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Foreword
Vet.

The Low Temperature Symposium was the first of twelve symposia

held during 1951 as part of the scientific program of the National

Bureau of Standards in the year 1951, which marked the fiftieth

anniversary of its establishment. The subjects of the symposia repre-

sent scientific fields in which there is considerable current interest and
in which the Bureau is active.

Low temperature research at the Bureau was begun early in its

history with establishment of facilities for liquefying air and hydrogen.

In 1931 helium was successfully liquefied here for the first time in this

country, for use in superconductivity research. Research was also

carried forward on the properties of hydrogen and deuterium. In

recent years research has been conducted in several fields, including the

properties of liquid helium, superconductivity, calorimetry, thermom-
etry, and liquefier development.

No discussion of low temperature research in this country would be

complete without an acknowledgment of the generous support given

by the Office of Naval Research during the years following the war.

It has been the custom to hold periodic meetings, under the auspices

of the OhiR, for representatives of the various laboratories engaged in

ONR-sponsored low temperature research. By agreement with ONR
it was decided that this Symposium would be substituted for the

usual ONR Conference. This symposium was organized by J. R.

Pellam and E. Maxwell, with the assistance of the Bureau’s Low
Temperature Symposium Committee. The cooperation of the ONR
in making possible the symposium series is gratefully acknowledged.

A. V. Astin, Director,

National Bureau of Standards.
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1. Theory of the Superconducting State
1

by H. Frohlich 2

The main problem in finding a theory of the superconducting
state, it seemed to me, was to find an interaction of the correct

magnitude. Once this was discovered one might hope that it also

would lead to the observed electromagnetic properties. I had
noticed many years ago that the energy ms2(m= electron mass,
s= velocity of sound), which is of a very small magnitude, plays a
role in some questions of conductivity. Much later it occurred to

me that Bloch’s 3 description of the interaction of electrons in crystals

with the lattice vibrations is one aspect of a field theory which must
lead to an interaction between electrons. In fact, according to

Bloch, electrons can move freely through ideal crystals, but are

scattered when deviations from the strict periodicity occur. Of
particular interest here are the deviations due to the thermal vibra-
tions. When quantized, their interaction with electrons can be de-
scribed in terms of emission or absorption of single quanta. Similar
to radiation theory one should then expect that an interaction be-
tween electrons follows that can be described in terms of virtual

emission and reabsorption of quanta. At first sight, it might seem
that the analogy with radiation theory is not very far reaching be-
cause in our case free electrons of sufficient energy will spontaneously
emit vibrational quanta. In radiation theory spontaneous emission
of quanta by free electrons is not possible in general. However, in

our case the electrons move with a velocity, v, which is very large

compared with the velocity, s, of sound. The corresponding case

in radiation theory would be a charged particle moving with a velocity
larger than the velocity of light. Although this is not possible in

vacuum, it can occur in media with a refractive index larger than
unity. The corresponding radiation has in fact been discovered and

is known as Cerenkov radiation.

Let us follow the analogy with radiation theory a step further.

The interaction between particles at rest is uniquely described in

terms of their distance in ordinary space. This is not so for moving-
particles whose interaction also depends on velocity. The influence

of the velocity dependent terms increases as the velocity of light (of

sound in our case) is approached. It may be expected than that

when v^$>s, the velocity dependent terms predominate. In fact,

it will be shown presently that in our case where v/s^ 103 the inter-

action is best described in momentum space.

In elaborating the above-mentioned ideas one is at once faced with
the difficulty that the conventional theory of metals is based on the

free electron hypothesis, which has never been derived theoretically,

nor has it been stated in exact terms. This hypothesis implies that
the Coulomb interaction between electrons can be replaced by an
effective periodic potential, so that the problem of many electrons

1 Proc. Phys. Soc. (London) 63 [A] 778 (1950); Phys. Rev. 79 , 845 (1900); Proc. Phys. Soc. (London) 64
[A] 129 (1951).

2 Department of Theoretical Physics, Liverpool University, Liverpool, England.
3 F. Bloch, Z. Physik 52 , 555 (1928).
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reduces to one-electron problems. Deviations from a strictly periodic

potential will then act as a perturbation. However, the above
hypothesis is never used for all electrons but only for those near the

top of the Fermi distribution. Let fo(k) be the Fermi distribution

at the absolute zero of temperature; hk is the momentum of a free

electron and W
2m (1)

its energy, assuming the influence of the periodic field to be negligible.

Consider then states in which the electrons are distributed according
to a function f(k) and in which nw vibrational quanta of wave number
w are excited. The free-electron hypothesis then demands that the
energy of the above state differs from the state where/=/0 and nw=

0

by three terms: (1) the kinetic energy y^eAf(k)—fn(Jc)] of the electrons,
w

using eq (1), (2) the energy of the quanta, ]>~]nwhws ,
where s is the

w
empirical velocity of sound, (3) the difference in interaction between
electrons and lattice vibrations from the state

/

0 ,
nw=0. It is pro-

posed to calculate this energy difference with the help of second-order
perturbation theory and to find the distribution f(k) leading to the

lowest energy by variation of/.
This last term is thus given by -matrix element for the emission

of a quantum
; q= k— w)

\MW \> [/ (k) (1 -/(g))-/0m (1 -/0 (g))]

kw ek—€ q
—h:ws

It can be split into two terms:

Ei=S L/ (*)-fo (k)}S—1 '

—

'

0)

E ^

jlW/lM /
4)2

k q (t— e a—fiws

III Ei the sum over w is again a function of Jc, say yk . This term is

therefore given by

El=J2yk I/W —fo (&)] ; (5)
k

i. e., it is of the same form as the kinetic energy in zero order, replacing

*k by e k -\-yk . The second term, however, is of great interest. There
we have replaced the sum over w by a sum over y. It is then seen
that E2 would be zero if s= 0, i. e., if the perturbation of the electrons

by the lattice vibrations were replaced by a static perturbation lead-

ing to the same matrix element. Hence we can also write

where

HK <i) L/W/(<z)-/o (*)/o(2)],
' q

Hws
(t 1— ek)

2—liws
1 w= \q-k\

(6)

(7)
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From a formal point of view this energy E2 can be considered as due
to an interaction between electrons in momentum space; \p (k, q)
is thus the energy of interaction between two electrons with momentum
k and q.

From (7) it follows that the interaction energy E2 is positive when
the zero order energies of the two electrons are nearly equal; it is

negative for larger energies, roughly speaking when the velocities

differ by more than the velocity of sound. This interaction thus tends
to shift electrons from the top of the Fermi /0 distribution to higher
values. This tendency is opposed by the increase in kinetic energy
connected with such a shift. Two cases must then be distinguished,

depending on whether the magnitude of E2 is or is not sufficient to

overcome the increase in kinetic energy.
If \E2

\

is sufficiently large then f0 (k) is no longer the distribution

with the lowest energy but is replaced by another the/i (k) distribution.

In &-space this distribution is obtained from the spherical

/

0 distribu-

tion by shifting from the surface a shell of width A k^ms/li, by about
A k. When this/x distribution is stable then the metal is proposed
to be a superconductor. For in contrast to the /0 distribution E2

interaction energy has now to be spent to deform the /i distribution

in k-space. It has been shown by F. London that this is required to

derive the London equations that describe phenomenologically the
magnetic behavior of superconductors. The energy difference of a

stable /x distribution from the normal /0 distribution is of the order
m/M ev(m= electronic mass; M= atomic mass) per electron. It is

thus of the correct magnitude. Moreover, as this energy is propor-
tional to 1/M, it accounts quantitatively for the isotopic effect pre-

dicted by the theory. Finally, it may be remarked that the condition

for the stability of the/i distribution can be expressed in terms of the

high-temperature resistivity of metals. This leads to a selection of

superconductors in fair agreement with observations.
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2. Superconductivity and Lattice Vibrations

by J. Bardeen 1

The isotope effect, discovered independently by E. Maxwell [l]
2

of the National Bureau of Standards and by Reynolds, Serin, Wright
and Nesbitt [2] of Rutgers University, indicates that superconductivity
arises from interactions between electrons and lattice vibrations.
Both groups found a pronounced dependence of transition tempera-
ture, Tc ,

of mercury on isotopic mass, M. The Rutgers group showed
that Tc varies approximately as M~ 1/2 and this result has since been
confirmed as well from measurements on separated tin isotopes [3].

The mean square amplitude of zero-point motion of the atoms of
the crystal also varies as M~ 1/2

. These experiments therefore indicate
that there is an intimate connection between superconductivity and
lattice vibrations. A theory of superconductivity based on electron-
vibration interactions has been given by Frohlich [4], and the writer [5]

has independently given a somewhat different theory based on the
same general idea. Frohlich/s theory is based on interactions between
electrons arising from the field of phonons, whereas we have used a
model based on wave functions and energies of the individual electrons
as affected by the vibrations. Later developments indicate that the
theories are not so far apart as they first appeared. However, there
are difficulties with both approaches. Frohlich used an expression
based on second-order perturbation theory in a range where its validity

is uncertain. As we shall see, there are also difficulties with our model.
We shall first discuss the nature of the wave functions and energies

for electrons in superconductors and then show how the theory leads
to the London phenomenological equations and thus explains the elec-

tromagnetic properties of the superconducting phase.
Figure 2.1 shows the nature of the interaction between electrons

and lattice vibrations. The normal modes of vibration of a crystal

lattice are waves; here is shown a longitudinal wave with a period
equal to twice that of the lattice. The coordinate q represents the
displacement from the equilibrium position. The lattice wave gives

a varying potential which an electron sees, as indicated by the inter-

action potential above. When the ions are close together, the poten-
tial is more positive, giving a lower energy for the electrons. Where
they are farther apart, the potential is higher. During the next half

cycle, when o changes sign, the sign of the interaction potential is

reversed. The ions in the lattice are continually in motion, even at

the absolute zero, so that the electrons see a fluctuating potential.

One might expect to get a lower energy if the electrons could follow

the motion of the ions, giving a higher than normal density when the
fluctuating potential is low and a low density where the potential is

high. This requires that the wave functions for the electrons depend
on the vibrational coordinates.

The complete Hamiltonian for the metal can be written as a sum
of three terms, one for the electrons with the ions in their equilibrium

1 Bell Telephone Laboratories, Murray Hill, N. J. Present address, University of Illinois, Urbana, 111.

2 Figures in brackets indicate the literature references on p. 10.
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positions, He ,
one for the lattice vibrations,^HL, and a term, Hr, rep-

resenting the interaction between the two:

H=H'+HL+Ih. (1)

+ o o + 4- o o + 4- O O 4-

+ O o + + o o + 4- o C 4-

+ o o + 4- o o + 4- O 0 4-

Figure 2 . 1 . Schematic diagram of interaction Vj, between electrons and lattice

vibrations.

Usually one considers the interaction terms only in connection with
scattering and resistance. We are here concerned with their effect

on the wave functions and energy. We have taken the interaction

terms into account by using a wave function for the complete system
of the form:

y= <Pe(x i ,q r)Q{q T). (2 )

The wave function for the electrons, <pe ,
which involves the vibrational

coordinates,
g_ T ,

parametrically, is approximated by Slater-Fock deter-

minantal wave functions in which the wave functions of the individual

electrons are of the form:

(3)

where
\J/k is the Bloch function for wave vector k. In calculating the

energy of the lattice vibrations, one must remember to take deriva-
tives of <pe with respect to the vibrational coordinates, q T ,

In the ideal case, with no interaction, the one-electron wave func-
tions are the Bloch functions,

\J/k . Most of the interaction energy
occurs in the normal phase; there is only a small additional energy
decrease in going to the superconducting phase. In the normal metal
one may take the interaction terms into account by adding to \pk a

sum over the various states \U' with which ipk interacts via the lattice

6



vibrations. For a Fermi distribution of electrons at temperature T
the first order correction to the wave functions is

3

yt, =x l IV ^kk^kk^k'
#* k “k

e k-ev -\-1io3klC
' coth [(e*— e k)j2kT]

(4 )

Here mkr qkk ' is the matrix element for the vibration whose wave
vector connects the states k and k'

.

We have indicated explicitly

that the matrix element is proportional to the displacement, qkk >.

In the denominator there is in addition to the energy difference

between the Bloch states, e k—e k ’, a term proportional to the phonon
energy, Kcokk >, which comes from the derivatives of <pe with respect to

qkk >. The hyperbolic cotangent comes from use of the Fermi distri-

bution function appropriate to a temperature T.

The energy is changed in the second order:

TT _L_V
,

I'Mkk'qkk’V
/ c\

k k k
e k
— €*'+ /£&>**» coth [(e k—

e

k>)/2kT]

The interaction energy does not depend very strongly on the wave
vector k nor on the distribution of electrons in A;-space. The inter-

action terms are of the sort expected for the normal phase; they give
a small decrease in energy of the electrons but no appreciable change
in effective mass nor in the electrical properties.

Superconductivity presumably arises from interactions for which
the energy denominators are small and for which the second-order
perturbation theory is not valid. The condition

(6)

requires first that the temperature be sufficiently low, otherwise the

hyperbolic cotangent is large, and second that the matrix elements
be sufficiently large compared with (kukk ')AV . The second of these

conditions is approximately

N(E)\rnkk'q kk >\
2
AV ^>(ho)kk')Av, (7 )

where N(E) is the density of states in energy at the Fermi surface.

This condition is essentially equivalent to the criterion for super-

conductivity of Frohlich as modified by the author. It is a fairly

reliable criterion for distinguishing those metals that are super-

conductors.
The interactions important for superconductivity are those for

which the energy denominators are small and for which the Bloch
states have energies close to the Fermi surface:

e k^e k>^EF . (8)

The energy differences \e k—

e

k >\ are presumably of the order of kTc .

It has been proposed that these interactions give a decrease in energy

of the electrons with energies near EF as illustrated in figure 2.2.

The conditions under which such an energy reduction can be

expected to occur are still uncertain. We have used wave functions

of the form
'&k=Nk(q r)(

<kk Jr'2k'bkk’(lkk ,'kk') (9)

3 The derivation is given in Rev. Mod. Phys. 23, 261 (1951).
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Figure 2.2. Schematic plot of energy versus wave vector for normal and super-
conducting phases.

where the sum is over k' such that \e k >— e k\<^ AE. Normalization is

given by the factor Nk (qr), the b kk > are chosen to give a minimum
energy, and the \pk > are Bloch functions modified as in (4) to include

the interactions for which \e k >— e k\^AE. The minimum is now ob-
tained when k' runs only over the unoccupied states. These wave
functions give an energy reduction of the desired sort, but the theory
is nevertheless unsatisfactory.

If, as previously assumed, the interactions in (9) do not occur in

any way in the normal phase, the calculated energy difference between
the normal and superconducting phases is too large. This suggests
that these interactions do occur in the normal phase, but in such a
way that the effective mass is not altered. Further, the dynamic
nature of the interaction, which is undoubtedly important, does not
play a role in this formulation. An adequate theory requires more
powerful methods of approach.
With wave functions of the form (9), the energy decrease per

electron is proportional to (okk ) A v and thus varies as M~ 1/2
,
in agree-

ment with the isotope effect. The fractional number of states affected

is ~AE/Ef ,
so that the energy difference between the normal and

superconducting phases is of the order of

Wn-Ws=

H

2
IS 7r~n(AE) 2/EF , (10)

where n is the number of conduction electrons per unit volume. The
critical field, Hc ,

varies in the same way with isotopic mass as the
critical temperature.
The effective mass, being inversely proportional to the curvature

of E versus k, is very small for electrons with energies near the Fermi
surface in the superconducting phase:

m eff=\h 2
c)

2Elbk 2]- l^AEIEF . (11)

8



As AE~k

T

C
~10~ 3 ev and EF is of the order of several electron

volts, meff is of the order of 10
_4

ra. As the configuration is similar

to that of an almost filled band, the properties are similar to those
of a metal with al0~ 4 hole per atom with an effective mass ~10 _4m.
The states involved in the superconducting transition lie in a thin

shell of A;-space with thickness of the order of

Ak^'(AE/EF)kF ^'10~ 4:'X10 8^10 4i cm-1
. (12)

The smallness of the range Ak means that the wave functions extend
over large distances in real space. The uncertainty relation

(13 )

gives a lateral extent Aa^lO -4 cm.
The large Ax and small meff are, of course, related. A small effective

mass means that it takes considerable energy to confine the wave-
function to a small volume. It is this property that leads to the
explanation of the magnetic properties of the superconducting phase.
There are two aspects to superconductivity. First, the infinite

conductivity, most strikingly shown by a persistent current in a ring,

and second, the perfect diamagnetism, or Meissner, effect; a super-
conductor excludes a magnetic field. These two aspects are closely

related. Either one almost, but not quite, gives the other. Both
follow from the London phenomenological theory, which is based on
the idea that it is the diamagnetic property that is the fundamental
one. According to this view, all superconducting currents are dia-

magnetic in origin, and are always associated with a magnetic field.

The present theory leads to the London equations, and is thus also

based on the idea that the fundamental property of a superconductor
is the Meissner effect and that those aspects usually associated with
infinite conductivity are secondary and follow as a consequence.
The recent experiment of Houston and Muench [6] on the damping

of an oscillating sphere in a magnetic field is good evidence that this

is the correct view.
It is believed that superconductivity in a sense can be considered

to be an extreme case of diamagnetism of the London-Peierls type.

If an ordinary metal is placed in a magnetic field, electrons describe

orbits which are analogous to the classical circular orbits of electrons

moving in a magnetic field. The diamagnetic currents are confined

to a thin surface layer. Near the surface, current from electrons in

interior orbits is balanced to a large extent by electrons in boundary
orbits. In the classical theory the compensation is perfect; there is

no net current and no diamagnetism. Landau showed that quantum
effects give a small net diamagnetism which is inversely proportional

to the square of the electron mass. Peierls showed that in real

metals one should use an appropriate effective mass rather than the

true electron mass.
In a superconductor, the effective mass is very small and the dia-

magnetic effects very large; so large in fact that the magnetic field is

confined to a thin layer corresponding to the penetration depth of the

London theory. One must reexamine the theory and it is found that

if the effective mass is sufficiently small there are no orbits correspond-

ing to either the circular orbits in the interior or to the boundary
orbits. The magnetic field vanishes in the interior and the field at

9



the surface is insufficient to provide a quantum state. The wave
functions of the electrons are only slightly modified by the magnetic
field. The approach is essentially that of F. London [7], who has
shown some years ago that the phenomenological equations follow

if the wave functions in the superconducting state are such that they
are not modified very much by a magnetic field. The small effective

mass and consequent great exaggeration of quantum effects give this

property. Thus the London equations are a consequence of the

theory.

The following qualitative aspects of the theory appear to be fairly

well established: (1) Superconductivity arises from interactions be-

tween electrons and lattice vibrations, (2) the important interactions

are those between electrons with energies close to the Fermi surface,

(3) it takes considerable energy to confine the wave functions to a

small volume. This property is described in our model by the small

effective mass of the electrons, (4) the wave functions are not modified
very much by an applied magnetic field. This leads to the London
phenomenological equations according to the approach of F. London.
All of these aspects are also true for Frohlich’s version of the theory.

The exact conditions under which superconductivity should occur
are still uncertain. Whether or not the interactions are such as to

give a “shell” distribution as in Frohlich’s theory or whether they
simply lower the energies of electrons near the Fermi surface as in

figure 2.2, remains to be determined. An adequate theory of the

way the properties vary with temperature awaits a better picture of

the state at absolute zero.
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3. On the Nature of the Superconducting Transition
1

by L. Tisza 2

Introduction

The heuristic ideas advanced recently concerning the nature of the
superconducting state [1]

3 have been conceived before the discovery
of the isotope effect and before the theories of Frohlich [2] and Bar-
deen [3] came to my attention. Starting from the assumption that
superconductivity cannot be accounted for in terms of a free electron
theory and in view of the well-known difficulty of a many electron
problem, it seemed reasonable to inquire into the symmetry prop-
erties of many-electron wave functions and attempt to obtain a type
exhibiting the characteristic superconducting properties. It was left

for a later time to provide a quantitative derivation of such wave
functions from quantum mechanics.

In view of the experimental and theoretical progress achieved in

the course of the last year, it is pertinent to ask whether these consid-
erations are still of interest. Indeed, Frohlich and Bardeen have
unexpectedly extended the scope of the free electron theory toward
an explanation of superconductivity, and their work in conjunction
with the isotope effect made it obvious that the lattice dynamics had
an important part in this phenomenon. This feature was absent
in [lj.

Nevertheless, it would seem that an affirmative answer can be
given to the above question, and in particular the following points
should be made.

1. In spite of its success, the free electron theory has its limitations.

For example, it has so far failed to account for the fact that the

normal-superconducting transition occurs at a sharp transition tem-
perature even without an external field and hence in the absence of a

supercurrent. In other words, we get no answer to the questions:

What sort of long-range order parameter characterizes this process,

the sudden onset of which is obvious from the entropy curve? It is

possible that this shortcoming is connected only with mathematical
difficulties; yet, we will advance arguments in favor of the view that

at this point we have reached the inherent limitations of the model.
2. The potential generality of the symmetry considerations of

[1] was impaired by the assumption of a fixed, rigid lattice. We will

outline in the sequel how this procedure can be generalized by char-

acterizing the lattice with dynamic parameters. As a result, we
obtain a general framework into which the detailed calculations of

Frohlich-Bardeen can be fitted in a natural fashion. At the same time,

this framework is more comprehensive and provides an answer
concerning the nature of the superconducting phase transition. It

1 This work was supported in part by the Signal Corps, the Air Materiel Command, and the Office of

Naval Research.
2 Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Tech-

nology, Cambridge, Mass.
3 Figures in brackets indicate the literature references given on p. 20.
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has also a heuristic value in suggesting ways of approach for a future

quantitative theory.

3. In order to achieve these results one has to take a more funda-
mental attitude than is usually the case in the theory of solids—one
has to consider the crystal as a collection of nuclei and electrons and
investigate the applicability of the socalled adiabatic method devel-

oped by Born and Oppenheimer [4] for molecules, to the case of

crystals. That the understanding of superconductivity requires a

critical reconsideration of the fundamental assumptions of the theory
of solids may well prove to be its most interesting theoretical aspect.

It is obvious that it will be some time before the program here
formulated can be developed in detail. The following account should
be considered as a progress report.

The Adiabatic Approximation

The results of the adiabatic approximation that are relevant to

the present problem may be summed up as follows.

Consider an electrically neutral system of nuclei and electrons.

In the first approximation assume the nuclear mass to be infinite and
solve the electronic eigenvalue problem at fixed nuclear positions

(many-center problem), whereby the eigenvalue U{R) and the
eigenfunction <f>(r;R) will contain as parameters the nuclear configu-

ration R. The electronic coordinates are represented by r.

Of special interest are the configurations Rw
,
for which the elec-

tronic energy is a minimum:

bU
bR>

= 0 *= 1
,
2

,
. ( 1 )

and

U(R)=U(RM)+^uik(Ri-Ri a))(R«-R*m)+ .... (2)
* i,k

with

b 2U
bRibRk

the “stiffness matrix’ 7 being positive definite.

In second approximation the wave function of the molecule is

t(r,R)=<i>(r;R)x(8, (3)

where x is a wave function corresponding to a coupled vibration of

the nuclei in the potential provided by the quadratic terms in (2).

(The coulomb repulsion of the nuclei is supposed to be included in U)

.

The £ are normal coordinates describing the small deviations of the
nuclei from their equilibrium positions. In the same approximation
the total energy U tot .

is additive in the electronic and the vibrational
energies

U tot.—

U

+ TJ vib‘ (4)
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Mixed terms would appear in higher approximation.
These results depend essentially on the assumption that the elec-

tronic levels are well separated compared to the spacing of nuclear
levels. In particular, the electronic level should not be degenerate.
As a rule, these conditions are satisfied for molecules. There are
exceptional cases, however, in which the expression (1) has to be
replaced by a sum

c lm <l>i(r;R)xim(Q- (5)
l, m

The coefficients cim have to be determined by perturbation or
variational methods. A problem of this sort has been calculated by
Renner [5] for the case of linear molecules. For a short account of

these more subtle aspects of the adiabatic approximation we refer to

the review article of Sponer and Teller [6].

In the case of crystals it has been usual to state that these are
nothing but big molecules and accept the above results, in particular
the simple formulation (3) without further scrutiny.

Actually, the condition concerning the spacing of the electronic

levels is satisfied only for the electronic ground state of insulators.

In case of metals there is a practically continuous distribution of elec-

tronic levels close to the ground state. Hence one should discuss

wave functions of the type (5), the cumbrousness of which is obvious
if one notes that r and B stand for all the electronic and nuclear
coordinates.

Counteracting this complication is the fact that the crystal sym-
metry brings about simplifications by allowing the introduction of

special coordinates characterizing the unit cell of the crystal. This
procedure will be demonstrated in the discussion of insulators. This
should serve as an introduction to our main topic, the discussion of

normal and superconducting metals.

Nonmetallic Crystals at Absolute Zero

It may appear somewhat surprising that we have no satisfactory

proof that the Schrodinger equation possesses spatially periodical

solutions. Actually, the root of the trouble may be that this would
be asking for too much. Exactly periodical solutions are not required
for the quantum mechanics of solids, and they may not be realized

even at absolute zero because of the zero-point vibrations. We will

advance an assumption expressing the crystal periodicity in a formal
way that is at the same time less sweeping and more fertile in con-
clusions than the one commonly used.

As a preparation, we introduce coordinates particularly adapted
to the problem.

Consider a fundamental domain of N unit cells containing n atoms
each, and apply the usual periodical boundary conditions. We
introduce a number of coordinates Xlf X2 ,

. . . Xr characterizing the

ideal lattice. The first six, X1 . . . X& ,
should specify the size and

shape of the unit cell and the next 3(n— 1) determine the relative

position of the atoms in the base. In addition, we have 3Nn—r
normal coordinates £ describing the small deviations of the atoms from
the equilibrium positions.

We will call the X macrocoordinates, the £ microcoordinates. The
former are invariants of the translation group, the latter are elastic

995112-52- 2 13



waves that are multiplied by a phase factor for every translation

operation of the crystal. (It is clear from this distinction that,

differing somewhat from current usage, we set apart the zero wave
vector end of every optical branch among the X.)

The macrocoordinates may be directly measured by X-ray methods,
whereas the £ can be approached only statistically.

In terms of these coordinates, we can express the fundamental
assumption of crystal physics as follows

:

The lowest solution <$> (r; R) of the many-center problem (fixed

nuclei) of an extended system of nuclei and electrons (electricall.

neutral and of the proper stoichiometric composition) is periodical

Consequently, the ‘SNn equilibrium conditions of the form (1) can
be replaced by the r equations

c)U

ZXt
0 (6 )

Likewise, the stability condition is expressed in terms of an r by r

stiffness matrix.

We assume in this section that we are dealing with an insulator,

hence this electronic state is supposed to be nondegenerate and well

separated from the higher levels.

Releasing the nuclei from their fixed position, the second approx-
imation wave function is

*(r,X,£)=<Mr;X)x(£;X) (7)

Here <£ is a function of r and x a function of £, but both contain X
as a parameter.
The use of (7) implies the assumption, which we explicitly formulate,

that the zero-point vibration does not destroy the translational

symmetry. This excludes helium from our considerations where this

is what actually happens and the lowest state is not crystalline.

The state represented by (7) is then periodical in the sense that the
mean deviation of the nuclei from the sites of an ideal lattice is small
compared to the lattice constant and constant over space.
On the other hand, the parameters X of this ideal lattice will be

slightly shifted as a function of the nuclear mass in much the same
way as the nuclear equilibrium positions in molecules do not exactly
coincide with the minima of the potentials.

So far we have considered only the lowest state, which implied
among other things that the crystal is not under an external stress.

This discussion can be easily extended to include the case of stress.

Then the condition of equilibrium is

dU
dXt

= Pi (0) i= 1, 2. . .6, (8)

where the Xx represent the components of strain multiplied by the
volume of the fundamental domain, and the P* (0) are the components
of the external stress.

Equation (8) has, of course, no analogue in case of molecules.
Similar relations take care of the case of external electric and mag-
netic fields, which we shall not explicitly consider.
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In such a way we have subdivided the macroscopic coordinates
into two classes—those which do and those which do not have a
conjugate external force. Together with the microcoordinates, we
have now three different types of coordinates. This distinction is

implicitly contained, e. g., in a paper by M. Born [7]. The importance
of this classification of the coordinates for the theory of phase tran-
sitions has been pointed out by the author [8]. The macrocoordinates
with and without conjugate forces have been called there thermo-
dynamic and quasithermodynamic coordinates, respectively.
At the present point this terminology is justified more by analogy,

since up to the present we have not introduced any thermodynamical
or statistical idea, and our theory is purely quantum mechanical,
referring to absolute zero. Nevertheless, as we are going to show,
our formalism contains all the essential ingredients for phase tran-
sitions of both of the first and of the second kind. 4

We will outline how the main aspects of the theory of phase tran-
sitions follow from our results. The rest of this section, and the fol-

lowing as well, parallels closely the discussion in [8], to which we
refer for details.

Obviously, for a crystal under stress the energy need no longer be
a minimum, as it is indicated also by the relation (8).

It is convenient to introduce the function

U[P^]=U-^PWX, (9 )

where the summation is taken over all the nonvanishing external
forces.

The condition of equilibrium in the presence of the external forces

is that U[P°] should be a minimum, i. e.,

d£7[P (0)

]

dX ( 10)

for all the macrovariables. The condition of stability is again the
positive definiteness of the stiffness matrix evaluated at the state in

question.

It is an interesting point that the set of coordinates Xi ... Xr

is by no means fixed and several competing crystal structures described
in entirely different types of coordinates, as, e. g., diamond and
graphite may have to be considered. Although one of these states

will be the lowest, the I7[Po0) ]
curves, or hypersurfaces may intersect

and we have a phase transition. Hereby no entropy change, hence
no latent heat is involved. The melting process of helium under
pressure and superconducting-normal transitions in a magnetic field,

both near absolute zero show that such transitions are indeed observed.
Of course in most cases these transitions would not be observable,

since the time rate of the transition would be negligibly small.

In addition to these phase transitions of the first kind (or first

order), we may have also transitions of the second kind (critical

points). For details we have to refer to [8]; here we will be satisfied

4 The fundamental reason for this is that the assumption of a system with translational symmetry, and
and hence the possibility of introducing macrocoordinates, implies in principle the filling of the entire space.
Thus we are dealing with asymptotic laws of quantum mechanics whereby the limiting process is one over
space. This limiting process leads to results that are rather analogous to the limiting process of statistical

mechanics, which is a limiting process in time carried out over the sequence of microstates of the system.
However, the spatial limiting process (the volume tends to infinity at constant density) is of importance
even in the theory of condensation. Cf. B. Kahn and G. E. Uhlenbeck, Physica 5, 399 (1938).
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to give a short summary of the characteristic features of these transi-

tions. They are defined by the fact that on varying a parameter,

e. g., a component of the stress, the discriminant of the stiffness

matrix vanishes:
D=\uik

|

= 0. (11)

The inverse of the stiffness matrix which may be called the compliance
matrix becomes singular, its elements show the typical X-shaped
anomalies. It may be noted that the elements of this singular matrix
are of the form (jbXi/bPk)pif

where the index P, indicates that the

stresses are kept constant on differentiation.

As to the mechanism of the transition the following may be said:

D= 0 brings the system as close to instability as possible, and true

instability is avoided by changing the number of macroparameters.
For example, imagine a pseudocubic crystal which is distinct from its

mirror image. Suppose that on varying the stress the two pseudo-
cubic forms come gradually close to each other in order to merge into

a single cubic form at the critical point. Let us call Y the macro-
parameters measuring the deviation from the cubic form. In the

cubic form with Y= 0 the symmetry is higher, in the pseudocubic
from, with Y 0, the symmetry is lowered, and new superstructure

lines appear in the X-ray spectrum. The parameter Y may actually

represent a whole set of coordinates [8].

The importance of a change in symmetry elements at X-points has
been first emphasized by Landau for the case of order-disorder trans-

formations [9].

It should be finally emphasized that in the present case the trans-

formation involves no change in order. In fact, both phases have
zero entropy and are completely ordered. Transitions of this type
have been called in [8] “displacive transformations.”

Nonmetallic Crystals at Finite Temperatures

The theory of phase transitions outlined in section 3 has the peculi-

arity that it refers to pure quantum states and applies only to systems
at absolute zero. A comparison with [8] shows that these results can
be generalized to systems at finite temperatures by the simple device
of adding the entropy (X0=S) to the thermodynamic variables with
the temperature (P0

= T) as the conjugate force. All we said above
about transitions of the first and second kinds can be repeated with
these variables added, and indeed for practical purposes, temperature
is the preferred parameter for bringing about these transitions.

This method of introducing thermodynamics into our quantum
mechanical discussion yields quick results and is dictated here by
limitations of space. However, we wish to dispel the impression that
the purely quantum mechanical discussion requires the injection of

extraneous phenomenological elements. As will be shown elsewhere,
by further expanding the line of reasoning of this paper, one can
provide thermodynamics with a novel type of quantum mechanical
foundation. In fact, thermodynamics may be said to be the quantum
mechanics of spatially extended atomic systems; or rather that part
of the quantum mechanics of such systems which can be obtained
from the consideration of the integrals of motion. The presence of

the macrovariables in our equations which are not thermodynamical
(quasithermodynamic variables) shows that our results have a wider
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scope than traditional thermodynamics, chiefly because of the exist-

ence of quantum mechanical integrals having no classical analogue.
In the case of crystals, the invariants of the translation group provide,
such integrals.

As an interesting application for the use of such quasithermodynamic
variables we consider now the problem of order-disorder transforma-
tions. Up to this point it was assumed that the nuclei would carry
out small oscillations around the sites of the ideal lattice. In addi-
tion, however, the equilibrium positions themselves may be displaced.

One has lattice defects, dislocations, and order-disorder phenomena.
Only the last phenomenon will be our concern here.

This phenomenon is very well known, and a few hints will suffice

to show how it integrates into the present framework.
The essential point is that the number of sites available for a type

of atom (or atomic group) exceeds the number of atoms to be placed.

A simplified but typical system would be the socalled Ising model, in

which every unit cell contains a ‘

‘dipole’’ capable of two orientations.

Each pair of parallel neighbors contributes a positive constant and
each pair of antiparallel neighbors a negative constant to the total

energy of the system.
A complete specification of the orientations of all dipoles constitutes

a microparameter, whereas the socalled long-range-order parameter

V. N+-N_
N++N_ (12 )

is a macrovariable. N+ and 2V_ represent the numbers of dipoles in

each orientation. If the “dipole” is an electric or magnetic dipole,

then Z is a thermodynamic parameter. Otherwise (e. g., an NH 4

tetrahedron) Z is a quasithermodynamic parameter. It plays exactly

the same role in producing a critical point of the order-disorder type
as the parameter Y does for a “displacive” type critical point (sec-

tion 3).

The classical theory of order-disorder is applicable to real cases only
under special conditions. According to quantum mechanics there is a

resonance between states of equal energy, contributing a resonance
energy to the configurational energy of the system. The classical

theory assumes that this contribution is negligible. In particular, the

resonance between the ordered states +Z and —Z is negligible, except

perhaps if Z is still close to zero. On the other hand, the resonance
between degenerate states should be effective for the establishment
of equilibrium.

Normal and Superconducting Metals

Reviewing the crystals of the elements with an unprejudiced mind,
one may feel surprised why there are so many insulators among them.
Apart from the rare gases all atoms contribute incomplete shells to

the crystal which should lead to highly degenerate electronic states,

at least if the crystals were highly symmetrical as close-packed or

cubic. Actually the crystals of the insulators are generally of lower
symmetry, and the atoms are displaced so as to form groups charac-

teristic of their column in the periodic table, complete their shells and
thus get rid of their degeneracy. This may be conceived as an ana-
logue of the Jahn-Teller effect in molecules [6].

17



Proceeding to the left in the periodic table a point is reached where
this is no longer possible because even in fhe 'most advantageous
nuclear configuration there are more electronic orbits than electronic

states. We have again the situation of an order-disorder transforma-
tion, but in contrast to the classical case the resonance energy is not
negligible compared to the configurational energy. Indeed the stand-
ard band theory starts from Bloch functions giving up any idea of a

localized electron configuration.

We will outline the assumptions under which this procedure can be
justified within the adiabatic method. Usually these assumptions are

made unwittingly.

We have to start now from a wave function of the form (5). In
terms of the coordinates introduced in section 3 we have

*(r;W(-))=S (13)
l, m

The important point is that different electronic functions may
depend on different macroparameters which we symbolize by the
superscripts. Likewise, the elastic frequency spectrum and hence the
functional form of the x is different for the various electronic states.

Of course, it may be presumed that the variation in X is not too

drastic and the function T will be characterized by some average
value Xm .

In order to arrive at the band approximation, one has to make a

series of assumptions.
In the first place, one assumes that the electronic function depends

only on the average nuclear positions and vice versa.

Hence we have

*(r;W(-))=S CKhir-X^) 2 (14)
l m

Here X{av) represents a set of fixed parameters, hence we have a
complete separation of electronic and nuclear motions. In particular,

the energies are additive.

U=ZJW + IXn\ (15)

As a next step the electronic wave function is constructed from
single-particle functions. The details of this procedure are not rele-

vant in the present connection.
This is the basis for the discussion of the normal metal, or what

might be called a theory of the disordered state. The entropy con-
nected with this disorder is considerably reduced because of the
Fermi-Dirac degeneracy.
The occurrence of superconductivity shows that in a number of

metals there is a competing ordering process that sets in at a sharp
transition temperature. It is plausible to connect this phenomenon
tentatively with those terms of eq (13) that have been lost on the
transition to (14). A single term of this sort would be of the form

vi(r;X (1))xfeX (1
)), (16)

where X(1) differs somewhat from X{av) and producing a lowering of
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the crystal symmetry. Actually, we do not have to assume that (16)
factorizes and may replace it by the more general expression

$i(r, £;£
(1)

). (17)

The translation operation corresponding to the symmetry of X{av) will

give rise to, say co terms equivalent to (17). In contrast to the classical

theory of order-disorder transformations, we are not neglecting the
quantum resonance between equivalent states and we obtain that the
simplest possibility for the wave function of an “ordered” state is

c^,(^;I (!)
). (18)

1=

1

Certain qualitative features of (18) can be obtained on the basis of

symmetry considerations. We are dealing with a modulation of the
original lattice symmetry whereby the electronic and nuclear modu-
lations are closely coupled.
The function (18) is in a certain sense the generalization of the wave

function of [1 ], and of those of Frohlich and Bardeen as well. The anal-

ogy with the resonating electron lattice of [1] is obvious, but the
present functions involve also the distortion of the ion lattice.

Thus an important defect of [1] is removed, in that paper the elec-

tronic eigenfunctions were obtained through symmetry considerations,

and it was shown that the superconducting properties would follow
for co^3. The dynamic stability of the electron superlattices was not
investigated. We see now that this stability is a consequence of a
deformation of the ion lattice, a many-electron analogue of the “self-

trapping” of electrons [10].

On the other hand, the general framework here considered is com-
patible with the calculations of the electron-lattice interaction by
Frohlich and Bardeen. According to Frohlich (p. 853, reference 2),

the lattice interaction “leads to an alteration of the distance correla-

tion of two electrons in ordinary space.” Moreover, “.
. . one electron

can benefit from the lattice deformation produced by another one if

it remains sufficiently close (in ordinary space) to it.” The difference

is, however, that according to the present paper the above-mentioned
correlation presents a long-range order in contrast to the short-range

order of Frohlich and Bardeen. Or, in other words, in the present
theory one particular elastic wave of the wavelength co times the lattice

constant plays a particular role in the superconducting state. The
importance of a single quantum state is an essential feature of Lon-
don’s phenomenological theory and is important also in the case of

helium n. It is responsible for the sharp X-temperature and for the

existence of a zero-entropy state.

What determines the number co, or the wave length, of the elastic

wave thus singled out of the spectrum? The answer is, the ratio of the

number of electrons to the available low energy orbits in the cystal.

(See section 4, reference 1). The same thing can be expressed also in

terms of the band theory—A modulation of the lattice leads to the

splitting of the original band. A particularly advantageous state

will be obtained if the number of electrons is just sufficient to fill a

“subzone” thus obtained [11].

A quantitative investigation of this question is under way along

with a number of related questions. For example, it seems very
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likely that the Frohlicli-Bardeen condition of superconductivity is

essentially identical with our general requirement that the discrimi-

nant of the stiffness matrix should vanish. This is made likely by a

recent calculation of Wentzel [12], who finds that Frohlich’s condition
implies the vanishing of the sound velocity, i. e., the vanishing of one
of the stiffness moduli.

Finally, a remark about the case co=2. It was shown in [1] that
the lowest state is now that of an insulator. There is no deformation
of the lattice (one should think of the symmetry of NaCl), hence there
is no macroparameter to produce a critical point. Thus in this case
one should expect a gradual increase of the resistivity for T—>0.

Summary and Discussion

A half phenomenological theory is presented that seems to provide
a comprehensive qualitative framework for the quantum mechanics
of solids. It is essentially based on two asumptions. In section 3

the first was called the fundamental assumption of crystal physics.

It is unlikely that this assumption should be seriously challenged.

On this basis the formalism provides definite conditions for the
phase transitions of the first and second kinds. These conditions
seem to be applicable to practically all transitions. Our second
assumption is that they are relevant also for the case of superconduc-
tivity. Although rather plausible, at the present juncture it seems
safer to consider this only as a working hypothesis. At any rate,

this assumption leads to a virtually unique electronic mechanism
for superconductivity. The picture thus obtained incorporates the
the basic idea of the Frohlich-Bardeen theory ascribing supercon-
ductivity to the electron-lattice interaction. On the other hand, the
use of free-electron wave functions seems to be justified only above
the transition temperature. The superconducting state itself is given
more nearly by the resonating superstructures of [1] stabilized by the
closely coupled deformations of the lattice.

The theory is characterized by a high degree of consistency. It

is suggestive of more specific investigations, which we hope to follow

UP-
From the experimental point of view, the superstructures here

postulated should be observable in the X-ray spectrum. The scanty
experiments carried out so far were not appropriate to decide this

question in either way.
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4. Field Theoretic Description of Interactions in a

Superconductor

by M. Dresden 1

Abstract

In a recent paper, Tcmonaga 2 developed a description of a nonideal
Fermi gas, which appears eminently suited for application to prob-
lems in superconductivity. Effectively it is shown that under certain

conditions—such as long-range forces, relatively low excitations

—

any system of interacting Fermi particles can be described by a
density field, which then is to be quantized according to Bose statis-

tics. The Hamiltonian of this density field is identical with the
Hamiltonian of an infinite set of coupled harmonic oscillators. It is

well known that the interaction of the electrons and the lattice in a
solid can be described in terms of emission and absorption of vibra-

tional quanta, or equivalently in terms of an interaction of the elec-

trons with a “phonon ’ 7

field. Hence, if one uses the Tomonaga
representation of the nonideal electron gas, one can describe all

interactions in a superconductor by two interacting, scalar Bose
fields. As one usually restricts oneself to single emission and absorp-
tion processes, the interaction between the fields is to be bilinear.

The field theoretic problem thus stated can be solved exactly for any
value of the coupling parameter. The lowest state of this system
can be studied without difficulty; it reveals many of the properties

usually associated with the superconductive state.

1 University of Kansas. Lawrence, Kans.
Tomonaga, Progress of Theoretical Physics 5, 544 (1950).
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5. Determinantal Eigenfunctions for the Theory of

Superconductivity
1

by William Band 2

In this report we point out some hitherto unrecognized but inescap-
able consequences of the Pauli exclusion principle when applied rigor-

ously to an electron assembly as a whole. When these are combined
with some physical ideas about phase coherence among the zero-point
Debye modes previously reported 3 we are led to make some specula-
tions towards a theory of superconductivity that appears to be highly
promising.
To ensure complete conformity with the Pauli principle it is nec-

essary to describe an assembly of N electrons by an eigenfunction
that is antisymmetrical in all the electrons. Consider a determinant
formed from any N one-particle free-electron wave functions, specified

by a “spectrum” of N wave numbers or A:-vectors. It can be proved
without trouble that the totality of such determinants formed from all

conceivable spectra of N A:-vectors in the whole of A;-space, forms a
closed orthogonal set of determinantal eigenfunctions. These basic
determinantal eigenfunctions are solutions only for a free electron gas,

but because of this closure theorem the solution for any other problem
with N electrons can always be expressed as a linear combination of

these basic determinants.
Consider first a small perturbation by a periodic rigid lattice-type

potential, and start with the zeroth-order eigenfunction of lowest
energy whose spectrum just fills a sphere in A:-space. First-order res-

onance occurs with every other determinant with a A:-spectrum that
differs from the zeroth order spectrum by one and only one pair of

A:-vectors if these vectors satisfy the familiar Bragg reflection relation

with the lattice. No determinants can occur in first order resonance
with more than one electron taking part in the resonance simulta-
neously, without violating the exclusion principle. This has two
consequences that appear at first sight erroneous from the point of

view of one-electron formalism but which nevertheless appear to be
inescapable results of the full application of the exclusion principle.

First, there is no energy gap in the neighborhood of the top of a

Bloch zone; the resonance energy has a maximum negative value at

the surface but does not change sign for larger energies. Second, the

resonance energy is not proportional to the number of electrons in the

assembly, and for a given density per unit volume it is proportional

only to the square root of the volume. Negative resonance energy
therefore favors breaking up the assembly into a number of separate

exclusive subassemblies, each having its own smaller volume in space.

Phonon excitation of the lattice introduces additional resonance
with exchange of energy between lattice and electrons, opening holes

in the A:-spectrum near the Fermi surface even at absolute zero of tem-
perature. Under suitable conditions this restores the energy gap at

1 This work was sponsored by the Office of Naval Research.
2 Department of Physics, The State College of Washington, Pullman, Wash,
3 W. Band, Phys. Rev. 79, 739 and 1005 (1950).
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the top of a Bloch zone and yields positive resonance energy if the

assembly overlaps slightly into the next zone. This positive resonance

energy is still proportional only to V * and so favors coherence of the
assembly in one single unit throughout the lattice.

Neglecting all magnectic effects it can be proved that the state of

lowest energy is always one of zero net current: resonance energy,

with or without phonon exchange, is insufficient to stabilize a spon-
taneous current.

The probability current in general, calculated with the determinantal
eigenfunctions, contains a direct and an exchange part, both of which
vanish everywhere when the A:-spectrum is symmetrical. With an
asymmetrical A:-spectrum the direct current is definite, and the
exchange currents break up into loops flowing round the lattice cells;

each loop has self-inductance, and neighboring loops have mutual
inductance. Qualitatively this is just what is needed to understand
the Meissner effect. It is generally agreed that an explanation of the
Meissner effect is necessary and sufficient to understand super-
conductivity. It is not generally^ realized that the Meissner phenom-
ena include more than the diamagnetic effects observed in large

superconductors, and that they are necessarily associated with the
ovserved ability of the supercurrent to jump over lattice imperfections
even in noninductive linear superconductors that are too thin to show
any diamagnetic effects. The supercurrent must in fact have not
only magnetic stability sufficient to absorb and therefore nullify the
magnetic field inside the superconductor, but also sufficient inertia of

“supermomentum’’ 4 to jump across the residual resistance due to

lattice defects. In the present picture both these are provided for:

mutual inductance between the exchange current loops stabilize (by
means of magnetic energy) a state in which surface currents prevent
penetration of a magnetic field with respect to any state in which a
field penetrates the specimen. The self-inductance of the exchange
current loops provides extra inertia or supermomentum.

If the lattice potential is too large to be treated as a small perturba-
tion, it is insufficient to start as above with a single basic determinantal
eigenfunction in zeroth approximation. To give even a zeroth order
approximation of the lowest state it becomes necessary to include a

linear combination of a number of basic determinants, some at least

of which must have spectra corresponding to excitation of one or more
electrons from A:-vectors far too small to yield resonance with the
lattice. First-order resonance then induces a family of A;-spectra from
each A:-spectrum appearing in the zeroth approximation, but in general

can cause no transitions between the spectra in the zeroth approxima-
tion. Each family of Ac-vectors can be thought of as corresponding
to a single state of the assembly. The lowest of these states is

essentially the same as the one just described for small perturbations,
with a spectrum that just fills a sphere in A;-space; it has the same
properties and contributes the same stability and inertia through its

exchange currents. The assembly is in this lowest state only a
fraction of the time because it has to be combined with the other
relatively excited states to give the full description of the assembly.
We thus have a situation agreeing with the phenomenological picture
of F. London. Whereas we have a lowest state occupied a fraction

of the time by all the electrons, the phenomenological picture has a

4 Max von Laue, Theory of superconductivity (Springer, Berlin, 1949).
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proportion of the electrons in the superconducting state all of the
time.

First-order resonance within one family or state cannot cause electric

resistance, the scattering due to such resonance is completely sym-
metrical in the sense that there is no loss of energy with time, and
as much scattering occurs into any A;-vector as there is out of it.

Electric resistance arises only from transitions between the different

families or states of the whole assembly, and these occur only through
lattice imperfections and misfits.

Elsewhere we have advocated the view (see footnote 3) that
residual resistance near 0° K is due to phase misfits between phase-
coherence domains of the zero-point Debye modes of the lattice,

and that an order-disorder transition among these phase domains
is essentially responsible for the transition into the superconducting
state, and explains Maxwell’s isotope effect. We may combine this

idea with the above finding (pages 23, 24) that positive resonance
energy favors coherence. It is in fact suggested that each phase-
domain is a proper region over which to consider the electrons as

a single assembly to which the exclusion principle may be applied.

An order-disorder transition into a coherent condition would be
assisted by positive resonance energy, opposed by negative resonance
energy; the temperature of the transition increased by positive and
lowered by negative resonance energy. If it can be proved—and
this has not yet been attempted—that a magnetic field would increase

the negative resonance energy, the destruction of superconductivity
by a magnetic field and the fact that this occurs as a first order phase
change, can be well understood in terms of this picture.

This theory still contains a number of speculative features already

emphasized, but for the present it apparently has one major advantage
over other recent theories in that it does not rely upon unreasonably
great lattice interactions to stabilize the supercurrent, but instead

provides both the stability and the inertia of the supercurrent through
magnetic forces among exchange currents, that could exist even with
very small lattice interactions.

Qualitatively the theory leads essentially to the same criteria for

the occurrence of superconductivity as the other theories. To provide

positive resonance energy through phonon exchange, the conduction
electron assembly must only just overlap into the conduction band,
so that there are comparatively few conduction electrons. 5 Also

the energy of misfit between phase domains must be comparatively

great to give a high enough transition temperature to be observable;

and this means that a large residual resistance favors superconduc-

tivity. It is only in the ordered state where the residual resistance

has nearly vanished that the supermomentum is sufficient to maintain
the supercurrent.

6 W. Band, Proc. Cambridge Phil. Soc. 42, 311 0946).
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6. Superconductivity of Isotopes of Mercury andjTin

by C. A. Reynolds, B. Serin, and L. B. Nesbitt 2

The measurements of the critical-field-temperature relations for

various isotopes of mercury already reported 3 have been extended
down to 1.37° K. The critical field is a parabolic function of tempera-
ture within the experimental error over the whole range of temperature.
The data for each isotope (average mass number M) was fitted to a
parabolic relation by the method of least squares. As is well known,
Kok 4 has shown that a parabolic form of the critical-field curve follows

from a difference in specific heat per unit volume between the normal
and superconducting states of the form yT+RT3

,
where T is the

absolute temperature. Thus, the values of y and R, as well as the
critical field at absolute zero, H0 ,

for each isotope, were computed from
the least-squares parabola. These data, as well as the critical tem-
peratures, Tc ,

are summarized in table 6.1.

Table 6.1

.

M Ho Te 7 K KIM

Oersteds °K
199. 5 420 4. 185 1, 600 273 1.37
200. 7 419 4. 175 1, 600 275 1.37
202. 0 417 4. 160 1, 600 278 1.375
203.2 414 4. 146 1,590 278 1.37

It is fairly clear from table 6.1, that y, the term coming from the
electronic specific heat in the normal state, is constant for the different

isotopes, whereas R is proportional to the mass. However, the dif-

ferences in the critical fields between the various isotopes are quite

small; and these conclusions, while valid, are just within the limits

imposed by experimental error. Thus, further measurements were
made with tin, where the differences in critical fields are much greater.

The measurements with tin were made on each of two isotope

samples and two samples of natural tin, at 70 temperatures between
the critical temperature and 1.27° K. The isotope samples were
somewhat impure, M= 113.6 being 99.5 percent tin, and M= 123.8

being 99.8 percent tin. The natural samples were prepared from
99.995 percent pure Johnson-Mathey tin. The characteristics of the
two samples of natural tin were identical over the whole range of

temperature.
The critical-field-temperature curves are parabolic below 2° K,

but deviate considerably from this form at higher temperatures. The
critical fields are higher than would be expected from fitting the low-

temperature data to a parabola. However, it was found that the

quantity H/H0 was the same function of TITC for all the samples.
(.

H

is the critical field at temperature T.) The fields HQ were obtained

1 This work has been supported by the Office of Naval Research, by the Rutgers University Research
Council, and by the Radio Corporation of America.

2 Physics Department, Rutgers University, New Brunswick, N. J.
3 B. Serin, C. A. Reynolds, and L. B. Nesbitt, Phys. Rev. 80, 761 (I960).
* J. A. Kok, Physica 1, 1103(1934).
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by extrapolation. The occurrence of this universal form shows that

7 is constant for the different isotopes.

The data for tin are summarized in table 6.2.

Table 6.2.

M Te Ho HoiTc

°K Oersteds

113.6 3.805 312 82.0
118.7 3. 732 304 81. 5

123.8 3.659 298 81.4

Fitting the critical-temperature-mass relation to a form MaTc
=

constant gives a=0.46±0.02. The slope of the critical-field curves
at the critical temperature is 146 oersteds/°K. These results agree
with those reported by Shoenberg 5 for isotopes of different average
mass numbers.

5 D. Shoenberg, et al., Nature 16C, 1071 (1950); see also K. Mendelssohn, et al. on the same page.
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7. Recent Work at the National Bureau of Standards
on the Isotope Effect

1

by E. Maxwell 2

Measurements of the critical fields and transition temperatures of

tin and thallium isotopes are in progress, and some preliminary results

are available. The measurements are made by observing magnetic
transitions by means of a direct-current method of flux measurement.
The apparatus and method will be described in detail in a later

publication [1].*

The isotopic materials were obtained from the United States Atomic
Energy Commission in the form of Sn0 2 and T1 20 3 and reduced to the
metallic form by E. L. Weise of the Chemistry Division of National
Bureau of Standards. The specimens were in the form of capillary

wires approximately 0.3 by 50 mm that had been cast in vacuum,
sealed off in Pyrex capillaries, and later recrystallized under a tempera-
ture gradient to form single crystal.

The original interest in thallium stemmed from a suggestion,

advanced soon after the discovery of the isotope effect in mercury,
that the phenomenon might be an indirect consequence of the isotopic

dependence of atomic volume on the atomic mass. 3 Such an atomic-
volume dependence is to be expected from the anharmonicity of even
the zero-point vibrations of the lattice. Previous results [2, 3] on tin,

indium, and tantalum had shown that the transition temperature, and
in fact the entire critical-field curve, are shifted toward higher tempera-
ture when the atomic volume is increased by the application of exter-

nal tension and toward lower temperature when the atomic volume is

decreased by applied hydrostatic pressure. Some later experiments [4]

on thallium, however, had revealed a pressure dependence of the oppo-
site sign, i. e., application of hydrostatic pressure raised the transition

temperature. Accordingly, if there were a simple relation between
the volume effect and the isotope effect, one might expect a reversal in

sign of the isotope effect for thallium. This, however, was found not
to be the case.

Measurements were made on thallium samples of masses 203.3 and
205.0, as well as on natural thallium, mass 204.4. The isotope shift

was observed and was found to be normal in sign, i. e., the sample of

heavier mass had a lower transition temperature. Consequently, the

possibility of a simple correlation between the volume and isotope

effects is ruled out.

Quantitative results on thallium are not yet available. Due to some
secondary effects, not yet fully understood, the critical-field curves for

the different samples are slightly shifted from run to run, although the

internal consistency and precision in any one experiment is good.

This may be caused by the thallium sticking to the walls of the Pyrex
capillaries and being put under strain due to differential thermal
expansion. 4 This problem is receiving further investigation.

* Figures in brackets indicate the literature references on p. 30.
1 Supported by the Office of Naval Research.
2 National Bureau of Standards, Washington, D. C.
3 The theoretical treatments of Frohlich and Bardeen had not yet appeared.
4 Note added May 31, 1951. It appears that the difficulty was due to the supercooling of the specimens.

The degree of supercooling was not the same in different experiments when the specimens had been warmed
up to room temperature between times.

29995112-52 - 3



In making these measurements it was necessary to keep track of the
helium level and correct the apparent temperature for the hydrostatic
head of the helium in the Dewar. If this precaution was omitted, the
apparent temperatures above the X point were too high. This source
of error is not present below the X point, as there can be no thermal
gradients in He n.

Isotopically enriched specimens of tin of mass 116.8, 118.1, 119.8,

and 123.1, as well as natural tin (118.70), have been measured in weak
fields (up to about 20 oersteds) and both the transition temperature
and (dHcldT) Tc observed (fig 7.1). The zero field transition temper-

atures are given tin table 7.1. The slope (dHc/dT) Tc is 146 oersteds/

°K for all samples. From a plot of mass-temperature data in loga-

rithmic form the best value of the slope was found to be 0.50, with a
standard deviation of 0.03, in agreement with the theoretical predic-

tions of Frohlich [5] and Bardeen [6] and the earlier observations of

Serin, Reynolds, and Nesbitt [7] on mercury.
These measurements are being extended to lower temperatures.

Figure 7.1. Critical field—temperature curves for Sn isotopes.

Table 7.1. Transition temperatures of Sn isotopes

Mass Tc

°K
116. 77 3. 7680
118. 13 3. 7438
118. 70 (nat) 3. 7384
119. 84 3. 7202
123. 07 3. 6658

[1] Phys. Rev. 86, 235 (1952).

[2] G. J. Sizoo and H. K. Onnes, Leiden Comm. No. 180b (1925).

[3] N. Alekseyesky, J. Phys. (USSR) 3, 443 (1940).

[4] L. S. Kan, B. G. Lazarev, A. I. Sudovstov, Dokladv Akad. Nauk SSSR 69
(No. 2) 173 (1949).

[5] H. Frohlich, Proc. Phys. Soc. [A] 63 , 778 (1905); Phvs. Rev. 79 , 845 , (1950).
[6] J. Bardeen, Phys. Rev. 79, 167 (1950); 80, 567 (1950).
[7] B. Serin, C. A. Reynolds, L. B. Nesbitt, Phys. Rev. 78, 813 (1950).
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8. Superconductivity of Tin Isotopes
12

by J. M. Lock, A. B. Pippard, and D. Shoenberg 3 4

Detailed measurements have been made of the transition tempera-
tures and critical magnetic fields of isotopes of tin electromagnetically
separated at the Atomic Energy Research Establishment, Harwell.
The samples studied had mean atomic weights of 116.2 ±.05, 119.9±
.05, and 123.75±.l, and two specimens of each sample were investi-
gated, using Shoenberg’s [2] ballistic method for magnetic-moment
measurement. By the use of thin wires cast in silica tubes the
demagnetizing coefficient of the specimens was reduced as far as
possible, so that sharp magnetic transitions were obtained.
The width of the temperature transition in a small magnetic field

(2 gauss) varied from one specimen to another, but there was no
significant difference between the transition temperatures of two
specimens of the same atomic weight. Two specimens, one of isotope
116 and the other of isotope 124, showed particularly sharp transi-

tions, enabling the difference in their transition temperatures in zero
field, ATc ,

to be accurately determined as 0.108 ±0.001° K. The
absolute values of Tc ,

on the 1949 scale, for the three samples were
determined as 3.767° K for isotope 116, 3.712° K for isotope 120,

and 3.659° K for isotope 124, but these values may be systematically
in error by a few thousandths of a degree on account of uncertainties

in the estimation of the correction to be applied for the hydrostatic
head of liquid helium. This error is not significant in the determina-
tion of ATc as both specimens were measured simultaneously and
were subject to the same correction.

The two specimens that showed sharp temperature transitions

also showed very sharp magnetic transitions at constant temperature,
and their critical fields, Hc ,

and the difference in critical fields,

AHc ,
were measured at a number of temperatures between the transi-

tion temperatures and 1° K. Values of AHc could be determined
within 1/20 gauss. The importance of an accurate determination of

the variation with temperature of AHc is that it provides a sensitive

test of the similarity in shape of the critical-field curves of two isotopes.

Thus, if the critical-field curves were truly parabolic, AHc should be a

linear function of T

2

. In fact, a graph of AHc against T2 shows
that it is not quite linear, but this is accounted for by the departure

of the critical-field curves from the exact parabolic shape. If it be
assumed that the curves are of similar shape, in the sense that they

may be represented by an equation of the form HcIH^—j{TIT^),
where H0 is the critical field at 0° K, with the additional condition

that HJTC takes the same value for all isotopes of the same metal, it

is a simple matter to calculate from one critical-field curve how
AHc should vary with T. This calculation has been carried out,

and the predicted curve is in very good agreement with the experi-

mental points over the whole temperature range. This curve will

1 Preliminary results have already been published [1].

2 Figures in brackets indicate the literature references on p. 32.
* Royal Society Mond Laboratory, Cambridge, England.
4 Presented by D. Shoenberg
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be included in a detailed account of the investigation, which will be
published shortly [3], and will not be reproduced here. The assump-
tion made above, that HJTC is the same for different isotopes, is

verified within the limits of experimental error. A sensitive test is

provided by a comparison of \HJHq with ATJTC ,
where H0 and Tc

refer to isotope 116. The experimental values are as follows:

Hq
= 307.5 gauss, Tc

= 3.767° Iv for isotope 116

A#0=8.9'0±.05 gauss, Arc= .108±.001° K

^=(2.894±.016)X10-

2

,
^h=(2.867 ± .027) X 10 -2

.

There is thus good evidence for the geometrical similarity of the
critical-field curves of different isotopes.

One consequence of this is that the electronic specific heat of tin

is independent of isotopic mass, as may be shown by a simple thermo-
dynamic argument, on the assumption that the specific heat of a

superconductor varies at very low temperatures more rapidly than
that of a normal metal. On account of the limits of experimental
accuracy, it is not possible to show decisively that the coefficient 7 in

the normal electronic specific heat, 7 T, is entirely independent of

isotopic mass, M, but the experiments indicate that if y^Mm
,
then

m is probably less than 0.02. This is in agreement with theoretical

expectations.

A more important consequence of the constancy of H0/Tc is that the

theoretical prediction of Frohlich [4] and Bardeen [5], that H0^M~ l/2
,

may be tested, as has previous^ been assumed without experimental
confirmation, by measurements of Tc rather than H0 . The present
results show that the theoretical prediction is very nearly substan-
tiated by experiment; for instance, if a relation of the form Tc^M~ n

be assumed, then n must have the value 0.462 ±.014, which is close

to the predicted 0.5. The fact that nearly the predicted variation

is found in both tin and mercury [6] provides strong support for the

idea that the occurrence of superconductivity is intimately dependent
on interactions between electrons and the crystal lattice. The small

numerical disagreement, which it is believed is too large to be a
consequence of experimental error, is not so great as to cause serious

doubt as to the essential correctness of the ideas of Frohlich and
Bardeen, but is probably to be explained by inexactitudes of the

theory in matters of detail, which may be disposed of in more com-
prehensive treatments.

[1] W. D. Allen, R. H. Dawton, J. M. Lock, A. B. Pippard, and D. Shoenberg,
Nature 166, 1071 (1950).

[2] D. Shoenberg, Phys. Soc. Cambridge Conference Report II, p. 85 (1947).

[3] J. M. Lock, A. B. Pippard, and D. Shoenberg, Proc. Cambridge Phil. Soc.

47, pt. 4, 811 (1951).

[4] H. Frohlich, Phys. Rev. 79, 845 (1950); Proc. Phys. Soc. [A] 63, 778 (1950).

[5] J. Bardeen, Phys. Rev. 80, 567 (1950).

[6] E. Maxwell, Phys. Rev. 78, 477 (1950). C. A. Revnolds, B. Serin, W. H
Wright, and L. B. Nesbitt, Phys. Rev. 78, 487 (1950).
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9. Superconductivity at the Clarendon Laboratory
1

by K. Mendelssohn 1

In the field of superconductivity the three main lines of study at
the Clarendon Laboratory were the isotope effect, the mechanism of
the transition, and the heat conductivity in the superconductive state
and in the normal state.

The discovery that the transition temperature of a superconductor
depends on the mass of the metal ion made by Maxwell in Washington
and by Reynolds and Serin at Rutgers University has received further
importance by the prediction that such an effect should exist according
to the theories of Frohlich and Bardeen. When, therefore, Allen
and Dawton of the Atomic Energy Research Establishment at Harwell
made available to us tin specimens with a high degree of isotopic
separation, it was decided to make a close examination of the transition
points and the critical fields. As all experiments so far carried out
on isotopes were measurements of the magnetic susceptibility, and as
the same tin isotopes were to be investigated also by tins, method at
the Royal Society Mond Laboratory in Cambridge, it seemed of

interest to carry out measurements of the electric resistance. Al-
though it was likely from previous experience that resistance measure-
ments may differ from those of the susceptibility at higher fields,

agreement was to be expected at lower field strength. The chief

advantage of our method is that it yields direct determinations in

zero field, where the susceptibility measurements have to rely on extra-

polation and that it furnishes an independent measurement of the
purity of the sample by the value of the residual resistance. This lat-

ter check is of considerable importance as the effect to be determined
is rather small and as it is well known that the transition temperature
is very sensitive to impurities. Indeed, only those samples of com-
mercially available metals that are spectroscopically pure will yield

reliable values of the transition points. In the case of separated
isotopes where the preparation of metallic samples had to rely on
very small amounts of substance, it was therefore of considerable
value to be able by an independent method to separate the effect

produced by the mass difference from impurity effects. The following

values were obtained on four samples, including one of natural tin:

M 116.2 118.7 120.0 123.6
Tc 3.764 3.727 3.710 3.653
TcM°-5__ 4,057 4,061 4,064 4,061
Ra/Rqo 5xl0- 3 2.5xl0-3 1.5xl0- 3 2x10-3

M is the isotopic mass, Tc the transition point in zero field, and the

product TCM°- 5
is the quantity that, according to theory, should be a

constant. The experiments show that this is indeed the case. It is

likely that in this work the determination of the transition tempera-

1 Clarendon Laboratory, Oxford, England.
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ture is at least as accurate as that of the isotopic mass of the samples.
i?4/i?9o represents the ratio in resistivity between helium temperatures
and 90° K. The values for this ratio, which indicates the purity of
the sample, are the same for the three separated isotopes as for the
natural tin of weight 118.7, which was a spectroscopically pure speci-

men. It can therefore be assumed that the effect found is indeed
due to variation of the mass of the tin atom.
Experiments on the transition of the electric resistance in magnetic

fields in the case of lead, tin, and mercury had shown that -these metals
all showed a tendency toward lower temperatures to have the transition

spread over a finite interval of temperature. This is different from
the change in the susceptibility, which was found (for the completely
longitudinal case) to be confined to a sharply defined field and tem-
perature. In order to investigate this problem further, experiments
on the simultaneous determination of resistance and susceptibility

have been carried out, using an a-c method. The results so far ob-
tained were, however, more complex than expected and have as yet
not led to a clear separation of the resistive and magnetic effects.

Another aspect of the transition on which experiments are in prog-
ress is the change of a persistent current at constant temperature by
the variation of an external magnetic field. Earlier experiments on a
torus had established the figure of the magnetization curve. Work
carried out at the Clarendon Laboratory before the war had suggested
that the time effects occasionally observed in the superconductive
transition are due to the slow change of currents on the boundary sur-

face between superconductive and normal material. If this concept
were true, one would expect the magnetization curve of a torus to con-
sist of three regions showing different behavior. At low fields, currents

are induced in the outer surface of the ring only. At high fields the
body of the torus will split up into the intermediate state consisting of

small regions of superconductive and normal metal. In neither case

should we expect the occurrence of time effect as no large regions of

superconductive and normal material are coexistent. However, in

between these two cases there exists a region of intermediate fields

where, in equilibrium, the ring is completely superconductive but
where any change in the external field strength requires a change in

the magnetic flux passing through the hole of the torus. Nothing
can be said a priori about the mechanism of this change, but it would
seem likely that owing to some small inhomogeneity in the shape of

the torus a tube of flux may enter it at this place and then pass through
the body of the ring. In this process certain parts of the ring will be
rendered temporarily^ nonsuperconductive. As the tube of flux must
be sheathed in currents that will have to travel with it through the
material of the ring, we can expect this process to require some time,

and one might therefore expect time effects to occur in the magnetic
induction. Careful measurements of the induction of a torus that
should elucidate this question were therefore started before the war
but had to be discontinued at its outbreak. However, these pre-

liminary observation had given already^ evidence of the occurrence of

time effects in the predicted region.

Somewhat different experiments on the same problem have now
been started. Instead of measuring the total induction of the torus,

the passage of magnetic flux is recorded by coils above and below the
ring, having equal diameter with it. Using this arrangement, time
effects have now indeed been observed in the region of medium fields
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where they were expected. These time effects were absent in low and
high fields. The actual range of fields at which the flux in the hole of

the torus can be expected to change depends on the ratio of the total

diameter of the ring to the diameter of the wire which forms it. So
far only one ratio has been investigated. Besides the detailed informa-
tion on the mechanism of the transition provided by this work, the
observation of the actual passage of flux through the body of the ring

opens some interesting thermo-dynamical questions, an answer to

which can probably be obtained by calorimetric measurements in

this region of fields and temperatures.
The largest proportion of the work in superconductivity has been

concerned with the thermal conductivity. From measurements
before the war it was known that in a pure metal the heat conductivity
of the superconductive phase is smaller than that of the normal.
This can be accounted for by the fact that the superconductive elec-

trons have zero entropy and cannot therefore contribute to the trans-

port of thermal energy. The position is much more complex in metals
containing impurities and in superconductive alloys. We have shown
recently that while a lead-tin alloy will behave exactly like a pure
metal as regards its heat conductivity, an alloy of lead, containing

10 percent of bismuth, exhibits quite different effects. Here the

heat conduction is much larger in the superconductive than in the

normal phase, and there are very complex effects occurring in the

transition region. In order to investigate these phenomena further,

we have now measured the heat conductivity of a whole series of

lead-bismuth alloys of compositions varying between 0.02 and 10

percent of bismuth (see fig. 9.1). As the results show, the alloys with

Figure 9.1. Heat conductivity of Pb-Bi alloys.

, Normal state; superconductive state.

lower bismuth contents (0.02 and 0.1%) show a behavior similar to

pure lead, but the two curves for the superconductive and the normal
metal approach gradually as the impurity content is increased. The
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alloy with 0.2 percent of bismuth is of particular interest, because
it exhibits a crossing over of the curves at a temperature below the
transition point. Another interesting feature is the gradual shift

with increasing percentage of bismuth of the maximum in the thermal
conductivity to higher temperatures. This is, of course, what one
would expect from the theory of thermal conductivity of normal
metals.
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10. Heat Transfer in Superconducting Alloys

by J. K. Hulm 1

Introduction

Recent experiments [1, 2]
2 on the thermal conductivity of pure

metals at liquid-helium temperatures have led to two notable conclu-
sions: first, that in this temperature range the behavior of normal
metals is in qualitative agreement with predictions of the electron

theory of metals, and second, that the behavior of superconducting
metals is at least roughly described by an empirical scheme in which
each term in the normal heat conductivity, associated with a given
transport and a given scattering mechanism, is modified in its own
characteristic manner on transition to the superconducting state.

It is obviously of interest to know whether these conclusions are
also valid for metallic alloys, but in this question it must be borne in

mind that the free electron theory of thermal conductivity in normal
alloys, due to Sommerfeld and Bethe [3] and Makinson [4], only
applies directly to homogeneous solid solutions, and does not allow
for such complications as several phases, inhoniogeneities, small
grain structure, and high internal strains, which are often present in

actual alloys. Unfortunately, hardly any data exist for alloy speci-

mens in which the above complications are definitely known to have
been avoided. Indeed, in the few previously reported mesaurements
of the thermal conductivity of alloys at low temperatures, little

information is given about the metallurgy of the specimens. These
considerations led us some time ago to undertake heat-conduction
measurements on carefully prepared samples of the binary system
indium-thallium, which forms solid solutions from zero up to about
50 atomic percent of thallium, and has superconducting transition

temperatures convenient for the liquid-helium range. The specimens
were provided by J. W. Stout and L. Guttman, who have previously

studied the magnetic and electrical properties of the same alloy

system [5]. Thermal-conductivity measurements were made with
an improved form of the differential gas-thermometer arrangement
described elsewhere [2]. The present paper gives experimental data
for a very uniform composition, single-crystal specimen containing

10 atomic percent of thallium, the highest composition to which
the heat conduction measurements have so far been extended.

Results

Typical data obtained by Stout and Guttman (lower curves) and
the author (upper curve) for the isothermal magnetic-field variation

of the magnetic induction, B
;
the electric resistivity, p ;

and the ther-

mal conductivity, K, of the 10 percent specimen are shown in figure

10.1. It is at once evident that the magnetic field necessary to

1 Institute for the Study of Metals, University of Chicago, Chicago, 111.

2 Figures in brackets indicate the literature references on p. 41.
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Figuke 10 . 1 . Magnetic-field variation of magnetic induction
,

electric resistivity
,

and thermal conductivity of indium plus 10 percent of thallium at 2.6° K.

O, Increasing field; + decreasing field.

restore the electrical resistance is considerably higher than that re-

quired for almost complete penetration of the field into the specimen,
a phenomenon already well known for alloys [6]. The conclusion
must be reached that although nearly all of the specimen passes
from the superconducting to the normal state in the neighborhood of

100 gauss, where K and B rise steeply, the latter to the value H
,
a

very small fraction of the whole bulk of the specimen remains super-
conducting at higher field strengths and provides a path of zero or

low resistance for the current used in measuring p for applied fields

up to about 220 gauss. This raises the problem of how small regions

of abnormally high critical field may exist in an apparently homo-
geneous, strain-free, single crystal. A clue is given by the fact that

the curve of thermal conductivity in figure 10.1 drops slightly as the

field is increased beyond 120 gauss, before a steady value charac-
teristic of the normal state is reached. A similar drop in K was
observed in all transition curves for the 10 percent specimen, and
probably indicates that the thermal conductivity of the abnormal
regions decreases considerably when their superconductivity is

destroyed. Such a decrease may perhaps be due to a local thallium
content greater than 10 percent, the grounds for this view being,

first, that the data for the main bulk of the specimen suggest that

the value of K in the superconducting state, K s ,
will exceed that in

the normal state, Kn ,
for a sufficiently high thallium content (see

later discussion), and second, that other workers [7, 8] have found
Ks greater than Kn in certain high-concentration alloys. As small

regions with greater than average thallium content would probably
be overlooked in the chemical test of the homogeneity of our speci-

men, the presence of such regions is at least a possibility.
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The temperature dependence of Ks and Kn for the 10-percent
specimen is compared in figure 10.2 with that for an indium specimen
containing only 0.1 percent of impurity. It should be mentioned
that although the former results are assumed to apply to a homogene-
ous 10 percent alloy, the data was taken directly from a family of
curves of the type of figure 10.1, neglecting the effect of small regions

Figure 10 . 2 . Temperature variation of thermal conductivity of indium plus 10
percent of thallium and pure indium (0.1 percent of impurity) in superconducting
and normal states.

O, Normal; +, superconducting.

of abnormally high critical field. This may involve a error of an few
percent in K at the lowest temperatures, but unfortunately the cor-

rection cannot be derived accurately from the available data.

Discussion

According to the electron theory of metals [3, 4], the normal thermal
conductivity of a single crystal of indium containing 10 percent of

thallium in homogeneous solid solution is of the form

Kn=(L0lP0)T+aT> (1)

at liquid helium temperatures. The first term on the right-hand side

is the conductivity, Ken ,
due to heat transfer by electrons with scatter-

ing by impurities, Z0 being the Lorenz constant, }{ (irk/e)
2

,
and p0 the

residual electric resistivity. The second term is the conductivity,

Kgn ,
due to heat transfer by lattice waves with scattering by electrons,

V being a constant of the alloy equal to 4.93 Km/Q
2Na

2
,
where 0 is
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the Debye temperature, Na is the number of conduction electrons per
atom, and K„ may be taken to a good approximation as the thermal
conductivity of pure indium at room temperature. Of the above
terms, Ken appears to be dominant for the 10-percent specimen,
since the observed Kn in figure 10.2 is almost exactly proportional to

temperature, with a coefficient, 1.49 x 10
-2 watt cm-1 deg-2

,
which is

in rough agreement with the value 1.30 x 10
-2 watt cm-1 deg-2 derived

from the observed p0 . This conclusion is supported by the fact that
estimates of the coefficient a, based on theory and on liquid-hydrogen
data, both yield values close to 1 x 10

-4 watt cm-1 deg-3
,
from which

Kgn is only about 3 percent of Kn at 4° K.
Although no detailed electronic theory of Ks has so far been pro-

posed, we have recourse for the present discussion to an empirical

scheme [2] based partly on previous experiments and partly on quali-

tative arguments, which assume the existence of normal and super-

conducting electron phases within a superconductor. The first

suggestion is that Ks ,
like Kn ,

involves the sum of an electronic term,
Kes ,

and a lattice term, Kgs . For an alloy specimen with normal
terms of the type shown in eq (1), the superconducting terms are

assumed to have the form

Ks=J(T/TC) • (Z0/P o)T+h(TITc)-aT
2
, (2)

where / and h are functions of reduced temperature, which tend to

unity as the transition temperature, Tc ,
is approached. If the super-

conducting electron phase plays no part in heat transfer, either in

transport or in scattering processes, it is evident that owing to the

reduced number of normal electrons, / and h should be less than and
greater than unity respectively in the superconducting range. Pre-
vious experiments have confirmed this view, although it must be
pointed out that while / was shown to be roughly of the form
2(T/Tc )

2/l-\-(T/Tcy for tin and indium, the meagre available data
did not lead to a definite form for h.

According to eq (1) and (2), Kes may be estimated for the 10-percent
specimen by multiplying the observed Kn ,

which is very nearly equal
to R en ,

by an appropriate function /. Taking / as the ratio Ks/Kn

for the pure indium specimen, 3 one obtains for Kes the lowest, dotted
curve in figure 10.2. This curve lies well below the observed super-
conducting curve for the 10-percent alloy, indicating that besides

Kes ,
Ks contains an extra conductivity component, which increases

steadily as the temperature is reduced. It seems reasonable to

identify this component with the lattice term, Kgs ,
in which case the-

ratio Kgs /

K

gn or h varies roughly as ( T/Tc
)~ b

. Although the exponent
of T/Tc is somewhat sensitive to the value of a

,
which is only roughly

known, there seems little doubt that Kgs/Kgn exceeds unity, in agree-

ment with previous experiments. As already pointed out [2], this is

probably at least partly due to the fact that superconducting electrons

do not scatter the lattice waves.
Finally, it should be noted that (Ks

—Kes) for the 10-percent
specimen is by no means definitely known to be of lattice origin. As
small regions of abnormally high critical field are present in the

specimen, this extra component in Ks may perhaps be of the circula-

3 For the pure indium specimen. K„=Ken: with dominant impurity scattering; the slight curvature of
Kn in the upper part of the temperature range is due to a small lattice vibration scattering term which does
not, however, affect the present considerations.
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tion type proposed by Mendelssohn and Olsen [8]. In view of these

possibilities, it is worth pointing out that lattice and circulation

components should react differently to substantial changes in the

total thallium content of the specimen. Assuming that h only
depends upon T/Tc ,

it is evident that the lattice component Kgs or

haT2
is not affected, to the first order, by changes in the concentration

of thallium. In the circulation process, however, as the fraction of

the specimen volume with abnormally high critical fields increases

rapidly with increasing thallium content [5], a circulation component
of Ks should also vary rapidly during such a change. It is hoped
that owing to this difference in behavior, experiments on specimens
with thallium content greater than 10 percent will reveal the true

nature of the (Ks—Kes) term.
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11. Experiments on the Magnetic Transition from the

Superconducting State to the Normal State

1

by M. P. Garfunkel and B. Serin 2 3

The critical magnetic field for the transition from the superconduct-
ing state to the normal state is usually defined in terms of the proper-
ties of an ideal cylinder, infinite in length and of large diameter, placed
in a longitudinal, uniform magnetic field. All actual experiments, of

course, are performed with finite cylinders; where, because of the non-
zero demagnetization of the ends, the transition is initiated with the
formation of an intermediate state at the ends of the cylinder. Thus,
the transition of the bulk of the cylinder to the final normal phase,
can take place by growth from an already established nucleus of that
phase present at the ends of the sample.
The experiment to be described was an investigation into normal-

superconducting-state transition under such conditions that the tran-

sition occurred without the creation of an intermediate state. This
was accomplished by the application of a small, constant, uniform,
longitudinal magnetic field, h, over a small central section of a long
cylinder, while the sample as a whole was carried through the transi-

tion by the application of an additional uniform, longitudinal magnetic
field, H

,
over its entire length.

The samples were made from Johnson-Mattliey tin, cast in glass

tubes 0.15 cm in diameter and 8 cm long. They were grown into

single crystals and left in the glass. Field h was provided by a sole-

noid wound on the glass tube. The coil had 560 turns over a length
of 5 cm, with taps every centimeter. This arrangement permitted
one to apply field h to different parts of the sample and to varying
lengths of sample. Field H was produced by a solenoid on the out-

side of the helium flask. The earth’s magnetic field was cancelled

by Helmholtz coils to give a net field over the sample of less than 0.02

oersted.

The state of the sample in any given magnetic field was determined
by measuring its magnetic susceptibility by a method similar to the

method developed by Shoenberg. 4 A coil was lifted clear of the

sample and then permitted to drop over it. The electromotive force

induced in the coil was proportional to the magnetic moment of the

sample. This electromotive force was detected by a photoelectric

cell galvanometer amplifier.

The usual type of longitudinal magnetic field transition (h= 0) for

a sample is shown in figure 11.1 (a). The transition is quite sharp,

having a total width of about 0.2 oersted. There is no detectable

hysteresis in this transition.

No appreciable change is made in the transition by the application,

in the direction to add to H, of a constant magnetic field, h, of 1

1 This work has been supported by the Office of Naval Research, the Rutgers University Research Coun-
cil, and the Radio Corporation of America.

2 Physics Department, Rutgers University, New Brunswick, N. J.
3 Presented by B. Serin.
4 Shoenberg, Phys. Soc. London, Report of an international conference on fundamental particles and low

temperatures, II, Low temperatures, p. 85 (1946).
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oersted over a 1-cm length at the center of the sample. The transition

to the normal state occurs very close to the same value of field H as

in the case h= 0. There is no indication that the' central section goes
into the normal state when the total field over that portion exceeds
the critical field.

mag f*er/c r/£io
%
o£astsos

Figure 11.1. Curves of susceptibility versus magnetic field.

a, Field in sample coil=0; b, field in sample coil 2=5.40 oersteds; c, field in sample coil 2=2.70 oersteds;
d, field in sample coil 3=2.70 oersteds.

NOTE ADDED MAY 26, 1951

The remaining parts of figure 11.1 show the results obtained with larger values
of the magnetic field, h, in such a direction as to add to II

.

In figure 11.1 (b),

/i= 5.40 oersteds. The dotted points were observed with H increasing and the
crosses with H decreasing. We note in figure 11.1 (b), that when H is increas-
ing, the field over the central section reaches 14.4 oersteds (even though the
critical field for the sample is 11.8 oersteds from figure 11.1 (a), before that
section makes an abrupt transition into the normal state. The parts of the
sample over which h~ 0 remain in the superconducting state until field H reaches
the critical value, and then the whole sample passes into the normal state. On
decreasing If the sample, with the exception of the central section, returns to
the superconducting state when H reaches the critical value. The transition of

the central section, however, now is delayed until the total field over that section
is reduced to the critical value. Thus, there is an appreciable hysteresis in the
transition. Figure 11.1 (c) and 11.1 (d) show the transitions with a smaller
value of the magnetic field, h, applied over different parts of the sample.

It has proved possible to explain these results in terms of the surface energy
at the boundary between normal-conducting and superconducting metal and
detailed considerations of the thermodynamics of the growth of the final phase.
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12. New Experiments on the Superconductivity of

Metal-Layers Condensed at Low Temperatures

by Rudolf Hilsch 1

Abstract

The transition temperatures of pure superconducting metals, if

condensed at helium-temperatures from the vapor-state, were found
to be quite different from the well known values of the normal bulk
metals. So far the effect for Sn, In, Tl, Al, Pb, and Hg has been
studied. The deviations are of the order of one degree Kelvin and
seem to be in connection with the Debye characteristic temperatures.
In all cases the normal transition point appears when the condensed
layers are annealed once to room-temperature. Lattice distortions

are to be responsible for the abnormal values. The influence of the
condensation temperature on the transition temperature has been
specially measured for layers of tin.

A new method of producing unknown alloys has been worked out by
condensation of two different metals at the same time. The system
tin-copper has been investigated in this new atomic-disperse state. A
Transition temperature of 7° K can be reached. The superconducting
properties of a number of systems show a remarkable effect. The
normal transition point of 3.7° K for tin is for instance reduced to

1.5° K if only 10
-4 chromium is added by simultaneous condensation

at low temperatures.
This method results in a system of substances in a quenched state

and is applicable in numerous cases. So it was for instance possible

to realize a content of 10 percent “Farbzentren” in a system like

KC1+ K.

1 Physikalisches Institut der Universitat Erlangen, Erlangen, Germany.
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13. Kinetics of the Superconducting Phase Transition

by T. E. Faber 1 2

This work is principally concerned with two macroscopic aspects of

the process whereby a rod of tin in a longitudinal magnetic field be-
comes superconducting. The transition involves the growth of one
phase at the expense of the other, and the two problems are, first, to

decide what governs the field strength at which this growth is just
able to start, and, second, in wliat direction and how fast it then pro-
ceeds. The specimens used are about 20 cm long and between 1 and
4 mm in diameter. They are surrounded by a number of regularly
spaced coils, some of which are search coils used to follow the phase
growth through the flux changes that accompany it. The rest are
little solenoids with which the field strength can be varied locally if

desired.

These specimens all “ supercool”, that is, the transition does not
start even when the field is reduced some way below the critical

value, Hc . It can be shown, by reducing the field locally rather than
over the whole specimen, that different regions will stand quite differ-

ent amounts of supercooling. Measurements have been made on
short sections of each of several specimens of the limiting field (HL)

at which the supercooling does eventually break down, and typical

results are presented in figure 13.1. Here the quantity (H2

c
— Hl)/H2

C

(denoted by </>) is plotted against temperature for three sections of a
single specimen. Values of

<f>
were reproducible in separate experi-

ments, between which the specimen had warmed to room temperature.
It has been suggested 3 that supercooling is due to the difficulty

of forming a small nucleus of the superconducting phase in a normal
matrix owing to the existence of an interphase surface tension. Now
in fact, if one accepts for the magnitude of this surface tension the

value suggested by intermediate state measurements,

4

it can be shown
that even in a highly supercooled specimen the formation of such a

nucleus should be so difficult as to be impossible. It would demand
an increase in the total Gibb’s function of the order of 108 kT. It

therefore seems necessary to assume that there are flaws in the speci-

mens where the surface tension is reduced, probably to such an extent

that it becomes negative. Here there will exist seeds of the super-

conducting phase, which, when the field is low enough, expand and
infect the surrounding metal where the surface tension is large.

Analysis of this model leads to the equation

4>=~2/

-\~n
) ( 1 )

where A=8t/H2X (surface tension), Z is a length characteristic of the

size of the particular flaw concerned, and n a factor characteristic of

its shape.

1 Royal Society Mond Laboratory, Cambridge, England.
2 Presented by D . Shoenberg.
3 H. London, Proc. Roy. Soc. [A] 152, 650 (1935).
4 M. Desirant and D. Shoenberg, Proc. Roy. Soc. [A] 194, 63 (1948), and E. R. Andrew and J. M. Lock,

Proc. Phys. Soc. [A] 63, 13 (1950).
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According to this theory the three graphs in figure 13.1 may be
interpreted as being due to three separate flaws of different size and
shape. The temperature variation of

<f>, which is much the same in

Figuke 13.1.

all cases, is controlled by the temperature variation of A. As this

known (see below), it is possible to check eq (1) by plotting 4> against
A, with temperature as a variable parameter. Figure 13.2 demon-
strates that the agreement is satisfactory. The values deduced for

Z and n show that the flaws are from 1 to 15X10 -4 cm in width and
are probably rather elongated.

In order to study the problem of phase growth the transition is

deliberately set off at one end of a specimen that is only slightly

supercooled, and the voltage pulses that are produced in the search
coils, one after another down the specimen, are then recorded photo-
graphically. Each pulse is found to take the form of an initial sharp
peak followed by a long, irregular tail, i. e., a quite small fraction of

the total flux is expelled promptly, the rest taking a matter of minutes
to escape. The reason for this appears to be that the superconducting
phase propagates most readily along the surface, and it therefore tends
to form a superconducting sheath that practically locks in the flux in

the interior. The thickness of the sheath can be gaged from the area
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of the peak in the voltage pulses, and it is found to be proportional to

In addition, from the time separating the pulses from two
search-coils, one can determine the velocity of forward growth of this

sheath as it establishes itself. This velocity v is of the order of

centimeters per second and is proportional to (Hc—H) 2
(fig. 13.3).

Eddy currents set up in the normal metal have been suggested as

a factor slowing down the rate of phase propagation (see, in partic-

ular, Pippard), 5 and they will account for the present results provided
that surface tension is considered as well. Briefly, the supercooled
transition makes available a certain amount of free energy per unit

volume, and this can be equated to the sum of the increase in surface

free energy and the energy dissipated by eddy currents, the latter

depending on v. Thus, for a superconducting layer at the surface of

thickness d growing forward with velocity v, we have

TT2 TT2 TJ2

(2)
07T 07

r

where <j is the conductivity of the normal metal, and (7 is a dimension-
less constant whose magnitude can be roughly estimated. There is

5 A. B. Pippard, Phil Mag. 41
, 243 (1950).
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reason to suppose that d will adjust itself to make v a maximum, in

which case

(
H'-HV 1

U, j
’

and

d=A

8ttC /Hc-H\2

a =- Csr)'

(3)

(4)

It will be seen that this theory predicts the observed variation of both
d and v with (Hc—H). Further, it shows how information concerning
A can be extracted from the experiments; owing to the uncertainty

in C and the difficulty of measuring d the magnitude of A is left in

some doubt, but its temperature variation can be fairly reliably derived.
This information, which is in fair agreement with the intermediate
state results, has been used in the plotting of figure 13.2.

However, doubt lias recently been cast on the theory by preliminary
experiments on impure specimens, which show that v varies more
slowly with 1/c than eq (4) suggests. Evidently the treatment re-

quires modification, perhaps by a consideration of mean free path
effects.
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14. Superconducting Properties of Indium-Thallium

Alloys

by J. W. Stout and Lester Guttman 1

Previous work on the superconducting properties of alloys [1]
2

lias indicated that, in contrast to the behavior of pure metals, alloy

specimens are characterized by an absence of the Meissner effect [2],

broad transitions extending over a range of temperature in zero field,

and at constant temperature a broad range of field strength over
which the magnetic flux penetrates into the specimen. Furthermore,
the magnetic field necessary to restore electric resistance is greater,

often by as much as a factor of 10, than the field at which substantially

all of the flux has penetrated into the specimen. These properties

have been explained [1] by assuming t hat in an alloy there is a sponge-

structure so that different parts of a specimen have different critical

temperatures and critical field strengths. LTpon the application of

a magnetic field, at constant temperature, the superconductivity
of parts of the specimen is assumed to be destroyed first, leaving
a network of fine filaments of superconducting material. Because of

the finite penetration depth the critical field of a very small filament

is higher than that, of a large piece and so, if the filaments are fine

enough and numerous enough, the field necessary to restore electric-

resistance may be considerably higher than that, needed to obtain

practically complete penetration of the flux.

In an alloy consisting of two or more solid phases one would expect

that the physical and chemical inhomogeneities would account for

a variation in superconducting properties throughout the specimen.

However, for a pure, single-phase, intermetallic compound there is no
evident reason why the specimen cannot be completely homogeneous.
Shoenberg [3] has found that a carefully prepared specimen of the

compound Au 2Bi exhibits superconducting behavior similar to that

of a pure metal, and in recent experiments [4] on the compound
MgTl we have noticed a similar behavior. A physically and chemi-

cally homogeneous metallic solid solution would be disordered on
an atomic scale, but on a scale comparable to that of penetration depths

(10
-5 cm) it would be uniform. In order to investigate the behavior

of a solid solution we chose the system indium-thallium, which was
thought at the- time this investigation was begun to have a continuous

range of solid solutions from pure indium to 40 atom percent thal-

lium [5]. This system has the advantage that the solutions melt at

a convenient temperature, so single crystals can readily be grown
and both components are “soft” superconductors, exhibiting ideal

behavior. In an X-ray examination of specimens in the supposedly

continuous solid-solution range one of us [6] found that there occurs

a transformation from a face-centered tetragonal to a face-centered

cubic structure. However, there is no evident separation into two
phases of different composition upon passing through the transforma-

1 Institute for the Study of Metals, University of Chicago, Chicago, 111.

2 Figures in brackets indicate the literature references on p. 60.
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tion, and the transition is probably one of the second order [7].

The phase diagram as given by Guttman [6a] . is reproduced in figure
14.1.

The samples used in this work were in the range from 0 to 20
percent thallium and consequently are face-centered tetragonal at
low temperatures. The single-crystal samples were in the form of
cylinders 6 mm in diameter and 15 cm long. They were grown from

the melt in precision-bore 6.3-mm-inside-diameter Pyrex tubing.
An alloy of the appropriate composition was first made by melting
the components together under an atmosphere of nitrogen with
vigorous stirring and then casting the liquid in a graphite mold. The
cast sample, usually about 19 mm in diameter, was then swaged down
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until it would fit into the glass crystal-growing tubes. The glass

tubes were lubricated by washing them with a solution containing
0.01 percent of mineral oil in carbon tetrachloride, draining off the
solution, and then evaporating any remaining solvent under vacuum.
This procedure left a very thin film of oil on the inside of the glass,

which prevented sticking of the metal. If too much oil remains,
small bubbles appear on the surface of the specimens. The swaged
samples were inserted in the glass tubes, which were then evacuated
to 10

_5 mm mercury and sealed off. The tubes were placed in the
single-crystal furnace, which was heated to a temperature sufficient

to melt the samples and controlled at this temperature. The sample
tubes were then lowered, at a rate of 13 mm/hr, through the tempera-
ture gradient of the furnace, so that the solid grew from the bottom.
The crystals could usually be removed from the tubes by gentle tap-
ping, but as this method produced deformation, some samples were
removed by dissolving the tubes in a concentrated HF solution,

which did not appreciably attack the alloys. The samples, as re-

moved from the tubes, were about 30 cm long. A region 15 cm long,

of a single crystallographic orientation, was cut from each specimen
by a saw consisting of a glass string passing through a solution of

concentrated nitric acid and over the sample. This saw cuts by the

chemical action of the nitric acid and therefore does not deform the

single crystal. The specimens employed for the superconductivity
measurements were essentially single crystals, although some had
small regions where slip had occurred in handling. The 20 percent
thallium specimen had transformed from cubic to tetragonal during
cooling to room temperature after solidification, and there were
transformation markings on its surface similar to but on a much large

scale than those described by Guttman [6a] for polycrystalline sam-
ples. The sample was probably a single crystal when it solidified

from the melt, but upon passing through the transformation it broke
down into a set of tetragonal crystals having fixed orentations [6b]

relative to the original cubic axes. The energy of the interfaces

between these various orientations of the tetragonal crystals, as is the

case with boundaries between crystallographic twins, is apparently
very small compared to that of ordinary grain boundaries in a poly-

crystalline specimen, and we observed nothing in the superconducting
properties that we could ascribe to the presence of these boundaries.

Samples for analysis were taken from the regions near the cut ends
of the specimen. The results 3 are listed in table 14.1.

Table 14 . 1 . Composition of indium-thallium single-crystal specimens.

Atom percent thallium

Nominal Top Bottom

5 5. 04 5. 05

10 10. 07 10. 07

15 14. 91 15. 26

20 19. 35 20. 43

The 5- and 10-percent specimens are uniform within the accuracy
of the analysis, but the other two are definitely richer in thallium at

3 Wc arc indebted to It. E. Fryxell for these analyses.
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the bottom end. The reason for this may be seen by reference to

figure 14.1. For the 5- and 10-percent specimens the liquid is richer

in thallium than the solid in equilibrium with it. The first solid to

freeze at the bottom of the tube leaves behind thallium-rich liquid.

As the crystallization proceeds, a steady state will be reached where
the solid freezing out has the over-all composition of the original melt,

and there is a composition gradient in the liquid from the thallium-

rich material in contact with the solid to the original liquid composi-
tion. As the more dense liquid is below, it is stable against convec-
tion, and the length of the gradient zone is determined by the rate

of diffusion in the liquid and the rate of lowering of the tube. For
the 15- and 20-percent specimens, on the other hand, the situation

is reversed. Convection therefore continually stirs up the liquid, and
a steady state cannot be maintained. It would be possible to grow
single crystals from the top down, provided there were a reservoir of

material to keep the liquid forced up against the solid. In this case

it should be possible to set up a steady state undisturbed by convec-
tion and produce single crystals of very uniform composition in the

range to the right of the melting-point minimum in figure 14.1.

The apparatus used for the magnetic-induction measurements is

shown in figure 14.2. The samples were held in Lucite tubes, on
each of which was wound a two-layer coil, 16 mm long, of about 300
turns of No. 40 Formex insulated copper wire. The Lucite tubes

Figure 14.3. (Galvanometer deflection versus applied field.

5% Tl, 95% In; T = 2.737° K; 82% Meissner effect.

were turned to a thickness of 0.25 mm beneath the coils in order to

minimize leakage flux. Five specimen holders, containing the four

samples described above and a single crystal of pure indium (about

99.9% purity), were mounted symmetrically about a central Micarta

tube, which served as a housing for the stirrer, a screw driven by a

variable-speed motor. Slots were cut in the Lucite tubes to insure



contact between the samples and the liquid-helium bath. A uniform
longitudinal magnetic field was provided by a solenoid mounted in the
nitrogen bath surrounding the helium Dewar. The solenoid con-
sisted of four layers, each 40 cm. long, of No. 16 Formex insulated

copper wire, each layer being wound in an accurately turned groove
on a Micarta tube. The precision of the machining was such that the

field could be calculated to within 0.1 percent from the dimensions of

the solenoid and the current.

The coils on the Lucite sample holders were connected through a

selector switch to a ballistic galvanometer. The procedure of meas-
urement was to change the magnetic field rapidly and to observe the
galvanometer deflection corresponding to the change in magnetic
induction through the coils. A typical series of data is shown in

figure 14.3 for the 5 percent specimen and in figure 14.4 for the 20-

percent specimen. When the sample is completely superconducting
the galvanometer deflection is small and is due to the leakage flux

between the sample and the coil. As the magnetic field is increased
beyond the critical field the flux penetrates into the sample with a
sudden increase in galvanometer deflection. In figures 14.3 and 14.4

the straight line through the origin represents the galvanometer
deflection for a sample of unit permeability (above the zero-field

Figure 14 .4 . Galvanometer deflection versus applied field.

20% Tl, 80% In; T= 1.286° K; Hc =211.0 gauss; 81% Meissner effect.
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superconducting transition temperature). At high fields the points
for the galvanometer deflection on a superconducting specimen lie

on a parallel line displaced downward by an amount corresponding
to the flux remaining in the superconducting specimen in zero field.

It was found that the flux change in going from field zero to field H
was the same (for a nonvirgin sample) as for the reverse step, and if

the change was made in several steps, the sum of the galvanometer
deflections equaled that for a single total change. The points indi-

cated by circles are obtained by applying a field equal to the abscissa

of the point and then measuring the deflection when the field is quickly
reduced to zero. The smoothness of the curve through these points is

evidence that once a large field is applied, the flux trapped in zero

field remains constant. The points indicated by squares in figures

14.3 and 14.4, however, are evidence for hysteresis of the following

kind: These data were obtained by increasing the applied field to a
value where penetration was complete, then slowly reducing to an
intermediate value, and finally observing the galvanometer deflection

obtained when the intermediate field was removed by interrupting

the current. The flux present at a given field is greater if it is reached
from high fields in this way, than if it is approached from zero field.

From data such as those in figures 14.3 and 14.4 one can calculate

the flux of induction, B, through the sample. In figures 14.5 and

14.6. are plotted values of the induction divided by the critical field,

Hc ,
as a function of the ratio of the applied field to the critical field.

Such a plot was found to vary only slowly as the temperature (and

consequently Hc ) changed, so it could be used to compare the behavior

of different specimens of the same alloy. The critical field is taken

as that where flux penetration begins.

Resistance measurements were made on the same single-crystal

samples used for the induction measurements. For this purpose,

current and potential contacts were made with small split copper

rings held onto the samples with brass screws kept under tension by
spring washers of phosphor bronze. The resistance transition curves

57



R/R

3

Figure 14.6. B-H curves.

20% Tl, 80% In.

of the five specimens in zero field are shown in figure 14.7. The
transition is quite sharp, and there is only a slight increase in breadth
in going from the pure indium sample to the 20-percent alloy. The
appearance of resistance upon the application of a magnetic field was
measured at various temperatures for all the specimens. Typical
data are shown in figures 14.5 and 14.6. For the 5-percent specimen
the resistance rose sharply at a field about 1 percent higher than that

at which flux penetration began. For the 20-percent specimen, on
the other hand, resistance reappeared at a field over twice that of the

Figure 14.7. Resistance transition' curves of indium-thallium alloys in zero

magnetic field.
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beginning of flux penetration. The behavior of the 10- and 15-percent
specimens was intermediate between the 5- and 20-percent specimens.

It was thought that the broadness of the magnetic transition in the
15- and 20-percent specimens might be due to the composition gradients
shown in table 14.1, and consequently two new specimens of these
compositions were prepared. These were polycrystalline samples
prepared by strain-annealing of cast samples that had previously
been reduced in area by a factor of nine by swaging. This technique
insures very good chemical homogeneity, as verified by analysis.

During the annealing the crystal grains grew to an average size of

from 1 to 2 mm. The results of the measurement on the 20-percent
sample are shown in figure 14.6 (dashed curve). The principal effect

is an increase in the amount of trapped flux (reduced Meissner effect)

,

and although the shape of the transition curve is somewhat different,

its breadth is about the same.

The critical magnetic fields corresponding to the beginning of flux

penetration were fitted by least-squares analysis to equations of the
form Hc—

H

0 (l —

T

2/T0
2

)

,

where Ht] is the critical field at T= 0 and
T0 is the critical temperature at H —

0. The observed critical fields

deviated significantly from the simple parabolic relationship, particu-
larly at the higher temperatures, and the extrapolation of curves
through the actual data to H= 0 gave values of T0 in good agreement
with those shown by the resistance measurements (fig. 14.7). How-
ever, the assumption of the parabolic relationship permits a calcu-

lation of the coefficient, y, of the linear term in the heat capacity of

the normal metal, which is ascribed to the electrons. The values
of Ho and T0 from the least-squares equations and the maximum
deviations from the actual data are listed in table 14.2. Also pre-

sented are the values of y calculated from the relation Hq
2
I2t T0

2
.

Table 14.2. Values of Ho and T0 for indium-thallium alloys for best fit to expressions
J/c= J/o(l-TV7V)

Composition
(atom percent

thallium)
//o To

Maximum
deviation 7

Gauss °K Gauss cal deg- 2 mole-1

0 285.4 3. 376 1.8 4.3X10-4

5 277.4 3.283 2.3 4.3
10 285.3 3. 257 1.7 4. 6

15 281.7 3. 254 1.5 4. 6

20 253.0 3. 225 1. 8 3.8

The present work shows that for carefully prepared single-crystal

specimens of alloys consisting of solid solutions of up to 20 atom per-

cent of thallium in indium the Meissner effect is large (about 85%
expulsion of flux), and the resistance transition curve in zero field is

sharp. In these respects the alloys behave like pure metals. For
the 5 percent alloy the penetration of flux on the application of a

magnetic field occurs at a sharply defined field, and the restoration of

resistance appears at almost the same field strength. As the thallium

content increases to 20 percent, the penetration of the magnetic
field takes place over a gradually increasing range, and the ratio of
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the field corresponding to the appearance of resistance to that for the
beginning of flux penetration continually increases.

[1] (a) K. Mendelssohn, Rep. Prog. Phys. 10 , 358 (1946); (b) D. Shoenberg,
Superconductivity, chap. VI (Cambridge University Press, London, 1938).

[2] W. Meissner and R. Ochsenfeld, Naturwiss. 21, 787 (1933).

[3] D. Shoenberg, Nature 142 , 874 (1938).

[4] L. Guttman and J. W. Stout, These Proceedings, page 65.

[5] M. Hansen, Aufbau der Zweistofflegierungen, p. 827 (J. Springer, Berlin 1936).

[6] (a) L. Guttman, J. Metals (Trans. AIM ME) 188 , 1472-77 (1950); (b) J. S.

Bowles, C. S. Barrett, and L. Guttman, 1478-85.

[7] J. W. Stout, Phys. Rev. 74 , 605 (1948).
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15. Investigation of Superconductivity in Lead

Compounds, Gold Alloys, and

Molybdenum Carbide

by R. P. Hudson and K. Lark-Horovitz 1

In 1933 Meissner, Franz, and Westerhofl 2 made electric-resistivity

measurements on lead sulfide down to 1.3°K and concluded that the
very pure substance is a semiconductor, whereas the occasional ap-
pearance of superconductivity in specimens showing a metallic char-
acteristic must be due to small amounts of excess lead. Dunaev and
Maslakovitz 3 have worked with specimens containing small amounts
of lead impurity (carrier concentration of the order 10 19/cm3

) and find

a metallic behavior below 450° C but no superconductivity down to

2.15°K.
Quite recently Darby, Hatton, and Rollin 4 reported supercon-

ductivity in PbS, PbSe, and PbTe all at about 5°Iv, as measured by a
magnetic method. The materials were prepared by fusion together of

the constituents in a vacuum; no X-ray investigation was made, ap-
parently, to look for excess lead. The value 5°K is most interesting,

being relatively far removed from the normal lead transition tempera-
ture of 7.3°K.

It is now generally accepted that chemically very pure lead sulfide

behaves as a semiconductor. If it should become superconducting
at low temperatures, this would be the only known case of such be-
havior, and would be of great interest in view of the present picture

of superconductivity being due to some kind of rearrangement of

electrons at the surface of the Fermi sphere. 5

We have investigated the problem, using the ballistic-throw mag-
netic method of detection; this enables one to distinguish most readily

between a bulk effect and an impurity effect. The specimen under
investigation is enclosed in the bulb of a gas thermometer, which is

surrounded by a vacuum case immersed in a bath of liquid helium.
It was hoped to perhaps reproduce the results of Darby, et al. and
then to show that the specimens were impure, but we were unable to

obtain a 5-deg transition, and the results are essentially a confirmation
of Meissner’s work.

Pure lead sulfide may be prepared in the form of a fine powder by
precipitation from solutions of, for example, lead acetate and sodium
sulfide. Care must be taken in the method of fusing together lead

and sulfur, for the reaction is strongly exothermic and some of the

sulfur is vaporized. This difficulty may be overcome by heating

the mixture in a graphite crucible inside an evacuated, sealed-off

quartz tube. After the reaction has taken place, the temperature of

the furnace is raised to the melting point of the sulfide (1,120°C) and
held there for a time before cooling again. Ingots may also be pre-

1 Department of Physics, Purdue University, Lafayette, Ind.
2 W. Meissner, H. Franz, and H. WesterhofF, Ann. Physik 17. 593 (1933).
3 U. A. Dunaev and U. P. Maslakovitz, J. Theoret. Expti. Phys. (USSR) 17, 901 (1947).
4 J. Darby, ,T. Hatton, and B. V. Rollin, Proc. Phys. Soc. [A] 63, 1181 (1950).

5H. Frohlich, Phys. Rev. 79, 855 (1950).
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pared by using the precipitated powder instead of the lead-sulfur

mixture.
We have made measurements on ingots prepared by fusion and on

the precipitated powder both finely divided and sintered. In most
cases no transition could be observed down to 1.3°K, and the X-ray
photographs contained only PbS lines. In a few specimens a very
small (partial volume) effect was found at 7.3°K, the normal lead
transition temperature, and the X-ray patterns for these specimens
included a very weak extra line, presumably due to excess lead.

Crystals of natural lead sulfide (galena) and of the pure commercial
product also gave negative results. A fusion sample of lead telluride

became superconducting at 7.3°K, the magnitude of the effect indi-

cating that it was confined to a small fraction of the total volume of

the specimen, and the presence of lead was confirmed by X-ray. A
single crystal of lead telluride (kindly supplied by It. Smith of T. R. E.,

Malvern) showed no transition down to 1.3° K.
These experiments, in essentially reproducing Meissner’s results

—

and extending them in the case of lead telluride—strongly suggest
that these lead compounds are not superconductors. We feel that

the results of Darby, et al. may be explained by the presence of excess

lead in their specimens (a possibility admitted by the authors) as

their transition temperatures and critical field curves are nearly the
same for the three different compounds. A few percent of excess

lead could easily form a superconducting network of lead veins that
would give an apparently complete volume effect ,

6 and the stated
procedure of rapidty cooling the melt to room temperature might
result in internal strains sufficient to alter the transition temperature
appreciably. Alternatively, one might suspect a consistent error

in their temperature measurement, details of which are not given.

Frohlich (see footnote 5) has suggested that gold-palladium and
gold-platinum alloys containing more than 60 atomic percent of gold
might become superconducting. The aim is to form an alloy between a
monovalent metal and a transition metal in such a way that most of

the electrons of the monovalent metal will be used to fill up the incom-
plete shell of the transition metal. The theory indicates that to make
a normal metal superconducting, one should reduce the number of free

electrons per atom, if this can be done without greatly changing
other parameters.
We have investigated specimens of the following compositions, with

negative results down to 1.3°K:

Au Pd Pt

% % %
60 40
70 30
80 20
85 15

Meissner 7 reported superconductivity in nrolvbdenum carbide
(Mo2C) measured by the electrical method, the transition being con-

siderably extended, i. e., between 2.5° and 3.1°K. We investigated

fl R. P. Hudson, Phys. Rev. 79
, 883 (1950).

7 W. Meissner, Z. Physik 65
, 45 (1930).
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a specimen of Mo2C by the electrical method from room temperature
down to 1.3°K and by the magnetic method between 4.2° and 1.3°K,
finding no transition. On a suggestion of J. K. Hulm we extended the

magnetic measurements above 4.2°K and found a small (partial

volume) effect spread out between 4.6° and 5.0°K. This transition

was presumably obscured in our electric-resistivity measurements by
the absence of a continuous superconducting path through the speci-

men, or by a contact resistance. The structure was checked by
X-ray investigation and apart from the Mo2C pattern, two very weak
“foreign” lines were evident, which may be due to MoC. The latter

becomes superconducting at 7.9°K according to Meissner (see foot-

note 7), and it is therefore possible that pure Mo 2C is not a super-

conductor, but that the presence of a small amount of MoC gives rise

to a superconducting transition at a temperature that depends on the
concentration of MoC in the Mo2C. The Meissner curve is suggestive

of the transition taking place in two partly overlapping stages, which
would hardly be observed if the specimen were homogeneous.
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16 . Superconductivity in MgTl and LiBi

by Lester Guttman and J. W. Stout 1

Intermetallic compounds, i. e., ordered intermediate phases with
compositions close to simple atomic ratios, frequently have metallic
properties, and some have been shown to be superconducting as well.

By studies of isomorphous series of compounds, one might gain some
insight into the effect of electron concentration, and hence, of zone
filling, on the transition temperature and critical magnetic field

strength. Furthermore, as is well known, when the critical field has
a “ parabolic” dependence on temperature, one can evaluate the heat
capacities of the metal in the normal and superconducting states,

assuming them to be proportional to T and to T

3

,
respectively.

A large number of binary phases have the cesium-chloride structure.

If we consider only those with the ideal composition AB, and exclude
those containing a ferromagnetic element, or in which both elements
are known nonsuperconductors, there remain HgLi, HgMg, LiTl,

MgTl, CaTl, SrTl, LaTl, MgLa, AgLa. Of these MgTl seemed
easiest to prepare.

The calculated quantities of magnesium (sublimed) and thallium
(impurity about 0.1%) were melted together in a graphite crucible

under a commercial magnesium melting flux. The first product was
remelted in a helium atmosphere to free it of flux and oxide, and
allowed to solidify slowly in a cylindrical graphite mold 6.2 mm in

diameter. The final specimen was about 85 mm long, with roughly
conical ends. A chemical analysis for both components gave 51.4 to

54.2 atomic percent Tl, depending on the location and method of

computation; the excess over MgTl was presumably present as essen-

tially pure Tl. 2 The product oxidized rapidly in air.

For the measurements, the rod was sealed into a closely fitting glass

tube containing helium at 1 atmosphere. The central portion of the

tube has been ground externally to reduce the wall thickness, and on
this portion was wound a coil of No. 40 copper wire, in two layers of

about 215 turns each. The measurements, carried out in the cryostat

and solenoid magnet described elsewhere by Stout and Guttman, 3

gave the results collected in table 16.1. The critical field has been
taken to be that at which flux penetration began in increasing field.

Penetration was complete at a field that was 5 percent higher at 2.56°

K and 7 percent higher at 1.29° K. The fraction of flux remaining in

zero field increased in the same temperature range from 27 to 76 per-

cent of that which would have been present had field penetration been
complete at the point where it began. These features are apparent
in figure 16.1, where the magnetic induction, B, and applied field, H
are plotted on a reduced scale, in which the unit for both is the critical

field. The sharpness of transition and expulsion of field are in marked
contrast to t}^pical “ alloy behavior” 3 4

,
although no great pains were

1 Institute for the Study of Metals, University of Chicago, Chicago, 111.

2 M. Hansen, Aufbau der Zweistofflegie. ungen, p. 875 (J. Springer, Berlin, 1936).
3 Paper 14 in this volume.
4 K. Mendelssohn, Rep. Prog. Phys. 10, 358 (1946) ;

D. Shoenberg, Superconductivity, chap. VI (Cam-
b idge University Press, London, 1938).



taken to prepare a sample free of grain boundaries and uniform in

composition.

%c —
Figure 16.1. Magnetic induction versus applied magnetic field for MgTl at two

temperatures.

Table 16.1. Critical magnetic fields of MgTl

Tempera-
ture

Critical magnetic field

Observed Calculated

°K Gauss Gauss
1.291 169. 3±2% 171.2
2. 083 93. 8±2% 93.4
2. 422 48. 3±1% 48.8
2. 509 35. 2±2% 36.3
2. 564 28. 2±1% 28. 2

The critical field is quite linear in T2

,
as shown in figure 16.2, where

the solid line has the equation

Hc
= 220. 0[1 — (T/2.745) 2

],

from which were calculated the values in column 3 of table 16.1.

From the equation

and the observed 5 lattice parameter, a0
= 3.628 A, we compute

7= 3.51 X10 -4
cal/deg2 for 1/2 g atom of MgTl. The corresponding

5 E. Zintl and G. Brauer, Z. phys. Chem. B20, 245-71 (1938).
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value for Tl, 3.20 X10 -4
cal/deg2

g atom, is only slightly less, although
both Ho and T0 are less for the latter.

It is planned to repeat the measurements on a specimen prepared
more carefully, and to extend them to as many as possible of the
isomorphous compounds listed above.

Figure 16.2. Temperature dependence of critical magnetic field for MgTl.

The compound a-LiBi has also been found to be superconduct-
ing, but the sample exhibited broad transitions, due partly, at least,

to the fact that it was in the form of a short cylinder. From only
two points, assuming a parabolic relation, the zero-held transition

temperature is estimated at 2.47° K, greater than the value 2.23° K
reported 6 for the isomorphous NaBi, although the threshold fields

seem to be considerably lower than for NaBi. These measurements
too will be repeated with a better sample.

6 J. M. Reynolds and C. T. Lane, Phys. Rev. 79, 405-6 (1950).

67





17. New Superconducting Compounds

by B. T. Matthias and J. K. Hulm 1

In an attempt to throw further light on the conditions necessary
for the occurrence of superconductivity, we have recently studied a
number of binary compounds of elements that are apparently not
superconducting by themselves. The compounds so far investi-
gated fall into two groups, first, intermetallic compounds with bis-

muth, and second, borides and nitrides of molybdenum.
Meissner expresses the opinion [1]

2 that a cubic modification of
bismuth would probably be superconducting. As quite a number of
cubic bismuth compounds are now known to be superconducting,
this assumption seems to be quite well founded. The known super-
conducting compounds include Au2Bi, several alkali-metal-bismuth
compounds, Rh-Bi and Bi3Ni. In 1948 Alekseyevsky [2] reported
CaBi3 to become superconducting at 1.7° Iv, and it therefore seemed
logical to extend the investigation to the strontium and barium-
bismuth systems.
The phase diagram of Ba-Bi has been studied by Grube and Diet-

rich [3], who find a compound of the form BaBi3
,
which, according

to etching pictures, is cubic. The Sr-Bi system does not appear to

have been previously investigated.

No special difficulties were encountered in preparing SrBi3 and
BaBi3 in an inert atmosphere. Both compounds are formed as

silvery cubes, SrBi?, being somewhat more stable in air than BaBi 3 .

The latter begins to decompose in a few minutes under the action of

humidity.
From measurements of their magnetic susceptibilities, both com-

pounds were found to be superconducting, SrBi3 at about 5.5° K
and BaBi3 slightly above 6° K. These transition temperatures are

the highest known for bismuth compounds with nonsuperconducting
elements.
Molybdenum, which according to Shoenberg [4] does not become

superconducting above 0.3° K, was found by Meissner [5] to form
superconducting carbides. We have extended the number of known
superconducting molybdenum compounds by investigating the borides

and nitrides. Of these, Mo2B, Mo2N, and MoN are all superconduct-
ing, whereas the other borides of molybdenum and Mo2P are appar-
ently not superconducting above 1.3° Iv. MoN has an unusually
high transition temperature at about 12.0 Iv. More detailed results

for molybdenum compounds have been published elsewhere [6].

[1] W. Meissner, Handbuch der Exp. Physik. [2] 11 , 221 (1935).

[2] N. Alekseyevsky, Russ. J. Phys. 9 , 350 (1945).

[3] G. Grube and A. Dietrich, Z. Electrochem. 44 , 755 (1938).

[4] D. Shoenberg, Proc. Cambridge Phil. Soc. 36, 84 (1940).

[5] W. Meissner, H. Franz, and H. Westerboff, Z. Phys. 75, 521 (1932).

[6] J. K. Hulm and B. T. Matthias, Phys. Rev. 82, 273 (1951).

1 Institute for the Study of Metals, University of Chicago, 111.

2 Figures in brackets indicate the literature references.
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18. Occurrence of Superconductivity Below 1° K
by B. B. Goodman 12

Various pure metals have been cooled to about 0.1° K, using a
method already described by Mendoza [l].

3 From magnetic obser-
vations, ruthenium and osmium were found to become supercon-
ducting [2] below 1°K. The critical fields of these superconductors
and also of aluminium, cadmium, gallium, and zinc were measured [3].

A number of metals were found to remain normal down to the lowest
temperature tried.

The very low temperatures were produced by the adiabatic de-
magnetization of a pill of paramagnetic salt, usually potassium chrome
alum. Thermal contact between the metal specimen and the salt

was through a copper rod hard-soldered to copper foils embedded in

the salt. The metal specimens were usually gripped in a copper cup
at the end of this copper rod. Two separate mutual inductances
surrounding the salt tube were used in conjunction with a 40 c/s

a-c bridge to make independent magnetic observations on the salt

and on the metal; the absolute temperatures were deduced from the

magnetic measurements on the salt. Values of the critical magnetic
field of a superconductor were obtained by studying its alternating

field susceptibility in various steady magnetic fields.

Accurate critical-field measurements were made on aluminium,
cadmium, gallium, and zinc, using annealed ellipsoids of spectro-

scopically pure metal having axial ratios of about 3:1. By making the

measurements under different conditions, it was possible to prove
that the temperature of the specimen was given by the temperature
of the salt. The results could be accurately represented by relations

of the form Hc=Ho (1 — (T/Tc)
2
); the values of H0 and Tc for these

metals shown in table 18.1 are probably accurate to about 1 percent.

These results are in fair agreement with previous work [4, 5, 6], but
a detailed examination suggests that the present results are probably
more accurate.

Table 18 . 1 .

—Summary of results

[A guide to the quality of the specimen is provided by the ratio of the resistance of the normal metal at T e

to the resistance at 273° K denoted by p/p 273.]

y
cal mole-1 deg-2

Element p/p273 Tc Ho
Calculated
from present

results

Calorimetric
measure-
ments

Aluminum 18X10-* 1.197
Gauss
106.0 2.95X10-1 13.48X10-1

Cadmium.. _ .. 3.1 0. 560 28.8 1.28

Gallium 1.0 1.103 50.3 0.91

Zinc 14 0. 905 52.5 1.16
f

2 1.25

l
3 1.50

Ruthenium 150 .47 46 3.0

Osmium 400 .71 65 2.7

1 Kok and Keesom [7],

2 Keesom and van den Ende [8], recalculated by Silvidi and Daunt [9].

3 Silvidi and Daunt [9],

1 Royal Society Mond Laboratory7
,
Cambridge, England.

2 Presented by D. Shoenberg.
3 Figures in brackets indicate the literature references given on p. 72.
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Superconducting transitions were observed for the first time in

ruthenium and osmium. McLennan, Allen, and Wilhelm [10] re-

ported a transition in ruthenium at 2.04° K, but they later found it

was due to a surface layer of tungsten carbide. It may be mentioned
that ballistic measurements on the ruthenium rod revealed appreci-

able hysteresis, and suggested a value of of order 20 percent lower
than the value in table 18.1 obtained by the alternating-field method.
The values of H0 and Tc for osmium may also differ appreciably from
the true thermodynamic values. A superconducting transition in

spectroscopically pure rhenium powder beginning at 2.2° K confirmed
the earlier discovery by Aschermann and Justi [11].

In the experiments on nonsuperconductors a small mass of para-
magnetic salt that could be cooled only bv conduction through the
metal specimen was usually used to estimate the lowest temperature
reached by the metal. Special arrangements were used in mounting
the alkali metals. The specimen of cobalt was a closed wire loop
to ensure that a superconducting transition would not be masked by
possible changes in its ferromagnetic properties. The following

metals were not superconducting down to the temperatures indicated:

lithium (0.08° K), sodium (0.09° K), potassium (0.08° K), barium
(0.15° K), yttrium (0.10° K), cerium (0.25° K), praseodymium (0.25° K),

neodymium (0.25° K), manganese (0.15° K), cobalt (0.12° K), palla-

dium (0.10° K), iridium (0.10° K), platinum (0.10° K).
In table 18.1 estimates of the electronic specific heats of the super-

conductors derived from the critical field measurements are com-
pared with calorimetric measurements. It may be noted that the
estimates of 7 for the superconductors ruthenium and osmium are low
in comparison with the values of 7 for the five elements Fe, Co, Ni,
Pd, Pt in group VIII of the periodic table, which range from 12X10 -4

cal mole-1 deg-2 to 33X10 -4
cal mole-1 deg-2 .

[11 E. B. Mendoza, Ceremonies Langevin-Perrin (Paris, 1948).

[2] B. B. Goodman, Nature 167, 111 (1951).

[3] B. B. Goodman and E. B. Mendoza, Phil. Mag. 42, 594 (1951).
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19. Penetration of a Magnetic Field into Thin
Superconducting Films

1

by J. M. Lock 2

The penetration depth, X, of a magnetic field into a superconductor
can conveniently be studied by measuring the magnetic susceptibility

of a superconducting specimen of very small dimensions. Hitherto
such measurements have been restricted to colloidal specimens of

mercury 3 and to thin superconducting cylinders, 4 and both methods
suffer from disadvantages that prevent absolute values of X from being
obtained. The use of thin superconducting films, however, enables
one dimension of the specimen to be made sufficiently small (a few
times greater than X) to give an appreciable change in susceptibility,

and at the same time makes it possible to use specimens of sufficient

volume to give reasonable accuracy in the measurements.
Specimens of tin, lead, and indium were prepared by evaporating

the metal in a vacuum onto thin mica sheet. The average thickness
of the films was found by direct weighing before and after deposition.

They were then cut without deforming the metal film, and a large-

number of layers were stacked in order to get a sufficient volume of the

metal into a small specimen holder. The magnetic moment of each
specimen was measured ballistically with a uniform magnetic field

applied parallel to the plane of the films. Magnetization curves were
plotted for a number of different temperatures, and from their initial

gradients the susceptibility of the superconducting film could be
derived. A typical set of magnetization curves is shown in figure 19.1,

from which it is seen that the diamagnetic susceptibility decreases

as the temperature is raised, a result to be expected from the rise in

penetration depth as the transition temperature is approached. The
susceptibility also decreases as the thickness of the film is reduced,

and the most important feature of the results is the close agreement
between the experimental variation of susceptibility with thickness

and that predicted on the basis of the phenomenological theory of

F. and H. London (1935). This is shown in figure 19.2, in which the

values of —47rx for a number of tin films are plotted against aX0/X,

where 2a is the thickness of the film. It is assumed that the tempera-
ture variation of X/X0 follows the law

x/x 0=t/V(i

—

(T/TcY (1)

for which there is a good deal of evidence. 5 The full curve in figure

19.2 is a plot of the theoretical variation of — 47rx for a flat super-

conducting plate, namely,

— 47rx=l tanli —
> (2)

a X

1 Presented by D. Shoenbe’g See also J. M. Lock, Proc. Roy. Soc. [A] 208, 391 (1951).
2 Royal Society Mond Laboratory, Cambridge, England.
3 D. Shoenberg, Proc. Roy. Soc. [ A] 175, 49 (1940).
4 M. C. Desirant and D. Shoenberg. Proc. Phys. Soc. 60, 413 (1948).
5 J. G. Daunt, A. R. Miller, A. B. Pippard, and D. Shoenberg, Phys. Rev. 74, 842 (1948).
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gauss

which follows directly from the London equation

V 2H=H/\

\

. (3)

The values of X0 ,
the penetration depth at absolute zero, derived

from these measurements are 5.0± 0.1 X 10
-6 cm for tin, 3.9±0.3X

10
-6 cm for lead, and 6.4 ± 0.3X 10

-6 cm for indium. The magnetization
curves are found to become more rounded as the film thickness is

0 50 100 150

H gauss

Figure 19.1. Typical magnetization curves for thin film..
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reduced, and it has been pointed out by Pippard that the area under
the curve never differs greatly from the value H*/8ir for a thick

specimen. This lends support to the idea that the surface energy
per unit area between the normal phase and an insulator differs

only very slightly from that between the superconducting phase and
an insulator. The fact that the magnetization curves of the thinnest
films are considerably rounded explains why the critical fields of these

films are higher than would be the case if the magnetization curves
were linear up to the critical field.

No evidence has been found for a nonlinearity of the magnetization
curves of the type predicted by the theory of Heisenberg 6 and Ivoppe, 7

increasing markedly at the lowest temperatures. The strongest

evidence against this idea is derived from some of the lead films,

which gave perfectly linear magnetization curves at a temperature
of only 0.14 Tc .

6 W. Heisenberg, Two lectures (Cambridge University Press, 1949).
7 H. Ivoppe, Ergeb. exakt. Naturw. 23, 283 (1950).





20. Magnetic Properties of a

Hollow Superconducting Lead Sphere

by Julius Babiskin 1

Measurements have been made to determine the nature of the
equatorial magnetic-field distributions inside and outside a hollow
superconducting lead sphere (2 in. in diameter, 3/16 in. wall thickness)
in a uniform applied magnetic field. Previous experiments studied
the magnetic field outside solid and hollow tin spheres, [1, 2, 3]

2 inside

a canal bored through a solid tin sphere, 2 and in the space between two
tin hemispheres [1, 4]. The magneto-resistance of nine calibrated
bismuth probes (.011 in. thick, .16 in. long) in fixed positions was
utilized to determine the magnetic fields as in the previous experiments.
Lead was chosen for these experiments rather than tin in order to take
advantage of the combination of the higher critical fields (Hc ) for lead
and of the increased sensitivity of the magneto-resistance of bismuth
at higher magnetic fields.

All experiments were performed at 4.2
CK, where II 540 gauss for

lead. The uniform applied magnetic field (HA ) was obtained from a

solenoid immersed in liquid nitrogen. The error in HA is -—'1/2 per-

cent. The measured magnetic field (HM) as determined from the
calibration curves of a bismuth probe is a weighted mean average of

the absolute value of the magnetic field over the dimensions of the
bismuth probe. When HM is homogeneous and normal to the bismuth
probe, the error of HM is ~1 percent. When IIM is inhomogeneous
over the dimensions of the bismuth probe, the error of HM could be
large and indeterminate depending upon the degree and structure of

the inhomogeneity. The hollow lead sphere (99.996% pure) was
made by welding together two hemispherical shells with the previously
calibrated bismuth probes in fixed positions on the equatorial plane of

the hollow sphere with respect to HA .

Figure 20.1 shows the results for bismuth probes in the hollow sec-

tion of the sphere. The hollow sphere is a perfect magnetic shield

along OA up to HA= 382 gauss at A. In the intermediate state along
AB, a time-dependent increase [5] of HM at constant HA was observed.

In all cases where a time dependence was observed, HM was measured
until the time dependence became negligible, so that all plotted points

in figures 20.1 and 20.2 are time-independent equilibrium values of

Hm at constant HA . HM was greater for Bi hi than for Bi i along AB.
The hollow sphere went completely into the normal state at B, and
HM=HA along BC. A time-dependent decrease of HM at constant
Ha was observed along BD. HM was greater for Bi i than for Bi hi
along BD. The straight lines branching from BD at HA= 0 show
that the observed frozen-in field at HA= 0 is completely shielded up
to Ha= 120 gauss. Upon the reversal of HA along BD

,
the curves

for all internal bismuth probes converge to a uniform distribution of

Hm= 0 atHa= —390 gauss at point D. Upon the removal ofHA along

1 Naval Research Laboratory, Washington, D. C.
2 Figures in brackets indicate the references on p. 79.
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DO
,
the internal uniform distribution of HM= 0 is completely shielded

to point 0 and the cycle OABCBDO could be repeated. Thus, the

initial conditions for superconductivity at point 0 were restored in the

Figure 20.1. Hm versus Ha for bismuth probes on the equitorial plane inside the

sphere; Bi i at the inside edge; Bi in at the center.

hollow section of the sphere, although a small frozen-in field re-

mained outside the hollow sphere. The symmetric hysteresis cycle

CBDEFGBC could also be repeated.

Figure 20.2 shows the results for a bismuth probe outside the sphere.

The slope of 0A=1A5 and HM=HC at HA= 374: gauss at A. Along
AB for an increment of HA ,

an initial jump of HM to a value slightly

greater than Hc and then a time-dependent decrease of HM at constant
Ha until Hm=Hc again were observed. This time-dependent de-

crease of Hm outside the sphere occurred simultaneously with the

time-dependent increase of inside the sphere. A time-dependent
increase of HM at constant HA was observed along BD. The dis-

continuity in BD is due to a high inhomogeneitv of HM over the

dimensions of the bismuth probe. The dashed line, which crosses the

discontinuity in BD
,
is an approximation of the average HM in this

region. The frozen-in field at HA= 0 along BD was opposed to the

original direction of HA . Upon the removal of HA from point D at

Ha= — 374 gauss to HA= 0 gauss, the curves for all external probes
converged to point 0. In this way the frozen-in field has been elim-

inated outside the sphere. The cycle OABCBDO in figure 20.2 as well

as the symmetric hysteresis cycle can be repeated. Thus the initial

conditions for superconductivity have been restored outside the

sphere, although a small frozen-in field remained inside the sphere.

It is therefore seen that the initial conditions for superconductivity
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Figure 20.2. IIm versus Ha for a bismuth probe outside the sphere very close to the

equator.

were restored either inside or outside the sphere, but not simulta-

neously.

Further hollow-sphere experiments are planned and more detailed

results will be published. Acknowledgment is due J. de Launay and
R. L. Dolecek for having suggested this experiment and to the members
of the Cryogenics Branch at the Naval Research Laboratory for

profitable discussions and suggestions.

[1] W. J. deHaas and A. Guinau, Physica 3, 1&2, 534 (1936).

[2] A. Shalnikov, J. Phys. (USSR) 6, 53 (1942).

[3] K. Mendelssohn and J. Babbitt, Proc. Roy. Soc. (London) [A] 151 , 316 (1935).

[4] A. Shalnikov, J. Phys. (USSR) 9 , 202 (1945).

[5] W. J. deHaas, A. Engelkes, and A. Guinau, Physica 4, 595 (1937).
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21. Studies on Oscillating Superconducting Spheres

by R. H. Pry, A. L. Lathrop, and W. V. Houston 1

In the course of the last few years at the Rice Institute Low Tem-
perature Laboratory, a series of studies has been made on the prop-
erties of superconducting spheres oscillating in the presence of an
external magnetic field. These studies have been undertaken in

order to reexamine closely the adequacy of the London-von Laue for-

mulation of the electromagnetic forces on a superconductor.

In the ordinary formulation of a force exerted by a magnetic field

on a conductor oscillating with its axis perpendicular to the field

direction, the electrons in the conductor set up eddy currents by
induction to resist the change in field relative to a set of axes fixed to

the body. The external magnetic field then exerts a force on this

current, which, because of the strong interaction between the current
and the ion lattice, can be computed in terms of the force exerted on
the body itself.

In a superconductor oscillating similarly in a magnetic field there

exists a supercurrent which, through the London theory, exerts only
an inward tension on the surface of the body of magnitude }{ A/

2
,

where Is is the supercurrent density, and A is the London supercon-
ducting constant. The normal currents are present also, to some
extent, in the superconductor, but they are reduced by an amount
proportional to the penetration of the magnetic field. Except for the

effect of these small normal currents, then, there should be no force

acting tangent to the superconducting surface.

To test this conclusion, Houston and Muench 2 constructed the

apparatus shown in figure 21.1 consisting of a torsion fiber of 3-mil

tungsten wire, on the end of which is suspended a I -in.-diameter
sphere of tin. Actually, the sphere is separated from the fiber by a

Pyrex tube in order that the fiber is not subjected to low tempera-
tures. On the top of this tube a four-sided mirror is attached so that

the oscillations of the system can he observed by means of a beam of

light and a scale. The horizontal magnetic field in the region of the

sphere could be varied from 10~ 4 gauss to 100 gauss by means of the

Helmholtz coils shown. The sphere was first cooled with liquid

helium to a temperature of 4.2° K, then to 3 deg and 2 deg below the

superconducting transition, and measurements were made of the

period and damping of the system as a function of the external mag-
netic field in the normal and superconducting states. These measure-
ments were made for numerous values of the horizontal field in the

normal state up to about 1 gauss and in the superconducting state

up to 45 gauss.

1 The Rice Institute, Houston, Tex.
W. V. Houston and Nils Muench, Phys. Rev. 79, 967 (1950).
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Normal conduction theory shows that there will be a field-depend-

ent torque exerted on the sphere of magnitude

‘IttBqIP
f
^

3 (sinh x — sin x)
}

p. o (
x (cosli a*— cos x)

2 nBlR* ( 3 (sinh x + sin x) 6 h
HoW \ x (cosh x— cos a;) x 2

)
’

i

where x= (2w^qB2
It)

2
,
B is the radius of the sphere, r is the specific

resistivity, w is the angular frequency, and ju 0 is necessary here because

of the use of rationalized mks units. As this torque contains terms
in both the angular displacement and velocity of the sphere, both a

restoring and damping torque will exist, dependent on the square of

the applied horizontal magnetic field. Figure 21.2 is a graph of the

calculated damping and restoring torque plotted against the parameter
x. As can be seen, as the conductivity or angular frequency of the

sphere is increased, the restoring torque increases steadily to a max-
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imum value, but the damping torque increases to a maximum and
then decreases again to zero.

The most recent data obtained from this experiment checks very
closely with the above theory in that the field-dependent torques
were, in the normal state, dependent on the square of the applied field

and gave a reasonable value for the conductivity of the tin sphere
at 4.2° K, a value that is consistent with both the period and damping
measurements to within the experimental error.

Figure 21.2.

08 oh-
CD |

OJ

0.2

Dam/ping and restoring torque as a junction of the specific resistivity

of a normal conducting sphere.

In the superconducting state, no field dependent damping was
observed in excess of 6X10 -7

of that observed in the normal state,

and no field dependent restoring torques were observed that could not
be attributed to a frozen-in moment or some ellipticity in the sphere,

and therefore dependent on the sphere orientation, in excess of 10
-5

of that in the normal state. If the sphere had become perfectly

conducting, no field-dependent damping torque would have been
observed, but the graph of the torques shown in figure 21.2 indicates

that the eddy currents set up would create a large restoring torque,

which was not observed.
A rough estimate made from the London-von Laue theory indicates

that, indeed, the torques exerted in the superconducting state should
be of the order of magnitude of 10

-12
of that in the normal state

so that it can be said that this experient in no way contradicts the

London formulation and again points to the difference between
perfect and superconductivity.

There is another way, however, that superelectrons may apparently
exert a force on a spherical superconductor that is tangent to the

surface. If a vertical magnetic field is suddenly applied to the tor-

sion pendulum described above, an electric field will exist in the

sphere during the change in magnetic field so as to produce an electron

and positive-ion current in opposition to the increase in the magnetic
field. As the electrons cannot interact with the ion lattice, one then
observes a torque on the body as a whole corresponding to the positive

ion current. Such a torque is explainable through momentum con-
siderations in the London theory, is of a magnitude proportional to

m/e of the electrons, and is in the direction opposite to the direction

of the electron current. As this torque is very small, it can be most
readily observed by subjecting the sphere to a vertical oscillating
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magnetic field with the same frequency as the natural frequency of

the torsion system and thus drive the system to a resonance ampli-
tude.

In 1940 Kikoin and Gubar 3 reported the results of an experiment
of this type on a superconducting lead sphere, but the analysis of

their result was based upon a microscopic mechanism similar to the
gyromagnetic effect in ferro- and paramagnetism and further they
left some doubt in their report as to the sign they obtained for the

torque produced. In 1948 Meissner 4 reanalyzed the results of this

experiment from the standpoint of the London theory, as men-
tioned above, and found these results consistent in magnitude with
the theory if the free-electron mass is used to compute the result, but
there still remained some doubt as to the sign of the experimental
effect.

Because of the importance of this result, we have undertaken to

repeat this experiment. The apparatus is again as shown in figure

21.1. The Helmholtz coils are used to compensate the horizontal

component of the earth’s field, and the solenoid, capable of producing
130 gauss, is used to produce the vertical oscillating magnetic field.

To be assured that one does not obtain an effect due to a small frozen-

in moment or due to some ellipticity in the sphere, great care must
be taken to eliminate as completely as possible all horizontal steady
fields and any horizontal component of the vertical oscillating field.

The preliminary results for this experiment indicate that, even
though the magnitude of the gyromagnetic effect is not yet determined
to better than 15 percent, due to the above disturbing effects, it is in

accord with the momentum treatment based on London’s equations.

It is important to emphasize, in view of Bardeen’s recent articles

on superconductivity, which involve an effective superelectron mass
of 1C

-4
of the free-electron mass, that if the mass of an electron in a

superconductor is measured in the way described here, one obtains

a result that is of the same order of magnitude as the free-electron

mass.

3 1. K. Kikoin ard S. W. Gubar, J. Phys. (USSR) III, 333 (1940).
4 W. Meissner, Sitz. Bayerische Ak:.d. Wiss. 321, (1948).
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22. Eddy Currents and Supercurrents in

Rotating Metal Spheres at Liquid-Helium Temperatures

by P. B. Alers, j. W. McWhirter, and C. F. Squire 1

For some time we have known that a solid sphere of supercon-
ducting metal shows a perfect Meissner effect if the following exper-

imental steps are taken: (a) Rotate the sphere rapidly in the normal
conducting state, (b) cool the sphere slowly through the superconduct-
ing transition temperature while still rotating, and (c) stop the rota-

tion. Experimental investigation shows that the sphere has
undergone a perfect Meissner effect. These findings were first

published by Love, Blunt, and Alers. 2 The present investigation

has put some quantitative understanding behind the effects, both
from the experimental and theoretical sides.

B= lO 5 W/H1

Figure 22.1. Simplified sketch of the experimental apparatus.

Figure 22.1 of this section shows schematically the sphere of tin

housed in Textolite, so that rotation at speeds, to, may be obtained

through a driving torque on the shaft extending upward and out of the

liquid-helium bath. A magnetic detector (saturable core reactor) is

shown in figure 22.1, and this is located close to the rotor in such a

1 The Rice Institute, Houston, Tex.
2 W. F. Love, R. F. Blunt, and P. B. Alers, Phys. Rev. 76. 305 (1949).
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way that any changes in the vertical magnetic-field component results

in a steady signal on a meter. Most of the .vertical-field component
of the earth was removed by use of compensating Helmholtz coils

placed external to the Dewar flasks. The horizontal component of the
earth’s field is shown in figure 22. 1.

At 4.2° K the electric conductivity of tin is very high, 4X10 10

mhos/m, so that if the sphere shown in figure 22.1 is rotated at this

temperature, the edd}T currents are enormous. At the very modest
speed of 2.5 rps the eddy currents are so large that the magnetic field is

removed from most of the interior of the sphere and can only penetrate
into a small skin depth of about 0.82 mm at the surface of the metal.
This shows up on the magnetic detector because the magnetic-flux lines

are forced over and around the rotating sphere and thus produce a

strong vertical component of the magnetic field. We may rotate the
sphere some five times faster, but the detector indicates very little

further change in the field distribution. That is to say, once the angu-
lar velocity is great enough to produce eddy currents of a size to re-

move the magnetic flux from the bulk of the sphere, further increase

in the speed of rotation achieves little more in this sense. Quite slow
speeds of rotation produce such small eddy currents that the external

field penetrates most of the sphere. Quantitative results have been
obtained on the speed of rotation as a function of the size of the eddy
currents, i. e., the degree to which the magnetic field is removed from
the interior of the sphere. At higher temperatures, say 20° K, the
electric conductivity is smaller, so that one must use much higher
speeds of rotation in order to produce large eddy currents. Figure
22.2 shows these studies at both 4.2° K and at 20° K. The ordinate

Figure 22.2. Ratio of eddy current to supercurrent as a function of the speed of
rotation.

is plotted as the ratio of the size of the eddy current induced in the
sphere to the size of the superconducting current that the sphere
possesses when in the superconducting state and showing the complete
Meissner effect. This plot brings out clearly the similarity between
the intensity and distribution of the eddy currents and the supercon-
ducting surface currents that produce the Meissner effect. Experi-
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mentally, this is established by observing no change in the field dis-
tribution at the detector when the sphere is cooled while rotating
into the superconducting state. When the tin sphere is cooled slowly
in this way and the rotation stopped, again no change in the detector
signal is observed. Thus the eddy currents have the same distribu-
tion as the superconducting Meissner currents. The superconducting
currents maintain their intensity whether the sphere is rotating or not.

e may use classical theory to describe the magnetic-field dis-
tribution around a sphere of metal that is rotating in the manner
shown in figure 22.1. A simple change of coordinate system will
allow the sphere of metal to stay fixed and the magnetic field to rotate
around. The equation to be satisfied is

V 2B-jan<jB=0,

where co is the angular velocity, /j, the magnetic permeability, and a
the electric conductivity. The polar-coordinate description of the
field gives a radial component, which is

B,= Bajl+^j cos e,

where p= o)fxa gives a depth of penetration in the skin 1 /V2p, and

D= - a3
[ 1
- - - -

sillh Vgpa-sin Vgpa

(
^I2pa cosh y 2

p

a— cos y 2pa

3 3 sinh y2pa -f- sin ^2pa
pa 2 ^2pa CQsh ^2pa— cos y[2pa

where the distance r>:a, and where a is the radius of the sphere,

The eddy currents are distributed over the surface to a depth l/^2p.
and from outside the sphere these eddy currents produce a dipole at

the center of magnitude, D. The imaginary component of the dipole

is the out-of-phase component, and at 4.2 K its magnitude is only
one-tenth that of the real part for an co= 2.5 rps. For infinite con-
ductivity or for infinite angular velocity, the imaginary component
of the complex dipole moment vanishes.

The London theory for a sphere in a magnetic field and for the metal
in the superconducting state with perfect Meissner effect gives the

equation.

V 2B-^B= 0
,

X

where \= m/ne 2
is determined by the number, n, the mass, m, and

charge, e, of the superconducting electrons. The skin depth 1 /V(/x/X) =
1.6 x 10

-5 mm. The radial component of the field exterior to the

sphere, which by the way is not rotating, is given by

cos 0
.
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and the magnitude of the pure real dipole moment is

Comparing this with the dipole set up by the eddy currents, one sees

that they are equal in the limit of very fast speeds of rotation, with
high conductivity. Indeed, experimentally they are indistinguishable

at speeds of co= 2.5 rps for tin at 4.2 K.
It is well known that for tantalum the Meissner effect is practically

nonexistent because the metal freezes in all of the existing flux when
it becomes superconducting. We looked into this and found that

pure tantalum in bulk quantity has been made by sintering together
the small flakes or grains. Sound pulses are found to scatter very
badly on passing through tantalum metal. 3 Thus from a physical
point of view, the metal is not homogeneous, and one can understand
that the Meissner effect might not be realized by a metal of this

physical make up. We have found that our specimen of pure tantalum
was of this sort, but that we could force it to have a complete Meissner
effect through the technique of rotating the specimen in the normal
state and, while still rotating, cooling it into the superconducting state.

The cooling must be done very slowly, otherwise some frozen-in flux

will result. We shall report on the critical magnetic-field curve for

tantalum in a subsequent report.

3 W. C. Overton, Jr., Thesis, The Rice Institute (May 1950')

.
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23. Atomic Heat of Indium at Liquid-Helium
Temperatures

by J. R. Clement and E. H. Quinnell*

One of the principal phenomena that must be explained by any
theory of superconductivity is the difference in the specific heats of a

material in the normal and the superconducting states. Of all the 20
known superconducting elements, there exist calorimetric measure-
ments sufficiently accurate to determine this quantity for only three

;

namely, tin, thallium, and tantalum. The results on these do not
make completely clear what a theory must explain. For this reason,

the low-temperature calorimetry program at the Naval Research
Laboratory has been initially directed toward obtaining information
on the specific heat of superconducting elements in both the normal
and the superconducting states.

We shall report here some calorimetric measurements on indium.
There are several reasons why indium was chosen to be measured.
It has a low melting point, so the sample was easy to prepare. Crit-

ical-field measurements have been made by Daunt and collaborators 1

and by Misener, 2 so one is able to compute specific heat differences by
using these results and the thermodynamics of superconductors. 3 It

is a soft superconductor and therefore can be maintained in the normal
state with a magnetic field of a few hundred gauss. Finally, we could
find no calorimetric data in the literature below about 50° K.

Before discussing the results obtained, we shall outline briefly the

calorimetric technique used. The fundamental definition of heat
capacity, C=dO/dT

,
gives

c
dQ dQ/dt Q
dT dT/dt T

At any time, and, in particular, when the sample under investigation

is being heated, one can measure the true time rate of temperature

change, T, provided there exists thermal equilibrium between the

sample and the thermometer. The other quantity in the equation,

Q, the rate at which heat is being added, is not directly measurable.

However, we know that

Q=JPR+Ql , (2)

where JI 2R is the heat being added by the heater and/or thermometer,

J being the mechanical equivalent of heat, and QL is the heat being

added to the sample because of incomplete thermal isolation. We
also know that

Ql=CTl , (3)

*Naval Research Laboratory, Washington, D. C.
1 J. G. Daunt, A. Horseman, and K. Mendelssohn, Phil. Mag. 27, 754 (1939)

* A. D. Misener, Proc. Roy. Soo. [A] 171 , 262 (1940).
? 0. J. Gorter and H. B. G. Casimir, Physica i, 306 (1934).
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where TL is the rate of change of temperature caused by incomplete
thermal isolation. From (1) and (3) we get- for- the heat capacity of

the sample

C= JPR
T— TL

(4)

There are several possible methods for applying this result to the

reduction of data. One may use the actual derivatives that appear
in eq (4), or one may calculate integrals over time intervals sufficiently

small to obtain an average value of the specific heat over a small tem-
perature range. For the actual determination of the derivatives (or

integrals), one may secure temperature-time curves either before and
after the heating period only, during heating only, or before, during,

and after the heating period. Our technique requires knowledge of

the time-temperature curves only during heating, the sole heat source
being the thermometer itself. From the temperatures obtained by
extrapolating these curves to the beginning and end of the heating

periods, we take for TL for the 7ith heating period.

rfi _1 VT}-'-Tn
,

T*f -T* +n
Tl ~2\_ “x<rr

+—
j

0)

Equation (5) shows TL is the average of the rate of change of tempera-
ture between the beginning of the heating period under consideration
and the end of the preceding one, and the rate of change of tempera-
ture between the end of the heating period under consideration and
the beginning of the following one.

Let us consider now the sources of error in specific-heat data so

obtained. The numerator of eq (4) is JPR
,
and the errors in this

quantity are determined by the accuracy of the ammeter and volt-

meter used and can be reduced to extremely small quantities without
difficulty. So far as the two terms in the denominator are concerned,
the}’ are both subject to errors because of inaccuracies in thermometry.
In our technique the first is subject to direct measurement, whereas
the second is implied according to eq (5) . We have found that we can

determine TL to within 5 to 20 percent, depending on the degree of

thermal isolation maintained during an experiment. This means that
if we are aiming for an accuracy of 1 or 2 percent in our final results, we
must have T 5 to 20 times as large as TL . This condition has been
found a feasible one in most of the experiments carried out so far.

From eq (4) we can deduce the well-known fact that errors in low-
temperature specific-heat measurements are due primarily to inac-

curacies in thermometry. Therefore, we shall describe the thermom-
eter used in the measurements. Some years ago at NRL we investi-

gated the electric resistance-temperature curves for a number of

composition resistors of the type ordinarily used in radio and electronic

circuits. One type 4 gave very consistent and reproducible results,

not only during a single experimental run in liquid helium, but also

from one run to another, the resistor having warmed to room temper-
ature between runs. This particular brand also had an extremely
large sensitivity, over 100 percent per degree in the liquid-helium

4 One watt, 180 ohm type, manufactured by Allen-Bradley Co., 118 W. Greenfield Ave., Milwaukee 4, Wis.
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region. We found that these resistors very nearly fit a theoretical

equation for semiconductors: 5

R=AT~^ea,T
. (6)

For our purposes A and a are undetermined constants. In particular,

the resistor that was put in the indium sample fits this equation exactly
between 1.6° and 4.2° K. Equation (6) can be written in another
form giving a linear relationship, thus simplifying the task of testing

whether a resistor obeys eq (6),

log R+y4 log T=dog A+Ci/T. (7)

Figure 23.1 shows log R-\~% log T plotted against l/T for the resistor

in the indium sample. The points plotted give an indication of the

reproducibility of this resistor as the measurements with a magnetic
field were taken some weeks after those without a magnetic field.

They also show that the calibration was not affected by magnetic
fields up to 250 gauss.

0.3 0.4 0.5 0.6

l/T

Figure 23 . 1 . Calibration of carbon resistor in indium sample 1.

O, No applied magnetic field; #, applied magnetic field=250 gauss; voltage across resistor=0.75 volt.

Figure 23.2 shows a cross section of the vacuum calorimeter and a

sample with the resistor in position. The sample is in the form of a

cylinder, with the resistor placed along the axis and in the geometric

s See Seitz, Modern theory of solids, p. 191 (McGraw-Hill Book Co., Inc., New York, N. Y. (1940)).
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center of the sample. A bridge

6

operated at constant voltage is used
to measure the resistance of the thermometer-heater. The applica-
tion of constant voltage to the bridge makes the calculation of the
power developed by the resistor a relatively simple problem.

Using the method outlined here for measuring specific heats, we
made a few measurements on tin to see whether our method gave
results in agreement with those previously obtained at Leiden 7 8 9

and at the same time to investigate sources of error in our method.
During the course of these experiments we found a large error in the

resistance versus time data. To reduce this error we replaced the

clock and galvanometer that we first used with a recording galvanom-
eter. Figure 23.3 shows all the results obtained, including the orig-

inal ones with the clock and galvanometer. Only the three points at

3.935°, 4.027°, and 4.054° K were obtained using the recording gal-

vanometer. The smooth curves were determined by plotting G/T
versus T2 for all existing data and drawing what appeared to be the

best smooth curve through these data. The NRL results are in good
agreement generally with those obtained at Leiden by somewhat
different methods.
Measurements were also made on an indium sample, with a stated

purity of 99.9+%, the principal impurity being thallium. The
sample weighed 122.1 g. Figure 23.4 shows the results obtained with

6 A description of this bridge can be found in Roberts. Heat and thermodynamics, p. 23 (Blackie & Son

,

Ltd. (1940).
7 W. H. Keesom and J. N. van den Ende, Proc. Amst. Roy. Acad. 35, 143 (1932).
8 W. H. Keesom and J. A. Kok, Proc. Amst. Roy. Acad. 35, 743 (1932).
9 W. H. Keesom and P. H. van Laer, Physica 5, 193 (1938).
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Figure 23.3. Atomic heat of tin.

O. Leiden results; •, NHL results.

Figure 23.4. Atomic heat of superconducting indium.

no magnetic field applied to the sample, that is, for superconducting

indium. Data from four separate experimental runs are included,

although they are in no way differentiated in the figure. The maxi-

mum deviation of any point from the smooth curve is about 6 percent.

93993112—52 7



The heating curves show that the jump at the superconducting tran-

sition occurs within less than 0.01° K.
Figure 23.5 shows the results obtained on normal indium. Again,

results from three separate experiments are included without dif-

ferentiation. For these data the maximum deviation of any point
from the smooth curve is less than 2 percent.

Part of these data and some preliminary conclusions are reported
elsewhere. 10 However, since that time, further data have been
obtained, and the tentative conclusions then stated have changed
somewhat.

Figure 23.6 shows CN/T versus T2
. The intercept of this curve, and

therefore the value of 7, was determined by calculating by least

squares the best curve of the form

CN=AT*+yT (T<
|£) (8)

in accordance with Blackman. 11 The value of the Sommerfeld
electronic specific-heat coefficient that we obtain in this manner is

7=3.23 X10 -4
cal/mole-deg. 2 The Debye characteristic temperature,

0D ,
that we find is about 106° K. From measurements of critical

magnetic fields, Daunt, et al. (see footnote 1) found 7=3.5X10 -4
,
and

Misener (see footnote 2) found 7= 3.6X10
-4

cal/mole-deg. 2

10 .T. R. Clement and E. H. Quinnell, Phys. Rev. 79, 1028 (1950).
11 M. Blackman, Proc. Roy. Soc. [A] 149. 117 (1935).
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Figure 23.7 shows a similar plot for the superconducting data.

For tin such a diagram gives a curve very nearly linear and appearing
to pass through the origin of the coordinates. In other words, it

indicates that the specific heat of tin in the superconducting state

can be closely represented by a T3 law and no linear term. It seemed
impossible to do this for the indium data. The smooth curve in

figure 23.7 is intended to have no significance other than to show that a
simple T3 law appears insufficient. It is not considered conclusive
evidence that a linear term is necessary in the superconducting state.
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Figure 23 . 7 . C/T versus T2 for superconducting indium.

Figure 23.8 shows values of Cs— CN plotted in the form AC/T
versus T2

. This figure compares the values calculated by Daunt.
Horseman, and Mendelssohn (see footnote 1) and by Misener (set 1

footnote 2) from critical magnetic field measurements with the values
obtained from this calorimetric data. The calorimetric values were
determined by taking the difference between the actual measured
values in the normal state and the value in the superconducting state

as obtained at the same temperature by interpolating linearly the

Cs/T versus T2 curve between the two nearest temperatures at which
actual data were available. The agreement between the critical-field

results and the calorimetric results is fairly good over the region of

measurement. The great spread in the calorimetric data is due to

the fact that the specific-heat differences are so small compared to the

actual specific-heat values being subtracted that errors become very
large. The straight line in this figure again has no special significance.

It is the curve obtained by subtracting the smoothed and extrapolated
curves of figures 23.6 and 23.7.

Finally, we point out that due to the large lattice specific heat and
t he relatively low transition temperature of indium, the results would
be more conclusive if the data could be extended to lower tempera-
tures. Although we can consistently reach 1.3° or 1.4° K by pump-
ing the particular apparatus used in the calorimetric experiments
reported here, we have been unable to obtain data below about 1.8° K.
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We hope to solve this difficulty in the near future and may then
extend the data for indium to lower temperatures. We also plan to

make some calorimetric measurements on mercury. These would
be very interesting in view of the widely varying values of 7 and
0 D obtained by other methods.

0 4 8 12

j2 o K
2

Figure 23.8. (Cs —Cn)/T versus T2 for indium.

O From calorimetric data; 3, Daunt, et al., from critical field; #, Misener from critical field.
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24. Specific Heat of Niobium at Various Temperatures
1

by A. Brown,2 M. W. Zemansky, 2 3 and H. A. Boorse 2 4

Introduction

Previous experimental work on the superconductivity of niobium
has involved the determination of the H versus T curve. Recent
work by Cook, Zemansky, and Boorse 5 gives a zero-field transition

temperature of 8.65° K and a value of 7=375 X10~ 4 calories/mole

deg 2 (where y is the coefficient of the linear term in the specific heat
of the normal state). More recent work by H. Preston-Thomas 6 at

Bristol led to neither a unique value of the transition temperature,
nor a unique H versus T curve. Earlier measurements by Daunt
and Mendelssohn 7 in the liquid helium temperature range give transi-

tions to the normal state at considerably smaller field strengths than
those found by Cook, Zemansky, and Boorse, and thus a smaller
value of y. In all cases the value of y, which is calculated from the
H versus T curves by the use of thermodynamic formulas, is larger

than the known value for any other element.
Some of the suggested causes of discrepancies in the magnetic data

are impurities in the niobium, dependence on the past history of any
individual sample, and the possibility that the thermodynamic
formulas may not be applicable in all cases. Cook, Zemansky, and
Boorse, for example, state that a tantalum impurity of 0.2 percent or

less cannot be detected by spectroscopic analysis. They find, how-
ever, that the transitions measured by an a-c method were reversible,

whereas the other investigators find some appreciable “ frozen in”

flux. All the above difficulties in the calculation of the specific heat
and the value of y may be circumvented by the use of calorimetry.

A direct experimental measurement of the heat capacity of niobium
will determine whether the linear term is unusually large for this

element, and in addition it is possible to see if there is a nonzero
value of the linear term in the superconducting state. The small

amount of data available on vanadium indicates a situation similar

to niobium, and it is planned to investigate this element also. The
specific heat of a superconductor at very low temperatures has been
described by the relations

Normal state Cn= yT-\-±§±A (T/d ny
Superconducting state = 4 6 4 . 4 (T/0S)

3

Thus, if these relations are used, the values of y, 0 n ,
and 0 S can be

directly obtained. It is to be noted that 0 S is not necessarily the same
as 0 n ,

and thus 0 S is not a true Debye characteristic temperature
in the usual sense of the term.

1 Assisted by Office of Naval Research and Linde Air Products Co.
2 Pupin Physics Laboratory. Columbia University, New York. N. Y.
3 The City College of New York, New York, N. Y.
4 Barnard College, Columbia University, New York, N. Y.
5 D. B. Cook, M. W. Zemansky, and H. A. Boorse, Phys. Rev. 80, 737, (1950).
6 H. Preston-Thomas, The University, Bristol, England (dissertation).
7 J. G. Daunt and K. Mendelssohn, Proc. Roy. Soc. [A] 160, 127, (1937).
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Calorimeter

An adiabatic calorimeter was constructed for the measurements
outlined above. The experimental space (15 inches long and 1.1

inches in diameter) can be entirely surrounded by a bath of liquid

helium or other refrigerant, except for an opening to a high-vacuum
pumping line. This experimental space contains an aluminum ther-

mal dam or radiation shield, inside of which the niobium sample is

suspended by two nylon threads. All electric leads to the sample are

first wound around the shield and held in thermal contact with it

by means of clear glyptal lacquer.

The sample itself is provided with a resistance thermometer, a

separate heater of constantan, and an An -Co versus Cu difference

thermocouple between it and the shield. The shield has a separately

controlled heater in order to keep it at the same temperature as the
sample, and thus insure adiabatic conditions. A pair of mutual-
inductance coils used with a ballistic galvanometer is also provided in

order to determine the state of the sample.

Results at Liquid Nitrogen Temperatures

For initial measurements in the superconducting state a phosphor-
bronze resistance thermometer was insulated from and secured to the

niobium sample by means of clear glyptal lacquer. The lacquer was
considerably thinned before it was used and was baked at 110° C after

application. The weight of one complete coat of glyptal was found to

be 0.03 g, whereas the weight of the niobium (in the form of a cylinder

/2 inch in diameter and 2 inches long) was 52 g.

It was found that this phosphor-bronze thermometer was suffi-

ciently sensitive at liquid-nitrogen temperatures to give reliable meas-
urements of the heat capacity. In the liquid-helium temperature
range the phosphor-bronze thermometer had a resistance of approxi-
mately 4 ohms at 4° K, and 2 ohms at 2° Iv. In addition, the ther-

mometer was found to be completely reproducible from run to run.

The specific heat of niobium in the liquid-nitrogen temperature
range is shown in figure 24.1. The results plotted on the graph repre-
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sent data taken on different days, with various resistance-thermometer
currents, and with various heater currents. Data were taken by
measuring a long “before-period” with the heater off and the tempera-
ture essentially constant, a few check points during the short heating-

period, and a long “after-period,” with the temperature again essen-

tially constant. The data showed an abrupt and discontinuous change
in the slope of the thermometer resistance versus time curve at the
instants of turning the heater on and off. No evidence of overheating
was seen when the heater was turned off. The precision of these

results is estimated to be plus or minus 5 percent.

Figure 24.2 shows the value of the Debye characteristic temperature
from 64° to 76° K. This curve is obtained directly from the specific-

Figure 24.2. Debye characteristic temperature of niobium from 64° to 76° K.

heat data shown in figure 24.1 by means of the Debye formula. No
correction for the linear term was included. The conversion from
the measured Cp to Cv is in the order of 0.5 percent or less. It is to

be noted that (except for the linear term) this is 0 W ,
the Debye char-

acteristic temperature for the normal state, and also that, as is pointed

out by Blackman, it is not expected to be a constant. In fact, the

value of 0„ at helium temperatures may be quite different.

Results at Liquid-Helium Temperatures

Measurements of the specific heat of niobium in the normal and
superconducting states at liquid-helium temperatures are now under-

way. Some preliminary results have indicated the value of 0 S to be

approximately 160° K, which is to be compared with the value of 69° K
of Cook, Zemansky, and Boorse. The specific heat anomaly at the

zero-field transition temperature has been observed.
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25. High-Frequency Resistance of Tin,

Lead, and Indium

by C. J. Grebenkemper and John P. Hagen 1

The surface resistance of several metals has been measured, using
a resonant cavity of cylindrical shape operating in the lowest mode.
The effect of surface finishes has been studied. The cavity chosen
for our experiments is cylindrical in shape, of circular cross section,

and operates in the TEi n mode, which is the lowest mode for a cavity
of that geometry. It is a transmission-type cavity, and coupling is

made through a small hole accurately located in the center of each
end plate. The cavity is constructed of two pieces and joined along
a line that is the center of the cylindrical section. If symmetry is

maintained., no current should cross the junction. Coupling is made
to the cavity by means of two stainless steel waveguide sections

through small coupling holes in the cavity itself. One of the waveguide
sections goes to the transmitting oscillator, the other to the receiver.

Mica windows are placed on one end of the waveguide section and the
other end soldered to the cavity. The cavity is then evacuated.
The rapid and accurate measurement of very high Q’s at microwave

frequencies presents a difficult problem Our measurement pro-
cedure is to use a decay method in which the resonator is excited by
a pulse of r-f energy and the decay of energy in the cavity is observed
after the oscillator is shut off.

2 Even with this means one must use
a stable oscillator as a generator, but it is not necessary to achieve a
stability of a few hundred cycles in 10,000 megacycles to obtain good
measurements of Q. The receiver used is a superheterodyne type,

and the generator is a reflex klystron. With this system the coupling
to the cavity can be made very light. Consequently, the corrections

for the radiation loss through the coupling holes can be made quite

small. Several hole sizes were used, ranging in size from 0.078 inch
in diameter to 0.099 inch in diameter. Calculations show the radia-

tion, Q, for the smallest hole to be about 60X106
,
for the largest

hole about 8X10 6
. The unloaded Q of the cavity is obtained from

the measured loaded Q corrected for the radiation Q.

Various types of surface treatments were given to the inner surfaces

of the cavities. Some cavities were cast in carbon molds and then
turned in a lathe. Various types of polishing were tried. .Electro-

deposited surfaces were investigated. One specimen was formed by
cold-pressing a block of tin with a hydraulic puss. The purity of

the tin used, in our experiments was of 99.994 percent.

The normal surface conductivity just above the transition tempera-
ture was considerably below the value expected by classical theory,

which is in agreement with numerous other experiments and the

Reuter-Sondheimer theory of the anomalous skin effect. 3 The
pressed-tin specimen yielded the poorest conductivity in the normal
region, being about 117 ohm-1

. This compares very favorably with

1 Naval Research Laboratory, Washington, D. C.
2 ,T. P. Hagen, Decreement (Q) Measurements of low loss cavities (URST General Assemoly L948).

3 G. E. H. Reuter and E. H. Sondheimer, Pjoc. Royal Soc. [A] 195 . (1948).
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Fairbank, 4 who gives a value of 115 ohm-1
. The cast-tin specimens,

whose inner surfaces were turned in a lathe, yielded a figure of 133
ohm-1

. The best mechanical-polished specimen yielded a figure of

160 olim-1 . Pippard in his experiments with single crystals of tin

quotes values of 148 ohm-1
to 220 ohm-1

,
dependent on the crystal

orientation with current flow. 5

A March 5, 1951: Pressed tin, /= 9, 105 Mc/see; #. February 8, 1950: Cast-tin machine finish, /= 9,155

Mc/sec; X, April 11, 1950: Electroplated tin, /=9, 160 Mc/sec: , September 29, 1950: Cast-tin mechani-
cally polished, /=9, 160 Mc/sec; A, August 4, 1950; O- August 8, 1950; Electroplated tin polished, /=9, 145
Mc/sec.

Figure 25.1 shows the results obtained for the different types of

surface finishes. Normalized surface resistance is plotted against

temperature. The temperature scale used is the 1937 Leiden scale.

Only the lower part- of the curves are shown in figure 25.1 as all the

curves are in essential agreement near the transition temperature
and start to diverge only at about 3.2° K. The pressed-tin surface

yielded the highest resistance, being somewhat higher than that
obtained by Fairbank. The agreement in the normal region was
very good. This difference in the lower temperature region may
be due to differences in measurement techniques.
The machined-surface cast-tin specimen yielded a somewhat inter-

mediate value, being considerably better than the pressed surface.

The crosses indicate experimental points for an electrodeposited tin

surface. The tin was deposited on a brass base from an acid tin bath
at a relatively slow rate. Experimental evidence indicates good agree-

ment between these two very different methods of surface preparation.

The effects of mechanical polishing on the cast-tin specimen is also

shown in figure 25.1. This specimen is the same one used above,

except now it has been mechanically polished by placing a number of

random-sized steel balls inside the cavity and then rotating it in a

lathe for several hours. A considerable improvement in the conduc-
tivity has been effected by this process. The bottom curve in figure

25.1 is for an electroplated tin surface after it had been mechanically

4 W. M. Fairbank, Phys. Rev. 76. (1949).
5 A. B. Pippard, Nature 162. (1948); Physical5. (1949); Proc. Roy. Soc. (London) [A] 203. (1959)
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polished and then etched with hydrochloric acid and a light tin plate
deposited over the polished surface. The normalized surface resist-
ance, R/Rn ,

is extrapolated to 0° K in terms of a function of tempera-
ture in a manner first suggested by Pippard. In figure 25.2, /(T) is

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

t
4 (l-t 2

)

(l-t 4
)
2

Figure 25.2. Normalized surface resistance versus a function of temperature for tin.

A, August 8, 1950; 0> August 4. 1950: Electroplated tin polished,
a, Pippard 3.2 cm0=87°; b, Pippard 3.2 cm 6

—72°.

t=T/TC; f=9,145 Mc/sec.

the expression P(l— — C) 2
,
where t is the reduced temperature,

T/Tc . It is apparent that the polished electrodeposited specimen does
extrapolate to zero resistance at 0° K. Pippard ’s curves for single

crystals are also shown on this curve but not in figure 25.1. The
cast-tin machine-finished specimen extrapolated to about 0.75 percent
residual resistance. This same specimen, after mechanical polishing,

extrapolated to 0.40 percent residual resistance.

It appears, from our experiments, that both surface roughness and
surface strains contribute to the resistance in the superconducting
region. From the results on our pressed -tin surface and those of

Fairbank, it appears that the pressing process sets up severe strains

and dislocations, thus giving rise to much higher values of resistance.

From the work on the machined surface and the subsequent polishing,

it appears that some of the residual resistance is due to surface rough-
ness and probably some due to slight strains set up by the machining
and polishing techniques.

The experimental results obtained on lead are shown in figure 25.3.

The curve shown is a plot of loaded Q, versus temperature. The lead

specimen used was a cast-lead machine-finished cavity. The surface

conductivity of lead just above the transition temperature was 176
ohm -1

,
somewhat above that of tin. The experiments on lead were

conducted in the Collins helium cryostat; all others were conducted
in external helium Dewar flasks. The temperatures above those of



Figure 25.3. Ql versus temperature for lead.

O. January 19, 1950. A, March 2, 1950. Lead cavity machine finish. f=9,165 Mc/sec.

liquid helium were measured by a constant-volume helium ther-

mometer. The temperature measurements are not precise as no
method of stabilizing the temperature was used. The scatter on lead

data is somewhat worse than that of the tin data. Part of it is prob-
ably due to temperature difficulties.

If the normalized skin resistance is extrapolated to 0° K, a residual

resistance of about 1 percent is obtained. This is about what one
would expect from this type of surface treatment. One could con-
clude that lead is about as good a conductor as tin in the supercon-
ducting region.

The experimental results for an electrodeposited indium surface are

shown in figure 25.4. Indium is quite similar to tin except the initial

conductivity, for two specimens measured, was quite low. Whether
this is the nature of indium at these frequencies or is due to an insuf-

ficient thickness of indium on the base metal will have to be resolved

with future measurements. If the normalized surface resistance is

extrapolated to 0° K, a residual resistance of about 0.50 percent is

obtained.
Just recently we extended our work on tin to 24,000 megacycles

per second, using the same techniques as before. The cavity used was
a cylindrical cavity operating in the TEm mode. Our results show
considerably better conductivity in both the normal and super-

conducting regions than those of Maxwell, Marcus, and Slater. 6

The particular cavity used was made of cast tin, turned in a lathe,

and then polished with gamal cloth and alumina and distilled water.

Figure 25.5 shows a plot of normalized surface resistance versus
temperature for two specimens, one at 24,300 megacycles, the other
at 9,160 megacycles. The surfaces on both cavities were mechanically
polished, and both extrapolate to nearly the same residual resistance,

6 E. Maxwell, P. M. Marcus, J. C. Slater, Phys Rev. 76, (1949).
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Figure 25.4. Normalized surface resistance versus temperature for electroplated

indium.

/=9,137 Mc/sec. Upper curve expanded X 10.

as is shown in figure 25.6. Consequently, it was felt that the results for

these two specimens could be compared at least qualitatively. How-
ever, for a rigorous comparison, both specimens should extrapolate

to zero resistance at 0° K.
The normal surface resistance, Bn ,

varies as co
2/3

,
which experimental

evidence indicates. The superconducting resistance, B, at. a given

Figure 25.5. Normalized surface resistance versus temperature for tin at 9,160
and 24,300 Mc/sec.

A, September 29, 1950: Cast-tin mechanically polished, /= 9, 160 Mc/sec; O. February 20, 1951: Cast-tin

mechanically polished, /= 24,300 Mc/sec. Upper curve expanded X 10.
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temperature, sufficiently below the transition temperature, should
vary as co

2
;
consequently, R/Rn should vary as od/3

if R/Rn=A(<a)j(T).
The f(T) that fits the experimental curves ‘is f(l—t2)/(l—f) 2

,
where

t=T/Tc . If A(co) is evaluated from our curves, the value obtained

Figure 25.6. Normalized surface resistance versus a function of temperature for tin

at 9,160 and 24,300 Me/sec.

R tHl-t 2)
A f= 24,300 Mc/sec: O, /=9,160 Mc/sec; f (T ) = •

for the lower frequency is 0.116, and for the higher frequency the value
is 0.260. The ratios between these values is 2.24. The expected
ratio from theory is 3.67. This type of disagreement has also been
observed by Pippard. The experimental evidence appears to be in

contradiction with the theory.
From the experimental evidence at the higher frequency it appears

that the twilight region of superconductivity has not been reached.
I he small residual resistance obtained at 0° Iv is probably due to small
surface strains and possibly some roughness. In our measurements we
have only to correct for the radiation loss through the coupling holes,

and by keeping this quantity small the correction is quite small.

No dielectrics are used, and we do not have to correct for can-losses.

The technique used lends itself readily to measuring high Qf s because
time can be measured precisely. For the very high Q’s, timing markers
generated by a crystal controlled oscillator are put on the scope.

For the lower values of Q, a precision delay circuit is used to measure
time. The receiver is calibrated with a precision attenuator. The
measurements can be made very rapidly and, if desired, can be
photographed

.
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26. Detection of Microwave Signals by NbN
Superconductors in the Transition Region

by J. V. Lebacqz and M. G. Bodmer*

During the past several years, the cryogeny laboratory of the
Johns Hopkins University has pursued investigations on radio-
frequency detection by NbN bolometers. The last paper published 1

covered the results obtained up to that time in the frequency range
of 1 to 10 Me. In addition, the same phenomena were observed
qualitatively in the 100-Mc frequency range. It was then decided
to extend the measurements to the microwave region, between 9,000
and 10,000 Me, where some effect of the relaxation time might be
expected to appear. The present paper will review briefly the equip-
ment used, the results obtained, and the theoretical conclusions
that may be drawn from these results.

The cryostat itself is essentially the same as those used previously
at this laboratory for work with infrared bolometers. The bolometer
mount, however, and the “nose” of the cryostat were redesigned to

permit efficient transfer of microwave energy to the NbN strip,

(fig. 26.1, a and b). Several requirements have to be met. The
heat losses have to be kept to a minimum; the bolometer impedance
must be transformed to the impedence of the microwave transmission
line; the bolometer must be mounted in good thermal contact with
the 15° K sink; and adjustments of the impedance transformation
have to be made without loss of vacuum.
The transmission line chosen was standard X-band wave gu'de.

The thermal losses were minimized by the use of two choke-flange
joints, permitting a slight mechanical motion of the line without
unduly affecting the electrical characteristics. The vacuum seal was
obtained simply by a 0.012-in. mica window glued to the output.

The reactance introduced by the mica window was canceled out

by an appropriate inductive diaphragm.
The bolometer was mounted in a double stub tuner, to permit

obtaining the very high impedance ratio necessary (approximately
100 to 1). Unfortunately, this imposed stringent mechanical require-

ments on the mount and no low-loss insulating material was found
on which the NbN strip could be glued, and which would maintain
its mechanical properties at 15° K. Accordingly, the NbN was glued

over a thin layer of Bakelite covering a copper post used as tempera-
ture sink. A typical value for the NbN strip resistance at 9,300 Me
is between 4 and 5 ohms, whereas the wave-guide impedance is

between 300 and 400 ohms. It was found possible to obtain a good
match (standing wave ratio less than 1.3 over a bandwidth of 10 Me)
by careful adjustment of a type 0-0 mount in combination with a

parabolic-shaped moving short circuit.

The rest of the equipment included a specially built audio-amplifier

(with input matched to the NbN resistance), signal generators, square-

*Johns Hopkins University, Baltimore, Md.
1 J. V. Lebacqz, C. W. Clark, M. C. Williams, D. H. Andrew, Detection at radio frequencies by super-

conductivity, Proc. Inst. Radio Engrs. 37, 1147 (1949).
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a, Double tuner; b, cross section of cryostat showing short-circuit adjustment.

wave modulator, standing-wave indicator, spectrum analyzer, d-c
bias arrangement, vacuum pumps, and indicators.

The equipment described above was connected as shown in the
block diagram, figure 26.2. Before its use, a series of d-c transition

curves were obtained, as shown in figure 26.3. From these, it can
readily be measured that the maximum rate of change of resistance as

no



Figure 26.2. Block diagram for microwave measurements.

function of temperature, at constant-bias current, is about 0.8 olim/° Iv.

Conversely, the maximum rate of change of resistance, as a function
of bias current, at constant temperature, appears to be about 100
olims/amp at small values of bias current «1 ma).
During the experiments on microwave detection, the line and tuner

were adjusted to obtain a good match just above the transition temp-
erature. The microwave source was then square-wave modulated and
the temperature of the bolometer lowered through the transition for

various values of bias current. At certain values of temperature, a

pattern corresponding to the modulating signal was observed on the

oscilloscope. The maximum amplitude of the demodulated output is

shown as a function of temperature for various bias currents in figure

26.4, and as a function current at various temperatures in figure 26.5.

In addition, typical demodulated wave shapes are shown in figure

26.6. From these, it is immediately obvious that two entirely different

phenomena are taking place. At high bias currents (about 5 to 25

ma) and at a temperature of 15° K (near the middle of the transition),

the original square wave modulation is not reproduced in the demodu-
lated output; instead, the output consists of exponential curves, and
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measurements indicate that the time constant involved is approxi-

mately 600 fxsec. This appears to be a bolometer heating time con-

stant. On the other hand, at small bias currents (1 ma or less) and

Figure 26 .4 . Demodulated output as a function of temperature 9300 Me.

at a. temperature near 14° K, the original square wave of the modu-
lating signal is preserved, except for a slight rounding off produced
by the band -pass of the audio amplifier. This indicates that little or

no time lag due to heating exists under these conditions, and that the

phenomenon observed is a true detection.

With these results in mind, the curves of figure 26.4 and 26.5 are

easy to understand. Ihe two peaks at 14° and 15° K in figure 26.4

are caused by the two different mechanisms of demodulation, bolom-
eter action and detector action. Similarly, the deviation from lin-

earity of the output-bias-current curves at low currents for tempera-

TEMPERATURE
DEGREES KELVIN

I A S

BIAS CURRENT, MILLIAMPERES

Figure 26 . 5 . Demodulated output as a function of bias current 9300 Me.

112



tures below 14.5° K can readily be explained in terms of the appear-
ance of the detection phenomenon in that region.

Figure 26.6. Demodulated wave shapes.

A, Large bias current; B, small bias current.

The mechanism of this detection effect can be understood at low
radio frequencies, if the curve of resistance vs dc current (fig. 26.7)

at constant temperature is considered. It might seem surprising to

find the same effect for rf currents in the 10 10-cvcle frequency range
as at about 1 Me. If, however, one considers the superconductor
constant A (2) as being of the same order of magnitude for NbN as for

other superconductors, then the explanation appears rather obvious.

The resistivity of NbN, in the normal state, is probably at least 100
times that of Hg or Sn just above transition. Hence, one should
expect the critical angular frequency at which skin-effect depth and
supercurrent-penetration depth are equal to be approximately 10 13

sec
-1

for this material. This is in the lower infrared region, and it

is hoped that some work in that frequency region will indicate a

change in optical coefficient, coupled with the appearance of the de-

tection phenomenon.

This research has been supported in part by the Office of Naval
Research, for which the authors are very grateful. They extend their

appreciation to the whole staff of the Cryogeny Laboratory, Ihe
Johns Hopkins University, for their constant cooperation, and espe-

cially to D. H. Andrews for the many enlightening discussions, and to

Miss M. C. Williams, who painstakingly prepared the NbN bolom-
eters.

2 F. London, Superfluids, p. 29; also p. 84 (John Wiley & Sons, Inc., New York, N. Y., 1950)
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27. Properties of Liquid He3

-He
4

Mixtures

by J. G. Daunt and C. V. Heer 1

1. Introduction

Helium is unique in maintaining its liquid phase under its staurated
vapor pressure to temperatures closely approaching the absolute
zero. It is not surprising, therefore, that solutions of He 3 in liquid

He 4 should be the subject of investigation, in order to observe the
possible influence of macroscopic quantum effects on their thermo-
dynamical behavior. The fact also that He3 in solution in liquid He 4

does not partake in the superfluid motions, as first shown by Daunt
and coworkers [1,

2],*

* further stresses the possibility of observation
of other peculiarities of such solutions as the temperature is reduced,
i. e., as the superfluid constituent of the He4 becomes predominant.
The experimental study of such solutions has been mainly concerned
with measurement of the distribution coefficient, i. e., the ratio of

the concentration, Cv ,
of He3 in He4 in the saturated vapor, to the

concentration, CL ,
of He3 in He4 in the solution, and this has yielded

results that have been both mutually inconsistent and subject to

excessive experimental scatter. It was the purpose of the experi-

ments reported in this paper to attempt to obtain reliable data on
the distribution coefficient of He3 in the liquid He4 over a wide tem-
perature range and to correlate the results with such theorectical

considerations as have been put forward.
In order to judge the reliability of our method of measurement of

the distribution coefficient, CV/Cx, and to assess the possibility of

systematic experimental errors arising therein, a review of previous

work is considered necessary and is given below. Such a review also

enables the growth of the associated theoretical considerations to be
followed simultaneously.

2. Survey of Previous Work

2.1 Measurements Above the Lambda Temperature

A few measurements of the distribution coefficient, CVICL ,
of He3

in liquid He4 above the lambda temperature (2.18° K for pure He4
)

have been previously made, using, however, only very dilute solu-

tions. This work has been reported by Daunt, Probst, and Smith

[3], for mixtures with an unrefrigerated concentration, C3 ,
of He3 of

1.3 X10 -6
,
and by Lane and coworkers [4], using mixtures with similar

values of C3 . In both sets of experiments the concentration in the

vapor phase, Cv ,
in equilibrium with the solution was measured by

withdrawing a sample of the vapor from the low temperature and by
subsequent analysis with a mass spectrograph. The value of the

concentration in solution, CL ,
was subsequently calculated from a

knowledge of the volume occupied by the liquid and by the vapor

i The Mendenhall Laboratory, The Ohio State University, Columbus, Ohio.

*Figures in brackets indicate the literature references on p. 126.
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and of the liquid and vapor densities. This method of estimation of

Cy/CL must necessarily not be a true equilibrium measurement, and
hence may introduce systematic and inestimable errors. Moreover,
because the total concentrations are so small (CW 10

-6
) further errors

may have been introduced in the mass-spectroscopic analysis. The
results of the measurements indicate values of CV/CL ,

in approximate
agreement with those calculable for perfect solutions obeying Raoult’s
law from the equation

n °
Cv Ps
~rT
—

CL p4

( 1 )

where p°
3 and pi are the vapor pressures of pure liquid He3 and pure

liquid He4
,
respectively, at the temperature of interest. The theo-

retical evaluation of CVICL from Raoult’s law obtained from eq (1)

is given by the heavy broken curve in figure 27.2.

Subsequent work above the X-temperature on the measurement of

the vapor pressures of He3 solutions in liquid He4 under equilibrium
conditions by Lane and coworkers [5] using (concentrations (73=
1.6 X10~3

) and by Weinstock, Osborne, and Abraham [6] (using con-
centrations (73= 20.3 and 25%) has indicated, however, that values of

Cv/Cl greater than those given by Raoult’s law are to be expected.
Unfortunately, the data reported are insufficient to enable exact
numerical values of CVICL to be calculated from these vapor-pressure
measurements. Oh the other hand, because these measurements
were taken in equilibrium and the absolute concentrations, (73 ,

were
much higher than those in the previous work, there is reason to

ascribe greater weight to the general conclusion that can be drawn
from them, namely, that CviCL even above the lambda temperature
may be larger than that calculable from Raoult’s law.

2.2 Measurements Below the Lambda Temperature

It has been in measurements of CVICL below the X-temperature
that the greatest discrepancies between the various results have been
evidenced, and these discrepancies have been due mainly to a lack
of uniformity in the distribution of He 3 throughout the volume of the
liquid phase of the solution. This lack of homogeneity in the liquid

phase is primarily due to (a) the much larger heat influxes to the

experimental arrangements at temperatures below the X-temperature
and (b) the fact that He3 in solution in liquid He* does not partake
in superfluid flow [1, 2]. The following considerations sketch briefly

the various mechanisms producing concentration gradients within
the body of the solution.

Figure 27.1 (a) diagramatically represents a vessel containing liquid

He4 at a temperature below the X-temperature, connected by a tube
to higher temperatures. Previous work [7] has shown that a thick,

mobile him is formed above the liquid surface, which moves toward
the warmer and higher parts of the tube to some position (arbitrarily

marked “a” in figure 27.1, a, where the supply of heat from the

higher parts of the apparatus is sufficient to evaporate the mobile
film. The vapor thus formed at “a” returns down the tube, and in

condensing on the liquid surface gives up its heat of condensation.
By this two-phase convective process very considerable heat influxes,

Q, to the liquid-helium vessel may be produced, whereas when the
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vessel is at a temperature above the X-temperature, no mobile film

exists, and hence no large heat influx due to the two-phase convection

occurs. 2

-Q^TT~

Figure 27.1. Diagrammatic sketch of convection currents set up in vessels containing

helium n or solutions of He3 in helium n.

Within the body of the liquid (see fig. 27.1, a), the large heat influx

due to condensing vapor below the X-tem.perature sets up an internal

convection, the “superfluid” constituentmoving upward toward the heat

source at the surface and the “normal” constituent forming the return

flow downward. XV hen the liquid-helium vessel is above the X-temper-

ature no such internal convection of the superfluid and normal constit-

uents exists.

2 The marked change in the heat influx at the X-temperature due to the occurrence of the two-phase con-

vection has been used by Daunt and Heer, Phys. Rev. 79, 46 (1950), to observe X-temperatures of solutions

of He 3 in He4 below 1°K.
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Figure 27.1, b, diagrammatically represents an experimental arrange-
ment exactly similar to that of figure 1, a, the vessel containing,

however, a solution of He3 in liquid He4
,
such’ as has been used, in

principle, for some evaluations of the distribution coefficient, CVICL ,

for these solutions [3, 4, 8]. For such an arrangement, therefore, below
the X-temperature, both the two-phase convection and the internal

convection within the liquid must occur with relatively large heat

influxes, Q, flowing into the vessel. The distribution of the He 3 in

this case must be determined as follows. As the He3 does not partake
in the superfluid flow either in the film [1] or in the bulk liquid [2],

the upward flow of the mobile film contains no He3
,
and hence the

two-phase convection is of He4 only, and the internal convection must
be such that the superfluid flow, S, upward carries only He4

,
whereas

the normal flow, n, downward, being viscous, carries down the He3

with it. The result is a marked concentration gradient of He3 within
the liquid, with the surface depleted of He3

. If, therefore, in such an
arrangement the distribution coefficient, CVICL ,

is assayed by sampling
and analyzing the vapor, the result must give values of Cv that are too
small,because, at best, thevapor sampled would have been in equilibrium
with the solution at the surface. Moreover, this “vapor sampling”
technique must introduce further error, not only because it is a non-
equilibrium measurement but also because the downward vapor flow

in the two-phase convection must tend to earn7 He3 away from the
high-temperature end of the tube and hence further reduce the ob-
served value of Cv - On the other hand, for similar experimentation
above the X-temperature, these errors due to the two-phase convection
and the internal convection would be absent.

The results obtained by Daunt, Probst, and Smith [3] and by Lane
and coworkers [8] for CVICL below the X-temperature are shown in

figure 27.2, and it will be seen, in agreement with the above considera-

tions, that the values are all much smaller than would be expected
even from Raoult’s law (eq 1). Indeed, in one set of observations

[8]

, Cv was found to be zero for all temperatures below 1.8° K.
The unwanted concentration gradients within the solution could in

principle be removed by stirring, and this stirring could be accom-
plished in three ways, namely, (a) by mechanical stirring, (b) by
stirring with acoustical waves, and (c) at sufficiently high average
concentrations, Cs, automatically.

Method (a) has, so far, not been reported. Method (b) has been
adopted by Taconis, et al. [9], using helium gas with an unrefrigerated

concentration, C 3= 5X10~ 4
. In this arrangement, similar in general

principle to that of figure 27.1, b, acoustical vibrations occurred [10]

in the gas in the tube leading from room temperature to the vessel at

liquid helium temperatures, the intensity of the vibrations being
controlled by relative movement of another inner tube. These acous-

tical vibrations in the gas column are transmitted to the solution and
result in stirring, the errors introduced by the internal convection
thus being minimized. The experiments reported by Taconis, et al.

[9]

,
also obviated the errors outlined above that must accompany a

“vapor-sampling” technique, as used elsewhere [3, 8], since the values

of CV/CL were calculated from equilibrium measurements of the vapor
pressure of the solution. These data therefore can be regarded as

far more reliable than those reported previously. It is possible,

however, that the values of CVICL obtained from these data may be
too large because the heat influx accompanying the acoustical waves
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may tend to raise the temperature of the vessel above that of the
surrounding liquid-helium bath and hence increase the observed vapor
pressure of the solution.

The results obtained (3 points) by Taconis, et al. [9] are given in
figure 27. 2, together with a series of values of CV/CL at 1.38°K
obtained with a similar technique by Taconis, Beenakker, and Dokou-
pil 111],

3 using solutions with concentrations of Cv ,
from 1.1 to 2.2 X

10
-3

. It will be seen that the values of CV/CL obtained all lie well

above the values that would hold for a classical perfect solution
(Raoult’s law). Taconis, et al. consequently put forward the hy-
pothesis that He3 in liquid He 4 below the X-temperature could be
regarded as being in solution with the “normal” constituent of the
liquid He 4 only. Assuming such a limited solubility to observe the
laws for classical perfect solutions, this empirical rule leads to the
following formulation for CVICL :

n °fy _P_ Ps
S^i * o
f L Pn Vi

(2)

where p and p n are the total density of liquid He4 and the density
of the “normal” constituent of He4

, respectively. By using the
approximate result [12] (valid at least in the temperature range con-
cerned, 1.6° to 2.18° K) that p n/p—S/S\ ,

where S and are the entro-
pies of the liquid He 4 at the temperature of interest and at the
X-temperature, respectively, and using known values for the entropy

[13], the value of CV/CL according to eq (2) can be calculated, and the
result is shown in figure 27.2. Except for the points subsequently
reported at 1.38° K [11], it will be seen that the first results of Taconis,
et al. [9] are in substantial agreement with eq (2). This fact has
resulted in Taconis’ hypothesis, given by eq (2), being widely adopted
in theoretical thermodynamical calculations regarding solutions of

He3 in He4 below the X-temperature [14]. It should be further

emphasized that if the laws for classical perfect solutions are continued
to be assumed valid, above the X-temperature there should be no
difference between eq. (2) and (1) as above the X-temperature pjp= 1.

This means therefore, according to Taconis, that Raoult’s law should
be at least approximately valid above the X-temperature.

In measuring CVICL ,
the third experimental method of stirring the

He 3 and He4 solution (method c), in order to avoid unwanted
concentration gradients in the liquid, has been briefly mentioned
previously by us [15], and has been made use of in the experiments
reported in the present paper. The general experimental arrange-
ment set up is similar in essentials to that of figure 1, b, so that in the

absence of stirring, a concentration gradient occurs within the solu-

tion such that the higher concentration is at the bottom. In such
an arrangement, if the average concentration of He 3 in the solution

is sufficiently high, an excess He3 concentration at the bottom will

create there an excess vapor pressure sufficient to create ebullition.

The excess He3 concentration necessary for such ebullition will be
dependent on the depth of the solution. If ebullition at the bottom
occurs, stirring of the solution is automatic. It is to be concluded,

therefore, that in arrangements where no provision is made for

mechanical or acoustical stirring, the results obtained for CvjCL should

3 These authors consider that the stirring achieved in these experiments was not so complete as that in

those previously reported [9].
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Figure 27.2. Plot cf CvICl versus Tfrom experiment and theory for dilute solutions

of He3 in HP.

, theory of Heer and Da”nt [20]; ,
Raoult’s Law for perfect classical solu-

tions; , calculated from Taconis Rule [9]; V, ex’ erimental res' Its of Taeonis, et al. [9];

A, experimental resrlts of Taconis, et al. [11]; +, experimental results of Lane and coworl ers [8]; H, experi-
mental results of Lane and coworkers [8]; A, experimental results of Daunt and cow oik ers [4]; T. experi-
mental results of Daunt and coworkers [4], The vertical lines give the range of values of Cv/Cl experi-
mentally reported in this paper.

approximate more closely the correct values the higher is the initial

unrefrigerated He3 concentration of the helium. In support of this

it is to he noted that the experiments of Daunt, Probst, and Smith
[3] show higher values of CV/CL below the A-temperature for higher
values of the average concentration (see figure 27.2), and this varia-

tion is most probably due to this automatic stirring coming into

partial operation rather than to the other mechanisms as have, for

example, been suggested by London and Rice [16].

Finally, in this review of methods of overcoming unwanted con-
centration gradients in the solution, the method of Lane and cowork-
ers [17] is of interest. The principle of their arrangement is shown
in figure 27.3. By introducing the filling tube at the bottom of the

vessel, the direction of heat influx is reversed and hence the He 3

tends to concentrate at the surface of the solution in the large vessel

due to the two-phase and internal convection as shown in figure 27.3.
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However, if the filling tube is in good thermal contact with the
helium bath, this inhomogeneity of concentration in the solution
may be small. 4 The vapor above the solution in the vessel was

Figure 27.3. Diagrammatic sketch of convection currents in experimental arrange-
ment as used by Lane and coworkers [SJ for measuring CvICl below T\.

sampled in these experiments [17] by taking out gas from the large

vessel through a “Breakseal.” Such an arrangement, therefore,

would be expected to give results for CV/CL higher than appropriate
for the average He3 solution concentration, owing to the tendency to

4 By supplying considerable heat influx to the right-hand vessel of the apparatus sketched in figure 27.

3, large excess He 3 concentrations would be formed at the surface of the left-hand tube owing to the internal-
convection Drocess described above. This was employed as a method of concentrating and se.Darating
He 3 from He 4 by Lane and coworkers. See Lane, Fair'bank, Aldrich, and Nier, Phys. Rev. 73, 256 (1948)
and Reynolds, Fairbank, Lane, Mclnteer, and Nier. Phys. Rev. 76, 64 (1949), and by Rollin and Hatton,
Phys. Rev. 74, 508 (1948).
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collect an excess He3 concentration at the surface. That this is so

is shown by the results obtained (see fig. 27.2), .which are higher than
would be expected either from Raoult’s law (eq 1) or from Taconis’

empirical expresion (eq 2)

.

3. Experimental Technique Employed

The experimental arrangement used by us for the evaluation of

CvICl is shown diagrammatically in figure 27.4. Two vessels, each

S' •»
=

"V to x to

X

Figure 27.4. Diagram of apparatus reported in this pape" for measurement of
CvICl for solutions of He3 in He 4

.

having an internal diameter of 3.2 mm and a capacity of 40 mm, 3

were drilled out of a solid block of pure copper, so that they were in

good thermal contact with each other. The vessels were connected
to their external gas supplies by capillary tubing of 0.79-mm internal

diameter, part of which was of glass so that the levels of the liquids
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in the two volumes could be observed directly, and tlie vessels

immersed in a bath of liquid helium.

One vessel was filled with pure liquid He4 and the other with a so-

lution of He 3 in liquid He4
,
having a value of CL of about 1.5 percent

,

until the levels were visible in the capillaries and at any desired tem-
perature the difference in vapor pressure between the solution and
the pure liquid He4 could be observed with an external differential

oil (Octoil, S) manometer of very small dead (gas) volume (see fig.

27.4).
.

Significant dimensional data are given in table 27.1. Provision was
made also for making a differential comparison between the vapor
pressure of the pure liquid He4 in the vessel and the vapor pressure of

the helium bath. (For simplicity, this arrangement is not shown in

fig. 27.4).

Table 27 . 1 . Dimensional data of apparatus

Internal diameter of each copper vessel 3.2
Volume of each copper vessel:

December 14, 1950, experiment . mm 3 50
December 21 and 22, 1950, experiments mm 3 . . 40

Diameter of glass capillaries, leading from copper vessels to room
temperature mm . 79

Average volume of gas “dead” space at room temperature on
He3-f-He4 line 3.5

After consideration of the points enumerated in section 2 our exper-

imental arrangement was chosen as one that would minimize system-
atic errors for the following reasons:

(a) The maximum height of the solution, measured from the bottom
of its containing vessel, was 50 mm, which for a 1.0 percent average
value of solution concentration would result in ebullition at the

bottom of the vessel for a concentration excess of 15 percent at 1.5° K.
At 1.8° K the error is 7.5 percent. This would therefore provide
adequate automatic stirring, and would provide a surface concentra-
tion within 15 percent of the measured average value at the lowest
temperature and better accuracy at higher temperatures.

(b) By having both vessels in the same copper block, the temper-
atures of both vessels should remain the same even above the X-

temperature.

(c) By measuring differential vapor pressure, an equilibrium meas-
urement is made, which also is independent of the two-phase convec-
tion in the filling tubes. Moreover, for all temperatures used, the
correction for thermomolecular pressure differences is negligible [18].

If Ap is the observed excess pressure of the solution over that of

pure liquid He4
,
then for our dilute solutions

C v Ap 1

CL pl+Ap CL
(3)

to within the accuracy of the experiment.

(d) By observation of the height of the liquid levels, the liquid and
vapor volumes could be computed at all temperatures, and hence CL
could be evaluated from a knowledge of the He 4 concentration in the
unrefrigerated gas.
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4. Experimental Details

He3 supplied by the AEC was used, 5
^ diluted with He4 (“well-

helium.”) to form a mixture having an unrefrigerated He3 concentra-

tion, Cs, of 1.0 ±0.10 percent, as estimated by volume measurements
made during the dilution process. Subsequent mass-spectrographic
analysis of the sample of the unrefrigerated mixture carried out at

three different establishments 6 gave values of Cz= 0.99, 1.60, and
1.65 percent. These discrepancies are disturbing and have forced us
to give our results in the form of ranges of CVICL within which the true

values of CyiCL may be located.

Observations were made on three independent runs. In the last

t wo runs, the vessels were of dimensions given above, whereas in the

first run a different copper block was substituted having a vessel

volume of 50 mm3
,
the dimensions of other parts of the apparatus

being kept the same.
The temperature of the helium bath was measured by vapor-

pressure measurements in the usual way, and above the X-temperature
the bath was well stirred and measurements made only on diminishing

the temperature from a higher value.

At all temperatures of measurement no measurable difference of

vapor pressure was observable between that of the bath and that of

the vessel containing the pure He4

,
indicating negligible thermo-

molecular pressure-difference corrections.

The observed results are given in table 27.2, in which are tabulated
the observed temperatures (1949 scale [19]), the observed vapor-
pressure differences, Ap, between the He3 and He4 solutions, and the

pure liquid He4
,
given both in centimeters of oil and centimeters of Hg,

Table 27.2.

Ap

Experiment T Cv/Cl a

Oil
Mer-
cury

°K cm cm
1 2.33 7. 60 0. 527 5.4 8.9
2.27 7. 15 .496 5.8 9.5
2.18 5. 30 .368 5.4 8.9

Dec. It, It50
{

1.99 4. 6C .319 7.5 12.4

1.75 3. 90 .271 12.7 21.0
1.45 2. 70 . 187 23.8 39.3

{ 2.49 9. 20 .638 4.8 7. 9

[
2. 12 4. 95 .344 5.6 9.3

Dec. 21, 1950
I 1. 66 3. 95 .274 12.4 20.4

]
1.43 2. 70 . 187 25. 4 42. 0

l 2.59 11. 50 .798 4.9 8.0

I 2.60 8. 90 . 617 3.8 6.3
2. 31 7. 70 .534 5. 8 9.5
2. 19 7. 20 . 500 7.0 11.5

Dec. 22, 1950 1.93 4.45 .308 8.5 14.0

2. 30 5. 70 .396 4.4 7.3

2. 18 5. 30 .368 5.4 8.9

.
1.50 3.0 .208 23.2 38.2

a The two columns give the limits of the ranges of the calculated values of Cv/Cl. The lower numerical
values were obtained by taking Cl=C3=1.65 percent, and the higher values were obtained by taking
Cl=Cz=1.00 percent.

5 Some of the gas used in the experiments on the X-temperatures of He 3 in He 4 solution below 1 ° K was
employed (see [17]).

6 We are indebted to F. L. Mohler, National Bureau of Standards, to the General Electric Co. and to the
Atomic Energy Commission for the analyses.
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and the calculated range of values of CVICL obtained from eq (3). In
this evaluation of CVCL ,

the numerical value of CL has been set

throughout equal to Cz, the He3 concentration of the unrefrigerated
gas, and the range of values of CVICL has been calculated for Cz= 1 .0 to

1.65 percent. In assessing the possible deviations of CL from the
concentration of the unrefrigerated gas, estimates have been made of

the quantity of He3 present in the vapor phase at each temperature
These estimates have been made in two ways: (a) by estimation of the
effective (NTP) volume available to the vapor from observation of

the meniscus heights of liquid in the capillary and in the main liquid-

helium bath, and (b) by noting the change in the meniscus height of

the solution in the capillary when the temperature was reduced from
the temperature of interest to a low temperature (T~1.4°K) where
the vapor pressure is negligibly small. By both these methods it was
concluded that at the highest temperature of measurement, namely,
T^2.6° K, (where the “effective” vapor volumes are largest) the
amount of He3 in the vapor phase was not larger than 12 percent of the
total amount of He3

. At these temperatures, therefore, CL may be
different from C3 by 12 percent, and at lower temperatures corre-

spondingly smaller differences must occur. The uncertainty, however,
in measurement of the unrefrigerated gas concentration, as detailed

above, introduces greater possible errors and consequently it was not
thought worth while to make the corrections for the differences be-
tween CL and Cz. The results are shown in figure 27.2.

5. Comparison of the Results with Theory

A model for solutions of He3 in liquid He4 has been proposed by
Heer and Daunt [20], based on the assumption of pure He4 being a
Bose-Einstein liquid for which the X-temperature is identified with
the degeneracy temperature of the statistics, as was originally pro-
posed by F. London [21]. By assuming in this model that the solu-

tions could be represented by independent perfect Bose-Einstein and
Fermi-Dirac systems included in smoothed potential wells, the free

energies of the systems in the pure phases and in solution could be
calculated, and hence theoretical expressions obtained both for the

partial vapor pressures, pz andp4 ,
of the He3 and He4 of such solutions,

and for the distribution coefficient CVICL . Marked deviations from
the classical laws for perfect solutions were obtained for temperatures
both above and below the X-temperature.

In comparison with experiment, it has already been pointed out

[20] that the results of vapor-pressure measurement on solutions of

20.3- and 25-percent He3 concentration, as carried out by Weinstock,
Osborne, and Abraham [22], are in close agreement with our theoretical

predictions and constitute the most satisfactory experimental method
of checking. 7

However, the results reported here on the experimental evaluation

of CvlCL ,
although not of high accuracy, also enable a further check

with theory to be made. The experimentally observed ranges of values

for Cv!Cl against temperature are plotted in figure 27.2, in which also

7 It was also possible to calculate the variation of the X-temperature, T\, as a function of the He3 concen-
tration, Cl, and, as has been described in detail by Heer and Daunt [20] the agreement between the theory
and experiment is good. This agreement is somewhat surprising in view of the fact that the continuous
part of the energy spectrum of the He4 model was taken to be that of a perfect Bose-Einstein gas. The
observed anomalous entropy of liquid helium u could be interpreted however by postulating an energy
spectrum of a perfect Bose-Einstein gas together with an energy gap at the lowest energy levels, as has been
studied in detail by Bijl, deBoer, and Michels (Physica 8, 655; 1941).
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curves are shown for (a) CvjCL as calculated from Raoul t’s Law for

dilute solutions (eq 1), given by the broken curve, (b) CV!CL as calcu-

lated from Taconis’s rule (eq 2), and (c) CV/CL. as calculated theoretic-

ally by Heer and Daunt [20], given by the full curve.

This plot of the results in figure 27.2 shows that in spite of the broad
range of experimental values the evaluation of CVICL by Taconis 7

rule gives values that are much too large at temperatures below 1.8° K.
The experimentally observed results, however, are not in contradiction
with the theory of Heer and Daunt. It should be noted here that
although the range of values experimentally given for CVICL is con-
siderable (due to divergences in the measurement of the unrefrigerated
He3 concentration, C3), the scatter of the results is relatively small.

This is in marked contradistinction to the great scatter in the results

obtained by Taconis, Beenakker, and Dokoupil [11] and by Lane and
coworkers [9] (as indicated in fig. 27.2), and this gives some confidence
in the general experimental method employed by us.

Moreover, it is concluded that the values of CV/CL for a dilute solu-

tion are higher than those calculable from Raoult’s law for perfect
classical solutions for T less than T\. For temperatures above Tx,

the accuracy of the results is insufficient to allow a definite conclusion
to be drawn, but inferentially it may be supposed that Raoult’s law
also is insufficient and that to describe the results a quantum theory
of solutions is probably necessary in which the condensation phe-
nomenon of Bose-Einstein plays the significant role.

6. References

[1] J. G. Daunt, Probst, Johnston, Aldrich, and Nier, Phys. Rev. 72, 502 (1947).

[2] J. G. Daunt, Probst, and Johnston, J. Chem. Phys. 15, 759 (1947).

[3] J. G. Daunt, Probst, and Smith, Phys. Rev. 74, 494 (1948).

[4] Fairbank, Lane, Aldrich, and Nier, Phys. Rev. 71, 911 (1947).

[5] Fairbank, Reynolds, Lana, Mclnteer, Aldrich, and Nier, Phvs. Rev. 74, 345
(1948).

[6] Weinstock, Osborne, and Abraham, Phys. Rev. 77, 400 (1950).

[7] B. V. Rollin and Simon, Physica 6, 219 (1939); J. G. Daunt and K. Mendel-
ssohn, Nature 141 , 911 '(1938); Proc. Roy. Soc. [A] 170 , 423 and 439
(1939); Kilkoin and Lasarew, Nature 142 , 289 (1938). See W. H.
Keesom, Helium, Elsevier (1942) for review of this work.

[8] Fairbank, Lane, Aldrich, and Nier, Phys. Rev. 73, 729 (1949).

[9] Taconis, Beenakker, Nier, and Aldrich, Phys. Rev. 75 , 1966 (1949); Phvsica
15 , 733 (1949).

[10] See also, H. A. Kramers, Physica 15 , 971 (1949).

[11] Taconis, Beenakker, and Dokoupil, Phys. Rev. 78, 171 (1950).

[12] L. Tisza, Phys. Rev. 72 , 838 (1947).

[13] W. H. Keesom and A. P. Keesom, Physica 2, 557 (1935) ;
W. H. Keesom and

Westmijze, Physica 7, 1044 (1941) ;
see also W. Band and L. Meyer, Phys.

Rev. 74, 386 (1948).

[14] See, for example: J. W. Stout, Phys. Rev. 76 , 864 (1949). J. deBoer, Phys.
Rev. 76, 852 (1949). C. J. Gorter and J. deBoer, Phys. Rev. 77, 569
(1950); Physica 16, 228 and 667 (1950). O. G. Engel and O. K. Rice,

Phys. Rev. 78, 55 (1950); Phys. Rev. 78, 183 (1950). O. K. Rice, Phvs.
Rev. 77, 142 (1950); Phys. Rev. 79, 1024 (1950).

[15] J. G. Daunt and C. V. Heer, Phys. Rev. 79, 46 (1950).

[16] F. London and O. K. Rice, Phys. Rev. 73, 1188 (1948).

[17] Lane, Fairbank, Aldrich, and Nier, Phys. Rev. 75, 46 (1949).

[18] Weber, Keesom, and Schmidt, Leid. Comm. 246 (a).

[19] H. Van Dijk and D. Shoenberg, Nature 164 , 151 (1949).

[20] C. V. Heer and J. G. Daunt, Phys. Rev. 81 , 447 (1951).

[21] F. London, Nature 141 , 643 (1938): Phys. Rev. 54 , 947 (1938).

[22] Weinstock, Osborne, and Abraham, Phys. Rev. 77, 440 (1950).

126



28. Phase Diagram of Dilute Solutions of He 3

in He'

below the Lambda Point

by Henry S. Sommers, Jr .

1

Abstract

We Lave studied the He3 concentrations of both liquid and vapor
phases for liquid concentrations in the vicinity of 1 percent by a

method whose application requires no assumptions about the equation
of state of the mixture. From a series of filling curves at various
temperatures and initial concentrations, sufficient data have been
obtained to give the dew point as a function of pressure, temperature,
and vapor concentration. By using this data, the concentration of

the vapor phase can be determined from the vapor pressure and
temperature, and the liquid concentration then deduced by calculating

the mass balance.

The questions of concentration equilibrium in the liquid and effect

of Rollin film on the vapor phase were discussed, and the results were
compared with those derived from the Pomerancheck-Taconis assump-
tion about the solubility of He3

.

1 Los Alamos Scientific Laboratory, Los Alamos, N. Mex.

29. A Bose-Einstein Model of Liquid Helium Applied

to Solutions of He 3

in He4

by W. Goad 1

Abstract

A new model employing Bose-Einstein statistics, suggested by
London, is introduced. Its thermodynamic properties closely resem-

ble those of liquid He4 in many respects; applied to the calculation of

the ratio Cv/CL of dilute solutions of He3 in He4
,

it gives results in

agreement with Sommers’ measurements.

1 Los Alamos Scientific Laboratory, Los Alamos, N. Mex.
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30. Solidification of He3

by D. W. Osborne, B. M. Abraham, and B. Weinstock 1

We have recently succeeded in solidifying He3 and have determined
a portion of the melting curve bv the blocked-capillary technique. 2

The melting pressure was found to change from 40.5 atm at 1.02° K
to 56.6 atm at 1.51° K.
A schematic diagram of the apparatus is shown in figure 30.1.

In order to perform the experiment with the amount of gas available

(190 cm3 STP) it was necessary to keep the volume of the system

Vocuum
Line

small. This was accomplished by filling the Bourdon gages (B and
G) with mercury and by using 0.1-mm-inside-diameter stainless-steel

tubing for the U-tiibe (D) in the helium cryostat (E) 3 and 0.5-mm-
inside diameter tubing for the connections outside the cryostat.

The other U -tubes (C and F) were immersed in liquid nitrogen to

prevent mercury from plugging the smaller tubing in the cryostat.

The apparatus was evacuated and filled through the high-pressure
valves (A and J) . The gas in the reservoir (H) was compressed with
mercury displaced by means of the hydraulic system (I). The
Bourdon gages, which had 1 -lb/in. 2 graduations and a range of 0 to

1,000 lb/in.
2

,
were calibrated with a pressure balance while filled with

mercury.
As the pressure in the system was slowly increased, at a constant

cryostat temperature, the two gages gave the same reading until the

solidification pressure was reached, and then gage (G) continued to

rise while gage (B) remained constant. Upon lowering the pressure

the gage readings again became equal at the solidification pressure.

A single measurement was made with He4
,
and the solidification

pressure was found to be 25.2 ±0.1 atm at 1.09° K, in satisfactory

1 Argonne National Laboratory, Chicago, 111.

2 W. H. Keesom, Communs. Physical Lab. Univ. Leiden No. 184b (1926); Helium, p. 180 (Elsevier, Am-
sterdam, 1942), p. 180.

3 B. M. Abraham, B. Weinstock, and D. W. Osborne, Phys. Rev. 80, 366 (1950).
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Figure 30.2. Melting pressure of He3
.

agreement with the more accurate value of 25.10 atm found by
Swenson. 4 The data for He 3 are plotted in figure 30.2. The equation
of the curve in this figure is

P= 27.0+ 13.0T2 atm (1.02 to 1.51° K), (1)

and it represents the He3 melting pressure in the range of the measure-
ments, with a mean deviation of 0.1 atm.
With the aid of eq (1) an upper limit can be calculated for the

volume change on melting, AV, by substituting the entropy of the
liquid in equilibrium with the vapor (see footnote 3) for the entropy
of melting, AS. in the relation

dP/dT=AS/AV. (2)

It is assumed that the thermal coefficient of expansion of liquid He3

is positive, and hence that the entropy of the liquid decreases when
the liquid is compressed from the vapor pressure to the melting
pressure. The result is AF<1.2 cm3/mole at 1° K. This is smaller
than the volume change of 2.1 cm3/mole for He4 at this temperature
(see footnote 4) but is reasonable because of the higher melting pressure
of He 3

.

Also, from the relation

AU_ r dP
AT

1
dT
-P (3 )

and eq (1), it can be seen that AU is zero at 1.44° Iv and that the

internal energy of the liquid is less than that of the solid below this

temperature.
The melting-pressure data also point to another interesting result.

As any reasonable extrapolation of the data gives a positive melting
pressure at absolute zero, it appears likely that He3

,
like He4

,
does

not have a triple point and that the liquid is the stable condensed
phase at absolute zero.

4 C. A. Swenson, Phys. Rev. 79
,
626 (1950).
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31. Liquid-Helium Research in the Royal Society

Mond Laboratory

bv K. R. Atkins, C. E. Chase, and A. C. Hollis-Hallett 1

Properties of First Sound
K. R. Atkins and C. E. Chase have studied the velocity and attenu-

ation of first sound in liquid helium. This problem arose out of

earlier work in the laboratory on the velocity of second sound below
1° K (see paper 32 in this volume). When it was known that the

velocity of second sound increased rapidly as the temperature was
lowered below 1° K and tended near 0° K to a value approximately
equal to the velocity of first sound divided by V3, as predicted by
Landau [1]

2

,
it became necessary to determine the velocity of first

sound more accurately to enable a more reliable extrapolation to 0° K
to be made in order to test the Landau relation 3 more
carefully. This was done with a quartz-crystal transducer to propa-
gate a lO-^sec long pulse of 14 Mc/s ultrasonics and to receive the

same pulse after reflection from a polished brass reflector.

Figure 31.1 shows the results for the velocity as a function of

temperature. The accuracy is considered to be better than 1 percent.

Figure 31 . 1 . Velocity of sound in liquid helium.

, Findlay, Pitt, Grayson-Smith, and Wilhelm. O. present results. Path length, 4.310 cm.

Most fortunately, the velocity has leveled out to an almost constant

value at 1.2° K, so that it is possible to make a plausible extrapolation

to 0° K without having to extend the measurements below 1° K.

The extrapolated value is 237 ±2 m sec" 1
. Divided by -y/3, this

becomes 137 d= 1 m sec" 1

,
which is to be compared with a value of

152 ±5 m sec" 1 for the velocity of second sound at 0.1° K (Atkins

and Osborne [2]. The second-sound measurements were only explor-

atory and not particularly accurate, and final judgment must be
reserved until second sound has been more fully investigated below
1° K, but there is obviously some evidence for the existence of a

1 Royal Society Mond Laboratory, Cambridge, England.
Figures in brackets indicate the literature re

c
erences on p. 137.
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discrepancy of the order of 10 percent. This discrepancy is not
large enough to raise doubts about the fundamental principles of

Landau’s theory, but it does stimulate a search for reasons why
Landau’s relation might not be accurately obeyed.
At temperatures near 0.1° K the only important elementary excita-

tions in the Landau theory are phonons, and it is from a discussion

of their behavior that the Landau relation arises. It is important to

notice, however, that at a temperature T the average frequency of

the phonons is of the order of kT/h
,
which is still as high as 2xl09 cps

at 0.1° K. The discrepancy therefore suggests that the velocity of

the phonons at a frequency of 2x1

0

9 cps is greater than the velocity

measured at 1.4xl07 cps. Such a dispersion does not seem unplausible
in view of what is already known about the attenuation of first

sound in liquid helium n.

The broken curve in figure 31.1 refers to earlier work by Findlay,
Pitt, Grayson-Smith, and Wilhelm [3] at a frequency of 1.338 Mc/s.
There is some evidence for dispersion near the X-point, but the effect

is only as large as the sum of the errors in the two experiments and
cannot be regarded with any confidence. The region near the X-point

is interesting for several reasons, however, and so it was studied in

great detail, the results being shown in figure 31.2. The Ehrenfest

2.10 2.15 2.20 2.25 2.30 2.35 2.40
TEMPERATURE, °K

Figure 31.2. Velocity of sound in liquid helium in the neighborhood of the

X-point.

Path lengths: •, 0.868 cm; -f , 1.568 cm; X, 4.310 cm.

relations for a second-order transition predict that there should be a

discontinuity of about 2U percent in the velocity of sound at the

X-point. It will be seen, however, that the experimental curve is

falling so rapidly on either side of the X-point, that it is impossible to

verify this prediction.

In the course of the investigation near the X-point, it was possible

to obtain information about the effect of the hydrostatic pressure

head on the temperature at a point below the surface in a bath of

liquid helium (see paper 8 in this volume). In figure 31.3. the

temperature is deduced from the pressure at the surface of the helium.

The two separate curves above the X-point refer to two experiments
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in which the surface of the liquid was 20 cm and 4 cm, respectively,
above the apparatus. The separation between the two curves can
be explained if we assume that the temperature of the apparatus

Figure 31.3. Effect of hydrostatic-pressure head.

X, pressure head=20 cm; #. pressure head=4 cm;
, expected shift due to change in hydrostatic-pressure

head.

corresponded, not to the vapour pressure at the surface, but to this

pressure plus the hydrostatic-pressure head.
Preliminary attenuation data confirm the earlier results of Pellam

and Squire [4] and reproduce the rapid increase in attenuation near
the X-point found by them. In the temperature range below 1 .5° K not
investigated by Pellam and Squire there is another extremely rapid
rise in attenuation. This agrees, at least qualitatively, with a theory
due to Khalatnikov [5], and further experiments are in progress to

make possible a more accurate comparison with this theory.

Flow Through Wide Capillaries

In the film and in very narrow channels the flow of liquid helium ii

is apparently frictionless until a critical velocity vc is reached. Above
vc frictional forces come into play, but they are markedly nonlinear and
have an unprecedented character. From an analysis of thermal-conduc-
tion experiments in wider capillaries and slits Gorter and Mellink [6]

have concluded that the new frictional force is, in fact, a force of

mutual friction between the normal and superfluid components, vary-
ing approximately as the cube of their relative velocity. To extend
the relevant evidence, experiments have been performed on isothermal,

pressure-induced flow through wide capillaries (K. R. Atkins) and on
the damping of the torsional oscillations of a single disk and piles of

disks immersed in the liquid (A. C. Hollis-Hallett)

.
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The capillaries used by Atkins varied in bore from 2.6x10

~

3 to

4x1
0" 2 cm. Care was taken to eliminate corrections arising from

film flow and thermomechanical effects. End corrections due to

the change in kinetic energy of the liquid upon entering and leaving

the capillary were measured and allowed for. Figure 31.4 shows a

typical set of curves, giving the mean velocity of flow as a function of

the pressure gradient .

o

o 5 10 15 20
GRADIENT PRESSURE, OYNE C TY\~

3

Figure 31.4. Mean velocity as a function of the pressure gradient at 1.22° K.

Capillary: Symbol 1 (in cm)

I + 8.04
I 1.75
II X 7. 90
III O 8.03
III A 0.83
IV • 7.76

In curves of this type the critical velocity appears as an intercept

on the velocity axis. It is clear that when the internal diameter is

greater than 8x10
~ 3 cm, the critical velocity is less than 1 cm sec

-1

It will be seen, however, that the curve for the finest capillary of bore
2.6xl0 -3 cm runs parallel to that for the capillary of bore 8.15xl0 -3

cm but 2 cm sec
-1 above it. This suggests the existence of a critical

velocity of at least 2 cm sec
-1

in this very fine capillary, but it should
be emphasized that such fine capillaries are very difficult to work with,

and it is not possible, as yet, to have complete confidence in this result.

For isothermal flow in wide capillaries the mutual-friction theory
of Gorter and Mellink predicts a mean velocity of flow

-= Ps /grad p\
1/3 r

2 grad p
P \ Ap p n ) 8r? w

in which r is the radius of the capillary, A is a constant appearing
in their theory and determining the magnitude of the mutual friction,

and the other symbols have their usual meaning. The experimental
results can be fitted approximately to an expression of this type by
choosing values of A and r] n ,

which have the right order of magnitude.
No more is to be expected in the case of A, which, as deduced from
thermal-conduction experiments, is an ill-defined quantity varying
with both the radius of the capillary and the velocities of flow. The
situation with respect to the term r

2 grad p/8rj n is more unsatisfactory.

134



This part of the flow can be investigated by subtracting curves for
capillaries of different radii. It is found to be linearly proportional
to grad p within the experimental error, but does not vary as r2

.

Moreover, it is independent of temperature in the range 1.2° to 1.5°

K, whereas rj n is a rapidly varying function of temperature in this

region.

It therefore appears that, although the Gorter-Mellink theory
explains the order of magnitude of the flow in wide capillaries, it is

inadequate to explain the results in detail and must be supplemented
by the postulate of some other type of frictional force. This con-
clusion is considerably strengthened by the oscillating-disk experi-
ments now to be described.

Table 31 . 1 . Details of the capillaries

Capillary
Internal
diameter

Cross-sec-
tional area
of reservoir

I
cm

4. 40X10-2
2. 03
0. 815
.262

cm2

3. 50
0. 892
.201

5. 71X10-3

II

Ill ........
IV

Oscillating Disk Experiments

Hollis-Hallett has repeated an experiment originally due to And-
ronikashvili [7, 1946]. A pile of mica disks performed torsional

oscillations in liquid helium. From the period of the oscillations it

was possible to deduce the effective moment of inertia, and hence the
effective density of the liquid carried round with the disks. From
the damping of the motion it was possible to obtain information about
the frictional forces. At small amplitudes the results were in satis-

factory agreement with those of Andronikashvili. The effective den-
sity corresponded to p„, indicating that only the normal component
was moving with the disks and the superfluid component was station-

ary. Within the experimental error the logarithmic decrement was
consistent with the values for the viscosity, T

7 „, of the normal com-
ponent given by Andronikashvili [7, 1948]. (The experiments with
a single disk have given more accurate values for t] n in good agreement
with Andronikashvili.)

As the amplitude of oscillation was increased the above simple

situation began to break down, and the new frictional forces came into

play. The period began to increase as the superfluid component was
dragged into motion by the disks, and, in some of the experiments
with short periods, the effective density eventually increased to its

bulk value, p, so that all the liquid was then carried round with the

disks. At the same time, the new frictional forces began to mani-
fest themselves as an increase in decrement (fig. 31.5). This figure

clearly shows how the effect was small near the X-point and then
increased steadily as the temperature was lowered. A similar varia-

tion of decrement with amplitude was observed in the case of a single

disk, but no variation in period was detected, the mass of liquid car-

ried round by the disk being too small to make any appreciable ad-

dition to its moment of inertia.
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Figure 31.5. Excess decrement above the small amplitude value as a function of
amplitude.

Pile of 18 disks spaced 1.22X10--’ cm apart. Period= 12.0 sec. X, 1.56°K; +, 1.79°K; • 1.99°K; O, 2.145°K.

Iii figure 31.6 the increase in decrement between small amplitudes
and an amplitude of 0.2 radian is plotted as a function of temperature
for the single disk. The lower curve is derived from the theory of

Zwanniken [8], which is based on the Gorter-Mellink assumption
of a force of mutual friction. The magnitude of this mutual friction

Figure 31.6. Excess decrement (arbitrary units) at 0.2 radian as a function' of
temperature.

O, experimental results for a single disk at a period of 3.78 sec. Lower curve: predicted by Zwanniken on
the basis of the Gorter-Mellink theory.
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is deduced from thermal conduction experiments. It will be seen
from figure 31.6 that the Gorter-Mellink theory fails to explain even the
order of magnitude of the extra damping. The theory has also been
worked out for the pile of disks, and there is again a disagreement
with experiment.
The failure of the Gorter-Mellink theory to explain the damping

of the oscillating disk and flow through capillaries suggests the exist-

ence of some extra frictional force. This does not exclude the possi-

bility that the mutual friction is also present and is the most important
factor in thermal-conduction experiments. Another possibility is

that the two-fluid theory in its simple form begins to break down
above the critical velocity, and it is then no longer permissible to

formulate two separate hydrodynamical equations for the normal
and superfluid components.
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32. Propagation of Second Sound Below 1° K
by D. V. Osborne 1

Peshkov [l],
2 Maurer and Herlin [2], and Pellam and Scott [3] have

shown that the velocity of second sound in liquid helium n increases
as the temperature is decreased below 1° K. Atkins and Osborne [4],

have confirmed this result and have found that the velocity reaches
152 ±5 m/sec at 0.1° K. This interpretation of their experiments,
however, is not entirely free from complications, and the present paper
is designed to fulfill the undertaking given in the original letter that a
full analysis (due to the present author) would be published shortly.

It is intended to describe the observations in more detail, to explain
bow the velocity of second sound is deduced from them, and to mention
what other information may be obtained by suitable analysis.

To revise the technique briefly, a direct- current pulse of duration
100 /isec was fed into a constantan heater at one end of a glass tube
(0.5 cm in diameter and 3.40 cm long) closed at both ends, except
for small holes for the admission of liquid helium. The resulting

second-sound pulse was received at the other end of the tube by a
phosphor-bronze resistance thermometer, and the signals from this

thermometer were amplified and displayed on a cathode-ray tube in

the usual way.
Figures 32.1 shows actual oscillograms of the received temperature

pulses at temperatures of 0.44°, 0.48°, 0.54°, and 0.60° K, respectively,

on a time base of about 3}rmsec total duration. The trace goes from
left to right, and the faint, sharp negative spike near the left-hand end
shows when the input pulse started. The larger sharp, positive spike

immediately following it is also related to the input pulse and is to be
ignored when studying the received pulse. Two essential features

stand out clearly from these oscillograms. The first is the increase of

velocity with falling temperature, shown by the decrease in the time
interval between the input pulse and the rise of the received pulse.

The second is the great lengthening of the received pulse at the lower

temperatures.
It might be thought from figure 32.1, a, that the delay becomes

effectively zero at the lowest temperature, i. e., that the velocity

approaches infinity, but this is not so, as shown by figures 32.2, a and
b. In these oscillograms the time-base speed has been increased so

that the whole trace now occupies about 0.8 msec. The rise of the

received pulse up to about the maximum is visible on the upper trace,

but the long tail is off the right-hand end of the time base. The gap
in the upper trace indicates the time occupied by the input pulse;

the rise of the received pulse can be seen to start at a time that is

distinctly later than the end of this interval. The lower trace is an

attempt to display time-calibration markings on the same oscillogram,

but, because of inferior design in the (commercial) oscilloscope, cross-

talk has produced some confusion. For the actual measurement of

velocities, the point of occurence of the input pulse with respect to

1 Royal Society Mond Laboratory, Cambridge, England.
2 Figures in brackets indicate the literature references on p. 144.
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Figure 32 . 1 . Oscillograms of received, temperature pulses; time base approximatdy

&Y msec.

the calibration marks was accurately preset, and the calibrator trace

was used only for timing the received pulse. As cross-talk was not
serious after the end of the input pulse, no error was introduced by
this procedure. The velocities shown on the graph in leference [6]

were all obtained fiom oscillograms like those of figure 32.2, never

Figure 32 . 2 . Oscillograms of received temperature pulses; time base approximately
0.8 msec.

from those like figure 32.1. The procedure was simply to divide the

known length of the path of propagation by the time interval between
the start of the input pulse and the start of the received pulse. The
analysis that follows will justify this procedure.
An oscillogram like figure 32.1, a, is far more reminiscent of the

propagation of a short heat pulse in an ordinary thermal conductor
than of wave propagation. The finite delay revealed by the more
detailed oscillograms figures 32, a and b, however, indicates that the

conduction equation alone would not be a good description of the

observations. We consider, therefore, the following pair of well-
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known equations, applicable to the propagation of electric waves
along a transmission line:

l*+ri—¥ '

C^-+GV=-^
dt dx J

(1)

Here V and I are voltage and current, or, in the thermal problem,
temperature and heat flow; L and C are the inductance and capacity
per unit length, and R and G are the resistance and leakage conduct-
ance per unit length; we consider propagation in one dimension only,

along the r-axis. Deferring for a moment the actual translation of

Z, C, R, and G into thermal terms, we note that, if R=G= 0, then

dt 2 LC dx2

This is the ordinary wave equation obeyed by electric waves on a

lossless line and, to a good approximation, by second sound above
1° K. If, on the other hand, we set L=G= 0, we have

dV_J_ dW
dt RC dx2

’ 1 j

the equation of heat conduction. By setting G— 0 we obtain

F d 2V R dV^J_ &V
L:

dt2 ^ l dt lc dx:
2

’ w

and a similar equation holds if R= 0. The latter equation is evidently

worth investigation as a possible source of solutions combining the

properties of solutions of (2) and of (3).

Equations (1) can be solved explicitly for a delta function input,

using laplace transforms, as described, for example, by Carslaw and
Jaeger [5]. The boundary conditions are

/ = 0 at t= 0, except at x=0,

1= 0 at x=l for all t,

1=Q8 (;t) at a:= 0,

where d (t) is the Dirac delta function, which is zero if t^O, infinite if

f= 0, and which has the property

= 1 .
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The solution for V is then

V-^=± \ e-^iSif— b,)+H<f- bj)tre-pt
yv j= i (

— b
2
)

I0(a-yjt
2—b 2

)^, (5)

where

7
2=L/C

P=R/2L+GI2C

a=R/2L~G/2C

b\, b 2 ,
b3 ,

6

3 ,
. =x/v,(2l— x)lv,(2l+x)/v,(4l— x)/v,(4:l+x)lv

}
. . .

v
2=lILC

1=length of tube (between closed ends)

II(u) = Heaviside’s step function

= 0 for u^O

= 1 for ^>0

h(u) = —ijl (iu)

P(u) =JQ (iu).

where Jn (u) are Bessel functions of the first kind.

This solution, although formidable in appearance is most per-

spicuous when dissected. The summation represents nothing but
expansion in a series of echoes, which, for practical use, may be termin-
ated at the second term, the first two terms being equal for x= 1.

(bi=b2=l/v). The first term within the summation bracket is the
original delta function propagated at velocity v without distortion,

but attenuated by a factor e~pbi. The second term within the bracket
is a generalization of the solution of the heat-conduction equation
with this distinction, that it is not allowed to come into operation
until t=x/v, i. e., until the arrival of the delta function, being sup-
pressed at earlier times by the function H.

If we put L=G= 0, the standard solution for a heat conduction
pulse is obtained. If we put R=G=0, we have

V(x,t)

7Q
J2b(t-bj),

which is, as we should expect, simply the original pulse being reflected

back and forth without distortion or attenuation. Further trial

shows that if either G= 0 or R= 0 (<T= p or a= — p), the solution,

suitably modified to include the finite length of the input pulse, gives

a good representation of the observed second-sound signals. In
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other words, the propagation is governed by eq (4), which may be
written

d 2V 1 c)F_
2
b 2V

dt
2+

T dt~
v

bx 2
’

where

v2=lILC
t= L/E or C/G.

The time interval between the transmitted pulse and the beginning
of the received pulse is x/v, and the time of rise of the received pulse
is related to r. The values of v calculated from the observed time
intervals on this basis are those appearing in [6]. The value of r

is found to be about 27 ±5 psec for temperatures between 0.13° and
0.35°K.
The simplest explanation of eq (6) is that the two second-differ-

ential coefficients are the terms usually appearing in the equation of

second-sound propagation, and that the dV/dt term is due to some
viscous or other dissipative effect that becomes important at very
low temperatures. In this case we shall have

and predictions about the behavior of p n ,
S, and c as T approaches

zero may be related to the observed values of v. In the original

paper, it was claimed that u2 approached 1/^3 of the velocity of

first sound as T approached zero, in agreement with the prediction
of Landau (1941). But new measurements by Atkins and Chase
[6] of the velocity of first sound down to 1.1° K have now established
that this quantity tends to 235 m/sec at the absolute zero, rather
than the 272 m/sec estimated by extrapolation from earlier data,

which extended only down to 1.5° K. The new value divided by

V3, would predict a value of 135 m/sec for u2 at the absolute zero,

whereas the observed value at 0.1° K is 152 ±5 m/sec and is still

rising appreciably with falling temperature. It is very doubtful
whether any systematic error in the measurements could account
for so wide a discrepancy.
The experimental fact that u2 appears to remain finite near the

absolute zero can be used to draw some conclusions about the be-

havior of p n in this region. If it is assumed that Sec Tn then it follows

that pnOcST; if See Tne~ t/]iT
,
then pnocST2

. It can also be shown,
without any assumptions for S, that p n cannot be proportional to S
near the absolute zero.

A word may be said about possible interpretations for the value
of r. It might be a manifestation of relaxation between normal and
superfluid components, like that proposed by Band and Meyer [7].

If this be so, then the relaxation time must be of the order of 30 jusec.

We note that since pn is not proportional to S, conservation of entropy
is inconsistent with conservation of normal fluid and some such
relaxation phenomenon is therefore likely to occur.

A second possibility is that of viscosity damping. No data what-
ever are available for the calculation of this effect, but the calculation



by Landau and Khalatnikov [8] based on various forms of collision

between elementary excitations gives a viscosity which increases

rapidly as the temperature falls. The chief, contribution comes from
phonon-plionon scattering and the mean free path for this process
is of the order of 40 m at 0.2° K, so that further theoretical work
is needed before such a theory can be applied to the present results.
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33. Pressure Dependence of Second-Sound Velocity in

Liquid Helium II*

by R. D. Maurer and Melvin A. Herlin 1

Introduction

The properties of liquid He n have been explained most satisfac-

torily by the “two fluid” concept advanced in the theories of Tisza [1]
2

and Landau [2]. Each theory regarded liquid helium as composed of

a “normal fluid” fraction and a “superfluid” fraction, although the
origin of these two fluids was assigned to different molecular mecha-
nisms. In the temperature range just below the lambda-point, Tisza,

following the suggestion of London, considered the transverse excita-

tions to be similar to those of a Bose-Einstein gas, appropriately modi-
fied by the liquid state. Experiments showing no superfluidity in

He3 have borne out this view, as opposed to the roton model of

Landau. On the other hand, Landau considered the longitudinal ex-

citations, the Debye phonons, as a component of the normal fluid flow

only, rather than as associated with the fluid as a whole, which was
Tisza’s view. The phonons are masked by the Bose-Einstein excita-

tions at higher temperatures, but below about 1.1° K their effect is

evident. The rise in second-sound velocity [3 to 5] at low temperature
and the sustained existence of the waves without undue attenuation
tends to bear out the hypothesis that the new type of excitation pre-

dominant below 1° K is associated with the normal fluid flow only,

and not with the superfluid. The present experiment takes advantage
of the large pressure dependence of first-sound velocity in liquid helium
to investigate whether this low-temperature excitation is indeed a
phonon effect.

Experiment

Second sound is of a type of wave motion most easily excited by the
heating of liquid helium. Pellam has developed a pulse method
[4, 6] which was used by the authors to measure the velocity to below
1° K at vapor pressure [3]. Peshkov has created standing waves to

determine the velocity at vapor pressure [5] down to 1° and at higher
pressures [7] down to 1.3°.

A pulse method of exciting second sound similar to that formerly
used in this work [3, 6] was employed again. The chief innovation was
the installation of a delay line in the timing mechanism. This per-

mitted a view of the pulse on a faster, continuous sweep and hence a
more accurate determination of its leading edge. A DuMont 246
oscillograph was used to trigger the pulse generator and to actuate the
delay line. The pulse generator excited the carbon resistor of the

second sound chamber. Another carbon resistor, acting as a resist-

ance thermometer, received the second sound pulse, which was ampli-
fied and fed into the vertical deflection plates of a second 246D oscillo-

graph. This last oscillograph was triggered by the delay line. The

*This article appears also in Phys. Rev. 81, 444 (1951).
1 Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Mass.
2 Figures in brackets indicate the literature references on p. 150.
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movable marker of the receiver oscillograph could be adjusted on the
sweep so that it coincided with the edge of the pulse. By reading the
marker dial and by knowing the delay, one could obtain the transit

time for the pulse. The capacitative pick-up within the Dewar from
the transmitting pulse could be amplified easily to give a sharp leading
edge when viewed on the final oscillograph. In doing this, we could
not detect any instrumental delay caused by the timing system.
The second-sound chamber itself was sealed with solder for immer-

sion in a liquid helium bath. Inside the chamber a thin sleeve sepa-
rated the carbon resistors and determined the fixed path of 4.23 cm.
Four capillaries with an inner diameter of 0.020 in. led to the chamber.
Two of these acted as electric shields for the wires while the other two
were pressure lines, one to condense in helium gas from a tank and the
other to observe pressure equilibrium with a check gage. Liquid
helium exists under a temperature gradient in the capillaries so that the
heat leak from the lambda-temperature to the chamber is limited only
by the inner diameter. The size of these pressure capillaries was a
compromise between this heat leak and the persistent clogging of the
line by frozen materials. The pressure values of the experiment were
determined on the input side by an Ashcroft Laboratory test gage.
A Distillation Products MB200 diffusion pump with three Kinney
VSD forepumps was used to remove vapor from the liquid-helium bath.

Temperature measurements were made with a McLeod gage
through a tube in the pumping line above the Dewar arrangement, as

described formerly [3]. The equivalence of temperatures obtained
from the McLeod gage and those inside the chamber was established

by constructing a dummy chamber of the same dimensions as the
real one but filled with iron ammonium alum. Liquid helium under
pressure was supplied to this chamber. A mutual inductance bridge
was used to measure the relative paramagnetic susceptibility of the
salt at different McLeod gage values and at two different chamber
pressures. The susceptibility of the salt, and hence the mutual induct-
ance, varies as 1/T. Figure 33.1 shows that the mutual inductance

MUTUAL INDUCTANCE *

Figure 33 . 1 . Plot of the mutual inductance of the salt in the dummy chamber
versus the reciprocal of the temperature as obtained from McLeod gage readings.

Values were taken with the liquid helium in the chamber at two different pressures. The extrapolated
broken line gives the true temperature in terms of that obtained from McLeod gage readings.
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gives a straight line, except at low temperatures, when plotted against
this variable obtained from the McLeod values. The deviation below
1° is attributed to the pumping-pressure drop from the bath as observed
previously [3] and is not due to any radical change in heat conductivity
of the helium in the capillaries. The data below 1° were corrected
from this curve.

Results and Conclusions

The data for the second sound velocity as a function of temperature
and pressure are shown in figure 33.2. They agree, to within experi-
mental error, with the measurements down to 1.3° Iv by Peshkov [7].

Figure 33.2. Velccity of second sound as a function of temperature and pressure.

Experimental points for the vapor pressure curve are not shown.

The velocity of second sound along the vapor-pressure line as pre-

viously reported [3] was remeasured with the present apparatus and
is also shown. The maximum deviation of the points is ± 1 percent
from the curves drawn through them.
Landau’s proposal that the phonons contribute to the normal fluid

flow implies that at the absolute zero of temperature the second-sound

velocity must approach’the value Ci/V3, where Ci is the velocity of ordi

nary (first) sound [2]. The value of Ci at the vapor pressure is about
250 m/sec, which is an order of magnitude larger than the velocity of

second sound. The second-sound velocity must therefore rise rapidly

as the temperature is lowered. The first-sound velocity increases

with pressure, so that the second-sound curves at various pressures

must cross somewhere in the temperature region below 0.95° K. if

they are to arrive at Landau’s value of velocity.

It has been found, however, that a computation based on a linear

superposition of the terms giving the entropy and normal fluid fraction

for the Bose-Einstein and phonon contributions to the excitations

does not agree quantitatively with the observed velocity. The experi-

mental curve shows no indication of the phonon term down to 1.2°

K, but is rising rapidly at 1.0°. A phonon term simply added to the

Bose-Einstein term extrapolated from higher temperature does not

show an appreciable rise until about 0.6°. Landau gets the rise at

1° by using a roton expression which decreases more rapidly (expo-

147



nentially instead of algebracially)
,
but the phonon term is then too large

in comparison to be absent at 1.2° as observed. The suddenness of

the onset of the phonon contribution below 1.2° suggests the possi-

bility that an interaction between the Bose-Einstein excitations and
the phonons is removing the former rapidly as the latter becomes
sufficiently large in comparison.

Nevertheless, the temperature at which this rise must begin corre-

sponds to the point at which the entropy of the phonons begins to be
of the same order of magnitude as the entropy of the Bose-Einstein
excitations as the temperature is lowered. The pressure dependence
of this temperature can be computed from the known pressure de-

pendence of the first-sound velocity, and compared with the observed
pressure dependence. The phonon nature of the low-temperature
contribution to the second-sound curve can be checked by this com-
parison. To remove the possibility of phonon Bose-Einstein interaction

from affecting the result, this pressure dependence will be obtained in

the limit of small phonon contribution.

An empirical value of the Bose-Einstein entropy can be obtained
by extrapolation from measurements between 1.2° and the lambda-
point, and is given to sufficient accuracy for the present purpose by,

Sbe—S\(T/ 2\)
5A

,

where Sx is the entropy at the lambda point, and T\ is the lambda
temperature. The entropy of the phonons is given by Debye’s
expression,

SPh= 167r
5
A*

4T3
/45/i

3
Ci

3

p,

where k is Boltzmann’s constant, h is Planck’s constant, and p is the

density. The temperature at which deviation from the extrapolated
second-sound velocity curve occurs may then be given approximately
by,

Sph= constXSBE ,

where the value of the constant determines the amount of deviation.

This expression can be expected to hold only for small deviations.

Solving for temperature,

T/- 5=constXT x
5 - 5

/ci
3pNx ,

where the new constant is a combination of the previous constant and
of Boltzmann’s and Planck’s constants, and Td is the temperature
at which the observed second-sound velocity deviates a certain amount
from the value extrapolated from high temperature. Rather than
to pass to the small phonon contribution limit, the constant may be
eliminated by use of the logarithmic derivative,

ldTd __ ldTx IdSx 19 ldc-i 1 dp

TddP TxdP SxdP c 0dP pdP

The first two terms arise from the Bose-Einstein contribution to the

entropy, and their sum has the numerical value of —0.008. The
second two terms arise from the phonon entropy, and their sum has
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the numerical value of —0.029, The total pressure dependence of

Td is therefore,

(1ITd)dTd/dP= -0.037 deg/atm-deg,

of which about 80 percent comes from the phonon term in the entropy.
This large fraction is due to the large pressure dependence of first-

sound velocity in liquid helium.
The observed pressure dependence of Td can be obtained from the

curves of figure 33.3. If the phonon term were not present in the

Figure 33.3. Plot of e^T112 versus T for various pressures.

The high-temperature portions of the curves extrapolate to low temperatures as horizontal lines. Lines
of constant deviation from the extrapolated horizontal line, (C2./T 1 /2 ), are shown for various values of the
deviation. The temperatures of constant deviation, Td, are given by the intersections of the P= constant
and (02/

T

I /2
) = constant curves.

expression for second-sound velocity, the velocity would go to zero

with the square root of the temperature [1, 2]. The ratio c2/T1/2 there-

fore exhibits a horizontal straight line at higher temperature but
somewhat below the lambda-point, which may be easily extrapolated
to low temperature. The deviation from the extrapolated line is

then taken from the rising part of the curve at low temperature.
Lines of constant deviation are shown for various values of the devia-

tion. The corresponding values of dTJdP are plotted against the

amount of deviation in figure 33.4. The values of dTJdP and
(1/Td) dTJdP are nearly the same because Td is near 1° K. The
extrapolated value at zero deviation is in good agreement with the

value computed above.

149



This agreement supports the hypothesis that the phonons contribute
to the normal fraction of fluid only and are responsible for the rise of

second-sound velocity at low temperature: The phonons do not,

however, combine linearly with the Bose-Einstein excitations, unless
the Bose-Einstein spectrum is greatly different from what has been
assumed heretofore.

Figure 33.4. Pressure derivative of the temperature of constant deviation. (dTJdP),

as a function of the amount of deviation, (C2/T1 / 2
), taken from figure 33.3.

As Td is near 1° K, dTd/dP is nearly the same as (1/Td)dTd/dP. The value expected from the phonon con-
tribution to the normal fluid flow at small deviations is about 0.037.

The authors are indebted to R. P. Cavileer and W. B. Wilbur for

the manufacture of liquid helium and to A. R. Sears for assistance

with the electronics. H. H. Kolm and E. H. Jacobson contributed
notably to the early phases of the experiment.
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34. The Thermal Rayleigh Disk in Liquid Helium IS.

by J. R. Pellam and W. B. Hanson

Introduction

The tendency of a flat, obstacle suspended in a fluid velocity-field
to turn perpendicular to the direction of particle velocity is exemplified
by the Rayleigh disk. The hydrodynamics of this situation are
shown in figure 34.1. A fluid flow of initial undisturbed velocity, v,

Figure 34 . 1 . Fluid flow around a disk.

Undisturbed fluid flowing at velocity v.

encounters a thin circular disk at an angle 0. Resultant distortion

of this flow results in a highly variable velocity distribution over the
surface of the disk. For example, the splitting of adjacent stream
lines on the front side of the disk, at point 1, results in stagnation,

whereas at point 2 behind the disk, a tangential flow velocity persists;

similarly, stagnation and tangential flow exist at points 4 and 3,

respectively.

As a result of these velocity differences between points on the

opposite faces of the disk, unbalanced Bernoulli pressures exert a

net couple tending to aline the disk crosswise to the flow. By way
of example, the Bernoulli pressure at point 1 (stagnation) exceeds
that at point 2, and the pressure at 4 exceeds that, at 3. Hence a

net couple exists for these sets of points. An exact mathematical
expression due to Konig for the torque r, on a disk of radius a, in-

cluding an integration of such torque over the entire disk, gives

( 1 )

in terms of fluid density, p, and particle velocity, v. In the experi-

mental arrangement used, 6 was 45 degrees, and hence the factor

sin 26 reduced to unity.

National Bureau of Standards, Washington, D. O.
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It can easily be seen by reversing the direction of the stream lines

in figure 34.1 or examining the Konig expression, that the torque is

independent of the direction of particle flow, Accordingly, for appli-

cation to cases involving periodic flow the instantaneous direction of

particle excursion is irrelevant, so that the device functions as a
rectifier and thus as a detector.

The Thermal Rayleigh Disk

We have just seen that the Rayleigh disk tends to swing crosswise
to the propagation axis of an ordinary sound wave, regardless of the
instantaneous direction of particle flow, so that both halves of the
cycle contribute constructively. This same property enables the
Rayleigh disk to detect the internal counterflow associated with heat
flow in liquid helium n.

Even though net particle flow and net momentum remain zero
for this internal flow, so that to first order neither vibration micro-
phones nor pressure microphones respond, the disk recognizes varia-

tions of Bernoulli-type pressure over its surface. In the same manner
that a pressure decrease is associated with regions of increased flow
velocity for classical fluids, so does a pressure decrease accompany
increased heat current in helium n.

The condition of zero net-particle velocity (to first order) for heat
flow or thermal vibration in liquid helium n is customarily written

Pn.V n -\~ psVs— 0 . (2)

Here p n and ps are the densities of the normal- and superfluid compo-
nents, respectively, and vn and vs are the corresponding particle

velocities. However, although the individual fluid momenta balance
out, the net energy density is the simple sum of the separate contri-

butions. Otherwise stated, the Rayleigh disk responds to kinetic-

energy density, thus detection occurs.

Even when the internal counterflow accompanying thermal current
in helium ii is periodic, as for second sound, the disk still responds
indiscriminately to both halves of the cycle. Hence, as for classical

sound, this rectifying action results in detection of second sound and
in measurement of its time-average intensity. We now proceed to

compute separately the expected torques exerted on the disk by the

normal and by the superfluid components, and then to compute the
joint effect of the two fluids.

Assuming that normal fluid interaction with the disk conforms to

the classical formula (1), we have for the normal-fluid contribution
to the torque th (for 0= 7r/4)

T n ® P n)

•

(3)

As the mean square value of particle velocity (vn
2

) is introduced,

eq (3) gives the average value of torque. It will prove useful to ex-

press vn directly in terms of the heat-flow density, II, which may be
done by employing the entropy-flow relationship

(4)
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in terms of absolute temperature, T, net fluid density, p, and entropy
S, of liquid helium. Combining (3) and (4) we have

_4 ,
(H2

)
T
" 3

ap
"(pST) 2 (5)

in terms of the time-average value of heat current squared (H}
).

Similarly, using (2) and (4) we get for the torque due to superfluid

„(
Pn\ (

H

2
)

Ts
3
a Pn

\pJ (pSTf (6 )

where (H2

) again enters to give the time-average value of the
torque.

Finally, the combined torque exerted by the composite action of the
two fluid components on the disk should be the direct sum of these
individual contributions.

Pn ah
ps (pST)

2 (7 )

The theoretical curves for Tn/{H2
), ts/(H2

), and t/{H2
} given by (5),

(6), and (7) are plotted as functions of the temperature in a later

section, where comparisons with experimental results are made.

Apparatus

A composite view of the assembled equipment is presented in

figure 34.2. The Rayleigh disk assembly itself rests within a Dewar
containing liquid helium ii. Horizontal slots are used in the Dewar
system in addition to the conventional vertical slots, in order to

provide apertures for entry and exit of the optical beam employed
to observe disk deflections.

The disk, D, employed for detecting the second-sound field consists

of a galvanometer mirror % in. in diameter. As indicated in figure 34.

2, this disk is suspended at the midpoint of a horizontally oriented

cylindrical glass cavity, Pi. Resonance of second sound within this

cavity is achieved by introducing (electrically) periodic heating at

the proper frequency, through the thermal driving element, F, of

carbon resistor strip comprising one endwall of the cavity. The
distribution of heat-flow density, H, along the axis of the cylinder is

indicated for the condition of resonance in the corresponding drawing
of figure 34.2.

A system similar to that employed for galvanometer suspensions
is used for protecting the copper torsion ribbon, H, from strain or

shock when not in use. By turning screw I with a rod, J, extending
through a vacuum gland, the mirror and mica damping vane assembly
may be lowered to a position where the end of rod G settles into the

glass nacelle N. When the whole apparatus is immersed in liquid

helium n the screw, I, serves to raise the disk to the center of the

cavity and to adjust its angular orientation. The central adjustment
of rod G within the circular orifice, L

,
is accomplished by an over-all

adjustment of the entire Dewar assembly.
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Figttee 34.2. Details of experimental apparatus.

a, Rayleigh-disk assembly. Detail F shows structure of heater element, b. Thermal half-wave resonator.
Heat-flow distribution within resonant cavity (dotted line H).

The small deviations of the disk from its equilibrium orientation

caused by the second-sound field are observed and measured by the
resultant deflection of a light beam. A light source projects light

down the axis of the resonant cavity onto the Rayleigh disk, which
serves as its own deflection mirror. Upon reflection from the disk,

the beam emerges at right angles to fall in focus upon a scale.

The introduction of a known uniform heat-flow density to the cavity
is accomplished by means of the electric heating element, F. The
thin carbon layer surface of F in contact with helium n supports a

uniform electric-current density between two parallel electrode strips,

R, along the opposite edges of the square element (see fig. 34.2)

Heat generated in the “triangular corners”, where no direct contact
with helium is made, is further suppressed by laquer applied to these

areas.

The driving voltage across F is provided by a signal generator that
has been calibrated by a standard signal to read directly to better
than 1 part in a thousand over the frequency range used.

Measurement Procedures

The virtually complete inherent quiescence of liquid helium ii gives

the disk-vane system such a degree of stability that the total zero-

point shift of the indicator spot on a scale 50 cm distant is less than
1/2 mm over a period of several hours. This property of the system,
beside adding to the reproducibility of the data, allows one to work at
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very low power levels. Only within the resonance chamber, E, in
the presence of second-sound waves sustained by an externally main-
tained driving stimulus, does the suspended system experience a
torque.

.97 .98 .99 1.00 1.01 1.02 1.03

FREQUENCY RATIO, v/v 0

Figure 34.3. Typical resonance curves for three characteristic temperatures.

Torque r versus relative frequency, v/va.

A, r= 1.28° K; *-o= 196.4 cps.
B, t=1.75° Iv; k0 =211.2 cps.
C, t=2.18° K; i/o=48.8 cps.

Samples of typical resonance curves are shown in figure 34.3. Here
torque, r, (of the order of millidyne-centimeter) is plotted versus
relative frequency, v/v0 ,

for three characteristic temperatures at

constant heat input, H0 . In this regard, data on wave-velocity versus
temperature obtained from the resonant frequency, v0 ,

displays the
usual characteristics, i. e., a maximum of about 20.3 m/sec at 1.65° K,
falling off somewhat at lower temperatures and dropping abruptly
toward zero as the lambda-temperature is approached.

As is evident from these curves, both the shape and magnitude of

the resonance response (for the same heat input, H0) vary with tem-
perature. The maximum torque, rmax may be observed directly from
the height of the resonance peak and the resonance reinforcement
factor,/, is revealed by the band width (sharpness) of the curve.

In analogy to the treatment for classical resonating systems, a

reinforcement factor, /, for the present experiment may be represented

by

/=2?/ff0=2/T y=- q,Av 7T
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where Av is a band width. More specifically, Av denotes the frequency
spread between the two points on the curve (on either side of resonance)
for which torque, r, drops to one-half maximum, value. The quantity

/ is the factor by which heat-current input, H0 ,
at the generator wall

is “amplified” by resonance to the effective value H for the midportion
of the cavity. The quantity v0/Av is, of course, just the usual Q for

a resonant system.

Observations and Results

From eq (7) we see that the torque should vary with the fourth

power of the applied voltage (as H^V2
). In order to establish this,

and also the fact that Q should be independent of the voltage, the

series of curves in figure 34.4 were taken at a constant temperature.

Figure 34.4. Band width independent of power level.

Series of resonance curves (r versus v) at constant ambient temperature, T (1.88° K), for various voltages,

Vrm 8 ; half-torque frequencies are indicated by parallel broken vertical lines (constant band width,
At', =0.30 cps).

Driving voltages, Vrm8 : (1), 1.65 volts; (2), 1.55 volts; (3), 1.45 volts; (4), 1.35 volts; (5), 1.25 volts; (6), 1.15 volts.

It is evident from these curves that Q is indeed quite insensitive to

the applied voltage. Figure 34.5 shows a plot of log rmSLX/Q
2 versus

log firms for the same set of curves. The line of slope 4 is seen to be a
good approximation to the actual data, hence we may be confident

ibat we are working at power levels where (7) applies.

We are now in a position to compare the observed torques with the

predicted values. In view of the experimentally verified (H2
)

dependence, the theoretical curves may legitimately be plotted in

terms of ts/(H
2
), and t/(H 2

'), respectively, as functions of the
temperature, lliese curves are shown in figure 34.6, where the

dotted line represents the contribution by normal fluid alone, the
dashed line represents the contribution by superfluid alone, and the
solid line represents that due to the two fluid components jointly.

In the numerical evaluation of expressions (5), (6), and (7) for these
plots, Andronikashvilli’s measurements of fluid densities, p n and ps ,

and Kapitza’s measurements of the temperature-entropy product
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Figure 34.5. Fourth-power dependence of torque on voltage.

Measured (rmaxiKvol&v) 2 versus driving voltage, Ur ms; slope equal to four on log-log scale (T=1.88° K).

TS were employed. These curves terminate at the lower limit of

Andronikashvilli’s pjps measurements.
It. will be noted from these curves that the torque due to superfluid,

ts/(H
2

), rises sharply in the immediate vicinity of the A-point.

Figure 34.6. Torque ratios
,
t(H2

), as functions of temperature, T.

Experimental and theoretical values.

Theoretical predictions indicated by curves: represents r„/(//2), the expected torque for

normal fluid: represents ts/(H2), the expected torque for superfluid; and represents

that predicted for both. The circles O are the observed values.
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Thus the superfluid contribution appears to be enhanced most in the

temperature range for which the superfluid concentration is least.

This takes place because as superfluid becomes sparse its particle

velocity, vs ,
increases to maintain zero net momentum transfer

(according to eq 2) ;
and the simultaneous dependence of torque on

particle velocity squared more than offsets the effects of decreased
superfluid density. It may likewise be observed that a similar trend
also occurs in the torque curve for normal fluid at low temperatures,
where pn becomes small.

The actual measured values of the torque t/(H2
), are indicated

by the circles plotted in figure 34.6. It is apparent that the observed
torques are not only of the same order of magnitude as the predicted
values, but also the same general trends are observed. In particular,

t/{H?
) is observed to increase by a factor of eight over its value at

2.1° K as one approaches the X-point. This is what would be expected
if the superfluid were contributing its share to the torque exerted on
the disk. Similarly, at temperatures below 1.75° K the torque in-

creases again, as would be expected if the normal fluid were contri-

buting its share to the torque. In the intermediate region, where
neither fluid component is expected to predominate, the observed
results conform closely to the expected combined effects of the two
fluids. Thus it would appear that each fluid component contributes

its share to the torque on the Rayleigh disk, and that the total ob-
served torque is the sum of these individual torques. This is inter-

preted as fully verifying eq (7).
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35. Apparatus for Measuring the Pressure Dependence

of the Viscosity of Liquid Helium
1

by H. H. Kolm and Melvin A. Herlin 2

The viscosity of liquid helium as a function of temperature has only
been measured at the vapor pressure. These measurements were first

made by Keesom and MacWood, 3 who observed the damping of a
5-em-diameter copper disk oscillating in liquid helium about its axis

against the restoring torque provided by a phosphor-bronze suspension
wire. The disk oscillated with a period of about 30 sec and was ob-
served during about 15 periods. Measurement of the damping and
changes in the frequency of oscillation were then used in conjunction
with an approximate theory to derive r?p (viscosity X density) for

liquid helium and the slip at the helium-metal interface. The latter

proved negligible.

In order to provide information concerning the phonon contribution

to the viscosity of liquid helium, we developed apparatus capable of

measuring viscosity inside a metal pressure chamber. The chamber,
which is immersed in the helium bath, contains a 1-cm-diameter disk

made of Alnico 5 magnetized along a diameter and suspended by

1 This work has been supported in part by the Signal Corps, the Air Materiel command, and Office of

Naval Research.
, „ , . , „„ _

,

2 Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge 39, Mass.
3 W. H. Keesom and G. E. MacWood; Physica 5, 737 (1938).
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means of two phosphor-bronze wires attached to the extremities of a

thin, rigid shaft passing through its center and has a natural period of

about 1 sec (shown in fig. 35.1). A second set of Helmholtz coils lo-

cated outside the Dewar system provides a d-c magnetic field along
the direction of magnetization of the disk, and this field is adjusted to

increase the frequency of the disk to about 4 cps. Most of the restor-

ing torque is thus provided magnetically, a measure that reduces to a
minimum the inevitable residual damping due to the suspension.

Motion of the disk is observed by amplifying and recording the
voltage induced in the inner set of coils, and in this manner the damp-
ing can conveniently be measured during several hundred periods.

Preliminary measurements made thus far show approximate agree-

ment with the results of other authors, although they indicate the need
for additional measures to reduce the noise level.
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36. Remarks on Scattering of Slow Neutrons

by Liquid Helium

by Louis Goldstein 1

The experimental investigation of the slow neutron scattering prop-
erties of liquid helium is of multiple interest. It should confirm,
among others, the results on the coherent scattering of X-rays and go
far beyond this in yielding, possibly, information on the properties of

the liquid not available in the X-ray diagrams.
The coherent scattering of slow neutrons leads, indeed, to the spatial

distribution of the helium atoms around one chosen arbitrarily in the
liquid. This result is based on the classical Ornstein-Zernike static

liquid model. 2 According to the latter, the interatomic forces establish

in the liquid an orderly arrangement of the atoms around one situated
at the origin of the coordinate system. The concentration of the
liquid atoms n(r,T

)

at some distance, r, from the origin, at temperature
T

,
may be written as

n (r, T) =n0(T) -\-g(r,T), (1)

where n0 (T) is the average over-all liquid concentration, and g(r,T) is

a local correction to the mean concentration arising from the inter-

molecular forces that are responsible for the spatial ordering or corre-

lation of the liquid atoms. The quantity g(r,T) is the correlation

concentration. This has the following limiting properties. At large

distances, r, that is, r large in comparison with the range of the inter-

atomic forces, the correlation has to vanish, and the mean concentra-
tion n0 (T) should prevail. Explicitly,

lim n(r,T)=n0(T); lim g(r,T)^>0. (2)
r large r large

At small separations, the repulsive character of the interatomic forces

creates a vacuum around a liquid atom, and here

lim n(r,T)-^0
;

lim g(r,T)->—

n

0 (T). (3)
r small r small

These limiting values of the concentrations are valid, provided the

temperature of the liquid is small in comparison with its critical

temperature, Tc . The present discussion will be limited throughout
to temperatures T<^TC .

Assuming the spatial distribution function (1), the coherent scatter-

ing cross section, per unit solid angle and per liquid atom, can be
shown to be given by

<rL(Ak,T)= (rmFl(AJc,T), (4)

where is the infinitely heavy or bound-atom slow-neutron coherent
cross section per unit solid angle, and FI is the coherent intensity

1 University of California, Los Alamos Scientific Laboratory, Los Alamos, N. M.
2 L. S. Ornsbein and F. Zernike, Amsterdam Proceedings 17, 793 (1914).
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structure factor per liquid atom. The cross section, is further

defined by
<7 oo = (o-s/4tt) (1+A-1

)
2

, (5)

where <rs is the total slow-neutron scattering cross section of the atom
under consideration, and A is its mass in units of the neutron mass.
The quantities as or are specific nuclear constants, independent
of the neutron energy. The structure factor, FI, depends both on
the liquid temperature and the quantity

Ak= 2k sin 6=(4tt sin 0)/X; \=h/p, (6)

which measures, in units of (h/

2

tt)
,
the linear momentum loss of the neu-

trons or X-ray photons in the coherent-scattering process, whereby they
have been deflected through an angle (26) from their direction of inci-

dence. The length of the neutron or photon propagation vector is k,p
is their linear momentum, and X the de Broglie wavelength of the neu-
trons or the X-ray wavelength. The structure factor is found to be
given by

FUAk,T)=l+4rJ
v

ff(r,T)
s-^^ rHr, (7)

for atoms such as He4 with vanishing nuclear spin. The integral

on the right-hand side extends over the whole volume, V, of the
liquid, or, essentially, over the whole space as g(r,T) is a rather
short range function at temperatures T<^TC . In the preceding formula-
tion of the neutron scattering, all interactions between the neutrons
and atomic electrons, both of magnetic or, possibly, nonmagnetic origin,

have been neglected.

A glance at the general formula (7) shows that for small Ak values,

or small-angle slow-neutron or X-ray scattering,

lim F 2
L (Ak ,T)= l -\-4 tzf g(r,T)r 2dr=\ A G(T). (8)

Ak-*0

In this limit the structure factor becomes independent of the details

of the scattering process, such as the neutron wavelength and scatter-

ing angle. It depends only on the space integral of the correlation

concentration, a quantity that is associated with a specific macro-
scopic property of the liquid. Indeed, one proves in the present
static liquid model that

1+G(T)=AN*/N, (9)

where the right-hand side is the mean-square fluctuation per liquid atom
A

X

2
,
of the total number of liquid atoms, N. On the other hand,

according to statistical thermodynamics, 3

AiV/N=nJcTxx, (
10 )

Xt being the isothermal compressibility of the liquid; k is Boltz-
mann’s constant. Hence, the knowledge of the mean concentration,
n0 (T), or the density, together with that of the compressibility, deter-

mines the small-angle-intensity structure factor. It is worth noticing

A. Einstein, Ann. Pbys.33, 1275 (1910).
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here that the limiting structure factor (8) or (9) was first obtained
explicitly by Einstein3 in his statistical thermodynamic theory of

coherent scattering of long-wave visible radiation by liquids elaborated
after the original suggestions of Smoluchowski. 4 The latter author
was first to recognize that the existence of coherent-scattering processes
of visible radiation in liquids owes its origin to concentration fluctua-
tions. In this phenomenon, the quantity Ak is small at all scattering
angles, since X, the wavelength of the radiation, is very large in com-
parison with the range of the correlation density g(r,T). It is interest-

ing that the rigorous molecular structure factor formula (7) reduces in

this limit of large X to the thermodynamic formula (9) or (10). This,
of course, was to be expected on general physical grounds. Indeed,
when the wavelength of the incident radiation is large in comparison
with the range of the correlation function, over which the interatomic
forces govern the orderly arrangement of the liquid atoms, then the
existence of this local ordering remains entirely unnoticed by the
radiation whose scattering should be independent of the local distribu-

tion and depend only on the over-all statistical thermodynamic
properties of the liquid, as expressed by eq (10).

Using the density and compressibility of liquid helium, 5
it was found

that the small-angle structure factor (9) or (10) is independent of the
temperature, for all practical purposes, between 1° and about 3° K.
This means that the forward or small angle coherent scattering cross

section of slow neutrons or X-rays remains constant in the He n and
He i regions, in the latter up to about 3° K.
The question that arises now concerns the temperature variation of

the large-angle scattering structure factor (7). It can, however, be
proved that the preceding conclusion concerning the small-angle struc-

ture factor remains approximately justified at all angles. In other
words, the liquid-helium slow-neutron or X-ray coherent structure fac-

tor should only vary rather slowly with temperature up to about 3° K.
In particular, according to the present model, no important variation

of the coherent structure factor should be observed in passing from
the He n into the He i region. Apparently, this result is in agreement
with some experimental data on X-ray scattering. 6 The X-ray dia-

grams obtained with the two liquid modifications did not disclose any
definitely observable changes. It should be remembered here that the
asymptotic ideal Bose-Einstein He model predicts a rather important
qualitative modification of both the coherent 7 and incoherent8 scatter-

ing cross sections in crossing the transition line. If the X-ray data
on liquid helium, obtained in rather difficult experiments, are accepted
to be fully representative, then one might say that the interatomic
forces seem to mask completely the Bose-Einstein statistical features

of the coherent scattering, assuming that B. E. statistical effects are

present in this liquid. A repetition of the X-ray work and the experi-

mental investigation of slow-neutron scattering might provide a clearer

interpretation of the coherent scattering processes in He. The pre-

ceding small temperature dependence of the coherent structure factor

is a consequence of the fact that the static liquid model operates with
purely spatial distributions of the liquid atoms whereby the tacit aver-

aging over the different states of motion of the liquid as a whole does

4 M. v. Smoluchowski, Ann. Phys. 25, 205 (1908).
s W. H. Keesom, Helium (Elsevier, Amsterdam, 1942).
6 W. H. Keesom and K. W. Taconis, Physica 5, 270 (1938); J. Reekie, Proc. Cambridge Phil. Soc. 36

,
236

(1940).
* L. Goldstein, Phys. Rev. 83 , 289 (1951).
8 L. Goldstein, I). W. Sweeney, and M. Goldstein, Phys. Rev. 77

, 319 (1950).
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not seem to affect the scattering properties of the fluid in its two mod-
ifications. This small temperature dependence ceases already below
the boiling point and the whole coherent scattering process becomes
more and more anomalous as the critical region is approached. Here,
as pointed out previously 7 9 slow neutrons might be used to obtain
additional information on the critical opalescence properties of the

liquid.

So far we have considered only coherent scattering processes. The
situation appears to be different with the incoherent scattering of slow
neutrons in liquid helium. In this phenomenon, both energy and
momentum are exchanged by the neutrons and the liquid as a whole.
Let us assume then, that in He n the liquid atoms are distributed essen-

tially over two types of states of motion, as suggested by a number of

properties of this liquid. In He i this division does not seem to exist.

It may then be reasonable to expect that the mechanism of energy and
momentum exchange between the neutrons and He n be different from
that realized between the neutrons and He i. One might thus expect
a change in the incoherent slow-neutron cross section per liquid atom
as the temperature of the liquid increases from below to above the
lambda point.

It is, of course, clear that experimentally both the coherent and in-

coherent processes are observed simultaneously, the two phenomena
being of practically equal importance because of the comparable masses
of the neutron and He4 nucleus .

10 The two processes have to be sep-

arated in order to recognize clearly their respective trends of variation

with liquid temperature. The disentangling of these two types of

scattering processes is possible to a fair degree of approximation. The
experimental investigation of the slow neutron incoherent scattering

in liquid helium may yield new information on the energy spectrum
of the liquid in its two modifications.

We should like to add finally that the preceding considerations are

quite general and valid for any liquid. They appear to indicate that
the experimental investigation of the slow-neutron incoherent scatter-

ing may become a possible tool for obtaining some insight into the
energy spectra of liquids.

9 L. Goldstein, Bui. Am. Phys. Soc. 25. 38 (1950).
10 See, in this connection, L. Goldstein and D. W. Sweeney, Phys. Rev. 80, 141 (1950).
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37. Flow Properties of Helium n

by K. Mendelssohn 1

All experiments on liquid helium n have shown that the flow
properties are of an unusual and complex nature. The ordinary
concept of viscosity is not applicable as the rate of flow cannot be
expressed by the usual type of equation. However, as the diameter
of the flow channel is decreased, the character of the liquid transport
becomes less complex, but the flow properties are now quite non-
classical. In particular, the rate of flow is largely independent of the

pressure gradient and the length of the channel.

Up to the present time all observations have been made by measur-
ing the transported mass per unit time and the pressure difference at

the ends of the flow tube. The question therefore arises as to the

pressure gradient inside the channel itself. Using as the flow channel
the gap between two circular flat disks, the liquid was made to flow

radially in or out of this arrangement. A groove was cut at an
arbitrary place between the ends of the channel, and a “static tube”
for measuring the intermediate pressure in the channel was attached
to this groove (see fig. 37.1). In flow under gravity it was then

Figure 37 . 1 . Arrangements for the flow of liquid helium ii through a slit between

parallel plates and through rouge powder.

The intermediate pressure is measured by a “static tube.’’

observed that the whole of the pressure gradient was taken up by
the narrower part of the channel, the static tube registering the same
pressure as one end of the channel. In this case the ratio of the

classical flow resistances between the two sections of the channel was
4:1. The experiments were repeated, using two porous membranes
instead of a gap between parallel plates. With this arrangement
the classical resistance of the two sections of the flow channel could

be made more equal. However, even with a ratio of resistances as

close as 4:3 the entire pressure drop was still concentrated on the

slightly higher resistance (see fig. 37.2).

1 Clarendon Laboratory, Oxford, England.
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The above result shows that at least in one section of the channel
the flow of helium n takes place under zero pressure gradient. This
is analogous to an earlier observation on the helium film, in which
it could be shown that at speeds smaller than the critical, film transfer

would occur from one volume of liquid to another of equal level height.

As in the present experiment the static tube was attached at an
arbitrary position in the flow channel, and as it is also apparent that
the ratio in the flow resistances of the sections is immaterial, one is

tempted to conclude that the limitation of the flow rate will in fact

occur at the end of the channel. In other words, it seems as if there
exists some place in the flow arrangement at which the whole pressure
drop takes place. What exactly would be the physical significance

of such a pressure discontinuity is difficult to understand as we have
as yet no detailed theory of the flow phenomena in liquid helium.

TIME MINUTES

C

Figure 37.2. Flow of liquid helium n through two porous membranes, Mi and M2 ,

whose normal flow resistances are in the ratio 4 -3.

Reversal of the position of Mi and M2 shows that in superflow the total pressure drop is concentrated
on Mi. (a) Sketch of Apparatus; (b) Mi and M2, arranged as in (a), and (c) Mi and M2 interchanged

Flow of liquid helium 11 cannot only be produced under a gradient
of pressure but also under a gradient of temperature. Using again
the same arrangement of flow between plane glass plates, one of

the volumes of liquid connected by the flow channel was heated.
This caused a transport of liquid in the direction toward the
higher temperature, as was expected from earlier work. For
small flow rates the pressure in the static tube was again identical

with that in one of the volumes of liquid, showing zero pressure
gradient. However, in liquid helium 11, pressure and temperature
are connected in a unique way by H. London’s equation. The
observed fact of zero pressure gradient along one section of the flow
channel therefore shows that the temperature gradient in the same
section must also be zero. On the other hand, this section of the

channel now carries also a heat current. According to the well-

known thermal effects in helium 11, the heat supplied to one volume
connected with the channel will appear in the other volume by with-

drawal of liquid of low entropy from the latter. This process consti-

tutes a heat transport through the channel, and since it takes place,

as our experiment shows, under zero temperature gradient it must
be isothermal. Thus we find in liquid helium 11 mass flow under
zero pressure gradient and heat flow under zero temperature gradient.

These phenomena are, however only maintained for small flow

velocities. It had been expected that, as the heat input into the

arrangement is increased, the isothermal heat transport would break
down and a temperature gradient would be set up in the channel
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itself. This will be indicated by a rise in the pressure recorded by
the static tube. Such an effect did actually occur for very high heat
currents, but in all cases it was preceded by a decrease in the inter-

mediate pressure. This depression effect is no transient phenomenon
as a definite value of pressure, smaller than the pressure in either
volume, is recorded for each heat current. The effect is quite large.

Our arrangement did not permit observation of a greater depression
of the helium level in the static tube than 2 cm, and we were in no
case able to determine the minimum intermediate pressure because
it always exceeded this depression. Although it is impossible to give
at this stage a definite explanation of the phenomenon, we are in-

clined to regard it as evidence for the first appearance of dissipation
of kinetic energy.

The depression effect sets in at a well-defined heat input that only
depends on temperature, and it thus appears that it marks a sudden
change in the flow character as a certain rate of flow is exceeded.
The concept of such a critical flow rate is fairly well established for

the helium film, but is not generally accepted for the bulk liquid.

Gorter and Mellink believe that friction in liquid helium n should
make its appearance with the cube of the flow velocity, and according
to such an assumption a critical flow rate should not exist in the liquid.

However, besides the depression effect there appear a number of

other features in our observations, which all indicate a sudden change
in the character of the flow beyond a given velocity. In particular,

it was found that whereas at low velocities the flow rate was almost
directly proportional to the heat input, this relation changed rather
abruptly at the critical velocity.

Experiments with wider slits show that the comparative simplicity

of the flow character was lost when changing from slits of about 10
-4

cm width to bigger ones of 10 to 50 times this diameter.

A different type of complication arose when, instead of slits, tubes
were used that had been closely packed with jewelers rouge. All the
phenomena observed with the narrow with the narrow slit in a temper-
ature gradient were also present in the powder-filled tubes under
similar conditions. There was again the same depression of the level

in the static tube, occurring when a certain velocity was exceeded,

and below this velocity this level was coincident with the level in

one of the volumes of bulk liquid. However, the conditions under
gravitational flow were quite different from those with the narrow
slit. It was found that the level in the static tube always took up an
intermediate position between the levels in the two volumes of bulk
liquid. Thus while flow under a thermal gradient behaves in the

same manner in the slit and the powder tube, these two arrangements
yield different results for flow under a gravitational gradient. Un-
fortunately our measuring arrangement with the powder tube allowed

only a certain range of velocities on which observations could be made,
and we cannot as yet decide whether the difference in behavior shown
in this tube for the two different kinds of flow may be due to our
exceeding a critical velocity. In particular, it will be necessary to

investigate more closely the flow properties corresponding to small

pressure heads, for which our results so far are, of course, least accurate.

It can, however, be said that for the greater pressure heads, where
the relation between pressure and velocity can be well established,

the liquid in the powder tube seems to obey the laws of turbulent

flow.
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Finally, some experiments on the film might be mentioned. Except
for one earlier experiment in which we used a double beaker, the
observations made on the transfer film always refer to flow under the
critical rate. A number of experiments have now been made with
film flow at less than the critical rate. First of all, the experiments
with double beakers have been repeated under conditions that pre-
vented the establishment of temperature differences between the
three volumes of liquid helium connected by the two films. This was
a point on which we had not been quite sure in the earlier work, but
the present experiments have completely confirmed our earlier results.

This double-beaker experiment, which was designed in close analogy
to an electric circuit containing a superconductor, is probably the
most direct and the most sensitive test for the absence of dissipation

in the flow of liquid helium.
Subcritical flow was also observed in experiments in which the film

was drawn through a narrow slit above the liquid level into a vessel

to which heat was supplied. In this way flow rates of any velocity

up to the critical velocity could be produced. The results of this

work show that it is quite impossible to produce film flow at rates

beyond a critical flow rate that depends on temperature. Above this

limit the flow rate remains at the critical value and is independent of

the heat input. At low heat inputs, on the other hand, the flow rate

was found to be exactly proportional to the rate of heat supply, thereby
showing the complete absence of a velocity-dependent friction, such as

is postulated by Gorter and Mellink for the bulk liquid.

A third set of experiments was concerned with the manner in which
bulk liquid is changed into the film and back into bulk liquid. These
observations showed that when bulk liquid is allowed to run down
onto a surface that is larger than the circumference of the container
from which this liquid originally issued, it will form a true film again.

Thus it is shown that even below the highest liquid level in the system
a film can be formed that obeys the same rules as the film above the

liquid level.
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38. Transport Rates of the Helium II Film

Over Various Surfaces
1

by Jay Gregory Dash 2 and Henry A. Boorse 3

Liquid helium n film transport over various surfaces has been studied by a
new method in which a cylindrical capacitor, using liquid helium as the dielectric,
is employed as a depth gage. Changes of liquid level in the capacitor resulting
from film transport produce changes in capacitance, which in turn cause fre-
quency changes in a high-frequency circuit. The details of this method of meas-
uring changes in liquid level are described. The film transport rates, meas-
ured to 1.25° K, were found to depend on the surface over which the transport
takes place; at 1.25° K the highest rate observed was 51X10-5 cm3/sec cm for
etched copper and the lowest, 7.5X10-5 cm3/sec cm for glass. The rates were
also measured at various temperatures over iron in the magnetized and unmag-
netized state and over a superconductor in the superconducting and in the nor-
mal state. No differences were noted. In the latter case, the thermal conduc-
tivity of the container is abruptly changed by the application of a greater than
critical magnetic field; the absence of an effect supports the view that heat trans-
fer plays no significant role in determining the transport rate.

Introduction

The pioneer investigations of Daunt and Mendelssohn [1]
4 on the

properties of the He ii film indicated that the transport rate was not
affected by the underlying material. This conclusion was reached as

the result of an exploratory investigation, in which a copper beaker
was used instead of the glass containers employed for the most part
in the study, and as a result of the transfer over copper wires. Fur-
ther investigation of this aspect of the transfer appears to have been
neglected until recently, when the present authors [2, 3] and Men-
delssohn and White [4, 5] described experiments which show that the
original conclusion is not substantiated. The purpose of the present
paper is to set forth in greater detail the experiments which led to

this altered viewpoint.
Before proceeding with this description, it may be worth while to

point out that theories of the He ii film have been advanced by Frenkel

[6], Schiff [7], Temperley [8], and Bijl, de Boer, and Michels [9]. The
first two authors have considered helium atoms to be under the influ-

ence of gravity and of the van der Waal attractive forces of the walls.

This treatment indicates that film thicknesses on conducting surfaces

are greater, by about a factor of two, than films on dielectrics. Film
flow, according to Frenkel, should be limited by viscosity. For He n
the theoretical result becomes ambiguous because of the presence of a

zero viscosity, or superfluid, component. Temperley has treated the

film as an adsorbed phase in which He atoms occupy bound sites on
the surface of the solid wall. The adsorbed layers farthest from the

wall are assumed to occupy only a fraction of the available sites, and
film flow is considered to arise from a transition of atoms from their

existing sites to empty neighbors. The influence of the wall is con-

1 Sponsored in part by the Office of Naval Research.
2 Columbia University. Research completed under an AEC Predoctoral Fellowship. Present address,

Los Alamos Scientific Laboratory, Los Alamos, N. Mex.
3 Barnard College, Columbia University, New York, N. Y.
4 Figures in brackets indicate the literature references on p. 181.
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siderably smaller for these layers than the influence of the underlying
He layers, and film flow rates should be essentially the same for all

wall materials. Bijl, de Boer, and Michels limit the film thickness by
means of the De Broglie wave length of the superfluid particles, thus
implying that film thickness and transport rate are independent of

surface material. Finally, it may be mentioned that no attempt has
been made to account for the fact that the film flow is directed toward
a region of lower gravitational potential.

The general disagreement between these proposed explanations of

the Hen film and the fact that no data for transport over surfaces

other than glass, except that of Daunt and Mendelssohn’s, existed at

the time our studies were initiated, led us to undertake a more thorough
examination of this part of the phenomenon.

Experimental Method

The method which has been used by most investigators to measure
film transport rates consists in observing, by means of a cathetome ter,

the change in height with time of the free surface of a small volume
of liquid Hen contained in a transparent vessel. The free surface

must, of course be either above or below the level of the main bath
in order for film transport to occur. In determining the rate, allow-

ance must be made for the loss due to the evaporation of liquid helium
in the transport vessel during the period of observation. If significant

evaporation takes place, then the measured rate for film flow from
the container will be higher than the true value, and the measured rate

into the container smaller than the true value. It has been customary
to average these rates to correct for evaporation and to thus obtain
the “true” value of the transport rate at any temperature; this pro-

cedure is certainly a step in the direction of accuracy, but it should
be noted that not enough is known about the transport to be sure that

other factors are not present, which, in the absence of evaporation,
might produce a difference between the outward and inward transport.

Although the optical method has the virtue of simplicity and
directness, it also suffers from the defect that it requires an external

source of radiation to illuminate the film and the helium container.

This source of radiation must be filtered to exclude infrared; otherwise
the measurements are seriously disturbed. The optical method also

loses some of its directness if the transfer over opaque materials is to

be studied; in this case an auxiliary transparent vessel must be used
and the change of the liquid level in the transparent vessel used as a

measure of the change of liquid level inside the container. Finally,

the optical method appears to be entirely unsuited to measurements
in the region below 1° K as in this region radiation from external

sources seriously interferes with temperature stability. For these
reasons it was decided to abandon the method of direct observation
and to attempt the development of a more favorable technique.

In this connection the dielectric properties of liquid He n appeared
to offer several very desirable features, namely, a very low dielectric

loss [10] and an electric polarization practically independent of tem-
perature [10, 11] in the Hen range. Experiment showed that if the
liquid were introduced as the dielectric in a closely spaced cylindrical

capacitor, connected in a high-frequency circuit, the resulting change
in frequency could easily be determined.
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To apply this method to the determination of the transport rates
of liquid Hen, the arrangement shown in figure 38.1 was adopted.
Here the cylindrical capacitor having a core, Ci, and a shell, C2 ,

is

centered, by means of a threaded post, in the container or “bucket”,
B, constructed from the material over whose surface the transport
rate is to be determined. Ci and C2 are insulated from each other by

Figure 38.1. Detail of transport-vessel assembly showing capacitor depth
gage and radiation shield.

four longitudinal strips of Teflon spaced at 90° intervals, the mean
annular separation between the capacitor walls being 0.005 in. A
small hole, b, drilled through the bottom of shell C2 allows free passage
of the Hen between the bucket and the capacitor annulus. Thus
the capacitor is used as a depth gage for the liquid in 5, and any change
in the liquid level in B due to transport or evaporation, or both, causes
a corresponding change in the liquid level in the capacitor. This in

turn is reflected as a frequency change in the oscillating circuit, of

which the capacitor is a part. The time taken to determine a trans-

port rate (the number of milliliters of liquid transported per centimeter
of periphery per second) at any given temperature is determined by
the periphery of the bucket and the volume of liquid contained within
it. Typical dimensions for B were 0.625 in. inside diameter and 1.7-in.

over-all length.
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The bucket and depth gage assembly were enclosed by a copper
radiation shield, S, pierced by holes S' and S". These holes allow
free passage of the liquid in filling B. During a rate measurement
the bottom of the shield is immersed in the bath in order to minimize
any temperature gradients between the bath and the bucket. As a
result of the holes, S', the pressure above the bath and bucket B are
maintained equal. The whole assembly is fastened to a Lucite rod,

L, which in turn is suspended by a string attached to a winch at the
top of the cryostat. The general arrangement is shown in figure 38. 3.

The inner cylinder, Ch of the capacitor was electrically connected
to the external measuring apparatus by the fine copper wire, h; the
outer cylinder, C2 ,

was grounded outside the apparatus by means of

the copper wire, g.

Figure 38 . 2 . Block diagram of the measuring circuits.

The circuit for measuring the frequency changes is given by the
block diagram in figure 38.2. The cylindrical capacitor is connected
in parallel with the tuned circuit of radio-frequency oscillator of

high stability [12] and a voltmeter to provide a continuous reading
of the circuit excitation. An amplifying and buffering stage feeds

the oscillator signal to a heterodyne frequency meter, oscillating at

nearly the same frequency. The beat note is observed on an oscillo-

scope and fed to an audio amplifier. This amplified signal is connected
to a simple frequency discriminator consisting of a large resistance

in series with an air-core inductance. The voltage across the induct-

ance, proportional to frequency, is rectified, filtered, and supplied
to a recording potentiometer. It is thus possible to obtain an instan-

taneous and continuous record of the liquid level in the capacitor.

The frequency dependence of the potentiometer circuits is obtained
by calibrating the recording potentiometer response by means of the
harmonics of line frequency, as seen on the oscilloscope. Alterna-
tively, depth measurements can be made by reading the vernier

scale of the frequency meter, with the beat frequency set to zero on
the oscilloscope.

The fractional frequency change of the oscillator from the com-
pletely full to the completely empty condition of the capacitor was
approximately 1 percent of the mean frequency. The frequency
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instability of the oscillator and heterodyne frequency meter was
approximately 60 cps/hr at 100 kc. Under the experimental condi-
tions the emptying times for the various buckets ranged between
extremes of about 2 and 30 minutes. The over-all reproducibility

Figure 38.3. Arrangement of helium cryostat and transport-vessel assembly.

of the observations, including the small frequency drift, is estimated
at about 5 percent.

Cryostat Design

The mechanical mounting of the depth gage and container assembly
within the cryostat is shown in figure 38.3. The inner He Dewar is

of Pyrex glass completely silvered except for a half-inch clear vertical

stripe. Copper-glass seals Ji and J2 provide vacuum-tight joints

between the Dewar and its top cap and a pump line, respectively.

Liquid helium was introduced through filling tube F, and was
subsequently cooled by pumping through tube P. Helium-bath
temperatures were determined by a vapor-pressure thermometer,
consisting of mercury manometers attached to the low-conductivity
tube, V, which terminated at the bottom of the Dewar.
The vacuum-tight winch, W, previously noted, was used to raise

and lower the container assembly, S. Wires h and g are brought
out of the cryostat through the seals, K. Several Pyrex glass con-
tainers, M, attached to the supporting rod, L, were used to check
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transport rates over glass by the visual method. If solid air contam-
ination were present, abnormal rates were observed and measure-
ments were discontinued.

Experimental Details

Bowers and Mendelssohn [13, 14] have demonstrated that films of

solid air deposited on transfer surfaces lead to He transport rates

considerably higher than those obtained with clean surfaces. Ac-
cordingly, precautions were taken to avoid this contamination.
Before filling the inner Dewar with liquid helium, the liquid space
and pumping lines were successively evacuated and filled with pure
He gas.

Precooling to liquid-nitrogen temperatures was achieved by filling

the outer Dewar with liquid nitrogen. He transfer gas was then
introduced to the annulus, A. After the establishment of temperature
equilibrium within the He space, A was pumped to a high vacuum.
Liquid helium was then transferred into the cryostat.

Vapor pressures of the liquid helium were determined by a 12-mm
bore absolute mercury manometer and a calibrated Dubrovin scale-

of-nine vacuum gage. Vapor pressures were maintained constant to

0.1-mm by a manostat-controlled [15] solenoid valve located in the
pumping line. Heat influx to the He bath, measured by the rate of

descent of the liquid level, was approximately 50 cal/hr, and a single

filling of liquid sufficed for 7 hours of experimentation.
Calibration of the depth gage with changes in depth of the liquid

He in the container was carried out as follows: The container was
lowered into the bath until fully immersed, and the bath maintained
at a convenient constant temperature below the lambda point. Os-
cillator frequency readings and cathetometer observations of the bath

Figure 38 .4 . Depth-gage calibration curve (4-1 divisions/cm)

.
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level were taken simultaneously as normal evaporation caused the
liquid level in the He Dewar to fall. The rate of decline of the bath
level at the calibrating temperature was considerably smaller than
the rate of fall of liquid level in the bucket arising from film transport.
This condition assured that the levels of the liquid in the bath and
in the container dropped at the same rate. The calibration procedure
therefore gave an over-all measure of depth gage “sensitivity” in

frequency-meter scale divisions per centimeter change in liquid level.

The most frequently used depth gage had a sensitivity of 4.10 ±.06
div/cm. A sample calibration, obtained by adjusting the frequency
meter so that the oscilloscope showed a zero beat, is given in figure 38.4.

To verify that the radio-frequency field within the capacitor had
no effect on the transport rate, the bucket was next filled by immersion
in the bath and then raised so that emptying transport took place.

For this check, the output of the frequency meter was connected to

the recording potentiometer and the deflection of the recording pen
observed versus time elapsed in minutes after lifting the bucket. The
result is shown in figure 38.5. It will be noted that the oscillator

Figure 38.5. Effect of radio-frequency field on the transport rate; (emptying trans-

port ) T—1.3° K.

was switched off for 1 minute during the course of the transport. If

the radio-frequency field had produced any appreciable heating,

either as a result of dielectric loss in the helium or the Teflon spacers,

this effect would have been apparent as a parallel shift of the upper
linear segment of the emptying trace to the right of the extension of

the lower segment of the trace. (Removing heat would make the

emptying time longer.) No such displacement is apparent nor was
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any found in the numerous checks that were taken during the course
of the measurements.

Optical determinations of transport rate * over the auxiliary con-
tainers of Pyrex glass were made at the beginning of each experiment
to determine whether the surfaces had been contaminated with solid

air. If contamination had occurred, as evidenced by a different rate

than that previously determined for glass [1], measurements were
abandoned for the day and the apparatus warmed to room temper-
ature and flushed thoroughly with pure He gas. In order to detect

the possible progressive contamination of surfaces during the course
of a run, measurements were taken at successively lower, and then at

successively higher temperatures. Transport rates taken at the
beginning and at the end of the run were then compared.

Rates were obtained both for filling and emptying the various
containers. No significant differences were observed for these two
conditions. This result indicated the effectiveness of the radiation

shield and the absence of any significant heat leak to the bucket
assembly.

Results

The dependence of transport rate on the position of the liquid

level below the container rim was found to correspond qualitatively

with the results of other investigators [1, 5, 16]. A typical emptying
curve, given in figure 38.6, shows the initially varying rate while the

Figure 38.6. Typical liquid level versus time-empting curve for determination of
transport rate.

liquid level is near the lip of the container, and the constant rate

thereafter. (As noted in the figure, frequency changes were deter-

mined in this instance by noting the beat frequency in multiples of

60 cycles as presented on the oscilloscope.) All transport rates

given in the various final results correspond to the constant rates

determined from the straight portions of the curves.

Copper

Initial measurements with a carefully machined copper vessel

yielded a maximum film transport rate approximately twice that
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previously published for glass. To verify this result, a number of

measurements was made with containers of varying dimensions, the
annular liquid spaces ranging from 0.005 to 0.090 in. Within the
experimental error, the results were identical, a typical determination
being shown in figure 38.7. As a check on these measurements, the

Figure 38.7. Film-transport rate for machined copper and check point for Pyrex glass.

transport at 1.3° from a Pyrex glass container was studied by the

depth-gage technique. The result was identical with that of Daunt
and Mendelssohn [1].

A machined-copper container that had yielded transport rates as

shown in figure 38.7 was etched for 2 minutes in 0.1 N nitric acid

and then reinstalled in the cryostat. This container gave the high
rates shown in figure 38.8. Owing to an insufficient amount of

liquid helium in the bath during this experiment, only three rate de-

terminations could be made at temperatures below 1.89° K. The
shape of the curve therefore cannot be determined with the same cer-
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taintv as the other two in this figure. Nevertheless, it appears that

all three are similar in showing an increasing rate at the lowest tem-
peratures reached.

Microscopic examination of this etched surface indicated consider-

able surface roughness, and this may contribute to the high transport
rate. Attempts were made to determine the increase in perimeter
by photographing the container edges under high magnification, but
the results were not considered reliable for comparison purposes.

The etched container was then allowed to oxidize in air for 2 days
at room temperature. The result of this treatment, also given in

figure 38.8, shows a large decrease in rate, together with some change
in temperature dependence.

In order to observe additional effects of surface preparation, meas-
urements were made on a burnished-copper container. The effect

of burnishing, i. e., the production of an amorphous surface layer by
high local temperature and pressure during polishing, is seen from
figure 38.8 to reduce the rate still further but to produce a temper-
ature dependence similar to the etclied-and-oxidized material.

Stainless Steel

The results of a single run on machined 18-8 stainless steel are

presented in figure 38.9 The curve appears similar to that for

burnished copper, there being a continued increase in rate with
decline in temperature.

Lucite

It was considered desirable to determine the transport rate over
the surface of a dielectric other than glass and owing to its machin-
ability, Lucite was chosen. The container surfaces were polished
with rouge after machining. This vessel showed the unusual tem-
perature dependence exhibited in figure 38.9. Numbers alongside
the experimental points refer to the chronological order in which the
data were taken; it thus appears that the peak at 1.5° was reproduced.
The singular nature of the curve is noteworthy. The results, however,
are submitted as tentative, pending further investigation.
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Lead and Iron

An exploratory investigation was made of the possible effects of
ferromagnetic and superconducting substratum on the transport rate,

using, respectively, cold-rolled steel and lead vessels. The data for

these two materials are given in figure 38.10.

Figure 38 . 10 . Film-transport rate over lead in the normal and superconducting
states, and over iron with and witho ut an externally applied magnetic field.

If a transfer of heat plays a part in determining the transport rate,

it might be expected that an abrupt change in the thermal conduc-
tivity of the container material would disclose this effect. It is

rather striking to realize that such an abrupt change can be brought
about by applying a magnetic field of sufficient strength to a super-
conductor, the thermal conductivity in the superconducting state

being usually much smaller than in the normal state at the same
temperature. Lead, for instance, at 2° K shows conductivities [17]

differing by about 900 percent.

A lead container was therefore constructed and measurements of the
transport rate were made with the metal in the superconducting and
in the normal state; as figure 38.10 shows, no appreciable difference

in the rate was observed. It should be remarked, however, that the

experiment was carried out after a dark oxide layer bad formed on
the surface of the material. Although it seems unlikely that this

circumstance should have completely masked an effect if it were
present, further investigation is planned.
Measurements of the transport rate over a magnetized and unmag-

netized ferromagnetic surface were made, using cold-rolled steel.

Although the fields applied in this case (up to 1 ,400 oersteds) were not
sufficient to produce saturation, here again the absence of any percep-

tible effect makes it seem unlikely that any effect exists (fig. 38.10).

Discussion of Results

All experiments on the transport of the helium film have lead to the

conclusion that other conditions being the same, the transfer of liquid

from a container to a bath is limited by the narrowest part of the con-
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taming surface located above the upper liquid level. Under the con-
ditions prevailing in these experiments, this narrowest part is the
inner perimeter of the transfer vessel B of figure 38.1. As the film

is of the order of 10
-6 cm thick, it might be expected that the geometric

perimeter would have little meaning as far as the transport is con-
cerned, and that instead, the film would “see” the microscopic perim-
eter and its flow would be adjusted accordingly.

If this were true, it would appear reasonable to expect that a given
glass vessel would not maintain its rate with age or with extreme tem-
perature cycling over a period of months; microscopic surface cracks
could increase in depth or in number or both, or alternatively it might
be argued that a microscopic deposit from whatever source would in

time tend to reduce the surface roughness. In any event such changes
would be apparent as an altered transport rate. Apparently no
effect of this kind has been observed. This suggests that the micro-
scopic perimeter is not the effective perimeter for transport, a view
that is supported by the agreement of the transport rates obtained
from the various machined-copper containers, all of which gave rates

as shown in figure 38.7

An extension of this argument against the effectiveness of the micro-
scopic perimeter may be made by noting that if the transport were
a function of the temperature and the microscopic perimeter and
nothing else, then all substances should show rates, which, while
differing from each other, should exhibit the common characteristic

of rising like glass to a maximum value at approximately 1.5° K and
remaining sensibly constant thereafter. A glance at figure 38.11. in

Figure 38.11. Comparison of the transport rate over various surfaces.

(1) etched copper; (2) etched and oxidized copper;
(3) burnished copper; (4) lead; (5) machined copper;
(6) iron; (7) 18-8 stainless steel; (8) glass.

which the rates for the various substances are plotted on the same
scale, shows that this is not the fact. Although glass, machined
copper, and iron show similar curves, the others (omitting lucite)

display the distinctly different characteristic of a rising rate down to

the lowest temperatures reached. It thus appears to be a legitimate

conclusion that the substratum plays a significant role in the trans-

port phenomenon.
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It is rather interesting to observe that support for this view can
also be drawn from the experiments of Bowers and Mendelssohn [14]

on the effect of thin layers of solid gases deposited on the walls of a

glass transport vessel. They found that as additional amounts of solid

air, neon, or hydrogen were added to the glass surface, the rate in-

creased to a saturation value and further addition produced no effect.

This may be explained by assuming that as the first layers or partial

layers are laid down, both the glass and the solid gas are effective as

a substratum in determining the rate, but as more gas is added, the
solid formed finally covers the glass surface to such a thickness that
the transport is characteristic of a solid air, neon, or hydrogen surface.

These layers do not need to be very thick to significantly alter the
transport as their effect on the transport can be readily detected, even
though the solid gas is not visible. The He n film is thus presumably
thicker than the first solid-gas film, and on this basis could not affect

the perimeter for transport. It would appear, therefore, that it is the

substratum and not an altered perimeter that is the effective agent in

changing the transport rate.
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39. Adiabatic Oscillations in Liquid Helium

by John E. Robinson 1

Abstract

Adiabatic oscillations of liquid helium n in communicating vessels

were discussed, with a view to a new way of measuring the entropy of

helium n by mechanical means.

1 Duke University, Durham, N. C.
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40. Helium n Films

by D. G. Henshaw 1 and L. C. Jackson 2

In a previous paper [2]* an optical method has been described for
measuring the thickness of the helium film. The method is based on
the fact that plane polarized light is reflected from a metallic mirror
as elliptically polarized light. A thin film of transparent material
covering the mirror changes the ellipticity of the light, and if the
optical constants of the system are known, this change in ellipticity

can be correlated with the thickness of the film. Using this method,
measurements were made of the thickness of the helium film formed
on a stainless-steel mirror (to increase the accuracy of setting the
mirror was coated with monolayers of barium stearate [6]) at heights
above the liquid surface of 2 to 12 mm and for temperatures from
1.1° K to the A-point. The measurements have now been extended
to greater heights above the liquid-helium surface.

In order to do this, a stainless-steel mirror 7 cm long, 1 cm wide,
0.2 cm thick, and optically polished on one face was prepared. A
layer of barium stearate one molecule thick was deposited on the upper
5 mm of the mirror and a layer three molecules thick on the rest of the
mirror, giving a sharp horizontal “1-3 boundary” near the top of the
mirror. The latter was supported from its base by a nickel wire and
was mounted inside a radiation shield of copper. Two slits were cut
in the upper part of this shield for the incident and reflected beams.
The nickel rod supporting the mirror and shield was spot-welded to a
tungsten rod, which was in turn sealed into a long glass rod supported
from the upper part of the helium cryostat. Two cotton wicks,

bound on to the radiation sheild, formed a path for the transfer of

liquid from the main bath to the top of the shield and the support
where it evaporated. This served the dual purpose of ensuring tem-
perature uniformity of the enclosure surrounding the mirror and of

causing the liquid-helium level to fall at such a rate that it traversed

the whole mirror in some 2 hours, a convenient rate for the observa-
tions. The measurements were made in a small Linde-type liquefier

of the pattern used in this laboratory [3],

To verify that the results obtained with the “long mirror” agreed
with those previously obtained with the “short mirror”, thickness

versus height curves were plotted for T=1.49° K over the range 0.25

to 1.2 cm (fig. 40.1). In this figure, film thickness has been assumed
to be proportional to the change in nicol reading (a procedure that is

correct for the readings with the long mirror but not quite correct for

the short one), and as different optical systems were used for the two
curves, the thicknesses have been arbitrarily equated at the 1-cm
height level. The agreement of the two sets of readings is reasonable,

the maximum deviation being of the order of 10 percent. It was
thought that this agreement was sufficient to warrant the extension

of the thickness measurements to a height of 7 cm above the liquid-

1 H. H. Wills Physical Laboratory, University of Bristol, Bristol, England. On leave from the National
Research Council of Canada.

2 H. H. Wills Physical Laboratory, University of Bristol, Bristol, England.
Figures in brackets indicate the literature references on p. 190.

183



Figure 40 . 1 . Film thickness versus height at T 1.45° K for “short mirror” and for
“long mirror.”

©, Short Mirror; Q> long mirror.

helium level. A series of measurements were then made at 1.26°,

1.49°, 1.70°, 1.80°, and 1.92° K. Table 40.1 gives film thicknesses as

a function of height at a given temperature. The values in the table

are the average of at least two distinct determinations.
The thickness at a height of 1 cm at a temperature of 1.49° K

measured with the long mirror and the beaker mirror (to be described
later), together with Atkins’ observations of film thickness on glass,

are shown in figure 40.2.

Figure 40 . 2 . Film thickness versus temperature at height of 1 cm.

O, long mirror; ©, beaker mirrGr; , Atkins.
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When log-log plots are made of the thickness at any temperature
as a function of the height of the film, approximately straight lines are
obtained, so that to a first approximation the thickness can be repre-
sented by an expression of the type t=K0lh

1/n
,
where n has the values

to be found in table 40.2.

Table 40.1. Film thickness as a function of height, h, and temperature, T

h

Thickness at -

1.26° K 1.49° K 1.70° K 1.80° K 1.92° K

cm cm cm cm cm
1 1. 66 x 10-« 1. 66 x 10"6 1. 70 x 10-6 1. 82 x 10-6 1.88x10-6
2 1.38 1.47 1.46 1. 50 1. 57

3 1. 19 1.23 1.26 1. 28 1.36
4 1.00 1.01 1.03 1.08 1.17
5 0. 88 0. 91 0. 90 0. 97 1.02
6 .82 .84 .87 .88 0.90
7 .75 .75 .83 .84 .82

Table 40.2.

Temperature K n

°K
1. 26 1. 70 x 10-6 2.59
1.49 1. 76 2. 52

1. 70 1. 78 2. 59

1.80 1.90 2. 47

1.92 2. 00 2. 38

When finally analyzed the measurements on the thickness of the

stationary helium n film will give some information about the forces

of attraction between the helium atoms and those of the substrate.

The phenomena of “creep” of helium n—the transfer of liquid with or

without a difference of gravitational potential by means of the film

—

are of considerable importance because the laws governing the rate of

transfer are not those of ordinary hydrodynamics. Measurements
have now been made on the thickness of the moving him with a view
to obtaining information on the mechanism by which the liquid is

transferred. By combining the thickness measurements with others

of the volume rate of transfer, the average velocity of the liquid helium
in the creeping him has been deduced.
The optical method used in the determination of the thickness of

the stationary helium him can also be applied to the moving him.

A cylindrical stainless-steel beaker with an external diameter of 6 mm
and an internal diameter of 4 mm has a strip 2 mm wide ground on the

outside parallel to the axis and polished to form a plane mirror. Bar-

ium stearate layers deposited as before on the outside of the beaker

give a “1-3 boundary” about 4 mm below the rim of the beaker and
so permit the measurement of the thickness of the moving him on the

outside of the beaker at the position of the boundary. A glass capil-

lary tube, B, (hg. 40.3) is attached to the bottom of the beaker by
means of a Kovar-glass seal and a copper-nickel tube, the latter sup-

porting the beaker inside the radiation shield, C. The variation of

the level of the liquid helium in the beaker can then be followed by
observing the meniscus in the glass capillary by means of a traveling
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microscope. The disk, D, serves to maintain the beaker central in

the unsilvered tail of the liquid-helium Dewar, and the complete
assembly is supported by a glass rod that can be moved up or down
and rotated about a vertical axis. The glass beaker, E, containing

Figure 40 . 3 . Mirror beaker with radiation shield and support.

liquid helium serves to provide additional thermal protection for the
stainless-steel beaker during the observations. Figure 40.4 is a gen-
eral view of the experimental arrangement.

The procedure in any set of observations was as follows. With
the steel beaker completely immersed in the liquid helium the tem-
perature was set to some deshed value below the X-point and the
beaker then raised until the 1-3 boundary was at some known height
above the outer liquid -helium level. Simultaneous observations
were then made of the film thickness and of the liquid-helium level

inside the beaker as a function of time. The position of the outer
level did not change appreciably during the time required for the

beaker to empty by creep. The temperature was then raised to a

few tenths of a degree above the X-point and the zero setting of the

nicol determined. The whole procedure was then repeated for other
values of the height of the measuring point above the liquid-helium

level and for different temperatures covering the range 1.1° to 2.0° K.
A further series of observations was made by partially immersing
the empty steel beaker in liquid helium n and by observing the film

thickness And creep rate as the beaker filled.
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Figure 40.4. General view of apparatus.

A typical curve for emptying the beaker is shown in figure 40.5,

where the level of the liquid inside the beaker is plotted as a function
of the time (T=1.89°K). It exhibits the usual features of such a
curve, a high and variable rate of transfer of helium for the first 3 mm
from the rim of the beaker, followed by an almost constant rate until

the inner and outer levels are almost coincident. In the case of

filling, the observed rate of transfer is constant except for the last

millimeter or so of difference between the levels. The observed film

thickness is independent of the position of the inner level over the
range in which the transfer rate is constant. Within the accuracy
of the observations, the thickness of the moving film at a given height
and temperature is the same as that of the stationary film as deter-

mined on the “long mirror”.
Table 40.3 shows some typical results for a height of 1 cm above

the outer liquid level, showing the measured volume rate of transfer

and the measured film thickness. The value of the thickness at 2.0° K
is an extrapolation of the curve beyond the last measured point at
1.94° K. The fourth column gives the average velocity of flow of

the helium, assuming that the whole of the liquid is moving with

187



TIME, MINUTES

Figure 40.5. Creep curve for mirror beaker at T 1.89° K.

the same velocity throughout any cross section of the film. If, on
the other hand, one makes the usual assumption that only the super-
fluid component of the helium n moves in the film transfer and that
the film has the same normal fluid-superfluid composition as the
bulk liquid, one obtains the velocities, v s ,

given in the fifth column.

Table 40.3.

T V t V V S

°K (cm/sec)/cm cm cm/sec cm/sec

1.1 16. 9X10-5 1. 63X10- 6 69 70
1.3 16.9 1.63 69 73
1. 5 16.8 1.66 68 77
1.7 16.1 1.82 59 79
1.9 12.8 1.94 44 79
2. 0 8. 5 (2. 06) (27. 5) (65)

As the point of observation (the 1-3 boundary) was 3.8 mm below
the rim of the beaker, the velocities given in table 40.3 have to be
increased by approximately 11 percent to give the actual values of

v or v s at the rim on the outside of the beaker. If it is assumed that
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the thickness of the film on the inside of the beaker varies with height
above the liquid level in the same way as that of the film on the out-
side, then when the inside level is nearly the same as that of the liquid

outside, the maximum velocity of the liquid on the film will be that
at the rim on the inside of the beaker. Thus for the conditions of

table 40.3 (1-3 boundary 1 cm above outside liquid level) this maxi-
mum velocity will be obtained by multiplying the figures of column 5

of the table by 1.1 Xr2/rl= 1.65 (ru the inner radius of beaker= 2 mm;
r2 ,

the outer radius= 3 mm). Thus the maximum velocity of the
superfluid at 1.1° K becomes 116 cm/sec and at 1.9° K, 130 cm/sec.

Insofar as the volume rate of creep is independent of the difference
in height of the inner and outer surfaces of the liquid helium at any
temperature, the relation v st= constant, is satisfied for the data given
above. The average velocities, v s are, however, considerably greater
than those given by the relation

v s= h/4:rimt,

where h is Planck’s constant, and m is the mass of the helium atom,
which has been suggested as applicable to the helium film [1, 4, 5].

Using the above expression, one obtains from the data given in table

40.3 zh= 48.4 cm/sec at 1.1° K and F,s= 40.7 cm/sec at 1.9° K.
The values for the thickness of the film and the volume rate of

creep all refer to those conditions for which a constant rate of creep
was observed, i. e., from point B of figure 40.5 onward and similarly

for other temperatures. In the earlier part of the curve from time
zero up to the point B a very striking phenomenon is observed. When
the full beaker is lifted partly out of the liquid, the part of the mirror
not immersed is seen to be covered with a large number of bright
specks of light moving downward and eventually disappearing into

the liquid helium below. Fifty or more may be simultaneously visible

immediately after the beaker has been raised, corresponding, on the
assumption of a uniform distribution, to some 500 specks on the outside
of the whole beaker. As the level of the liquid in the beaker falls,

the number of specks decreases steadily, and the phenomenon ceases

when the inner level is a few millimeters below the rim of the beaker. 3

Thus in figure 40.5 the observer reported that at point A the number of

specks visible had decreased considerably, at point B only two or three

specks could be seen, and at point C no specks were present. It will

be seen that the region in which the specks are present coincides closely

with that in which an anomalously high creep rate is observed.

The bright specks, which are obviously “drops” of liquid helium,

are somewhat elongated in the direction of motion, are Xo to % mm
long and move downward with a velocity of about 1 cm/sec. It is

not yet possible to say anything quantitative about the dimensions
of the drops in the direction perpendicular to the mirror. They are

certainly much thicker than the normal creeping film observed when
the drops have ceased, as it is not possible to measure their thickness

with the existing mica compensating plate. The drops are too small

for it to be possible to determine visually whether they show inter-

ference contours. It is thus not yet possible to state whether the

drops account quantitatively for the extra rate of transfer in the ini-

3 It was proved by separate experiments that the specks are not liquid helium ir, which clings initially to

the beaker as the latter is lifted and then drains hack into the liquid below. The beaker cannot be lifted

rapidly enough for this effect to be observed in helium i,t.
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tial part of the creep curve. However, it seems reasonable to suppose
that the straight part of the creep curve represents a flow of helium n
characteristic of the continuous film, and that in the initial curved
part the excess helium is transported in the form of discrete drops.

It will be noted that these drops move much more slowly than the
film itself and presumably slide over the surface of the latter.

The length of time during which the drops are visible has been
studied as a function of the temperature and of the height of the rim
of the beaker above the outer level of the liquid helium. With the
temperature held constant at 1.5° K the length of time during which
drops were visible rose from 10 sec when the rim of the beaker was 2.5

mm above the outer liquid-helium level to 100 sec when the rim was
7.5 mm above the liquid and then remained constant as the distance
was increased to 30 mm. The same kind of variation was observed at

other temperatures, the maximum duration of the drops rising from
88 sec at 1.1° K to 250 sec at 1.9° K.
The drop phenomenon has also been observed with a clean stainless-

steel surface not covered with barium stearate, and with a glass beaker,

the plane mirror of which was coated with aluminium.

[1] A. Bijl, J. de Boer, and A. Michels, Phvsica 9 , 655 (1941).

[2] E. J. Burge and L. C. Jackson, Proc. Roy. Soc. (London) [A] 205
, 270 (1951).

[3] L. C. Jackson and H. Preston-Thomas, J. Sci. Instr. 28, 99 (1951).

[4] F. London, Report Inti. Conf. Low Temp., Cambridge, p. 1 (1946).

[5] K. Mendelssohn, Report Inti. Conf. Low Temp., Cambridge, p. 35 (1946).

[6] A. Rothen, Rev. Sci. Instr. 16 , 26 (1945).
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41. Some Preliminary Thermodynamic Studies on
Helium Adsorbed on Titanium Dioxide

by J. G. Aston and S. V. R. Mastrangeio 1

The isotherm of helium on Ti02 (rutile, 10.2 m2
/g) has been accu-

rately measured at 2.41° K and shown to be stepwise, with discon-

tinuities at the end of the “anomalous first layer” and of the suc-

ceeding layer.

The anomalous first layer has exactly twice the density of the solid

under its equilibrium pressure at this temperature.
Heat-capacity measurements in the adsorbed phase at certain

coverages have been made between 1.6° and 2.7° K, paralleling those

Figure 41.1. Specific heat of adsorbed helium compared to the liquid and solid in

bulk.

i School of Chemistry and Physics, Pennsylvania State College, State College, Pa.
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of Frederikse, 2 and with essentially the same results. They can
be shown to agree quantitatively with those calculated by assuming
that each layer makes a contribution to the heat capacity equal
to that of bulk helium under pressure. The effective pressure on
each layer is determined from the shift in the lambda point of succes-

sive layers, which varies from above 30 atm for the first solid layer

to the saturation pressure for the extreme outer liquid layers.

In figure 41.1 are shown graphs of the measured heat capacities

corrected to constant coverage at coverages of 0.956, 1.157, and
1.362 cm3 STP of helium per gram, respectively The dotted curve
is the calculated one for 1.157 cm3 STP of helium per gram, based
on the curves for bulk helium shown in part by the dot-dashed curves.

Although the precision is of the order of a few percent, the experi-

mental curve may be in error by as much as 40 percent at the high
temperatures where the correction for evaporation into the dead
space is large.

An isotherm has been derived analogous to that of Brunauer,
Emmett, and Teller, based on the assumption that the absolute
values of the energies of the molecules in the layers are related as

follows: Ei=E2=En^>En-i=En_2=EL . This predicts that the so-

called “anomalous first layer” actually consists of n(n= 1,2, 3,

4

or more) solid layers, the value of n, depending on the temperature.
The value of n can be predicted from the pressure on the layers and
the temperature by finding the equilibrium pressure of solid helium
with liquid helium and hence the number of layers with pressures
equal to or higher than this value. The predictions are in agreement
with experimental values of n obtained from B.E.T. type plots

along with solid densities for all observed cases.

2 H. P. R. Frederikse, Pliysica 15, 860 (1949).
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42. Thermal Conductivity of Liquid Helium i

by Claude Grenier 1

The thermal conductivity of liquid helium between 2.2° K and its

normal boiling point at 4.2° K was first reported by W. H. Keesom and
A. P. Keesom. 2 These authors only reported one quantitative result,

viz: 6X10-5
cal/deg cm sec at the temperature 3.3° K. The experi-

ments by Pellam and Squire 3 on the ultrasonic absorption in liquid

helium make it possible to calculate the dependence on temperature
of the heat conductivity if the classical theory of sound attenuation is

assumed valid over the entire temperature range of liquid helium i.

Such a calculation predicts an enormous increase of the thermal con-
ductivity starting at 3° K as the temperature is lowered to the transi-

tion point of liquid helium n. Thus, it was of interest to make a
direct investigation of the thermal conductivity. The results clearly

indicate that the heat conductivity remains nearly constant with
temperature, even quite close to the transition point. A complete
account of the measurements and results has been submitted by the
author to Physical Review for publication.

8

2.0 2.5 3.0 3.5 4.0
Temperature ,°2

Figure 42 . 1 . Thermal conductivity of He i as a function of temperature.

Figure 42.1 shows our experimental results of the heat conductivity
as a function of temperature. At 3.3° K we have very good agreement
with the value given by Keesom and Keesom (see footnote 2). Re-
cently some preliminary results on the heat conductivity of liquid

helium were reported by Bowers and Mendelssohn, 4 and our results

are in agreement with their work. Considering the liquid as though
it were a gas, and using the measured specific heat at constant volume

1 The Rice Institute
,
Houston

,
Tex.

2 W. H. Keesom and A. P. Keesom, Physica3, 359 (1936).
3 J. R. Pellam and C. F. Squire, Phys. Rev. 72, 1245 (1947).
4 R. Bowers and K. Mendelssohn, Nature 167, 111 (1951).

193



and the measured viscosity, we find that the gas theory for heat
conductivity, K=2.5rjc v ,

is rather close to our results. Table 42.1

gives the comparison.

Table 42 . 1 . Heat conductivity of liquid helium i

Temperature.- - - °K . 2. 24 2. 50 3.08 4.2
K, experimental. -.cal/deg cm sec 4.4 4.6 5.1 6.3X10- 5

A", gas theory . __ . 3.7 3.2 3.3 4.5X10-5

Viscosity measured by Bowers and Mendelssohn, Proc. Phys. Soc. [A] 62 894 (1949)

.

Specific heat taken from W. H. Keesom, Helium, p. 218 (Elsevier Press, 1942).
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43. Evaporation Rate of Liquid Helium i

by Aaron Wexler 1

In connection with a study of the emissivity of metals at low temperatures,
a quantitative analysis has been made of the factors involved in the design of
storage containers for liquid helium. Experiments confirm the| analysis, which
has resulted in an exceedingly simple liquid nitrogen protected liquid-helium,
container having a helium evaportation rate of 1 percent per day.
The hemispherical emissivity of commercially polished copper at 4.23° K was

determined for black-body radiation. For radiation corresponding to that
emitted by a black body at 77.1° and 297.1° K, the measured emissivities are
6.9 X10-3 and 1.29 X10-2

,
respectively. These data are discussed in relation to

the recent theoretical work of Reuter and Sondheimer.
The heat of vaporization of helium at 4.228° K was determined to be 4.93 cal

g
-1

,
in substantial agreement with the data of Dana and Kamerlingh Onnes.

Kistemaker’s thermodynamic considerations questioning the accuracy of these
data are evaluated in terms of the new determination.

1. Introduction

The present study of the factors governing the rate of evaporation
of liquid helium is the first phase of an investigation of the emissivity
of metals at low temperatures. There are both fundamental and
practical aspects of this problem. In the wavelength region of

practical interest, the recent theory [1]
2 of the anomalous skin effect

in metals of Reuter and Sondheimer predicts for the low-temperature
emissivity of pure metals a wavelength dependence that is radically

different from that implied by the classical theory. The Reuter and
Sondheimer theory awaits experimental confirmation in this spectral

range.

As will be demonstrated, the experimental check of the quanti-
tative analysis of the factors involved in the flow of heat into liquid-

helium containers can yield data on the low-temperature emissivity
of metals in the interesting range mentioned above. In addition, the
heat of vaporization of liquid helium may be determined concomi-
tantly; this seemed particularly worth while in view of the doubts
raised by Kistemaker [2] on thermodynamic grounds concerning the

accuracy of the experimental determinations of Dana and Kamerlingh
Onnes [3] above 4° K.
A survey of the literature indicates but a single reference [4] to a

storage container for liquid helium. It is a Pyrex glass vessel of 8-

liters capacity, surrounded by liquid air; it was estimated to be able to

hold helium for at least 4 days. Conservative estimates by us
indicated that it should be possible to design an all-metal container of

at least 15 times greater efficiency; this major discrepancy, together
with the facts already cited, militated for the initial approach to the

problem, namely, the emphasis on container design. As is now well

known [5], in the case of liquid hydrogen a detailed study of its

evaporation rate could have led to the discovery of the ortho-para
equilibrium many years before it was predicted and actually found
experimentally. This fact made the study of the reasons for the large

1 Westinghouse Research Laboratories, East Pittsburgh, Pa.
2 Figures in brackets indicate the literature references on p. 209
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difference between the theoretically possible efficiency and the reported
efficiency of helium containers all the more interesting.

The practical interests in efficient storage containers need no
elaboration. The availability of such containers for liquid helium
and for parahydrogen would be of value both to the research work
in a field of increasing activity and to possible applications of low-
temperature phenomena. In addition, such containers might make
make economical the shipping of these elements in the liquid phase
and could eliminate the need for a liquefaction plant on the part of

users of the refrigerants.

2. Analysis of the Problem

Our studies were based on a container of very simple design, as

shown in figure 43.1. The liquid-helium container itself consists of

two concentric spherical shells, A and B, with a high vacuum between
the shells, and C is an Inconel neck tube of low thermal conductance.
The entire container is immersed in another conventional metal Dewar
vessel containing liquid nitrogen.

The physics of a vacuum vessel for the storage of liquefied gases,

with special reference to the storage of liquid oxgyen, has been dis-

cussed thoroughly in the Report of the Oxygen Research Committee of
Great Britain [6]. The Report lists seven causes of heat flow to the
inner vessel of a vacuum container: 1. Conduction through the residual

gas in the vacuum space; 2. convection through the residual gas in

the vacuum space; 3. radiation across the vacuum space; 4. conduc-
tion along the neck of the flask; 5. radiation through the neck aper-

ture; 6. conduction through supporting materials, if any, crossing the

vacuum space; and 7. convection in the interior space of the flask

and neck.
For liquid-oxygen containers, whose ambient conditions are those

of the atmosphere, practically the only factor of importance is radi-

ation across the vacuum space. At the time the Report was written,

conduction through the residual vacuum had to be considered; im-
proved vacuum technique has made this factor negligible. The only
other factor of any consequence is conduction along the neck of the
flask, although its contribution is minor.

It is necessary to reconsider the analysis presented in the Report,
for it will be seen that for a helium container the important factors

are different from those governing the efficiency of an oxygen container.

The vapor pressures of all substances, with the exception of hydro-
gen and helium, are so low at liquid-helium temperatures that the

first two factors become entirely negligible. The last two factors may
also be eliminated. Radiation through the neck aperture, however,
can be of real significance. If the walls of the neck tube were per-

fectly reflecting, the heat-leak effect would be the same as that result-

ing from the piping into the liquid of all of the radiation from a room-
temperature black body of surface area equal to that of the neck-tube
opening. For a neck tube of the size we used (about 1.5 cm in diam-
eter), this would result in an evaporation rate of about 3 liters/day.

As our work dealt with evaporation rates of the order of 100 ml/day,
the contribution by this effect had to be considered, even if only a few
percent of the radiation tunneling down the tube reached the liquid.

Our observations in this connection and the steps taken to minimize
the losses due to this cause will be outlined later.
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The other factors, radiation across the vacuum space and conduction
along the neck of the flask are all important and must be considered
together. The problem to be considered is. the following: The copper
vessel, B, may be regarded as an isothermal body at temperature Th
the temperature at which the helium boils at the given pressure above
it. At a distance, l, along the neck tube, the temperature is fixed at

T2 ,
the temperature of the shielding bath. Heat is conducted down

the tube at the rate, 02 ,
at x— l, Q decreasing as x->0 because of heat

exchange with the effluent gas (see fig. 43.1). The rate of liquid-

helium evaporation is thus determined by QiAQr, i. e., the sum of the

rate of heat entering by conduction along the tube and that due to

radiation heat transfer between surfaces A and B. The calculation

of the evaporation rate may be made in a straightforward manner
on the assumption that heat exchange between the effluent gas and
the neck tube is perfect. Across any section of the tube

Q=kA(dT/dx), (1)

where k is the thermal conductivity of the tube, and A is the cross-

sectional area of the metal wall. If the specific heat of the gas is

denoted by Cp ,
and if n is the number of moles per second of gas

flowing out of the system, the assumption of perfect heat exchange
implies

dQ=nCp dT. (2)

In practice, the termal conductivity of the neck tube is found to be a

linear function of temperature

k=a-\-bT. (3)

The integration of (2) yields

n— A
ICV

(4)

where g=Qi/nCp .

As n is linearly related to +

n=

Q

r), (5)

so that

Qrt=n(j-Cpgy (
6)

Cp is assumed to be temperature independent and equal to the specific

heat at constant pressure of an ideal monatomic gas. The value of (3

is related to the reciprocal of the heat of vaporization, L. If all of

the liquid evaporated were to contribute to n, then /3=L~ l
. Actually,

because the space occupied by the evaporating liquid is taken up by the
vapor, not all of the evaporating liquid contributes to the gas current.

In fact, it may be shown [7] that

0= (1 — PvIpi)/L, (7)

where pv and are the respective densities of the vapor and liquid.
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Calculations based on the foregoing ma}^ be made as follows. The
most interesting calculations are those for the evaporation rate as a
function of the radiation heat transfer, QR . Equation (4) permits
the calculation of n as a function of g. For given combinations of n
and g thus determined, the corresponding values of QR are calculable
from (6). The highest value of g appearing in the calculations is

g=l/P Cp .

The application of these considerations indicated the possibility of
making a highly efficient container for liquid helium. The design in-

dicated in figure 43.1 was chosen for its simplicity and for the possi-

bility it offered of permitting the determination of the radiation heat
transfer to a polished copper surface at the helium boiling point. The
approximately spherical shells were made of spun hemispheres, which
were soldered together. Two containers were studied. Both had
inner spheres that were made of copper whose outer surface was made
highly reflecting by buffing and hand polishing with a commercial
polish. The outer sphere of one of the containers, hereinafter called

container A, was made of monel having a sandblasted inner surface.

The other container, B, had a copper outer sphere whose inner surface

was highly polished by the same method used for the outer surface of

the inner spheres. At the joining diameter of the inner spheres there

was a band of solder; its width was kept less than 0.5 cm. Its surface,

which was highly polished, represented less than 6 percent of the sur-

face area of the inner sphere. The inner spheres had a volume of

9,250 ml and the outer ones a volume of 12,500 ml. The correspond-
ing surfaces facing the vacuum, therefore, were 2,140 cm2 and 2,610

cm2

,
respectively. The neck tube was a 20-cm length of hard-drawn

Inconel tubing, %-inch outside diameter and 0.0 105-inch wall. In the

range of temperatures involved, the thermal conductivity of the metal
is well represented by k= 1.21 T— 2.28 mw cm-1 deg-1

.

3

It is assumed that the bath temperature is at 77.1° K and that that

of the helium is 4.23° K. The other values used are 20.8 w-sec/mole

deg for Cp ;
0.0107 mole/joule for 0; and 4.87 cal/g for the heat of

vaporization of the liquid.

One extreme case is that for zero heat exchange between the effluent

gas and the wall of the neck tube. Under these circumstances, the

evaporation rate is

Qi+Q«=j [o(2’,-r1)+| {Tl-T^+QB. (8)

If QR=0, the upper limit of the evaporation rate for our container

would be 770 ml/day, corresponding to Qx= 0.0227 w.

The other extreme case is the one for perfect heat exchange, which

is a condition very likely to be approached at low rates of flow of a

gas whose thermal conductivity is high. Figure 43.2 shows the results

of the application of eq (4) and (6) to our container. The predicted

evaporation rate for QR= 0 is 82 ml/day, corresponding to Qi— 2.41

X 10~ 3 w. Thus, the importance of good heat exchange is emphasized

by a comparison of this number with that deduced for zero heat

exchange.

3 This relation was deduced from data kindly supplied in advance of publication by J. E Zimmerman,
of Carnegie Institute of Technology. His measurements were made on a sample of metal from the same

lot as that from which our tubing originated. Although the data are good to better, than 5 percent, Mr.

Zimmerman has found large differences in the thermal conductivity, depending upon the temper of the

alloy. Due care must therefore be taken in. the application of this relation to other samples of Inconel.
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The implications of the analysis as indicated in figure 43.2 are very
interesting. It will be seen that as QR increases from zero, the evap-

oration rate (Qi+ Q«) changes rather slowly. This results, of course,

Figure 43.2. Calculated evaporation rate.

from the fact that the increased flow of effluent gas is effective in

substantially reducing Q Y . The calculations show that when the radia-

tion heat transfer rises to a value that is equal to the rate of heat
entering the helium container when QR= 0, the evaporation rate in-

creases by only 20 percent over that for QR= 0. Hence, if for a given
container QR happens to be of the order of or less than Qi when QR= 0,

attempts to decrease QR by using better reflecting materials or incor-

porating radiation shields woidd not appreciably decrease the evapora-
tion rate.

The method for the determination of the heat of vaporization and
of the radiation heat transfer follows directly from eq (6). If the

evaporation rate is plotted as a function of the power Qh dissipated in

a heater immersed in the liquid helium, then when QA
—>0, the evapora-

tion rate will be proportional to Qh . The slope of the straight line is

/3, from which the heat of vaporization may be calculated by means of

eq (7). IVJoreover, the radiation heat transfer is just the separation
between the experimental straight line and that parallel to it and
passing through the origin. Jhus the intercept of the experimental
straight line on the evaporation rate axis is ipcjeed QR .

These remarks may be made more concrete by referring to figure

43.3, which was obtained from the same calculations on which figure

43.2 is based. The curve was drawn for the initia} condition Qi= Qr .
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This method of determining QR makes the assumption that the heat
dissipated in the heater results in isothermal boiling away of liquid

helium. If the heat not only evaporates helium but also raises its

temperature, the effect of Qh upon the evaporation rate would be less

than that shown in figure 43.3, and, in fact, for large values of Qh the

curve of figure 43.3 would curve toward the Qh axis. On the other
hand, the possibility of the removal of liquid in an amount greater
than that corresponding to isothermal boiling by mist and spray that

is carried along with the evaporated vapor was discussed by Dana and
Kamerlingh Onnes [3], from whose paper we have taken the heat-of-

vaporization data for liquid helium. These workers found no evidence
for either of these effects, and in the application of the method out-

lined above it would appear that if for large values of Qh ,
the evapora-

tion rate is accurately linearly dependent on Qh ,
and if the slope is

derivable from the heat of vaporization, this would constitute a con-
firmation of the absence of these undesired effects.

The existence of the initial interval of small slope in figure 43.2 is a

consequence of the large value of for helium. For other liquefied

gases, this interval will be smaller. It is important to note, never-

theless, that the method, indicated in figure 43.3, of separating heat

Figure 43 . 3 . Determination of radiation heat transfer,

transfer across the vacuum space from other sources of heat influx is

usable even for small values of or if the heat exchange is not perfect.

For maximum accuracy in deducing QR by this method, however, it is

manifestly desirable to reduce to a minimum the initial value of Q x .
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3. Radiation Heat Transfer

Radiation heat transfer to a metallic surface, whose resistivity lies

in the residual resistivity range, involves fundamental problems with
respect to the emissivity of the surface. The radiation heat transfer,

H, between two concentric spheres is readily calculable [8] if the
emissivities of the surfaces are known:

H A.i(j6ie 0

e 0 -\-ei(l—e0)p
(Ti-Tf). (9)

In this relation, the subscripts i and o refer to the inner and outer
surfaces, respectively. A { is the surface area of the inner spherical

shell, c= 5.72X 10
-12 w/cm2 deg 4

is the Stefan-Boltzmann constant, e t

and e 0 are the emissivities, and T0 the absolute temperatures of the
surfaces, and p=Ai/A 0 is the fraction of the radiation reflected from
the outer surfaces that strikes the inner surface directly. In our work
T4»T4

. so that T4~T4—

T

4 to a good approximation. If the
internal surface of the outer sphere is regularly reflecting, p=l. If

then
H=A i <re iT4c

0 , (10)

which means, of course, that the radiation flux in the interspace
between the two surfaces is essentially black-body radiation corre-

sponding to the temperature T0 . If H is measured under these
conditions, then a knowledge of e 0 is not necessary for an evaluation
of ei.

The classical work of Drude and of Hagen and Rubens [9] established

the relation

(1-E)= e=36.5(p/A)72
, (11)

where B is the reflectivity at normal incidence on the surface of a
metal, e its emissivity, p its resistivity in ohm-centimeters, and A the
wavelength in microns of the radiation used. Considered as a function
of wavelength, the emissivity of a metal at constant temperature will

thus vary as A_1/2 . When the wavelength decreases, however, and
the period of the radiation becomes comparable with or less than the
time of relaxation of the conduction electrons, the emissivity is inde-
pendent of the wavelength. At low temperatures new phenomena are

possible, for the mean free path of the electrons may become compara-
ble to or greater than the skin depth for penetration of the electric

field. Under these circumstances, the assumption implicit in the
classical theory that the electric field may be considered as spatially

constant, as far as the motion of electrons is concerned, is not valid

except at sufficiently long wavelengths for which the skin depth is

large compared with the free path and at sufficiently short wavelengths
at which the penetration depth is large compared with the distance
traveled by an electron during one cycle of the electric field. At
intermediate wavelengths, the recent theory of the anomalous skin
effect of Reuter and Sondheimer [1] is applicable. The predictions of

this theory may be indicated by referring to the authors' calculations
of (1— R) at normal incidence as a function of A for pure silver at

liquid-helium temperatures. At the long wavelength end of the
spectrum, (1 — R) varies classically as A“ 1/2

. In the microwave region
between 4 and 0.1 cm, the variation is as A-2/3

. The curve rises to a
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maximum of 1.5X10"3 at 69 n, and beyond this point (1— R) drops
to the classical value in the visible range, beyond which it goes to zero.
The classical theory for wavelengths in the region of maximum yields
a wavelength independent value of (1—i?)<10-5

. A wavelength
range of special interest is that between about 40 and 3 n. For the
case of perfectly specular surface reflection of electrons, the Reuter and
Sondheimer computation gives (1— R) in this range as varying as
Xn

,
where 7i)>l. 4 This is the spectral range that is encountered in the

design of liquid-helium containing apparatus. In the microwave
region, the theory of Reuter and Sondheimer finds experimental
support [10, 11, 12]. The only datum that we have been able to find
in the micron range is that given by Scott, et al. [13] for chemically
deposited silver at 20° K encompassed by a similar surface at room
temperature. The value given for the hemispherical emissivity is

0.03, being a factor of 20 greater than the maximum emissivity ex-
pected theoretically. It is possible that this number is appreciably
higher than the actual value of e for such a surface; for at the time
that this work was done, the effect of the ortho-para conversion of

the liquid hydrogen, possibly catalyzed by frozen oxygen, was not
recognized. Further, these workers assumed that the emissivities of

the warm and cold surfaces were equal. This could lead to an estimate
of the emissivity of the cold surface which is too large by a factor of

two. 5 In view of the state of the experimental data in the micron
range, there is clearly a need for experimental work.
For a calculation of the evaporation rate of our container B on

the basis of figure 43.2, the emissivities of the surfaces were required.
Conservative estimates could be made on the basis of experimental
data available at elevated temperatures.
The Hagen-Rubens eq (11) pertains to normally emitted mono-

chromatic radiation, and has received experimental confirmation in

the micron range at temperatures above room temperature [9, 14].

The extension to polychromatic hemispherical emissivity in the micron
range at elevated temperatures also finds reasonably good experi-

mental verification [15]. At lower temperatures, on the other hand,
the observed hemispherical emissivities are several-fold larger than
the calculated values [16]. Thus the lowest observed emissivity for

a copper surface at 90° K, exposed to room-temperature black-body
radiation, is given by Blackman, et al, as 0.019, a value 2.5 times
greater than the theoretical one. These authors attributed the dis-

crepancy to the presence of surface films, particularly oxide films,

and possibly to the difference in resistivity of the surface layers as

compared with that of the bulk of the material. It was in view of the

foregoing that for the estimate of the evaporation rate of our container,

we took 0.02 for the emissivity of both surfaces. Actually, on the

basis of the theory of Reuter and Sondheimer, this estimate for the

copper surface at liquid-helium temperature could be too high by a
factor of 10. From eq (9), the maximum radiation heat transfer

expected is thus 4.3xl0 -3 w for container B. From figure 43.2 it is

seen that this corresponds to an evaporation rate of 146 ml/day.

4 T. Holstein has treated the problem in this wavelength region, and finds that the wavelength dependence
is critically dependent upon p, the fraction of electrons that are reflected specularly. Ifp=0, his result is

that (1—R) is independent of X at a level corresponding to (1— The details of this work are to be
published.

5 In a communication to the author, R. B. Scott has pointed out that one has to consider also the fact that
the surfaces facing the vacuum were not polished; they had a slightly dull appearance, probably because of

microscopic roughness and also the possible adherence of some of the so-called “bloom” that appears in the
silvering process.
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Hence, we expected an evaporation rate between 82 ml/day and 146
ml/day, which implies the possibility of more than an order of magni-
tude improvement in the efficiency of liquid-helium storage containers
as compared with the one that has been described in the literature.

4. Experimental Details

The experiments consisted of measuring the evaporation rates of

liquid helium in containers A and B, whose construction was indicated
in section 2. The liquid helium in the containers was maintained at

772.0 ±0.1 mm Hg with the aid of a thermostatted manostat. 6 Thus
our experiments all refer to helium boiling at 4.228° K. Gas-flow
measurements were made with a wet-test meter; one revolution of

the meter pointer corresponds to 0.1 ft.
3 The calibration of the meter

made before and after the experiments was constant to ±0.2 percent
;

the calibrations were made with a 0.1 ft
3 meter prover that was

calibrated by the National Bureau of Standards. In order to maintain
constant the water level in the wet-test meter, the gas issuing from
the container was passed through a water saturator before it entered
the meter.

In the measurement of rates of evaporation of low-boiling liquids,

pressure control is of paramount importance. Changes in the pres-

sure have marked effects on the flow rate [17], and it is important to

note that these effects are proportional to the mass of the liquid. It

is necessary to meter an amount of gas that is sufficiently high to

give the desired precision. In view of the pressure control and the
fact that for each flow-rate determination we metered at least 1.0 ft

3
,

possible errors due to this factor were made entirely negligible.

The temperature of the nitrogen bath was determined by fluctua-

tions of the atmospheric pressure, which led to a temperauture
fluctuation of ±0.02 deg. Actually, at any given pressure, measure-
ments with a platinum resistance thermometer probe showed that
the bath temperature was constant to ±0.005 deg.

The initial experiments gave erratic results; the fluctuations in

the evaporation rate were traced to the tunneling of radiation down
the neck tube. This could be completely eliminated by the simple
expedient of blackening the inside of the neck tube with Aquadag
down to the liquid-nitrogen temperature level. The introduction
into the neck tube of a metal test tube, which provided a radiation

shield at the liquid-nitrogen level, also resulted in consistently repro-
ducible data. In practice, both of these precautions were taken,

and, under these circumstances, the evaporation rates for containers
A and B were 112 ml/day and 96 ml/day, respectively. These values
are entirely in accord with the analysis presented in section 2; it was
thus very desirable to check for quantitative agreement with the

analysis by experiments that yield data of the type indicated by
figure 43.3.

In order to facilitate the installation of a heater whose leads did

not contribute to the heat leak and in order to improve heat ex-

change [18] between the gas and the wall of the neck tube, a %-inch
outside diameter, by 0.010-inch-wall Inconel tube (from the same lot

and of the same temper as the neck tube) was inserted into the neck
tube. The leads, each a 10-foot length of number 40 constantan

6 For this purpose, we have found the model number 5 Cartesian Manostat manufactured by The Emil
Greiner Co., very useful. The manostat was thermostatted at about 300° K to a constancy of ±0.02 deg.
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wire, were spiraled about the inserted tube, and the evaporating gas
was made to pass up the annulus between the two tubes. The
heater was a 50,000-ohm wire-wound constantan resistor. With a
regulated d-c power supply, 7 the power dissipated in the heater
could be kept constant for many hours to ±0.01 percent. A Leeds
& Northrup type K-2 potentiometer was used to measure the cur-
rent through the heater and the potential drop across it; it is esti-
mated that the power measurements are accurate to ±0.02 percent.
The data obtained are tabulated in table 43.1 and are plotted in
figure 43.4.

The last four points on the straight-line portions of the curves of
figure 43.4 can be fitted by a linear equation that reproduces all of
the points to ±0.1 percent. The slopes of the two straight lines
agree within these limits and have the value 30.03 (ft

3/hr)/w at NTP.
As a check on the method, curve A was redetermined with a 500,000-
ohm heater; the experimental points coincided with those obtained
with the 50,000-ohm heater to ±0.1 percent. With the aid of eq (7)
and the densities of the liquid [19] and vapor [20] phases, we calculate
that the heat of vaporization of helium at 4.228° K is 4.93 cal/g. A
discussion of this determination will be given in the next section.

Table 43 . 1 . Evaporation rate of liquid helium at Ij.,228
0 K

Tnner surface
Outer surface.-- . .

Ambient temperature °K._
AHv cal/g..

Qr ----- .. .mw--

Container A Container B

Polished copper.
Sandblasted
monel.

77.08±0.02
4.93

3.00

Polished copper.
Do.

75.05±0.02.
4.93.

1.67.

Heater power Evaporation rate
(ft»/hr at NTP) Heater power Evaporation rate

(fttyhr at NTP)

viw mw
0. 000 0. 1462 0. 000 0.1417
1.839 .1597 1.785 . 1530

2. 265 .1638 2. 374 .1570
4.223 .2152 3.299 .1649

8. 876 .3568 4. 216 .1783

12. 613 .4706 8.862 .3161

17. 786 . 6256 12. 590 .4385

23. 272 .7894 17. 896 . 5877
23. 556 .7571

The intercepts of the straight lines on the evaporation-rate axis give

the radiation heat transfer for containers A and B to be 3.00 X10 -3

w and 1.67X10
-3 w, respectively. These values of QR may be

inserted in the equations developed in section 2, and, if one adjusts

suitably the parameter A /l, which may be in error by as much as 5

percent, one can reproduce curves A and B identically. The values

of Qr thus determined may also be used for a calculation of the

evaporation rates of the containers themselves, i. e., without the added
heat-exchange tube. The evaporation rates may in fact be obtained

from figure 43.3; the calculated values for containers A and B are

106 ml/day and 92 ml/day, which are in fair agreement with observed

values of 112 ml/day and 96 ml/day. Although the discrepancies

correspond to the maximum differences attributable to the uncer-

7 We are indebted to D. J. Grove, of our Laboratories, for making available to us this power supply of

his own design.
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tainty in Ah, there is the suggestion that at least part of the dif-

ferences is due to imperfect heat exchange in the neck tube.
The hemispherical emissivity of polished copper at 4.228° K for

radiation corresponding to that emitted by a black body at 77.1° K
may be calculated from the determined value of $K=3.00X 10

-3 w for

container A. This calculation may be made with the aid of eq (9)

on the assumption that It may be estimated that such an

Figure 43 .4 . Liquid helium evaporation rates at 4.228° K.

Upper curve for container A; lower curve for container B

assumption will lead to an uncertainty in of less than 5 percent.
The calculated value of the emissivity under these conditions is

6.9 X10 -3 and corresponds to a black-body radiation spectrum having
a maximum intensity at 37.4 p. As, in addition to the absolute
value of the emissivity, the wavelength dependence is of crucial

interest, the evaporation rate was determined for a 297.1° K black-
body radiation spectrum having a maximum intensity at 9.71 p.

The flow rate had to be measured with a different flow-meter arrange-
ment whose accuracy was estimated as ±4 percent. With this

arrangement the observed flow rate was 36.9 ft
3/hr at NTP and

corresponds to e*=1.29X 10
-2

.

It may be worth noting here our observations of the effects of

spontaneous vibrations of the helium-gas column between the liquid

level and the vent tube of a given container. Such oscillations have
been observed many times [21], and an attempt has been made to

treat the problem theoretically [22]. If the vent tube of the container
is closed or restricted with a rubber tube, for example, oscillations

within the container may be felt by holding the rubber tube. It was
found that the intensity of such oscillations, which are accompanied
by an influx of heat at a rate that may be a thousand times that due
to normal heat leak, is a function of the liquid-helium level. We
were careful to work under such conditions that the effects of this

phenomenon could be neglected.
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For completeness is included figure 43.5, which is based on data
obtained early in the work in order to check the principle of the

method used in determining QR and AHv . In figure 43.5 is presented
the evaporation rate of liquid nitrogen at 77.12° K in a container
that differed from container B in that incorporated in it was a copper-
shielded activated charcoal pump in contact with the liquid-nitrogen-

cooled surface. The outer surface of this container was at room

temperature, 297.1° K. The accuracy of the evaporation-rate meas-
urements was ±1 percent. From the data it was estimated that 97

percent of the initial losses is due to heat transfer across the vacuum
space, which is consistent with known facts. The heat of evaporation

calculated from these data is 1,345 ±13 cal/mole, which includes a

correction of 0.5 percent made in accordance with eq (7). This
determination is in satisfactory agreement with the value deduced
from the data of Giauque and Clayton [23] for the same temperature,

namely, 1,344.2 ±1 cal/mole.

5. Discussion

The emissivities determined for polished copper at 4.228° K are

6.9 X10 -3
for black-body radiation at 77.1° K and 1.29 X10 -2

for black-

body radiation at 297.1° K. The theoretical expectations should not

be appreciably different from those computed for silver at liquid-helium

temperatures at the wavelengths corresponding to the maximum in-

tensities in the black-body spectrum, namely, 37.4 and 9.71 ju, on the

basis of the Reuter and Sondheimer theory. The calculated values

are 1 .0X 10~3 and 20X 10~ 4
,
respectively. Not only is absolute agree-

ment lacking, but the experimentally determined emissivities increase

as A~ 1/2 and do not decrease. It is of course possible that the surface

is not representative of the bulk metal and that surface roughness is

responsible for the large values of the absorption. Such considerations

have in fact been offered to explain anomalously high resistive losses

in the microwave region [9, 10, 11]. The difficulty here is that in

order to obtain a A-1/2 wavelength dependence, the absolute values of

e must be much higher than those that are observed. These questions

require further experimental study, and more precise determinations
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of the emissivities of metals as a function of their temperature and of

the frequency of the radiation, with special emphasis on the treatment
of the surface, are in progress.

Recently Kistemaker [2], on the basis of an equation that results

from the equating of the Gibbs free energies of the liquid and the
saturated vapor, concluded that above 3.5° K the values of the heat
of vaporization of helium measured by Dana and Kamerlingh Onnes
[3] are 6 percent too low. The thermodynamic relation used by
Kistemaker involves the virial coefficients of helium, as well as the
specific heat of the liquid. The experimental determinations of Dana
and Onnes may be assumed to be accurate to 1 percent; the only data
they required was the densities of the liquid under its saturated
pressure [19].

The heat of vaporization of helium at 4.228° K as extrapolated
from the data of Dana and Kamerlingh Onnes is 4.87 cal/g. The
accuracy of our value of 4.93 cal/g depends on that of the determina-
tions of both the liquid density [19], pi= 0.1253 and the vapor density

[20], p v= 0.01637 g/cm3
. Except for errors due to inaccuracies in

pi or p v ,
our determination is considered to be accurate to better than

0.5 percent. The Clausius-Clapeyron equation

*h.=t(±
\Pv

l\d_p

Pi) dT

yields the value 5.31 cal/g. This strongly suggests that the vapor
density is in error, and if p v is taken as 0.01755, all three values become
identical.

With respect to container design, the experimental results confirm
the analysis and demonstrate the possibility of making extremely
efficient storage containers for liquid helium. It would be quite

feasable to build storage containers of moderate size that would hold
liquid helium for a year or more after the initial filling.
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44. Methods of Determining Very Low Thermodynamic
Temperatures. Measurements With Potassium-
Chromium-Alum

by D. de Klerk 1

Introduction

A problem of high importance in the region of adiabatic demagne-
tization is the exact determination of absolute temperatures. At
ordinary temperatures problems arise only when a higher accuracy
than 1 part in 10 5

is needed. At the lowest temperatures, now
obtainable with the magnetic method, the best accuracy is about
10 to 20 percent.

At present, several methods are available for the determination
of thermodynamic temperatures.

1. Thermodynamic-caloric method [l].
2 This is based on Kelvin’s

relation

aQ= TdS. (1)

When a well-known quantity of heat, dQ, is supplied to a demagne-
tized sample, and when the corresponding variation of its entropy is

dS
,
the thermodynamic temperature can be calculated from (1).

As entropies cannot be measured directly, for the practical per-
formance of this method use is made of a “thermometric parameter.”
This is a property of the salt that is strongly dependent on its tempera-
ture, so that it can be used as a secondary thermometer.
For absolute-temperature determinations two independent measure-

ments must be made. First, an experimental relation must be found
between the parameter and the entropy; then the variation of the
parameter must be determined when a well-known quantity of heat
is supplied to the salt. From these data the thermodynamic tempera-
ture can be derived as a function of the parameter.
As a thermometric parameter, different properties are needed in

different parts of the demagnetization region. At the higher tempera-
tures the magnetic susceptibility is often used, or the equivalent
“magnetic temperature” T*=((7/x). At the lower temperatures this

magnetic temperature is not very strongly dependent on the absolute
temperature. Here it is replaced by the imaginary part of the a-c

susceptibility, x", or by the remanence, S.

The relation between the thermometric parameter and the entropy
of the salt is determined in the following way: The decrease of entropy
during the isothermal magnetization at the initial temperature can be
derived from the magnetization curve. During the adiabatic de-

magnetization the entropy is constant, so the entropy at the final

temperature is known. Immediately after the demagnetization the

thermometric parameter can be determined, and from this the relation

between the entropy and the parameter is found.

1 Kamerlingh Onnes Laboratory, Leiden, Holland.
2 Figures in brackets indicate the literature references on p. 222.
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Iii caloric measurements the difficulty is encountered that at the
lower temperatures the heat conductivity of the paramagnetic salts

becomes very poor, making it difficult to distribute an amount of heat
homogeneously over a sample. The three methods used are:

(a) Using a heating coil. In this case the heat supply is very
inhomogeneous. Good results can be expected only above 0.2° K.

(b) Using gamma rays. As the absorption coefficient is small, the
heat absorption is sufficiently homogeneous. This method can be
used over the whole region of temperatures.

(c) Using the a-c losses when the salt is placed in an a-c magnetic
field. This method can be used only when relaxation or hysteresis

effects occur in the salt, i. e., below the curie point and in some cases

just above it.

2. Theroretical method. This is based on the calculations of Van
Vleck and his cooperators [2, 3]. This method is closely related to the
foregoing one. The caloric measurements are replaced by theoretical

considerations. Theroretical relations are proposed for M and U as

functions of H and T, and from these relations, expressions can be
derived for T* and S in zero magnetic field as functions of T. So a
relation between S and T* is found, and this can be verified by
experiment. Unfortunately, the temperature itself is eliminated in

this way, but when agreement is obtained between the theoretical and
the experimental curves in a wide region of tempeartures, it seems
plausible that the theoretical relations are correct. Good results

are found from this method only in the upper part of the temperature
range, because at the lower temperatures systematic deviations occur
between the theoretical and experimental curves.

3. Magnetic method (proposed by Garrett [4]). The necessary data
are derived from the measurement of adiabatic magnetization curves.

The differential susceptibility {dM/dH) s is measured along as

adiabate as a function of an external field, H. In low fields we have
the relation

~=i/dx\ /dx\
x\dS/H =o\$T )H=0

The quantity S can be derived experimentally for a number of

adiabats, and as (dx/dS)H =o can be derived from the entropy curve,

(dx/dT)jr = o can be calculated, and from its course with \h = o the

absolute temperature can be integrated.

4.

Temperatures in External Magnetic Fields. These can be deter-

mined [5] from the thermodynamic relation
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When adiabatic magnetization curves are measured, the quantity
(dM/dS)H can be determined as a function ofH and S, and temperature
differences on adiabats can be found by integration. When the tem-
peratures in zero field are determined with one of the foregoing
methods, the temperatures in external fields can be calculated.

Experimental Results

At present only in the case of potassium-chromium-alum,
CrK(S0 4) 2.12H 20, have all these methods of absolute-temperature
determination been realized. Although the different methods are

realized with different samples, the agreement in most cases is not
bad. I shall discuss these investigations in some detail. For reasons
of convenience, the sequence is changed in such a way that the theo-
retical method is considered first and then the caloric.

Theoretical Method. Because entropy measurements are needed for

most of the methods for temperature measurement given above, the

necessary data can be deduced from the measurements of several

authors. As an example, we mention the measurements of Casimir,
de Haas, and de Klerk [6]. The results were given in an S(T)
diagram (see fig. 44.1). So their measured T* values were reduced

Figure 44 . 1 . Entropy of chromium-potassium-alum as a function of
temperature.

O, experimental points of Casimir, de Haas, and de Klerk; the curve is calculated from theory, using a

splitting parameter 5= 0.270°K.

to values of T with the help of the theoretical formula, and the

results were compared with the theoretical S(T) curve. Only one

parameter could be chosen to obtain the best agreement, e. g., the

Stark splitting of the fourfold degenerate ground level of the Cr+++

ion in the crystalline electric field. When this splitting was chosen

so that good agreement was obtained near 0.5° K, the experimental

points agreed with the theoretical S(T) curve down to T=0.07° K.
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A small systematical difference occurred in such a way that between
0.2° and 0.08° K the temperatures of the experimental points were
slightly too low, and below 0.08° K they were slightly too high.

Below T= 0.07° K, big differences suddenly occur between the experi-

mental and the theoretical points, so here the method breaks down.
Thermodynamic-Caloric Method, (a) Measurements with a heating

coil were performed only by P. H. Keesom [7]. Down to 0.3° Iv the

results were in agreement with other measurements. Below this

temperature large differences occurred. Probably below 0.3° K the

thermal equilibrium in the sample was poor. This supposition was
corroborated by direct measurements of the heat conductivity of

chrome alum by Garrett [8].

(b) Measurements with help of gamma radiation were made by
Bleaney [9]. The investigations were extended down to T*= 0.075°,

T= 0.045° K. From the relation between T and T* found in the

experiment and from the amounts of heat supplied to the salt, the

absolute specific-heat data could be derived (see fig. 44.2). Down

Figure 44 . 2 . Specific heat of chromium-potassium-alum as a function of
temperature.

A, Experimental curve of Bleaney; B, experimental curve of de Klerk, Steenland, and Gorter; C, theoretical
curve for splitting parameter 5=0.245°K.

to 0.2° K good agreement was obtained with the theoretical specific-

heat curve. Between 0.2° and 0.08° K the experimental specific

heat was slightly lower; below 0.08° K it was higher than the theo-

retical curve. This result is in remarkably good agreement with the

measurements of Casimir, de Haas, and de Klerk mentioned above.
Although the parameter of the Stark splitting was slightly different,

the deviations from the theoretical curves were quantitatively the

same in both cases.
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(c) Measurements with the help of a-c heating were carried out
by de Klerk, Steenland, and Gorter [101 . As heat absorption from
a magnetic field occurs only at the lowest temperatures (below
T=0.03 o K), no agreement could be obtained with theoretical for-
mulas. It followed that the absolute temperatures were much lower
than the corresponding magnetic ones (see table 44.1), the difference
being even a factor 10 at the lower temperatures.
At T*= 0.033°, T=0.0040° K, the magnetic temperature showed a

minimum (so x showed a maximum, see fig. 44.3), and this point

Figure 44 . 3 . Susceptibility of chromium-potassium-alum as a function of
entropy.

<>> Susceptibility measured ballistieally; vibration time of galvanometer: 7 sec; A, susceptibility measured
ballistically, vibration time of galvanometer: 0.2 sec; Q, real part of a-c susceptibility, 225 cycles; v>
imaginary part of a-c susceptibility, 225 cycles, plotted on a tenfold magnified scale. The difference
between O, A, and O is caused by relaxation effects in the salt.

can be considered as some kind of a curie point as below this tempera-
ture remanence occurs, and hysteresis loops can be measured.
Although the phenomena below the curie point are rather compli-

cated, they show similarity with the antiferromagnetism found in

some substances at higher temperatures [11]. An experimental
result, which so far lacks theoretical interpretation, is that a very
pronounced minimum occurs in the slope of the S(T) curve at

S/R=0A, whereas such a minimum should be expected at S/R= In 2

(see fig. 44.4). This, however, is in qualitative agreement with the

specific-heat curve of Bleaney of figure 44.2, since it can be seen at

once that the entropy content of this specific heat is higher than R In 2.

The thermometric parameters used below the curie point were the

imaginary part of the a-c susceptibility, x", and the remanence, 2,

in a field of 1.08 oersteds.

Magnetic Method. Garrett [12] published some E values (see

formula 2) without calculating absolute temperatures from them.
Using the Leiden entropy data, we made some calculations. It

followed that, the parameter for the crystalline Stark splitting was
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in good agreement with other determinations, but the course of

(!T*/dT with temperature deviated from the values of Casimir, de
Haas, and de Klerk and from those of Bleaney. Garrett’s S values
proved to be too high.

Also some S values were derived from the measurements of adia-

batic magnetization curves made at Leiden. The external magnetic
fields used in these experiments, however, proved to be too high,

so only the slope of the x(H2
) curves could be determined in zero

o.ooi o.oi o.i 1.0 10

T, °K

Figure 44.4. Entropy of chromium-potassium-alum as a function of T (left-hand

curve) and as a function of T* (right-hand curve)

.

O, T* as a thermometric parameter; , remanence as a thermometric parameter.

field. This was insufficiently accurate, and wrong values were found
for the splitting parameter and for dT*/dT. This is unfortunate,
as this method might be useful in the region between T=0.05° and
0.03° K, where, until now, no good temperature determinations were
available. We are planning to repeat these measurements with a

higher accuracy.

Table 44.1

S/R T* T S/R T* T

0. 585 0. 064 0. 035 0. 427 0. 040 0. 0065
.539 .060 .031 .423 .038 .0056
.485 .054 .022 .416 .036 .0047
.472 .052 .018 .406 .034 .0041
.460 .050 .015 .399 .033 .0039
.450 .048 .012 .326 .034 .0035
.442 .046 .010 .306 .0345 .0033
.436 .044 .0088 .256 . 036 .0029
.431 .042 .0075
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Temperatures in External Magnetic Fields. I shall report the results
of some recent investigations made in Leiden. The measurements
were made with the help of the ballistic mutual-inductance bridge
shown in figure 44.5. The effect of the salt on the secondary coil
surrounding it was compensated for the greater part with a variable
mutual inductance adjusted to a suitable value. Susceptibility meas-
urements are made by reversing a small field (of the order of 1 oersted)
in the primary coils. When the field is not reversed but switched on
and off in both directions, remanences are determined at the same
time.

Figure 44.5. Ballistic mutual inductance bridge for susceptibility and remanence
measurements.

Two methods are available to measure a magnetization curve: (1)

An external field can be applied parallel to the small measuring field

(z-direction) . In this case the quantity (dM/dL?) 5 is measured, and
the magnetization curve can be integrated from the experimental
results. (2) The external field can be applied perpendicularly to the
small measuring field (^-direction) . Now, when a spherical sample is

used, we have

Mx_My
'

Hx Hy

w

The quantity determined in the experiment is MXIHX ,
and from the

value of the external field, Hy ,
the moment, My ,

can be derived.

(When an ellipsoidal sample is used, the relation (4) is replaced by a

more complicated one [13] containing the demagnetization corrections

both in the x- and the y-directions.) The latter method was applied

in our measurements, the external field being produced by a Helmholtz
coil, giving fields up to 500 oersteds.
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As the lieat insulation of a demagnetized sample is never perfect,

we always have a heat leak of about 30 ergs per minute. At the lower
temperatures, where the heat conductivity is' ver}^ poor, the thermal
equilibrium in the salt is disturbed in a short time. For this reason
the magnetization curve should be measured in as short a time as

possible. Therefore, we used a galvanometer with a vibration time
of 0.2 second. A deflection could be recorded photographically every
second. With this method a magnetization curve, using 12 different

fields, could be passed through three times within 5 minutes.

A difficulty occurred at the temperatures below the curie point,

as here relaxation effects were found with relaxation times comparable
with the vibration time of the galvanometer. These effects caused
double deflections of the galvanometer, whose interpretation proved
to be complicated. It follows from an estimate that when the relaxa-

tion time of the salt is only one-tenth of the (l/e)-time of the gal-

vanometer when aperiodically damped (0.1/27T times the vibration

time of the galvanometer when undamped) serious errors are intro-

duced when the susceptibility is derived from the maximum deflec-

tions, in particular when the bridge is approximately balanced. This
is illustrated in figure 44.6. Perhaps both the relaxation time and the

t relax. t galv.

TIME

Figure 44.6. Calculated galvanometer deflections as functions of time.

. Deflections when no relaxation effects occur in the salt; in case Bi the bridge is exactly balanced;
in case Ai the effect of the salt is undercompensated with the variable mutual inductance of figure

44.5; in cases Ci and Di it is overcompensated. , deflections when the relaxation time of the
salt is one-tenth of the 1/e-time of the galvanometer.

correct susceptibility might be derived from a close analysis of the
galvanometer deflection, but until now we did not succeed in this.

Some characteristic deflections are shown in figures 44.7, A and B.
As the adiabats were measured with different values of the com-

pensating mutual inductance, we succeeded in constructing a number
of magnetization curves which probably give the correct suscepti-

bility values, but systematical mistakes are not completely excluded.
Therefore, the values given here have a preliminar}^ character, but
some interesting qualitative conclusions can still be derived from them.
The magnetization curves are shown in figure 44.8. Above S/B=
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0.45 they do not show remarkable effects, the decrease of x with the
field being more or less proportional to H2

. Just above the curie point
the susceptibility in zero magnetic field suddenly increases enormously

Figure 44.7, A. Galvanometer deflections recorded photographically

.

The measuring field was switched on and off alternately in opposite directions. The difference in subse-
quent deflections is caused by the remanence of the salt.

Figure 44.7, B. Galvanometer deflections analogous to those of figure 44-?, A, hut
showing double deflections.

(see also fig. 44.3). From figure 44.8 it follows that this is the case
only in small magnetic fields; at about 25 oersted quite normal sus-

ceptibilities are already found. Because of the maximum in the
susceptibility in zero field, the lowest adiabats start at a somewhat
smaller % than those at higher entropies. In quite small fields, how-
ever, the curves intersect, and then the sequence is normal again.

From the curves in figure 44.8, an S(x) diagram with lines of con-
stant H can be derived. It is shown in figure 44.9. From this graph
values of (dM/dS)H can be derived, and by integrating them over
adiabats (horizontal lines in fig. 44.9) the variation of temperatures on
the adiabats can be found according to formula (3). Maxima in x in

the curves of figure 44.9 are found only in the lower fields. Below
these maxima (dM/dS)H is positive; so here an increase in H gives a
decrease in T. Above 25 oersteds, however, all the S(x) curves have
a negative slope. Hence an increase in II gives a rise in T. The
slopes of the S(x) curves in the neighborhood of the maxima prove to

be very uncertain; thus the course of T with II on an adiabat is un-
certain, but we could calculate some orders of magnitude.
The AT versus H curves for different values of S are represented

in figure 44.10. For low external fields we can write approximately

Ar=-|(c>x/as)H.oR2
. (5)
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Figure 44 . 8 . Adiabatic magnetization curves for chromium potassium alum.

Susceptibility as a function of field strength.

0 20 40 60 80
X/RX I0 8

Figure 44 . 9 . Susceptibility of chromium potassium alum as a function of the

entropy.

Lines of constant magnetic field. Values are given in oersteds for curves.

From the slope of the S(x) curve in zero field it follows that in the

higher region (S/Rf>l.S) the increase of T with H in low fields must
be relatively steep, but in a large region somewhat lower (0.7<^S/R<^
1.3) the slope is practically constant, so here the increase of T in a

given field must be practically independant of the entropy. In higher

external fields, however, we must expect that H/T becomes nearly a
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Figure 44 . 10 . Variation of temperature with field on adiabatic magnetization
curves for chromium-potassium-alum.

constant. Therefore the slope of the T(H) curves must decrease
with falling entropy. At the higher temperatures this is in agreement
with the experimental results, within the limits of accuracy. In the
neighborhood of the curie point, however, where the S(x) curve in

zero field has a flat part again, the T(H) curves in low fields should
again become steeper. As this is not true, (5) is no more fulfilled,

which is not surprising.

Below the curie point the temperature on an adiabat passes through
a minimum, as was mentioned before, although the decrease is very
small, smaller than that found by Kiirti [14] in the case of iron-

ammonium-alum (in fig. 44.10 it is hardly visible). Ktirti remarked
that when the temperature on an adiabat passes through a minimum,
the entropy on an isotherm shows a maximum. This can hardly be
explained with normal ferromagnetism (parallel spins), but it follows

quite naturally in the case of antiferromagnetism (antiparallel spins).

Finally, I must mention that the measurements of Bleaney [9, 15]

with microwaves show that chromium-potassium-alum, the substance
on which until now most measurements were made, is not the most
suitable substance. The Stark splitting of about 0.25° K found in

most experiments proved to be a combination of two splittings, viz,

of 0.388° and 0.22° K. This is probably the cause of the small devia-

tions from the theoretical S(T) curve below 0.2° K, although no numer-
ical interpretation of the deviations could be given. There are,

however, some chromium-alums showing only one Stark splitting,

chromium-cesium-alum, cliromium-rubidium-alum, and chromium-
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methylamine-alum. We expect better agreement with theory for

these salts than for the potassium-alum. At present the methyl-
amine-alum is being prepared at Leiden', and we hope to give the
results of the investigations with this substance in due time.

The measurements in external magnetic fields were performed in

cooperation with C. J. Gorter and M. J. Steenland. Assistance
during the measurements and the calculations was rendered by F. F.

Bos, J. A. Beun, G. de Vries, and J. Vlieger.
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45. Behavior of Single Crystals of Cobalt-Ammonium

-

Sulfate Below 1°K

by Stephen Malaker 1

Cobalt-ammonium-sulfate is one of the Tutton salts and a mono-
clinic crystal, having arrangements developed from the space group
C\h . It is known from microwave measurements [1]

2 that there is a
large hyperfine-structure coupling for the Co++ ion, and from the
microwave data Bleaney [2] calculated a nuclear specific-heat con-
stant, ^4 ?,

= 16X 10~ 4R, where B is the gas constant, for the tail of the
Schottky specific heat, i. e., where Cv=A n/T2

.

The tetragonal electric field from the six waters of hydration sur-

rounding the Co++ ion removes all orbital degeneracy, so that the

electronic ground state is simply a Kramers doublet. Interaction
between neighboring magnetic dipoles should spread the sharp spectral

lines into a band, and this is indicated by the small lines above and
below the sharp lines in the spectrum shown in figure 45.1. Both the

nuclear and dipole-dipole specific heat (and also exchange, if present)

should go as A/T2 in the appropriate temperature region.

Measurements have been made on single crystals, using the random
dilution technique [3] to reduce dipole-dipole coupling. The method
of measurement was that of Garrett [4], which consists in superposing

a constant parallel magnetic field on the salt already in the a-c field of

a Hartshorn bridge circuit.

1 Oak Ridge National Laboratory and Catholic University, Washington, D. C. Now at Ohio State

University, Columbus, Ohio.
2 Figures in brackets indicate the literature references on p. 228.
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Assuming a Curie law for susceptibility and an A/T2 law for specific

heat, one can easily deduce that

2 8x
~ 3#2

Xo
=^j- constant, (1 )

where E is the Garrett [4] parameter, TT is the superposed constant
parallel field, 8x is the change in susceptibility due to H

, xo is the iso-

thermal susceptibility in zero field, and C is the Curie constant.
The results of such measurements are shown in table 45.1 and are

plotted in figure 45.2. In figure 45.3 the intercept at infinite dilution

Figure 45.2. E 'parameter as a junction of T*.

Dashed vertical lines show T* final after demagnetizing from same H/T (13.50 kilogauss/degree).

#, Pure cobalt-ammonium-sulfate; O. Zn diluted; A, Mg diluted.

Figure 45.3. Specific heat constant A, as a junction oj Co++ concentration.
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is 16X10 -4
. Because the concentrations of the diluted salts were

measured colorimetrically and polarimetrically they are known only
to about ±2 percent, thus the intercept may be An

— 15.9— 16.1 X
10“ 4 R, in good agreement with the specific heat calculated from
microwave data [1].

Table 45.1.

Crystal Weight

Relative
concen-
tration
of cobalt

s Weight
of cobalt

A

Pure cobalt-ammonium-sulfate
g

2. 461 1.000
Gauss~2

2. 43X10-6

Percent
14. 91 42. 55X10-4

Colbalt-ammonium-sulfate diluted with
zinc-ammonium-sulfate 2. 729 0. 436 3. 76 6.5 0.2 27. 45

Cobalt-ammonium-sulfate diluted with
magnesium-sulfate. .. . . . 2. 351 .174 5.01 2.6 0.1 20. 61

Measurements were made along the K2 magnetic axis of the single

crystals, which were grown from saturated solutions. The Curie
constant was measured by using a single crystal of chromium-potas-
sium-alum and measuring its susceptibility in the liquid-helium range.
From a knowledge of the chrome-alum Curie constant, and the ratio

of the slopes of the calibrating curves for chrome-alum and cobalt-

ammonium-sulfate, one could determine the Curie constant for cobalt-

ammonium-sulfate. This was determined experimentally to be 0.858
as compared with a calculated value of 0.854, using S= and a

<7-factor [1] of 3.0.

.Demagnetizations were made along the Ki magnetic axis, using the

transverse field of an electromagnet. From demagnetization data one
can calculate entropy removals, and the experimental points are found
to lie along a curve (see fig. 45.4) fitted by using a ^-factor of 6.5
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Figure 45.4. Entropy of electronic system in cobalt-ammonium sulfate,

Co(NH 4 ) 2(S04) 2-6H 20.
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rather than the 6.2 calculated from microwave data [1]. The entropy
curves are calculated from the formula

g a

^>=ln 2 cosh 0jT y(QikHky kT (g ikHf
i)
2 tanh

2kT \g

i

(2 )

where S= entropy, /3=Bohr magneton, k=Boltzmann constant, B=
gas constant, # ifc=tensorial ^-factor.

If one assumes a Curie-Weiss law for the susceptibility (x=C/T— A),

then the Garrett parameter has the form

so that a plot of (H)
1

/
3 against susceptibility should be a straight line

whose slope gives A. From figure 45.2, it is seen that such a plot

gives a A <0.002° K along the K2 axis.

In figure 45.5 is shown a plot of the warm-up curve for pure cobalt-

ammonium-sulfate. It can be seen that the salt becomes antiferro-

Figtjre 45 . 5 . Reproducible uarm-up curve for pure cobalt-ammonium-sulfate .

magnetic. The temperature at which x" appears, i. e., at which
hysteresis absorption commences is ~0.125° K, which is precisely the
the same temperature at which the Garrett parameter increases sud-
denly (due to saturation effects, see fig. 45.2.) The maximum in the
real part of the susceptibility occurs at ~ 0.092° K. It will be ob-
served in figure 45.5 that a slight change in slope of both x' and x"
occurs at about 10 minutes, which would seem to indicate that one is

over the Curie-point specific-lieat hump. The results were quite re-

producible as the heating in this region was due only to the hysteresis

absorption, the “natural heat leak being ~0.06 erg/sec.

Observing now that the A is too small to make itself felt at 0.09° K,
one can assume that exchange forces are negligibly small. In this case

the remainder of the measured specific heat [(42.55— 16) X 10
_4

J?]=
26.5X10

-4
!? can be ascribed to dipole-dipole coupling. As exchange

appears to be too small to account for the antiferro magnetism, one is
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forced to look lor another mechanism. That mechanism presumably
is dipole-dipole coupling.

As is well known, dipole-dipole interaction is usually not amenable to
nearest neighbor calculations, but the results of such a calculation in
the present case bring such remarkable agreement with experimental
results that they are reported herewith.
The difference between the present calculation and previous ones is

that the magnetic ion is not placed in a spherical cavity but rather in
an ellipsoidal cavity, that is to say, there is a preferred direction in
the lattice, the ellipsoidal cavity having the same eccentricity as the
^-factor ellipsoid. Considering the extreme anisotropy of the crystal
and the strong LS coupling in this salt [5], such a model is not as naive
as appears at first glance.

It is useful to define a local field, #loc ,
the magnitude of which can

be derived from (HXoc)
2

,
the average of the square of the internal field

acting on an ion. This internal field arises from magnetic neighbors
and is given by:

Hioc
2=2g 2

(3
2S(S+ l)Sro

_6
j (4)

i>j

where
j
8 is the Bohr magneton, S= \ for cobalt-ammonium-sulfate [5],

and Tij is the distance between the fth and jth atoms.
Utilizing the preferred direction notion, a field is acting on the ion

i, and it is necessary to consider only the contribution of the large

0-factor along the K 1
axis, i. e., 0= 6 . 5 . The locations of nearest

neighbors are shown in table 45.2.

Table 45 .2 .

a= 9.25 A, fr= 12.5 A, c= 6.2 A are unit cell dimensions and d2=(a2+62)/4; 5=84°; all taken from crystallo-
graphic data of Hofmann [6]

Number
of ions

Location Distance Hloo

4
2

1/2 Va2+&2

c f)' 2
^}nearest neighbors

Gauss
522

2

4

b

y</2+c2+2c2d2 cos 6

12.5
|

9.95 /next nearest neighbors. 310

4 Vd2+c2— 2c2d2 cos 5 9.95J

As seen in figure 45.6, the assumption of dipole- dipole induced anti-

ferromagnetism provides exactly the proper conditions for alinement
of adjacent spins, in opposite directions. Figure 45.6 (a) is a view of

the ac plane in which Ki
lies (Ki was determined experimentally to

be the short diagonal of the parallelogram represent the ac face), and
figure 45.6 (b) is a view of the ab plane perpendicular to the Ki axis.

Considering only six nearest neighbors, Hioc is found to be 522

gauss.

Inclusion of the 10 next-nearest neighbors and assumption of anti-

ferromagnetic alinement of spins gives a 7A OC=310 gauss, which cor-

responds to aTc= 0.087° K, very close to the susceptibility maximum.
Inclusion of further neighbors comes in a rapidly converging series,

and the Tc would be slightly higher than 0.09° K.
Whether such calculations will prove fruitful for other types of

cobalt salts is not yet clear. Measurements on C0SCV 7H 2O have
been made by Fritz and Giauque [8], but their experiments go down
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Figure 45.6. Crystallographic diagram for cohalt-ammonium-sulfate.

only to temperatures of 0.16° K, above the temperature at which
dipole-dipole antiferromagnetism should appear. Preliminary calcu-

lations show that such an effect should occur in CoS04'7H20 at tem-
peratures of the order of 0.05° K. Such a calculation is necessarily

rough because of the lack of specific crystallographic data [9] on
CoS(V7H 20.
A similar calculation for CcCl2 where the strong electric fields due

to the halogens surrounding the Co++ might give an orbital quenching
effect similar to that found in hydrated salts gives Curie temperatures
an order of magnitude too low. It is possible that the effect is due
to an accident of crystal structure, being peculiar to crystals of mag-
netic tetragonal symmetry.

The experimental work described herein was done on a fellowship

from the Oak Ridge Institute of Nuclear Studies, for whose assistance

the author is deeply grateful.
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46. A New Effect Found in Paramagnetic Crystals

Below 100 Millidegrees Absolute: The Critical-Field

Curve Bounding the Antiferromagnetic State

by C. G. B. Garrett 1

Introduction

The purpose of this paper is to summarize the evidence for the
existence of “critical-field” phenomena in antiferromagnetic crystals,
considering in particular the results of some magnetic measurements
made at temperatures below 1° K on a single crystal of cobalt-ammo-
nium sulfate [l].

2 This material is of interest because the spins, due
to large spin-orbit coupling and a tetragonal electric crystalline field,

are extremely anisotropic. There are two sets of ions in the crystal,

but one of the macroscopic magnetic axes (the Kx axis) is only 33°
away from the directions of “easy magnetization” of the spins in either
set. There is thus one direction in the crystal along which alinement
is most likely to occur, and hence this material is a particularly favor-
able case if one is interested in studying the way in which alinement
occurs and how such alinement behaves under the influence of parallel

or perpendicular magnetic field.

First, it will be necessary to summarize the experimental results

for this particular material. Then an attempt will be made to inter-

pret these results along the lines of existing theories of the antiferro-

magnetic state, and, finally, tentative conclusions may be drawn as

to the possibility of similar phenomena being found in other materials
showing antiferromagnetic properties.

Experimental Results for Cobalt Ammonium Sulfate

A spherical crystal of cobalt-ammonium sulfate was cooled to

temperatures below 1° K by means of the technique of magnetic cool-

ing. Absolute temperatures were estimated by standard methods,
and measurements were made of the a-c magnetic susceptibility and
its dependence upon steady parallel field. The results of interest in

connection with the critical-field phenomena are those along the Kx

axis (details are given in [1]). It was found that along this axis the
a-c susceptibility for very small fields decreased sharply with tempera-
ture below the Curie point, but that the superposition of a steady
parallel field produced an increase in susceptibility up to quite a sharp
maximum in a field of the order of a few hundred gauss. The true

nonlinearity in susceptibility has to be disentangled from effects due
to magneto-caloric warming or cooling, but these are comparatively
small at temperatures below the Curie point, and may be allowed for.

From these measurements an H-T “phase diagram” may be con-

structed (fig. 46.1) showing lines of constant magnetization (isochores)

1 Lyman Laboratory of Physics, Harvard University, Cambridge, Mass.
2 Figures in brackets indicate the literature references on p. 233.
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and lines of constant entropy (isentropics) . The minima in the iso-

chores coincide with the minima in the isentropics—as must necessarily

be so from general thermodynamical arguments—and correspond
roughly with the above-mentioned peaks in the a-c susceptibility.

Qualitatively the interpretation of the experimentally determined
phase diagram is that outside a certain critical curve (the locus of the
minima in the isochores and in the isentropics) the material is behaving
very much as any simple paramagnetic material should behave; the
susceptibility is increasing with decreasing temperature, as the order-
ing effect of a magnetic field is competing more and more successfully

against the disordering effect of thermal agitation, while at any one
temperature the entropy (disorder) of the system decreases progres-
sively with the application of a stronger and stronger field. But inside

the critical curve the behavior is anomalous, in that neither of these
statements is correct.
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Theoretical Models

Usually the appearance of antiferromagnetism in a material is

associated with exchange interaction between the magnetic ions.

What is not clear is whether in a crystal in which exchange effects

are small or altogether absent ferromagnetism or antiferromagnetism
might be produced by dipole-dipole (magnetic) interaction alone.
That the anomalous properties of cobalt-ammonium sulfate are anti-

ferromagnetic in origin follows both from the general similarity
between the behavior of this material and that of materials like

manganese oxide and manganese selenide with transition points at

much higher temperatures [2], and from the observed fact that
within the critical curve the entropy increases during isothermal
magnetization, indicating a competition between a tendency to anti-

parallel alinement in zero field and the necessity for parallel alinement
in a large field. Also it appears from a quantitative study of the
specific heat of cobalt-ammonium sulfate (see [1] for details) that
exchange is considerably smaller than dipole-dipole interaction in

this crystal. But at the present time it is not possible to assert

that the antiferromagnetic transition point in cobalt-ammonium sul-

fate is really due to dipole-dipole interaction rather than exchange.
It is therefore necessary to consider from the theoretical point of view
both possible mechanisms.

Dipole-Dipole Interaction

Sauer [3] and Luttinger and Tisza [4] have made calculations on
the lowest energy state of a paramagnetic crystal at absolute zero

and in zero field, on the assumptions of cubic symmetry and taking
account only of dipole-dipole interaction between the ions. The
answer is shape-dependent; for a long ellipsoid the lowest state ap-

pears to be the parallel one (ferromagnetism), whereas for a sphere

the lowest state is antiparallel. Sauer and Temperley [5] have
developed, on the basis of Sauer’s calculations, a simple Bragg-
Williams model to take account of nonzero fields and temperatures.

They find that the appearance of the ordered state is confined to the

region of low fields and temperatures by a critical curve very much
of the form found experimentally for cobalt-ammonium sulfate; they
also predict a maximum in the differential susceptibility qualita-

tively the same as that found, and their numerical values for the

critical temperature (for zero field) and critical field (at absolute

zero) are in agreement within a factor of 2 with those found, re-

spectively by direct measurement and by extrapolation. Unfor-

tunately, there are serious points of disagreement between experiment

and Sauer and Temperley’s theory, quite apart from any distrust

one might have for the sweeping assumptions made in the theoretical

treatment. The most serious trouble is that Sauer and Temperley
expect that the transition should change from second to first order

at temperatures below two-thirds the critical temperature. In

practice, the transition is found to be smooth (second order at least)

down to 0.4 Tc ,
the lowest temperature accessible experimentally.

However, in default of any more elaborate theory of dipole-dipole

antiferromagnetism, we may say that Sauer and Temperley’s model
gives a reasonable qualitative account, of the properties of cobalt

-

ammonium sulfate, and in particular would lead one to interpret
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the critical curve as the limit of the ordered (antiparallel) state of

the material.

Exchange Interaction

Van Vleck [6] has proposed a simple model of antiferromagnetism
for a material in which exchange is the dominant ordering factor.

On his theory in its simplest form the lattice is divided into two
sublattices, and the spins in either sublattice sit in an “effective

field”, the vector sum of the externally applied field and an inter-

action field proportional to the average spin of the ions in the other
sublattice, van Vleck himself considered only the application of

external fields small in comparison with the internal fields due to

“spontaneous antiferromagnetism,” but his theory may easily be
extended to the case of strong fields (Garrett, to be published).
Again, one finds the appearance of a critical-field curve. Inside
the curve the most stable state is that in which the average spins of

the ions in the two sublattices are unequal (in zero field, numerically
equal but of opposite sign), whereas outside the critical curve the
average spins in the two sets are equal, a Curie-Weiss law being
followed for small fields.

Applying this theory to cobalt-ammonium sulfate, supposing for

the moment that here, too, exchange is dominant so far as the co-

operative phenomena are concerned, it may be noted that agreement
with experiment is rather better than Sauer and Temperley’s theory
in two respects: (1) the numerical value of nHdkTc is closer, and
(2) the general form of the transition is better represented, in that
on van Vleck’s theory the transition should be second order at all

temperatures.
The general conclusion of this section is that one would expect

some sort of critical curve on the assumption either of dipole-dipole

interaction or of exchange. In either case, we are concerned with
the appearance of what is effectively a “condensed phase,” so that

in some ways the problem is formally similar to the problems of

superfluidity and superconductivity. At the present time we have
to be content with what are really no more than semidescriptive
models for the way in which dipole-dipole interaction and exchange
can set up ordering in the crystal, so that perhaps one must not be
disappointed if at the present stage quantitative agreement between
theory and experiment is impossible to attain.

Critical Curve in Other Materials

If the theoretical arguments outlined on p. 231 are correct, we
should also expect to find critical-field phenomena in any other anti-

ferromagnetic—remembering that it is essentially a directional prop-

erty, associated with the direction of easy magnetization in a single

crystal. On any theory, or indeed on quite general arguments, one
expects that the ratio nHJkTc should be of the order of unity. This
enables us to predict the order of magnitude of the critical fields for

typical materials. For salts used in magnetic cooling experiments
the fields are of the order of a few hundred gauss. For materials like

manganese oxide or selenide, with transition points of about 100° K
and spins with moments again of the order of a Bohr magneton, the

critical field would be of the order of 5.105 gauss, that is to say, well

outside the range of fields experimentally obtainable. One should,
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however, be able to detect a small lowering of the transition point for

these materials on applying a field of the order of 104 gauss, and such
a lowering has actually been reported by Squire. Finally, it is of

interest to speculate on the possible behavior of a nuclear paramag-
netic material, such as lithium fluoride at temperatures of the order of

the microwave line width (10~ 6 °K). If these materials turn out to be
antiferromagnetic at a temperature of this order, we should expect
critical-field phenomena, the critical field at the absolute zero being
about 1 gauss. This, incidentally, emphasizes the importance of

using only a minute magnetic field for measurement of susceptibility

in a nuclear demagnetization experiment.

Conclusion

The properties of cobalt-ammonium sulfate, found from experiments
below 1° K, strongly suggest that some sort of critical-field phenomenon
may play an important part in all antiferromagnetic materials.

Further information is now required on this and on other similar salts.

Particularly informative would be a systematic survey of the influence

of magnetic dilution and of sample shape on the antiferromagnetic
properties, and in particular on the critical-field curve as such measure-
ments would be very helpful in deciding whether dipole-dipole inter-

action or exchange is responsible for the observed ordering effects

found in typical paramagnetic salts used in magnetic cooling

experiments.
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47. A New Experimental Method for the Measurement
of Temperature and Entropy at and Below 1°K

by L. D. Roberts and J. W. T. Dabbs

1

In connection with the nuclear alinement program at Oak Ridge
National Laboratory, in which the hyperfine structure coupling 2 3

is used, it became necessary to determine the behavior of the para-
magnetic salts used, especially as to temperature variation with mag-
netic field during adiabatic demagnetization. Thus, determinations of
absolute temperatures in the presence of magnetic fields are required.
It appears that the method described here is particularly well adapted
to this type of measurement and shows promise of reasonable accuracy.
The well-known expressions given by Casimir 4 and others

dH and AS= dH
,

where the first integral is taken along an isentropic path, and the
second along an isotherm, form the basis for the method. We shall

hereafter refer to these as case 1 and case II, respectively.

In case I the method is as follows: Two identical secondary coils

connected in opposition are placed in the highly uniform field of a

large solenoid magnet that surrounds the experimental Dewar flasks.

In each of these coils a sphere of paramagnetic salt is placed, the two
samples being nearly identical, and the relative positions of the

samples and coils are so adjusted that the net quantity of charge
generated in the secondary circuit, upon switching off a field, H, from
the large solenoid, is proportional to the difference in magnetization
of the two spheres. With the aid of an auxiliary coil, one isothermally

magnetizes the two spheres in slightly different fields, and thus to

slightly different entropies at ^ 1° K. This known entropy difference

(calculated from the Brillouin function, or measured, as in case II)

now remains constant after the system is made adiabatic and after

the incremental field, AH, is switched off.

One then measures the difference in magnetization of the two
samples by switching off various magnetic fields, H

,
and obtains this

difference, AM(H), as a ballistic galvanometer deflection. In switch-

ing off a field, H, one obtains directly a deflection proportional to the

difference in magnetization at field H, and because AS is constant the

deflection is also proportional to the required partial derivative,

(dM/dS)H ,
for sufficiently small differences. Now one needs only to

perform a numerical integration over the values thus obtained to

know the temperature change in going through a given range of

magnetic field.

1 Oak Ridge National Laboratory, Oak Ridge, Tenn.
2 C. J. Gorter, Physica 14, 504 (1948).
3 M. E. Rose, Phys. Rev. 75, 213 (1949).
4 H. B. G. Casimir, Magnetism and very low temperatures (Cambridge University Press, 1940).
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Case II measurements may be carried out in a similar manner, with
the only change that the two samples are now held at constant, and
slightly different, temperatures, instead of using the auxiliary mag-
netizing coil. This may be done by means of two liquid He baths.

The same type of measurement as in case I now yields the required
partial derivative, (dM/dT )H ,

and a similar integration gives the
entropy removed bv the application of a given field in the isothermal
magnetization process.

Equipment has been built for the case I measurements and prelim-
inary results are promising.
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48. Some Laboratory Aids to Cryomagnetic Research

by Warren E. Henry 1

Some of the design principles and characteristics of three labora-
tory devices will be briefly discussed, namely, (1) a metal cryostat
for liquid helium, (2) a control chamber, and (3) a tension limiting
lift.

Our interest in metal cryostats arose from the need, in cryomag-
netic research, of maximum experimental working space for limited
total space in a high magnetic field, as in the Bitter magnets. 2 The
plausibility of a contemplated Dewar design requires a consideration
of the following heat sources: (1) Radiation (a) from the top of the
Dewar, (b) from the radiation shield. (2) Gaseous conduction and
convection. (3) Conduction down the walls of the Dewar.
For experimental Dewars of reasonable size (say 1 to 2 liters) to

be used for a few hours of operating time, one can reduce the heat
leak due to the first two sources to an unobjectionable minimum.
The effect of (3) can be calculated by a finite difference technique,

using the rough thermomechanical model shown in figure 48.1. The
vertical axis is temperature, which is single-valued in X; the hori-

zontal arrows represent heat flow, Q, and the vertical arrows represent

mass flow, M. The cells, R t ,
are all cylinders of equal volume in

the mixed space. The quantity of heat, Qi} coming from the walls

pushes the mass, M, up into the next cell. Now, if we take an arbi-

trary temperature interval, AT0 ,
as the temperature difference between

adjacent cells, the corresponding coordinate space interval is X0

for the top cell, Xx for the next, and so on. The X’s are in general

not equal. The length of the heart (thin-walled part) of the Dewar
is given by

l=T, Xn (D
o

The problem is simplified by choosing

AT0=-Tn— Tn+i= constant. (2)

The heat flow rate into cell R t is given by

Qi=MCpAT0 (3)

the index being left off of the Cp ,
the heat capacity of the gas, because

of the reasonable constancy of it throughout the temperature range.

Knowledge of this quantity makes it possible to write down a recur-

sion formula relating the heat flow down the walls of adjacent cells,

H„=Hni.i+MCvhT0, (4)

1 Naval Research Laboratory, Washington, D. C.
2 F. M. Bitter, Rev. Sci. Instr. 10, 373 (1939).

995112—52 16
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the total heat flowing into the Dewar being given by

MCp(T„)AT0+ML=M[Cp(T0- Tn)+£]=
go
y
Ar°

, (5)
71= 0

where iV+1 is the number of cells, KQ is the thermal conductivity

of the walls of the top cell, A is the cross-sectional area of the wall,

and L is the heat of vaporization of the liquid at the boiling point.

From eq (5) one may calculate X0 ,
the depth of the first cell. This

done, the calculation of the entire depth of the Dewar is carried out

from

i=T,xn= (6)

use having been made of a recursion formula relating adjacent X’s

derived from (4). Kn is the thermal conductivity in the nth cell,

Figure 48 . 1 . Thermomechanical model of a liquid-helium container for analyzing

a heat-flow problem with good exchange.

The independent variable is T. Direction of heat flow from walls to gas is nearly horizontal and the mass
flow is vertical.
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TO LIFT

TO HIGH
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IONIZATION
GAUGE

TO HIGH--
SPEED
EXHAUST

NYLON OR QUARTZ FIBER

VACUUM CHAMBER

SAMPLE ASSEMBLY

BUCKING COILS

Figure 48.2. Metal cryostat for liquid helium with movable high-vacuum sample
assembly.

Initial low temperatures are produced by rapid pumping on liquid helium. “O” rings prevent loss of

vacuum over helium during vertical motion of lift.
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and a is determined by the ratio between the heat of vaporization
and the heat capacity of the helium over the range. fn (T) corrects

for the change in thermal conductivity - with temperature and is

the ratio between the thermal conductivity at Tn and K0 . If this

ratio is assumed =1, an upper value of l is calculated.

Computations are simplified and at the same time made more exact
by the assumption of linear variation of thermal conduction with tem-
perature. This assumption is justified both theoretically 3 and
experimentally 4 for certain types of low-conductivity alloys.

A Dewar was designed on this basis, and a leak rate of about 35
cm3/hr was observed. This 4-inch Dewar, through open pumping,
reached a temperature of 1.1° K, and is shown in figure 48.2. A de-

scription of a lXe-inch Dewar designed to fit into the 1%-inch Bitter

magnet is to be found elsewhere. 5

The second device is a control chamber (similar in general design
principle to a chamber developed independently by Ketchen 6

) for

protecting experimental samples of reactive materials during prepara-
tion and assembly in a controlled atmosphere. The sample container is

placed in a special antechamber, which is flooded with inert gas,

evacuated, and then filled with the gas. (This precaution is to reduce
the hazard and loss due to explosion of the sample container.) This
antechamber is then placed in the main control chamber with gloves

installed, as shown in figure 48.3. Now with the transparent 1-inch

Lucite plate in place (sealed off by a rubber gasket and grease) and
the gloves covered, the chamber and the gloves are simultaneously

Figure 48.3. Controlled atmosphere chamber.

(1) Gas-inlet valve for flushing; (2) portholes to gloves; (3) control valve for chamber; (4) control valve
f r gloves.

3 A. H. Wilson, Proc. Camb. Phil. Soc. 33, 371 (1937).
4 J. E. Zimmermann, Bui. Am. Phys. Soc. 26, 13 (1951).
5 W. E. Henry and R. L. Dolecek, Rev. Sic. Instr. 21, 496 (1950).
6 E. E. Ketchen, F. A. Trumbore, W. E. Wallace, and R. S. Craig, Rev. Sic. Instr. 20, 524 (1949).
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evacuated and simultaneously filled to 1 atmosphere of an inert gas.
The glove covers are removed, and sample manipulation can begin.
The design problem here consists in providing convenience for manip-
ulation and strength to withstand the outside pressure since the
chamber is 24 by 18 by 12 inches.

We come now to the third device. In making magnetic measure-
ments, such as differential moment measurements, it is sometimes
advantageous to effect a precise displacement of a sample with respect
to a coil or coil system. Figure 48.2 shows such a situation, where the
sample shown must be subjected to a precise vertical motion. If the
motion must take place within a short time by means of a suspension
that can only withstand a limited tension, a special lift is desirable.

Figure 48.4. Curve for path of a point in the vertical shaft of the lift assembly in the

coordinate system of the horizontally propelled carriage.

Let us consider a desired displacement, H0 ,
shown in figure 48.4, to be

achieved though a horizontal displacement, X0 . Make x constant.
Then, for a bounded acceleration, and therefore a limited tension, the
vertical motion may take place in two steps: (1) acceleration from 0

to x0 and (2) deceleration from x0 to X0 to prevent a jerk at the end
of the excursion. The analytical form of the function h(x) <H0 ,

is

'o
;

z <0

A y.2X1max ^
0 <x <Xq

2
;

<

ffo-§ (X0-xY; Xq<X<X
[

r o X0 <x

where Amax is the maximum acceleration, and g is the acceleration of

gravity.

The horizontal motion is produced manually, but a motor could be

used. A schematic diagram of the lift assembly is shown in figure 48.5.

This lift is connected to the sample container, which is moved with

respect to the coils in the liquid helium shown in figure 48.2.
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Figuke 48.5. Complete lift assembly.



49. Current Sensitivity and Other Characteristics of

Metal Films at Low Temperatures

by A. van Itterbeek 1

A few years ago in cooperation with L. de Greve 2
I found that

nickel films possess a negative temperature coefficient. In figure 49.1

is shown the resistance of a nickel film as a function of temperature.
The position of the minimum on this curve depends strongly on the
thickness of the film and the condition of formation of the film (con-

densed in vacuum or sputtered in different kinds of gases). Further,

we observed that at low temperatures the resistance is a function of

Figure 49 . 1 . Resistance of thin nickel films as a function of temperature.

the current (see fig. 49.2), whereby the resistance decreases as the

current is increased.

In 1950 we measured, together with Dr. de Greve and M. Lambeir, 3

the electric resistance of thin iron films as a function of temperature,

and we also found that the behavior of the iron films is the same as

that of nickel films (see fig. 49.3).

1 Laboratory of Low Temperatures and Technical Physics, Louvain, Belgium; Kamerlingh Onnes

Laboratory, Leiden, The Netherlands.
2 A. van Itterbeek and L. de Greve, Experimentia 3, No. 7 (1947 ).

3 A. van Itterbeek, L. de Greve, and R. Lambeir, Med. Kon. VI Acad 12, No. 1 (1950).
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0 12 3

Im A

Figure 49.2. Current dependence of the resistance of a thin nickel film.

Thickness: 47 T= 54.3° K; #, increasing intensity of current; Q> decreasing intensity of current.

The appearance of a negative temperature coefficient for thin metal
films has also been observed by Vodar and coilaborators 4 for othei

metals, such as platinum and tungsten. For those metals, however,
the phenomenon appears only for very thin films (a few angstroms),
whereas for the ferromagnetic films the temperature coefficient be-
comes negative for films with a thickness of about a 1000 A.

0 125 250

T,°K

Figure 49.3. Resistance of thin iron film as a function of temperature.

In 1950 we especially investigated in Leiden, with R. Lambeir and
G. J. van den Berg, 5 how at liquid-helium temperatures the electric

resistance depends upon the current intensity. Thus we observed a

4 N. Moscovitch and B. Vodar, Compt. rend. 230, 934 (19:10).
5 Publication in Physica pending.
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very steep decrease of the resistance by increasing the current or the
electric field (see figs. 49.4 and 49.5). For these experiments the
metal films were dipped into liquid helium. This decrease depends
strongly on the temperature and the thickness of the film. From

Figures 49.4 and 49.5. Current dependence of thin film resistance.

figure 49.5 we see that this decrease is about 60 percent at 2.1° K
for a film of about 300 A, whereas it is only 6 percent at 1.4° K for

a film of about 3000 A.
New measurements that we made recently revealed that for still

thinner films the decrease of the resistance can reach about 300
percent for currents smaller than 1/ia, so that it is practically im-
possible to determine the value of the electric resistance for a current
zero. These last films are obtained by condensation in vacuum. In
order to explain this steep decrease, C. J. Gorter suggested that the
electric resistance would depend, just as for a semiconductor, upon
an activation energy that is comparable with kT at very low tem-
perature. This activation energy would determine the condition for

the electrons to jump between the small grains of which the thin

films are built up. This agrees with the picture given by Cabrera
and Terrien 6 concerning the structure of the films.

We observed pictures and also electron diffraction diagrams of our
nickel and iron films by means of the electron microscope at the

laboratory of Louvain. Thus we could observe that our films of

iron (fig. 49.6) are very amorphous. Pictures taken from silver (fig.

49.7), tin, or gold films, however, differ completely from the structure

of the films of metals with a high melting point. The grains are

6 N. Cabrera and J. Terrien, Rev. optique 28, 635 (1949).
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larger and probably separated by a layer a few molecules thick.

The electron diffraction rings of these films are very sharp compared
with those of the iron films.

Figure 49.6. Iron film (thickness 100 mu). Magnification 72,000.
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Figure 49.7. Silver film (thickness 30 m/I). Magnification 72,000.
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In our measurements on the superconductivity of thin films, we
started with measurements on Nb films. Just as for the nickel and
iron films, we found for the thinnest films a negative temperature
coefficient. For the thicker films, however, the temperature coeffi-

cient becomes more and more positive. We found also that the
thinner the film, the lower the transition temperature. (This investi-

gation, which is not finished at present, will be reported in a later

paper)

.

Pictures of these films taken with the electron microscope revealed
a structure similar to that shown by the nickel and iron films. Our
Nb films are obtained by sputtering in a neon gas from a circular

electrode of spectrographically pure Nb supplied by Johnson, Matthey,

and Co. of London.
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50. Electric Conductivity of Graphite at Liquid-Helium

Temperatures
1

by Lothar Meyer, G. S. Picus, and W. G. Johnston 2

The electric conductivity of synthetic graphite has been investi-

gated. The graphite filaments were produced by thermal decomposi-
tion of pure methane. 3 The filaments showed strong orientation of the

graphite planes parallel to the filament axis (fiber structure). Figure
50.1 shows a graph of the recorder trace of reflected X-ray intensities

for the 002 and 100 planes as the function of the angle between the

filament axis and the normal to the plane formed by incident and
reflected radiation. From the width of the X-ray diffraction lines the

grain size of the graphite in these filaments was estimated to be 200 to

300 A 4

Figure 50.2 shows the mounting of the specimens, and figures 50.3

and 50.4 some representative results. Filaments 2 and 6 were made

Figure 50.1. Relative orientation of crystallites in graphite filaments. Graph of

recorder trace.

1 Supported by U. S. Atomic Energy Commission.
2 Institute for the Study of Metals, University of Chicago, Chicago, 111.

3 L. Meyer, Trans. Faraday Soc. 34, 208 (1938).
. , ... .. . _ nnnaa

4 Assuming that the line broadening is only due to the gram size, and neglecting other influences on tne

line width in this approximation. This seemed justified as strain and similar mechanical deformation nave

qualitatively the same influence on the electric conductivity.
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at 2,100° C and cooled slowly, filament 3 at 2,100° C and cooled rapidly

The absolute values of the conductivities at room temperatures were:

Filament 2

Filament 3

Filament 6

2.9X10 3 ohm-1 cm-1
.

2.2 X10 3 ohm-1 cm" 1
.

2.6 X10 3 ohm-1 cm" 1
.

Figure 50.2. Mounting of filaments for low-temperature measurements.

Specimen
0 - 0-2

]• C-3>Graphite filaments
A C-6)

C-4 Untreated carbon core
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Measurements of natural graphites from different sources confirmed
qualitatively the earlier Leiden results.

5

The results obtained with the fine-grained material are not con-
sistent with existing theories. According to the extension by Bowen, 0

of Wallace’s 7 original theory for small grain size, one should expect

that the electric resistivity shows a minimum as a function of tempera-
ture, and follows a 1/T dependency at temperatures below the mini-
mum. Wallace states that in graphite the lower band is completely
filled, and just touches the next higher band. The more or less metallic

behavior of graphite at room temperature is due to the fact that elec-

trons are thermally lifted from the lower band into the conduction
band. If, as in fine-grained material, the mean free path of the elec-

trons is determined by the temperature-independent grain size, the

conductivity becomes proportional to the number of electrons in the

conduction band, i. e., proportional to T, or the resistivity propor-
tional to \/T. We did not find this type of temperature dependency
in the range between room temperature and helium temperatures.
The behavior is more like that of a poor metal, i. e., where even at the

lowest temperatures some electrons still remain in the conduction
band. 8

5 H. Kamerlingh Onnes and K. Hof, Leiden Comm. 142b. W. J. de Haas and P. M. van Alphen, Leiden
Comm. 212e.

6 D. Bowen, Phys. Rev. 76 , 1878 (1949).
i P. R. Wallace, Phys. Rev. 71 , 622 (1947).
8 As chemical impurities that might act as donors of electrons are probably not present, there still remains

the possibility that strain, mechanical deformations, or the grain boundaries represent mechanical impuri-
ties that act as donors. We are investigating this question.
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The suggestion by Mrozowski 9 that there exists ail energy gap
between the filled-up band and the conduction band that would make
graphite a real semiconductor is not supported by these results. Also,

the fact that natural graphite crystals show at liquid-helium tempera-
tures a conductivity that exceeds that at room temperature by more
than the factor 30 makes it more probable that the two bands overlap
slightly instead of being separated by an appreciable energy gap.

» S. Mrozowski, Phys. Rev. 77, 838 (1950)
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51. Normal Resistivities at Low Temperatures

by K. Mendelssohn

1

The measurement of electric resistances of the pure metals at low
temperatures was one of the earliest researches after the liquefaction
of hydrogen and helium. However, the technique usually applied
only permitted the determination of resistance values at temperatures
in the liquid range of the cryogenic working substances. In partic-
ular, a large gap remained between hydrogen and helium tempera-
tures. It is, however, in this region that the temperature dependence
of the resistance is usually most interesting. For most metals the
temperature region below 4° K which is accessible with liquid helium
can contribute little to our knowledge because the resistance is inde-
pendent of temperature. On the other hand, the region between 4° K
and the boiling point of hydrogen at 20° K represents a factor 4 in the
absolute temperature, and it is here that the most accurate information
on the power law of the electric resistivity can be obtained. It was
only with the advent of the desorption method that this gap was first

bridged, and we have now also adapted the expansion method for

observations in this interval of temperatures.
According to Grlineisen’s formula, the temperature variation of the

resistivity, r, is given as

/TV Cd/T x 5dx
r Wjo (e

x— 1) (1 — e~z)’

where T is the absolute temperature, and 6 is the Debye characteristic

temperature of the metal. Since for high temperatures the integral

approximates to 1/4 (0/T) 4
,
the resistivity will become proportional

to the absolute temperature. For very low temperatures, the inte-

gral will be constant, and the resistivity should therefore be propor-
tional to the fifth power of the absolute temperature. This is also the
power law that Bloch has postulated from his one-electron theory.

As only a few metals have been investigated in the temperature
region intermediate between helium and hydrogen temperatures, it

was decided to make a systematic study of the temperature dependence
of the resistivity of all metals. So far, results have now been obtained
on the alkali metals and on the alkaline-earth metals (see fig. 51.1).

The only metal of these two groups that shows complete agreement
with the Bloch theory is sodium, which has a resistance tending
indeed to T5 at low temperatures. The power index actually observed
for the different specimens was «4.85, but it has to be remembered
that the T5 law represents a limiting case for the absolute zero of

temperature and that at finite temperatures the influence of the

lattice vibrations must decrease the index. This influence is stronger

the lower the characteristic temperature of a metal is. Accurate
comparison with the theory therefore requires, in the case of sodium,

evaluation of the Griineisen formula, which yields the correct power
index of 4.85 for this region. The agreement is not so good for

1 Clarendon Laboratory, Oxford, England.
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lithium, in which a power index of —4.55 was observed. As lithium
has a higher value of 6 than sodium, we should expect the Tb to be
followed below 20° K. The disagreement with the theory is small

temperature ° K
Figure 51.1. Logarithmic plots of the results for sodium and lithium.

but significant. It is known that in other electronic properties, too,

lithium is inferior to sodium, a behavior that may be due to insufficient

shielding of the valency electron by the helium shell from the attrac-

tion of the nucleus.

Potassium was found at the lowest temperatures and for the
purest specimen also to yield a T'° law, but comparison with theory
at higher temperatures is difficult. This whole research has again
drawn attention to the insufficiency of our knowledge of the vibra-

tional energy spectrum of the lattice. There is wide disagreement
between the values of the Debye characteristic temperature obtained
by different methods for the same metal, which is accentuated by the
fact that in most cases it is impossible to fix the same 6 value for one
property of the substance over the whole temperature range.
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Rubidium and cesium do not show agreement with the theory,
and the same is true for the alkaline-earth metals (see fig. 51 .2 ).

In all these cases, the concept of quasi-free electrons does not seem

Figure 51.2. Resistance variation at low temperatures of cesium (specimen Cs2).

to be applicable in the same way as in sodium. It is at present
impossible to obtain some of the alkaline-eartli metals sufficiently

pure to draw definite conclusions as to their electronic behavior. In
the case of beryllium, there are doubts whether the fairly high resist-

ances observed were due to impurities or whether the metal is essen-
tially a rather poor conductor.
The power index of the temperature variation of the resistivity

was derived from the “ideal” values, i. e., those resistances that
were left after subtraction of the temperature independent “residual”
resistance. In most cases, and in particular in the alkali metals,
the residual resistances of the samples were small enough to make the
evaluation of the ideal resistivity sufficiently accurate. However,
there were two phenomena that made the application of Matthiesen’s
rule difficult. One was the observation of a minimum in the resis-

tivity of magnesium that is similar to that found in some of the meas-
urements on gold. All four samples of magnesium used by us
exhibited this phenomenon, and as the material used to make them
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was obtained from three different sources, it is tempting to think
that the minimum may be a basic property of the metal (see fig.

51.3). However, it has to be remembered .that the refining processes

Figure 51 . 3 . Temperature variation of electric resistance of magnesium.

used may have been rather similar and left similar impurities. There
is indeed a fairly significant amount of aluminium and particularly

manganese in the three samples for which analyses were available,

and one might suspect that the presence of either or both of these
impurities is responsible for the occurrence of the minimum. It

is probably quite incorrect, as has sometimes been done in the case

of gold, to correlate the minimum with the total amount of impurity
of any kind in the specimen under investigation. In fact, it is post-

ulated by the theory of scattering and also borne out by the experi-

mental evidence that general impurity simply results in an increase

in the temperature-independent residual resistance. Theory gives

no indication how a minimum in the resistivity can be caused, and
it therefore seems more reasonable, when attributing the minimum
to impurity, to make a specific impurity responsible.

The other anomaly observed was rather inconspicuous but could
nevertheless be recognized clearly with the accuracy of our resist-

ance determinations. It was found that in some specimens of potas-
sium, cesium, and barium the resistance curve showed small kinks.

Detailed experiments in the case of potassium made it fairly certain

that these kinks were caused by a very small impurity of sodium.
Although repeated distillation of the available pure potassium did

not remove the anomaly, the latter did not occur when potassium
glass was used for the distillation vessel. There is reason to believe

that similar impurities are responsible for the similar anomalies in

cesium and barium, but no theoretical reason for the particular type
of anomaly in the resistance curve can be given.
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52. Infrared Absorption by Metals at Low Temperatures

by K. G. Ramanathan 1

The classical formula for absorption, A, and reflectivity, R ,

where v is the frequency of radiation, and a is the d-c conductivity ol

the metal, suggests the possibility that superconductors might be perfect
reflectors of infrared waves. To test this idea, Daunt, Keeley, and
Mendelssohn [1]

2 made experiments with lead and tin which indicated
no observable differences in A between the normal and superconduct-
ing states. However, Daunt, Keeley, and Mendelssohn did not
claim high accuracy for their measurements, nor did they make any
quantitative absolute estimates of A. Recent work by H. London [2]

and Pippard [3] on the surface resistance of superconductors in the
microwave region suggested the possibility of a small change in infra-

red absorption occurring below their transition temperatures. It

was therefore decided to make new measurements on the infrared

absorption of an electropolished surface of tin in its normal and
superconducting states with an apparatus designed to give results

accurate to about 1 percent. It was also the aim in this work to meas-
ure quantitatively the absorption by some pure metals and alloys and
to compare the results with those predicted by various theories.

In the apparatus used for the investigation, continuous infrared

radiation from a black-body source at room temperature passes down
the cryostat through a German-silver tube of about 1 cm diameter
polished on the inside to increase the effective intensity by multiple

reflections at the wall. The radiation emerging at the bottom falls

on the flat-polished surface of a metal specimen soldered on top of one
of two identical gas thermometers enclosed in an evacuated metal
chamber, immersed in liquid helium. The rise in temperature of the

gas thermometer, due to absorption of radiation by the specimen, is

measured by the difference in level produced in an oil manometer
which connects the two thermometers differentially. The rate at

which radiation is absorbed by the surface is obtained by comparing
the change in level it causes with that produced by the dissipation of

electrical energy at a known rate through a coil wound round the

specimen thermometer. With this arrangement absorptions are

measured at various temperatures of the helium bath. In order to

observe as accurately as possible whether there was any change in

absorption when the specimen became superconducting, the measure-

ments were carried out at 2°K alternately in the normal and super-

conducting states, the normal state being produced with the aid of a

magnetic field. The intensity of the source, which it is necessary to

know in order to make quantitative estimates of absorption, was

1 Royal Society Mond Laboratory, Cambridge. England. Presented by D .Shoenberg.
2 Figures in brackets indicate literature references on page 259.
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deduced from measurements on the alloy eureka on the assumption
that its absorption is given by the classical formula.
The measurements on tin indicate that ddwn'to 2°K, the absorption

remains the same in the normal and superconducting states to within

1 percent, the uncertainty being probably less than % percent. Quan-
titative estimates of absorption by the various metals and alloys

investigated are shown in column 2 of table 52.1. All the measure-
ments, except the last two, were made on specimens with electro-

polished surfaces. The mean wavelength to which the absorption
measurements refer is deduced by using Planck’s formula for the
frequency distribution of black-body radiation. If the incident

oo

intensitv is given by Evdv, the total energv absorbed can be
Jo

co

represented by
J

Cv aEvdv, where C and a are independent of the

frequencv, v. The measured absorption is the ratio of CvaEvdv
Jo

co

to Evdv ,
which can be equated to Cv“, where v\ is the mean

frequency. It is found that the mean wavelength, \b is 14.0 p when
a=y2 ,

as in the classical theory, and changes little when a is varied
from y2 to 1.

Table 52.1. Infrared absorption by metals at X=14 n

Theoretical

Metal Experimental

Classical
Classical+
relaxation

Anomalous i

skin effect

Anomalous
skin effect

+

relaxation

% % OY
/o % ;%

Copper 0. 62 0. 10 0. 003 0.94 0.1
Aluminium - 1.11 .13 .004 1.03 .08
Lead 1 15 1 .14 1 .003 i 1.18 l

. 07
Tin 1.24 !04 .0004 1. 14 !oi
Tin+1% indium 1.25 . 65 .084 1.26 .1
Tin+5.4% indium 1.74 i 1. 64 1.18 i 1.64 1.19
Brass - 1.78 1.84 .96 1. 84 .96

Eureka 6.33 5. 62 6.33 5. 62

Staybrite. - 8.23 6.53 5. 66 6. 53 5.66
Bismuth-tin, eutectic 7.63 2. 57 1.20 2. 57 1.20 1

Copper 2 ..... 1.47 0. 10 0.003 0. 94 0.1

1 These calculations were made by using the resistance value above the transition temperature of the
metals.

2 Mechanically polished surface.

The values of absorption for the different metals calculated from
various theories are given in columns 3 to 6 of the table. The form-
ula of classical theory has been used in column 3, while in column 4
the absorption is assumed to be given by

2(y/o-)
5

(— cot -

f

-
-y l-pco 2

r
2
)

2

where co=2 ttv, and r the “relaxation” time is equal to am/Ne2
,
N be-

ing the number of electrons per cubic centimeter, e the electronic

charge, and m its mass. The calculations in columns 5 and 6 are
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based on the theory of anomalous skin effect in metals developed by
Reuter and Sondheimer [4]. The values in column 5 are computed
from figure 1 of their paper which represents their results if relaxation
effects are assumed negligible. The figures in column 6 are obtained
by interpolation from figure 2 of their paper, which represents their

results for the optical region where relaxation effects play an important
part in determining the surface resistance. In all these calculations
n, the number of free electrons per atom has been assumed to be 1

;

the numerical values are not much changed if n is taken as % or 2.

The following features in the table may be noted: (1) The absorp-
tions in column 5 are in good agreement with the experimental values,

(2) the calculations in other columns, for most cases, lead to absorp-
tions lower than the observed, this discrepancy being more marked
in the case of the pure metals, (3) the experimental values for alloys

show good agreement with those of classical theory except for Sn+1%
In where the resistivity is still low enough to produce the anomalous
skin effect and the Bi-Sn eutectic where the internal photoelectric

effect may be responsible for the high absorption, (4) finally, the high
value of absorption for a mechanically polished surface of copper 3

brings out the importance of using electrolytically polished surfaces

for such optical measurements, as Chambers [5] has shown that a

layer of high resistivity is produced at the surface of a mechanically
polished metal.

[1] J. G. Daunt, T. C. Keeley, and K. Mendelssohn, Phil. Mag. 23, 264 (1937).

[2] H. London, Proc. Roy. Soc. [A] 176, 522 (1940).

[3] A. B. Pippard, Proc. Roy. Soc. [A] 191, 370 (1947).

[4] G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc. [A] 195, 336 (1948).

[5] R. G. Chambers, Nature 165, 239 (1950).

[6] A. Wexler, Westinghouse Research Laboratories, Scientific Paper 1558 (1951).

3 This measurement was made after I had heard of the investigation by Wexler [6], on the absorption

of mechanically polished copper. The value given in the table is not very different from that obtained

by Wexler (1.29%) for the same mean wavelength X=14 /*.
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53, The de Haas-van Alphen Effect

by D. Shoenberg 1

During the last 18 months experiments on the de Haas-van Alphen
effect (periodic field-dependence of magnetic susceptibility of metal
single crystals) have been extended to higher fields (up to 15,800
gauss), to lower temperatures (down to 1.1° K), and to other metals
[l].

2 The effect, which was already known to occur in bismuth, zinc,

gallium, tin, and graphite, has now also been found to occur in cad-
mium, indium, antimony, and aluminium. Verkin, Lazarev, and
Rudenko [2] have independently observed the effect in tin, cadmium,
and indium, and also in magnesium and beryllium. It now appears
clear that the effect is one that should be found in every metal at
sufficiently high fields and sufficiently low temperatures, but that it

is most easily observed in metals where the Fermi surface crosses

Brillouin zone boundaries, presumably because under such circum-
stances abnormally low effective numbers of electrons and abnormally
low effective masses may be expected.

In cadmium the effect occurs along the hexagonal axis and in indium,
perpendicular to the tetragonal axis. For both metals the period of

oscillation is very small (at 15,300 gauss, about 43 gauss for cadmium
and 48 gauss for indium). The amplitude is scarcely measurable
except at the highest fields and lowest temperatures, so it is not sur-

prising that the effect was not observed in the earlier experiments.
In aluminium and antimony the effect depends in a complicated way
on the direction of the magnetic field; typical values of the period at

15,000 gauss are 900 gauss in aluminium and 270 gauss in antimony;
the amplitude in both metals increases by a factor of the order of 4

when the temperature is reduced from 4.2° to 1.5° K. It may be
mentioned that aluminium is the first metal of cubic symmetry in

which the effect has been found.
More thorough experiments on a pure gallium crystal have shown

that the effect is more marked and its character more complicated
than the previous observations [3] on a less pure crystal had suggested.

The characteristics of the effect are different for each of the three

principal axes. One interesting feature (which occurs also for tin and
graphite) is the existence of beats in the oscillations, that is, periodic

modulation of the envelope of the oscillations (see figs. 53.1, a, and
53.1,b). The beat period and the depth of modulation vary in a

complicated manner with field direction, and the amplitude increases

rapidly as the temperature is lowered. For certain directions in gal-

lium at the lowest temperatures there is evidence also for a “fine

structure” of the oscillations, that is, superposition of a frequency

several times higher than the fundamental. In very recent experi-

ments 3 this fine structure has shown up particularly strikingly in

aluminium (fig. 53.2). Presumably such features are at least partly

associated with the coexistence of several groups of electrons with

different effective masses.

1 Royal Society Mond Laboratory, Cambridge, England.
1 Figures in brackets indicate the literature references on p. 264.
3 Since this paper was read at the NBS Symposium.
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In parallel with the experimental work, R. B. Dingle has been
reconsidering the theoretical position. The main theoretical advance
has been the consideration of the influence of collision broadening of
the energy levels in a magnetic field. This has been shown to diminish

Figures 53.1. Variation of Ax (anisotropy of mass susceptibility) with 1/H in
the AC and BC planes of a gallium single crystal.

t is the angle between II and the C axis. The expermimental points are maxima and minima of the
oscillations. The full curves are rough envelopes of the oscillations at the temperatures indicated and
illustrate the growth of the effect as the temperature is lowered. A, Gallium AC plane ^ = 10°; B, gal-
hum BC plane ^=10°; T=4.2° K.

I/H x !0
4

Figure 53.2. Variation of Ax with 1/H for the 100 plane of an aluminium single

crystal.

Only one main period is shown in order to illustrate the fine structure of the oscillations. The experi-
mental points are intended to be maxima and minima of the higher frequency oscillations, but owing
to the difficulty of controlling the field sufficiently precisely their exact positions are not very accurate,
and the full curve has been sketched in rather schematically.

amplitude of the leading term in Landau’s theoretical formula [4]

for the periodic field-dependence by a factor exp where r

is the appropriate collision time, /3 is eh/Zionc (m being an effective

electronic mass), and the other symbols have their usual meanings;
thus the amplitude becomes proportional to exp[— (27t

2&T+/t/r) //!&].

In other words, the influence of collision-broadening is as if the tem-
perature were increased by x, where z=A/27t 2

Z:t, and x should be inde-

pendent of temperature, since at the temperatures concerned the
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electric resistance, and hence r, is independent of temperature. This
modification of Landau’s formula provides a possible explanation of a
number of experimental features that did not previously fit the theory.

1. In all the metals studied, the amplitude of the de Haas-van
Alphen effect decays more rapidly with field at a given temperature
than is to be expected, on the basis of Landau’s formula, from the
temperature-dependence at a given field. With suitable choice of x
(usually of order a few degrees), the addition of the new exponential
factor brings all the data into reasonable accord. It should be noted
that if this is done, the effective electronic masses and degeneracy
temperatures previously estimated from Landau’s formula require
some revision (although the orders of magnitude are unchanged).

2. As the direction of the magnetic field departs from a principal
axis, the amplitude of the de Haas-van Alphen effect decays more
rapidly than is to be expected from the variation of the relevant
effective mass. This can be accounted for by supposing that x
increases with xp, the angle between the field and the principal axis.

In graphite, where conductivity is practically confined to the hex-
agonal plane, the circumstances are particularly simple, and the
plausible result is found that x varies roughly as sec2

\f/, that is, r

varies as cos2
\p. For the other metals the angular variation of x

has not yet been fully studied.

3. The decrease of amplitude of the de Haas-van Alphen effect

with increasing impurity content [5] finds an immediate explanation,

since x should be proportional to residual resistance, which increases

with impurity content. In order to test this interpretation, some
new experiments have been made on the influence of adding small
amounts of mercury and indium to tin. It turns out that the value

of the parameter x increases linearly with the increase in residual

resistance of the alloy. From the slope of this linear relation it is

possible to deduce that the collision time r0 of the electrons at room
temperature is of order 1.5X10 -14

sec, which agrees well with the

collision time estimated from the anomalous skin effect [6] and the

size dependence of resistivity [7]. Although this provides confirma-

tion for the theory of collision broadening effects, the linear plot of

x against residual resistance (fig. 53.3) does not pass through the ori-

gin, that is, there must be some other effect that produces a value of

x that is not associated with collision broadening. A possible cause

for this residual value of x in tin is the removal by the periodic lattice

Figure 53.3. Variation of the parameter x with R/R0 (ratio of the residual resistance

to the room temperature resistance of a piece of the same crystal.

The value of x has been calculated assuming that the factor in Landau’s formula is H~3
I
2

; the alter-

native assumption increases all the values of x by approximately the same amount (about 1). The
slope of the straight line is given by h/2ir2kn.
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field of the degeneracy of the electronic states quantized in a magnetic
field. This removal leads effectively to a broadening of the relevant
energy levels, even in a completely pure metal.

Another puzzling discrepancy between the results for bismuth and
zinc and Landau’s formula has been the wrong phase of the oscilla-

tions [4, 8] (available magnetic fields are too small to allow estimation
of the phase for the other metals). Landau’s theory assumes con-
stancy with field of the number of electrons effective for the de Haas-
van Alphen effect; but detailed considerations suggest that usualfy it

is rather the thermodynamic potential per electron which should be
constant, because only a very small fraction of the conduction elec-

trons contributes to the effect. This leads to a phase change of

/o7r in the theoretical formula, which then agrees better with experi-

ment, but it is possible that other effects not yet fully considered (for

example, influence of the lattice field) may further change the phase
and modify the situation. The assumption of a constant thermo-
dynamic potential also modifies the field variation of the envelope of

the de Haas-van Alphen effect, changing a factor H~ 3/2 that appears
in Landau’s formula to #-5/2

.

4 Because of the dominant exponential
factor, however, the experimental data cannot as yet decide between
these two powers of H.

[1] R. B. Dingle and D. Shoenberg, Nature 166 , 652 (1950); D. Shoenberg,
Nature 167, 646 (1951) Phil. Trans. Roy. Soc. [A] 245, 1 (1952).

[2] B. I. Verkin, B. G. Lazarev, and N. S. Rudenko, J. Exptl. Theoret. Phvs.
(USSR) 20, 93 (1950).

[3] D. Shoenberg, Nature 164 , 225 (1949).

[4] See appendix to D. Shoenberg, Proc. Roy. Soc. [A] 170 , 341 (1939).

[5] D. Shoenberg and M. Zaki Uddin, Proc. Roy. Soc. [A] 156 , 701 (1936); J.

Marcus, Phvs. Rev. 77, 750 (1950).

[6] A. B. Pippard, Phvsica 15 , 45 (1949).

[7] E. R. Andrew, Proc. Phvs. Soc. [A] 62
, 77 (1949).

[8] L. Mackinnon, Proc. Phys. Soc. [B] 62, 170 (1949).

* Note added in proof. Prof. L. Onsager has recently pointed out a fallacy in Dingle’s argument regarding
the phase and power of H. For the correct argument, see Dingle, Proc. Roy. Soc. [A] 211, 500 (1952).
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54. Approximate Calculations of the Surface Imped-
ance of a Metal in the Anomalous Region

by P. M. Marcus 1

Anomalous Skin Effect

The long mean free paths of the electrons in a metal at low tem-
peratures greatly modify the high-frequency behavior of the metal.
This idea, first proposed by H. London [1]

2 and used by Pippard [2]

in explanation of his observations, was developed on an exact
mathematical basis by Reuter and Sondheimer [3], using a free-
electron model and a relaxation time. Reasonable experimental
verification of the general predictions of the theory was provided by
Pippard’s work, but some quantitative discrepancies were removed
by later work of Chambers [4], so that the theory may now be regarded
as a reliable description of the main features of metal behavior under
these conditions.

The behavior of a metal in the anomalous region (i. e., the region
in which occur deviations from the behavior predicted by classical

skin effect theory) is of general interest for several reasons. It is an
example of the violation of the point relationship between electric

current and electric-field strength. Hence one can no longer strictly

speak of a conductivity, but to describe the phenomena in the metal
one must consider the current and field separately as functions of

position. The behavior toward external fields, however, is conveni-
ently described by the surface impedance defined below.

In addition, the effect provides a direct measurement of the electron
mean free path by comparing this with the classical skin depth, and
it may lead to values of the relaxation time as well. One should also

point out that the anomalous behavior is a fairly universal phenomenon
that will occur in any reasonably good conductor at low temperatures
and high frequencies.

The exact theory is a considerable achievement, but it is com-
plicated and conceals the nature of the physical processes taking
place in the metal. It leans heavily on the particular form of the
integrodifferential equation to be solved and solves this only for

two special values of the parameter, p, describing the reflection of elec-

trons at the metal surface. An approximate approach that yields

the main results will give increased insight into the physical behavior
and will make possible extensions to more complex physical situations

where an exact theory would be difficult. Such an approximate ap-
proach will be described below. It starts by considering the kinetics

of the motion of electrons in a field decreasing exponentially from
the surface and then improves the results by introducing various re-

finements of this idea. Of course, the exact theory is a valuable guide

and check throughout the calculations.

1 University of Illinois, Urbana, 111.

* Figures in brackets indicate the literature references on p. 272.
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Physical Background

Figure 54.1 illustrates the physical background of this phenomenon
and explains why it has been called the anomalous skin effect. Three
characteristic lengths associated with the electromagnetic behavior
of a metal are plotted here as a function of temperature, T, for a pure
tin specimen over the range from room temperature (290° K) to liquid

helium temperature (4° K). (1) The electron mean free path, Z,

(obtained from the theory and Pippard’s measurements) increases

from 10
-6 cm to 5X10-3 cm over the temperature range, reflecting

Figure 54 . 1 . Behavior of mean free path l, classical skin depth
, 8, and effective

skin depth, 8 e ,
as a function of temperature, T, in tin.

a factor of 5,000 in the d-c conductivity, a; l levels off in the residual

region and is proportional to 1/T at higher T. (2) The classical skin

depth, 8, (obtained from <f) is plotted at two frequencies. At the lower
frequency of 1,200 Mc/s,5 decreases from 5X10_4cm to 7X10_6cm.
Thus at about 25° K, 8=1, and here the anomalous region begins.

(3) The effective skin-depth, 8e ,
is essentially the actual penetration

depth of the field into the metal, although it is defined precisely in

terms of the surface resistance. 8e coincides with 8 at higher T but
becomes greater than 8 when the anomalous region is entered and
characteristically becomes quickly independent of T. This occurs
at temperatures where 8, l and a are still changing, much above the
residual resistance region. 8e is finally ^55^(1/150)Z.
The progress of anomalous conditions is conveniently indicated

by the values of the dimensionless parameter a= (3/2)Z2
/5

2
,
whose sixth
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root covers the range from about 0 to 10. a is greater than unity
in the anomalous region.

The basis for a first approximation to the theory and an illustra-

tion of the meaning of the effective skin depth are shown in figure
54.2 by a plot of the (absolute value of the) exact field in the metal in
the extreme anomalous region (a=3X10 5

) obtained from a power-
series expansion of the field in the case p= 1. Comparison of the

Figure 54.2. Magnitudes of exact field, \f(x)lf(0)\, at p= 1, exponential approxima-

tion field, \e~ ux \,
and classical skin depth field, exp (— ->J(2a/3)x), as functions of

depth in the extreme anomalous region, a=3X105
.

exact field with an exponential with the same initial slope shows the
former to be well approximated by the exponential to a depth ap-
proximately equal to the penetration depth of the exponential field

(where the amplitude is l/g of its initial value). This depth is also

essentially 8e (it actually ranges between 5e and 1.15 8e). At greater
depths than 8e the exact field falls more slowly than the exponential,
and the exact theory shows the asymptotic field to be proportional to

e
~ zll

lz
2

. For comparison, the steeply falling exponential field pre-

dicted by classical skin-effect theory, and the slowly falling ex-

ponential, e
~ z/l

,
are also plotted.

The first approximation used for the field will therefore be a com-
plex exponential, and it is assumed that the predominant physical

processes take place in the penetration depth defined by this exponen-
tial, where it is a good representation of the actual field. Under less

anomalous conditions, the actual field must approach the exponential

field of classical theory, hence this approximation should hold even
better.

Refinement of the Ineffectiveness Concept

A simple picture of the effect may now be obtained by considering

the kinetics of electrons that move and acquire drift velocity in an
electric field, E(z)eio,t

,
decreasing exponentially with 2 in a depth 8e

but pointing in the ^-direction, as illustrated in figure 54.3. The
electrons are schematically shown as converging from all directions on
a point at the surface of the metal, after starting about a distance l
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away. The electrons and field at negative z values are a device for

taking account of the electrons reflected at the metal surface with no
loss of drift velocity. If jp is the fraction of such electrons (the rest

Figure 54.3. Schematic picture of kinetics of electrons accelerating in an exponen-
tially decreasing field under anomalous conditions with coordinate designations.

are scattered diffusely), then the electron density in the region z<^

0

may be considered to be reduced by a factor p, but to move in a field

symmetrical to that for 0.

A simple but crude procedure for calculating the surface impedance
Z in extreme anomalous conditions such as in figure 54.3 has been
called by Pippard the ineffectiveness concept [2]. Only electrons

moving in a skin layer of depth 8 e (i. e., which spend an entire free

path there) are considered to be effective in producing the current,

and these electrons are treated as if they move in constant field.

This is equivalent to introducing an effective conductivity, ae ,
smaller

than the d-c conductivity by a solid angle factor, 8e/l and then apply-
ing ordinary skin-effect theory. This yields a dimensionally correct

expression of the proper order of magnitude which is independent of

T, as required by observations.

Thus if ae= (8e/l)<r, then skin-effect theory gives

S -J c 2
r T3

* \27TCO(7 e |_2 7TC0CTJ
Hence defining

Z-R^X-
c m - (1+t). (1)

Therefore,

i i / c
2 v/3 AY ' 3

R~X\2ttu>) (2)

A refinement of this procedure can be made which introduces new
physical detail and remedies certain objections, namely, that the elec-

trons may not be considered to travel in constant field, that the domi-
nant contribution to the current does not come from the electrons in

the skin layer, and that the surface-reflection factor is neglected. All

electrons in the solid angle about a point are considered to contribute
effectively to the current in proportion to the length of their path in
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the skin layer where they acquire drift velocity, thus reducing each con-
tribution by the same factor 8 e/l that appears above through the re-

striction of the group of electrons considered. The variation of the
field over the electron path is taken into account, and the beginning of

the path is assumed to be at a position where the field is negligible,

thus using the assumption l ^>^>8 e . Then we write for the current at

2 (in the ^-direction)

I(z)= — lie
dz

v cos 0

(1+P)—n —

t

(3)

where —ne is the total charge, — eE(z)/m the drift acceleration, v, the

thermal (Fermi) velocity, and dz/v cos 0 a time differential, where cos*0

is some average over the angles of approach to take account of the

greater contribution of electrons more nearly parallel to the surface

(the contributions at some angle must actually be cut off by limiting

the length of acceleration path to a mean free path). The factor

(l+p)/2 takes account of reflected electrons by reducing the current

contribution from reflected electrons by a factor p.

Putting E(z)=e~ ill[z[

,
where k is a complex propagation constant and

(rather arbitrarily) cos 0=| gives

E(z) (l+p)_«(l+p)
E{

mv m id (4)

From the electromagnetic equations, however,

4irio: oz 2 47nu (5)

Hence
. r4ri« n ,

crT /3

lK=
l C 2 (1+P) l\

(6)

and using Z=47tco/c
2
k,

(7)

This formula gives the correct ratio (y
;

3) of surface reactance, X, to

surface resistant, B, predicted asymptotically by the exact theory,

as well as the correct dimensional factors. The numerical factor

(2(1 -f-_p))
1/3= 1.6 Sit p=l and 1.3 at p= 0, to be compared with exact

values 2.18 and 1.94, respectively.

More Exact Kinetic Considerations

The kinetic approach used above when carried out precisely leads

to the following integral formula for the current in terms of an arbi-

trary electric field:

I(z)=~ I" f
2

d0^-yj f 'dz 0e~(^)E(z 0)+p f

0

d

z

0
g~ (Vcos i)E(z 0)

\

4 l |_Jo cos 0( Jo J -co )

+ f de
SlU 0

f dz Q
e~v™se 2£(2o)~L ®

Jt COS 0 Jo, J

995112—52 18
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where the first two integrals give the contribution to the current of

electrons coming from z0<^z—the two terms arising from the drift

velocity acquired between the surface and z, and from 2<0 (reflected

electrons), respectively. The third integral is the contribution from
z0^>z. The Fermi distribution is distinguished from a one-velocity
distribution by the presence of the factor sin3

6 rather than sin 6.

If this expression for I is used with eq (5), the integrodifferential

equation of the exact theory is now obtained (eq (11)). An exponen-
tial field, E(z)=E0e~

iK
^
zl

,
may be used to satisfy this equation approxi-

mately by several procedures. The two sides of the equation may be
matched at the surface z=0, which is physically the most important
point as the current and field are largest there, yielding an equation
for k of the following form:

U3=ia(l+p) [(i-^s) 111 (l+«)-^+tJ> (9)

where u=id and a=3l 2
/25

2
.

The equation may also be multiplied through by the exponential
E(z) and integrated over all z, thus matching the two sides in an
average way weighted essentially by the power at each point. The
equation obtained for k is

«*=2ta [(l+p-i±^)ln(l+«)-l±^+^]. (10)

Solving (9) and (10) for the complex quantity k as a function of a,

for p= 0, 1 which is easily done by iteration procedures, leads to ap-

1-

Vr,P“I Exoct Theory

2-

Ap
,
p -l Surface Matching Equation

3-

Â ,P“l Integrated Matching Equation

4 — ,
p=0 Exact Theory

5-

,p = 0 Surface Matching equation

6- > p*0 Integrated Matching

Equation
Variational Ei

R «= Surface Resistance (ohms)

A - 3.643 x l(T
6«H(.£-)H (ohms)

Refined
Ineffectiveness

Concept

3 ^ J = Mean Free Path

z~ S“ Classical Skin Depth

3 4 5

y6 _

Figure 54.4. Values of surface resistance calculated from various approximations
compared with exact theory.

270



proximate values of R and X over the entire range of a from classical

to extreme anamalous conditions. Values of R relative to a char-
acteristic quantity A with the dimensions of an impedance, but
independent of temperature, are plotted in figure 54.4, together with
values of the exact theory. The results of the average matching-
procedure are seen to be considerably better (in fact, for p= 0 the

surface matching equation does not approach the correct classical

limit, since half the current is removed at the surface by the scattering,

although this is not physically significant in the classical region where
l is small). A/R is given to better than 10 percent for a<+X10 3

and better than 20 percent at a=5X10 4
.

A Variational Formulation

The most effective use of an exponential field approximation is

obtained, however, by combining it with a variational expression [5]

for the surface impedance. In dimensionless variables the exact

equation for the field is

f"(x)=iaj° K(Xj y)f{y)dy

K(x, y)=k(x— y)+pk(x+ y)

/»co p-t\x
|

f*co p-t\x\

jfc(*)=z 1(*)--B3(*)=J
i -r di-)

x ~r dt

x— z/l; j(x)=E(z).

( 11 )

Multiplication of (11) by /(a?) and integration from 0 to oo leads to

the form for Z:

1 . /8 1/3
A /'(0)

" + z 1

\ 3
a

' z"
- m

£
[f(x)]

2dx+ia
^ ^

J(x)K(x,y)f(y)dxdy

V(0)]
2 ( 12 )

which is stationary for small variations of j(x) about the exact field.

Putting /(x)=e_BI in (12) yields an expression for Z of the form

Z~2^u2 [\
1 +p-ii^)ln(«+l)

1 + 32?

2

1 +3p~1

u J

(13)

The parameter, u, is determined by the condition that (13) be sta-

tionary, yielding the equation:

u°= 4ia j^l In (m+ 1)— (1 +2p)T
2(1 + 3p) p

u u+ t]

(14)
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Solving (14) for u as a function of a and p and substituting in (13)

gives values of A/R and A/X a few percent better than eq (10).

Thus for a<4X10 3

,
A/R is given within 8 percent, and at a=5X10 4

within 16 percent.

The variational formulation has the great advantage that it may
be improved by use of more elaborate trial functions. A new trial

function of the form

(15)

is reasonable because it is more nearly asymptotically correct, which
the exponential is not, and can be integrated. The nth order expo-
nential integrals, En (x), occur also in the theory of diffusion of neutrons
of one velocity, which bears many points of analogy to the present
problem. In fact, a variational formulation of the neutron problem
leads to many of the same integrals [6]. The present problem is

more complicated, however, because the kernel is more complicated,
a second derivative of the unknown function appears in the equation,
and all functions are complex. The new trial function may be expect-

ed to give substantial improvement in the values of Z, and calcu-

lations are in progress now.

Extension to More Complicated Physical Situations

Only one extension will be mentioned here that can definitely be
carried through, namely, transmission through a thin film of metal
in the anomalous region. The integral equation (for p= 0) now has
the form

(16)

where d is the thickness of the film and K{x,y) is the same as in (11)

with p= 0. An exact solution is probably not feasible, but variational

calculations are quite possible to the accuracy mentioned above.
Measurements of the transmission through such a film would be of

considerable interest as they would provide a direct measure of the
behavior of the field in the metal, whereas present measurements give
only the surface impedance. Appreciable transmission should occur
for much greater thickness of film than classical theory would predict

because of the greater penetration depth; also the long, slowly falling

tail on the field should affect the transmission.
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55* Magneto-resistance of Superconducting Mercury

by T. G. Berlincourt and C. T. Lane 1

Abstract

The change of resistance in a magnetic field for mercury (average
mass number 200.6) has been determined for temperatures below the
normal superconductive (zero field) transition and for fields above
critical.

Defining Rc as the resistance at the critical field, and R as the change
in resistance for a field of 8 kilogauss, we have

r=3.5°K
£l c

T= 1.2°K ^~200.
lie

Measurements to determine whether or not the above effect depends
on the nuclear mass are now in progress.

1 Yale University, assisted by the Office of Naval Research.

56. Magnetic Susceptibility of Liquid Nitric Oxide

and the Heat of Dissociation of (N0) 2

by A. Lee Smith and Herrick L. Johnston 1

Abstract

Infrared and Raman spectra studies made previously in this

laboratory show that liquid nitric oxide is almost completely dimer-
ized. As NO is paramagnetic, and (NO ) 2 is only weakly magnetic,
magnetic susceptibility studies were undertaken in order to find the
extent of the dimerization as a function of temperature.
The very sensitive Faraday test-body method was used, and the

degree of association of the liquid was found to be 97.4 percent at
110° K and 94.8 percent at the boiling point (121.36° K).
Equilibrium constants for the dissociation reaction were computed

and a plot of —R InK against the reciprocal of the temperature showed
the heat of dissociation of the dimer to be 3,300 cal/mole.

1 Ohio State University, Columbus, Ohio.
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57. Heat Capacity of Solid Deuterium from 1.3° to 12° K

by O. D. Gonzales, David White, and Herrick L. Johnston 1

Abstract

The heat capacities of 66.7 percent (normal) and 98 percent ortho-
deuterium have been measured from 1.3° to 12° K. The heat capacity
for normal deuterium displayed an anomaly similar to that for normal
hydrogen 2 with no observed maximum down to 1.3° K; the entropy
loss amounted to 0.29 entropy units at this temperature.
The heat capacity of the 98 percent orthodeuterium decreased

rapidly with temperature. No appreciable anomalous contribution
from the 2 percent paradeuterium was observed. However, further

investigation is needed to determine unambiguously whether this

effect was caused by conversion of the para form or by suppression of

the anomaly by dilution. At the form or by suppression of the
anomaly by dilution. At the higher temperature the heat capacities

of both mixtures agreed with values previously obtained in our
laboratory.3

Preliminary experiments below 1° K indicate that the heat capacity
for the normal mixture rises sharply to approximately 0.8 cal/mole

-1

degree-1 in the vicinity of 0.7 to 0.8° K.

1 Ohio State University, Columbus, Ohio.
2 K. Mendelssohn, M. Ruhemann, and F. Simon, Z. physik. Chem. [B] 15, 121 (1931).
3 Kerr, Rifkin, H. L. Johnston, and Clark, J. Am. Chem. Soc. 73, 282 (1951).

58. Compressibility of Liquid Normal Hydrogen from

the Boiling Point to the Critical Point at Pressures

up to 100 Atmospheres

by Wm. E. Keller, Abraham S. Friedman, and Herrick L. Johnston 1

Abstract

An apparatus has been constructed to determine compressibility

isotherms of low-boiling liquids at pressures up to 100 atmospheres
and at temperatures up to the critical point. The isotherms of

hydrogen between the boiling point and critical points have been
determined. The derived isochores are linear and their slopes are

linear functions of the density. Thus P=A(v)JrB(v)T . . . and
B(v)= (P/T) v

=— 7.11 -f (437/F). The experimental data are com-
pared with the liquid densities predicted by the Lennard-Jones and
Devonshire theory of very dense fluids. The theory is not in good
agreement with the experiments.

^
^Ohio State Uni rsity,'Columbus, Ohio.
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59. Elastic Constants of Rock Salt

by W. C. Overton, Jr., and R, T. Swim 1

Introduction

The familiar ultransonic pulse technique used to measure velocity
and attenuation in solids has been employed in the determination of
the velocity of 10-Mc/sec sound waves in single crystals of NaCl,
over the temperature range from 65° to 300° K. From a knowledge
of the velocity of propagation of longitudinal and transverse waves
in the medium, the elastic constants cn ,

c44 ,
and c12 have been cal-

culated.

Experimental Procedure

The principles of the ultrasonic-pluse technique have been de-
scribed by Huntington [1]

2
,
Galt [2], Roth [3], and others. The elec-

tronic apparatus used in the present experiment is essentially the same
as that discussed b}^ Overton [4], with the omission of attenuation
measurements. In the temperature range 160° K to 300° K the bind-
ing agent between the quartz-crystal transducer and the rock salt

was different from the binder used at liquid-nitrogen temperatures.
For the higher temperatures the binding agent was stopcock grease,

but below 160° K the differential thermal contraction between the

quartz, the binder, and the rock salt may result in effects that make
measurements impossible. These effects are, first, that the binder
cracks away leaving the quartz free from the salt, and second, that

stresses introduced in the quartz crystal by thermal contraction may
deform it and hence change its piezoelectric properties so that sound
energy can not be produced. Both effects have been observed, and
because of these, no measurements have been obtained below 60° K,
even with the low-temperature binding agent composed of alcohol,

ether, and isopentane. Stresses in the rock salt due to the differential

contraction have been large enough to cleave the specimen slightly.

Care was taken to avoid these effects.

At a particular temperature within the experimental chamber, the

velocity of propagation of the 10-Mc/sec sound waves in the rock
salt is calculated from a knowledge of the length of the specimen
and of the time necessary for a sound pulse to travel the length of

the specimen, be reflected, and return to the face from which it started.

These round-trip travel times may be determined to an accuracy of

±0.02 nsec with the oscilloscope (DuMont type 256-D). Good
single crystals of rock salt gave multiple echoes that were quite clean

and allowed high precision of measurement.
In order accurately to determine the length of the specimen, it is

necessary to know the behavior of the linear coefficient of thermal

expansion of rock salt. This coefficient has not been located in the

literature by us over the temperature range under consideration.

We have calculated the expansion coefficient in two ways and get

1 The Rice Institute, Houston, Tex.
2 Figures in brackets indicate the literature references on p. 278.
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good agreement. Gruneisen [5] and others have shown that the ratio

a/Cp, wdiere a is the linear coefficient of thermal expansion, and cp ,

the specific heat at constant pressure, is quite independent of tem-
perature for most solids. Using published values of a and of cp at
273° K, and using the temperature variation of cp as given in the

International Critical Tables, we have computed a as a function of

temperature. The second method employs the empirical relation

between density and temperature [6]:

p=p0(l—at— bt
2
),

where the values of the coefficients are given in the International
Critical Tables. Thus, from a unit cube of rock salt at 0° C, the
volume coefficient, and hence the linear coefficient of thermal ex-

pansion, may be calculated. The values of a obtained in these two
independent ways agree very well, and in the calculation of lengths
an average of the two was used. The actual specimen lengths are

obtained by numerical integration of the relationship

L (T)=

L

(r0
) { 1 + JJ’

a{T)dT^-

Measurements were made on two separate single crystals of rock
salt, one having as end faces the (0,0,1) plane, the other the (0,1,1)

plane. The piezoelectric quartz crystals were both of the X-cut,

giving compressional vibrations and of the Y-cut, giving transverse
vibrations. It can be shown [7] that the following relations hold for

rock salt, where p is the density in grams per cubic centimeter, and v

is the wave velocity in centimeters per second:

Longitudinal waves normal to (0,0,1) plane:

P^
2=n. (1)

Transverse weaves normal to (0,0,1) plane:

pV2=
44 - (2)

Longitudinal waves normal to (0,1,1) plane:

p»
2=i (cu+2c44+c,2). (3)

Experimental Results

Figures 59.1, 59.2, and 59.3 show the elastic constants computed
from these equations. The precision in the measurements of cn and
cu is about 0.4 percent and of c 12 is about 2 percent. The greater

uncertainty in c 12 is of course due to the contributions of uncertainties

in Cn and c44 in eq (3) above. The low temperature cryogenic tech-

nique and the experimental results are discussed in greater detail

in a recent paper [9] by the authors.
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Temperature , Degrees Kelvin

Figure 59.1 Elastic constant Cu of rock salt.

Figure 59.2. Elastic constant C44 of rock salt.

Figure 59.3. Elastic constant Cu of rock salt.
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Discussion of Results

There is some disagreement between our results and those of Rose
[8] on the elastic constants of rock salt, which we quote for comparison:

T C11 C44 Cl2

°K Dyne/cm2 Dyne/cm3 Dyne/cm3

80 5. 76xlO-Ji 1. 332x10-11 1. 17x10-11

270 5. 06 1.278 1.30

The values reported by us in figures 59.1, 59.2, and 59.3 agree with
the room-temperature values of Huntington [1].

Of considerable interest is the temperature at which the slope of the

curves becomes zero, which is about 80° K for C44 and cu ,
and perhaps

50° K for cu . This latter temperature is approximately that at which
the curve of cn assumed zero slope for KBr measured by Galt [2].
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60. Specific Heat of Silicon Below 100° K
by P. H. Keesom and N. Pearlman 1

Introduction

Previous measurements of the specific heat of Si, reported by
Nernst andSchwers [1]

2 and Anderson [2] have covered the temperature
range above 20° K. In view of the recent theoretical work by Black-
man [3] and others on the role of the lattice in determining the vibration
spectrum in crystalline solids, which in turn determines the specific

heat, it was considered important to extend the measurements on
Si, which has a diamond lattice, below 20° K. It is in this temperature
region that comparisons can most easily be made between the pre-

dictions of the Debye [4] continuum theory of specific heat and the
newer lattice calculations. Also, as Si is a semiconductor, the elec-

tronic contribution is negligible, and hence need not be corrected for

in comparing the observed heat capacity with that calculated as the
contribution of the lattice.

Experimental Method

A modification of the Nernst-Eucken method was used to measure
the heat capacity of the sample, which weighed about 40 g. and con-
tained 0.0015 percent of B. The sample was in the form of a disk

42 mm in diameter with both faces highly polished. It was suspended
by cotton threads in a brass “radiation shield” (so-called, although,

of course, at these temperatures radiation plays only a minor part

in the total heat transfer) . The radiation shield had a heater attached
by means of which the temperature of the sample could be brought
above that of the bath, and in this way the temperature range between
the boiling point of hydrogen and the lowest temperatures attainable

with nitrogen was covered, and also temperatures above the boiling

point of nitrogen. Above 160° K, however, it was no longer possible

to maintain steady conditions in this way. The radiation shield was
surrounded by a brass vacuum can. Electric leads to the sample
were made through a copper-to-glass seal in the top of the vacuum
can. Silk-insulated constantan wire was used for the heater and bare

phosphor bronze and lead wires, insulated from the sample by means
of a piece of cigarette paper, used as thermometers. These were all

glued to the sample with glyptal, after various other materials were
tried, but found to peel off the polished faces of the sample at the

lowest temperatures.
The lead thermometer was calibrated against vapor pressures of

liquid and solid nitrogen and hydrogen, and the phosphor-bronze

thermometer, against the vapor pressure of liquid helium. Above
about 25° K, the resistance versus temperature relation for the Pb
was linear, which was also checked with a He gas thermometer.

The entire range of the phosphor bronze could be fitted with a parab-

1 Purdue University, Lafayette, Ind. This work was carried ou t under a contract between t^e Purdue
Research Foundation and the U. S. Signal Corps.

2 Figures in brackets indicate the literature references on p. 283.
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ola, to an accuracy of about 0.1 percent. This parabola was extra-

polated to about 5° K for measurements above the boiling point of

helium. Resistances were measured by comparing the voltages across
the thermometers with that across a standard 10-ohm resistor, using
a Wenner potentiometer.
The heat input was measured by measuring the voltage across the

heater with a millivoltmeter and the current with a milliammeter.
Both meters were calibrated against the 10-ohm standard with the
potentiometer. A timing circuit, photoelectrically activated by the
pendulum of a clock that was checked against the timing signals

broadcast by WWV, was arranged so that current could be supplied
to the heater in multiples of 10 seconds. The over-all error intro-

duced by the timing circuit was probably not larger than 0.01 percent.

The first measurements gave the heat capacity of the sample,
plus that of the heater and thermometer wires, plus that of the
glyptal (0.2 g). The calculated heat capacity of the wires was found
to be negligible, but as nothing was known of the heat capacity of the

glyptal, an identical set of heater and thermometer wires was glued to

a copper disk weighing 3.3 g, using 0.3 g of glyptal, and the heat
capacity measured. The correction found in this way was rather
large (about 30 percent at 10° K), so as a check on the purity of the
copper in the disk, the duplicate set of wires was mounted directly

on the Si sample, using an additional 0.2 g of glyptal, and the heat
capacity measured. The correction found from this set of measure-
ments agreed with that calculated from the measurements on the
Cu disk. This indicated that the heat capacity of the wires was
indeed negligible, and that therefore the excess heat capacity was due
essentially to the glyptal. As a final check on this, an additional

0.6 g of glyptal was added, making a total of 1.0 g of glyptal, and the

heat capacity remeasured. The four sets of measurements are

summarized below

:

(1) 40 g of Si, plus 1 set of heater and thermometer wires, plus 0.2 g of glyptal.

(2) 3.3 g of Cu, plus 1 set of heater and thermometer wires, plus 0.3 g of glyptal.

(3) 40 g of Si, plus 2 sets of heater and thermometer wires, plus 0.4 g of glyptal.

(4) 40 g of Si, plus 2 sets of heater and thermometer wires, plus 1.0 g of glyptal.

Results

The heat-capacity values of the Si sample, as calculated from the

four series of measurements tabulated above, agreed with one another
at temperatures down to 10° K, where the discrepancy was a maxi-
mum, and equal to about 2 percent. In the neighborhood of 4° K,
the various values were no longer in agreement, and so are not reported.

In this temperature region, the glyptal, with about % percent of the

total mass, contributed about 50 percent of the total heat capacity in

measurement (1) . Its specific heat was calculated to be 3 to 4X 10
_3
j/g

°K; that of Si is about 10
-5

j/g °K. That these values are respectively

large and small can be seen from the fact that Cu, for instance, has
at 4° K a specific heat of about 10~ 4

j/g °K. Figure 60.1 shows the

values of the heat capacity of Si at constant volume, per mole, from
10° to 100° K. The measurements give the heat capacity at constant

pressure, Cp ,
but Cv differs from Cv by less than 0.4 percent below

100° Iv. Experimental points are shown above 20°K; between 10 and
20° K a smooth curve has been drawn through the values calculated

from the four separate runs. Also plotted are the values found by
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X, Nernst; Q, Anderson

Nernst and Schwers [1] and Anderson [2]. Our curve is seen to be
somewhat higher than these values, between 40° and 90° Iv.

Figure 60.2 shows the Debye 0D values, calculated from Cv values
taken from the smooth curve drawn through the experimental points.

It is evident that 6D is not constant over the temperature range
investigated, as predicted by the Debye theory, so that in particular,

Cv is not proportional to T3 below 0^/12 (about 40° K). The two
points drawn at about 4° K are calculated from the average of the

Figure 60.2. Debye characteristic temperature, dD , of silicon.
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Cv values at that temperature. As Cv
113 enters into the calculation,

these 6d values are probably good to about 5 percent.

Discussion

In order to calculate the specific heat at constant volume, Cv ,
the

internal energy of the substance must be known. This is calculated
as the sum of the energies of the normal modes of vibration of the
substance, each normal mode behaving as a Planck oscillator. In the
first application of this method, Einstein [5] used only one oscillator,

the frequency of which was estimated from infrared absorption data.
This method gave an exponential decrease of Cv with temperature,
which is too rapid to fit the data. Nernst and Lindemann [6] im-
proved the agreement with experiment by introducing a second
frequency equal to half of Einstein’s single frequency. Debye [4]

introduced a continuum of frequencies, up to a maximum in the
neighborhood of Einstein’s frequency, by calculating the normal modes
of vibration of a continuum. The density of modes, or vibration

spectrum, he found, was proportional to the square of the frequency.
A consequence of this spectrum is that Cv is proportional to T3 at low
temperatures, the temperature region in which this relation is expected
to hold va^fing with the substance. It may be stated as being below
dD l 12, where 0D is a temperature that may be calculated from the
proportionality constant between C v and T3

,
and also independently

from optical and elastic data.

A much more complicated procedure for calculating the modes of

vibration, and therefore the frequency spectrum, was independently
developed by Born and von Karman [7]. In principle, this involves
taking into account explicitly the forces between nearest and the next
nearest neighbors, but the complexity of the problem is so great that
not until about 1935 was Blackman [3] able to carry out the calcula-

tions and derive the form of the spectrum for a real lattice. Since
then, he and others have calculated the spectra for a variety of lat-

tices, and, in particular, Smith [10], using methods developed by Born
[8] and Begbie and Born [9], has published the spectrum of the diamond
lattice, the form in which Si crystallizes. It turns out that while the

spectrum starts off with the density of modes proportional to the

square of the frequency, thereafter the relation is not so simple, and,
in general, one or more peaks in the spectrum are observed. It seems
to be a general feature of the spectra that have so far been calculated,

that following the initial square-law region, the density of modes
rises faster than the square of the frequency. Hence at very low
temperatures, at which only the very long waves are of impor-
tance in determining the specific heat, Cv will be proportional to

T3 and 6D will be constant. This temperature region will have as

its upper limit, depending on the particular shape of the spectrum,
a temperature in the neighborhood of dD/50 or 0 d/1OO. Following
this “true” T3 region, Cv rises faster than T3 and so 6D falls from its

low-temperature constant value. It therefore appears to be unnec-
sary to postulate the existence of special mechanisms to explain

deviations from the Debye theory. This has been done, for instance,

by Simon [11], who explains the deviations in the earlier data for Si

in terms of a Schottky jump between two levels with a separation
of 0.021 ev. This provides an additional source of heat capacity,

with a maximum at about 103° K. It is evident from figure 60.2
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that we have not yet reached the “true” low-temperature T3 region,

although the two points at about 4° K could be the beginning of this

constant 0D region. Measurements are now underway with a larger

sample of Si (both this new sample, weighing about 260 g, and the
original sample, were kindly provided by the Bell Telephone Labora-
tories). We hope to extend the measurements to lower temperatures
so as to be able to determine the low-temperature constant value
of 00 -
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61. Optical Properties of E-Centers at Liquid-Helium

Temperatures

by E. Burstein and J. J. Oberly 1

Electrons trapped at negative-ion vacancies in the alkali halides (E-centers)
exhibit characteristic absorption bands that are fairly broad at room temperature.
With decreasing temperature, the bands narrow and shift toward shorter wave-
lengths. At liquid-helium temperatures the band widths, however, are still quite
appreciable. In KC1, for example, the band width at liquid-helium tempera-
tures (0.17 ev) does not differ greatly from that at room temperature (0.35 ev).
The temperature dependence of the E-bands can be explained in terms of a
simple model in which the trapped electron is treated as a particle in a box.
Temperature broadening of the band is attributed to vibrations of the ions that
make up the walls of the box. The residual band width at low temperatures is,

on this basis, due to the zero-point vibrations of the ions. The position of the
band, on the other hand, is determined by the equilibrium configuration of the ions.

When electrons are trapped by lattice defects in alkali halides, they
exhibit optical absorption bands that are characteristic of the trapped
electron center and of the particular alkali halide (fig. 61 . 1 ) [1]

.

2 The
nature of the centers responsible for the various bands has not yet
been established except for the F-band, whose center consists of an
electron trapped at a single negative-ion vacancy [2]. The bell-

01
0.5 0.7 0.9 II 13

WAVELENGTH
, MICRONS

Figure 61.1. Trapped-electron color-center bands in KBr.

, +20°C;—:
. — 190°C.

’Crystal Branch, Metallurgy Division, Naval Research Laboratory, Washington, D. C.
3 Figures in brackets indicate literature references and notes on p. 291.

995112—52 19
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Figure 61.2. Effect of temperature on the F-band.

(a) KBr (Mollwo) ; (b) KC1 (NRL).

shaped F-band arises from the absorption of a quantum of light by the

trapped electron that raises it from a Is ground state to a 2p excited

state, from which it either returns to the ground state by a nonradia-
tive transition or is thermally excited into the conduction band [3].

The effect of temperature on the F-band has been extensively
investigated by Flechsig [4] and Mollwo [5], who found that the F-
band narrowed and shifted to shorter wavelengths with decreasing
temperature (fig. 6 1.2, a). However, the bands did not narrow in-

definitely, but rather exhibited a considerable residual band width,
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which was tentatively ascribed by these investigators to lattice dis-
tortions or to zero-point energy. In order to establish definitely the
nature of the residual band width, experiments were carried out
at this laboratory on the effect of thermal and mechanical his-
tory and of impurity content of the crystal on the width of the
F-band formed by ^-irradiation. For this purpose, band width
measurements were obtained at temperatures down to that of liquid
helium for annealed, quenched, and mechanically deformed KC1
crystals and for a crystal of KC1 containing 0.05 percent of Ag+.
Data were also obtained for mixed crystals (solid solutions) of KCl-
KBr and KCl-RbCl and for pure KBr3

. An A. D. Little liquid-
helium specimen holder [6] equipped with quartz windows was used
in these experiments to maintain the specimen at liquid-nitrogen and
liquid-helium temperatures. Typical-transmission curves for the
.F-band in KC1 are given in figure 61.2, b, and the band widths
obtained for the various crystals under different conditions are sum-
marized in table 61.1.

Table 61.1. Transmission band widths

T
°K

KC1
(A) a

KC1
(Q)

KC1
(P)

KC1
plus
Ag+

(.05%)

KC1
(40%)
plus
KBr
(60%)

KBr

KC1
(70%)
plus
RbCl
(30%)

295
77
4.2

0. 35
.20
.17

0.35
.20
.17

0. 34
.20

0. 34
.19

0. 36
.22
.20

0.35
.19

0. 37
.25

• (A)=annealed; (Q)=quenched from a temperature 50° C below the melting point; (P)=plastically de-
formed.

The results may be briefly stated as follows:

1 . The width of the F-band is not appreciably affected by thermal
and mechanical treatment or by the presence of impurities.

2. The band width at low temperatures is somewhat greater in the
mixed crystal of KCl-KBr, where there is a statistical variation in

second nearest neighbors, than in the pure components, and it is still

greater in KCl-RbCl, where there is a statistical variation in nearest
neighbors. The F-band in the mixed alkali halides is otherwise simi-

lar to that in the pure crystals, and its position is linearly dependent
on composition.

3. The bands do not narrow indefinitely but approach a residual

width that is considerable at liquid-helium temperatures. Thus in

KOI the band width at liquid-helium temperature (0.17 ev) does not
differ greatly from that at room temperature (0.35 ev).

We may conclude from these results that the large residual band
width at low temperatures does not arise from lattice distortion or

impurity effects. It must therefore be attributed either to the super-

position of a large number of narrow absorption bands whose fre-

quency distribution arises from other causes or to the interaction

between the F-center and the zero-point vibrations of the lattice. We
show by means of a simple model for the F-center, in which the trapped
electron is treated as a particle in a box, that the residual band width

A The authors 'are. indebted to L. R. Johnson and W. Zimmerman. Ill, of the Crystal Growing Section of

the .Crystal Branch. for samples of the mixed crystals of KCl-KBr and KCl-RbCl and to R. J. Ginther of

the- Luminescence :Seetion-of-the-Crystal Branch for samples of the impurity crystal KCl-f.05 percent of Ag+ .
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can be accounted for by interactions of the .F-center with zero-point

vibrations [7].

The applicability of the “particle-in-a-box” model to the .F-center

is indicated by the fact that the position of the .F-band (in electron

volts) in different alkali halides is, to a good approximation, inversely

proportional to the square of the distance a0 between adjacent ions

(fig. 6.3, a),

hv= E2p— Eu=-~ (1)

where k, the proportionality constant, equals 20 when a0 is given in A
and hv is given in electron volts. In terms of the model, temperature
broadening of the F-band is attributed to the vibrations of the alkali-

metal ions that make up the walls of the box, whereas the position of

the .F-band is determined by the size of the box, and therefore by the
equilibrium positions of the nearest-neighbor alkali-metal ions. The
residual band width at low temperature is accordingly due to zero-

point vibrations of the adjacent alkali-metal ions. In making use of

this approximate model for the jF-center, it is assumed that more
distant ions do not affect the energy levels of the trapped electron,

except indirectly by determining the configuration of the nearest-

neighbor alkali-metal ions.

Figure 61 . 3 .

(a) Dependence of F-band position, in electron volts, on the inverse
square of the distance between adjacent ions.

O. F; A, Cl; , Br; X, I.

(b) Dependence of the energy of the ground level and first excited level of

the particle-in-a-box electron on the box dimension.

The width of the .F-band can be calculated by means of an adiabatic

approximation in which it is assumed that the instantaneous energies

of the electron in its normal and excited states are determined only by
the dimensions of the box. In calculating the band width we need
only consider the energy of the electron and its dependence on the

dimensions of the box, which is shown schematically in figure 61.3, b.

In accordance with the Franck-Condon principle, we consider optical

transitions from the ground state to the first excited state to occur

without change in the configuration of the ions. Broadening of the

band accordingly occurs as a result of the variation in the dimensions
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of the box caused by thermal vibrations. Thus if Ad=(db—da ) is

the change in box dimensions, as shown in figure 61.3, b, the band
width AE=(Ea—Eb ) is given by

AE=^Ad,
(2 )

where d0 is the equilibrium dimension of the box, and E0 is the position
of the band in electron volts. The band width at a given temperature
can be calculated from the vibration amplitudes of the alkali-metal
ions and the experimental values of E0 and d0 .

A,E=~^7, (3)

where m
2
is the mean-squared amplitude of vibration of the ions, and c

is a proportionality factor that includes the extent to which the vibra-
tions of the alkali-metal ions making up the walls of the box are

correlated. The vibration amplitudes can be obtained either ex-

perimentally from X-ray scattering data or theoretically from the
approximate “isotropic” equation [8]

- 4.364X10- 1V<Kz)
,
1\

" = Ae fe+4> (4)

where A is the molecular weight divided by two for diatomic crystals,

6 is the Debye temperature, T is the absolute temperature, x=d/T
,

and 4>(x) is the Debye function

(5)

The contribution from zero-point energy is represented by the term
1/4 in eq (4). At low temperatures (T<^6), eq (3) takes the approxi-

mate form

AE 2 Ec

do

4.364X 1

0

-11 1“ 7r
2

Ad [_6
(6)

whereas at high temperatures (T^>6) it takes the form

. „ 2#c(4.364X10- 14:m
AO 1\

(7)

The width of the F-band in KC1, calculated from eq (3) and (4), is

plotted against temperature in figure 61.4, together with experimental

values obtained at this laboratory. In these calculations, the box
dimensions, d0 ,

was taken as 2a0 ,
and an empirical value of c was used,

which was obtained by adjusting the theoretical band width to the

experimental value at room temperature. The agreement between
calculated and experimental values at liquid-helium temperatures

clearly shows that the zero-point vibrations do account for the large

residual band width. It demonstrates further that the interaction

between lattice vibrations and F-centers is large, even at absolute
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zero, which undoubtedly accounts for the fact that the return of the
electron from the excited state to the ground s ta te is 1lour

a

:
( lift t ive

,

even at liquid-helium temperatures [9].

The equilibrium positions of the nearest-neighbor alkali-metal ions

that make up the walls of the box are given only to a rough approxi-
mation by their normal positions in the lattice. Actually, the alkali-

metal ions adjacent to the electron trapped in a negative-ion vacancy
are displaced toward the trapped electron. This results from the
fact that the electron trapped in a negative-ion vacancy exerts a

considerably smaller repulsion than the halogen ion it replaces. The
effective radius of the alkali-metal ion also plays a role in determining
the dimensions of the box and must be taken into consideration.

An interesting property of the F-band, which also can be interpreted
readily by the particle-in-a-box model, is the fact that the wavelength
at which the absorption coefficient is one-half of its maximum value,

on the short-wavelength side of the band remains fixed as the tempera-
ture changes (fig. 61.2, a). According to the model, this wavelength
corresponds to the “closest approach’’ of the alkali-metal ion neigh-
bors to the trapped electron during vibration. This closest approach
is determined primarily by the mutual repulsion of the alkali-metal

ions and is essentially independent of their equilibrium positions at

different temperatures.

Figure 61.4. Comparison of the observed widths of the F-band in KC1 at various
temperatures with the theoretical values determinedfrom the particle-in-a box model.

, Theoretical; A, experimental (NRL).

The shift in position of the .F-band with temperature can also be

calculated from eq (2). The observed shift in the position of the F-
band in KC1 is approximately twice that calculated from this equation,

assuming that the expansion coefficient of the box is equal To the

expansion coefficient of the lattice. It appears, therefore, that the

coefficient of expansion of the box is roughly twice as large asThat of

the lattice. A similar result has recently been obtained at this labora-

tory for the effect of pressure on the position of The F-band} 'the

observed shift being about twice that calculated from the com-
pressibility of the crystal. Calculations based on the Born-Mayer
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treatment [10] are now being carried out in order to obtain more
exact information on the positions of the nearest-neighbor alkali metal
ions as a function of temperature and pressure for a more rigorous

application of the particle-in-a-box model of the i^-center.
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