the window of the inner
wall of the output cavity.

Investigation From the Standpoint of Electron Optics, and
Static Characteristics of the Tube

In order to obtain a high power output and a high efficiency in the
tube, an electron beam with as large a component of the radio-

frequency current as possible must be allowed to flow into the window
of the output cavity; that is, the difference between electron currents
that flow into the window when the voltage of one of the control grids

is maximum, and that when the adjoining two grids are at the same
voltage, is desirable to be as large as possible. From this point of

view, an electron-optical investigation of the tube has been performed.
As the mathematical analysis of the tube is very difficult, the potential

distribution in the tube was obtained by using an electrolytic bath at

first.

Figures 43.14 and 43.15 show examples of the potential distribution

when the voltage on one of the control grids is maximum. In figure

43.14, the peak value of the input radio-frequency voltage is 30 v;

the d-c voltage of the screening electrode is 300 v with respect to the

cathode. With respect to the cathode, the accelerating grid is 30 v;

the beam-forming electrode, —30 v; and the control grid —27 V. In
figure 43.15 the peak value of the input radio-frequency voltage is

20 v and the d-c voltage of the control grid is 18 v, the d-c voltages

applied to other electrodes being the same as that in figure 43.14,
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Driving voltage is 30 v (peak).
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Figure 43 . 15 . Equipotential lines and electron trajectories.

Driving voltage is 20 v (peak).

Figure 43 . 16 . Potential distribution on the several radii.

Figure 43.16a shows the potential distribution along the radii 1, 2, 3, 4,

and 5, in figure 43.14.

It is supposed from these figures that the electron emitted from the

cathode are accelerated by the accelerating grid, and then the virtual

cathode is formed before the control grid by the negative voltages
of the beam-forming electrodes and the control grids The electrons

from the virtual cathode are controlled by the applied radio-frequency
voltage to the control grid, and they effectively flow into the window
of the inner wall of the cavity by means of the electron lens formed
between the control grid and the inner wall of the cavity.
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Figure 43 . 17 . Equipotential lines and electron trajectories.

Driving voltage is 30 v (peak).

Gap of Anode Cavity

Beam Posting JJl^fcfrode
Accelerating Electrode

— Virtual Cathode

Figure 43 . 18 . Equipotential lines and electron trajectories.

Driving voltage is 20 v (peak)

.

Figures 43.17 and 43.18 show the potential distributions when the
radio-frequency voltages of the two adjoining control grids are

equal, namely, when the phase leads about 25.7° from the previous
state in figures 43.14 or 43.15. Input radio-frequency voltages in

figures 43.17 and 43.18 are 30 and 20 v, respectively, and figure 43.16b
shows the potential distribution along the radii 1, 2, 3, and 4 in

figure 43.17.
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From the above results it becomes clear that the negative equipo-
tential lines swell out before the control grid and that by such an
electric field the electrons are made to enter the window. Further-
more, the beam forming electrodes serve to prevent the effect of the

d-c voltage of the output cavity on the virtual cathode and to reduce
the d-c component of the electron current.

Based on results obtained in the experiments using the electrolytic

bath, test tubes were made to examine the static characteristics of the

tube. In these test tubes, seven electrodes separated from each other
are used as the control grids instead of ones described above; d-c

voltages, whose magnitudes are different by as much as 360 °/7 of one
period of the sinusoidal voltage in phase with each other, are applied
to them. On the other hand, seven anodes that are connected in

parallel are placed behind each window of the inner wall of the output
cavity, and both the outer and side walls of the cavity are omitted.

Ipni ,
I pm •>

and 1'^ are defined as follows:

Ipm ,
the anode current flowing through one window when the maxi-
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mum voltage is applied to the control grid on the same radius as

that of the window;
Ipm ,

the anode current flowing through one window when the maxi-
mum voltage is applied to the control grid on the adjoining radius
of that of the window; and

1'^, the anode current flowing through one window when the voltage
of the grid on the same radius as that of the window is the same as the
voltage of the adjoining control grid.

Then, the larger the difference between (Ipm+2 lpm ) and 2 1'^ is,

the more the radio-frequency component of the anode current is.

Figure 43.19 indicates the relation between the input radio-frequency
voltage and Ipm ,

Ipm ,
Ipm+2 Ipm ,

and 2 Ipm under the following
conditions:

d-c anode voltage 350 volts

d-c voltage on the inner wall of the cavity 250 volts

d-c voltage on the beam forming electrode. _ 0 volts

d-c voltage on the accelerating grid 60 volts

d-c cathode bias voltage 20 volts

In the previous investigation of the results obtained using the

electrolytic hath, it was supposed that the anode current begins to

flow through the window after the anode current through the adjoin-

ing window reduces to zero, i. e., Ipm= 0, and I Pm=0. These results

can be concluded only when the input radio-frequency voltage is

small, and as the increase of the input voltage 2 1'^ becomes larger

than (Ipm+2 Ipm ); therefore the maximum radio-frequency component
of the anode current can be obtained when the voltages of the adjoining
control grids are equal. Such a result is shown in figure 43.19; in

such a condition the efficiency falls off because the d-c components
of the anode current are many. Therefore, to increase the efficiency

of the tube, it is necessary that the maximum anode current can be
obtained when the control grid voltage is maximum, concerning this

problem further investigations and experiments are needed.

Conclusion

In the previous sections, controlling an electron beam by means of

a rotating electric field in both low and microwave regions of frequency
was described.

In the frequency multiplier tube for low frequencies, the character-

istics were much improved hy introducing electron optical systems
into the electrode structure.

On the other hand, increasing the input frequency makes it difficult

to generate the sinusoidal polyphase voltage, so adequate measures
must be considered. Moreover, the distortion of the sinusoidal

polyphase voltage gives different a shape to each output waveform;
spurious frequencies of the order of multiples of the input frequency
have appeared. Besides, in controlling an electron beam using the

traveling wave, it is necessary that the traveling wave propagate
along the traveling-wave grid. The experimental and theoretical

investigations on this problem are now being continued.
Moreover, it is supposed that the electron optical examination on

this tube must be performed not only from the standpoint of static

consideration but also from that of the dynamic state in which the
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existence of the virtual cathode and the transit time effect of the elec-

trons must be considered. In the experimentally manufactured
frequency multiplier tubes for the microwave region, favorable
characteristics have not yet been obtained.
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44. Experiments With Adjustable Magnetostatic

Electron Lenses

By E. Ruska 1

Purpose and Basic Result of Experiments

Among’ the fields in axially symmetric and space -charge-free
electron lenses, magnetic lens fields distinguish themselves from
electric lens fields by their ability to produce particularly short focal

lengths as well as by their inherent low degree of aperture defect,

chromatic aberration, and astigmatism. This superiority is increased
by several advantages of operation; for instance, by the more con-
venient adjustability, by the lower expenditure required for the
reliability of operation and, last but not least, by the advantage of

their better suitability for use with faster electrons. The essential

drawback of the electromagnetic electron lenses generally used up to

now consists in the considerable expenditure to secure a stable current
source, whether it be in the form of a battery or an electronically

regulated power supply. Permanent-magnet-electron lenses were
originally used for cathode ray oscillographs [l]

2 requiring relatively

weak magnetic fields. However, an attempt was soon made to

produce strong fields required for lenses with a short focal length as,

for example, Siemens and Halske did in 1940 when designing a
magnetostatic transmission electron microscope [2] that, with 76-kv
electrons, yielded a direct magnification of 5,200 times. Figure 44.1

is a cross section through this lens arrangement that consists of an
externally disposed, axially magnetized cylinder casing with connected
pole pieces [3], and this lens is shown to have a strong, external stray

field. The electron microscope makes very high demands on the
exactly circular shape of the lens fields and the mutual alinement of

the lenses. With lens arrangements having an external stray field,

interferences of the ideal lens field may occur if iron components are

brought into the stray field and moved within it. Hence lenses of

this type are not very suitable for use in the electron microscope.
Therefore it was tried to transfer the axially magnetized cylinder

into the interior of the lens arrangement [4] (fig. 44.2). In this

assembly a second extensive field is produced behind the lens field at

the pole-piece gap within the cylindrical magnet. On the one hand,
this second field increases the minimum attainable focal length to an
undesirable extent, and, further, its axial symmetry is not sufficient

due to the insufficient homogenity and the difficult machining of the

magnetic material. Some proposals enable both disadvantages to be
avoided and lead to stray -field-free double-lens systems. In this case,

a radially magnetized annular magnet [5] or an axially magnetized
cylindrical magnet or two such magnets connected in opposition [6]

are housed in a soft-iron casing with two annular gaps, each of which

1 Wernerwerk fur Messtechnik der Siemens u. Halske A. G., Berlin-Siemensstadt, Germany.
2 Figures in brackets indicate the literature references on p. 406.
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Figure 44.1. Permanent magnetic electron lenses with
external stray field.

a, Single; (b) two opposite axial magnets.

Figure 44.2. Permanent magnetic electron lenses

with internal stray field.

a, Single; (b) two opposite axial magnets.

produces a lens field. Electron microscopes with axially magnetized
lens systems have recently been carried into effect by v. Borries [7]

and by Reisner and Domfeld [8]. In the latter arrangement, the
magnetostatic lens fields of about 1,000 ampere-turns are not vari-

able. Focusing is achieved by variation of the velocity of the elec-

trons. With the first-mentioned electron microscope, lens fields of

2,000 and 3,200 ampere-turns were obtained, and the shapes of the

fields in the objective lens and projector lens are varied to change
the magnification.

For electron microscopes, but also for other electron-optical devices,

the adjustability of magnetostatic fields seems to be essential for

operational reasons. Field adjustment within narrower limits is

required for focusing with constant accelerating potential of the

electrons and a given distance between lens and specimen; within a

wide range, adjustment of lens fields is necessary if a higher variability

of the accelerating potential of the electrons is desirable, while the
focal length is maintained, or if the magnification of the electron

optical system must be varied within a wide range with constant
acc elera ting 'ipotentialoMb e electrons.
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We therefore decided to investigate differently designed adjustable
magnetostatic lens arrangements with reference to their minimum
obtainable focal lengths (maximum attainable field Strength in the
lens center equal to y0 (max) ), and to their adjustability to longer focal

lengths (minimum attainable field strength in the lens center equal to

Vo (min)) . Different constructional designs should, at the same time,
enable us to acquire experience in connection with the most useful
methods of magnetization and the adjusting devices. The investiga-

tions were carried out in collaboration with Mr. M. Eisfeldt, Miss
Dipl. Phys. K. Muller, and Dr.-Ing. O. Wolff and led to the result,

that the demands made on an extensive and continuous adjustability
of the fields and focal lengths, respectively, may be met satisfactorily

by different arrangements. Therefore, the prospects for the develop-
ment of high-performance electron microscopes with adjustable
magnetostatic lenses seemed to be favorable.

Design and Efficiency of Investigated Adjustable

Magnetostatic Lens Arrangements

The investigated lens systems can all be reduced to two basic forms,

the radially magnetized annular disk [9] and the axially magnetized
tubular cylinder [1]. It is evident that both basic forms, as well

as hollow conical forms, can be more or less approximated by means of

bar magnets. Since, for all permanent magnetic systems, the integral

of the field strength along a closed path must be equal to zero, the dis-

tribution of the field strength on the axis of symmetry z of both
magnet types is given qualitatively as shown in figures 44.3a, 4a, and
5a. The relatively wide field ranges of the symmetrical arrangements
in figures 44.3a and 5a, which are opposite to one another with
respect to the field direction, are equal in magnitude. In order to

obtain lens fields of strong refractive power, the fields must be con-

fined to a small region of space, so that strong maximum field strengths

Ho are produced on the axis. This is achieved by the internal and
external stray magnetic flux being passed through a soft-iron casing

of suitable form [5] (figs. 44.3b, 4b, and 5b) . The two oppositely directed

Figure 44.3. Pair of electron leiises, produced
by means of a radial magnet.

a, Without; b, with soft-iron casing.

391



Figure 44.4. Electron lens and pair of electron leiises,

respectively
,
produced by means of an axial magnet.

a, Without; b, with soft-iron casing.

b

Figure 44.5. Pair of electron lenses, produced by
means of two opposite axial magnets.

a, Without; b, with soft-iron casing.

field regions on the axis are concentrated at the two gaps of the pole-

piece units with simultaneously increased maximum field strength,

with the result that two lenses adequately separated from one another
and of short focal length are produced. The axis of symmetry for

each externally stray-field-free permanent magnetic lens system is

given by
r+

»

H(z)dz= 0.
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Tims, with the encased system (fig. 44.4b) as well, which is modeled
on the basic form (fig. 44.4a) with only one axially magnetized cylinder,

two oppositely directed field regions of equal integral are produced on
the axis. Hence, every externally stray-field-free permanent-magnet-
lens system is not subjected to image rotation, if only external beam
cross sections on both sides of the lens systems are considered. Since
the refractive power of a magnetic lens increases with the square
field-strength integral on the axis of rotation, we can make the focal

lengths of the lenses different in magnitude by giving different dimen-
sions to the pole-piece systems (pole-piece diameter and gap width
determine the half-value width of the field distribution) even if the
J'H(z)dz lias the same value for the two lens fields. Permanent
magnet lens systems, as shown in figures 44.3b, 4b, and 5b therefore
are sufficient for such electron optical arrangements in which, for a
given axial distance, two lenses of fixed focal lengths are required that
may be equal in magnitude or different from one another. In systems
of this type with unvariable magnetic fields, a synchronous enlarge-
ment, or reduction of the focal lengths of the two lenses can be obtained
by an increase or decrease of the electron velocity.

In some important electron-optical instruments, however, the lens

fields must be adjustable, for instance, if, for any reason whatever,
an extensive variation of the electron velocity is not permissible, but
the refractive power of the two lenses is to be varied synchronously,
or if the variations in the refractive power of two successive lenses are

required to be independent of one another. Thus, in the electron

microscope for example, the accelerating potential of the electrons

has been fixed within certain limits to prevent deterioration of the

specimens. The focal lengths of the objective and the projector of

the electron microscope need not be adjusted or only slightly, whereas
the focal lengths of the intermediate lenses must be adjusted within a

wider range to obtain variation in magnification. We therefore tried

to develop stray-field-free permanent-magnet double-lens systems in

in which at least one lens field should be adjustable within a wider
range will a reaction as slight as possible on the second lens field.

To reduce the field of a permanent-magnet lens, we can use four

different methods, singly or together:

(1) Decrease of the internal magnetomotive force of the permanent
magnet by reduction of the reluctance of the magnetic circuit. In

this case, the magnet can be loaded more or less (a) along its whole
length or (b) a variable part of it. The coercive force, however,
prevents the magnet from being weakened effectively, so that, by
this means alone, it is not possible to achieve an adjustment sufficient

to cut off the lens effect completely. Of course, a change of the

magnetomotive force affects all lens fields produced by the permanent
magnet in the same way and, approximately, to the same extent.

(2) Increase of the half-width of the lens field and decrease of the

maximum field strength Ho, with the external magnetomotive force

between the pole pieces of the lenses remaining constant, by means ot

the enlargement of the diameter of the pole pieces or the gap between
the pole pieces or both dimensions. The adjustment of the field

shape can be achieved either by exchanging different pole-piece sys-

tems or by continuously varying the distance between the pole pieces

(gap width); it is not possible, however, by these methods of adjust-

ment, to make the refractive power of the lens arrangement entirely

equal to zero.
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(3) Reduction of the external magnetomotive force between the

pole pieces of the lens with the magnetomotive force of the permanent
magnet remaining constant by displacing a portion of the total

external magnetomotive force from the lens gap to other points of

the magnetic circuit (adjustments by dividing the external magneto-
motive force). If a magnetic adjusting gap is provided in series with
the lens gap, the magnetic adjusting field can be (3a) either predom-
inantly an external stray field or (3b) predominantly a second lens

field. In the latter case, the second lens can be kept weak by pro-
viding suitable dimensions for the gap and the diameter of the pole

pieces if its refractive power is not desired. In some cases, however,
the additional lens field is desired and can be given suitable strength
by means of adequate pole-piece dimensions (3c). Anadjustment, by
dividing the magnetomotive force, with external stray field permits
of practically suppressing the refractive power of the two component
lenses. Hence it is of special importance. An adjustment, by
dividing the magnetomotive force, can also be affected without
adjusting gap by utilizing the drop of the external magnetomotive
force always occurring within the soft-iron components. Stray fields

that weaken the lens fields at the gaps and act themselves as weak
supplementary lenses can be produced at different points along the

axis of the magnetic systems, depending on the relative design of the

soft-iron circuit and on the manner in which the distribution of the

external magnetomotive forces and the dimensions of the soft-iron

circuit are varied by the adjusting process.

With adjusting mechanisms used in practice, several of the pre-

viously mentioned effects usually occur at the same time or successively

during the adjusting process. Up to now, we have investigated the

following arrangements, which are shown, together with their quali-

tative field shapes, in figures 44.6 through 10:

Radial magnet with adjustment by means of the movement of a shorting

plug. The magnetomotive force of the magnet is decreased by an
additional loading on the whole magnet length.

Axial magnets with adjustment by means of an external annular disk.

The magnetomotive force of the magnet is decreased by an additional

load on a variable part of the magnet length.

Figure 44.6. Pair
of electron lenses

with one radial
magnet adjusted
by means of
movement of a
shorting plug.

Figure 44.7. Pair of electron lenses with adjust-

ment by means of an external annular disk.

a, Single; b, two opposite axial magnets.
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Figure 44 . 8 . Pair of electron lenses with barrel

adjustment.

a, Radial magnet; b, axial magnets.

Figure 44 . 9 . Pair of electron lenses with adjust-

ment by means of internal annular disk.

a, Single; b, two opposite axial magnets.
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Figure 44 . 10 . Pair of electron lenses with adjustment
by means of a wheel-shaped yoke

a. Radial magnet; b, axial magnets.
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'Radial or axial magnet with internal adjusting barrel. With a

preliminary small decrease in the magnetomotive force of the magnet
and in the external magnetomotive force between the lens pole-pieces,

the adjusting barrel gives rise only to an unimportant decrease in

the maximum field strength. In the last part of the adjusting path,
the magnet is weakened more quickly by the more rapidly increasing
load, with the result that the magnetomotive force between the pole
pieces is decreased in a correspondingly shorter time. This leads to

the deviation from the proportionality usually required between the
adjusting path and the refractive power of the field. The more the
lens gap is bridged by the adjusting barrel, the more extensive the
drop of the magnetomotive force within the soft iron will be, which
results in the occurrence of stray fields on both sides of the lens gap
that further reduce the field strength within the gap.

Axial magnet with adjustment by an internal annular disk. The
adjustment is accomplished by partially shortening the magnet. This
results in a drop of the magnetomotive force at the gap. The residual

magnetomotive force is, with flat field distribution, perceived within
the oversaturated internal iron tube.

Radial or axial magnet with adjustment by a wheel-shaped yoke. The
adjustment is made by dividing the drop of the magnetomotive force

between a lens gap and an adjustable external air gap. According
to the position of the wheel-shaped yoke, there occurs in the plane of

the yoke a more or less extensive radially directed ring-shaped stray
field that is connected in front of the lens and produces also an axially

directed stray field outside the soft-iron casing. Due to the large

half-value width and the low amount of the axially directed stray
field, this, as a lens, has only a weaker refractive power.
The decrease obtainable by the adjusting devices in the investigated

arrangements of the magnetomotive force at the lenses and the
maximum field strength may be denoted as the adjusting coefficient

for the field strength RH=H0 (min)/HQ (max) . The adjusting coefficient

for the focal length J?/=/ (mln) // (inax) follows from the adjusting
coefficient R in two different ways according as the field shape (half-

value width) has been maintained or changed. With the adjusting
coefficient R being the same, the focal length of the lens is, for an
invariable field shape, adjustable within a wider range than for a

widened field shape, since, in the latter case, the field is effective for a

longer time, and therefore the refractive power remains greater. The
determination of the absolute magnitude of the focal length requires

consideration of the dimensions of the pole-piece systems.

Magnetic material and magnetization

For the permanent magnetic lenses we use cast material of the

Aluico type having a ax-value of 4-10 6 cgs-units. The magnets
were machined to have a preferred direction. For our systems we
used 5 to 8 cm long magnets, cylindrical and conical tubes for the

axial systems, and molded bodies for the radial systems. In the first

experiments, the magnets were magnetized before the lens systems
were assembled, which, of course, did not fully utilize the magnet.
Therefore we soon changed over to the better method of magnetizing
the assembled lens system by means of a powerful electromagnet

(30,000 ampere-turns). Axial systems having only one cylindrical
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magnet are relatively easy to magnetize. Systems using two oppo-
sitely disposed axial magnets were divided, during construction, in

such a way, that the resulting two system halves could easily be
magnetized. Severer difficulties arise with radial magnet systems, if

they are to be magnetized when already assembled. We overcame
this inconvenience by designing a star-shaped system of bar magnets.
At first the bar magnets were magnetized alone, and later with a
shorting plug, which was removed only after the assembly of the
closed star system had been accomplished. Magnetization by means
of a ring coil (8,000 ampere-turns) disposed coaxially to and beside
the magnet star was also tried, but was not sufficiently effective.

Measuring Methods

The focal length of electron optical lenses can be determined, on
the one hand, from the measurement of the field distribution along
the axis and, on the other hand, from the magnification obtained
through an exposure. For the following reasons, we have used both
methods. On the one hand, we usually could, for constructional
reasons, only determine the two-stage magnification of a pair of mag-
netostatic lenses, which alone was not sufficient to specify the exact
focal length of each single lens, as required in our case, and, on the
other hand, we would not merely rely on the measurements of the
different lens fields, as our measuring device allowed only the field

distribution near the lens gap to be determined, and not the weak
residual fields between the two lenses, which also exert an influence

on the attainable magnification. Moreover, in order to evaluate the

image quality, we attached great importance to an exposure allowing
determination of the magnification, since, from the observation of

astigmatism, we hoped to be able to draw conclusions concerning the

origin of not exactly circular lens fields for whose occurrence either the

constructional design or the machining process may be responsible.

Field Measurement by Means of Dropping and Swinging Coils

The field strengths on the lens axis were determined by a well-

known method involving the ballistic measurement of the potential

induced by the field within small search coils [10], With electromag-

netic lenses, the induction in the search coil is effected by changing
the pole of the current that reverses the field direction, the search

coil thereby maintaining its position in the held, and the magnitude
of the induction produced being twice that which would correspond

to the held. For the measurement of permanent-magnet helds, how-
ever, the search coil must quickly be brought from a field-free point

into the held to be measured or inversely, so that only an induction

corresponding to the simple magnitude of the held is produced. We
therefore designed a measuring device including a search coil (n= 300,

4>= 1 mm) which can drop by about 10 mm, and is kept exactly in the

axis of the magnetostatic lens system to be measured. Later we also

used a search coil swinging in the axial direction [11] whereby the alter-

nating voltage produced within the coil was amplified (fig. 44.11). In

this case, the held gradient at the point of the search coil H' =dH{z) /dz

rather than the held itself is measured. The displacement of the

swinging center of the search coil along the lens axis enables very
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Figure 44.11. Swinging coil with model lens

for the measurement of magnetic lens field.

Figure 44.12. Measurement
of the axial gradient of the

magnetostatic lens field by
means of a swinging coil.

Figure 44.13. Shape of the magnetostatic lens

field according to the measurement by means
of dropping and swinging coils.

exact characteristics of the field distribution to be obtained also by
this method, as shown in figures 44.12 and 13. From the measured
field distribution the half-width value a* of the field distribution and
the maximum field strength lit can be deduced. As is well-known,
the measured field distribution largely agrees with the bell-shaped

magnetic field more thoroughly dealt with by Glaser [12], where the
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focal length with

k2

=^U^ 2

has the value

/= 1

a sin t/^Jc2+ f)

We could frequently do without the measurement of the whole field

and only determine the maximum field H* alone, since, from extensive
previous measurements on electromagnetically excited lens pole-pieces

of different diameters and gap widths, we knew already the relation

between the maximum field strength and the focal length obtained
from magnification measurements.

Determination of Magnification in Electron Optical Bench

To test the values of the focal lengths that have been calculated
from the ballistic measurements on 7/ 0 while considering the pole-piece

dimensions determined from the half-width values, we have measured
the election optical magnifications obtainable in the magnetostatic lens

systems. These experiments were carried out in an electron optical

bench which we designed in the course of the last years
[
13

]
(fig. 44 . 14 ).

The development of this arrangement should enable us to test electron-

optical beam paths and components within a shorter time than that

required by the methods generally used up to now. The elements of

an electron optical arrangement are built as separate sections of a

vacuum column (fig. 44 . 15 ). Electron guns, specimen stages, lenses

of different types and focal lengths, tubes used to prolong the image
observation, as well as arrangements designed for direct photographic
exposures of the electron optical image or such obtained through the

intermediary of a fluorescent screen, and finally an optical microscope,
serving for the observation, measurement and photographic exposure,

are acccommodated in a bench bed consisting of two parallel columns.

Figure 44 . 14 . View of the electron-optical bench.
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Figure 44.15. Components of the electron-optical bench.

The column sections are equipped at both ends with annular disks of

equal dimensions, in which rubber rings are inserted to provide a

vacuum-tight sealing. The sequence of and the mutual distance
between the electron optical elements therefore can be varied within
a few minutes, which necessarily results in a sufficient coaxial aline-

ment of all the elements of the vacuum column. In operation, the

beam can be directed exactly into the bench axis; this is achieved
by a universal-stage type displacement of the cathode with respect to

the control electrode-anode system. Evacuation is effected by means
of a single valve permitting the adjustment to all operating conditions.

Pumping down to the operating vacuum requires about two minutes.
The high voltage, adjustable in steps and shielded from contact, is

applied to the electron gun and the electrostatic lenses by means of an
externally grounded cable. The electromagnetic lenses, of which each
is equipped with windings for coarse and fine adjustment, are supplied
from a battery. Thereby, each lens may be associated, with means
for coarse and fine control.

To determine the magnification of the magnetostatic systems,
replicas were made from scales scratched in glass, with the grid

distance being % micron [14], and then photographed in the electron

microscope. The specimen stage could be displaced both in the

direction of the optical axis and in the universal-stage type manner.

Principles Governing Design of Adjustable

Magnetostatic Lens Systems

The comparison of the adjusting coefficients measured for the field

strength RH of the investigated arrangements furnishes simple rules

for the design of adjustable magnetostatic lens systems.
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Since, for geometrical reasons; the external stray flux of a cylinder is

appreciably higher than the internal stray flux, the flux within the
magnet is largely dependent on variations of the external magnetic
flux. Thus, an effective decrease of the magnetomotive force of the
magnet can be obtained only by an increase of the permeability of

the external stray flux. (Adjustment by means of the movement of a
shorting plug, fig. 44.6, or by means of an external annular disk, fig.

44.7.)

If, during the adjustment of a lens, the magnetomotive force of the
magnetic system is to be varied within a range as narrow as possible,

for example, to maintain the refractive power of the other lenses

unchanged, the flux through the magnet should not be varied appreci-
ably. The external stray circuit, therefore, must not be interfered

with, and the internal stray circuit should be modified in such a way
that, during adjustment, the interior stray flux also will only vary
slightly. (Adjustments by means of dividing the magnetomotive
force, fig. 44.16b.)

The least variation possible of the load of the magnet is, at the same
time, the fundamental condition for obtaining the highest possible
magnetomotive force and lenses of the highest refractive power possible

for a magnet system of given dimensions. In such systems, more than
3,000 ampere-turns (that is, about 3,750 gilberts) can still be obtained
with a minimum of magnetic material.

The refractive power of a permanent-magnet lens system can be
adjusted down to zero, only if the two lenses with oppositely directed

field ranges are weakened by the addition of an external adjusting gap
in front of them (fig. 44.16a).

Weakening of one lens in a magnetostatic double-lens system with-
out stray fields causes the second lens to be weakened if, at, the same
time, the flux in the magnet increases, or to be strengthened if the

flux decreases. Both lenses are weakened to nearly the same extent
in the case of adjustment through the movement of a shorting plug
(fig. 44.6) and in the case of adjustment by means of an external disk

(fig. 44.7). The second lens not directly adjusted to a lower value is

slightly weakened through both barrel adjustment (fig. 44.8) and in-

terior disk adjustment (fig. 44.9), and it is slightly strengthened
through yoke adjustment (fig. 44.10). The reaction due to adjust-

ment, is very slight if, in arrangements equipped with axial magnets,
the lens not directly adjusted has its own magnet. If, therefore, as

with the interior disk adjustment, the adjustment is made within a

magnet, we must provide a second magnet for the lens not directly

adjusted, while leaving it unchanged within the limits possible. With
barrel or yoke adjustment, for example, the adjustment can also be
made outside the magnet cylinder, in which case, one of the magnets
is automatically attached to the lens not, adjusted.

The experimental designs allowed some useful experience to be made.
The adjustment of electromagnetic lenses has the following advantages:

(1) The adjustment of their refractive power is accompanied with

the slight torque inherent in an adjustable electric resistance.

(2) On the reversal of the adjusting movement (for example in the

case of focusing) only a slight backlash is noticeable.

(3) The required coarse and fine controls are simple.

(4) Moreover, the current adjustment only involves the variation

of the field strength of the lens without affecting the symmetry of the

field with respect to the optical axis.
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To obtain the same advantages also with the adjustment of magneto-
static lenses, certain conditions must be fulfilled. The adjustment
through the movement of flux-conducting iron components requires
the less energy the smaller the components to be moved and the more
the flux within the adjusting components progresses vertically with
respect to the adjusting movement; the easier it is also to avoid back-
lash in the mechanical arrangement, since there exist no uni-directional

forces. The weight of the adjusting element is smaller with adjust-
ment by means of an internal annular disk than with adjustment by
means of an external annular disk. The additional provision of fine

adjustment would, in general, require more complications for magneto-
static than for electromagnetic lens systems. If, to adjust the half-

width value, the pole-pieces of the same lens system are moved
oppositely to one another in the axial direction, the lens field is assym-
metrically distorted due to the unavoidable radial clearance, so that
astigmatic pictures as well as lateral image displacements are liable

to occur during adjustment, particularly if the adjusted lens has a
great refractive power; that is, it has small bore and small gap.
As is well-known, the pole-piece systems require a very high degree

of axial symmetry if the lens is to be free from astigmatism. Since,

with the adjustment of magnetostatic lenses, apart from the proper
lens fields, stray fields of low refractive power frequently occur on the

axis, care must be taken that also at these points there will be no
deviations from the axial symmetry in the flux-conducting iron com-
ponents. If, for constructional reasons, this cannot be avoided, the

dissymmetry should have at least two mutually perpendicular axes.

The wider the optically utilized beam is at the stray field, the more
attention must be paid to the symmetry of the field shape.

Adjustable Magnetostatic Lens Systems for the

Electron Microscope

Let us first deal with the conditions of the illuminating system:
The intensity of the specimen illumination is usually adjusted through
a condenser whose refractive power must be increased from a very
low value to a moderately high value which corresponds to the image
of the cathode on the specimen. It is advantageous to keep the con-

denser free from image rotation, so that the shift of the electron beam
on the specimen will be negligible, which otherwise, in the case of a

Figure 44 . 16 . Permanent magnetic two-lens sys-

tems for adjustment within a wide range.

a. Both lenses synchronously adjusted; b, only one lens adjusted.
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not perfectly coaxial entry of the electron beam into the condenser
lens, would be very pronounced. The relatively great focal length of

the condenser can easily be obtained with the aid of one of the image-
rotation-free systems under consideration that use two single lenses.

The refractive power can be extensively reduced in an arrangement
as shown for example in fig. 44.16a. When the adjusting barrel is

displaced from the center of the system in an outward direction, the
value of the magnetomotive force of the internal soft-iron cylinder
will more and more approach that of the system housing.

It must be possible to provide all magnifying lenses of the electron

microscope, that is, objective, intermediate lenses, and projector, with
a high refractive power. For the objective and the projector, the
refractive power need not be very variable if the electron velocity

remains unchanged. For the intermediate lenses, however, which are

used for a continuous reduction of the magnification, the refractive

power must be highly variable also in the case of unchanged electron

velocity. Since, for each magnifying lens, a short focal length must
be attainable, all these lenses, as compared with the condenser whose
two gaps act as a lens doublet, can use only single fields, each of which
produces a real image. Therefore, as to the two lens fields of a stray-

field-free arrangement, the first must be adjustable within a wide
range; the second, when used as objective, only within a narrow
range; and, as projector, not at all. The two adjustments must be
independent of one another as far as possible. (Yoke adjustment,
fig. 44.10, or adjustment by means of distribution of the magnetomo-
tive force on two lens fields, fig. 44.16b). Two such double systems
connected in series result in a microscopic arrangement which magnifies

in four stages and whose intermediate lenses, internally disposed and
adjustable within a wider range, permit the magnification to be varied

within large limits. These requirements are most satisfactorily met
in the system shown in fig. 44.17a in which two external axial magnets
connected in opposition excite the objective and the projector directly,

Figure 44 . 17 . Permanent magnetic multilens

systems for electron microscopes with continuous

magnification adjustment.

a, Four-lens system and adjustment of both internal lenses by
means of a wheel-shaped yoke; b, six-lens system and adjust-

ment of the two pairs of internal lenses by means of dividing
the magnetomotive force.
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and the refractive power of the two internal lenses is reduced by means
of either a yoke adjustment or a barreLadjustment of corresponding
efficiency. Both methods of adjustment include the advantage, that,

on the reduction of the two internal lenses, the refractive power of the
external lenses increases, which is desirable for the objective of the
electron microscope, because the sharpness of the final image is then
more easily maintained during the adjustment of magnification. As
to the projector, the increase in refractive power is not necessarily

objectionable. A somewhat different adjustable microscopic arrange-
ment with six single lenses and a four-stage magnification is shown in

fig. 44.17b. In this case, the two opposed axial magnets are located
internally, and adjustment of the two intermediate lenses is obtained
by using two lens gaps for each lens for dividing the external electromo-
tive force.

The last figures show cross sections through three different magne-
tostatic magnifying systems for electron microscopes, by the use of

which we obtained electron micrographs. The technical design of a
two-lens system with a radial magnet is shown in fig. 44.18. The
radial magnet is composed of eight spokes. Every spoke consists of

two bar magnets that are formed such as to give rise to approximately
the same induction in every cross section. Adjustment of the lens

field is obtained by means of two flaps of soft iron that more or less

bridge the magnet bars. The flaps are adjusted together, which,
however, also allows the fine adjustment of every single flap. Figure
44.19 shows a two-lens system whose objective allows barrel adjust-

ment for focusing purposes. A limited magnification adjustment is

obtained in the objective stage by means of the axial displacement of

the specimen stage. Figure 44.20 shows an arrangement including

three lenses and two axial magnets of different length. The magnets
are oppositely connected in such a way, that a central lens is formed by
their difference. The central lens is set to a lower value by means of

a barrel with the reaction, that the objective is weakened (long

magnet), and the projector is strengthened (short magnet). Of
course, the magnets of different lengths can with advantage also be
inverted in position.

Figure 44.18. Permanent magnetic two-lens system for

electron microscopes with fixed magnification allowing ad-

justment
,
with the aid of flaps, for focusing purposes when

the electron velocity is varied.
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Figure 44 . 19 . Permanent magnetic two-lens system for
electron microscopes of variable magnification with barrel
adjustment of the objective for focusing purposes, and
axially displaceable specimen stage.

Figure 44 .20 . Permanent magnetic three-lens
system for an electron microscope with variable
magnification by means of barrel adjustment of
the central lens.
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Figure 44.21. Permanent magnetic four-lens system

for electron microscopes with variable magnification
allowing adjustment by means of an internal disk,

an external disk, and a wheel-shaped yoke as well as

axial displacement of the pole pieces of the internal

lenses.

Finally, figure 44.21 shows a four-lens system, which we have
proved and whose design is in accordance with figure 44.17a; it is seen
to use a yoke adjustment for the two central lenses that serves to vary
magnification. The adaptation of all lenses to different beam tensions

is obtained by means of an external annular-disk adjustment, and the

focusing of the objective by means of an internal annular-disk adjust-

ment. Up to now the expenditure on such an optical system seems to

be rather high; we hope, however, that an improved constructional
design will soon bring us nearer to the goal of a magnetostatic electron

microscope of high performance.
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Discussion

Mr. M. E. Haine, Associated Electrical Industries Research Labo-
ratory, Aldermaston, Berkshire, England: We should like to include
in this discussion the general question of vacuum systems, seals, and
methods of leak testing. Would Dr. Hillier say something on the
subject of vacuum-leak tracing?

D r. J. Hillier, RCA Laboratories Division, Princeton, N. J.:

We don’t have many leaks. When we do, we use a mass-spectrometer
leak-tester. This instrument is used by the whole laboratory and is

considered a very worth while investment. New pieces of equipment
are always tested on it. Starting out with a leak-free system is a

big part of the battle.

Mr. S. Newberry, General Electric Company: The differential

absorption method of leak tracing is of considerable interest. The
method is not as sensitive as the mass spectrometer, but it is much
simpler. Two gages are used and ^connected in a balanced bridge cir-

cuit. One of the gages is connected to the system via a trap contain-

ing a material that absorbs the tracer gas. For example, carbon dioxide

may be used with sodium hydroxide as absorbent. We have found
this system very effective. I believe every electron microscope should
have a built-in leak detector. It should be possible to achieve this

for $100.00.

Mr. Haine: One reason why the differential method is so effective

is that fluctuations in background pressure cancel out on the two
gages. It is not impossible to fit a leak-tester that is quite effective

and costs little more than $100.00. We use such devices on all our
experimental equipment. The arrangement used consists of a Pirani

gage on the high vacuum side of the diffusion pump. The gage is

connected to a simple bridge circuit with an out-of-balance meter
calibrated in microns pressure and a jack for insertion of a galvanom-
eter. Also fitted on the high vacuum side of the diffusion pump
is a simple but effective flap valve that can be closed to shut off the

pump. This arrangement allows us to measure the leak rate of the

system in a fraction of a minute by shutting the valve and noting the

rate of rise of pressure. Leaks are located with the valve open and
by the use of ether as a probe vapor. The leaking of ether into the

system causes a deflection of the bridge galvanometer. We do not
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fully understand the reason for these deflections that are much larger

than can be explained on simple grounds. We think they may be
due to the heat of dissociation of the hydrocarbon vapor on the hot
Pirani filament. The method is very sensitive and enables us to find

leaks down to 0.001 liter-microns/second in systems of not too large

a volume.
Mr. R. G. Picard, RCA Victor Division, Murray Hill, N. J.: We

have a hydrogen sensitive ionization gage. It does not cost less than
$100.00, but it covers a range down very near to that that the mass
spectrometer will cover. We have built this into an instrument.
Mr. Haine: I have heard that the palladium diffusion tube in

this device tends to get clogged up in time. Is this true?

Mr. Picard: It is certainly possible to choke them with hydrogen.
An appropriate circuit arrangement cutting down the palladium
temperature when hydrogen is detected largely prevents this.

Dr. L. Marton, National Bureau of Standards, Washington,
D. C.: What is the limiting sensitivity of the differential method
you described?
Mr. Haine: The differential gage method is capable of detecting

leaks down to 10~ 3 or 10~ 4
liter microns per second.

Dr. Marton: Returning to the electron optical bench. Is it

possible to introduce objects or apertures and move these around?
Dr. E. Ruska: Yes, such movements can be made by means of

translating screws.

Mr. H aine: Do you have electrostatic lenses, and how is the gun
insulated?

Dr. Ruska: Yes, electrostatic lenses are incorporated. The gun
is insulated by a Plexiglass insulator. The filament is centerable by
lateral adjusting screws, so that no other arrangement is necessary
to aline the beam on the optical axis.

Mr. Haine: It is probably rather easier to aline the beam by
moving the anode plate. The movement of this bends the beam
because of the negative lens at the anode. The correction applied
this way is independent of voltage.

Dr. Hillier: Do you do this on a bias type gun?
Mr. Haine: Yes.
Dr. J. A. Reisner, RCA Victor Division: Some years ago Dr.

Piccard and I published a description of an optical bench in the form
of a large open box 24 in. long, 10 in. wide, and 10 in. deep, using a

semiautomatic revolving system. We had one advantage in that the

use of magnetic lenses required only the use of low voltage connec-
tions into the vacuum. We found that in demonstrating optical

systems with magnetic lenses we were able to move the lens trans-

versely and axially by means of controls operating through gasket-

seals.

At that time we did some experiments on a bias type of electron

gun using transverse motion of all three of the elements. We obtained
results similar to those described.

Dr. Marton: The optical bench that I described in a slide this

morning is of the same type Dr. Reisner has described and includes

some further refinements.

Dr. E. W. Muller, Pennsylvania State College, State College, Pa.:

The tubes in my point projector microscope are pumped with a mer-
cury-in-glass pump and liquid air traps. For adsorption experi-
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ments, where a pressure of 10
-8 mm is sufficient, it is not necessary

to seal off as this pressure is obtained on the pumps. At this pressure
an adsorbed monolayer is formed in about a second. If a lower pres-

sure is desired, say 10“ 9 or 10~ 10 mm, the tube is sealed off after

thorough baking, of course. The vacuum may be further improved
by evaporating a tungsten wire. This will give an estimated pres-

sure of 10
-12 mm. I believe Dr. Gabor has had the same or better

experience.

Dr. Newberry: Do you use double liquid air traps?

Dr. Muller: Yes. One trap is baked; the other is not.

Mr. Haine: Have you tried to pump a tube with no traps?

Dr. Muller: No. That would seem quite impossible.

Mr. Haine: I suggest this is not so. I believe the use of liquid

air traps is over-rated and even has disadvantages. It is true that

without the trap there is a high pressure of mercury in the tube being
pumped. However, at the bake out temperature the mercury vapor
cannot condense. After sealing off and cooling, the small amount
of mercury vapor in the tube will condense, forming a small fraction

of a monolayer on the walls of the tube. We have compared two
tubes pumped with and without liquid air and find no difference in

the ultimate vacuum obtained.
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45. Magnetic Lenses of Extremely Short Focal Length

By J. B. LePoole 1 and A. C. van Dorsten 2

Abstract

A magnetic electron lens having a very high field strength in the gap
and a bore appreciably smaller than the gap between the pole pieces,

presents interesting possibilities for the construction of objective

lenses for electron microscopy of very small focal length. Such a lens,

owing to its relatively low chromatic aberration, lessens the require-

ments on voltage and current stabilization considerably.

The “wings” of the field cuive of the lens, which now has become a
thick lens of the immersion type, have the effect of acting as an unde-
sired condensor lens in front of the object, at the object side, and as

an extra lens in the region beyond the point of intersection of the

electron paths with the axis at the image side of the lens. This latter

effect reduces the strength of the lens and sets a limit to the minimum
focal length obtainable. By reducing the bore in the pole pieces as

far as is possible without interfering with the passing of the beam, this

effect can be reduced almost to zero. The field along the axis, between
the pole pieces, is nearly homogeneous.
A lens is described having a bore/gap ratio of 1:4 and a focal length

of under 0.8 mm at 80 kv accelerating voltage.

Reduction of the image side “wing” of the field curve can also be
achieved by providing the image side pole piece with a cylindrical

insert of magnetic material of high permeability, acting as a magnetic
shielding at this part of the lens. Movement of this insert in axial

direction presents a continuously variable parameter for experiments.

1 Technical University, Delft, Holland.
2 Philips Research Laboratories, Eindhoven, Holland.
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46. Correction of Field Measurements in Electron

Lenses

By A. Bruaux 1

Magnetic lenses can be investigated by a method identical to Le
Poole’s. 2 The experimental setup used here is slightly different, how-
ever. The axis of the lens is vertical. The lens itself can be displaced
up and down so as to enable us to measure the field at. every point
along the axis.

The probe consists of a helix of a thin wire suspended at a balance

;

the axes of both the lens and the probe are brought into coincidence;
the sign of the helix changes at a particular location. As can easily be
seen, if a given current flows through the wire, the force acting on the
probe is proportional to the magnetic flux through the section of the
helix. Thus, what is actually recorded is the distribution of flux along
the axis of the lens. The problem is then to deduce from that informa-
tion the distribution of field along the axis.

A mathematical method using matrix calculus has been applied to

carry out the correction on account of the finite area of the winding-

cross section. Thus, given distribution <fv
0

(r 0 is the mean radius of the

winding), one has to compute H(z) related to the latter by the
expansion

(1)

The first step consists in writing down <fv
0 (2 ) as a Gram. Charlier

series, i. e., an expansion using Hermite functions, which form an
orthonormal set.

In this process, two arbitrary constants intervene, which are: (1)

the location of the origin, and (2) the parameter a, half the distance

between the two inflection points of the fundamental function
\f/0 .

The origin is so chosen as to cancel the integral f <£ (z)z dz; a is so

chosen as to give the least quadratic error for this function with
respect to the given curve. This choice has a simple interpretation:

it means that the coefficient of the second-order function
\f/2 vanishes.

The calculation of the coefficients of the expansion is performed by
numerical integration using the formula

1 Laboratoire de Recherches Physiques, Ateliers de Construction Electriques de Charleroi, Charleroi,
Belgium.

2 M. V. Ments and J. B. Le Poole, Appl. Sci. Research [B] 1,3-17 (1947-49).
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In practice, the calculation of more than four coefficients is seldom
necessary; furthermore. Parseval’s theorem gives a convenient means
of deciding whether the number of coefficients is sufficient by taking
into account the experimental errors.

Thus $Tq (z) can be represented in a Hilbert space by a vector, the

components of which are the set of coefficients, Ck . In such a space,

derivation of a vector H with respect to 2 yields another vector,

which is the result of the multiplication of a hermitian matrix by the
initial vector. Now, an n-fold derivation consists in the multiplica-

tion of the th power of the matrix by the vector H. Actually.

even powers of only are needed; it is sufficient, therefore, to

calculate the powers of the matrix

the additive property of matrices,

(1) can be expressed in the form

‘

d?

dz 2
Furthermore. because of

the whole second member of eq

7r/y
[A]H.

In this relation (that is, its components) is known, whereas H
is not; hence, if both members are multiplied from the left by the

reciprocal matrix of [A] the problem is solved.

Direct calculation of [A]
-1

is difficult, however. Fortunately, [A]

has the form

[A]= [\J+ e[X1 ]+ e*[X2]+ . .

where e= -/y 2 is usually small. This enables us to calculate [A]
-1

with any desired precision by a process somewhat similar to a diago-

nals ation of Heisenberg matrices. Finally, the result has the sym-
bolic form

[A- 1

]
-^=H.
7T/ o

This equation means that every component of H is expressed by a

linear combination between the Ck .

From the viewpoint of the electron optics, it would be desirable to

develop a similar procedure for solving the paraxial rays equation, in

order to take full advantage of the high degree of accuracy. Finally,

it seems that other problems could be approached by the same method.
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47. New Interference Phenomena in the Electron

Microscopic Images of Plate-Like Crystals

By James Hillier 1

The anomalous intensity distributions that appear in the electron

microscope images of small crystal have been often recognized as

diffraction phenomena.

2

In the case of thin slightly curved plate-like

crystals lying approximately normal to the electron beam the phe-
nomenon appears as in figure 47.1. The dark lines traversing the
image of the crystal are extinction contours that coincide with those
areas of the crystal in which a set of planes is at the Bragg angle.

Since this micrograph was made with no objective diaphragm, the
bright reflections corresponding to some of the extinction contours
are visible near the crystal. The displacement is due to the fact that
the image was taken with the objective focal length somewhat greater
than the focused value. More recently, late in 1950, one and
possibly two new interference phenomena were observed almost
simultaneously in three widely separated laboratories including that
of the author. 3 4

The more obvious of the observed phenomena is illustrated in

figure 47.2. This can be seen to consist of a periodic disturbance of

the electron intensity along the extinction contours such that they
appear to be traversed by a series of parallel and uniformly spaced
fringes. Frequently two superimposed sets of fringes intersecting

at 120° are observed. In these cases the spacing of the fringes is not
necessarily the same in the two sets. A third, and rather rare example
of this phenomenon is indicated in figure 47.2 by the arrows. In this,

two sets of superimposed parallel fringes with widely differing spacings
are observed within a single extinction contour. This phenomenon is

characterized by the high contrast encountered in the fringes, by
relatively large spacing of the fringes (usually more than a hundred
angstroms) and by the fact that the fringes are confined to the
relatively limited area of the crystal defined by the extinction contour.

Mitsuishi, Nagasaki, and Uyeda propose an explanation of this

phenomenon that appears quite reasonable. They suggest that the
fringes appear when two crystals are superimposed but not lying

parallel to each other. It is then possible for the electrons that have
been diffracted by the first crystal to be incident on the second crystal

at the correct angle to undergo diffraction from a different set of

planes. If the arrangement of the system is such that the wave-
front representing the doubly diffracted ray leaves the system nearly

1 RCA Laboratories Division. Princeton, N. J.
2 ,T. Hillier and R. F. Baker, The observation of crystalline reflections in electron microscope images

Phys. Rev. 61. 722-723 (1942).
3 T. Mitsuishi, H. Nagasaki, and R. Uyeda, A new type of interference fringes observed in electron-

micrographs of crystalline substance, Proc. Japan Acad. 27, 86-87 (1951).

J. L. Farrant and A. L. G. Rees (personal communication).
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Figure 47 . 1 . Plate-like crystal of iron oxide showing a number of extinction contours

and the bright reflections arising in them.

Figure 47 . 2 . JSIidtilayer plate-like crystal showing extinction contours traversed by

interference fringes.

parallel to the wave-front representing those electrons that have

passed through both crystals without being diffracted, it is possible

for interference to occur. That the observed fringes occur 011K in

areas similar to extinction contours and only when there are two or

more superimposed crystals would tend to support this proposal.

The second phenomenon, which is much rarer than the above, is

illustrated in figure 47.3. It can be seen to consist of a set of closely

spaced fringes extending over very large areas of the crystals in which

it appears. Usually, though not invariably, two superimposed sets
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Ficure 47.3. Image of multilayer plate-like crystals showing uniform crosshatching
over large area.

Note that crosshatching disappears at boundary of one of the layers. The contrast in the pattern has been
greatly enhanced by photographic processing.

of fringes crossing at 120° and with equal spacings are observed. In
this laboratory the spacing of the fringes has varied considerably
usually being less than 100 A with a minimum value of 40 A. A
spacing of 25 A has been reported from another laboratory.4

This type of interference has been characterized by the fine spacing,

by the uniformity of the fringes over much larger areas than the pre-

vious type and by the absence of extinction contours within the area
of the crystals showing the effect. As in the previous case it has not
been observed except where one or more crystals are superimposed.

It does not seem likely that the explanation proposed above will

hold for this case. The main objection that can be raised concerns
the physical requirements that must be imposed on the specimen.
It can be estimated from the intensity relationships in the images of

the crystals in which this phenomenon occurs that the crystals are

sheets several microns in extent but of the order of only 100 A in

thickness. If a Bragg reflection is to be obtained from a large area,

such a crystal must be very fiat. The usual mounting of the crystals

in, or on, a thin, slightly stretched collodion membrane would favor
holding the crystals flat, and the frequent absence of extinction con-
tours indicates that this is actually the case. On the other hand,
these same conditions would not favor having two superimposed
crystals, each nearly planar but with a small angle between them. A
very rough calculation based on an estimated “rocking curve” for

these crystals indicates that the minimum value for the radius of

curvature of both crystals that would permit the above explanation
is of the order of 1 mm. This seems unlikely in view of the thin

flexible character of the crystals.

A possible explanation of the second type of interference is that it

is “Moire” pattern resulting from superimposing in dose contact two
flat crystals, one of which is slightly rotated relative to the other
about a normal to its surface. This would result in a “magnified”
image of the hexagonal arrays of atoms in the two crystals, the
“magnification” varying inversely as the departure from parallelism

of the two arrays. Scattering theory indicates that the contrast
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would be very low in this phenomenon. This is in qualitative agree-

ment with experiment.
An attempt was made to distinguish between the two proposed ex-

planations for this second phenomenon by making successive micro-
graphs of a crystal with slightly different angles of incidence of the
illumination. The results were unexpected in that they led to the
observation that the phenomenon rarely occurred in two successive
micrographs even when the angle of incidence was not changed. On
the basis of this observation it seems necessary to exclude the possi-

bility that the second phenomenon is the result of a double Bragg
reflection since the variation of the angle of incidence was certainly

less than 10“ 5 rad while the total half-width of the rocking curve is

greater than 10
-3

rad. Unfortunately this observation gives even
less support to the Moire pattern theiry. While it could be antici-

pated that a Moire pattern produced by overlying crystals with a

combined thickness considerably greater than the spacings of the

pattern would be somewhat sensitive to changes in angle of incidence,

the sensitivity indicated is several orders of magnitude too great. It

is possible, of course, that the transitory nature of the second type of

phenomenon is not due to instabilities in the angle of incidence of the

illumination and that some other explanation should be sought.

Discussion

Mr. J. A. Simpson, National Bureau of Standards, Washington,
D. C.: I was wondering if, for a possible explanation of the transitory

nature of the patterns, Dr. Hillier had looked into the question of the
localization of the fringes. It seems to me that with the angles he is

talking about the fringes will be localized to an extreme degree and
will fade out on the slightest drift of focus in the instrument.

Dr. Hillier: It does not seem to be a question of localization of

fringes and sensitivity to focus. If the large area phenomenon, which
is the sensitive case, can be considered as a Moire pattern, the sensi-

tivity to focus should be the same as for other parts of the specimen.
On the other hand, if it is produced by two successive Bragg reflections

in very flat crystals, the observed fringes are the result of interference

between two or more series of plane waves with a small angle between
them. For a fringe spacing of 100 A and 50 kv electrons two series

of waves arising in a 1 yu crystal would interfere over a distance of at

least 1 mm from the crystal if it were not for the smearing effect of the

finite angular aperture of the illuminating beam. Since in our work
the angular aperture of the illumination was of the order of 10“ 4 rad,

the smearing effect would only become appreciable beyond 20 /jl from
the crystal. However, this is nearly two orders of magnitude greater

than the instability in focus during the exposure time and more than
an order of magnitude greater than the change in focus from one
exposure to the next.

Mr. Simpson: Have Amu thought of the dynamical theoiw instead
of the kinematical theory as proAdding an explanation?
Dr. Hillier: Not as yet, but it should be done. Unfortunately,

it has not been possible to form eAmn a rough qualitative idea of the

results to Avhich the dynamical treatment might leach
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