

Molecular Microwave Spectra Tables

UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

Related Publications

Atomic Energy Levels

A critically evaluated compilation of all known data on the energy levels of elements, designed to meet the needs of workers in nuclear and atomic physics, astrophysics, chemistry, and industry. Energy levels or elements of atomic No. 1 through No. 41 appear in the first two volumes. Future volumes will contain those of the other elements.

Spectra are presented in order of increasing atomic number, and under a given atomic number they are listed in order of increasing stages of ionization. For each spectrum there is a selected bibliography covering the analysis. The energy levels are tabulated in the related groups that form spectroscopic terms, counting upward from the lowest as zero. Also given in the tables are electron configurations, term intervals, Lande g-values, and term designations in a uniform notation. For the more complex spectra, arrays of observed terms and their electron configurations are included. The introduction contains similar arrays of the terms predicted by theory for important isoelèctronic sequences.

National Bureau of Standards Circular 467: Volume I, \$2.75.

Nuclear Data

A comprehensive collection of experimental values of half-lives, radiation energies, relative isotopic abundances, nuclear moments, and cross sections. Decay schemes and level diagrams are provided wherever possible.

The tables are a valuable tool for nuclear physicists and engineers, radiochemists, biophysicists, and other workers in nuclear physics. At present over 1,000 new measurements of different nuclear properties are being reported each year in some thirty different journals and in the reports of dozens of different laboratories. Supplements appearing at 6-month intervals will keep these tables current. References to literature in the field, a list of journals surveyed in compiling the tables, and a current list of fission and spallation papers are included.

National Bureau of Standards Circular 499 and the first three supplements, \$4.25.

Electric Quadrupole Coupling of the Nuclear Spin with the Rotation of a Polar Diatomic Molecule in an External Electric Field

This paper first reviews the qualitative aspects of molecular rotation in an electric field, disregarding the effects that give rise to a hyperfine spectrum. It then gives formulas that serve to determine the hyperfine spectrum of a rotating molecule in various cases, depending on the external field strength and on the rotational quantum number. Also included are applications of the general expression for the quadrupole interaction matrix to several special cases.

National Bureau of Standards Research Paper RP1866, 15 cents.

Order all publications from the Superintendent of Documents, United States Government Printing Office, Washington 25, D. C., at listed prices. Foreign remittances must be in United States exchange and should include one-third the publication price to cover mailing costs.

Molecular Microwave Spectra Tables

Paul Kisliuk and Charles H. Townes

National Bureau of Standards Circular 518 Issued June 23, 1952

Contents

		1 age
1.	Introduction	I
2.	Description of tables	III
	Symbols	VI
	References	VI
3.	Molecular microwave spectra tables:	
	I. Molecules listed alphabetically by chemical symbol	1
	II. Lines listed in order of frequency	91
	III. Casimir's Function for $J=1 \rightarrow 10$, $I=1 \rightarrow 9/2$, values of	
	[3/4C(C+1)-I(I+1)J(J+1)]/2I(2I-1)(2J-1)(2J+3),	
	where $C = F(F+1) - I(I+1) - J(J+1)$	115
4.	Indexes:	
	I. Molecules by chemical symbol	120
	II. Molecules by name	122
	III. Authors listed alphabetically, including a list of the molecules	
	with the reference numbers	124

Acknowledgment

The authors are grateful for the encouragement and interest of H. Lyons and R. G. Nuckolls, and for the latter's considerable aid in editing the tables. J. R. Madigan and L. J. Rueger of the National Bureau of Standards, and L. C. Aamodt and G. Dousmanis of Columbia University have also helped substantially in calculating, compiling, and checking the information in these tables.

Molecular Microwave Spectra Tables

Paul Kisliuk and Charles H. Townes¹

This group of tables gives the frequencies, assignment of quantum numbers, and intensities of about 1,800 microwave absorption lines. The best available values of other pertinent molecular data, such as rotational constants, dipole moments, quadrupole coupling constants, and rotation-vibration interaction constants are also included. The frequencies are listed once for each molecule, and again in consecutive ascending order of frequency. References are given for all data included. For easy calculation of quadrupole hyperfine structure, Casimir's function is tabulated up to J=10, and I=9/2. Explanations of the tables and a short discussion of microwave spectra and important formulas are given in the introduction.

1. Introduction

These tables of microwave spectra are a modernization and revision of those published in the Journal of Research of the National Bureau of Standards [1].² They are up to date as of November 15, 1950, so far as published material is concerned, and include a considerable amount of otherwise unpublished information. However, since many of the published results have been reported rather briefly, it is clear that for certain molecules more detailed information is available in the experimental laboratories than is included here.

Only molecular lines of frequency greater than 1,000 megacycles have been listed. This excludes nuclear resonances found by molecular beam techniques rather than the usual microwave absorption measurements, as well as the lines of

The primary information is presented in an alphabetic listing of the molecules, which is subdivided according to the major quantum numbers involved in the transition. Hyperfine components and unidentified transitions are presented in order of frequency. With the listing of each molecule, all available molecular constants are given that are needed in interpreting the spectra. These include rotational constants, dipole moments, quadrupole coupling constants, and rotationvibration interaction constants. In addition to the observed frequency and the transition assigned to each line, there is included a calculated value for the intensity, and references to the latest sources of data from each laboratory that has measured the line. The most precise reported values of the frequencies were used, or the average, if there atomic hydrogen and cesium that fall in the microwave region. Microwave absorption in paramagnetic gases due to transitions between Zeeman components has also been observed, but is not included here.

The considerable activity in microwave spectroscopy makes obsolescence of the present tables inevitable, and it is expected that they will be revised and republished from time to time. Suggestions or additions for future editions of these tables will be gladly received, by either the authors or the Microwave Standards Section, National Bureau of Standards, Washington, D. C. It is especially hoped that information obtained on microwave spectral lines that is not otherwise published will be received so that it may be included in the tables, and thus made available.

2. Description of Tables

seemed no reason for preference. Frequencies listed to the nearest megacycle were generally measured with a cavity wavemeter and are subject to an error of 10 or more megacycles, whereas those given to a fraction of a megacycle are generally known to an accuracy of about 0.1 megacycle. In addition to the absorption lines actually observed and listed, a large number of lines may be readily and accurately predicted with the help of molecular constants given in the tables.

Another listing of all the lines in order of frequency, with sufficient information to locate the lines in table I, is included together with a classification of the lines as strong, medium, or weak. The authors have arbitrarily taken lines of maximum absorption coefficient less than 5×10^{-7} cm⁻¹ as weak, those from 5×10^{-7} to 10^{-5} cm⁻¹ as medium and those greater than 10^{-5} cm⁻¹ as strong.

The general characteristics of the microwave spectra of most molecules may be explained on

¹ Consultant, National Bureau of Standards, Washington 25, D. C.

² Figures in brackets indicate the literature references given on page VI.

the basis of a nearly rigid rotator model. Molecules are conveniently divided into three classes: linear molecules, symmetric tops, and asymmetric tops. For linear molecules the frequency of pure rotational lines is given to a good approximation by [2]:

$$\nu_{J \to J+1} = 2(J+1)B_v - 4D_J \{(J+1)^3 - (J+1)l^2\} \text{ sec}^{-1}$$

while for symmetric top molecules, where the selection rule $\Delta K = 0$ applies;

$$\nu_{J \to J+1} = 2(J+1)B_v - 4D_J(J+1)^3$$

-2D_JK(J+1)K² sec⁻¹.

In both cases:

$$B_{v} = \frac{h}{8\pi^{2}} \left\langle \frac{1}{I_{b}} \right\rangle_{av} \simeq B_{c} - \sum_{i} \alpha_{i} \left(v_{i} + \frac{d_{i}}{2} \right)$$

where

- J= the total rotational momentum quantum number
- l, K= the rotational momenta quantum numbers along the figure axis for linear and symmetric top molecules respectively (zero for the ground vibrational state in linear molecules)
- $D_{JK}, D_J =$ the centrifugal distortion coefficients in \sec^{-1}
 - B_v = the average rotational constant of the molecule in sec⁻¹
 - B_e = the rotational constant in sec⁻¹ if the nuclei were in the equilibrium position α_t = a coefficient giving the change in rotational constant per quantum of excita-
 - tion of the *i*th vibrational state, and v_i and d_i are the corresponding quantum number and degree of degeneracy.

In addition, there is a splitting term for the degenerate vibrational states given by 2(J+1)q megacycles, where q is a constant for a particular molecule. To a somewhat rougher approximation, the frequencies for both linear molecules and symmetric tops is given by the rigid rotor approximation: $\nu = 2B(J+1)$. The case of the asymmetric top is complex; it is discussed in [3 and 4], and earlier papers quoted therein.

In the event that one or more of the nuclei has a quadrupole moment different from zero, the resulting coupling to the molecular electric field splits the energy levels into a hyperfine structure which depends on the various possible orientations of the nuclear spin. The interaction between nuclear magnetic moments and molecular magnetic fields is usually very much smaller, and has thus far been observed only as a small correction in rare cases. The quadrupole interaction for the case of a single nucleus in a linear or symmetric top molecule is given in [5 and 6]. The energies are given by:

$$\begin{split} E_{q} = (eqQ) \Big\{ \frac{3K^{2}}{J(J+1)} - 1 \Big\} \\ & \left[\frac{3/4 \ C(C+1) - I(I+1)J(J+1)}{2(2J+3)(2J-1)I(2I-1)} \right], \end{split}$$

where

$$C = F(F+1) - I(I+1) - J(J+1)$$

F=J+I, J+I-1 |J-I|

eqQ=quadrupole coupling constant as defined in reference [7]

K=projection of J on molecular symmetry axis (zero for linear molecules in the ground vibrational state).

A tabulation of the function in square brackets for J=1 to 10 is given in table III. The somewhat more complex situation when two nuclei have quadrupole coupling is discussed in [7].

Nuclear quadrupole effects in a symmetric molecule may be described by a single coupling constant (eqQ), where e is the protonic charge, Q the nuclear quadrupole moment, and $q=\partial^2 V/\partial a^2$ is the second derivative along the molecular axis of the potential at the nucleus due to all charges outside the nucleus. In an asymmetric rotor, two nuclear quadrupole coupling constants must be given, [8]

$$\left(eQ \frac{\partial^2 V}{\partial a^2}\right), \left(eQ \frac{\partial^2 V}{\partial b^2}\right), \text{ where } \frac{\partial^2 V}{\partial a^2} \text{ and } \frac{\partial^2 V}{\partial b^2}$$

are the second derivatives of the same potential along the smallest and intermediate principal axes of inertia respectively.

The absorption of a spectral line at its maximum may be written with certain approximations [9]:

$$\gamma_{\max} = \frac{8\pi^2 N f |\mu_{ij}|^2 \nu^2}{3ck T \Delta \nu}$$

Since for a given transition $\Delta \nu/P \cong \text{constant} \times \Delta \nu/N$ over a wide range of pressures [9] from about 10^{-2} mm Hg to several centimeters, γ_{max} for the corresponding absorption line is independent of pressure over this range.

In this formula:

- N = the number of molecules per cubic centimeter
- f = the fraction of the molecules in the lower state of the transition
- $\nu =$ the frequency of the line
- c = the velocity of light
- k =Boltzmann's constant
- T = the absolute temperature
- $\Delta \nu =$ the half width of the line at half maximum
- μ_{ij} = the electric dipole matrix element.

This formula is based on simplifying assumptions regarding molecular collisions which are not completely justified, especially in regard to the temperature dependence [10]. It will nevertheless be used herein, as a more sophisticated approach depends on particular molecular characteristics, and would be prohibitively time-consuming [11].

The vibration frequencies and the classical approximation for the sum of rotational states necessary to calculate f, as well as expressions for the dipole matrix elements for the various types of molecules may be found in Herzberg [2], who also discusses more accurate formulas for the energy levels. The corresponding information for asymmetric molecules is tabulated in the papers of King, Hainer and Cross [3, 4]. Since the hyperfine splitting is small compared to the line frequency, a total absorption coefficient may be calculated by ignoring the nuclear interaction, the result being then divided among the hyperfine components. Relative intensities of the hyperfine components can be obtained from tables of relative intensities of the analogous fine structure components [12].

Thus the only quantity not as yet evaluated on the right-hand side of the formula above is $\Delta \nu$, the half-width (not the total width) of the line at half maximum intensity. Although $\Delta \nu$ surely depends on the dipole moment, and the temperature [10], among other things, no convenient theoretical evaluation is possible at present. It has in a few cases been measured experimentally, however, and in these cases the formula for the intensity given above has been satisfactorily confirmed [13]. At low pressure $\Delta \nu/P$ is constant for a given transition, and for the cases where $\Delta \nu$ has not been measured, we have assumed the reasonable value of $\Delta \nu = 25$ Mc for 1 mm of mercury. It is this approximation or, in some cases, insufficiently accurate knowledge of the molecular dipole moment that limits the accuracy of most of the intensities listed in these tables, rather than the basic assumptions of the theory or the use of the classical sum of states. Errors as large as a factor of two or more would not be at all surprising in the cases where the half-widths have not been measured, but we consider that intensities with errors of even this magnitude may be useful, and may be easily corrected when more accurate half-widths become available. The relative intensities for the various isotopes, hyperfine components, and excited states of a single molecule are considerably more reliable.

After substituting the accepted values for the universal constants, and putting the Boltzmann factor for the rotational energy equal to unity, the intensities of pure rotational spectra become for a temperature of 300° K and $\Delta\nu=25$ Mc:

For linear molecules

$$\gamma_{\rm max.} = 2.19 \times 10^{-18} \mu^2 \nu^3 \,{\rm cm}^{-1}.$$

For symmetric top molecules

$$Y_{\text{max.}} = 4.94 \times 10^{-22} \sqrt{A} \,\mu^2 \nu^3 \Big\{ 1 - \frac{K^2}{(J+1)^2} \Big\} \text{cm}^{-1},$$

where

 $\mu = in$ Debye units (10⁻¹⁸ esu/cm)

 ν = the frequency in megacycles

A=the rotational constant about the figure axis in megacycles= $10^{-6}h/8\pi^2 I_a$

J= the quantum number of total rotational momentum

K= the quantum number of the component of the rotational momentum along the figure axis.

This formula holds for one particular value of K. In case K is not zero, transitions corresponding to +K and -K are always superimposed, thus doubling the intensity. In addition, if there is no hyperfine structure and negligible centrifugal distortion, transitions due to all possible values of K may be superimposed in one observed line.

In some molecules, nuclear spin and molecular symmetry considerations influence intensities [2, 14]. The most important case involves three identical nuclei of spin one-half off the molecular axis as in CH₃Cl or AsF₃. In such molecules, the intensity of each line involving a value of K that is a multiple of three (including zero) is enhanced with respect to other lines by a factor of two, and the sum of states must be multiplied by 4/3 to take into account the additional states.

The intensities when calculated as above must be multiplied by one or more factors to take into account the following effects:

1. Spin-symmetry effects altering the statistical weight of the states involved.

2. Depletion due to less than 100-percent abundance of the isotopes giving rise to the absorption.

3. Depletion due to molecules being in vibrational states other than the one giving rise to the absorption.

4. Splitting of the line into hyperfine components.

5. True line width in general differing from the value assumed in the formulas above, and giving a correction factor $25/\Delta\nu$.

6. In rare cases the Boltzmann factor for the rotational energy may have to be taken into account.

Corrections 1, 2, 3, 4, and 6, have been applied throughout the tables except when otherwise noted for particular molecules. Correction 5 has been applied wherever the true value $\Delta \nu$ is known and listed. Many of the molecules containing rare isotopes (D, N¹⁵, etc.) were observed in enriched samples and therefore with intensities considerably greater than those listed below, which are based on the natural isotopic abundances.

The tables throughout give rotational constants B and A, quadrupole couplings (eqQ), l-type doubling constants q, α , D_{JK} , and D_J expressed in megacycles per second unless otherwise noted. The electric dipole moment, μ , is always in Debye units, and is taken from "Tables of electric dipole moments" [15], unless otherwise stated.

The cases of NH3, O2, CH3OH, and possibly some of the spectra not yet analyzed are in one way or another exceptions to the cursory treatment above, and are, where possible, discussed individually.

Symbols

- A = largest rotational constant for asymmetric molecules, or unique rotational constant for symmetric top molecules, in megacycles
- α_i = change in rotational constant per quantum of excitation of the *i*th vibrational state, in megacycles
- B = intermediate rotational constant for asymmetric top molecules or nonunique rotational constant for symmetric top molecules, in megacycles
- $B_e = B$ if nuclei were stationary in their equilibrium positions
- B_o = average B for ground vibrational state, in megacycles
- C =smallest rotational constant for asymmetric top molecules, in megacycles
- $D_{JK}, D_J =$ centrifugal distortion coefficients in megacvcles
 - $\Delta \nu =$ half width (not total width) of line in megacycles at half maximum (line width parameter) with gas pressure 1 mm of mercury
 - (eqQ) =quadrupole coupling constant, in megacycles. This constant is a measure of the change in energy with nuclear orientation in a molecule, and is defined on page IV, and discussed further in reference [8].
 - F =angular momentum quantum number representing the vector sum of the rotational angular momentum and the spin(s) of all nuclei whose quadrupole coupling(s) contribute to the observed hyperfine splitting of line frequencies
 - $F_f = F$ of the final or higher energy state

 - $F_i = F$ of the initial or lower energy state F_i =angular momentum quantum number representing the vector sum of the rotational angular momentum and the

spin of the nucleus with the larger quadrupole coupling in cases where two nuclei have quadrupole coupling which contribute to observed hyperfine splitting of line frequencies

 $F_{lf} = F_l$ for final or higher energy state

- $F_{ii} = F_i$ for initial or lower energy state $\gamma =$ maximum absorption coefficient in cm⁻¹, or "intensity"
- I = nuclear spin quantum number
- Int. = designation of references listed in the in- troduction
 - J=total rotational angular momentum quantum number
 - K =projection of J on molecular symmetry axis
 - l = angular momentum about axis of linear molecules due to degenerate perpendicular vibrations
 - $m = \text{medium intensity } (5 \times 10^{-7} \rightarrow 10^{-5} \text{cm}^{-1})$ μ =dipole moment in Debye Units (10⁻¹⁸)
 - esu)
 - q = l-type doubling constant in megacycles
 - $s = \text{strong intensity} (>10^{-5} \text{ cm}^{-1})$
 - $v_i = quantum$ number of the *i*th normal vibration
 - w = weak intensity ($< 5 \times 10^{-7}$ cm⁻¹)

References

- [1] P. Kisliuk and C. H. Townes, J. Research NBS 44, 611 (1950) RP2107.

- 611 (1950) RP2107.
 [2] G. Herzberg, Infrared and Raman spectra (D. Van Nostrand and Co., New York, 1945).
 [3] G. W. King, R. M. Hainer, and P. C. Cross, J. Chem. Phys. 11, 27 (1943).
 [4] P. C. Cross, R. M. Hainer, and G. W. King, J. Chem. Phys. 12, 210 (1944).
 [5] H. B. G. Casimir, On the interpretation between atomic nuclei and electrons (De Erven F. Bohn, Hasrlow, 1026). Haarlem, 1936).
- [6] J. H. Van Vleck, Phys. Rev. 71, 468 (1947).
 [7] C. H. Townes and J. Bardeen, Phys. Rev. 73, 97 (1948).

- (1948).
 [8] J. K. Bragg, Phys. Rev. 74, 533 (1948).
 [9] J. H. Van Vleck and V. Weisskopt, Rev. Modern Phys. 17, 227 (1945).
 [10] W. V. Smith and R. Howard, Phys. Rev. 79, 132 (1950) and R. Howard and W. V. Smith, Phys. Rev. 79, 128 (1950).
 [11] P. W. Anderson, Phys. Rev. 76, 647 (1949).
 [12] H. E. White, Introduction to atomic spectra 439-41.
- [12] H. E. White, Introduction to atomic spectra, 439-41 (McGraw-Hill Publishing Co., New York, N. Y.,
- 1934).
 [13] C. H. Townes, A. N. Holden, and F. R. Merritt, Phys. Rev. 74, 1113 (1948).
- [14] D. K. Coles, Advances in electronics, II, 335 (Academic Press, 1950).
- [15] L. G. Wesson, Tables of electric dipole moments (Massachusetts Institute of Technology Laboratory for Insulation Research, Cambridge, Mass., 1947).

Table I. Molecules Listed Alphabetically by Chemical Symbol

The conventions for alphabetization are as follows:

1. Empirical formulas are the basis for alphabetization.

2. Chemical symbols are in alphabetical order except that within a molecular formula:

a. C for carbon precedes all other symbols.

b. In C compounds, H precedes all other symbols except C.

c. D (for deuterium) is regarded for purposes of listing as H^2 .

3. After the formulas are written as described above, they are listed in strictly alphabetical order with the rule that all molecules with A_nXYZ ... precede all those with $A_{n+1}X'Y'Z'$..., etc.

4. In the two cases where more than one molecule with the same empirical formula occurs, the one with the customary formula which falls first alphabetically precedes the other.

This provides an unambiguous system for the molecules thus far investigated which, we believe, does not conflict with existing conventions.

AsCl₃

Arsenic trichloride

 $\mu = 1.97$

	AsCl ₃ ³⁵	AsCl ₃ 37		Ref.
Bo	2147.25	2044.7		1
	·			
				1

References

¹P. Kisliuk and C. H. Townes, Journal of Chemical Physics **18**, 1109 (1950)

Molecule	Rotational Transition J	Vibrational State	Frequency Mc	Intensity cm ⁻¹	Ref.
AsCl ³⁵ 3	4 → 5	ground excited	21472 21426	2.0x10 ⁻⁷	1
	5→6	ground excited excited	25767 25724 25675	4.2x10 ⁻⁷	
AsCl ³⁵ 2Cl ³⁷	5→6	ground	25308 25354 25381 25393 25411		
AsC ³⁵ Cl ³⁷ 2	5→6	ground excited	24932 24973		
AsCl ³⁷ 3	5→6	ground	24536	1.3x10 ⁻⁸	

AsCl₃

AsF₃

Arsenic trifluoride

 $\mu = 2.815$ (ref. 2)

The value of A was calculated from estimates of internuclear distances given in 1.

	AsF3		Ref.
В	5879.3		l
A	3900		
(eqQ) _{As}	- 235		
a ₂	-4.9		3

References

¹B. P. Dailey, K. Rusinow, R. G. Shulman and C. H. Townes, Physical Review **74**, 1245 (1948) and . private communication.

²R. G. Shulman, B. P. Dailey and C. H. Townes, Physical Review 78, 145 (1950).

³P. Kisliuk, private communication.

			1	1				
Molecule	Rotat Trans	tional sition	Vibrational	Fi	Ff	Frequency	Intensity	Ref.
	J	K	0 04 06			MC	cm -	
AsF ₃	1→2	0	ground	1/2 5/2 1/2 5/2 3/2 3/2	3/2 5/2 1/2 7.2 5/2 3/2	23458.6 23463.0 23517.0 23522.4 23564.6	1.95x10 ⁻⁷ 2.1 x10 ⁻⁷ 1.95x10 ⁻⁷ 1.4 x10 ⁻⁶ 2.5 x10 ⁻⁷	1
				3/2	1/2	23622.8	3.9 x10 ⁻⁸	3
		1	ground	3/2 3/2 5/2 5/2 1/2 1/2	5/2 3/2 5/2 7/2 3/2 1/2	23472.6 23494.2 23501.6 23532.1 23546.4 23575.3	3.7 x10 ⁻⁷ 1.9 x10 ⁻⁷ 1.6 x10 ⁻⁷ 7.0 x10 ⁻⁷ 1.5 x10 ⁻⁷ 1.5 x10 ⁻⁷	1 3 1
		0	v ₂ = 1	5/2 5/2 3/2 3/2	5/2 7/2 5/2 3/2	23482. 23543 23584	4.1 x10 ⁻⁸ 2.8 x10 ⁻⁷ 4.9 x10 ⁻⁸	3 1, 3 3
		l	v ₂ = 1	3/2 5/2 1/2	3/2 7/2 1/2	23513 23553 23595	3.6 x10 ⁻⁸ 1.4 x10 ⁻⁷ 2.8 x10 ⁻⁸	1, 3

AsF₃-Continued

AsH₃

Arsenic trihydride

 $\mu = 0.22$ (ref. 1)

References

¹C. C. Loomis, MITRLE Progress Report, July 15, 1950.

 B_2BrH_5 (B_2H_5Br)

Bromodiborane

μ =

	B ¹⁰ B ¹¹ H ₅ Br ⁷⁹	B ¹⁰ B ¹¹ H ₅ Br ⁸¹	B ¹¹ B ¹⁰ H5Br ⁷⁹	B ¹¹ B ¹⁰ H5Br ⁸¹	B ¹¹ B ¹¹ H ₅ Br ⁷⁹	B ¹¹ B ¹¹ H ₅ Br ⁸¹	Ref
В	3523.72		3398.62	3379.95	3369.65	3350.75	1
С	3278.42		3176.05	3159.85	3141.48	3124.95	1
B+C		6766.4				6766.4	
$(eqQ)_{Br}$	293	244	293	244	293	244	

References

¹C. D. Cornwell, Journal of Chemical Physics 18, 1118 (1950).

BrC1

Bromine monochloride

 $\mu = 0.57$

	Br ⁷⁹ Cl ³⁵	Br ⁸¹ Cl ³⁵	Br ⁷⁹ Cl ³⁷	Br ⁸¹ Cl ³⁷	Ref.
Be	4570.92	4536.14	4499.84	4365.01	1
a	23.22	22.95	21.94	21.67	
$(eqQ)_{Br}$	876.8	732.9	876.8	732.9	
(eqQ) _{CI}	-101	3.6	-8.	1.1	

References

¹D. F. Smith, M. Tidwell, and D. V. P. Williams, Physical Review 79, 1007 (1950).

В	r	С	1	

Molecule	Rotational Transition J	Vibrational State	F _{li}	Fi	Flf	Ff	Frequency Mc	Intensity* cm ⁻¹	Ref.
Br ⁷⁹ Cl ³⁵	0 →1	ground	3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2	3 2 1 3 0 3 2	1/2 5/2 5/2 5/2 5/2 3/2 3/2	2 3 2 4 1 3 2	8899.50 9063.77 9074.91 9080.73 9088.61 9291.61 9307.96	1.4x10 ⁻⁸ 2.2x10 ⁻⁸ 1.2x10 ⁻⁸ 3.5x10 ⁻⁸ 5.8x10 ⁻⁹ 2.2x10 ⁻⁸ 7.8x10 ⁻⁹	1
		v = 1	3/2	3	5/2	4	9034.14	2.9x10-9	
Br ⁸¹ Cl ³⁵	0 →1	ground	3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2	3 2 1 3 0 3 2	1/2 5/2 5/2 5/2 5/2 3/2 3/2 3/2	2 3 2 4 1 3 2	8865.66 9001.44 9012.97 9018.40 9026.17 9193.26 9209.57	1.3x10 ⁻⁸ 2.1x10 ⁻⁸ 1.2x10 ⁻⁸ 3.4x10 ⁻⁸ 5.8x10 ⁻⁹ 2.1x10 ⁻⁸ 7.7x10 ⁻⁹	
		v = 1	3/2	3	5/2	4	8972.41	2.8x10 ⁻⁹	
Br ⁷⁹ Cl ³⁷	0 →1	ground	3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2	3 2 1 3 0 3 2	1/2 5/2 5/2 5/2 5/2 3/2 3/2	2 3 2 4 1 3 2	8559.58 8725.49 8733.84 8738.47 8745.17 8951.38 8964.19	3.9x10 ⁻⁹ 6.5x10 ⁻⁹ 3.5x10 ⁻⁹ 1.0x10 ⁻⁸ 1.7x10 ⁻⁹ 6.5x10 ⁻⁹ 2.2x10 ⁻⁹	
Br ⁸¹ Cl ³⁷	0→1	ground	3/2 3/2 3/2 3/2 3/2 3/2 3/2	3 2 1 3 0 3	1/2 5/2 5/2 5/2 5/2 3/2	2 3 2 4 1 3	8525.53 8663.40 8671.87 8676.37 8683.06 8852.93	3.8x10 ⁻⁹ 6.0x10 ⁻⁹ 3.4x10 ⁻⁹ 9.8x10 ⁻⁹ 1.7x10 ⁻⁹ 6.0x10 ⁻⁹	

*Calculated intensities assume pure BrCl rather than the actual equilibrium concentration in Br_2 and $\text{Cl}_2.$

Intensities were calculated assuming 90% of the molecules to be in the ground vibrational state, and 9% in the first vibrational state.

	Br ⁷⁹ F	Br ⁸¹ F		Ref.
Bo	10706.9	10655.7		l
α	156.3	155.8		
(eqQ) _{Br}	1089.0	909.2		

References

BrF

¹D. F. Smith, M. Tidwell and D. V. P. Williams, Physical Review 77, 420 (1950).

Molecule	Rotational Transition J	Vibrational State	Fi	F _f	Frequency Mc	$\frac{1}{cm^{-1}}$	Ref.
Br ⁷⁹ F	0→1	ground	3/2 3/2 3/2	1/2 5/2 3/2	20985.5 21202.6 21475.4	2.6x10 ⁻⁶ 7.9x10 ⁻⁶ 5.3x10 ⁻⁶	l
		v = 1	3/2 3/2 3/2	1/2 5/2 3/2	20828.9 21045.6 21319.4	2.6x10 ⁻⁷ 7.9x10 ⁻⁷ 5.3x10 ⁻⁷	
Br ⁸¹ F	0→1	ground	3/2 3/2 3/2	1/2 5/2 3/2	20928.4 21110.4 21337.5	2.6x10 ⁻⁶ 7.7x10 ⁻⁶ 5.2x10 ⁻⁶	
		v = 1	3/2 3/2 3/2	1/2 5/2 3/2	20772.3 20954.6 21181.7	2.6x10-7 7.7x10-7 5.2x10-7	

 BrF_3Si (SiF₃Br)

Silane, bromotrifluoro-

μ =

	Si ²⁸ F3Br ⁷⁹	SiF3Br ⁸¹		Ref.
Во	1550	1534		1
				1

References

¹L. J. Sheridan and W. Gordy, Physical Review 77, 719 (1950).

BrF

 $\mu = 1.29$

BrGeH₃ (GeH₃Br)

Germane, bromo-

	Ge ⁷⁰ H ₃ Br ⁷⁹	Ge ⁷⁰ H ₃ Br ⁸¹	Ge ⁷² H ₃ Br ⁷⁹	Ge ⁷² H ₃ Br ⁸¹	Ge ⁷⁴ H ₃ Br ⁷⁹	Ref.
Bo	2438.57	2410.17	2406.42	2378.01	2375.88	1
(eqQ) _{Br}	380	321	380	321	380	

	Ge ⁷⁴ H ₃ Br ⁸¹	Ge ⁷⁶ H ₃ Br ⁷⁹	Ge ⁷⁶ H ₃ Br ⁸¹		Ref.
Bo	2347.46	2346.84	2318.37		1
(eqQ) _{Br}	321	380	321		

References

¹A.H. Sharbaugh, B. S. Pritchard, V. G. Thomas, J. M. Mays and B. P. Dailey, Physical Review **79**,189 (1950).

BrH₃Si (SiH₃Br)

Silane, bromo-

 $\mu = 1.31$ (ref. 2)

	Si ²⁸ H ₃ Br ⁷⁹	Si ²⁸ H ₃ Br ⁸¹	Si ²⁹ H ₃ Br ⁷⁹	Si ²⁹ H ₃ Br ⁸¹	Si ³⁰ H ₃ Br ⁷⁹	Ref.
Bo	4321.72	4292.64	4232.96	4203.70	4149.39	1
(eqQ) _{Br} ⁷⁹	336	278	336	278	336	

	Si ³⁰ H ₃ Br ⁸¹	Si ²⁸ H ₃ Br ⁷⁹	Si ²⁸ H3Br ⁸¹		Ref.
Bo	4120.09	4321.82	4292.61		l
(eqQ) _{Br}	278	336	278		

References

¹A. H. Sharbaugh, J. K. Bragg, T. C. Madison and V. G. Thomas, Physical Review 76,1419 (1949). ²A. H. Sharbaugh, B. S. Pritchard, V. G. Thomas, J. M. Mays and B. P. Dailey, Physical Review 79,189 (1950).

Phosphorus tribromide

	PBr3 ⁷⁹	PBr3 ⁸¹		Ref.
Bo	996.4	974.4		1
				1

References

¹Q. Williams and W. Gordy, Physical Review **79**, 225 (1950).

 $CBrF_3$ (CF_3Br)

Methane, bromotrifluoro-

μ =

This molecule has recently been investigated by two groups of investigators; one of which observed about 40 lines of the $J = 4 \rightarrow 5$ and $5 \rightarrow 6$ transition. The other² reports observing the $J = 8 \rightarrow 9$, $10 \rightarrow 11$ transitions.

	7.0	10 4-	1	
	C ¹² F ₃ Br ⁷⁹	C ¹² F ₃ Br ⁸¹		Ref.
Bo	2098.12 (J=4 → 5)	2078.55 (J=4 → 5)		1
	2098.12 (J=5→6)	2078.57 (J=5→6)		
(eqQ) Br	618.4 (J=4→5)	517.3 (J=4→5)		
	624.5 (J=5→6)	514.7 (J=5→6)		

References

¹A. H. Sharbaugh, B. S. Pritchard and T. C. Madison, Physical Review **77**, 302 (1950). ²J. Sheridan and W. Gordy, Physical Review **77**, 292 (1950).

 $\mu = .61$

(BrCN) CBrN

Cyanogen bromide

 $\mu = 2.94$

	Br ⁷⁹ C ¹² N ¹⁴	Br ⁷⁹ C ¹³ N ¹⁴	Br ⁸¹ C ¹² N ¹⁴	Br ⁸¹ C ¹³ N ¹⁴	Ref.				
Bo	4120.190	407 3.3 55	4096.760	4049.606	1,2				
$(eqQ)_{Br}$	686.2	686.2	573.2	573.2]				
(eqQ) _N		-3.83							
a 1	11.36		11.23						
a 2	-11.49		-11.49						
q	3,912		3.845						
DJ	9.1x10 ⁻⁴		8.1x10 ⁻⁴		5				

The half-width, $\Delta v = 21^2$, has been used in calculating the intensity.

References

¹A. G. Smith, H. Ring, W. V. Smith, and W. Gordy, Physical Review 74, 370 (1948). ²C. H. Townes, A. N. Holden, and F. R. Merritt, Physical Review 74, 1113, (1948). ³A. G. Smith, W. Gordy, J. W. Simmons, and W. V. Smith, Physical Review 75, 260 (1949). ⁴J. A. Klein, W. Low, and C. H. Townes, private communication.

⁵J. W. Simmons & W. E. Anderson, Duke Quarterly Progress Report, May-Aug. 1950.

Molecule	Rotational Transition J	Vibrational State	F. i	Ff	Frequency Mc	Intensity cm ⁻¹	Ref.
Br ⁷⁹ C ¹² N ¹⁴	2 →3	ground	3/2 5/2 5/2 7/2 1/2 3/2 7/2	3/2 5/2 7/2 } 9/2 } 3/2 } 5/2 } 7/2	24583.00 24633.71 24713.05 24755.22 24884.57	4.3x10 ⁻⁶ 5.6x10 ⁻⁶ 6.5x10 ⁻⁵ 2.9x10 ⁻⁵ 4.3x10 ⁻⁶	2
	2→3	v _l =l	5/2 7/2 1/2 3/2	7/2 9/2 3/2 5/2	24645.82* 24687.11	4.0x10 ⁻⁶ 1.8x10 ⁻⁶	
	2 → 3	v ₂ =1,1 ₁ v ₂ =1,1 ₂ v ₂ =1,1 ₁ v ₂ =1,1 ₂	1/2 7/2 1/2 7/2 3/2 5/2 3/2 5/2	3/2 } 9/2 } 3/2 } 9/2 } 5/2 } 5/2 } 5/2 } 7/2 }	24760.76 24784.02 24803.00 24826.70	7.5x10 ⁻⁶ 7.5x10 ⁻⁶ 6.9x10 ⁻⁶ 6.9x10 ⁻⁶	2
	2→3	v ₂ 1,1 ₁ v ₂ 1,1 ₂ v ₂ =2,1=2	7/2 7/2 3/2 3/2 5/2 5/2 5/2	7/2 7/2 3/2 5/2 3/2 5/2 5/2 7/2	24890.0 25006.0 24860.6 24981.5	7.3x10 ⁻⁷ 7.3x10 ⁻⁷ 6.5x10 ⁻⁷ 9.8x10 ⁻⁷	4

CBrN

*These two lines were not resolved.

Molecule	Rotational Transition	Vibrational State	Fi	Ff	Frequency Mc	Intensity cm ⁻¹	Ref.
Br ⁷⁹ C ¹² N ¹⁴ (Continued)	3 → 4	ground	5/2 7/2 9/2 3/2 5/2	5/2 9/2 11/2 5/2 7/2	32804.56 32956.68 32976.40	5.8x10 ⁻⁶ 1.5x10 ⁻⁴ 8.6x10 ⁻⁵	1
	8→9	ground	19/2 17/2 15/2 13/2	21/2 19/2 17/2 15/2	74162.76 74159.48	1.6x10 ⁻³ 1.3x10 ⁻³	5
	9 →10	ground			82405	4.0x10-3	3
Br ⁷⁹ C ¹³ N ¹⁴	3 →4	ground	7/2 9/2 3/2 . 5/2 .	9/2 11/2 5/2 7/2	32581.73 32601.46	1.7x10 ⁻⁶ 9.2x10 ⁻⁷	l
Br ⁸¹ C ¹² N ¹⁴	2 →3	ground	3/2 5/2 5/2 7/2 1/2 3/2 7/2	3/2 5/2 7/2 9/2 3/2 5/2 7/2	24465.33 24507.38 24573.86 24608.92 24717.19	4.2x10 ⁻⁶ 5.4x10 ⁻⁶ 6.3x10 ⁻⁵ 2.7x10 ⁻⁵ 4.2x10 ⁻⁶	2
		v _l =1	5/2 7/2 1/2 3/2	7/2 9/2 3/2 5/2	24506.75 24541.18	3.9x10 ⁻⁶ 1.7x10 ⁻⁶	
		v ₂ =1,1 ₁ v ₂ =1,1 ₂ v ₂ =1,1 ₁ v ₂ =1,1 ₂	1/2 7/2 1/2 7/2 3/2 5/2 3/2 5/2	3/2 9/2 3/2 9/2 5/2 7/2 5/2 5/2 7/2	24622.93 24645.82* 24658.89 24682.13	7.7x10 ⁻⁶ 7.7x10 ⁻⁶ 6.8x10 ⁻⁶ 6.8x10 ⁻⁵	
	3→ 4	ground	5/2 7/2 7/2 9/2 3/2 5/2 9/2	5/2 7/2 9/2 11/2 5/2 7/2 9/2	32643.13 32720.28 32770.13 32786.65 32913.24	5.6x10 ⁻⁶ 7.4x10 ⁻⁶ 1.4x10 ⁻⁴ 8.2x10 ⁻⁵ 5.7x10 ⁻⁶	l
	8→9	ground	19/2 17/2 15/2 13/2	21/2 19/2 17/2 15/2	73741.20 73738.42	1.5x10 ⁻³ 1.3x10 ⁻³	5
	9→10	ground			8193 6	3.8x10 ⁻³	3
Br ⁸¹ C ¹³ N ¹⁴	3→4	ground	7/2 9/2 3/2 5/2	$ \begin{array}{c} 9/2 \\ 11/2 \\ 5/2 \\ 7/2 \end{array} $	32392.59 32409.06	1.5x10 ⁻⁶ 9.2x10 ⁻⁷	l

Methane, chlorotrifluoro-

	CF ₃ Cl ³⁵	CF3Cl ³⁷		Ref.
Bo	3335.56	3251.51		1
(eqQ) _{Cl}	78.05	61.44		

References

¹D. K. Coles and R. H. Hughes, Physical Review **76**, 858 (1949) ²D. K. Coles and R. H. Hughes, private communication.

Molecule	Rotat trans	ional ition K	Vibrational State	Fi	Ff	Frequency Mc	Ref.		
C ¹² F ₃ Cl ³⁵	2 → 3	l	ground	5/2 3/2 7/2 1/2	7/2 5/2 9/2 3/2	20010.84 20015.77	2		
		2	ground	5/2 5/2 3/2 3/2 7/2 7/2	7/2 5/2 5/2 3/2 9/2 7/2	19999.66 20013.68 20019.17			
	3→4	l	ground	5/2 7/2 3/2 9/2	7/2 9/2 5/2 11/2	26682.81 26683.78 26684.69 26685.73			
				2	ground	7/2 5/2 9/2 3/2	9/2 7/2 11/2 5/2	26679.62 26682.30 26687.38 26690.14*	
		3	ground	7/2 7/2 5/2 9/2 9/2 3/2	7/2 9/2 5/2 7/2 11/2 9/2 5/2	26670.19 26672.59 26674.77 26681.52 26690.14* 26697.04 26699.14			
		un- assigned	ground	unass	igned	26669.78			
		2	excited degenerate vibration	7/2 5/2 9/2 3/2	9/2 7/2 11/2 5/2	26631.58 26634.31 26639.40 26642.22			

CC1F3

*The lines of identical frequency are unresolved.

Molecule	Rotational Transition		Vibrational State	Fi	F _f	Frequency Mc	Ref.
	J	K					
C ¹² F ₃ Cl ³⁷	3 → 4	2	ground	7/2 5/2 9/2 3/2	9/2 7/2 11/2 5/2	26008.55 26010.73 26014.69 26016.84*	2
		3	ground	7/2 7/2 5/2 9/2 9/2 3/2	7/2 9/2 7/2 11/2 9/2 5/2	26001.20 26003.04 26010.09 26016.84* 26022.20 26023.94	
		un- assigned	ground	unass	igned	26000.77]

CClF₃--Continued

*The lines of identical frequency are unresolved.

CCIN (CICN)

Cyanogen chloride

 $\mu = 2.802$ (ref. 4)

The halfwidth $\nu \Delta = 25^2$ has been used in calculating the intensity.

	Cl ³⁵ C ¹² N ¹⁴	Cl ³⁷ C ¹² N ¹⁴	Cl ³⁵ C ¹³ N ¹⁴	Cl ³⁷ C ¹³ N ¹⁴	Cl ³⁶ C ¹² N ¹⁴	Ref.
Bo	5970.821	5847.252	5939.795	5814.710	5907.31	1, 2
(eqQ) _{Cl}	-83.4	-65.3	-83.4	-65.3	-42.2] _, _
(eqQ) _N			-3.63			2
đ	7.5					

References

¹A. G. Smith, H. Ring, W. V. Smith and W. Gordy, Physical Review 74, 370 (1948).
²C. H. Townes, A. N. Holden and F. R. Merritt, Physical Review 74, 1113 (1948).
³C. H. Townes and L. C. Aamodt, Physical Review 76, 691 (1949).
⁴R. G. Shulman, B. P. Dailey and C. H. Townes, Physical Review 78, 145 (1950).

CC1N--Continued

Molecule	Rotational Transition J	Vibrational State	F _{li}	Fl	Flf	F _f	Frequency Mc	Intensity cm ⁻¹	Ref.
Cl ³⁵ C ¹² N ¹⁴	1 → 2	ground	1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2	3/2 7/2 3/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 3/2 3/2 5/2 5/2 5/2 3/2 3/2 5/2 5/2 5/2 1/2 5/2 1/2 5/2 1/2 1/2	3/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 2 2 2	5/2 5/2/2	23862.57 23863.5 23863.8 23864.0 23864.2 23864.5 23864.9 23865.1 23878.6 23878.6 23879.7 23883.30 23884.2 23884.2 23884.2 23884.8 23884.9 23885.16 23885.3 23886.0 23886.2 23886.2 23899.59 23900.20 23900.7 23920.91	9.3x10 ⁻⁶ 3.6x10 ⁻⁷ 3.6x10 ⁻⁷ 1.9x10 ⁻⁶ 2.6x10 ⁻⁶ 3.6x10 ⁻⁷ 3.5x10 ⁻⁷ 5.5x10 ⁻⁷ 5.5x10 ⁻⁷ 6.2x10 ⁻⁸ 9.2x10 ⁻⁶ 1.2x10 ⁻⁶ 1.2x10 ⁻⁶ 1.2x10 ⁻⁵ 1.1x10 ⁻⁵ 2.9x10 ⁻⁵ 1.2x10 ⁻⁶ 1.2x10 ⁻⁶ 3.9x10 ⁻⁶ 9.6x10 ⁻⁶ 2.1x10 ⁻⁶	2
			F		Ff	1			
	1→2	v ₂ =l	3/2 3/2 5/2 1/2 3/2 1/2 3/2 5/2 5/2 1/2 1/2		5/2 3/2 5/2 7/2 3/2 5/2 1/2 3/2 5/2 7/2 3/2 1/2	$ \begin{vmatrix} 1_1 \\ 1_1 \\ 1_1 \\ 1_2 \\ 1_2 \\ 1_2 \\ 1_2 \\ 1_2 \\ 1_2 \\ 1_2 \\ 1_2 \\ 1_2 \end{vmatrix} $	23917.9 23925.5 23928.7 23938.6 23944.4 23948.2 23954.5 23958.4 23968.6 23974.4 23984.6	4.5x10 ⁻⁶ 1.8x10 ⁻⁶ 1.4x10 ⁻⁶ 8.2x10 ⁻⁶ 1.7x10 ⁻⁶ 4.5x10 ⁻⁶ 3.5x10 ⁻⁶ 1.8x10 ⁻⁶ 8.2x10 ⁻⁶ 1.7x10 ⁻⁶ 1.7x10 ⁻⁶	2
	2 + 3	ground		7/2 1/2 3/2 5/2 7/2 5/2		7/2 3/2 5/2 7/2 9/2 5/2	35805.09 } 35820.65 } 35825.95 35835.74	1,4x10 ⁻⁵ 1.0x10 ⁻⁴ 2.3x10 ⁻⁴ 2.0x10 ⁻⁵	1

CC1N--Continued

		1	1		1				
Molecule	Rotational Transition J	Vibrational State	Fli	Fl	Flf	Ff	Frequency Mc	Intensity cm ⁻¹	Ref.
Cl ³⁵ C ¹³ N ¹⁴	1→2	ground	5/2	7/2	7/2	9/2	23760.98	3.0x10 ⁻⁷	2
	2 → 3	ground		7/2		7/2	35618.81	1.5x10 ⁻⁷	·1
				$\frac{1}{2}$		3/2	35634.85	1.1x10 ⁻⁶	
				5/2		7/2	35639.78	2.4x10 ⁻⁶	
				5/2		5/2	35649.56	2.1x10 ⁻⁷	
Cl ³⁷ C ¹² N ¹⁴	1→2	ground	$\frac{1/2}{1/2}$ $\frac{3/2}{5}$	3/2 3/2	3/2 1/2 5/2	5/2 5/2	23372.72 23389.00 23389.61	1.5x10 ⁻⁶ 3.0x10 ⁻⁶ 2.1x10 ⁻⁶	2
			5/2 5/2	3/2	7/2	5/2	23390.53	9.4x10 ⁻⁶	
			3/2	5/2	3/2	5/2	23402.47	1.3x10 ⁻⁶	
	2 → 3	ground	7/2		7/2		35067.99	4.4x10 ⁻⁶	1
			3/2		5/2	}	35080.39	3.1x10 ⁻⁵	
			5/2		7/2	}	35084.15	7.2x10 ⁻⁵	
			5/2		5/2		35091.97	6.2x10 ⁻⁶	
Cl ³⁷ C ¹³ N ¹⁴	1 →2	ground	5/2	7/2	7/2	9/2	23260.3	1.0x10 ⁻⁷	2
	2 → 3	ground	7/2		9/2		34889.05	4.5x10 ⁻⁷	1
Cl ³⁶ C ¹² N ¹⁴	1 →2			1 3		$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	23625.60	2.6x10 ^{-5*}	3
				23331122		2 2 3 4 1 0 3	23629.84	1.3x10 ^{-4*}	
				2		1	23634.68	4.7x10 ^{-6*}	

*Assuming 100% Cl³⁶.

CF₃I

Methane, trifluoroiodo-

μ=

	CF3I		Ref.
Bo	1523		1
			 †
			ł
			ł

References

¹J. Sheridan and W. Gordy, Physical Review **77**, 292 (1950).

CHBr₃

Methane, tribromo-

$\mu99$	μ	Ξ		99	
---------	---	---	--	----	--

	CHBr3 ⁷⁹	CHBr3 ⁸¹		Ref.
Bo	1238	1227		l

References

¹Q. Williams and W. Gordy, Physical Review **79**, 225 (1950).

CHClF₂

Methane, chlorodifluoro-

 $\mu = 1.29$

The spectrum of this asymmetric top molecule has not been analyzed. The assignment of weak, medium or strong is that of the reference and does not correspond necessarily to the convention adopted in this table.

References

¹B. P. Dailey, private communication.

Frequency Mc	Intensity	Ref.
22217	w	1
22247	w	
223 05	m	
22353	w	
22386	w	
22410	S	
22436	w	
22462	w	
22481	m	
22545	w	
22553	w	
23308	S	
23644	w	
23680	w	
23733	S	
23803	w	
23826	w	
23845	S	

Methane, trichloro-

The line listed below consists of several components which are, however, not resolved at higher pressures. The $J=2 \rightarrow 3$ and $5 \rightarrow 6$ transitions were also observed¹. The deuterated molecule was observed with an isotopically enriched sample.

	CHCl ₃ ³⁵	CDCl ₃ ³⁵		Ref.
Во	3302.0	3250.2		1, 2

References

¹W.V. Smith and R. R. Unterberger, Journal of Chemical Physics 17, 1348 (1949). ²R. R. Unterberger, R. Trambarulo, and W. V. Smith, Journal of Chemical Physics, 18, 565 (1950).

		UHUI3		
Molecule	Rotational Transition J	Frequency Mc	Intensity cm-1	Ref.
C ¹² HCl ³⁵ 3	3→4	26417	2.9 x 10 ⁻⁷	1,2
	6→7	46227.2	1.6 x 10 ⁻⁶	
C ¹² DCl ³⁵ 3	6→7	45502.4	3-0 x 10 ⁻¹⁰	

(HCF_3) CHF₃

Methane, trifluoro-

 $\mu = 1.59$

In the absence of other information, A was calculated using the C-F distance estimated by the authors, assuming tetrahedral angles. It was also assumed that 0.9 of the molecules were in the ground vibrational state for calculation of the intensity of the half width $\Delta \nu = 18$, has been used in calculating the intensity.

	CHF ₃		Ref.
B ₀	10348.74		1
А	5600		

References

¹O. R. Gilliam, H. D. Edwards and W. Gordy, Physical Review 75, 1014 (1949).

CHF 3

Molecule	Rot a t Trans	ional ition	Frequency Mc	Intensity		Ref.
	J	K		y Intensity cm^{-1} Res 5 2.2 x 10-5 1		
HC ¹² F ₃	1→2	0,1,2	41394.95	2.2 x 10- ⁵		1

$\mu = 1.2$

CHCl₃

The transitions reported in (3) are of a unusual type, being between the levels of a single 1-type doublet. The half width $\Delta \nu = 25^1$ has been used in calculating the intensity.

	HC ¹² N	HC ¹³ N	DC ¹² N	DC ¹³ N	Ref.
Во	44300.83	43154.83	36207.395	35587.565	2
(eqQ) _N			-4.58		
q	223.549				3

References

¹A.G. Smith, W. Gordy, J. W. Simmons and W. V. Smith, Physical Review 75, 260 (1949).
 ²J.W. Simmons, R. S. Anderson and W. Gordy, Physical Review 77, 77 (1950).
 ³R.G. Sulman and C. H. Townes, Physical Review 77, 421 (1950), and 78, 347 (1950).

Molecule	Rotational Transition J	Fi	Ff	Frequency • Mc	Intensity cm ⁻¹	Ref.
HC12N14	6 8 10 11 12			9460 16147.67 24689.96 29650 35043.24	1.3x10 ⁻⁶ 2.9x10 ⁻⁶ 5.5x10 ⁻⁶ 7.2x10 ⁻⁶ 9.3x10 ⁻⁶	2,3
	0→1	1 1 1	1 2 0	88600.11 88601.49 88603.56	4.0x10 ⁻³ 6.7x10 ⁻³ 1.35x10 ⁻³	
HC ¹³ N ¹⁴	0 →1	1 1 1	1 2 0	86308.12 86309.49 86311.54	4.1x10 ⁻⁵ 6.7x10 ⁻⁵ 1.4x10 ⁻⁵	
DC ¹² N ¹⁴	0→1	1 1 1	1 2 0	72413.25 72414.62 72416.68	4.2x10 ⁻⁷ 7.4x10 ⁻⁷ 1.5x10 ⁻⁷	2
DC ¹³ N ¹⁴	0→1	1 1 1	1 2 0	71173.58 71174.96 71177.02	2.3x10 ⁻⁹ 7.6x10 ⁻⁹ 1.5x10 ⁻⁹	2

Isocyanic acid

	HN ¹⁴ C ¹² O ¹⁶	HN ¹⁵ C ¹² O ¹⁶	DN ¹⁴ C ¹² O ¹⁶	Ref.
1 (B+C)	10991.5	10662.3	10197.9	 1
]
]

References

¹L. H. Jones, J. N. Shoolery, R. G. Shulman and D. M. Yost, Journal of Chemical Physics 18, 990 (1950). CHNO

Molecule	Rotational Transition J	Frequency Mc	Ref.					
HN ¹⁴ C ¹² O ¹⁶	0 → 1	21981.7	1					
HN ¹⁵ C ¹² O ¹⁶	0→1	21323.5						
DN ¹⁴ C ¹² O ¹⁶	0→1	20394.7						

CHNS (HNCS)

Isothiocyanic acid

 $\mu = 1.72$

	HN ¹⁴ C ¹² S ³²	DN ¹⁴ C ¹² S ³²	HN ¹⁴ C ¹³ S ³²	DN ¹⁴ C ¹³ S ³²	HN ¹⁴ C ¹² S ³⁴	Ref.
1/2(B+C)	5866.0	5474.3	5847.3	5459.8	5728.8	1

References

 $^1{\rm C}.$ I. Beard and B. P. Dailey, Journal of Chemical Physics 15, 762 (1947). $^2{\rm C}.$ I. Beard and B. P. Dailey, MITRLE Technical Report #79, (1948)

CHNS

Molecule	Rotational Transition J	Frequency Mc	Ref.
HN ¹⁴ C ¹² S ³²	1+2	23464	1
DN ¹⁴ C ¹² S ³²	1→2	21897	1
HN ¹⁴ C ¹³ S ³²	1→2	23389	1
DN ¹⁴ C ¹³ S ³²	1+2	21839]
HN ¹⁴ C ¹² S ³⁴	1+2	22915	

16

μ=

Methane, dibromo-

The intensities are listed as reported experimentally and do not necessarily correspond to the convention adopted herein. The isotopic species are not identified.

References

¹T. E. Turner, Thesis, McGill University (1948). ²W. J. Pietenpol, and J. D. Rogers, Physical Review **76**, 690 (1949).

Molecule	Frequency Mc	Intensity	Ref.
CH ₂ Br ₂	24908 24943 24972 24982 25002 25013	m W W M W m	2
	25042	S	1,2
	25072 25090 25128 25147 25152 25160 25170 25203 25223	s m s w w m m m	2

 CH_2Br_2

CH₂Cl₂

Ethane, dichloro-

 $\mu = 1.6$

The relative intensities are those of reference (1), and do not necessarily correspond to the convention adopted herein. The frequencies are a plausible compromise between those of References (1) and (2). The isotopic species are not identified.

References

¹T. E. Turner, Thesis, McGill University (1948). ²B. P. Dailey, private communication.

Frequency Observed Relative Molecule Ref. Mc Intensity CH_2Cl_2 1,2 1, 2 1, 2 1,2

CH2Cl2--Continued

CH_2O (H₂CO)

Methanal

2.17 (ref.1)

Centrifugal stretching in this molecule has been investigated in considerable detail. For this asymmetric rotor the notation for the rotational transitions is that of reference Ind. 5 and K 0.9612^1 is a measure of the asymmetry.

References

¹J. K. Bragg and A. H. Sharbaugh, Physical Review **75**, 1774 (1949). ²R. B. Lawrance, M. I. T. Progress Reports, July 1949, and Jan. 1950, Physical Review **78**, 347 (1950), and private communication.

 CH_2O --Continued

Molecule	Rotational Transition	Frequency Mc	Intensity cm ⁻¹	Ref.
C ¹² H ₂ O	$224,19 \rightarrow 224,18$ $143,12 \rightarrow 143,11$ $72,6 \rightarrow 72,5$ $234,20 \rightarrow 234,19$ $153,13 \rightarrow 153,12$ $244,21 \rightarrow 244,20$ $21,2 \rightarrow 21,1$ $82,7 \rightarrow 82,6$ $163,14 \rightarrow 163,13$	7362.60 7892.03 8884.87 10336.51 11753.13 14361.54 14488.65 14726.74 17027.60	5.1x10 ⁻⁷ 1.0x10 ⁻⁶ 1.0x10 ⁻⁶ 7x10 ⁻⁸ 1.5x10 ⁻⁶ 1.0x10 ⁻⁷ 9x10 ⁻⁶ 2x10 ⁻⁶ 2.5x10 ⁻⁶	2
	$25_{4,22} \rightarrow 25_{4,21}$ $9_{2,8} \rightarrow 9_{2,7}$ $17_{3,15} \rightarrow 17_{3,14}$ $26_{4,23} \rightarrow 26_{4,22}$	19595.23 22965.71 24068.31 26358.82	1.5x10 ⁻⁷ 5x10 ⁻⁶ 5x10 ⁻⁶ 2x10 ⁻⁷	1,2
	$3_{1,3} \rightarrow 3_{1,2}$ $4_{1,4} \rightarrow 4_{1,3}$ $5_{1,5} \rightarrow 5_{1,4}$ $0_{0,0} \rightarrow 1_{0,1}$	28974.85 48284.60 72409.35 72838.14	2.5x10 ⁻⁵ 5x10 ⁻⁵ 8.5x10 ⁻⁵ 9.8x10 ⁻⁵	2
C ¹³ H ₂ O	$2_{1,2} \rightarrow 2_{1,1} \\ 1_{6_{3,14}} \rightarrow 1_{6_{3,13}} \\ 1_{7_{3,15}} \rightarrow 1_{7_{3,14}} $	13778.86 14592.44 20649.30	9.x10 ⁻⁸ 2.5x10 ⁻⁸ 5.x10 ⁻⁸	2
	$9_{2,8} \rightarrow 9_{2,7}$ $3_{1,3} \rightarrow 3_{1,2}$ $18_{3,16} \rightarrow 18_{3,15}$	20736.40 27555.73 28582.40	5.x10 ⁻⁸ 2.5x10 ⁻⁷ 7x10 ⁻⁸	1,2 2

Methanoic acid

References

¹W. J. Pietenpol, J. D. Rogers and D. Williams, Physical Review 78, 480 (1950).

Molecule	Frequency Mc	Ref.
CH ₂ O ₂	22370 22470 23200 24566 27810 31000	1

CH₃BO (BH₃CO)

Borine carbonyl

 μ ground = 1.795 μ (exc. state) = 1.770 (ref. 2,3)

The $J=2 \rightarrow 3$ transition has also been observed⁴ but the frequencies were not reported.

	B ¹⁰ H₃CO	B ¹⁰ H ₃ CO V ₁₌ 1	B ¹⁰ H ₃ CO v ₂ =1	B ^{l1} H₃CO	B ¹⁰ D₃CO	B ¹¹ D₃CO	Ref.
Bo	8980.1	9002.66	8985.80	8657.22	7530.34	7336.56	2,3,4
(eqQ) _B		3.4		1.55	3.4	1.55	3,4
D _{JK}	0.39			0.36	0.29	0.24	4
]
	_]

References

¹W. Gordy, H. Ring, and A. B. Burg, Physical Review **74**, 1191 (1948) ²W. W. P. Strandberg, C. S. Pearsall and M. T. Weiss, Journal of Chemical Physics **71**, 429

⁽¹⁾ ⁽¹⁾

communication.

⁴W. Gordy and H. Ring, and A. B. Burg, Physical Review 78, 512 (1950)

CH₃BO--Continued

Molecule	Rotat: Trans: J	ional ition K	F.	Ff	Frequency Mc	Intensity cm ⁻¹	Ref.
B ¹⁰ H ₃ CO	0→1		3 3 3	2 4 3	17959.67 17959.91 17960.60	2.5x10 ⁻⁷ 3.5x10 ⁻⁷ 4.5x10 ⁻⁷	2,3
	1→ 2	0	3 3	2 3]	35919.08	4.0x10 ⁻⁷	4
			2 3 4		35919.60	5.8x10 ⁻⁶	
			2	2	35919.95	7.9x10 ⁻⁷	
			4	$\begin{vmatrix} 3 \\ 4 \end{vmatrix}$	35920.22	9.5x10 ⁻⁷	
			2	3	35920.40	4.8x10 ⁻⁷	
		1	2	1	35917.66	5.4x10 ⁻⁷	
			24	2 (5 J	35917.96	2.3x10 ⁻⁶	
			4 4 2	$\left\{\begin{array}{c}3\\4\\\end{array}\right\}$	35918.29	1.0x10 ⁻⁶	
			3	$\left\{\begin{array}{c}2\\3\\4\end{array}\right\}$	35918.55	1.8x10 ⁻⁶	
B ^{ll} H₃CO	1→2	0	3/2 3/2	1/2 3/2	34628.16 34628.58	5.6x10 ⁻⁷ 3.5x10 ⁻⁶	
			5/2 1/2 3/2 5/2	3/2 1/2 5/2	34628.85	2.3x10 ⁻⁵	
			1/2 5/2	3/2 5/2	34629.27	5.7x10 ⁻⁶	
		l	1/2	$\frac{1/2}{1/2}$	34627.16	2.1x10 ⁻⁶	
			5/2 5/2	3/2	34627.42	1.3x10 ⁻⁵	
			3/2	3/2	34627.64	4.9x10 ⁻⁶	
			5/2 3/2	5/2]	34627.81	5.2x10 ⁻⁶	
B10D3CO	1→ 2	0	3	2	30120.86*	1.9x10 ⁻¹⁸	
			23		30121.21	2.7x10 ⁻¹⁷	
			2		30121.56	. 3.7x10 ⁻¹⁸	
			4 4 2	$\begin{vmatrix} 3\\4\\3 \end{vmatrix}$	30121.56	2.3x10 ⁻¹⁸	
		1	2	1	30119.91	2.5x10 ⁻¹⁸]
			4	$\left \begin{array}{c}5\\2\end{array}\right\}$	30120.21	1.1x10 ⁻¹⁷	
			4 4 3	$\begin{vmatrix} 3\\4\\2\end{vmatrix}$	30120.56	4.7x10 ⁻¹⁸	
			3	$\left \begin{array}{c}4\\3\end{array}\right $	30120.86×	8.5x10 ⁻¹⁸	

*These two lines were not resolved.

Ro Molecule Tra		ional ition	Fi	Ff	Frequency Mc	Intensity cm ⁻¹	Ref.
	J	K					
B ^{ll} D ₃ CO	1→2	0	3/2	$\frac{3}{2}$	29345.93	1.7x10 ⁻¹⁷	4
			1/2 3/2 5/2	1/2 5/2 7/2	29346.24	1.1x10 ⁻¹⁶	
			1/2 5/2	$\begin{array}{c} 3/2\\ 5/2 \end{array}$	29346.65	2.8x10 ⁻¹⁷	
		1	1/2	1/2	29345.03	1.0x10 ⁻¹⁷	
			5/2 5/2 5/2 1/2	3/2 3/2 7/2 3/2	29345.28	6.3x10 ⁻¹⁷	
			3/2 5/2	3/2	29345.52	2.4x10 ⁻¹⁷	
			3/2	5/2	29345.68	2.5x10 ⁻¹⁷	

CH3BO--Continued

 CH_3Br

Methane, bromo-

 $\mu = 1.797$ (ref. 3)

	C ¹² H ₃ Br ⁷⁹	C ¹² H ₃ Br ⁸¹	C ¹³ H ₃ Br ⁷⁹	C ¹³ H ₃ Br ⁸¹	Ref.
Во	9568.19	9531.845	9119.51	9082.86	1,2 4,5
(eqQ) _{Br}	577.3	482.4	577.3	482.4	1, 2
D _J	0.0111	0.0107			5
D _{JK}	0.1294	0.1290]

References

¹W. Gordy, J. W. Simmons and A. G. Smith, Physical Review **74**, 243 (1948).

²A. H. Sharbaugh and J. Mattern, Physical Review **75**, 1102 (1949).

^AR. G. Shulman, B. P. Dailey and C. H. Townes, Physical Review 78, 145 (1950). ⁴J. W. Simmons and W. O. Swan, Physical Review 80, 289 (1950). ⁵J. W. Simmons and W. E. Anderson, Duke Progress Report May-Aug., (1950).

CH₃Br--Continued

Molecule	Rotational Transition		F _i F	F_{f}	Frequency Mc	Intensity cm-1	Ref.
	J	K					
C ¹² H ₃ Br ⁷⁹	0→1	0	3/2 3/2 3/2	1/2 3/2 5/2	18992.36 19252.13 19107.97	4.8 x 10-7 9.7 x 10-7 1.5 x 10-6	2
	1→2	0	3/2	3/2	38157.30	2.5 x 10-6	1
			3/2	5/2	20060.30	7 4 - 70 5	
			5/2	7/2	38200.10	1.4 X 10-	
			1/2	1/2	38272.40	1.9 x 10- ⁶	
			5/2	5/2	38404.49	2.1 x 10- ⁶	
			1/2	3/2	38417.09	1.9 x 10- ⁶	
		1	1/2	1/2	38128.40	1.4 x 10- ⁶	
			1/2	3/2	38200.52	1.4 x 10- ⁶	
			5/2	7/2	38237.14	7.0 x 10- ⁶	
			5/2	5/2	38309.45	1.6 x 10- ⁶	
			3/2	3/2	38330.25	1.9 x 10- ⁶	
			3/2	5/2	38381.70	3.5 x 10- ⁶	
	3⇒ 4	3	3/2 9/2	5/2 11/2	76425.18 76491.36	2.4 x 10- ⁵ 5.6 x 10- ⁵	5
		2	3/2 9/2	5/2 11/2	76496.60 76517.36	2.0 x 10- ⁵ 4.7 x 10- ⁵	
		l	9/2	11/2	76532.88	5.9 x 10- ⁵	
		0	9/2 7/2	11/2 9/2 }	'765 38.0 2	1.1 x 10-4	
		1	3/2 7/2	5/2 9/2	76540.20 76547.24	2.5 x 10- ⁵ 4.5 x 10- ⁵	
		0	$ \begin{cases} 5/2 \\ 3/2 \end{cases} $	7/2 5/2			
		1 2 3	5/2 5/2 5/2	7/2 7/2 7/2	76554.82	1.6 x 10-*	
		2	7/2	9/2	76575.22	3.6 x 10-5	
		3	7/2	9/2	76621.78	4.2 x 10_5	

 CH_3Br --Continued

Molecule	Rotational Transition		F _i F _f	Frequency Mc	Intensity cm ⁻¹	Ref.	
	J	K					
C ¹² H ₃ Br ⁷⁹	4→5	4	11/2	13/2	95615.73	4.2x10 ⁻⁵	5
Continued		3	5/2	7/2	95619.24	7.9x10 ⁻⁵	
			11/2	13/2	95640.87	1.5x10 ⁻⁴	
		2	5/2	7/2	95654.73	5.2x10 ⁻⁵	1
			11/2	13/2	95659.20	9.9x10 ⁻⁵	
		1	11/2	13/2	95669.97	1.1x10 ⁻⁴]
		0	11/2	13/2	05/72 53]
			9/2	11/2	95673.51	2.2x10 *	
		1	5/2	7/2	95676.39	5.9x10 ⁻⁵	1
			9/2	11/2	95677.20	9.2x10 ⁻⁵	
		0 1 2	{7/2 {5/2 7/2 7/2	9/2 7/2 9/2 9/2	95683.62	3.3x10 ⁻⁴	
		323	9/2 9/2 9/2	9/2) 11/2 11/2	95688.27 95706.12	8.0x10 ⁻⁵ 1.2x10 ⁻⁴	
C ¹² H ₃ Br ⁸¹	0→1	0	3/2	1/2	18943.77	4.7x10 ⁻⁷	2
			3/2	3/2	19160.82	9.5x10 ⁻⁷	
			3/2	5/2	19040.32	1.4x10 ⁻⁶	
		0	3/2	3/2	38030.77	2.4x10 ⁻⁶	1
			5/2	5/2	38116.65	1.4x10 ⁻⁵	1
			1/2	1/2	38126.97	1.9x10 ⁻⁶	
			5/2	5/2	38237.14	2.1x10 ⁻⁶	
			1/2	3/2	38247.77	1.9x10 ⁻⁶	
		1	1/2	1/2	38006.47	1.4x10 ⁻⁶	
			1/2	3/2	38066.72	1.4x10 ⁻⁶	
			5/2	7/2	38097.45	6.7x10 ⁻⁶	
			5/2	5/2	38157.70	1.5x10 ⁻⁶	
			3/2	3/2	38175.08	1.8x10 ⁻⁶	
			3/2	5/2	38218.21	3.5x10 ⁻⁶	

 CH_3Br --Continued

Molecule	Rota ⁻ Trans	tional sition	Fi	F_{f}	Frequency Mc	Intensity	Ref.	
	J	K						
C ¹² H ₃ Br ⁸¹	3 → 4	3	3/2 9/2	5/2 11/2	76152.28 76207.66	2.2 x 10- ⁵ 5.4 x 10- ⁵	5	
		2	3/2 9/2	5/2 11/2	76213.16 76230.18	2.0 x 10- ⁵ 4.6 x 10- ⁵		
		1	9/2	11/2	76243.66	5.8 x 10- ⁵		
		0	9/2 7/2	11/2 9/2	76248.32	1.1 x 10-4		
		1	3/2 7/2	5/2 9/2	76249.94 76255.68	2.5×10^{-5} 4.4 x 10 ⁻⁵		
		0	5/2 3/2	7/2				
		1	5/2	7/2	76261.96	1.5 x 10-4		
		2	5/2	7/2				
			7/2	9/2	76278.16	3.5×10^{-5}		
	4 → 5	4	11/2	13/2	95259.24	4.1 x 10- ⁵		
			3	5/2 11/2	7/2 13/2	95263.47 95281.53	7.7×10^{-5} 1.5 x 10 ⁻⁴	
			2	5/2 11/2	7/2 13/2	95293.89 95297.55	5.1 x 10- ⁵ 9.7 x 10- ⁵	
		1	11/2	13/2	95307.48	1.1 x 10-4		
		0	11/2 9/2	13/2 11/2	95310.78	2.0 x 10-4		
			0	7/2 5/2	9/2 7/2	95319.12	2.1 x 10-4	
		1	7/2	9/2				
		2	9/2	11/2	95322.15	7.8×10^{-5}		
			1/2	11/2		1.2 A 10-		

CH₃BrHg

(CH₃HgBr)

Methylmercury bromide

μ =

	CH ₃ HgBr ⁷⁹	CH ₃ HgBr ⁸¹		Ref.
Bo	1140	1122		l

References

 1 W. Gordy and J. Sheridan, Physical Review, 79, 224 (1950), and private communication.

Methane, chloro-

 $\mu = 1.869$ (ref. 6,2)

	C ¹² H ₃ Cl ³⁵	C ¹² H ₃ Cl ³⁷	C ¹³ H ₃ Cl ³⁵	C ¹³ H₃Cl ³⁷	C ¹² D ₃ Cl ³⁵	C ¹² D ₃ Cl ³⁷	Ref.
Bo	13292.95	13088.24	12796.2	12590.0	10844	10662.5	1, 4 5, 7
A			150,000 app	roximately			
(eqQ) _{Cl}	-75.33	-58.5	-75.33	-58.5	-75.33	-58.5	1,2
DJ	0.0264	0.0270					7
D _{JK}	0.189	0.184					

References

¹W. Gordy, J. W. Simmons and A. G. Smith, Physical Review 74, 243 (1948).

²R. Karplus and A. H. Sharbaugh, Physical Review 75, 889 (1949).

³G. Matlock, G. Glockler, D. R. Bianco and A. Roberts, Journal of Chemical Physics 18, 332 (1950).

⁴J. W. Simmons, Physical Review **76**, 686 (1949).

⁵B. P. Dailey, C. H. Townes, J. M. Mays and Physical Review **76**, 136 (1949) and private communication.

⁶R. G. Shulman, B. P. Dailey and C. H. Townes, Physical Review 78, 145 (1950).

⁷J. W. Simmons and W. E. Anderson, Duke Progress Report, May - August, 1950.

⁸S. L. Miller, L. C. Aamodt, B. P. Dailey, J. Kraitchman, and C. H. Townes C. R. L. Quarterly Report September 30, 1950.

Molecule	Rotational Transition		F _i ^F f		Frequency Mc	Intensity cm ⁻¹	Ref.
C ¹² H ₃ Cl ³⁵	0→1		3/2 3/2 3/2	3/2 5/2 1/2	26570.77 26589.49 26604.57	4.4x10 ⁻⁶ 6.6x10 ⁻⁶ 2.2x10 ⁻⁶	1
	2 + 3	0	7/2 3/2 1/2 7/2 5/2 5/2 3/2	7/2 5/2 3/2 9/2 7/2 5/2 3/2	79736.96 79751.02* 79755.68* 79764.56 79769.94	7.2x10 ⁻⁵ 2.2x10 ⁻⁴ 4.4x10 ⁻⁴ 1.9x10 ⁻⁵ 1.4x10 ⁻⁵	7
		l	7/2 5/2 3/2 1/2	9/2 7/2 5/2 3/2	79755.68* 79751.02* 79755.68*	** ** **	
		2	7/2 5/2 1/2 7/2 5/2	9/2 7/2 3/2 7/2 5/2	79755.68* 79736.96* 79768.98 79755.68* 79736.96*	** ** 1.9x10 ⁻⁵ ** **	

*These lines, when of identical observed frequency, were not resolved. **Intensity is included in line of identical frequency above.

CH3C1
			CH ₃ C	LContin	ued		
Molecule	Rotatic Transit J	onal Jon K	F.	Ff	Frequency Mc	Intensity cm ⁻¹	Ref.
C ¹² H ₃ Cl ³⁷	0→1		3/2 3/2 3/2	3/2 5/2 1/2	26164.57 26179.30 26191.13	1.4x10 ⁻⁶ 2.1x10 ⁻⁶ 7.1x10 ⁻⁷	1
	2→3	0	7/2 1/2 3/2 5/2 7/2	7/2 3/2 5/2 7/2 9/2	78512.80 78523.32* 78527.10*	4.6x10 ⁻⁶ 7.0x10 ⁻⁵ 1.1x10 ⁻⁴	7
		l	3/2 5/2 1/2 7/2	5/2 7/2 3/2 9/2	78523.32* 78527.10*	**	
		2	5/2 5/2 3/2 3/2 7/2 7/2	5/2 7/2 3/2 5/2 7/2 9/2	78511.68 78522.00 78526.14	1.9x10 ⁻⁶ 1.3x10 ⁻⁶ 2.5x10 ⁻⁶	
C ¹³ H ₃ Cl ³⁵	0 →1		3/2 3/2 3/2	3/2 5/2 1/2	25577.40 25596.19 25611.09	4.5x10 ⁻⁸ 6.7x10 ⁻⁸ 2.2x10 ⁻⁸	5,3
C ¹³ H ₃ Cl ³⁷	0→1		3/2 3/2 3/2	3/2 5/2 1/2	25167.68 25182.50 25194.20	1.4x10 ⁻⁹ 2.1x10 ⁻⁹ 6.9x10 ⁻¹⁰	
C ¹² H ₂ DCl ³⁵	⁰ 0,0→10,1		3/2 3/2 3/2	3/2 5/2 1/2	24641.70 24660.33 24675.25	6.0x10 ⁻¹⁰ 9.0x10 ⁻¹⁰ 3.0x10 ⁻¹⁰	3
C ¹² H ₂ DCl ³⁷	0 _{0,0} →1 _{0,1}		3/2 3/2 3/2	3/2 5/2 1/2	24252.00 24266.68 24278.33	1.8x10 ⁻¹⁰ 3.8x10 ⁻¹⁰ 9.2x10 ⁻¹¹	3
C ¹² HD ₂ Cl ³⁵	00,0→10,1		3/2 3/2 3/2	3/2 5/2 1/2	23035.00 23053.62 23068.51	1.0x10 ⁻¹³ 1.5x10 ⁻¹³ 5.2x10 ⁻¹⁴	
	$ \begin{array}{c} 1_{11} \rightarrow 2_{12} \\ 1_{0,1} \rightarrow 2_{0,2} \\ 1_{1,0} \rightarrow 2_{1,1} \end{array} $				45789. 46099.4 46407.		8
C ¹² HD ₂ Cl ³⁷	0 _{0,0} →1 _{0,1}		3/2 3/2 3/2	3/2 5/2 1/2	22659,29 22673,80 22685,60	3.1x10 ⁻¹⁴ 4.8x10 ⁻¹⁴ 1.6x10 ⁻¹⁴	3

Ċ

*These lines, when of identical observed frequency, were not resolved. **Intensity is included in line of identical frequency above.

CH₃ClH_g (CH₃HgCl)

	CH ₃ HgCl ³⁵			Ref.
Bo	2076		•	1

References

¹W. Gordy and J. Sheridan, Physical Review 79, 224, (1950), and private communication.

CH₃F

Methane, fluoro-

 $\mu = 1.81$

The half width, $\Delta \nu = 20^2$, has been used in calculating the intensities.

·	C ¹² H₃F	C ¹³ H₃F		Ref.
Bo	25,535.85	24,862.37		1,2
A	150,000			
D _{JK}	0.45			3

References

¹W. Gordy, J. W. Simmons and A. G. Smith, Physical Review 74, 243, (1948).
 ²O. R. Gilliam, H. D. Edwards and W. Gordy, Physical Review 75, 1014, (1949).
 ³O. R. Gilliam, C. M. Johnson and W. Gordy, Physical Review 78, 140, (1950).

Molecule	Rotati Transi	ional ition	Frequency Mc	Intensity cm ⁻¹	Ref.
	J	K			
a12 m B	0→1	0	51071.69	1.4x10 ⁻⁴	1,2
СH3F	1→2		102000.	2.0x10 ⁻³	3
C ¹³ H ₃ F	0→1	0	49724.73	1.5x10 ⁻⁶	2

CH₃F

μ =

(CH₃SiF₃) CH3F3Si

Silane, trifluoromethyl

	Si ²⁸ F3CH3	Si ²⁸ F3CH3		Ref.
Bo	3715.62			1

References

CH2F2Si

¹J. Sheridan and W. Gordy, Physical Review 77, 719 (1950).
²H. Minden, J. M. Mays and B. P. Dailey, Physical Review 78, 347, (1950).

Molecule	Rotational Transition	Rotational Vibrational Transition State		Ref.
	J			
Si ²⁸ F3CH3	2→3	ground	22295	2
		ground	29724.91	1,2
	3→4	excited	29707.24	1
	5→6	ground	also observed	

CH₃HgI

Methylmercury iodide

μ =

The J=27 \rightarrow 28 and 28 \rightarrow 29 transitions were observed¹, but frequencies were not given.

	CH3HgI		Ref.
Bo	788.0		

References

¹W. Gordy and J. Sheridan, Physical Review 79, 224, (1950), and Duke Progress Report Aug.-Nov. 1949.

Methane, iodo-

 $\mu = 1.647$

(ref. 4)

Many lines of the J=2→3 transition of CH₃I¹²⁹ in the region 44,700 - 45,200 megacycles were observed², and also the $J = 1 \rightarrow 2$ transition of CD_3I^{1273} .

	C ¹² H ₃ I ¹²⁷	C ¹³ H ₃ I ¹²⁷	CD3I ¹²⁷	CH31129	Ref.
Bo	7501.310	7119.040	6040.5		1,3
A	150,000	150,000	150,000		
(eqQ) _I		-1934		-1422	1, 2
D _J	7.95x10 ⁻³		÷		5
D _{JK}	9.94x10 ⁻²				

References

¹W. Gordy, J. W. Simmons and A. G. Smith, Physical Review 74, 243 (1948).

²R. Livingston, O. R. Gilliam and W. Gordy, Physical Review 76, 149 (1949).

³J. W. Simmons, Physical Review **76**, 686 (1949).

⁴R. G. Shulman, B. P. Dailey and C. H. Townes, Physical Review 78, 145 (1950).

⁵J. W. Simmons and W. E. Anderson, Duke Quarterly Progress Report, May - August 1950.

*These two lines were unresolved, and the intensity given is their sum.

Molecule	Rotational Transition		Fi	F _f	Frequency Mc	Intensity cm ⁻¹	Ref.
	J	K					
C ¹² H ₃ I ¹²⁷	1→2	0	3/2	5/2	29598.95	9.2x10 ⁻⁷	1
			7/2	7/2	26697.95	1.4x10 ⁻⁶	
			7/2	5/2	29773.95	2.3x10 ⁻⁷	
			3/2	3/2	29872.52	1.4x10 ⁻⁶	
			7/2	9/2	30046.99	5.0x10 ⁻⁶	
			5/2	7/2	30079.72	2.6x10 ⁻⁶	
			3/2	1/2	30121.32	1.0x10 ⁻⁶	
			5/2	5/2	30179.71	2.6x10 ⁻⁶	
			5/2	3/2	30453.46	6.3x10 ⁻⁷	
		1	5/2	7/2	29735.71	2.5x10 ⁻⁶	
			5/2	5/2	29782.71	1.8x10 ⁻⁶	
			5/2	3/2	29923.50	4.5x10 ⁻⁷	
			7/2	7/2	29939.87	1.4x10 ⁻⁶	
		-	7/2	5/2	29986.84	2.4x10 ⁻⁷	

CH₃I

 CH_3I --Continued

Molecule	Rotat: Trans:	ional ition	Fi	Ff	Frequency Mc	Intensity cm ⁻¹	Ref.
	J	K					
C ¹² H ₃ I ¹²⁷	1→2	1	3/2	5/2	30075.08	9.5x10 ⁻⁷	1
(Continued)			7/2	9/2	30123.64	5.1x10 ⁻⁶	
			3/2	3/2	30215.95	1.4x10 ⁻⁶	
	4→5	0	13/2	15/2	75019.28	6.0x10 ⁻⁵	5
			11/2	13/2	75027.58	4.9x10 ⁻⁵	
			9/2	11/2	75004.28	3.9x10 ⁻⁵	
			7/2	9/2	74977.62*	5.4x10 ⁻⁵	
			5/2	7/2	74967.66	2.4×10^{-5}	
			3/2	5/2	74986.14	1.9x10 ⁻⁵	
			7/2	9/2	74976 22	3 Ox 10 ⁻⁵	
		-	5/2	7/2	7/977 62*	5.4×10^{-5}	
			0/2	11/2	71.003.00	3.7×10 ⁻⁵	
			11/2	12/2	75016 20	2.7x10 ⁻⁵	
			12/2	15/2	75026.20	5 \$v10 ⁻⁵	
			15/2	15/2	73020.20	J.8X10	
		2	9/2	11/2	74960.76	3.3x10 ⁻⁵	
			7/2	9/2	74971.76	2.6x10 ⁻⁵	
			11/2	13/2	74982.18	4.1x10 ⁻⁵	
			5/2	7/2	75007.62	2.0x10 ⁻⁵	
			13/2	15/2	75046.48	5.1x10 ⁻⁵	
		3	11/2	13/2	74926.04	6.3x10 ⁻⁵	
			7/2	9/2	74964.36	4.0x10 ⁻⁵	
			13/2	15/2	75081.02	7.7x10 ⁻⁵	
		4	9/2	11/2	74829.54	1.4x10 ⁻⁵	
			11/2	13/2	74849.92	1.8x10 ⁻⁵	
C ¹³ H ₃ I ¹²⁷	1→2	0	3/2	5/2	28069.99	1.0x10 ⁻⁸	1
			7/2	7/2	28145.01	1.5x10 ⁻⁸	
			3/2	3/2	28343.64	1.5x10 ⁻⁸	
			7/2	9/2	28518.14	5.5×10^{-8}	
			5/2	7/2	28550.86	2.9x10 ⁻⁸	
			5/2	5/2	28650.91	2.9x10 ⁻⁸	
			5/2	7/2	28206.90	2.8x10 ⁻⁸	
			5/2	5/2	28253.84	2.0x10 ⁻⁸	
			7/2	7/2	28411.19	1.5x10 ⁻⁸	
			7/2	9/2	28594.74	5.6x10 ⁻⁸	
			3/2	3/2	28687.21	1.5x10 ⁻⁸	
							1

Methane, nitro-

References

¹B. P. Dailey and E. B. Wilson jr., Physical Review **72**, 522 (1947) and private communication. ²B. Bak, E. S. Knudsen and E. Madsen, Physical Review **75**, 1622 (1949). *These three lines were only very roughly measured and are not included in the frequency listing.

Molecule Frequency Mc Observed Relative Intensity Ref. CH ₃ NO ₂ 20385 75 1 21970* 22580* 2260* 2 23021 115 1 2 23250 115 1 2 23483 23467 1 2 23483 23706 1 1 24428 4 4 4 24428 4448 4 1 25394 118 1 1, 2 25412 60 1 1, 2			CH3NO2	-	
CH3NO2 20385 75 1 2 21970* 22580* 22580* 2 2 23021 115 1 2 2 23330 115 1 2 2 23483 23706 23706 1 2 2428 24428 24428 1 1 24428 24448 1 1 1 25394 118 1 1, 2 1 25412 60 1 1, 2 1	Molecule	Frequency Mc	Observed Relative Intensity		Ref.
	ĊH3NO2	20385 21970* 22580* 22620* 23021 23250 23330 23467 23483 23706 24017 24428 24448 24599 25394 25412	75 115 118 60		1 2 1 2 1

CH₄O (CH₃OH)

Methanol

 $\mu = 1.66$

Of the large number of lines reported, only some of the $J=0 \rightarrow 1$ lines, and a series involving a hindred rotational transition have been positively identified. Many lines of this series have been observed and their J-values determined^{6,8}. These lines are designated in the list below only by J, since for them $\triangle J=0$. Intensities indicated for some lines are observed values 7,8, and the designations w, m, etc. do not necessarily agree with the conventions of this table.

References

¹W. D. Hershberger and J. Turkevitch, Physical Review 71, 554, (1947), and private communication.

²B. P. Dailey and E. B. Wilson, jr., Physical Review 72, 522, (1947).
 ³D. K. Coles, Physical Review 74, 1194 (1948).

⁴C. H. Millar, Thesis, McGill University (1947).

⁵B. Bak, E. S. Knudsen, and E. Madsen, Physical Review 75, 1622, (1949).

⁶D. K. Coles, W. E. Good, and R. H. Hughes, Physical Review 77, 741, (1950).

7H. D. Edwards, O. R. Gilliam and W. Gordy, Duke Progress Report, August-November, 1949, and earlier private communication.

⁸R. H. Hughes, W. E. Good, and D. K. Coles, private communication.

CH₄O--Continued

Molecule	Rotational Assignment	Frequency Mc	Intensity	Ref.
	J			
C ¹² H ₃ O ¹⁶ H	30	16941.6	W	 6,8
	29	19390.18 20346.83	w m	8
		20908.87 20970.65 21550.31	m m m	1,2,8
	28	21708.68	w	8
		23121.20	m	1,2 4,8
		23444.82	m	1,2,4 8,5
	27	23854.25	w	-
		24901.		5
	3	24928.70	m	2,3
•	4	24933.47	m	3,8
	2	24934.38	m	1, 3,8
	5	24959.08	m	1,2,3
		24997.		5
	6	25018.14	m	1,2,3 4,8
		25056.32		4,8
	7	25124.88	m	1,2,3 4,8,5
		25151.		5
	8	25294.41	m	1,2,3 4,8
		25312. 25332. 25349.		5
	9	25541.43	m	1,2,3 4,8
	26	25787.12	w	2,4
	10	25878.18	m	2,3, 4,8
	11	26313.11	m	2,4, 8
		26562.		2
	12	26847.27	m	8

CH₄O--Continued

Molecule	Rotational Assignment J	Frequency Mc	Intensity	Ref.
C ¹² H ₃ O ¹⁶ H (Continued)	12 25 13	27283.29 27470.99 27472.54 27817.50 27820.87	. m m m m m	8
	14 24 15 16 23 17 22	28169.31 28316.03 28874.45 28905.70 29113.76 29636.91 29889.33 29973.06 30308. 30429.88 30752.26	m m w m w w m w m m	
	18 21 19	30858.40 31209.75 31226.70	m m m	
	20	31358.31 33691.72 33693.69 34001.40 34003.61	m s w w s	8
		36169.24	s	7,8
		36240. 37690. 38290. 38335. 38445. 42280. 44100. 46610. 47840. 48010. 48192. 48248. 48260. 48371.9 48376.4 48406	m s m w m w s w w w s s s s s	7
	0 _{0,0} →1 _{0,1}	48406. 48707.7 49032. 49750. 49867.2	w(double) m w(double) w s	

		0112000110111	ueu	
Molecule	Rotational Assignment J	Frequency Mc	Intensity	Ref.
C ¹³ H ₃ O ¹⁶ H	31	17870.5	W	6,8
	30 29 28 27	20329.32 22672.90 24860.62 26855.01 26979.03	W W W M m	8
	3 4	27047.19 27050.45	m m	
	2	27052.97	m	6,8
	5	27072.17 27104.80 27105.93	m W m	8
	6 7 8 9	27122.76 27215.60 27364.12 27581.65	m m m	
	10 11 26 12	27880.04 28267.71 28621.04 28747.67	m m w m	
	13 14 25	28869.59 29315.20 29955.72 30127.80	w m m w	
	15 16 24 17	30643.69 31342.31 31350.19 32004.43	m m W	
	23 18 22 19 21	32271.10 32575.53 32883.47 32998.94 33192.97	w m m m m	
	20	33220.05	m	6,8
		47080. 47204.7 47209.2 47760. 47899.3 47950.1	w(double) w w m m m m	7
	⁰ 0,0 ^{→1} 0,1	48529.6 49070.8	s m	

CH₄O--Continued

Rotational Frequency Molecule Assignment Mc Intensity Ref. J C¹²H₃O¹⁸H 2 3 4 33918.97 m 8 33925.49 m 33943.63 m 5 6 33981.35 m 34048.42 m 7 34155.63 m 8 34314.64 m 9 34536.74 m 26 34761.75 W 10 34831.64 m 11 35206.11 m 12 35611.78 m 13 36193.55 m 25 36312.57 W 14 36787.33 m 15 37418.97 m 24 37579.85 W 16 38053.87 m 23 38547.73 W 17 38647.87 m 18 39149.41 m 22 39210.48 m 19 39505.01 m 21 39574.97 m 20 39661.80 m C¹²H₃O¹⁶D 47052. 7 47266. 47346. 0_{0,0}→1_{0,1} 47359.7 s

٠

ŧ,

CH₄O--Continued

		CH ₄ OContinued			
Molecule	Rotational Assignment J	Frequency Mc	Intensity	Re	÷f.
C ₁₅ D ₃ O ₁₆ D		30505. 30600. 31140. 32190. 32325. 32790. 33340. 33965. 34410. 35090. 35100. 35100. 35165. 35215. 35335. 35440. 35748.2 35805.7 35800.0 36322.7 36422.9 36483.9 36655. 36946.4 36987. 37030. 37229.8 37322.8 37322.8 37322.8 37322.8 37325. 37425. 37425. 37425. 37425. 37425. 37425. 37425. 37425. 37426.6 37900. 38052.6 38132.8 38530. 38967.0 39048. 39065. 40083. 40240. 40640. 40940. 41230. 41540. 41688. 41750. 42020. 42150. 42285. 42700. 43245. 43545. 43545. 43545. 43595.	m(double) w m(double) w w m w w w w w w w w w w w w w	7	

Methylamine

 $\mu = 1.2$

	CH3NH2		Ref.
$\frac{1}{2}$ (B+C)	22662.12	. .	2

References

¹W. D. Hershberger and J. Turkevitch, Physical Review 71, 554 (1947), and private communication.

²H. D. Edwards, O. R. Gilliam and W. Gordy, private communication, and Duke Progress Report July 13, 1948.

Molecule	Rotational Transition J	Frequency Mc		Ref.
CH3NH2	0 -> 1	21712 21935 22258 22535 22590 22595 22612 22732 22740 22977 23115 23205 23295 23300 23305 23305 23305 23305 23305 23335 23404 23425 23430 23446 23510 23680 24015 24078 24320 24528 24890 24896 25000 25065 25200 25470		1
	U -> T	45324.24		2

 $\mathrm{CH}_{5}\mathrm{N}$

Cyanogen iodide

The	half	width,	$\Delta v = 20^2$	has	been	used	in	calculating	the	intensity.
-----	------	--------	-------------------	-----	------	------	----	-------------	-----	------------

	IC ¹² N	IC ¹³ N		Ref.
Bo	3225.527	3177.035		2,1
(eqQ) _N	-3.80	-3.80		2,1
(eqQ) _I	-2420	-2420		
α1	9.33			
α2	-9.50			
q	2.69			
DJ	8.8x10 ⁻⁴			7

References

¹A. G. Smith, H. Ring, W. V. Smith and W. Gordy, Physical Review 74, 370 (1948).

²C. H. Townes, A. N. Holden and F. R. Merritt, Physical Review 74, 1113 (1948). ³A. G. Smith, W. Gordy, J. W. Simmons and W. V. Smith, Physical Review 75, 260 (1949).

⁴J. Klein, W. Low and C. H. Townes, private communication.

⁵0. R. Gilliam, C. M. Johnson and W. Gordy, Physical Review 78, 140 (1950).
⁶W. Low, Thesis, Columbia University (1950).
⁷J. W. Simmons and W. E. Anderson, Duke Progress Report, May - August, (1950).

Molecule	Rotational Transition J	Vibrational State	F.	Ff	Frequency Mc	Intensity cm ⁻¹	Ref.
IC ¹² N ¹⁴	3 →4	ground	11/2	11/2	25393.87	7.1x10 ⁻⁶	2
			3/2	5/2	25711.50	2.0x10 ⁻⁵	
			5/2	7/2	25728.77	2.9x10 ⁻⁵	
			1/2	3/2	25752.65	1.4x10 ⁻⁵	
			7/2	9/2	25783.50	4.2x10 ⁻⁵	
			9/2	9/2	25789.85	1.1x10 ⁻⁵	
			11/2	13/2	25823.08	7.5x10 ⁻⁵	
			9/2	11/2	25837.64	5.7x10 ⁻⁵	
			7/2	7/2	25954.36	1.2x10 ⁻⁵	
			3/2	3/2	25969.58	6.9x10 ⁻⁶	
			5/2	5/2	25991.92	1.0x10 ⁻⁵	
		v ₁ = 1	11/2	13/2	25748.18	7.0x10 ⁻⁶	
		_	9/2	11/2	25763.23	5.3x10 ⁻⁶	
		v ₂ =1,1 ₁	5/2	7/2	25802.92	3.8x10 ⁻⁶	

CIN

CIN--Continued

Molecule	Rotational Transition J	Vibrational State	Fi	Ff	Frequency Mc	Intensity cm ⁻¹	Ref.
IC ¹² N ¹⁴	J= 3→ 4	v ₂ =1,1 ₁	3/2	5/2	25815.34	3.8x10 ⁻⁶	2
(Continued)		11	7/2	9/2	25829.31	7.8×10^{-6}	
		12	7/2	9/2	25850.78	7.8x10 ⁻⁶	
		11	9/2	11/2	25872.24	1.1x10 ⁻⁵	
		ll_2	9/2	11/2	25893.73	1.1x10 ⁻⁵	
		lll	11/2	13/2	25906.28	1.4x10 ⁻⁵	
		12	11/2	13/2	25927.66	1.4x10 ⁻⁵	
		v ₂ =2,1 2	11/2	13/2	26046.32	3.5x10 ⁻⁶	4
		10	11/2	13/2	25979.72	1.7x10 ⁻⁶	6
	$J = 4 \rightarrow 5$	ground	13/2	13/2	31848.77	8.5x10 ⁻⁶	1
			11/2	11/2	32200.58	1.5x10 ⁻⁵	
			5/2	7/2	32203.57	5.7x10 ⁻⁵	
			7/2	9/2	32215.56	7.3x10 ⁻⁵	
			3/2	5/2	32226.85	4.4x10 ⁻⁵	
			9/2	11/2	32248.52	9.3x10 ⁻⁵	
			13/2	15/2	32268.33	1.5x10 ⁻⁴	
			11/2	13/2	32278.55	1.2x10 ⁻⁴	
			9/2	9/2	32386.29	1.8x10 ⁻⁵	
	J = 10→11	ground	17/2	19/2	70949.66	1.2x10 ⁻³	7
			21/2	23/2	70959.14	1.1x10 ⁻³	
			25/2	27/2	70961.30	9.9x10 ⁻⁴	
			23/2	25/2	70963.90	8.2x10 ⁻⁴	
	$J = 11 \rightarrow 12$	ground			77413.	7.7x10 ⁻³	3
	J = 12→ 13	ground			83864.	9.7x10 ⁻³	3
	$J = 19 \rightarrow 20$				129000.	2.2x10 ⁻²	5
IC ¹³ N ¹⁴	$J = 4 \rightarrow 5$	ground	5/2	7/2	31718.28	5.5x10 ⁻⁷	1
			7/2	9/2	31730.50	7.2x10 ⁻⁷	
			3/2	5/2	31741.50	4.3x10 ⁻⁷	
			9/2	11/2	31763.34	9.1x10 ⁻⁷	
			13/2	15/2	31783.31	1.4x10 ⁻⁶	
			11/2	13/2	31793.46	1.1x10 ⁻⁶	

Carbon monoxide

 $\mu = .12$

	C ¹² O ¹⁶	C ¹³ 0 ¹⁶		Ref.
Bo	57,635.68	55,100.90		1
α _e	524.16	488.395		

References

¹O. R. Gilliam, C. M. Johnson and W. Gordy, Physical Review 78, 140, (1950)

CO							
Rotational Frequ Molecule Transition Mc		Frequency Mc	Intensity		Ref.		
C ¹² O ¹⁶	0 →1	115270.56	4.8x10 ⁻⁵		1		
C ¹³ O ¹⁶	0→1	110201.1	4.6x10 ⁻⁷				

COS (OCS)

Carbonyl sulfide

 $\mu = 0.709$ (ref. 1, 2,14) $\mu_{(v_2=1)} = 0.700$ (ref. 6, 14)

Examination of a number of excited states of OCS shows that the single formulae given for the effect of excited states in the introduction is not strictly correct. Interactions of the "Fermi resonance" type between different vibrational states change frequencies of some of the excited states by a few megacycles (12). The values of α given below are simply those values which allow accurate prediction of the lowest excited state frequencies from the usual formulae. The ℓ -type doubling has been observed for the first excited state of the bending mode (v_2 =1), for which the value of q is quoted. It has also been measured in a higher excitation, (v_2 =3) for which the ℓ -type doubling constant is 2q. Intensities for molecules containing radioactive isotopes (C¹⁴ and S³⁵) are based on an assumed 100% abundance for the radioactive isotope. In this case the dipole moment has been measured for the v_2 =1 excited vibrational state and has been found to differ slightly from that of the ground state. The half width, $\Delta v = 6^3$, has been used for calculating the intensity.

COS (OCS)

Carbonyl sulfide

	0 ¹⁶ C ¹² S ³²	0 ¹⁶ C ¹² S ³ 2	0 ¹⁶ C ¹² S ³⁴	0 ¹⁶ C ¹² S ³⁵	0 ¹⁶ C ¹² S ³⁶	0 ¹⁶ C ¹³ S ³²	Ref.
Bo	6081.453	6004.918	5932.843	5865.2	5799.67	6061.939	1,3,5
(eqQ) _{S³³}		-28.5					5
(eqQ) _{S35}			20				10
α1	18.12		17.68			17.94	3,11
α2	-10.56		-10.37			-10.10	3,4
α3	55.1						
q	6.393		6.07			6.45	

	0 ¹⁶ C ¹³ S ³⁴	0 ¹⁶ C ¹⁴ S ³²	0 ¹⁷ C ¹² S ³²	0 ¹⁸ C ¹² S ³²	0 ¹⁸ C ¹² S ³⁴	0 ¹⁸ C ¹³ S ³²	Ref.
Bo	5911.730	6043.25	5883.67	5704.83	5559.90	5690.95	3,4 8,11
α1				16.19			11
α2		-9.4		-10.16			3,4
q		6.7		5.62			ш

References

¹T. W. Dakin, W. E. Good and D. K. Coles, Physical Review 71, 640 (1947).

²T. W. Dakin, W. E. Good and D. K. Coles, Physical Review 70, 560 (1946).

- ³C. H. Townes, A. N. Holden and F. R. Merritt, Physical Review 74, 1113 (1948).
- ⁴A. Roberts, Physical Review **73**, 1405 (1948).
- ⁵C. H. Townes and S. Geschwind, Physical Review 74, 626 (1948).
- ⁶M. W. P. Strandberg, T. Wentink Jr, and R. L. Kyhl, Physical Review 75, 270 (1949).

⁷M. W. P. Strandberg et al, MITRLE Quarterly Progress Report, 10/15/1948.

⁸W. Low and C. H. Townes, Physical Review **75**, 529 (1949).

⁹R. G. Shulman and C. H. Townes, private communication.

¹⁰W. V. Cohen, W. Koski and T. Wentink, Jr., Physical Review **76**, 703 (1949).

- ¹¹D. R. Bianco and A. Roberts, private communication.
- ¹²W. Low, Thesis, Columbia University (1950).
- ¹³S. Geschwind and R. Gunther-Mohr, to be published.
- ¹⁴R. G. Shulman and C. H. Townes, Physical Review 77,500 (1950).

	COSContinued								
Molecu	le Rotational Transition J	Vibrational State	Frequency Mc	Intensity cm ⁻¹	Ref.				
0 ¹⁶ C ¹² S	32 1→2	ground	24325.921	5.5x10 ⁻⁵	1, 3, 13				
		v ₁ = 1	24253.51	8.7c10 ⁻⁷	11				
1		v ₁ = 2	24179.62	1.3x10 ⁻⁸	11				
		v ₂ = 1, 1 ₁	24355.50	4.4x10 ⁻⁶	3				
		v ₂ = 1, 1 ₂	24381.07	4.4x10 ⁻⁶					
		v ₂ = 2	24401.	1.3x10 ⁻⁶	9				
		$v_2 = 3, 1_1$	24411.	2.8x10 ⁻⁸					
		$v_2 = 3, l_2$	24459.	2.8x10 ⁻⁸					
		$v_1 = 1, v_2 = 1,$	24289.97	6.2x10 ⁻⁸	12				
		$v_1 = 1, v_2 = 1, l_2$	24316.76	6.2x10 ⁻⁸					
	2 → 3	ground	36488.82	1.9x10 ⁻⁴	6				
		v ₂ =1, 1 ₁	36532.47	1.3x10 ⁻⁵	12				
		v ₂ =1, 1 ₂	36570.83	1.3x10 ⁻⁵					
5-1 C		v ₂ = 2, 1 0	36600.81	1.1x10 ⁻⁶					
		v ₂ = 2, 1 2	36615.26	2.2x10 ⁻⁶					
	3 → 4	ground	48651.64	4.4x10 ⁻⁴	2				
	4 → 5	ground	60814.08	8.7x10 ⁻⁴					
Г				1					

Molecule	Rotational Transition J	Vibrational State	F.	Ff	Frequency Me	Intensity cm ⁻¹	Ref.
0 ¹⁶ C ¹² S ³³	1→2	ground	1/2 5/2	3/2 5/2	24013.04	7.2x10 ⁻⁸	5
			1/2 3/2	1/2 5/2	24020.21	2.9x10 ⁻⁷	
			3/2 3/2 3/2	3/2 1/2	24025.39 24032.75	4.5x10 ⁻⁸ 7.2x10 ⁻⁹	
0 ¹⁶ C ¹² S ³⁴	1 →2	ground			23731.299	2.2x10 ⁻⁶	1,13
		v ₁ = 1			23660.62	4.1x10 ⁻⁸	-8,41
		v ₂ =1, 1 ₁			23760.67	1.4x10 ⁻⁷	5
		v ₂ =1, l ₂			23784.95	1.4x10 ⁻⁷	
	3 +4	ground			47462.40	1.9x10 ⁻⁵	2

COS--Continued

Molecule	Rotational Transition J	Vibrational State	Fi	F _f	Frequency Mc	Intensity cm ⁻¹	Ref.
0 ¹⁶ C ¹² S ³⁵	1→2	ground	3/2	3/2	23457.2	9.1x10 ⁻⁶	10
			$\frac{1/2}{5/2}$	1/2 7/2 5/2	23461.	3.7x10 ⁻⁵	
			1/2 5/2	3/2 5/2	23466.	5.8x10 ⁻⁶	
0 ¹⁶ C ¹² S ³⁶	1→2	ground			23198.66	8x10 ⁻⁹	8
0 ¹⁶ C ¹³ S ³²	1→2	ground			24247.69	5.9x10 ⁻⁷	3
		$v_2 = 1, 1_1$			24274.84	6.6x10 ⁻⁸	6,11
		$v_2 = 1, 1_2$			24300.58	6.6x10 ⁻⁸	
		v ₁ = 1			24176.07	7.2x10 ⁻⁹	11

Molecule	Rotational Transition J	Vibrational State	Frequency Mc	Intensity cm ⁻¹	Ref.
0 ¹⁶ C ¹³ S ³⁴	1→2	ground	23646.92	2.8x10 ⁻⁸	3
0 ¹⁶ C ¹⁴ S ³²	1→2	ground	24173.0	5.7x10 ⁻⁵	6
		v ₂ =1, 1 ₁ v ₂ =1, 1 ₂	24197. 24224.	6.4x10 ⁻⁶ 6.4x10 ⁻⁶	
0 ¹⁷ C ¹² S ³²	1→2	ground	23534.67	2.2x10 ⁻⁸	8
0 ¹⁸ C ¹² S ³²	1→2	ground	22819.30	9.6x10 ⁻⁸	3
		v ₁ =1	22754.6	1.3x10 ⁻⁹	11
		v ₂ =1, 1 ₂ v ₂ =1, 1 ₁	22871.30 22848.83	6.4x10 ⁻⁹ 6.4x10 ⁻⁹	
0 ¹⁸ C ¹³ S ³²	1→2	ground	22763.8	1.1x10 ⁻⁹	
0 ¹⁸ C ¹² S ³⁴	1→2	ground	22239.6	4.2x10 ⁻⁹	

Carbonyl selenide

As in OCS "Fermi Resonance" interactions in this molecule shift the frequencies of some of the excited states by a few megacycles so that they are not accurately predicted by the α 's given below.³ In this case the dipole moment has been measured for several excited vibrational states and has been found to differ slightly from the ground state.

	0 ¹⁶ C ¹² Se ⁸²	0 ¹⁶ C ¹² Se ⁸⁰	0 ¹⁶ C ¹² Se ⁷⁸	0 ¹⁶ C ¹² Se ⁷⁷	0 ¹⁶ C ¹² Se ⁷⁶	0 ¹⁶ C ¹² Se ⁷⁴	Ref.
Bo	3994.009	4017.677	4042.460	4055.300	4068.465	4095.793	1
αι	13.12	13.27	13.40	13.48			
α2	-6.86	-6.92	-6.96	-6.98	-7.00		
q	3.12	3.15	3.19	3.21	3.24		
D _{,T}	8.75x10 ⁻⁴	7.55x10 ⁻⁴	8.30x10 ⁻⁴				

	0 ¹⁶ C ¹³ Se ⁸⁰	0 ¹⁶ C ¹³ Se ⁷⁸		Ref.
Bo	3980.045	4005.112		1
	e			

References

¹M. W. P. Strandberg, T. Wentink, Jr. and A. G. Hill, Physical Review 75, 827 (1949). ²S. Geschwind, H. Minden and C. H. Townes, Physical Review 78, 174 (1950). ³W. Low, Thesis, Columbia University (1950).

		COSe			
Molecule	Rotational Transition J	Vibrational State	Frequency Mc	Intensity cm ⁻¹	Ref.
0 ¹⁶ C ¹² Se ⁷⁴	2 → 3	ground	24574.76	1.3x10 ⁻⁷	1,2
0 ¹⁶ C ¹² Se ⁷⁶	2→3	ground	24410.48	1.4x10 ⁻⁶	
		v ₂ =1, l ₁ v ₂ =1, l ₂	24442.98 24462.42	1.8x10 ⁻⁷ 1.8x10 ⁻⁷	1
0 ¹⁶ C ¹² Se ⁷⁷	2→3	ground	24331.38	1.2x10 ⁻⁶	1,2
		$v_1 = 1$	24250.84	5.5x10 ⁻⁸	1
		$v_2 = 1, l_1$	24363.97	1.6x10 ⁻⁷	

Molecule	Rotational Transition	Vibrational State	Frequency Mc	Intensity cm ⁻¹	Ref.
O ¹⁶ C ¹² Se ⁷⁷ (Continued)	2 →3	v ₂ =1, l ₂	24383.21	1.6x10 ⁻⁷	1
0 ¹⁶ C ¹² Se ⁷⁸	2 →3	ground	24254.43	3.4x10 ⁻⁶	1, 2
		v _l =l	24174.30	1.6x10 ⁻⁸	1
		$v_2 = 1, l_1$ $v_2 = 1, l_2$	24286.82 24305.95	4.5x10 ⁻⁷ 4.5x10 ⁻⁷	
	5→6		48508.88	2.8x10 ⁻⁵	
	6 →7		56593.16	4.4x10 ⁻⁵	
	2 →3	ground	24105.85	6.8x10 ⁻⁶	1, 2
		v ₁ = 1	24026.39	3.1x10 ⁻⁷	1
		$v_2 = 1, 1_1$	24138.05	9.0x10 ⁻⁷	
		$v_2 = 1, l_2$	24156.93	9.0x10 ⁻⁷	
		$v_2 = 2, 1 = 0$	24184.09	8.1x10 ⁻⁸	3
		$v_2 = 2, 1 = 2$	24188.31	1.6x10 ⁻⁷	
	5→6		48211.46	5.6x10 ⁻⁵	1
	6 →7		56246.47	8.8x10 ⁻⁵	
0 ¹⁶ C ¹² Se ⁸²	2 →3	ground	23964.33	1.3x10 ⁻⁶	1,2
		v ₁ = 1	23885.76	6.0x10 ⁻⁸	l
		$v_2 = 1, 1_1$	23996.26	1.7x10 ⁻⁷	
		$v_2 = 1, 1_2$	24014.97	1.7x10 ⁻⁷	
	6 →7		55916.19	1.1x10 ⁻⁵	
0 ¹⁶ C ¹³ Se ⁷⁸	2 → 3	ground	24030.58	3.7x10 ⁻⁸	
0 ¹⁶ C ¹³ Se ⁸⁰	2 →3	ground	23880.18	7.5x10 ⁻⁸	

COSe--Continued

CSSe (SCSe)

Carbon sulfoselenide

References

¹B. Bak, R. Sloan and D. Williams, Physical Review 80, 101 (1950).

CSSe					
Molecule	Rotational Transition	Vibrational State	Frequency		Ref.
	J				
S ³² C ¹² Se ⁸²	5 →6	ground	24021		1
		$v_2 = 1$ $\begin{array}{c} l_1 \\ l_2 \end{array}$	24048 24075	0	
S ³² C ¹² Se ⁸⁰	5 →6	ground	24203		
		$v_2 = 1$ $\begin{array}{c} l_1 \\ l_2 \end{array}$	24214 24230		
S ³² C ¹² Se ⁷⁸	5 →6	ground	24376		
		$v_2 = 1$ $\begin{array}{c} l_1 \\ l_2 \end{array}$	24386 24406		
S ³² C ¹² Se ⁷⁶	5 →6	ground	24602		
		$v_2 = 1$ $\begin{pmatrix} l_1 \\ l_2 \end{pmatrix}$	24614 24627		
S ³² C ¹² Se ⁷⁷	5 →6	ground	24508		
		$v_2 = 1$ $\begin{pmatrix} l_1 \\ l_2 \end{pmatrix}$	24521 24527		

 C_2F_3N (CF₃CN)

CN)

Acetonitrile, trifluoro-

	CF3CN		Ref.
Bo	2947		1

References

¹J. Sheridan and W. Gordy, Physical Review **77**, 292 (1950).

Ethyne, chloro-

 $\mu = .44$ (Ref. 1)

Some lines due to excited vibrational states were observed on the high frequency side of those listed below². It has been assumed in calculating the intensity that 70% of the molecules are in the ground vibrational state. The deuterated molecules were actually observed with isotopically enriched samples.

	HCCCl ³⁵	HCCCl ³⁷	DCCCl ³⁵	DCCCl ³⁷	Ref.
B ₀	5684.24	5572.38	5187.01	5084.24	1
(eqQ) _{cl}	-79.67	-62.75	-79.66	-63.12	

References

¹A. A. Westenberg, J. H. Goldstein and E. B. Wilson, Jr., Journal of Chemical Physics 17, 1319 (1949).

²A. A. Westenberg and E. B. Wilson, Jr., private communication.

Molecule	Rotational Transition	Fi	Ff	Frequency Mc	Intensity cm ⁻¹	Ref
HCCC1 ³⁵	1→2	1/2	3/2	22717.07	2.1x10 ⁻⁷	1
		5/2	5/2	22718.80	2.3×10^{-7}	
		5/2	3/2	22732.90	2.5x10 ⁻⁸	
		1/2	1/2	22737.00	2.1x10 ⁻⁷	
		5/2	7/2	22738.68	1.6x10 ⁻⁶	
		3/2	3/2	22752.95	2.7x10 ⁻⁷	
		3/2	1/2	22772.82	4.1x10 ⁻⁸	
HCCC1 ³⁷	1→2	1/2	3/2	22273,90	6.8x10 ⁻⁸	
		5/2	5/2.	22275.10	7.3x10 ⁻⁸	
		1/2	1/2	22289.55	6.8x10 ⁻⁸	
		5/2	5/2	22290.85	5.0x10 ⁻⁷	
		3/2	3/2	22302.10	8.7x10 ⁻⁸	
DCCCl ³⁵	1→2	1/2	3/2	20728.03	3.1x10 ⁻¹⁰	1
		5/2	5/2	20729.79	3.8x10 ⁻¹⁰	
		5/2	3/2	20744.00	7.0x10 ⁻¹¹	
		1/2	1/2	20748.02	3.1x10 ⁻¹⁰	
		5/2	5/2	20749.76	2.4x10 ⁻¹⁰	
		3/2	3/2	20763.96	4.2x10 ⁻¹⁰	
Daga 37		3/2	1/2	20783.80	4.5x10 ⁻¹¹	
DCCCL	1→2	1/2	3/2	20321.12	1.0x10 ⁻¹⁰	
		5/2	5/2	20322.50	1.1x10 ⁻¹⁰	
		1/2	1/2	20336.84	1.0x10 ⁻¹⁰	
		5/2 3/2	7/2	20338.29	7.6x10 ⁻¹⁰	
		3/2	3/2	20349.48	1.3x10 ⁻¹⁰	

C2HC1

Since C_2H_2ClF is an asymmetric rotor, two nuclear quadrupole coupling constants must be given as mentioned in the introduction. The notation for the rotational transitions is that of reference Int. 5.

	CH ₂ CFCl ³⁵	CH ₂ CFCl ³⁷		Ref.
В	5102.17	4955.00		1
A	10681.62	10681.33		
С	3448.38	3380.49		
$eQ\left(\frac{\delta^2 V}{\delta a^2}\right)_{Cl}$	-73.3			
$eQ\left(\frac{\delta^2 V}{\delta b^2}\right)_{Cl}$	39.8			

References

¹J. K. Bragg, T. C. Madison and A. H. Sharbaugh, Physical Review **77**, 148 (1950) and erratum, Physical Review **77**, 571 (1950).

²J. K. Bragg, Physical Review 74, 533 (1948).

Molecule	Rotational Transition	Frequency Mc		Ref.
CH ₂ CFCl ³⁵	2 _{1,2} 3 _{0,3}	20214.29		1
	6 _{1,5} 6 _{2,4}	20391.51		
	10,1 21,2	21026.70		
	21,2 22,1	21699.70		
	64,3 73,4	22419.13		
	72,5 73,4	23896.29		
	3 _{1,3} 3 _{2,2}	24362.48		
	5 _{0,5} 5 _{1,4}	24601.24		
	62,4 63,3	24895.46		
	7 _{1,6} 7 _{2,5}	25656.30		
CH ₂ CFCl ³⁷	l _{0,1} 2 _{1,2}	20822.8		
	$2_{1,2}$ $2_{2,1}$	21902.50		
	85,4 94,5	22852.40		
	3 _{1,3} 3 _{2,2}	24427.38		

C₂H₂ClF

 $C_2H_2F_2$ (CH₂CF₂) 1, 1-difluoroethylene

 $\mu = 1.366$

The notation for the rotational transitions of this asymmetric rotor is that of reference Int. 5.

	$C^{12}H_2C^{12}F_2$		Ref.
Bo	10427.5		1
Ao	11002		
Co	5345.1		
-			

References

¹A. Roberts and W. G. Edgell, Journal of Chemical Physics 17, 742 (1949), and private communication.

Molecule	Rotational Transition	Frequency Mc	Observed Intensity	Ref.
C ¹² H ₂ C ¹² F ₂		21482 21549 21573 21689	m W W M	1
	8 _{6,3} -8 _{6,2}	21734	m	
		22236 22281 22383 22391 22660 22752 23181 23206 23214 23220 23234 23323 23361	m s m w s m w m m w m m m	
	75,3-75,2	23433 23649 23770 23812 23986 24021 24150 24294 24323 24352 24352 24357	s m m m m w m s m w W	

				A
Molecule	Rotational Transition	Frequency Mc	Observed Intensity	Ref.
$C^{12}H_2C^{12}F_2$		24450	s	
(Continued)		24545	m	
		24602	W	
		24639	m	
		24734	m	
	64,3-64,2	24770	S	
		24806	w	
		24808	W	
	64,2-64,1	25248 ××	m	
		25350	S	
		25450	m	
		25516	S	
	53,3-53,2	25729	S	
•		25741	m	
		26118	S	
		26163	m	
	42,3-42,2 *	26329	S	
		26337	m	
	11,1-21,2	26410	w	
	11,1-21,2	26466	m	
		26634	S	
	31,3-31,2	26649	m	
		26723	W	
		26832	m	
		26865	S	
	3 – 3 ₀	26880	m	
	l _{0,1} -2 _{0,2}	26992	s	
	41,3-41,2	27014	S	
		27112	m	
		27216	m	
	⁵ 2,3 ⁻⁵ 2,4	27297	S	
		27412	m	
		27681	S	

 $C_2H_2F_2$ --Continued

**All identified lines except this one are due to the ground vibrational state.

Molecule	Rotational Transition	Frequency Mc	Observed Intensity		Ref.
C ¹² H ₂ C ¹² F ₂	63,3-65,2	27818	S	-	1
(Continued)		27972 28174 28314 28339 28412 28439 28458 28551 28551 28575 28615	s s m s m m w w w w		
	74,3-76,2	28689 28852 28858 28954	w		
	11,0-21,1	36632	m		

 $C_2H_2F_2$ --Continued

C_2H_2O (H_2C_2O)

Ketene

٠

μ=1.45

2 -				
	C ₂ ¹² H ₂ O	C ₂ ¹² HDO	C ₂ ¹² D ₂ O	Ref.
В	10293.28			2
A	280000			
С	9915.87			
D _J	0.0015			
D _{JK}	0. 478			

References

¹B. Bak, E. S. Knudsen, E. Madsen and J. Rastrup-Anderson, Physical Review **79**, 190 (1950). ²H. R. Johnson MITRLE Progress Report, July 15, 1950.

		C21120==COII C111u	eu		
Molecule	Rotational Transition	Vibrational State	Frequency Mc	Intensity cm ⁻¹	Ref.
C ₂ ¹² H ₂ O	0→1	ground excited excited excited	20209.76 20220.64 20232.33 20267.17	3.14x10 ⁻⁶ 9.42x10 ⁻⁷ 5.65x10 ⁻⁷ 1.29x10 ⁻⁶	1,2 2 1,2
	1→2		40417.90 40038.80 40793.62	2.51x10 ⁻⁵ 5.29x10 ⁻⁵ 5.50x10 ⁻⁵	2
	2→3		60625.68 60057.92 60190.24 60615.88 60617.30	8.47x10 ⁻⁵ 2.12 ¹⁰⁻⁴ 2.20x10 ⁻⁴ 3.43x10 ⁻⁵ 3.93x10 ⁻⁵	
C2 ¹² HDO	0→1	ground excited	18825 18892	5.0x10 ⁻¹⁰ *	1
C2 ¹² D20	0→1	ground	17690	8.6x10 ⁻¹⁴ *	1

*Intensities are estimated from those of $C_2^{12}H_2O$ above.

C₂H₃Br

Ethene, bromo-

 $\mu = 1.41$

	C ₂ H ₃ Br ⁷⁹	C ₂ H ₃ Br ⁸¹		Ref.
В	4162.3	4138.0		1
с	3863.0	3841.9		
(eqQ) _{Br}	479	399		

References

¹C. D. Cornwell, Journal of Chemical Physics **18**, 1118 (1950.

C_2H_3Cl

Ethyene, chloro-

Since C_2H_3Cl is an asymmetric rotor, two nuclear quadrupole coupling constants must be given as mentioned in the introduction. The notation for the rotational transitions is that of reference Int. 5.

	C ₂ H ₃ Cl ³⁵	C ₂ H ₃ Cl ³⁷		Ref.
Bo	6030.5	5903.7		1
A ₀	56100	56070.		
Co	5445.2	5341.3		
$eQ\left(\frac{\partial^2 V}{\partial a^2}\right)_{C1}$	-57.4			
$e^{Q}\left(\frac{\delta^{2}V}{\delta b^{2}}\right)_{C1}$	26.2			-

References

¹J. H. Goldstein and J. K. Bragg, Physical Review 75, 1453 (1949).

C2H3CL	
--------	--

Molecule	Rotational Transition	Frequency Mc		Ref.
C2 ¹² H3Cl ³⁵	$l_{11} \rightarrow 2_{12}$ $l_{01} \rightarrow 2_{02}$ $l_{10} \rightarrow 2_{11}$	22369.6 22946.9 23538.9		1
C2 ¹² H3Cl ³⁷	$1_{11} \rightarrow 2_{12}$ $1_{01} \rightarrow 2_{02}$ $1_{10} \rightarrow 2_{11}$	21930.2 22485.9 23055.0		

 $C_2H_3F_3$ (CF_3CH_3)

Ethane, 1, 1, 1-trifluoro-

 $\mu = 2.321$ (ref. 3)

Since the vibrational frequencies of this molecule are not available, it is impossible to calculate its intensity. However, observed intensities are given². The weaker lines are probably due to an excited vibrational state.

	CF3CH3			Ref.
Bo	5185			1
		n		

$C_2H_3F_3$ --Continued

References

¹W. F. Edgell and A. Roberts, Journal of Chemical Physics 16, 1002 (1948).
²R. G. Shulman and H. Minden, private communication.
³R. G. Shulman, B. P. Dailey and C. H. Townes, Physical Review 78, 145 (1950).

			\$21131 2			
Molecule	Rotat: Trans: J	ional ition K	Vibrational State	Frequency Mc	Intensity cm ⁻¹	Ref.
CF3CH3	1→2	0,1	ground	20742.32	5.0x10 ⁻⁷	2
* *			excited	20710.6 20679.9	2x10 ⁻⁷ 1x10 ⁻⁷	1,2
	2→3		ground	31114.4	2.4x10 ⁻⁶	2
			excited	31066.8 31020.7	9.4x10 ⁻⁷ 3.8x10 ⁻⁷	

 C_2H_3N (CH₃CN)

Ethanenitrile

 $\mu = 3.97$ (ref. 3)

	C ¹² H ₃ C ¹² N ¹⁴	C ¹² H ₃ C ¹² N ¹⁵	C ¹² H ₃ C ¹³ N ¹⁴	C ¹² D ₃ C ¹² N ¹⁴	C ¹² D ₃ C ¹³ N ¹⁴	C ¹³ H ₃ C ¹² N ¹⁴	Ref.	
Bo	9198.8	8921.81	9194.2	7857.93	7848.51	8933.15	2,3 5	
A			150,000 (ap	proximately)				
(eqQ) _N	-4.35		-4.35					
α4		46.3 .						
α 7			5.2)				
αε			-22.5	;				
Q7			4.5	i				
98			17.7	,				
D _{JK}	0.17			0.11	0.11		5	
		· · · · · · · · · · · · · · · · · · ·		•				

References

*The lines of identical frequency are not resolved, and the intensity given is their sum. ¹H. Ring, H. D. Edwards, M. Kessler and W. Gordy, Physical Review **72**, 1262 (1947). ²H. H. Nielsen, Physical Review **75**, 1961 (1949). ³D. K. Coles, W. E. Good and R. H. Hughes, Physical Review **79**, 224 (1950). ⁴D. F. Smith, M. Tidwell and D. V. P. Williams, Physical Review **77**, 420 (1950). ⁵M. Kessler, H. Ring, R. Trambamlo and W. Gordy, Physical Review **79**, 54 (1950).

 C_2H_3N --Continued

Molecule	Rotat Trans	ional ition	Vibrational State	F.	Ff	Frequency Mc	Intensity cm ⁻¹	Ref.
	J	K						
C ¹² H ₃ C ¹² N ¹⁴	0→1		ground	1	1	18396.3	6.2x10 ⁻⁶	1
				1	2	18397.7	1.1x10 ⁻⁵	
				1	0	18399.8	2.0x10 ⁻⁶	
				-			0 6 70 5.	-
	1→2	0	ground	1	1 2	36794.26	2.6x10 **	2
				2	3	36795.38	1.1x10 -	
				1	L	36797.52	1.2x10 ⁹	
		1	ground	1	2	36793.64	2.8x10 ⁻⁵	
				2	2	36794.26	2.6x10 ⁻⁵ *	
				2	3	36794.88	5.1x10 ⁻⁵	
				0	1	36796.27	1.2x10 ⁻⁵	
			v ₈ ≓l			36870.94 36903.40 36942.15		5
C ¹² H ₃ C ¹³ N ¹⁴	1→2	0	ground	2 1	3 2	36777.18	2.2x10 ⁻⁶	5
C ¹² D ₃ C ¹² N ¹⁴	2→3	0	ground	1 2 3	$\begin{pmatrix} 2\\ 3\\ \end{pmatrix}$	47147.60	2.3x10 ⁻¹⁵	
				3	3	47146.00 ×	9.3x10 ⁻¹⁷	
		1	ground	3 1	4	47147.00	1.4x10 ⁻¹⁵	
				2	3	47146.68	6.5x10 ⁻¹⁶	
				3	3	47146.00 ×	8.3x10 ⁻¹⁷	
	2→3	2	ground	1	2	47146.00 ×	2.7x10 ⁻¹⁶	
				3	3	45145.20	6.4x10 ⁻¹⁶	
				2	3 2	47143.85	4.6x10 ⁻¹⁶	
C ¹² D ₃ C ¹³ N ¹⁴	2→3	0	ground	3	4 3	47091.05	2.6x10 ⁻¹⁷	
				3	3	47089.43×	1.04x10 ⁻¹⁸	
		1	ground	3 1	4	47090.41	1.5x10 ⁻¹⁷	
				3	3	47089.43*	9.3x10 ⁻¹⁹	
		2	ground	1	2	47089.43 *	3.1x10 ⁻¹⁸	
				3	3	47088.69	7.2x10 ⁻¹⁸	
				2 2	3	47087.39	5.15x10 ⁻¹⁸	

C₂H₃N (CH₃NC)

Methyl isocyanide

	C ¹² H ₃ NC ¹²	C ¹² H ₃ NC ¹³		Ref.
Bo	10052.90	9695.91		4
A	150,000 (ap	proximately)		
(eqQ) _N	< 0.	5		

References

¹H. Ring, H. D. Edwards, M. Kessler and W. Gordy, Physical Review 72, 1262 (1947).
²H. H. Nielsen, Physical Review 75, 1961 (1949).
³D. F. Smith, M. Tidwell and D. V. P. Williams, Physical Review 77, 420 (1950).
⁴M. Kessler, H. Ring, R. Trambarulo, W. Gordy, Physical Review 79, 54 (1950).

Molecule	Rotati Transi	onal tion	Vibrational State	Frequency Mc	Ref.
	J	K			
C ¹² H ₃ N ¹⁴ C ¹²	0→1	0	ground	20160	1
	1→2	1		40210.27	4
		0		40211.16	
	1→2		v _ð = 1	40313.37 40364.07 40366.55 40424.49	2,4
C ¹² H ₃ N ¹⁴ C ¹³	1 →2	1		38782.21	
		0		38783.21	
C ¹³ H ₃ N ¹⁴ C ¹²					3
C ¹² D ₃ NC ¹² *	1 →2	0		34327.82	4
		1		34327.23	
	2→3	О		51490.90	
		1		51490.05	
		2		51487.51	
CD ₃ NC ¹³	2 →3	0 1 2		49671.19 49670.43 49668.07	

 C_2H_3N

*This isotopic combination was also observed by (3).

μ =

Methyl isothiocyanate

All of the transitions of this slightly asymmetric rotor are approximately degenerate, except those for which k=1. Excited vibrational states are labeled D, E and J in conformity with reference 1. The notation for the rotational transitions is that of reference Int. 5.

	CH3NCS ³²	CH3NCS ³⁴		Ref.
1/2(B+C)	2526.2	2461.7		1

References

¹C. I. Beard and B. P. Dailey, MITRLE Tech. Report **#79**, (1948). *These are lines of the degenerate vibrational states.

5→6

Molecule	Rotational Transition J	Vibrational State	Frequency Mc	Observed Relative Intensity	Ref.
C ¹² H ₃ N ¹⁴ C ¹² S ³²	3 →4 3 _{1,3} →4 _{1,4}	ground * *E *D *J	20020 20140 20216 20230 20241 20350 20413 20443	1 10 100 1 7 20 1 40	1
	4 →5 4 _{1,4} →5 _{1,5}	ground * *E	24824 24971 25077 25100 25161 25195 25269 25306	1 1 1 1 10 100 7	
	4 _{1,3} →5 _{1,4} 4 _{1,3} →5 _{1,4}	ground *D *J ground J	25333 25390 25409 25442 25550 25653	10 1 1 25 40 1	
C ¹³ H ₃ N ¹⁴ C ¹² S ³²	4 →5	*	24143	1	
C ¹² H ₃ N ¹⁴ C ¹³ S ³²	4 → 5	*	25002	1	
C ¹² H ₃ N ¹⁴ C ¹² S ³³	4 → 5	*	24930	1	
C ¹² H ₃ N ¹⁴ C ¹² S ³⁴	3 → 4	* *J	19700 19929	5 1	
	4 → 5	* *J	24609 24910	5 2	

×

29700

C2H3NS

Methyl thiocyanate

Only the strongest lines of this slightly asymmetric molecule have been measured.

	C ¹² H ₃ S ³² C ¹² N ¹⁴		Ref.
1/2(B+C)	2837.		l

References

¹L. C. I. Beard and B. P. Dailey, MITRLE Tech. Report 79, (1948).

Molecule	Rotational Transition	Frequency Mc		Ref.
C ¹² H ₃ S ³² C ¹² N ¹⁴	3 → 4	22680		1
	4→5	28380		

C_2H_4O

Ethane, 1, 2-epoxy-

 $\mu = 1.88$

This asymmetric top has been investigated in two laboratories. Frequencies given are those of reference (2) and (3) which appear to be the more precise. The notation for the rotational transitions is that of reference Int. 5.

	C2H4O	C ₂ D ₄ O		Ref.
Bo	22121	15457		2,3
A ₀	25483	20399		
Co	14097	11544		

References

¹R. G. Shulman, B. P. Dailey and C. H. Townes, Physical Review 74, 846 (1948).²G. L. Cunningham, W. I. LeVan and W. D. Gwinn, Physical Review 74, 1537 (1948).

³G. L. Cunningham, A. W. Boyd, W. D. Gwinn and W. I. LeVan, Journal of Chemical Physics 17, 211 (1949).

Molecule	Rotational Transition	Frequency Mc	Intensity cm ⁻¹	Ref.
C2 ¹² H40 ¹⁶	32,1 33,0	23134	3.9x10 ⁻⁶	2, 1
- N P	$3_{1,2}$ $3_{2,1}$	23610	4.1x10 ⁻⁶	
	42,2 43,1	24834.3	1.2x10 ⁻⁵	
	$2_{0,2}$ $2_{1,1}$	24924.4	3.9x10 ⁻⁶	
	5 _{3,2} 5 _{4,1}	29688	1.2x10 ⁻⁵	2
	43,1 44,1	34150	1.3x10 ⁻⁵	3
	21,2 22,1	34158	3.0x10 ⁻⁶	
	63,3 64,2	35791	3.4x10 ⁻⁵	2
	74,3 75,2	37329	2.5x10 ⁻⁵	
	5 _{2,3} 5 _{3,2}	37781	1.7x10 ⁻⁵	
	64,2 65,1	38702	3.4x10 ⁻⁵	
	0 _{0,0} 1 _{1,1}	39582	8.3x10 ⁻⁶	
	$3_{2,2}$ $3_{3,1}$	39677	1.2x10 ⁻⁵	
	41.3 42.2	41581	1.9x10 ⁻⁵	3
	85,3 86,2	43398	6.6x10 ⁻⁵	
C2 ¹² D40 ¹⁶	41,3 42,2	21664	7.4x10 ⁻²¹	3
	$3_{0,3}$ $3_{2,1}$	24055	3.4x10 ⁻²¹	
	5 _{1,3} 5 _{3,2}	24668	1.1x10 ⁻²⁰	
	$2_{1,2}$ $2_{2,1}$	26565	2.4x10 ⁻²¹	
	62,4 63,3	28495	1.8x10 ⁻²⁰	
	$3_{1,2}$ $3_{2,1}$	29080	5.0x10 ⁻²¹	
	0 _{0,0} 1 _{1,1}	31943	5.1x10 ⁻²¹	
	$3_{1,3}$ $3_{2,2}$	33285	6.4x10 ⁻²¹	
	83,5 84,4	35068	3.7×10^{-20}	
	$3_{2,2}$ $3_{3,1}$	35341	7.4x10 ⁻²¹	
	53,2 54,1	39592	1.8x10 ⁻²⁰	

 C_2H_4O --Continued

С₂H₆O (С₂H₅OH)

Ethanol

References

¹B. Bak, E. S. Knudsen and E. Madsen, Physical Review **75**, 1622 (1949).

C2H6O					
Molecule	Frequency Mc	Ref.			
C ₂ H ₅ OH	22820 23081 23148 23555 23605 24295 24369 24385 24385 25069	1			

C ₃ HF ₃ (C	FaCCI	(E
-----------------------------------	-------	----

Acetylene, trifluoromethyl-

	C3HF3		Ref.
В	2877.945		1
DJ	0.22 Kc		
DJK	6.5 Kc		

References

¹W. E. Anderson, J. Sheridan and W. Gordy, Duke Progress Report, May - August 1950.

C₃HN (HCCCN)

Acetylene, cyano-

It is assumed in calculating the intensity that 70 % of the molecules are in the ground vibrational state. A few lines due to excited vibrational states were observed on the high frequency side of the spectrum.¹

	HCCN	HCCCN ¹⁵	HCCC ¹³ N	HCC ¹³ CN	HC ¹³ CCN	Ref.
Bo	4549.07	4416.91	4530.23	4529.84	4408.45	1
(eqQ) _N	-4.2			-4.2		

	DCCCN	DCCCN ¹⁵	DCCC ¹³ N	DCC ¹³ CN	DC ¹³ CCN	Ref.
B ₀	4221.60	4100.41	4202.54	4207.59	4107.21	1
(eqQ) _N	-4.2			-4.2		
]

References

 $^1\mbox{A}.$ A. Westenberg and E. B. Wilson, jr., private communication.

Molecule	Rotational Transition	Frequency	Intensity	Ref.
	J	MC	СШ	
HCCCN	1→2	18196.6	1.2x10 ⁻⁴	1
	2 → 3	27294.47	3.8x10 ⁻⁴	
HCCCN ¹⁵	2 → 3	26501.46	1.3x10 ⁻⁶	
HCCC ¹³ N	2 → 3	27181.45	4.2x10 ⁻⁶	
HCC ¹³ CN	2 → 3	27179.10	4.2x10 ⁻⁶	
HC ¹³ CCN	2 → 3	26450.73	3.8x10 ⁻⁶	
DCCCN	2 → 3	25329.62	6.0x10 ⁻⁸	
DCCCN ¹⁵	2 → 3	24602.45	2.2x10 ⁻¹⁰	
DCCC ¹³ N	2 → 3	25215.30	6.6x10 ⁻¹⁰	
DCC ¹³ CN	2→3	25245.58	6.6x10 ⁻¹⁰	
DC ¹³ CCN	2→ 3	24643.29	6.2x10 ⁻¹⁰	

C₃HN--Continued

 $\mu = 3.6$
C3H3Br	(CH ₃ CCBr)	Propyne, 1-bromo- $\mu =$					
		CH ₃ CCBr ⁷⁹	CH ₃ CCBr ⁸¹		Ref.		
	B ₀	1562	1549		1		

References

¹J. Sheridan and W. Gordy, Physical Review 79, 224 (1950).

C₃H₄ (CH₃CCH)

Propyne

 $\mu = 0.75$

	СН₃ССН	CH ₃ CC ¹³ H	CH₃C ¹³ CH	C ¹³ H₃CCH	CH₃CCD	CD3CCD	Ref.
Bo	8545.84	8290.24	8542.28	8313.23	7788.14	6734.31	1
D _{JK}	0.161	0.13	0.16	0.16	0.14	0.09	
Dj	.005						

References

¹R. Trambarulo and W. Gordy, Duke Progress Report, May - August, 1950.

2	Ľ	r
U	зп	2

Molecule	Rotat Trans	tional sition	Vibrational State	Frequency Mc	Intensity cm ⁻¹	Ref.
· · · · · · · · · · · · · · · · · · ·	U	1			· · · · · · · · · · · · · · · · · · ·	
C ¹² H ₃ C ¹² C ¹² H	12	0	ground	34183.37	3.6x10 ⁻⁶	1
		1	ground	34182.71	2.7x10 ⁻⁶	
			v ₁₀ = 1 v ₁₀ = 1	34246.30 34277.05 34278.98		
				34313.21		
	23	0	ground	51274.75	1.2x10 ⁻⁵	
		1		51273.76	1.1x10 ⁻⁵	
		2		51270.86	6.8x10 ⁻⁶	
			v ₉ =1	51280.45 51296.33 51304.05 51305.93 51307.47 51334.81		

	Potet	ional				
	Trans	ition	Vibrational	Frequency	Intensity	
Molecule	T	V	State	MC	cm -	Ref.
	J	7				
C ¹² H ₃ C ¹² C ¹² H	2→3		v ₁₀ = 1	51369.12		1
(Continued)				51410.51		
				51415.35		
				51418.75		
				51469.85		
C ¹² H ₃ C ¹³ C ¹² H	1→2	0	ground	34169.13	3.9x10 ⁻⁸	
		1		34168.47	2.9x10 ⁻⁸	
C ¹³ H ₃ C ¹² C ¹² H	1→2	0	ground	33252.88	3.6x10 ⁻⁸	
		1		33252.22	2.8x10 ⁻⁸	
C ¹² H ₃ CC ¹³ H	1→2	0	ground	33160.94	3.6x10 ⁻⁸	
		1		33160.35	2.7x10 ⁻⁸	
C12H2C12C12D	1→2	0	ground	31152,56	5.4×10^{-10}	
			8	21152 00	4 0.10-10	
		L		31152.00	4.0X10	
C ¹² D ₃ C ¹² C ¹² D	1→2	0	ground	26937.24	1.4x10 ⁻¹⁷	
		1		26936.87	1.0x10 ⁻¹⁷	

 C_3H_4 --Continued

 $C_{3}H_{6}O$ (CH₃)₂CO

2-propanone

$\mu = 2.8$

References

¹B. Bak, E. S. Knudsen and E. Madsen, Physical Review **75**, 1622 (1949). ²C. C. Loomis, MITRLE Progress Report, July 1949.

*These three lines were only very roughly measured, and are not included in frequency listing.

C₃H₆O

Molecule	Frequency Mc	Ref.	Molecule	Frequency Mc	Ref.
(CH ₃) ₂ CO	22410* 22500* 22560* 22940 23339 23603 23661 23749 23778	1	(CH ₃) ₂ CO Continued	23793 23827 23839 23934 24102 24646 24691 24758	1

Many additional lines in region 27,000-29,000 were found (2).

	(CH ₃) ₃ CBr ⁷⁹	(CH ₃) ₃ CBr ⁸¹		Ref.
B0 =	2044.	2028		1
			e	

References

¹J. Q. Williams and W. Gordy, Journal of Chemical Physics 18, 994 (1950).

		C ₄ H ₉ Br		
Molecule	Rotational Transition	Frequency Mc		Ref.
(C ¹² H ₃) ₃ C ¹² Br ⁷⁹	6 →7 7 →8 8 →9 9 →10	28610 32690 36790 40885		1
(C ¹² H ₃) ₃ C ¹² Br ⁸¹ *	6 →7 7 →8 8 →9 9 →10			

*Misprint in reference (1).

C₄H₉Cl (CH₃)₃CCl

Propane, 2-chloro-2methyl-

 $\mu = 2.15$

	(CH ₃) ₃ CCl ³⁵	(CH ₃) ₃ CCl ³⁷		Ref.
Bo	3016.	2954.		1

References

¹J. Q. Williams and W. Gordy, Journal of Chemical Physics 18, 994 (1950).

C₄H₉Cl--Continued

Molecule	Rotational Transition J	Frequency Mc	 Ref.
(C ¹² H ₃) ₃ C ¹² Cl ³⁵	4 → 5	30150	1
	5 → 6	36210	
	6⇒7	42200	
(C ¹² H ₃) ₃ C ¹² Cl ³⁷	4 → 5	29530	
	5 → 6	35460	1
	6 → 7	41330	

C4H9I (CH3)3CI

Propane, 2-iodo-2methyl-

 $\mu = 2.13$

	(C ¹² H ₃) ₃ C ¹² I ¹²⁷		Ref.
Bo	1562		1
			Ī

References

 $^1\mathrm{J}.$ Q. Williams and W. Gordy, Journal of Chemical Physics $18,\,994$ (1950).

041191								
Molecule	Rotational Transition J	Frequency Mc			Ref.			
(C ¹² H ₃) ₃ C ¹² I ¹²⁷	8 → 9 9 → 10 10 → 11 11 → 12 12 → 13	28085 31185 34310 37490 40570			1			

C₄H₉I

C₄H₁₀O (C₂H₅)₂O

Ethane, ethoxy-

References

 $C_{4}H_{10}O$

 $^{1}\mathrm{D.}$ R. Lide and D. K. Coles, private communication. *Observed at 195 0 K.

Molecule	Frequency Mc	Observed Relative Intensity*	Ref.	Molecule	Frequency Mc	Observed Relative Intensity	Ref.
C4H10O	19230 19440 19590 20260 20320 20510 20570 20720 20740 20880 20950 20965 21000 21175 21230	1 5 1 1 1 1 5 5 5 10 1 5	1	C4H ₁₀ O Continued	21310 21340 21450 21560 21780 21850 21890 22015 22215 22215 22490 22900 23080 23250	1 5 1 0 1 10 1 0 1 1 5	1

C_6H_5Br

Benzene, bromo-

 $\mu = 1.6$

References

¹B. Bak, E. S. Knudsen and E. Madsen, Physical Review **75**, 1622 (1949). *Very roughly measured, not in frequency listing.

0641501	Ce	;H5	Br
---------	----	-----	----

Molecule	Frequency Mc		Ref.
C ₆ H ₅ Br	23690 23742 22050*		1

ClF (FCl)

Chlorine monofluoride

 $\mu = 0.881$

Intensities were calculated on the assumption that 94 % of the molecules were in the ground vibrational state, and 6% in the first vibrational state.

	FCl ³⁵	FCl ³⁷		Ref.
Bo	15483.69	15189.22		1
(eqQ) _{Cl}	-145.99	-114.92		
α	130.666	126.957		
			·	

References

¹D. A. Gilbert, A. Roberts and P. A. Griswold, Physical Review 76, 1723 (1949).

Frequency Vibrational F. Ff Intensity Rotational cm^{-1} Ref. State - Mc -Transition Molecule J 3/2 1.1x10⁻⁵ 3/2 30807.41 ground 3/2 5/2 1.7×10^{-5} 30843.95 3/2 1/230873.00 5.6x10⁻⁶ 3/2 3/2 30545.99 6.7×10^{-7} FC1³⁵ v = 10→1 1.0x10⁻⁶ 5/2 30582.61 3/2 3.3x10⁻⁷ 3/2 1/230611.76 3/2 3/2 3.85x10⁻⁶ 30228.36 ground 5.8x10⁻⁶ 3/2 5/2 30257.16 3/2 1/230280.11 1.9x10⁻⁶ FC137 3/2 3/2 29974.47 2.3×10^{-7} 0 →1 v = 1 1 5/2 3.5x10⁻⁷ 3/2 30003.22 3/2 1/2 30026.19 1.2×10^{-7}

ClF--Continued

ClF₃Ge

(GeF₃Cl)

Germane, chlorotrifluoro-

μ=

	Ge ⁷⁴ F ₃ Cl ³⁵	Ge ⁷⁴ F3Cl ³⁷		Ref.
Bo	2166.49	2137.8		1

References

¹W. Anderson, J. Sheridan and W. Gordy, Duke Progress Report, May-August, (1950).

ClF₃Si (SiF₃Cl)

Silane, chlorotrifluoro-

μ =

The J=6 \rightarrow 7, 7 \rightarrow 8, 8 \rightarrow 9 transitions of Si²⁸F₃Cl³⁵ and the J=7 \rightarrow 8 transition of Si²⁸F₃Cl³⁷ were observed¹.

	Si ²⁸ F ₃ Cl ³⁵	Si ²⁸ F ₃ Cl ³⁷		Ref.
Bo	2478	2414		1
		•		

References

¹J. Sheridan and W. Gordy, Physical Review **77**, 719 (1950).

ClGeH₃ (GeH₃Cl) Germane, chloro-

 $\mu = 1.88$

The following values were determined from the $J=0 \rightarrow 1$ transition.

	Ge ⁷⁰ H ₃ Cl ³⁵	Ge ⁷⁴ H ₃ Cl ³⁵	Ge ⁷⁴ H ₃ Cl ³⁷	Ge ⁷⁶ H ₃ Cl ³⁵	Ref.
Bo	4401.71	4333.91	4177.90	4146.5	1,2
(eqQ) _{Ge⁷³}			95		
(eqQ) _{Cl}	-46		-36	-46	

References

¹C. H. Townes, J. M. Mays and B. P. Dailey, Physical Review 76, 700 (1949), and 137 (1949).

²J. M. Mays, Thesis, Columbia University, (1950). **Lines of Ge⁷² and Ge⁷³ were also found.

ClH₃Si (SiH₃Cl)

Silane, chloro-

 $\mu = 1.303$ (Ref. 2)

Intensities were calculated assuming that 90% of the molecules are in ground vibrational state.

	Si ²⁸ H ₃ Cl ³⁵	Si ²⁸ H ₃ Cl ³⁷	Si ³⁰ H ₃ Cl ³⁵	Ref.
Bo	6673.81	6512.40	6485.8	1,3
(eqQ) _{Cl}	-40.0	-30.8	-40.0	

References

¹C. H. Townes, J. M. Mays and B. P. Dailey, Physical Review 76, 700 (1949), and 76, 137 (1949).

²J. M. Mays, Thesis, Columbia University (1950).

³A. H. Sharbaugh, private communication.

Molecule	Rotat Trans	ional ition	Fi	Ff	Frequency Mc	Intensity cm ⁻¹	Ref.
	J	K					
Si ²⁸ H ₃ Cl ³⁵	1→2	0	1/2	3/2	26685.25	3.4x10 ⁻⁷	3
			5/2	5/2	26686.15	3.7x10 ⁻⁷	
			1/2	1/2	26695.00	3.4x10 ⁻⁷	
			3/2	5/2	26696.10	2.5x10 ⁻⁶	
			3/2	3/2	26703.34	4.5x10 ⁻⁷	
			3/2	1/2	26713.07	7.0x10 ⁻⁸	
		1	3/2	5/2	26687.34	6.6x10 ⁻⁷	
			3/2	3/2	26690.92	3.4x10 ⁻⁷	
			5/2	5/2	26692.66	2.8x10 ⁻⁷	
			5/2	7/2	26697.45	1.3x10 ⁻⁶	
			1/2	3/2	26700.48	2.6x10 ⁻⁷	
			1/2	1/2	26705.02	2.6x10 ⁻⁷	
Si ²⁸ H ₃ Cl ³⁷	1 → 2	0	1/2 5/2	3/2 5/2	26042.41	2.2x10 ⁻⁷	
			3/2	5/2	26050.26	7.9x10 ⁻⁷	
			3/2	3/2	26055.86	1.4x10 ⁻⁷	
			3/2	1/2	26063.52	2.2x10 ⁻⁸	
	1→2	1	3/2	5/2	26043.29	2.0x10 ⁻⁷	
			3/2	3/2	26046.30	1.0x10 ⁻⁷	
			5/2	5/2	26047.97	8.7x10 ⁻⁸	
			5/2	7/2	26051.09	3.9x10 ⁻⁷	
			1/2	3/2	26053.35	8.1x10 ⁻⁸	
			1/2	1/2	26057.10	8.1x10 ⁻⁸	

 ClH_3Si --Continued

ClI (ICl)

Iodine monchloride

 $\mu = 0.65$

The half widths, $(\Delta v = 3.15 \text{ for } J = 0 \rightarrow 1 \text{ and } 5.5 \text{ for } J = 3 \rightarrow 4)$ dipole moment and intensities are discussed in reference 2.

	ICl ³⁵	IC1 ³⁷		Ref.
B _e	3422.300			2
(eqQ) _{Cl35}	-82.5			
(eqQ) _I	-2930.0			
α	16.060			

References

¹R. T. Weidner, Physical Review 72, 1268 (1947), and 73, 254 (1948).
 ²C. H. Townes, A. N. Holden and F. R. Merritt, Physical Review 73, 1334 (1948).

Molecule	Rotational Transition	Vibrational State	F _{li}	Fi	Flf	Ff	Frequency Mc	Intensity cm ⁻¹	Ref.
ICl ³⁵	0 →1	ground	5/2		1/2		6980	1.1x10 ⁻⁶	1
	3→4	ground	3/2	2	5/2	3	27194.75	9.1x10 ⁻⁷	2
			3/2	1	5/2	2	27202.64	5.0x10 ⁻⁷	
			3/2	3	5/2	4	27204.99	1.5x10 ⁻⁶	
			5/2	3	7/2	4	27217.51	1.4x10 ⁻⁶	
			5/2	2	7/2	3	27221.02	1.0x10 ⁻⁶	
			5/2	4	7/2	5	27225.32	2.0x10 ⁻⁶	
			5/2	1	7/2	2	27228.34	7.3x10 ⁻⁷	
			1/2	1	3/2	2	27242.59	3.9x10 ⁻⁷	
			1/2	2	3/2	3	27254.90	1.1x10 ⁻⁶	
			9/2		9/2		27283.66		
			9/2		9/2		27286.25		
			7/2 9/2		9/2		27292.63		
			7/2 9/2		9/2		27295.05		
			7/2 9/2	5	11/2	6	27333.85	2.8x10 ⁻⁶	
			11/2 11/2	5 6	13/2 13/2	6 7	27336.68	6.8x10 ⁻⁶	
			11/2 11/2	4	13/2 13/2	5 8	27337.38	6.8x10 ⁻⁶	
			9/2	3	11/2	4	27346.31	1.9x10 ⁻⁶	
			9/2	4	11/2	5	27554.71	2.3x10 ⁻⁶	
			9/2	6	11/2	7	27356.58	3.4x10 ⁻⁶	
			9/2	5	11/2	6	27357.73	2.8x10 ⁻⁶	
		v =l	11/2		13/2		27208.54	2.2x10 ⁻⁶	
IC1 ³⁷	0 →1	ground	5/2		7/2		6684.	3.1x10 ⁻⁷	l
	3→4	ground	11/2		13/2		26181.6	4.4x10 ⁻⁶	2

ClI--Continued

Nitrosyl chloride

The intensities were calculated on the basis of the symmetric top formula. The notation for the rotational transitions of this asymmetric rotor is that of reference Int. 5.

	NOCl ³⁵	NOCl ³⁷		Ref.
Bo	5696.0	5665.8		1
Ao	159289	170168		
Co	5499.4	5483.2		
(eqQ) _{Cl}	-62	-48		
(eqQ) _N	-5.45			

References

¹W. J. Pietenpol, J. D. Rogers and D. Williams, Physical Review **77**, 741 (1949), and private communication.

²W. J. Pietenpol, J. D. Rogers, and D. Williams, Physical Review **78**, 480 (1950).

			· · · · · · · · · · · · · · · · · · ·		ſ · · · · · · · · · · · · · · · · · · ·		T
Molecule	Ji	Jſ	Fi	^F f	Frequency Mc	Intensity cm ⁻¹	Ref.
NOC1 ³⁵	11, 1	21, 2	3/2 3/2 5/2 5/2 1/2 1/2	5/2 3/2 5/2 7/2 3/2 1/2	21857 21861 21865 21869 21874 21879	4.9x10 ⁻⁷ 2.5x10 ⁻⁷ 2.1x10 ⁻⁷ 9.0x10 ⁻⁷ 2.0x10 ⁻⁷ 2.0x10 ⁻⁷	1
	1 _{0,1}	20,2	1/2 5/2 5/2 3/2 3/2	3/2 5/2 7/2 5/2 3/2	22215 22227 22236	5.4x10 ⁻⁷ 1.9x10 ⁻⁶ 3.3x10 ⁻⁷	
	10,1	211	3/2 3/2 5/2 5/2 1/2 1/2	5/2 3/2 5/2 7/2 3/2 1/2	22580 22586 22593 22600	4.8x10 ⁻⁷ 4.5x10 ⁻⁷ 1.1x10 ⁻⁶ 1.9x10 ⁻⁷	
	J= 2	→ 3					2

CINO

Molecule	Ji	Jf	F. i	Ff	Frequency Mc	Intensity cm ⁻¹	Ref.
NOCl ³⁷	l _{1, 1}	21, 2	3/2 3/2 5/2 5/2	5/2 3/2 5/2 7/2	21363 21365 21367 21372	1.6x10 ⁻⁷ 8.2x10 ⁻⁸ 6.8x10 ⁻⁸ 3.0x10 ⁻⁷	1
	ار ۱۵	2 _{0, 2}	1/2 5/2 5/2 3/2 3/2	3/2 5/2 7/2 5/2 3/2	21704 21713 21720	1.7x10 ⁻⁷ 6.1x10 ⁻⁷ 1.1x10 ⁻⁷	
	l _{1,0}	21,1	3/2 3/2 5/2 5/2 1/2	5/2 3/2 5/2 7/2 3/2	22052 22056 22062 22068	1.6x10 ⁻⁷ 1.5x10 ⁻⁷ 3.1x10 ⁻⁷ 6.4x10 ⁻⁸	
	J= 2-	→ 3					2

ClNO--Continued

Phosphorous oxytrichloride

 $\mu = 2.4$

	POCl ₃ ³⁵	POC13 ³⁷		Ref.
Bo	2015.2	1932.		1

References ¹Q. Williams, J. Sheridan and W. Gordy, Duke Progress Report, May - August, 1950.

Cl₃P (PCl₃)

Phosphorous trichloride

 $\mu = 0.80$

The notation for the rotational transitions of this asymmetric rotor is that of reference Int. 5.

	PC1 ³⁵ 3	PC1 ³⁷ 3		Ref.
Bo	2617.1	2487.5		1

References

¹P. Kisliuk and C. H. Townes, Journal of Chemical Physics 18, 1109 (1950).

Molecule	Rotational Transition J	Ji	J f	Frequency Mc	Intensity cm ⁻¹	Ref.
PC13 ³⁵	4 → 5			26171 26190 * 26152 *	9.8x10 ⁻⁸	1
PC12 ³⁵ C1 ³⁷	4 → 5	43,1 42,2 41,3 41,4 40,4 42,3 43,2 44,1	54,1 53,2 52,3 52,4 51,4 53,3 54,2 55,1	25552 25649 25716 25725 25748 25971		
PC12 ³⁷ C1 ³⁵	4 →5			25306		
PC13 ³⁷	4 →5			24875	2.8x10 ⁻⁹	1

Cl₃P--Continued

*Excited vibrational States.

Cl₃PS (PSCl₃)

Phosphorous thiotrichloride

μ =

	PS ³² Cl ₃ ³⁵		Ref.
Bo	1402.7		1.

References

¹Q. Williams, J. Sheridan and W. Gordy, Duke Progress Report, May to August, (1950).

Antimony trichloride

 $\mu = 3.9$

	Sb ¹²¹ Cl ₃ ³⁵	Sb ¹²³ Cl ₃ ³⁵		Ref.
Bo	1754	1750.5		

References

¹P. Kisliuk, C. R. L. Quarterly Report, September 30, 1950, and private communication.

Cl₃Sb

Molecule	Rotational Transition	Frequency Mc		Ref.
Sb ¹²¹ Cl ₃ ³⁵	6 → 7	24554		1
Sb ¹²³ Cl ₃ ³⁵	6 → 7 7 → 8*	24510		

*This transition has also been observed.

FH₃Si (SiH₃F)

Si³⁰H₃F

0→1

Silane, fluoro-

 $\mu = 1.268$

Ref.

1

Intensities were calculated assuming 90% of the molecules to be in the ground vibrational state.

	Si ²⁸ H ₃ F	Si ²⁹ H₃F	Si ³⁰ H₃F	Ref.
Bo	14327.9	14196.7	14072.6	1

References

¹A. H. Sharbaugh, V. G. Thomas and B. S. Pritchard, Physical Review 78, 64 (1950).

		2		
Molecule	Rotational Transition J	Frequency Mc	Intensity	
Si ²⁸ H₃F	0→1	28655.80	6.8x10 ⁻⁶	
Si ²⁹ H₃F	0→1	28393.4	4.7x10 ⁻⁷	

28145.2

FH3Si

 3.0×10^{-7}

Silane, trifluoro-

1	1	1	1	
	Si ²⁸ F ₃ H			Ref.
Bo	7207.98		x = 0	1

References

¹J. Sheridan and W. Gordy, Physical Review 77, 719 (1950).

F₃HSi

Molecule	Rotational Transition J	Frequency Mc		Ref.
Si ²⁸ F ₃ H	1→2	28831.90		1
	2 → 3×			
Si ²⁹ F ₃ H	2 → 3×			

*These transitions were also observed.

F_3N (NF₃)

Nitrogen trifluoride

 $\mu = 0.21$

	N ¹⁴ F3	N ¹⁵ F3		Ref.
Bo	10680.96	10629.35		1
(eqQ) _{N¹⁴}	-7.07		6	
D _{JK}	-0.025			

References

¹J. Sheridan and W. Gordy, Physical Review **79**, 513 (1950).

- 1/6 -

	F ₃ NContinued									
Molecule	Rotat Trans	ional itions	Fi	F _f	Frequency Mc	Intensity cm ⁻¹	Ref.			
	J	K		_						
N ¹⁴ F ₃	1→2	0	2	2	42721.73	1.2x10 ⁻⁸	1			
			0 1	1 2	42722.16 *	4.4x10 ⁻⁸				
			2	3	42723.94	1.05x10 ⁻⁷				
			ĺ	1	42727.39	1.2x10 ⁻⁸				
		1	1	2	42722.16×	*				
			2	2	42723.28	9.2x10 ⁻⁹				
			2	3	42724.36	5.1z10 ⁻⁸				
			0	1	42726.60	1.2x10 ⁻⁸				
N ¹⁵ F3**	1 →2	0,1			42517.38	8.3x10 ⁻¹⁰				

*These two lines were not resolved, and the intensity is the sum of the two. **Observed with an enriched sample.

F₃OP (OPF₃) Phosphorous oxytrifluoride

 $\mu = 1.735$ (ref. 1)

	F ₃ OP		Ref.
Bo	4594		1,2

References

¹S. J. Senatore, Physical Review 78, 293 (1950).
²W. Gordy, J. Sheridan and Q. Williams, Duke Quarterly Progress Report, May - August, 1950.

		r 30P		
Molecule	Rotational Transition	Frequency Mc		Ref.
OPF3	0→1	9186.99		1

.

μ=

Intensities were calculated assuming 80% of the molecules in the ground vibrational state and the half width, Δv , equal to 16.

	PF₃		Ref.
Bo	7819.90		1

References

¹O. R. Gilliam, H. D. Edwards and W. Gordy, Physical Review 75, 1014 (1949).
 ²R. G. Shulman, B. P. Dailey and C. H. Townes, Physical Review 78, 145 (1950).

Molecule	Rota <u>Tran</u> J	tional sition K	Frequency Mc	Intensity cm ⁻¹	Ref.
PF3	1→2	0,1	31279.60	2.3x10 ⁻⁶	1
	2→3	0,1 2	46918.82 46919.02	6.7x10 ⁻⁶ 1.5x10 ⁻⁶	
	2→3		46940** 47010** 47033** 47040**		

**Excited vibrational states.

 F_3PS (SPF₃)

Phosphorous thiotrifluoride

	S ³² PF3	S ³⁴ PF ₃		Ref.
Bo	2657.637	2579.766		2
D _{JK}	1.8 Kc.			

References

¹A. Roberts, private communication.

²W. Gordy, J. Sheridan and Q. Williams, Duke Progress Report, May - August, 1950.

F3P

Molecule	Rotational Transition J	Frequency Mc		Ref.
S ³² PF ₃	3→4 4→5	21262 21283*		1
	4⇒ 5	26574 26553*		

F₃PS--Continued

*Excited vibrational states.

HN₃

Hydrazoic acid

 $\mu = 0.847$ (ref. 1)

References

¹E. Amble and B. P. Dailey, Journal of Chemical Physics 18, 1422 (1950).

		1111/3		
Molecule	Rotational Transition J	Frequency Mc		Ref.
HN3 ¹⁴	0→1	23815.7	6	1
HN2 ¹⁴ N ¹⁵	0→1	23048.2		
HN ¹⁴ N ¹⁵ N ¹⁴	0→1	23814		
DN3 ¹⁴	0→1	22316.1		

 H_2O

Water

 $\mu = 1.94$ (ref. 3)

The H₂O line has been investigated at higher pressures by several workers not quoted herein. For this asymmetric rotor the notation for the rotational transitions is that of reference Int. 5, and $\kappa = -0.696^6$ is a measure of the asymmetry.

References

¹C. H. Townes and F. R. Merritt, Physical Review 70, 558 (1946).

²R. M. Hainer, G. W. King and P. C.Cross, Physical Review 70, 108 (1946).

³S. Golden, T. Wentink jr., R. E. Hillger and M. W. P. Strandberg, Physical Review 73, 92 (1948).

⁴M. W. P. Strandberg, T. Wentink jr., R. E. Hillger, G. H. Wannier and M. L. Deutsch, Physical Review **73**, 188 (1948).

⁵M. W. P. Strandberg, MITRLE Report #85 (1948).

⁶M. W. P. Strandberg, Journal of Chemical Physics 17, 901 (1949).

Molecule	Rotational Transition	Frequency Mc	Intensity cm ⁻¹	Ref.
H ₂ 0 ¹⁶	⁵ 2,3,→61,6	22235.22	9.6x10 ⁻⁶	1, 2,3
HDO ¹⁶	21,2,→20,2	10278.99	8.6x10 ⁻⁹	5
	4 _{1,4} ,→3 _{1,2}	20460.40	1.3x10 ⁻⁸	-
	⁵ 3,3,→ ⁵ 3,2	22307.67	1.0x10 ⁻⁸	2,4
	3 ₂ , ₂ ,→3 _{2,1}	50236.90	1.1x10 ⁻⁷	5

H₂O--Continued

 H_2S

Hydrogen sulfide

 $\mu = 1.02$ (ref. 1)

Reference (1) also includes certain centrifugal distortion coefficients. The notation for the rotational transitions of this asymmetric rotor is that of reference Int. 5.

References

¹R. E. Hillger, MITRLE Progress Report, October 15, 1949, July 15, 1950.

Molecule	Rotational Transition	Frequency Mc	Intensity*	Ref.
HDS ³²	11,1-11,0	51073.27	2.9x10 ⁻⁴	1
	$2_{2,1} - 2_{2,0}$	11283.83	2.3x10 ⁻⁵	
	$3_{2,2} - 3_{2,1}$	53200.93	3.0x10 ⁻⁴	
	43.2 - 43.1	10861.07	1.3x10 ⁻⁵	
	53.3-53.2	40929.20	1.1x10 ⁻⁵	
	64.3 - 64.2	7936.74	3.2x10 ⁻⁶	
	74.4-74.3	27566.31	2.1x10 ⁻⁵	
	84,5-84,4	75551.73	7.6x10 ⁻⁵	
	95,5-95,4	17212.61	2.2x10 ⁻⁶	
	105,6-105,5	47905.36	8.0x10 ⁻⁶	
	116.6 -116.5	10235.81	1.5x10 ⁻⁷	
	126,7 -126,6	28842.84	4.8x10 ⁻⁷	
HDS ³⁴	11,1-11,0	50912.27	1.3x10 ⁻⁵	-
	22,1-22,0	11235.45	1.0x10 ⁻⁶	
	$3_{2,2} - 3_{2,1}$	52979.67	1.4x10 ⁻⁵	
	43,2 -43,1	10802.36	5.9x10 ⁻⁷	
	74,4 -74,3	27392.00	1.1x10 ⁻⁶	
HDS ³³	22,1-22,0	11258.21**	9.1x10 ⁻⁸	 1

H₂S

*Calculated in Ref. 1 for $T = 195^{\circ}$ K. **Most intense line of a group.

Ammonia

H_3N (NH₃)

The ammonia spectrum is the first known, and one of the most widely studied microwave spectra¹,²,³,⁴. It is unusual in being produced by inversion or vibration, rather than rotation of the molecule, and is of considerably greater intensity than other microwave spectra of the same frequency. The dependence of the inversion frequency on the rotational quantum numbers J and K of the molecule, produces a "fine" structure. One of the most recent and best fitting formulas for the fine structure of $N^{14}H_3$ is⁵

$$\begin{split} \nu &= 23,785.8 - 151.450J(J+1)+211.342K^2+0.503027 (J+1)^2 \\ -1.38538J(J+1)K^2+0.949155K^4 \\ -0.001259997J^3(J+1)^3+0.005182367 J^2(J+1)^2K^2 \\ -0.007088534J(J+1)K^4+0.003210437K^6 \end{split}$$

There is a systematic deviation from such formulas when $K=3^6$ due to higher order terms in the molecular Hamiltonian which can perturb these levels because of their three-fold symmetry⁷. Most of the lines listed for the deutero ammonias probably involve inversion, but have not yet been identified in detail.

Each of the $N^{14}H_3$ lines may be expected to show hyperfine structure due to the quadrupole coupling of the N^{14} nucleus⁸, ⁹, ¹⁰, ¹¹, ¹². Additional small frequency shifts of this hyperfine structure have been detected¹² and explained as resulting from the magnetic coupling of the N^{14} nucleus¹³.

The symmetric pattern, due to quadrupole coupling, of two weak lines (not listed in this table), on each side of the stronger lines listed, have been studied up to $J = 9^{12}$. The frequency differences between these satellites and the strong components are given by:

$$\delta\nu = \pm 3/4 \exp\left[1 - \frac{3K^2}{J(J+1)}\right] \frac{J+1}{2J+3} - (J+1)\left\{\frac{0.0011K^2}{J(J+1)} + 0.0057\right\}$$

$$\delta\nu' = \pm 3/4 \exp\left[1 - \frac{3K^2}{J(J+1)}\right) \frac{J}{2J-1} + J\left\{\frac{0.0011K^2}{J(J+1)} + 0.0057\right\}\right]$$

The sign of eqQ cannot be definitely measured experimentally, but is very probably negative, and is assumed to be negative in the expressions above for δ_{ν} and δ_{ν}' . The intensities for the weak hyperfine components relative to the strong components decrease approximately as $1/J^2$, the rather involved exact expressions being given by White¹⁴, and tabulated for low values of J.

Intensities listed in the table are for the entire fine structure lines without resolution of the hyperfine components, assuming for each line a half-width $(\Delta \nu)$ of 25 Mc, that measured for the (3,3) line⁴*. The intensities as a function of J and K are then given approximately by

$$\gamma_{\max} = 6.5 \text{ x } 10^{-11} \frac{V^2}{T} \frac{K^2(2J+1)}{J(J+1)} \exp\left\{\frac{-14.3}{T} \left[J(J+1)-0.366K^2\right]\right\}$$

Bleaney and Penrose¹⁵ find actually that for a number of NH₃ lines $\Delta\nu$ depends on J and K according to the formula

$$\left(\frac{K^2}{J(J+1)}\right) \frac{1}{3}$$

as was partly justified in their paper, and later discussed theoretically by Margenau¹⁶ and by Anderson²². Therefore, more accurate intensities may be obtained from those in the table by multiplying by

$$\left(\frac{3J(J+1)}{4K^2}\right)^{1/3}$$

*Note that in reference 4 the value of $\Delta \nu$ in fig. 3 ($\Delta \nu = 29.4 P_{mm}$) is correct, and the value of $(\tau = \frac{1}{2\pi\Delta\nu})$ on page 667 is incorrect.

The lines of ammonia have been used extensively to test the theories of pressure broadening and power broadening, and to compare the apparent molecular diameters with those from the kinetic theory of gasses²,⁴,¹⁷,¹⁸,¹⁹. Smith and Howard²³,²⁴ have investigated foreign gas broadening, and the temperature dependence of $\Delta \nu$. The apparent frequencies and values of $\Delta \nu$ at atmospheric and higher pressures differ widely from those given here¹⁵,²⁰,²¹ and have stimulated theoretical investigation of this problem²²,²⁹.

The Stark^{25,26} and Zeeman effects^{25,27,28} of these lines has also been investigated.

¹C. E. Cleeton and N. H. Williams, Physical Review 46, 235 (1934). ²B. Bleaney and R. P. Penrose, Nature 157, 339 (1946). ³W. E. Good, Physical Review 69, 539 (1946). ⁴C. H. Townes, Physical Review 70, 665 (1946). ⁵A. H. Sharbaugh, T. C. Madison and J. K. Bragg, Physical Review 76, 1529 (1949). ⁶M. W. P. Strandberg, R. L. Kyhl, R. E. Hillger, and T. Wentink Jr., Physical Review 71. 326 (1947). ⁷H. H. Nielsen and D. M. Dennison, Physical Review 72, 1101 (1947). ⁸W. E. Good, Physical Review 70, 213 (1946). ⁹B. P. Dailéy, R. L. Kyhl, M. W. P. Strandberg, J. H. Van Vleck, and E. B. Wilson, Jr., Physical Review 70,984 (1946). ¹⁰J. H. Van Vleck, Physical Review **71**, 468 (1947). ¹¹R. J. Watts and D. Williams, Physical Review 72, 263 (1947). ¹²J. W. Simmons and W. Gordy, Physical Review 73, 713 (1948). ¹³R. S. Henderson, Physical Review 74, 107 (1948), and erratum Physical Review 74, 626 (1948). ¹⁴ H. E. White, Introduction to Atomic Spectra, pp 206, 441, McGraw-Hill, 1934.
¹⁵B. Bleaney and R. P. Penrose, Proceedings of the Physical Society (London) 60, 540 (1947).
¹⁶H. Margenau, Physical Review 76, 121 (1949). ¹⁷A. T. Pond and W. F. Cannon, Physical Review 72, 1121 (1947). ¹⁸R. L. Carter and W. V. Smith, Physical Review 73, 1053 (1948). ¹⁹M. Mizushima, Physical Review **74**, 705 (1948). ²⁰I. R. Weingarten, Thesis, Columbia University (1948). ²¹D. F. Smith, Physical Review 74, 506 (1948). ²²P. W. Anderson, Physical Review **76**, 647 (1949), and **80**, 511 (1950). ²³W. V. Smith and R. Howard **79**, 132 (1950). ²⁴R. Howard and W. V. Smith, Physical Review 79, 128 (1950). ²⁵D. K. Coles and W. E. Good, Physical Review 70, 979 (1946). ²⁶J. M. Jauch, Physical Review 72, 715 (1947). ²⁷C. K. Jen, Physical Review **74**, 1396 (1948). ²⁸C. K. Jen, Physical Review **76**, 1494 (1949). ²⁹H. Margenau, Physical Review 76, 585 (1949).

H₃N (NH_3)

Ammonia

 $\mu = 1.45$ (ref. 1)

	N ¹⁴ H ₃	N ¹⁵ H ₃	Ref.
B ₀	298000		1
Ao	189000	189000	
(eqQ) _N	-4.10	0	6

H₃N--Continued

References

¹C. H. Townes, Physical Review 70, 665 (1946).

²B. Bleaney and R. P. Penrose, Proceedings of the Royal Society A189, 358 (1947).

³W. E. Good and D. K. Coles, Physical Review 71, 383 (1947).

⁴M. W. P. Strandberg, R. L. Kyhl, R. E. Hillger and T. Wentink, Jr., Physical Review 71, 326 (1947).

⁵IBID 71, 639 (1947).

⁶J. W. Simmons and W. Gordy, Physical Review 73, 713 (1948).

⁷C. H. Townes and W. Low, private communication.

⁸A. H. Sharbaugh, T. C. Madison and K. K. Bragg, Physical Review 76, 1529 (1949).

⁹J. H. N. Loubser and J. A. Klein, BAPS 25, 1, 44 (1950).

¹⁰H. Lyons, M. Kessler, L. J. Rueger and R. G. Nuckolls, private communication and BAPS 25, 5, 9 (1950).

Molecule	Rota Si	tional tate	Frequency Mc	Intensity cm ⁻¹	Ref.
	J	K			
N ¹⁴ H ₃	9	5	16798.3	6.2x10 ⁻⁶	8
	7	1	16841.3	1.0x10 ⁻⁶	
	7	2	17291.6	4.6x10 ⁻⁶	
	8	4	17378.1	9.6x10 ⁻⁷	
	7	3	18017.6	2.5x10 ⁻⁶	
	12	9	18127.2	4.1x10 ⁻⁶	
	11	8	18162.6	4.1x10 ⁻⁶	
	13	10	18178.0	9.4x10 ⁻⁷	
	10	7	18285.6	7.8x10 ⁻⁶	
	14	11	18313.9	4.1x10 ⁻⁷	
	6	1	18391.6	2.0x10 ⁻⁶	
	9	6	18499.5	2.7x10 ⁻⁵	
	15	12	18535.1	3.3x10 ⁻⁷	
	8	5	18808.7	2.1x10 ⁻⁵	
	16	13	18842.9	6.2x10 ⁻⁸	
	6	2	18884.9	1.3x10 ⁻⁵	
	7	4	19218.52	2.9x10 ⁻⁵	4
	6	3	19757.56	6.8x10 ⁻⁵	2,3,4
	5	1	19838.4	6.9x10 ⁻⁶	8
	5	2	20371.48	3.1x10 ⁻⁵	2,3,4
	8	6	20719.20	8.8x10 ⁻⁵	
	9	7	20735.46	2.9x10 ⁻⁵	
	7	5	20804.80	6.2x10 ⁻⁵	
	10	8	20852.51	1.7x10 ⁻⁵	
	6	4	20994.62	7.8x10 ⁻⁵	
	11	9	21070.73	1.9x10 ⁻⁵	
	4	1	21134.37	1.6x10 ⁻⁵	
	1				

H3N

 H_3N --Continued

Molecule	Rotat Sta	ional te	Frequency Mc	Intensity cm ⁻¹	Ref.
	J	K		· · · ·	
N ¹⁴ H ₃	5	3	21285.30	1.7x10 ⁻⁴	2,3,4
(Continued)	12	10	21391.55	4.9x10 ⁻⁶	4
	4	2	21703.34	6.9x10 ⁻⁵	2,3,4
	14	11	21818.1	5.8x10 ⁻⁷	8
	3	1	22234.51	3.3x10 ⁻⁵	2,3,4
	14	12	22355	2.1x10 ⁻⁶	7
	5	4	22653.00	1.9x10 ⁻⁴	2,3,4
	4	3	22688.24	3.7x10 ⁻⁴	2,3,
	6	5	22732.45	1.6x10 ⁻⁴	2,3,4
	16	14	23777.4	1.8x10 ⁻⁷	8
	3	2	22834.10	1.5x10 ⁻⁴	1,2, 3,4
	7	6	22924.91	2.7x10 ⁻⁴	
	15	13	23004	4.7x10 ⁻⁷	7
	2	1	23098.78	6.7x10 ⁻⁵	1,2,
	8	7	23232.20	9.5x10 ⁻⁵	2,4
	9	8	23657.46	6.3x10 ⁻⁵	
	1	1	23694.48	1.6x10 ⁻⁴	
	2	2	23722.61	3.0x10 ⁻⁴	
	3	3	23870.11	7.9x10 ⁻⁴	
	4	4	24139.39	4.3x10 ⁻⁴	
	10	9	24205.25	7.8x10 ⁻⁵	
	5	5	24532.94	4.1x10 ⁻⁴	
	17	15	24680.1	1.1x10 ⁻⁷	8
	11	10	24881.90	2.2x10 ⁻⁵	1,3
	6	6	25056.04	7.1x10 ⁻⁴	1,2,
	12	11	25695.23	1.3x10 ⁻⁵	3
	7	7	25715.14	2.8x10 ⁻⁴	2,3,4
	8	8	26518.91	2.1x10 ⁻⁴	6
	13	12	26655.00	1.3x10 ⁻⁵	6
	9	9	27478.00	2.9x10 ⁻⁴	
	14	13	27772.52	3.0x10 ⁻⁶	
	10	10	28604.73	9.5x10 ⁻⁵	
	15	14	29061.14	1.4x10 ⁻⁶	
	11	11	29914.66	5.8x10 ⁻⁵	
	12	12	31424.97	6.6x10 ⁻⁵	
	13	13	33156.95.	1.8x10 ⁻⁵	
	14	14	35134.44	9.2x10 ⁻⁶	
	15	15	37385.18	8.9x10 ⁻⁶	
	16	16	39941.54	2.0x10 ⁻⁶	

H₃N--Continued

Molecule	Rota† S†	tional tate	Frequency Mc	Intensity cm ⁻¹	Ref.
	J	K			
N ¹⁵ Ha	7	3	17097.2	1 8×10 ⁻⁷	g
	9	6	17548.4	1.9×10^{-7}	0
	8	5	17855.3	$7 1 \times 10^{-7}$	
	6	2	17943_4	4.4×10^{-8}	
	7	4	18258.8	1.0×10^{-7}	
	6	3	18788.2	4.7×10^{-7}	
	5.	2	19387.5	1.1x10 ⁻⁷	
	8	6	19702.1	6.0x10 ⁻⁷	
	9	7	19708.2	9.8x10 ⁻⁸	
	7	5	19793.4	2.1x10 ⁻⁷	
	10	8	19810.8	5.9x10 ⁻⁸	
	6	4	19984.6	2.7×10^{-7}	
	11	9	20009.9	1.3x10 ⁻⁷	
	4	1	20131.6	5.0x10 ⁻⁸	
	5	3	20272.04	6.4x10 ⁻⁷	3,8
	4	2	20682.87	2.6x10 ⁻⁷	
	3	1	21202.30	1.3x10 ⁻⁷	3
	5	4	21597.86	7.2x10 ⁻⁷	
	4	3	21637.91	1.4x10 ⁻⁶	
	6	5	21667.93	6.0x10 ⁻⁷	
	3.	2	21783.98	5.6x10 ⁻⁷	
	7	6	21846.41	9.9x10 ⁻⁷	
	2	1	22044.28	2.6x10 ⁻⁷	
	8	7	22134.89	3.5x10 ⁻⁷	
	9	8	22536.26	2.3x10 ⁻⁷	
	1	1	22624.96	6.0x10 ⁻⁷	
	2	2	22649.85	1.2x10 ⁻⁶	
	3	3	22789.41	3.0x10 ⁻⁶	
	4	4	23046.10	1.6x10 ⁻⁶	
	10	9	23054.97	3.0x10 ⁻⁷	
	5	5	23421.99	1.5x10 ⁻⁶	
	6	6	23922.32	2.6x10 ⁻⁶	
	7	7	24553.42	1.1x10 ⁻⁶	
	8	8	25323.51	8.0x10 ⁻⁷	
	9	9	26243.0	2.0x10 ⁻⁷	8

 (ND_3, ND_2H, NDH_2)

Deutero Ammonias

In the following list of absorption lines reported¹⁰ from a mixture of the deutero-ammonias the isotopic assignment is shown for each line which has been identified positively. Intensities listed are the observed relative intensities for a particular mixture of the enriched deutero ammonias. The superscripts 0, 1, 2, indicate lines positively identified as belonging to ND₃, ND₂H, and NDH₂, respectively.

Frequency Mc	Intensity	Frequency Mc	Intensity	Frequency Mc	Intensity
2093.60	w	5030.	W	9521.0	m
2186.40	W	5122.	W	9635.5	
2290.5	W	5123.5	W	9829.0	
2361.		5192.	W	9967.	
2403.	W	5199	m	10091.	
2408.		5213.	W	10660.	W
2431.0		5230.	W	10844.	S
2480.		5260.	W	11400.	m
2555	W	5369	ш т	11975.	m
2,599.		5302	ш т		ш т
2014	W	5/15	ш т	12147.	m
2012	W	5/05	ш	12190.	8
2000.		5507 51		12392.	ш
2099		5507.5-	W	12444.	W
2740.		5577	w	12020.	W
2700.		5501 71	W	12//8.	S
2000	W	5621.01	ш	13065.	m
2900.	W	5625 1	W	10119.	ш
2757.	W	5600	ш	13175.	W
2970.	W	5009.	W	13210.	S
2107	W	2720. 5705 051	W	13310.	m
2/70 1	W	5/05.05- End(El	щ	12400.	ш
2065 1	W	5760.5-	m	13020.	ш
1002 l	ш	5964. ⁻	ш	13037.	ш
4000.	W	6105.0^{-1}	ш	13923.	ш
/100	W	6200 51	ш	14007.	ш
4199.	W	6/62 0	W	14102.	ш
/210	W	6405.0	ш	14000.	ш
4219.	W	66/1 Ol	W	15122	W
/281 5	W	6022 11	W	15522.	ш
4207.5	w	607/ 5	W	1562/	W
4407.0	ш	710/	W	150004.	W
4410.0	W	7104.	W	15025	, щ ,
4720.5	W	7297 51	W	16320	w
4850	W	7562 12	w	16/55	m
4859	w	7802.5	ш т	16/03	Ш т
4907	111	8278	ш	16/07	ш
4915.	W	8283 1	m	1047/.	W
4938	W	8777 5	ш		
4948	m	8902 5	W		
4956.	14	8922.2	W		
5025.	W	9013 5	m		
	yw	901J.J	ш		

H₃N Deutero Ammonia

H₃N Deutero Ammonia

Molecule	Vibrational State	Frequency		Ref.
ND3	v ₂ =1	117000		9

H ₃ P (F	РН ₃)
---------------------	-------------------

Phosphine

References

¹C. C. Loomis, MITRLE Progress Report, July 15, 1950.

H ₃ Sb	(SbH_3)	Antimony trihydride	$\mu = 0.116$ (ref. 1)
		References	
¹ C. C	. Loomis.	MITRLE Progress Report, July 15, 1950	

NO₂ Nitrogen dioxide μ =.4 Six lines (60,6→51,5) have been observed within 85 Mc. at 26,600 Mc. References

¹K. B. McAfee Jr., Physical Review **78**, 340 (1950).

 N_2O

Nitrous oxide

 $\mu = 0.166$ (ref. 2,3)

The half width, $\Delta v = 6.70^2$, has been used in calculating the intensity.

	N2 ¹⁴ 0 ¹⁶	N2 ¹⁴ 0 ¹⁸	N ¹⁴ N ¹⁵ O ¹⁶	N ¹⁴ N ¹⁵ O ¹⁸	N ¹⁵ N ¹⁴ O ¹⁶	N ¹⁵ N ¹⁴ O ¹⁸	Ref.
B ₀	12561.64	11859.11	12560.78	11855.82	12137.31	11449.66	1,2 4
(eqQ) _{N¹⁴}	-0.27 central -1.03 end		-1.03		-0.27		

Nitrous oxide--Continued

References

¹D. K. Coles, E. S. Elyash and J. G. Gorman, Physical Review 72, 973 (1947), and private communication.

²D. K. Coles and R. H. Hughes, Physical Review 76, 178 (1949).

³R. G. Shulman, B. P. Dailey and C. H. Townes, Physical Review 78, 145 (1950).

⁴D. K. Coles, W. E. Good and D. R. Lide, private communication.

			by			
Molecule	Rotational Transition J	Fi	F _f	Frequency Mc	Intensity cm ⁻¹	Ref.
N ¹⁴ N ¹⁴ O ¹⁶	0 →1	1	1	25123.03	2.8x10 ⁻⁷	1
		1	2	25123.28	4.7x10 ⁻⁷	
		1	0	25123.64	9.3x10 ⁻⁸	
N15N14016	0 →l	1	1	24274.53	9.6x10 ⁻¹⁰	
		1	2	24274.61	1.6x10 ⁻⁹	
		1	0	24274.73	3.2x10 ⁻¹⁰	
N ¹⁴ N ¹⁵ O ¹⁶	0 →1			25121.55	3.2x10 ⁻⁹	2
N ¹⁵ N ¹⁵ O ¹⁶	0 →1			24274.78	1.1x10 ⁻¹¹	

Molecule	Rotational Transition J	Frequency Mc	Intensity cm ⁻¹	Ref.
N2 ¹⁴ 0 ¹⁸	0 →l	23718.21	1.4x10 ⁻⁹	4
N ¹⁴ N ¹⁵ O ¹⁸	0 →l	23711.64	5.4x10 ⁻¹²	
N ₂ ¹⁵ O ¹⁸ N ¹⁵ N ¹⁴ O ¹⁸	0 →1 0 →1	22896.07 22899.32	1.9x10 ⁻¹⁴ 5.0x10 ⁻¹²	

02

Oxygen

 $\mu = 0$

This spectrum is of a different nature from the other molecular spectra recorded herein, being due to a magnetic coupling to the microware field, rather than an electric dipole coupling. The theory of the transition has been discussed by Van Vleck¹. The transitions were first observed at higher pressures^{2,3,4}, but only the resolved lines are recorded here. The Half-widths, Δv , from 0.8 to 2.1 are given in references (2) and (5).

References

¹J. H. Van Vleck, Physical Review **71**, 413 (1947).

- ²R. Beringer, Physical Review 70, 53 (1946).
- ³H. R. L. Lamont, Physical Review 74, 353 (1948).
- ⁴M. W. P. Strandberg, C. Y. Meng, and J. G. Ingersoll, Physical Review 75, 1524 (1949).

⁵J. H. Burkhalter, R. S. Anderson, W. V. Smith and W. Gordy, Physical Review 79, 651 (1950).

	02Continued							
Molecule		F T	otatic Transit	onal ion	Frequency Mc	Intensity* cm ⁻¹		Ref.
		Ji	J _f	K				
	02 ¹⁶	25 23 21 19 17 1 15 13 11 9 3 7 5 5 7 9 11 13 3 15 17 19 21 23 25	$\begin{array}{c} 24\\ 22\\ 20\\ 18\\ 16\\ 2\\ 14\\ 12\\ 10\\ 8\\ 4\\ 6\\ 6\\ 4\\ 8\\ 10\\ 12\\ 14\\ 2\\ 16\\ 18\\ 20\\ 22\\ 24\\ 26\\ \end{array}$	25 23 21 19 17 1 5 13 11 9 3 7 5 5 7 9 11 13 3 15 17 19 21 23 25	53592.2 54130.0 54672.5 55220.8 55784.1 56265.1 56362.8 56968.7 57612.0 58324.0 58446.2 59163.4 59610 60306.4 60436.6 61120 61800.2 62411.7 62486.1 62970 63568.3 64127.6 64678.9 65220 65770	$1.5x10^{-6}$ $2.8x10^{-6}$ $4.8x10^{-6}$ $7.9x10^{-6}$ $1.2x10^{-5}$ $7.1x10^{-5}$ $2.3x10^{-5}$ $2.8x10^{-5}$ $3.1x10^{-5}$ $3.2x10^{-5}$ $3.2x10^{-5}$ $3.2x10^{-5}$ $3.4x10^{-5}$ $3.2x10^{-5}$ $3.2x10^{-6}$ $3.2x10^{-6}$ $3.2x10^{-6}$		

*Intensities calculated by L. C. Aamodt using $\Delta v=1.2$ Mc. at 1 mm.

O₂S (SO₂)

Sulfur dioxide

 $\mu = 1.7$

The notation for the rotational transitions of this asymmetric rotor is that of reference Int. 5.

	S ³² 02 ¹⁶		Ref.
B ₀	10336		1
A _O	60880		
Co	8817		

References

¹B. P. Dailey, S. Golden and E. B. Wilson jr., Physical Review <u>72</u>, 871 (1947).
²M. H. Sirvetz, private communication.

40

02S--Continued

Molecule	Rotational Transition	Frequency Mc	Intensity	Ref.
S ³² 02 ¹⁶		20335.41	S	1,2
	13 _{2,12} - 12 _{3,9}	20420		1
		20460.05	w	1,2
		22220.32 22482.51 22733.83 22904.95 22928.45 23034.80	W S W W S	1,2
	61,5 - 52,4	23414.25	s	
		23733.03	w	
	9 _{1,9} -8 _{2,6}	{ 24039.50 24083.39	s s	
		24319.67	w	
		25049.13 25170.97	s W	1,2
	72,6- 81,7	25392.81	s	
		26777.20 28858.11 29321.46	s s s	2 1,2
	31,3- 40,4	29460		1

Table II. Lines Listed in Order of Frequency

In this table, the chemical symbols C, N, S, etc., stand for the most abundant isotope (C^{12} , N^{14} , S^{32} , . . .), all rarer isotopes being specifically noted in each instance. The intensities are those calculated as described in the introduction, except those in parentheses (), which are observed intensities estimated by the various authors, and do not necessarily follow the convention adopted herein as to weak, medium, and strong. Intensities marked with an asterisk (*) are due to radioactive isotopes (normally with zero abundance), calculated as if the isotope in question were 100 percent abundant.

Table II.	Lines	Listed	in	Order	of	Frequency
-----------	-------	--------	----	-------	----	-----------

Frequency Mc	Molecule	Intensity	Frequency Mc	Molecule	Intensity
2093.6	ND 3	(w)	4938	deutero ammonia	(w)
2186.4	ND3	(w)	4948	deutero ammonia	(m)
2290.5	ND ₃	(w)	4956	deutero ammonia	(w)
2361	deutero ammonia		5025	deutero ammonia	(w)
2403	ND3	(w)	5030	deutero ammonia	(w)
2408	deutero ammonia		5122	deutero ammonia	(w)
2431.6	deutero ammonia		5123.5	deutero ammonia	(w)
2480.9	deutero ammonia		5192	deutero ammonia	(w)
2533	ND 3	(w)	5199	ND ₂ H	(m)
2599	deutero ammonia	(w)	5213	deutero ammonia	(w)
2614	deutero ammonia	(w)	5230	deutero ammonia	(w)
2652	deutero ammonia	(w)	5236	deutero ammonia	(w)
2668	deutero ammonia		5364	deutero ammonia	(m)
2699	deutero ammonia		5368	deutero ammonia	(w)
2746	deutero ammonia		5392	deutero ammonia	(m)
2786	deutero ammonia		5415	deutero ammonia	(m)
2800	deutero ammonia	(w)	5495	deutero ammonia	(m)
2900	deutero ammonia	(w)	5507.5	ND ₂ H	(w)
2939	deutero ammonia	(w)	5549	deutero ammonia	(w)
2978	deutero ammonia	(w)	5574	deutero ammonia	(w)
3010	deutero ammonia	(w)	5581.7	ND ₂ H	(m)
3187	deutero ammonia	(w)	5631.9	ND ₂ H	(w)
3470	ND ₂ H	(w)	5635	ND ₂ H	(m)
3865	ND ₂ H	(m)	5689	deutero ammonia	(w)
4086	ND ₂ H	(w)	5726	deutero ammonia	(w)
4161	deutero ammonia	(w)	5785.85	ND ₂ H	(m)
4199	deutero ammonia	(w)	5786.5	ND ₂ H	(m)
4216	deutero ammonia	(w)	5964	ND ₂ H	(m)
4219	deutero ammonia	(w)	6105.0	ND ₂ H	(m)
4241	deutero ammonia	(w)	6164	ND ₂ H	(m)
4281.5	deutero ammonia	(w)	6389.5	ND ₂ H	(w)
4407.5	deutero ammonia	(m)	6463.0	deutero ammonia	(m)
4410.0	deutero ammonia	(w)	6597.5	deutero ammonia	(w)
4511	deutero ammonia	(w)	6641.0	ND ₂ H	(w)
4720.5	deutero ammonia	(w)	6684	ICl ³⁷	W
4850	deutero ammonia	(w)	6922.1	ND ₂ H	(w)
4859	deutero ammonia	(m)	6974.5	deutero ammonia	(w)
4907	deutero ammonia	(w)	6980	IC135	m
4915	deutero ammonia	(w)	7104	deutero ammonia	(w)
		1	1		

Table II. Lines Listed in Order of Frequency-Continued

Frequency Mc	Molecule	Intensity	Frequency Mc	Molecule	Intensity
7238	ND ₂ H	(w)	9186.99	F ₃ OP	
7362.60	CH ₂ O	m	9193.26	Br ⁸¹ Cl ³⁵	W
7387.5	ND ₂ H	(w)	9209.57	Br ⁸¹ Cl ³⁵	w
7562.1	NDH ₂	(m)	9291.61	Br ⁷⁹ Cl ³⁵	w
7802.5	deutero ammonia	(m)	9307.96	Br ⁷⁹ Cl ³⁵	w
7892.03	CH ₂ O	m	9460	CHN	m
7936.74	HDS	w	9521.0	deutero ammonia	(m)
8278	deutero ammonia		9635.5	deutero ammonia	
8283.1	deutero ammonia	(m)	9829.0	deutero ammonia	
8525.53	Br ⁸¹ Cl ³⁷	w	9967	deutero ammonia	
8559.58	Br ⁷⁹ Cl ³⁷	w	10091.	deutero ammonia	
8663.40	Br ⁸¹ Cl ³⁷	w	10235.81	HDS	w
8671.87	Br ⁸¹ Cl ³⁷	w	10278.99	HDO	w
8676.37	Br ⁸¹ Cl ³⁷	w	10366.51	CH ₂ O	w
8683.06	Br ⁸¹ Cl ³⁷	w	10660	deutero ammonia	(w)
8725.49	Br ⁷⁹ Cl ³⁷	w	10802.36	HDS ³⁴	w
8733.84	Br ⁷⁹ Cl ³⁷	w	10844	deutero ammonia	(s)
8738.47	Br ⁷⁹ Cl ³⁷	w	10861.07	HDS	w
8745.17	Br ⁷⁹ Cl ³⁷	w	11235.45	HDS ³⁴	w
8777.5	deutero ammonia	(w)	11258.21	HDS ³³	w
8852.93	Br ⁸¹ Cl ³⁷	w	11283.83	HDS	w
8865.66	Br ⁸¹ Cl ³⁵	w	11400	deutero ammonia	(m)
8884.87	CH20	m	11753.13	CH ₂ O	m
8899.50	Br ⁷⁹ Cl ³⁵	w	11975	deutero ammonia	(m)
8902.5	deutero ammonia	(w)	11983	deutero ammonia	(m)
8922.2	deutero ammonia		12147	deutero ammonia	(m)
8951.38	Br ⁷⁹ Cl ³⁷	w	12150	deutero ammonia	(s)
8964.19	Br ⁷⁹ Cl ³⁷	w	12392	deutero ammonia	(m)
8972.41	Br ⁸¹ Cl ³⁵	w	12444	deutero ammonia	(m)
9001.44	Br ⁸¹ Cl ³⁵	w	12620	deutero ammonia	(w)
9012.97	Br ⁸¹ Cl ³⁵	w	12778	deutero ammonia	(s)
9013.5	deutero ammonia	(m)	13065	deutero ammonia	(m)
9018.40	Br ⁸¹ Cl ³⁵	w	13119	deutero ammonia	(m)
9026.17	Br ⁸¹ Cl ³⁵	w	13175	deutero ammonia	(w)
9034.14	Br ⁷⁹ Cl ³⁵	w	13210	deutero ammonia	(s)
9063.77	Br ⁷⁹ Cl ³⁵	w	13316	deutero ammonia	(m)
9074.91	Br ⁷⁹ Cl ³⁵	w	13488	deutero ammonia	(m)
9080.73	Br ⁷⁹ Cl ³⁵	w	13626	deutero ammonia	(m)
9088.61	Br ⁷⁹ Cl ³⁵	W	13657	deutero ammonia	(m)
					1

Frequency Mc	Molecule	Intensity	Frequency Mc	Molecule	Intensity
13778.86	C ¹³ H ₂ O	w	18178.0	H3N	m
13923	deutero ammonia	(m)	18196.6	C ₃ HN	s
14067	deutero ammonia	(m)	18258.8	H ₃ N ¹⁵	w
14102	deutero ammonia	(m)	18285.6	H ₃ N	m
14361.54	CH ₂ O	w	18313.9	H3N	w
14488.65	CH ₂ O	m	18391.6	H ₃ N	m
14566	deutero ammonia	(m)	18396.3	C ₂ H ₃ N	m
14592.44	C ¹³ H ₂ O	w	18397.7	C ₂ H ₃ N	S
14726.74	CH ₂ O	m	18399.8	C ₂ H ₃ N	m
15004	deutero ammonia	(w)	18499.5	H3N	S
15132	deutero ammonia	(m)	18535.1	H3N	w
15524	deutero ammonia	(w)	18788.2	H ₃ N ¹⁵	w
15634	deutero ammonia	(w)	18808.7	H3N	S
15772	deutero ammonia	(m)	18825	C ₂ HDO	
15935	deutero ammonia	(w)	18842.9	H ₃ N	w
16147.67	CHN	m	18884.9	H ₃ N	s
16320	deutero ammonia	(m)	18892	C ₂ HDO	
16455	deutero ammonia	(m)	18943.77	CH ₃ Br ⁸¹	w
16493	deutero ammonia	(m)	18992.36	CH ₃ Br ⁷⁹	m
16497	deutero ammonia	(w)	19040.32	CH3Br ⁸¹	m
16798.3	H ₃ N	m	19107.97	CH ₃ Br ⁷⁹	m
16841.3	H ₃ N	m	19160.82	CH3Br ⁸¹	m
16941.6	CH40		19218.52	H ₃ N	S
17027.60	CH20	m	19230	C ₄ H ₁₀ O	
17097.2	H ₃ N ¹⁵	w	19252.13	CH ₃ Br ⁷⁹	m
17212.61	HDS	w	19387.5	H ₃ N ¹⁵	w
17291.6	H ₃ N	m	19390.18	CH40	
17378.1	H ₃ N	m	19440	C ₄ H ₁₀ O	
17548.4	H ₃ N ¹⁵	w	19590	C ₄ H ₁₀ O	
17690	C ₂ D ₂ O	W	19595.23	CH ₂ O	w
17855.3	H ₃ N ¹⁵	m	19700	C ₂ H ₃ NS ³⁴	
17870.5	C ¹³ H ₄ O		19702.1	H ₃ N ¹⁵	m
17943.4	H ₃ N ¹⁵	W	19708.2	H ₃ N ¹⁵	w
17959.67	CH ₃ B ¹⁰ O	W	19757.56	H ₃ N	S
17959.91	CH ₃ N ¹⁰ O	W	19793.4	H ₃ N ¹⁵	W
17960.60	CH ₃ B ¹⁰ O	W	19810.8	H ₃ N ¹⁵	W
18017.6	H ₃ N	m	19838.4	H ₃ N	m
18127.2	H ₃ N	m	19929	C ₂ H ₃ NS ³⁴	
18162.6	H ₃ N	m	19984.6	H ₃ N ¹⁵	W

Table II. Lines Listed in Order of Frequency-Continued

Table II. Lines Listed in Order of Frequency-Continued

Frequency Mc	Molecule	Intensity	Frequency Mc	Molecule	Intensity
19999.66	CCl ³⁵ F ₃		20510	C ₄ H ₁₀ O	
20009.9	H ₃ N ¹⁵	W	20570	C4H100	
20010.84	CCl ³⁵ F ₃		20649.30	C ¹³ H ₂ O	W
20013.68	CCl ³⁵ F ₃		20679.9	C ₂ H ₃ F ₃	w
20015.77	CCl ³⁵ F ₃		20682.87	H ₃ N ¹⁵	w
20019.17	CCl ³⁵ F ₃		20710.6	C ₂ H ₃ F ₃	w
20020	C ₂ H ₃ NS		20719.20	H ₃ N	s
20131.6	H ₃ N ¹⁵	w	20720	C ₄ H ₁₀ O	
20140	C ₂ H ₃ NS		20728.03	C ₂ DCl ³⁵	w
20160	C ₂ H ₃ N		20729.79	C ₂ DCl ³⁵	w
20209.76	C ₂ H ₂ O		20735.46	H ₃ N	S
20214.29	C ₂ H ₂ Cl ³⁵ F		20736.40	C ¹³ H ₂ O	w
20216	C ₂ H ₃ NS		20740	C ₄ H ₁₀ O	
20220.64	C ₂ H ₂ O		20742.32	C ₂ H ₃ F ₃	W
20230	C ₂ H ₃ NS		20744.00	C ₂ DCl ³⁵	W
20232.33	C ₂ H ₂ O		20748.02	C ₂ DCl ³⁵	w
20241	C ₂ H ₃ NS		20749.76	C ₂ DCl ³⁵	w
20260	C ₄ H ₁₀ O		20763.96	C ₂ DCl ³⁵	w
20267.17	C ₂ H ₂ O		20772.3	Br ⁸¹ F	W
20272.04	H ₃ N ¹⁵	m	20783.80	C ₂ DCl ³⁵	w
20320	C ₄ H ₁₀ O		20804.80	H ₃ N	S
20321.12	C ₂ DCl ³⁷	w	20822.8	C ₂ H ₂ Cl ³⁷ F	
20322.50	C ₂ DCl ³⁷	w	20828.9	Br ⁷⁹ F	W
20329.32	C ¹³ H ₄ O	(w)	20852.51	H ₃ N	S
20335.41	0 ₂ S	(s)	20880	C ₄ H ₁₀ O	
20336.84	C ₂ DCl ³⁷	w	20908.87	CH40	
20338.29	C ₂ DCl ³⁷	w	20928.4	Br ⁸¹ F	m
20346.83	CH40		20950	C ₄ H ₁₀ O	
20349.48	C ₂ DCl ³⁷	w	20954.6	Br ⁸¹ F	m
20350	C2H3NS		20965	C ₄ H ₁₀ O	
20371.48	H ₃ N	s	20970.65	CH ₄ O	
20385	CH ₃ NO ₂		20985.5	Br ⁷⁹ F	m
20391.51	C ₂ H ₂ Cl ³⁵ F		20994.62	H ₃ N	S
20394.7	CDNO		21000	C ₄ H ₁₀ O	
20413	C ₂ H ₃ NS		21026.70	C ₂ H ₂ Cl ³⁵ F	
20420	0 ₂ S		21045.6	Br ⁷⁹ F	m
20443	C ₂ H ₃ NS		21070.73	H ₃ N	S
20460.05	02S	(w)	21110.4	Br ⁸¹ F	m
20460.40	HDO	W	21134.37	H ₃ N	S

Frequency Mc	Molecule	Intensity	Frequency Mc	Molecule	Intensity
21175	C ₄ H ₁₀ O		21780	C ₄ H ₁₀ O	
21181.7	Br ⁸¹ F	m	21783.98	H ₃ N ¹⁵	m
21202.30	H ₃ N ¹⁵	w	21818.1	H ₃ N	m
21202.6	Br ⁷⁹ F	m	21839	C ¹³ DNS	w
21230	C ₄ H ₁₀ O		21846.41	N ¹⁵ H ₃	m
21262	F ₃ PS		21850	C ₄ H ₁₀ O	
21283	F ₃ PS		21857	Cl ³⁵ NO	w
21285.30	H ₃ N	s	21861	Cl ³⁵ NO	w
21310	C4H10O		21865	Cl ³⁵ NO	w
21319.4	Br ⁷⁹ F	m	21869	Cl ³⁵ NO	m
21323.5	CHN ¹⁵ O		21874	Cl ³⁵ NO	w
21337.5	Br ⁸¹ F	m	21879	C1 ³⁵ NO	w
21340	C ₄ H ₁₀ O		21890	C ₄ H ₁₀ O	
21363	Cl ³⁷ NO	w	21897	CDNS	
21365	Cl ³⁷ NO	Ŵ	21902.50	C ₂ H ₂ Cl ³⁷ F	
21367	Cl ³⁷ NO	w	21930.2	C ₂ H ₃ Cl ³⁷	
21372	Cl ³⁷ NO	w	21935	CH ₅ N	
21391.55	H3N	m	21981.7	CHNO	
21426	AsCl3 ³⁵	w	22015	C ₄ H ₁₀ O	
21450	C ₄ H ₁₀ O		22044.28	H ₃ N ¹⁵	w
21472	AsCl335	w	22052	Cl ³⁷ NO	w
21475.4	Br ⁷⁹ F	m	22056	Cl ³⁷ NO	w
21482	C ₂ H ₂ F ₂	(m)	22062	Cl ³⁷ NO	w
21549	C ₂ H ₂ F ₂	(w)	22068	Cl ³⁷ NO	w
21550.31	CH4O		22134.89	H ₃ N ¹⁵	W
21560	C ₄ H ₁₀ O		22215	Cl ³⁵ NO	m
21573	C ₂ H ₂ F ₂	(w)	22215	C ₄ H ₁₀ O	
21597.86	H ₃ N ¹⁵	m	22217	CHC1F2	(w)
21637.91	H ₃ N ¹⁵	m	22220.32	0 ₂ S	(w)
21664	C ₂ D ₄ O	w	22227	Cl ³⁵ NO	m
21667 93	H ₃ N ¹⁵	m	22234.51	H ₃ N	S
21039	C ₂ H ₂ F ₂	(m)	22236	Cl ³⁵ NO	W
21669.70	C ₂ H ₂ Cl ³⁵ F		22235.22	H ₂ O	m
21703.34	H ₃ N	S	22236	C ₂ H ₂ F ₂	(m)
21704	Cl ³⁷ NO	W	22239.6	CO ¹⁸ S ³⁴	W
21708.68	CH40		22247	CHC1F2	(w)
21712	CH 5N		22258	CH5N	
21713	Cl ³⁷ NO	m	22273.90	C ₂ HCl ³⁷	W
21720	C1 (O	W	22275.10	C ₂ HCl ³⁷	W
21734	C ₂ H ₂ F ₂	(m)	22281	C ₂ H ₂ F ₂	

Table II. Lines Listed in Order of Frequency-Continued

Table	II.	Lines	Listed	in	Order	of	Frequency-Continue	d
-------	-----	-------	--------	----	-------	----	--------------------	---

Frequency Mc	Molecule	Intensity	Frequency Mc	Molecule	Intensity
22289.55	C ₂ HCl ³⁷	W	22673.80	CHD ₂ Cl ³⁷	w
22290.85	C ₂ HCl ³⁷	w	22680	C ₂ H ₃ NS	
22295	CH3F3Si		22685.60	CHD ₂ Cl ³⁷	w
22302.10	C ₂ HCl ³⁷	w	22688.24	H ₃ N	s
22305	CHC1F2	(m)	22717.07	C ₂ HCl ³⁵	w
22307.67	HDO	w	22718.80	C ₂ HCl ³⁵	w
22316.1	DN ₃		22732	CH ₅ N	
22353	CHClF ₂	(w)	22732.45	H3N	S
22355	H3N	m	22732.90	C ₂ HCl ³⁵	w
22369.6	C ₂ H ₃ Cl ³⁵		22733.83	0 ₂ S	(w)
22370	CH ₂ O ₂		22737.00	C ₂ HCl ³⁵	w
22383	$C_2H_2F_2$	(m)	22738.68	C ₂ HCl ³⁵	w
22386	CHClF ₂	(w)	22740	CH ₅ N	
22391	$C_2H_2F_2$	(m)	22752	$C_2H_2F_2$	(s)
22410	CHC1F2	(s)	22752.95	C ₂ HCl ³⁵	w
22419.13	C ₂ H ₂ Cl ³⁵ F		22754.6	CO18S	w
22436	CHClF ₂	(w)	22763.8	C ¹³ O ¹⁸ S	w
22462	CHC1F2	(w)	22772.82	C ₂ HCl ³⁵	w
22470	CH ₂ O ₂		22789.41	H ₃ N ¹⁵	m
22481	CHClF ₂	(m)	22819.30	CO ¹⁸ S	Ŵ
22482.51	025	(s)	22820	C ₂ H ₆ O	
22485.9	C ₂ H ₃ Cl ³⁷		22834.10	H ₃ N	s
22490	C4H100		22848.83	COlgS	w
22535	CH5N		22852.40	C ² H ₂ Cl ³⁷ F	
22536.26	H ₃ N ¹⁵	w	22871.30	CO18S	w
22545	CHC1F ₂	(w)	22896.07	N2 ¹⁵ 0 ¹⁸	w
22553	CHC1F ₂	(w)	22899.32	N ¹⁵ N ¹⁴ O ¹⁸	w
22580	C1 ³⁵ NO	w	22900	C4H100	
22586	Cl ³⁵ NO	W	22904.95	025	(w)
22590	CH ₅ N		22915	CHNS ³⁴	
22593	Cl ³⁵ NO	m	22924.91	H ₃ N	s
22595	CH ₅ N		22928.45	025	(w)
22600	Cl ³⁵ NO	w	22940	C ₃ H ₆ O	
22612	CH ₅ N		22946.9	C ₂ H ₃ Cl ³⁵	
22624.96	H ₃ N ¹⁵	m	22965.71	CH ₂ O	m
22649.85	H ₃ N ¹⁵	m	22977	CH 5N	
22653.00	H ₃ N	S	23004	H ₃ N	W
22659.29	CHD ₂ Cl ³⁷	W	23021	CH3NO2	
22660	C ₂ H ₂ F ₂	(w)	23034.80	0 ₂ S	(s)
22672.90	C ¹³ H ₄ O		23035.00	CHD ₂ Cl ³⁵	W

Table	II.	Lines	Listed	in	Order	of	Frequency	Cont	inued
-------	-----	-------	--------	----	-------	----	-----------	------	-------

Frequency Mc	Molecule	Intensity	Frequency Mc	Molecule	Intensity		
23046.10	H ₃ N ¹⁵	w	23389.61	CCl ³⁷ N	m		
23048.2	HN ¹⁴ 2N ¹⁵		23390.53	CCl ³⁷ N	m		
23053.62	CHD ₂ Cl ³⁵	w	23402.47	CCl ³⁷ N	m		
23054.97	H ₃ N ¹⁵	m	23404	CH5N			
23055.0	C ₂ H ₃ Cl ³⁷		23414.25	0 ₂ S	(s)		
23068.51	CHD ₂ Cl ³⁵	w	23421.99	H ₃ N ¹⁵	m		
23080	C4H10O		23425	CH ₅ N			
23081	C ₂ H ₆ O		23430	CH ₅ N			
23096.7	HN2 ¹⁴ N ¹⁵		23433	C ₂ H ₂ F ₂	(s)		
23098.78	H ₃ N	S	23444.82	CH4O			
23115	CH5N		23446	CH ₅ N			
23121.20	CH40		23457	CH4O			
23134	C ₂ H ₄ O	m	23457.2	COS ³⁵	m*		
23148	C ₂ H ₆ O		23458.6	AsF3	w		
23181	$C_2H_2F_2$	(m)	23461	COS ³⁵	s*		
23198.66	COS ³⁶	W	23463.0	AsF3	w		
23200	CH ₂ O ₂		23464	CHNS			
23205	CH ₅ N		23466	COS ³⁵	m×		
23206	$C_2H_2F_2$	(w)	23467	CH3NO2			
23214	$C_2H_2F_2$	(m)	23472.6	AsFa	w		
23220	$C_2H_2F_2$	(m)	23476	CH ₂ Cl ₂			
23232.20	H3N	S	23482	AsF3	w		
23234	$C_2H_2F_2$	(w)	23483	CH3NO2			
23250	C ₄ H _{lO} O		23494.2	AsF3	w		
23250	CH ₃ NO ₂		23501.6	AsF3	w		
23260.3	C ¹³ Cl ³⁷ N	w	23510	CH5N			
23295	CH ₅ N		23513	AsF3	w		
23300	CH ₅ N		23517.0	AsF3	w		
23305	CH ₅ N		23522.4	AsF3	m		
23308	CHClF ₂	(s)	23532.1	AsF3	m		
23323	$C_2H_2F_2$	(m)	23534.67	C0 ¹⁷ S	w		
23330	CH3NO2		23538.9	C ₂ H ₃ Cl ³⁵			
23335	CH ₅ N		23543	AsF3	w		
23339	C ₃ H ₆ O		23546.4	AsF3	w		
23347.53	CH4O		23553	AsF3	w		
23361	$C_2H_2F_2$	(m)	23555	C ₂ H ₆ O			
23372.72	CCl ³⁷ N	m	23564.6	AsF3	W		
23389.00	CCl ³⁷ N	m	23575.3	AsF3	W		
23389	C ¹³ HNS		23584	AsF3	W		
Table	II.	Lines	Listed	in	Order	of	Frequency-Continued
-------	-----	-------	--------	----	-------	----	---------------------
-------	-----	-------	--------	----	-------	----	---------------------

Frequency Mc	Molecule	Intensity	Frequency Mc	Molecule	Intensity
23595	AsF ₃	W	23827	C ₃ H ₆ O	
23603	C ₃ H ₆ O		23839	C ₃ H ₆ O	
23605	C ₂ H ₆ O		23845	CHClF ₂	(s)
23610	C ₂ H ₄ O	m	23854.25	CH40	
23622.8	AsF3	w	23862.57	CCl ³⁵ N	m
23625.60	CCl ³⁶ N	s*	23863.5	CCl ³⁵ N	w
23629.84	CCl ³⁶ N	s*	23863.8	CCl ³⁵ N	w
23634.68	CCl ³⁶ N	m×	23864.0	CCl ³⁵ N	m
23644	CHClF ₂	(w)	23864.2	CCl ³⁵ N	m
23646.92	C ¹³ OS ³⁴	w	23864.5	CCl ³⁵ N	m
23649	$C_2H_2F_2$	(m)	23864.9	CCl ³⁵ N	w
23657.46	H3N	s	23865.1	CCl ³⁵ N	w
23660.62	C ₃ H ₆ O		23870.11	H3N	s
23661	COS ³⁴	w	23878.6	CCl ³⁵ N	m
23680	CHClF ₂	(w)	23878.9	CCl ³⁵ N	w
23680	CH ₅ N		23879.7	CCl ³⁵ N	w
23690	C ₆ H ₅ Br		23880.18	C ¹³ OSe ⁸⁰	w
23694.48	H3N	S	23883.30	CCl ³⁵ N	m
23706	CH ₃ NO ₂		23884.2	CCl ³⁵ N	m
23711.64	N2018	w	23884.8	CCl ³⁵ N	m
23718.21	N ¹⁴ N ¹⁵ O ¹⁸	w	23884.9	CCl ³⁵ N	s
23722.61	H ₃ N	s	23885.16	CCl ³⁵ N	s
23731.33	COS ³⁴	m	23885.3	CCl ³⁵ N	s
23733	CHC1F2	(s)	23885.76	COSe ⁸²	w
23733.03	0 ₂ S	(w)	23886.0	CCl ³⁵ N	m
23742	C ₆ H ₅ Br		23886.2	CCl ³⁵ N	m
23749	C ₃ H ₆ O		23896.29	C ₂ H ₂ Cl ³⁵ F	
23760.67	COS ³⁴	w	23899.59	CCl ³⁵ N	m
23760.98	C ¹³ Cl ³⁵ N	w	23900.20	CCl ³⁵ N	m
23770	$C_2H_2F_2$	(m)	23900.7	CCl ³⁵ N	m
23777.4	H3N	w	23917.9	CCl ³⁵ N	m
23778	C ₃ H ₆ O		23920.91	CCl ³⁵ N	m
23784.95	COS ³⁴	w	23922.32	H ₃ N ¹⁵	m
23793	C ₃ H ₆ O		23925.5	CCl ³⁵ N	m
23803	CHC1F2	(w)	23928.7	CCl ³⁵ N	m
23812	$C_2H_2F_2$	(m)	23934	C ₃ H ₆ O	
23814	HN2 ¹⁴ N ¹⁵		23938.6	CCl ³⁵ N	m
23815.7	HN 3		23944.4	CCl ³⁵ N	m
23826	CHClF2	(w)	23948.2	CCl ³⁵ N	m

			· · · · · · · · · · · · · · · · · · ·		
Frequency Mc	Molecule	Intensity	Frequency Mc	Molecule	Intensity
23954.5	CCl ³⁵ N	m	24197	C ¹⁴ OS	m*
23958.4	CCl ³⁵ N	m	24203	CSSe ⁸⁰	
23964.33	COSe ⁸²	m	24205.25	H3N	s
23968.6	CCl ³⁵ N	m	24214	CSSe ⁸⁰	
23974.4	CCl ³⁵ N	m	24224	C ¹⁴ OS	m×
23984.6	CCl ³⁵ N	m	24230	CSSe ⁸⁰	
23986	C ₂ H ₂ F ₂	(m)	24247.69	C ¹³ OS	m
23996,26	COSe ⁸²	w	24250.84	COSe ⁷⁷	w
24013.04	COS ³³	w	24252.00	CH ₂ DCl ³⁷	w
24014.97	COSe ⁸²	w	24253.51	COS	m
24015	CH ₅ N		24254.43	COSe ⁷⁸	m
24017	CH ₃ NO ₂		24266.68	CH ₂ DCl ³⁷	w
24020.21	COS ³³	w	24274.53	N ¹⁴ N ¹⁵ O	w
24021	$C_2H_2F_2$	(m)	24274.61	N ¹⁴ N ¹⁵ O	w
24021	CSSe ⁸²		24274.73	N ¹⁴ N ¹⁵ O	w
24025.39	COS ³³	w	24274.78	N2 ¹⁵ 0	w
24026.39	COSe ⁸⁰	w	24274.84	C ¹³ OS	w
24030.58	C ¹³ 0Se ⁷⁸	w	24278.33	CH ₂ DCl ³⁷	w
24032.75	COS ³³	w	24286.82	COSe ⁷⁸	w
24039.50	02S	(s)	24289.97	COS	w
24048	CSSe ⁸²		24294	C ₂ H ₂ F ₂	(m)
24055	CD40	w	24295	C ₂ H ₆ O	
24068.31	CH ₂ O	m	24300.58	C ¹³ OS	w
24075	CSSe ⁸²		24305.95	COSe ⁷⁸	w
24078	CH5N		24316.76	COS	w
24083.39	02S	(s)	24319.67	0 ₂ S	(w)
24102	C ₃ H ₆ O		24320	CH ₅ N	
24105.85	COSe ⁸⁰	m	24323	C ₂ H ₂ F ₂	(s)
24138.05	COSe ⁸⁰	m	24325.92	COS	s
24139.39	H ₃ N	s	24331.38	COSe ⁷⁷	m
24143	C ¹² C ¹³ H ₃ NS				
24150	$C_2H_2F_2$	(w)	24352	C ₂ H ₂ F ₂	(m)
24156.93	COSe ⁸⁰	m	24355.50	COS	m
24173.0	C ¹⁴ OS	s*	24357	C ₂ H ₂ F ₂	(w) ⁻
24174.30	COSe ⁷⁸	w	24362.48	C ₂ H ₂ Cl ³⁵ F	
24176.07	C ¹³ 0S	w	24363.97	COSe ⁷⁷	W
24179.62	COS	W	24369	C ₂ H ₆ O	
24184.09	COSe ⁸⁰	w	24376	CSSe ⁷⁸	
24188.31	COSe ⁸⁰	w	24381.07	COS	m

Table II. Lines Listed in Order of Frequency-Continued

Table II. Lines Listed in Order of Frequencies-Contin	Table	II. Line	s Listed	in	Order	of	Frequencies-Continu
---	-------	----------	----------	----	-------	----	---------------------

Intensity

(w) w s

m

(m) w w m

> m w w w m m

s m (m) s

m (s) m (w) (w)

m

Frequency Mc	Molecule	Intensity	Frequency Mc	Molecule
24383.21	COSe ⁷⁷	w	24602	C ₂ H ₂ F ₂
24385	C ₂ H ₆ O		24602.45	C ₃ DN ¹⁵
24386	CSSe ⁷⁸		24608.92	CBr ⁸¹ N
24401	COS	m	24609	C ₂ H ₃ NS ³⁴
24406	CSSe ⁷⁸		24614	CSSe ⁷⁶
24410.48	COSe ⁷⁶	m	24622.93	CBr ⁸¹ N
24411	COS	w	24627	CSSe ⁷⁶
24427.38	C ₂ H ₂ Cl ³⁷ F		24627	CH ₂ Cl ₂
24428	CH ₃ NO ₂		24631	CH ₂ Cl ₂
24440	CH ₂ Cl ₂		24633.71	CBr ⁷⁹ N
2442.98	COSe ⁷⁶	W	24636	CH ₂ Cl ₂
24448	CH ₃ NO ₂		24639	$C_2H_2F_2$
24450	$C_2H_2F_2$	(s)	24641.70	CH ₂ DCl ³⁵
24459	COS	w	24643.29	C ₂ ¹² C ¹³ DN
24462.42	COSe ⁷⁶	W	21615 82	∫ CBr ⁸¹ N]
24465.33	CBr ⁸¹ N	m	24049.02	CBr ⁷⁹ N∫
24471	CH ₂ Cl ₂		24646	C ₃ H ₆ O
24506.75	CBr ⁸¹ N	m	24658.89	CBr ⁸¹ N
24507.38	CBr ⁸¹ N	m	24660.33	CH ₂ DCl ³⁵
24508	CSSe ⁷⁷		24668	C2D40
24510	Cl ₃ ³⁵ Sb ¹²³		24675.25	CH2DCl ³⁵
24521	CSSe ⁷⁷		24680.1	H ₃ N
24527	CSSe ⁷⁷		24682.13	CBr ⁸¹ N
24528	CH ₅ N		24687.11	CBr ⁷⁹ N
24532.94	H3N	s	24689.96	CHN
24536	AsCl ₃ ³⁷	w	24691	C ₃ H ₆ O
24541.18	CBr ⁸¹ N	m	24713.05	CBr ⁷⁹ N
24545	$C_2H_2F_2$	(m)	24717.19	CBr ⁸¹ N
24553.42	H ₃ N ¹⁵	m	24734	C ₂ H ₂ F ₂
24554	Cl ₃ ³⁵ Sb ¹²¹		24755.22	CBr ⁷⁹ N
24566	CH ₂ O ₂		24758	C ₃ H ₆ O
24573.86	CBr ⁸¹ N	s	24760.76	CBr ⁷⁹ N
24574.76	COSe ⁷⁴	w	24770	$C_2H_2F_2$
24577	CH ₂ Cl ₂		24784.02	CBr ⁷⁹ N
24579	$C_2H_2F_2$	(w)	24803.00	CBr ⁷⁹ N
24583.00	CBr ⁷⁹ N	m	24806	$C_2H_2F_2$
24599	CH3NO2		24808	C ₂ H ₂ F ₂
24601.24	C ₂ H ₂ Cl ³⁵ F		24824	C ₂ H ₃ NS
24602	CSSe ⁷⁶		24826.70	CBr ⁷⁹ N

Table	II.	Lines	Listed	in	Order	of	Frequency-0	Cont:	inue	1
-------	-----	-------	--------	----	-------	----	-------------	-------	------	---

Frequency Mc	Molecule	Intensity	Frequency Mc	Molecule	Intensity
24834.3	C ₂ H ₄ O	S	25038	CH ₂ Cl ₂	
24842	CH2Cl2		25042	CH_2Br_2	(s)
24860.6	CBr ⁷⁹ N	m	25046	CH ₂ Cl ₂	x-7
24860.72	C ¹³ H ₄ O		25047	CH2Cl2	
24875	PCl ₃ ³⁷	w	25049.13	0 ₂ S	(s)
24881.90	H3N	S	25053	CH ₂ Cl ₂	
24884.57	CBr ⁷⁹ N	m	25056.04	H3N	s
24890.0	CBr ⁷⁹ N	m	25056.31	CH4O	
24890	CH ₅ N		25065	CH ₅ N	
24895.46	C ₂ H ₂ Cl ³⁵ F		25069	C ₂ H ₆ O	
24896	CH ₅ N		25072	CH_2Br_2	(s)
24901	CH40		25073	CH ₂ Cl ₂	
24908	CH_2Br_2	(m)	25077	C ₂ H ₃ NS	
24910	C ₂ H ₃ NS ³⁴		25090	CH_2Br_2	(m)
2491 6	CH ₂ Cl ₂		25099	CH ₂ Cl ₂	
24924.4	C ₂ H ₄ O	m	25100	C ₂ H ₃ NS	
24928.70	CH4O		25110	CH4O	
24930	C ₂ H ₃ NS ³³		25121.55	N ¹⁴ N ¹⁵ O	w
24931.5	AsCl ³⁵ Cl ₂ ³⁷	w	25123	CH ₂ Cl ₂	
24933.47	CH4O		25123.03	N2 ¹⁴ 0	m
24934.38	CH40		25123.28	N2 ¹⁴ 0	m
24943	CH_2Br_2	(w)	25123.64	N2 ¹⁴ 0	w
24959.08	CH40		25124.88	CH40	
24967	CH ₂ Cl ₂		25128	CH ₂ Br ₂	(s)
24970	CH ₂ Cl ₂		25147	CH_2Br_2	w
24971	C ₂ H ₃ NS		25151	CH40	
24972	CH_2Br_2	(w)	25152	CH_2Br_2	(w)
24973	AsCl ³⁵ Cl ₂ ³⁷	w	25160	CH ₂ Br ₂	(w)
24976	CH ₂ Cl ₂		25161	C2H3NS	
24981.5	CBr ⁷⁹ N	m	25167.68	C ¹³ H ₃ Cl ³⁷	w
24982	CH_2Br_2	(m)	25170	CH ₂ Br ₂	(m)
24996	CH ₂ Cl ₂		25170.97	0 ₂ S	(w)
24997	CH40		25182.50	C ¹³ H ₃ Cl ³⁷	w
25000	CH ₅ N		25194.20	C ¹³ H ₃ Cl ³⁷	W
25002	C ¹² C ¹³ H ₃ NS		25195	C ₂ H ₃ NS	
25002	CH ₂ Br ₂	(w)	25200	CH ₅ N	
25006.0	CBr ⁷⁹ N	m	25203	CH ₂ Br ₂	
25013	CH ₂ Br ₂	(m)	25215.30	C2 ¹² C ¹³ DN	W
25018	CH ₂ Cl ₂		25221	CH ₂ Cl ₂	
25018.14	CH ₄ O				

Frequency Mc	Molecule	Intensity	Frequency Mc	Molecule	Intensity
25223	CH ₂ Br ₂	(m)	25653	C ₂ H ₃ NS	
25245.58	C2 ¹² C ¹³ DN	w	25656.30	C ₂ H ₂ Cl ³⁵ F	
25248	$C_2H_2F_2$	(m)	25675	AsCl ₃ ³⁵	w
25269	C ₂ H ₃ NS		25695.23	H3N	s
25269	CH ₂ Cl ₂		25710	CH ₂ Cl ₂	
25280	CH ₂ Cl ₂		25711.50	CIN	s
25294.41	CH40		25715.14	H ₃ N	S
25306	C ₂ H ₃ NS		25716	PC12 ³⁵ C1 ³⁷	w
25306	PC1 ³⁵ C12 ³⁷	w	25724	AsCl ₃ ³⁵	w
25308	AsCl ₂ ³⁵ Cl ³⁷	w	25725	PCl2 ³⁵ Cl ³⁷	w
25312	CH40		25728.77	CIN	s
25323.51	H ₃ N ¹⁵	m	25729	$C_2H_2F_2$	(s)
25329.62	C ₃ DN	w	25741	$C_2H_2F_2$	(m)
25332	CH40		25745	CH ₂ Cl ₂	
25333	C ₂ H ₃ NS		25748	PCl ₂ ³⁵ Cl ³⁷	w
25349	CH40		25748	CH ₂ Cl ₂	
25350	C ₂ H ₂ F ₂	(s)	25748.18	CIN	m
25354	AsCl2 ³⁵ Cl ³⁷	w	25751	CH ₂ Cl ₂	
25381	AsCl_35Cl37	w	25752.65	CIN	S
25381	CH40		25763.23	CIN	m
25390	C2H3NS		25767	AsCl ₃ ³⁵	w
25392.81	02S	(s)	25783.50	CIN	S
25393	AsCl2 ³⁵ Cl ³⁷	w	25787.12	CH40	
25393.87	CIN	m	25789.85	CIN	S
25394	CH ₃ NO ₂		25802.92	CIN	m
25409	C ₂ H ₃ NS		25815.34	CIN	m
25411	AsCl2 ³⁵ Cl ³⁷	w	25823.08	CIN	S
25412	CH ₃ NO ₂		25829.31	CIN	m
25442	C ₂ H ₃ NS		25837.64	CIN	S
25450	$C_2H_2F_2$	(m)	25848	CH ₂ Cl ₂	
25470	CH5N		25850.78	CIN	m
25516	$C_2H_2F_2$	(s)	25872.24	CIN	S
25541.43	CH40		25878.18	CH40	
25550	C2H3NS		25893.73	CIN	S
25552	PCl2 ³⁵ Cl ³⁷	W	25906.28	CIN	S
25577.40	C ¹³ H ₃ Cl ³⁵	W	25927.66	CIN	S
25596.19	C ¹³ H ₃ Cl ³⁵	W	25954.36	CIN	S
25611.09	C ¹³ H ₃ Cl ³⁵	W	25969.58	CIN	m
25649	PCl2 ³⁵ Cl ³⁷	w	25971	PC1235C137	W

Table II. Lines Listed in Order of Frequency-Continued

Table	II.	Lines	Listed	in	Order	of	'Frequencies-Continued	1
-------	-----	-------	--------	----	-------	----	------------------------	---

Frequency Mc	Molecule	Intensity		Frequency Mc	Molecule	Intensity
÷				26358.82	CH ₂ O	w
25991.92	CIN	S		26410	$C_2H_2F_2$	(w)
26000.77	CC1 ³⁷ F ₃			26417	CHCl ₃ ³⁵	w
26001.20	CC1 ³⁷ F ₃			26450.73	C2 ¹² C ¹³ HN	m
26003.04	CC1 ³⁷ F ₃			26466	$C_2H_2F_2$	(m)
26007	CH ₂ Cl ₂			26501.46	C ₃ HN ¹⁵	m
26008.55	CCl ³⁷ F ₃			26518.91	H3N	s
26010.09	CC1 ³⁷ F ₃			26553	F₃PS	
26010.73	CC1 ³⁷ F ₃			26562	CH40	
26014.69	CCl ³⁷ F ₃			26565	C2D40	w
26016.84	CC1 ³⁷ F ₃			26570.77	CH ₃ Cl ³⁵	m
26022.20	CC1 ³⁷ F ₃			26574	F ₃ PS	
26023.93	CCl ³⁷ F ₃			26589.49	CH ₃ Cl ³⁵	m
26042.41	H ₃ Cl ³⁷ Si ²⁸	w		26600	NO2	
26043.29	H ₃ Cl ³⁷ Si ²⁸	w		26604.57	CH ₃ Cl ³⁵	m
26046.30	H ₃ Cl ³⁷ Si ²⁸	W	•	26631.58	CCl ³⁵ F ₃	
26046.32	CIN	m		26634	$C_2H_2F_2$	(s)
26047.97	H ₃ Cl ³⁷ Si ²⁸	w		26634.31	CC1 ³⁵ F ₃	
26050.26	H ₃ Cl ³⁷ Si ²⁸	m		26639,40	CCl ³⁵ F ₃	
26051.09	H ₃ Cl ³⁷ Si ²⁸	W		26642.22	CCl ³⁵ F ₃	
26053.35	H ₃ Cl ³⁷ Si ²⁸	w		26649	$C_2H_2F_2$	(m)
26055.86	H ₃ Cl ³⁷ Si ²⁸	w		26655.00	H ₃ N	s
26057.10	H ₃ Cl ³⁷ Si ²⁸	w		26669.78	CCl ³⁵ F ₃	
26063.52	H ₃ Cl ³⁵ Si ²⁸	W		26670.19	CCl ³⁵ F ₃	
26118	$C_2H_2F_2$	(s)		26672.59	CCl ³⁵ F ₃	
26120	CH40			26674.77	CCl ³⁵ F ₃	
26152	PCl ₃ ³⁵	w		26679.62	CCl ³⁵ F ₃	
26163	$C_2H_2F_2$	(m)		26681.52	CCl ³⁵ F ₃	
26164.57	CH3C137	m		26682.30	CCl ³⁵ F ₃	
26171	PCl ₃ ³⁵	w		26683.78	CCl ³⁵ F ₃	
26179.30	CH3C137	m		26684.69	CCl ³⁵ F ₃	
26181.6	ICl ³⁷	m		26685.25	H ₃ Cl ³⁵ Si ²⁸	w
26190	PCl ₃ ³⁵	w		26685.73	CCl ³⁵ F ₃	
26191.13	CH ₃ Cl ³⁷	m		26686.15	H ₃ Cl ³⁵ Si ²⁸	W
26243.0	H ₃ N ¹⁵	w		26687.34	H ₃ Cl ³⁵ Si ²⁸	w
26295	CH ₂ Cl ₂			26687.38	CCl ³⁵ F ₃	
26313.11	CH4O			26690.14	CC1 ³⁵ F ₃	
26328	C ₂ H ₂ F ₂	(s)		26690.92	H ₃ Cl ³⁵ Si ²⁸	W
26337	$C_2H_2F_2$	(m)		26692.66	H ₃ Cl ³⁵ Si ²⁸	W

Table II. Lines Listed in Order of Frequencies-Continued

Frequency Mc	Molecule	Intensity		Frequency Mc	Molecule	Intensity
26695.00	H ₃ Cl ³⁵ Si ²⁸	W		27221.02	ICl ³⁵	m
26696.10	H ₃ Cl ³⁵ Si ²⁸	m		27225.32	ICl ³⁵	m
26697.04	CCl ³⁵ F ₃			27228.34	ICl ³⁵	m
26697.45	H ₃ Cl ³⁵ Si ²⁸	m		27242.59	ICl ³⁵	w
26699.14	CCl ³⁵ F ₃			27254.90	ICl ³⁵	m
26700.48	H ₃ Cl ³⁵ Si ²⁸	w		27283.29	CH ₄ O	
26703.34	H ₃ Cl ³⁵ Si ²⁸	w		27283.66	ICl ³⁵	
26705.02	H ₃ Cl ³⁵ Si ²⁸	W		27286.25	ICl ³⁵	
26713.07	H ₃ Cl ³⁵ Si ²⁸	W		27292.63	ICl ³⁵	
26723	$C_2H_2F_2$	(w)		27294.47	C ₃ HN	s
26777.20	02S	(s)		27295.05	ICl ³⁵	
26832	$C_2H_2F_2$	(m)		27297	$C_2H_2F_2$	(s)
26847.27	CH ₄ O			27333.85	ICl ³⁵	m
26855.01	C ¹³ H ₄ O	w		27336.68	ICl ³⁵	m
26865	$C_2H_2F_2$	(s)		27337.38	ICl ³⁵	m
26880	$C_2H_2F_2$	(m)		27346.31	ICl ³⁵	m
26936.87	C ₃ D ₄	w		27354.71	ICl ³⁵	m
26937.24	C ₃ D ₄	w		27356.58	ICl ³⁵	m
26979.03	C ¹³ H ₄ O			27357.73	ICl ³⁵	m
26980.40	C ¹³ H ₄ O		r.	27364.12	C ¹³ H ₄ O	
26992	C ₂ H ₂ F ₂	(s)		27392.00	HDS ³⁴	
27014	C ₂ H ₂ F ₂	(s)		27412	$C_2H_2F_2$	(m)
27047.19	C ¹³ H ₄ O			27470.99	CH4O	
27050.45	C ¹³ H ₄ O			27472.54	CH4O	
27052.97	C ¹³ H ₄ O			27478.00	H ₃ N	s
27072.17	C ¹³ H ₄ O			27555.73	C ¹³ H ₂ O	W
27104.80	C ¹³ H ₄ O			27566.31	HDS	
27105.93	C ¹³ H ₄ O			27581.65	C ¹³ H ₄ O	W
27112	$C_2H_2F_2$	(m)		27681	$C_2H_2F_2$	(s)
27122.76	C ¹³ H ₄ O			27772.52	H ₃ N	m
27179.10	C2 ¹² C ¹³ HN	m		27810	CH ₂ O ₂	
27181.45	C2 ¹² C ¹³ HN	m		27817.50	CH ₄ O	
27194.75	ICl ³⁵	m		27818	C ₂ H ₂ F ₂	(s)
27202.64	ICl ³⁵	W		27820.87	CH40	
27204.99	ICl ³⁵	m		27880.04	C ¹³ H ₄ O	
27208.54	ICl ³⁵	m		27972	$C_2H_2F_2$	(s)
27215.60	C ¹³ H ₄ O			28069.99	C ¹³ H ₃ I	W
27216	$C_2H_2F_2$	(m)		28085	C ₄ H ₉ I	
27217.51	ICl ³⁵	m		28145.01	C ¹³ H ₃ I	W

Table	II.	Lines	Listed	in	Order	of	Frequenci	les-Continued
-------	-----	-------	--------	----	-------	----	-----------	---------------

Frequency Mc	Molecule	Intensity	Frequency Mc	Molecule	Intensity
28145.2	H₃FSi ³⁰	w	28905.70	CH4O	
28169.31	CH ₄ O		28954	$C_2H_2F_2$	(s)
28174	$C_2H_2F_2$	(s)	28974.85	CH ₂ O	S
28206.90	C ¹³ H₃I	w	29061.14	H3N	m
28253.84	C ¹³ H₃I	w	29080	C ₂ D ₄ O	w
28267.71	C ¹³ H₄O	w	29113.76	CH40	
28314	$C_2H_2F_2$	(w)	29315.20	C ¹³ H ₄ O	
28316.03	CH40		29321.46	02S	(s)
28339	$C_2H_2F_2$	(m)	29345.03	CD3B110	w
28343.64	C ^{l3} H₃I	w	29345.28	CD3B110	w
28380	C ₂ H ₃ NS		29345.52	CD3B110	w
28393.4	H ₃ FSi ²⁹	w	29345.68	CD ₃ B ¹¹ O	w
28411.19	C ¹³ H ₃ I	w	29345.93	CD ₃ B ¹¹ O	w
28412	$C_2H_2F_2$	(s)	29346.24	CD ₃ B ¹¹ O	w
28439	$C_2H_2F_2$	(m)	29 3 46.65	CD ₃ B ¹¹ O	w
28458	$C_2H_2F_2$	(m)	29460	02S	
28495	C ₂ D ₄ O	w	29530	C ₄ H ₉ Cl ³⁷	
28518.14	C ¹³ H ₃ I	w	29598.95	CH3I	m
28550.86	C ¹³ H ₃ I	w	29636.91	CH ₄ O	
28551	$C_2H_2F_2$	(w)	29650	CHN	m
28575	$C_2H_2F_2$	(w)	29688	C ₂ H ₄ O	s
28582.40	C ¹³ H ₂ O	w	29697.95	CH3I	m
28594.74	C ¹³ H ₃ I	w	29700	C ₂ H ₃ NS ³⁴	
28604.73	H ₃ N	s	29707.24	CH3F3Si	
28610	C ₄ H ₉ Br ⁷⁹		29724.91	CH3F3Si	
28615	$C_2H_2F_2$	(w)	29735.71	CH3I	m
28621.04	C ¹³ H ₄ O	w	29773.95	CH3I	w
28650.91	C ^{1.3} H₃I	w	29782.71	CH3I	m
28655.80	H₃FSi ²⁸	m	29872.52	CH3I	m
28687.21	C ¹³ H ₃ I	w	29889.33	CH4O	
28689	$C_2H_2F_2$	(w)	29914.66	H3N	s
28747.67	C ¹³ H ₄ O	w	29923.50	CH3I	m
28831.90	HF₃Si ²⁸		29939.87	CH3I	m
28842.84	HDS		29955.72	C ¹³ H ₄ O	
28852	$C_2H_2F_2$		29973.06	CH4O	
28858	$C_2H_2F_2$		29974.47	Cl ³⁷ F	W
28858.11	0 ₂ S	(s)	29986.84	CH3I	w
28869.59	C ¹³ H ₄ O	w '	30003.22	Cl ³⁷ F	w
28874.45	CH4O		30026.19	Cl ³⁷ F	w

Fabl	.e	II.	Lines	Listed	in	Order	of	Frequencies-Con	tinued
------	----	-----	-------	--------	----	-------	----	-----------------	--------

Frequency Mc	Molecule	Intensity	Frequency Mc	Molecule	Intensity
30046.99	CH3I	m	31152.56	C ₃ H ₃ D	W
30075.08	CH3I	m	31185	C ₄ H ₉ I	
30079.72	CH3I	m	31209.75	CH4O	
30119.91	CD ₃ B ¹⁰ O	w	31226.70	CH ₄ O	
30120.21	CD ₃ B ¹⁰ O	w	31279.60	F ₃ P	m
30120.56	CD3B ¹⁰ 0	w	31342.31	C ¹³ H ₄ O	
30120.86	CD ₃ B ¹⁰ O	w	31350.19	C ¹³ H ₄ O	
30121.21	CD3B100	w	31358.31	CH ₄ O	
30121.32	CH3I	m	31424.97	H ₃ N	S
30121.56	CH ₃ B ¹⁰ O	w	31718.28	Cl3IN	m
30121.86	CH ₃ B ¹⁰ O	w	31730.50	Cl3IN	m
30123.64	CH3I	m	31741.50	C ¹³ IN	W
30127.80	C ¹³ H ₄ O	w	31763.34	C ¹³ IN ·	m
30150	C ₄ H ₉ Cl ³⁵		31783.31	C ¹³ IN	m
30179.71	CH3I	m	31793.46	C ¹³ IN	m
30215.95	CH3I	m	31848.77	CIN	m
30288.36	C1 ³⁷ F	m	31943	C_2D_4O	w
30257.16	Cl ³⁷ F	m	32004.43	C ¹³ H ₄ O	w
30280.11	C1 ³⁷ F	m	32190	CD40	w
30308.00	CH ₄ O		32200.58	CIN	S
30429.88	CH ₄ O		32203.57	CIN	s
30453.46	CH3I	m	32215.56	CIN	S
30505	CD40	w	32226.85	CIN	s
30545.99	Cl ³⁵ F	m	32248.52	CIN	s
30582.61	C1 ³⁵ F	m	32286.33	CIN	S
30600	CD40	Ŵ	32271.10	C ¹³ H ₄ O	w
30611.76	Cl ³⁵ F	w	32278.55	CIN	s
30643.69	C ¹³ H ₄ O		32325	CD40	w
30752.26	CH40		32386.29	CIN	S
30807.41	Cl ³⁵ F	s	32392.59	C ¹³ Br ⁸¹ N	m
30843.95	Cl ³⁵ F	s	32409.06	C ¹³ Br ⁸¹ N	m
30858.40	CH4O		32575.53	C ¹³ H ₄ O	w
30873.00	C1 ³⁵ F	m	32581.73	C ¹³ Br ⁷⁹ N	m
31000	CH ₂ O ₂		32601.46	C ¹³ Br ⁷⁹ N	m
31020.7	$C_2H_2F_3$	m	32643.13	CBr ⁸¹ N	m
31066.8	C ₂ H ₂ F ₃	m	32690	C ₄ H ₉ Br ⁷⁹	
31114.4	C ₂ H ₂ F ₃	m	32720.28	CBr ⁸¹ N	m
31140	CD40	w	32770.13	CBr ⁸¹ N	S
31152.00	C ₃ H ₃ D	w	32786.65	CBr ⁸¹ N	S

Frequency Mc	Molecule	Intensity		Frequency Mc	Molecule	Intensity
32790	CD40	w		34410	• • CD40	w
32804.56	CBr ⁷⁹ N	m		34536.74	CH4018	w
32883.47	C ¹³ H ₄ O	w		34627.16	CH3B ¹¹ O	m
32913.24	CBr ⁸¹ N	m		34627.42	CH3B110	s
32956.68	CBr ⁷⁹ N	m		34627.64	CH3B ¹¹ O	m
32976.40	CBr ⁷⁹ N	s		34627.81	CH3B110	m
32998.94	C ¹³ H ₄ O			34628.16	CH ₃ B ¹¹ O	m
33156.95	H ₃ N	s		34628.58	CH ₃ B ¹¹ O	m
33160.35	C ₂ ¹² C ¹³ H ₄	w		34628.85	CH ₃ B ¹¹ O	S
33160.94	C ₂ ¹² C ¹³ H ₄	w		34629.27	CH ₃ B ¹¹ O	m
33192.97	C ¹³ H ₄ O			34761.75	CH4018	w
33220.05	C ¹³ H ₄ O			34831.64	CH40 ¹⁸	w
33252,22	C2 ¹² C ¹³ H ₄	w		34889.05	C ¹³ Cl ³⁷ N	w
33252.88	C2 ¹² C ¹³ H4	w		35043.24	CHN	m
33285	C ₂ D ₄ O	w		35067.99	CCl ³⁷ N	m
33340	CD40	w		35068	C ₂ D ₄ O	w
33691.72	CH40			35080.39	CCl ³⁷ N	S
33693.69	CH4O			35084.15	CCl ³⁷ N	S
33918.97	CH ₄ O ¹⁸	w		35090	CD40	w
33925.49	CH ₄ O ¹⁸	w		35091.97	CCl ³⁷ N	m
33965	CD40	w		35100	CD40	w
34001.40	CH4O			35134.44	H ₃ N	m
34003.61	CH40			35165	CD40	w
34048.42	CH4018	w		35206.11	CH4018	w
34150	C ₂ H ₄ O	S		35215	CD ₄ O	w
34155.63	CH4018	w		35335	CD40	w
34158	C ₂ H ₄ O	m		35341	C ₂ D ₄ O	w
34168.47	C ₂ ¹² C ¹³ H ₄			35440	CD40	w
34169.13	C ₂ ¹² C ¹³ H ₄			35460	C ₄ H ₉ Cl ³⁷	
34182.71	C ₃ H ₄	m		35618.81	C ¹³ Cl ³⁵ N	w
34183.37	C ₃ H ₄	m		35634.85	C ¹³ Cl ³⁵ N	m
34246.30	C ₃ H ₄			35639.78	C ¹³ Cl ³⁵ N	m
34277.05	C ₃ H ₄			35649.56	C ¹³ Cl ³⁵ N	w
34278.98	C ₃ H ₄			35661.78	CH4018	w
34310	C ₄ H ₉ I			35748.2	CD40	W
34313.21	C ₃ H ₄			35791	C ₂ H ₄ O	S
34314.64	CH ₄ O ¹⁸	W		35805.09	CC135N	S
34327.23	C ₂ D ₃ N	W		35805.7	CD40	W
34327.82	C ₂ D ₃ N	W		35810.8	CD40	W
1		1	1	1 32820.65	CCLUNN	1 S

Table II. Lines Listed in Order of Frequencies-Continued

[able	II.	Lines	Listed	in	Order	of	Fred	uencies-Continued
-------	-----	-------	--------	----	-------	----	------	-------------------

Frequency Mc	Molecule	Intensity	Frequency Mc	Molecule	Intensity
35825.95	CCl ³⁵ N	S	36942.15	C ₂ H ₃ N	
35835.74	CCl ³⁵ N	S	26946.4	CD ₄ O	W
35917.66	CH ₃ B ¹⁰ O	m	36987	CD40	w
35917.96	CH ₃ B ¹⁰ O	m	37030	CD40	w
35918.29	CH ₃ B ¹⁰ O	m	37229.8	CD40	w
35918.55	CH ₃ B ¹⁰ O	m	37322.8	CD40	w
35919.08	CH ₃ B ¹⁰ O	w	37325	CD40	w
35919.60	CH ₄ B ¹⁰ O	m	37329	C ₂ H ₄ O	S
35919.95	CH ₄ B ¹⁰ O	m	37385.18	H ₃ N	m
35920.22	CH ₄ B ¹⁰ O	m	37418.97	CH4018	w
35920.40	CH4B100	w	37425	CD40	w
36080.0	CD ₄ 0	w	37462.6	CD40	w
36169.24	CH ₄ O	(s)	37490	C ₄ H ₉ I	
36193.55	CH ₄ O ¹⁸	w	37579.85	CH40 ¹⁸	w
36210	C ₄ H ₉ Cl ³⁵		37690	CH40	(s)
36240	CH4O	(m)	37781	C ₂ H ₄ O	S
36312.57	CH ₄ O ¹⁸	w	37900	CD ₄ O	w
36332.7	CD ₄ O	w	38006.47	CH ₃ Br ⁸¹	w
36442.9	CD40	w	38030.77	CH ₃ Br ⁸¹	m
36483.9	CD ₄ O	w	38052.6	CD40	w
36488.82	COS	s	38053.87	CH4018	w
36532.47	COS	s	38066.72	CH3Br ⁸¹	m
36570.83	COS	S	38097.45	CH ₃ Br ⁸¹	m
36600.81	COS	m	38116.65	CH ₃ Br ⁸¹	S
36615.26	COS	m	38126.97	CH ₃ Br ⁸¹	m
36632	$C_2H_2F_2$	(m)	38128.40	CH ₃ Br ⁷⁹	W
36655	CD ₄ O	w	38123.8	CD40	w
36777.18	C ¹² C ¹³ H ₃ N		38157.30	CH ₃ Br ⁷⁹	m
36787.33	CH ₄ O ¹⁸	W	38157.70	CH ₃ Br ⁸¹	m
36790	C ₄ H ₉ Br ⁷⁹		38175.08	CH ₃ Br ⁸¹	m
			38200.52	CH ₃ Br ⁷⁹	m
36793.64	C ₂ H ₃ N	S	38218.21	CH ₃ Br ⁸¹	m
36794.26	C ₂ H ₃ N	S	38237.14	CH ₃ Br ⁷⁹	m
36794.88	C ₂ H ₃ N	S	38237.14	CH ₃ Br ⁸¹	m
36795.38	C ₂ H ₃ N	S	38247.77	CH ₃ Br ⁸¹	m
36796.27	C ₂ H ₃ N	S	38260.10	CH ₃ Br ⁷⁹	S
36797.52	C ₂ H ₃ N	S	38272.40	CH ₃ Br ⁷⁹	m
36870.94	C ₂ H ₃ N		38290	CH4O	(m)
36903.40	C ₂ H ₃ N		38309.45	CH ₃ Br ⁷⁹	m

Frequency Mc	Molecule	Intensity	Frequency Mc	Molecule	Intensity
38330.25	CH ₃ Br ⁷⁹	m	40940	ČD40	w
38335	CH4O	(w)	41230	CD40	w
38381.70	CH ₃ Br ⁷⁹	m	41330	C ₄ H ₉ Cl ³⁷	
38404.49	CH ₃ Br ⁷⁹	m	41394.95	CHF3	s
38417.09	CH ₃ Br ⁷⁹	m	41540	CD40	w
38445	CH40	(m)	41581	C ₂ H ₄ O	s
38530	CD40	w	41688	CD40	w
38547.73	CH4018	w	41750	CD40	w
38647.87	CH4018	w	42000	CD40	w
38702	C ₂ H ₄ O	s	42020	CD40	w
38782.21	C ¹² C ¹³ H ₃ N		42150	CD40	w
38783.31	C ¹² C ¹³ H ₃ N		42200	C ₄ H ₉ Cl ³⁵	
38967.0	CD40	w	42280	CH4O	(w)
39048	CD40	w	42285	CD40	w
39065	CD40	w	42517.38	F3N ¹⁵	
39149.41	CH4018	w	42700	CD40	w
39210.48	CH4018	w	42721.73	F3N	w
39505.01	CH4018	w	42722.16	F3N	w
39574.97	CH4018	w	42723.28	F ₃ N	w
39582	C ₂ H ₄ O	m	42723.94	F ₃ N	w
39592	C2D40	w	42724.36	F ₃ N	w
39661.80	CH4018	w	42726.60	F3N	w
39677	C ₂ H ₄ O	s	42727.39	F3N	w
39941.54	H ₃ N	m	42345	CD40	w
40038.80	C ₂ H ₂ O		43398	C ₂ H ₄ O	s
40083	CD40	w	42525	CD40	w
40210.27	C ₂ H ₃ N		42545	CD40	W
40211.16	C ₂ H ₃ N		43630	CD ₄ O	W
40240	CD40	w	43995	CD40	w
40313.37	C ₂ H ₃ N		44100	CH4O	(s)
40364.07	C ₂ H ₃ N		45324.24	CH5N	
40366.55	C ₂ H ₃ N		45324.94	CH5N	
40417.90	C ₂ H ₂ O		45502.4	CDCl ₃ ³⁵	w
40424.49	C ₂ H ₃ N		45789	CHD ₂ Cl ³⁵	W
40570	C ₄ H ₉ I		46099.4	CHD ₂ Cl ³⁵	w
40640	CD40	w	46227.2	CHCl ₃ ³⁵	m
40793.62	C ₂ H ₂ O		46407	CHD ₂ Cl ³⁵	W
40885	C ₄ H ₉ Br ⁷⁹		46610	CH40	(w)
40929.20	HDS		46918.82	F ₃ P	m
1					

Table II. Lines Listed in Order of Frequencies-Continued

Table	II.	Lines	Listed	in	Order	of	Frequencies-Continued
			TTC 000		01 001	OT.	11 equeneres - Convinced

Frequency Mc	Molecule	Intensity		Frequency Mc	Molecule	Intensity
46919.02	F3P	m		48529.6	C ¹³ H ₄ O	
46940	F₃P			48651.64	COS	S
47010	F3P			48707.7	CH4O	(m)
47033	F3P			49032	CH4O	(w)
47040	F₃P			49070.8	C ¹³ H ₄ O	
47052	CH₃DO	w		49668.07	C ¹² C ¹³ D ₃ N	w
47080	C ¹³ H₄O	w		46670.43	C ¹² C ¹³ D ₃ N	w
47087.39	C ¹² C ¹³ D ₃ N	w		49671.19	C ¹² C ¹³ D ₃ N	w
47088.69	C ¹² C ¹³ D ₃ N	w		49724.73	C ¹³ H₃F	m
47089.43	C ¹² C ¹³ D ₃ N	w		49750	CH4O	(w)
47090.41	C ¹² C ¹³ D ₃ N	w		49867.2	CH4O	(s)
47091.05	C ¹² C ¹³ D ₃ N	w		50236.90	HDO	w
47143.85	C ₂ D ₃ N	w		50912.27	HDS ³⁴	
47145.20	C ₂ D ₃ N	w		51071.69	CH₃F	s
47146.00	C ₂ D ₃ N	w		51073.27	HDS	
47146.68	C ₂ D ₃ N	w		51270.86	C ₃ H ₄	m
47147.00	C ₂ D ₃ N	w		51273.76	C ₃ H ₄	s
47147.60	C ₂ D ₃ N	w		51274.75	C ₃ H ₄	s
47204.7	C ¹³ H ₄ O			51280.45	C ₃ H ₄	
47209.2	C ¹³ H ₄ O			51296.33	C ₃ H ₄	
47266	CH3DO	w		51304.65	C ₃ H ₄	
47346	CH3DO	w		51305.93	C ₃ H ₄	
47359.7	CH3DO	w		51307.47	C ₃ H ₄	
47462.40	COS ³⁴	S		51334.81	C ₃ H ₄	
47760	C ^{l3} H ₄ O			51369.12	C ₃ H ₄	
47840	CH4O			51410.51	C ₃ H ₄	
47899.3	C ¹³ H ₄ O			51415.35	C ₃ H ₄	
47905.36	HDS			51418.23	C ₃ H ₄	
47950.1	C ¹³ H ₄ O			51418.75	C ₃ H ₄	
48010	CH40			51469.85	C ₃ H ₄	
48192	CH40	(w)		51487.51	C ₂ D ₃ N	w
48211.46	COSe ⁸⁰	s		51490.05	C ₂ D ₃ N	w
48248	CH40	(w)		51490.90	C ₂ D ₃ N	w
48260	CH40	(w)		52979.67	HDS ³⁴	w
48284.60	CH ₂ O	S		53200.93	HDS	W
48371.9	CH40	(s)		53592.2	02	m
48376.4	CH40	(s)		54130.0	02	m
48406	CH4O	(w)		54672.5	02	m
48508.88	COSe ⁷⁸	S		55220.8	02	m
			1			

Frequency Mc	Molecule	Intensity	Frequency Mc	Molecule	Intensity
55784.1	02	s	72414.62	- CDN	m
55916.19	COSe ⁸²	s	72416.68	CDN	w
56246.47	COSe ⁸⁰	S	72838.14	CH ₂ O	S
56265.1	02	m	73738.42	CBr ⁸¹ N	S
56362.8	02	s	73741.20	CBr ⁸¹ N	s
56593.16	COSe ⁷⁸	S	74159.48	CBr ⁷⁹ N	s
56968.7	02	s	74162.76	CBr ⁷⁹ N	S
57612.0	02	S	74829.54	CH3I	S
58324.0	02	S	74849.92	CH3I	s
58446.2	02	3	74926.04	CH3I	s
59163.4	02	s	74960.76	CH3I	s
59610	02	s	74964.36	CH₃I	s
60057.92	C ₂ H ₂ O		74967.66	CH ₃ I	S
60306.4	02	S	74971.76	CH3I	s
60436	02	s	74976.22	CH3I	s
60615.88	C ₂ H ₂ O		74977.62	CH3I	S
60617.30	C ₂ H ₂ O		74982.18	CH3I	s
60625.68	C ₂ H ₂ O		74986.14	CH3I	s
60814.08	COS	s	74993.28	CH3I	s
61120	02	s	75004.28	CH3I	S
61190.24	C ₂ H ₂ O		75007.62	CH3I	S
61800.2	02	S	75016.20	CH3I	s
62411.7	02	s	75019.28	CH3I	s
62486.1	02	s	75026.20	CH3I	s
62970	02	S	75027.58	CH3I	S
63568.3	02	S	75081.02	CH3I	S
64127.6	02	S	75551.73	HDS	
64678.9	02	m	76152.28	CH ₃ Br ⁸¹	S
65220	02	m	76207.66	CH3Br ⁸¹	s
65770	02	m	76213.16	CH3Br ⁸¹	S
70949.66	CIN	s	76230.18	CH3Br ⁸¹	S
70959.14	CIN	s	76243.66	CH ₃ Br ⁸¹	s
70961.30	CIN	s	76248.32	CH3Br ⁸¹	S
70963.90	CIN	s	76249.94	CH ₃ Br ⁸¹	S
71173.58	C ¹³ DN	W	76255.68	CH ₃ Br ⁸¹	S
71174.96	C ¹³ DN	W	76261.96	CH ₃ Br ⁸¹	S
71177.02	C ¹³ DN	W	76278.16	CH3Br ⁸¹	S
72409.35	CH ₂ O	S	76425.18	CH ₃ Br ⁷⁹	S
72413.25	CDN	W	76491.36	CH ₃ Br ⁷⁹	S

Table II. Lines Listed in Order of Frequencies-Continued

[able	II.	Lines	Listed	in	Order	of	Frequencies-Continued
-------	-----	-------	--------	----	-------	----	-----------------------

Frequency Mc	Molecule	Intensity	Frequency Mc	Molecule	Intensity
76496.60	CH ₃ Br ⁷⁹	S	88601.49	CHN	S
76517.36	CH ₃ Br ⁷⁹	S	88603.56	CHN	S
76532.88	CH ₃ Br ⁷⁹	S	95259.24	CH ₃ Br ⁸¹	S
76538.02	CH ₃ Br ⁷⁹	S	95263.47	CH3Br ⁸¹	S
76540.20	CH ₃ Br ⁷⁹	s	95281.53	CH3Br ⁸¹	S
76547.24	CH ₃ Br ⁷⁹	S	95293.89	CH3Br ⁸¹	S
76554.82	CH ₃ Br ⁷⁹	S	95297.55	CH3Br ⁸¹	S
76575.22	CH ₃ Br ⁷⁹	S	95307.48	CH3Br ⁸¹	S
76621.78	CH ₃ Br ⁷⁹	S	95310.78	CH ₃ Br ⁸¹	S
77413	CIN	S	95319.12	CH3Br ⁸¹	S
78511.68	CH3Cl ³⁷	m	95322.15	CH ₃ Br ⁸¹	s
78512.80	CH ₃ Cl ³⁷	m	95336.01	CH ₃ Br ⁸¹	s
78522.00	CH3Cl ³⁷	m	95615.73	CH ₃ Br ⁷⁹	S
78523.32	CH3Cl ³⁷	s	95619.24	CH ₃ Br ⁷⁹	S
78526.14	CH ₃ Cl ³⁷	m	95640.87	CH3Br ⁷⁹	S
78527.10	CH3C1 ³⁷	s	95654.73	CH ₃ Br ⁷⁹	S
79736.96	CH3Cl ³⁵	s	95659.20	CH3Br ⁷⁹	S
79751.02	CH ₃ Cl ³⁵	S	95669.97	CH3Br ⁷⁹	S
79755.68	CH ₃ Cl ³⁵	S	95673.54	CH3Br ⁷⁹	s
79764.56	CH3C135	s	95676.39	CH3Br ⁷⁹	S
79768.98	CH3C135	s	95677.20	CH ₃ Br ⁷⁹	S
79769.94	CH ₃ Cl ³⁵	s	95683.62	CH ₃ Br ⁷⁹	S
81936	CBr ⁸¹ N	s	95688.27	CH ₃ Br ⁷⁹	S
82405	CBr ⁷⁹ N	S	95706.12	CH ₃ Br ⁷⁹	S
83864	CIN	S	102000	CH3F	S
86308.12	C ^{l3} HN	S	110201.1	C ¹³ 0	w
86309.49	C ^{l3} HN	S	115270.56	CO	S
86311.54	C ^{l3} HN	S	117000	ND 3	
88600.11	CHN	S	129000	CIN	S

Table III. Casimir's Function for $J=1\rightarrow 10$, $I=1\rightarrow 9/2$

Values of [3/4C(C+1) - I(I+1)J(J+1)]/2I(2I-1)(2J-1)(2J+3), where C = F(F+i) - I(I+1) - J(J+1)

Table III

Casimir's function for $J = 1 \rightarrow 10$, $I = 1 \rightarrow 9/2$.

Table III. Values of [3/4C(C+1)-I(I+1)J(J+1)]/2I(2I-1)(2J-1)(2J+3), where C=F(F+1)-I(I+1)-J(J+1)

I	1	3/2	2	5/2	3	7/2	4	9/2
J F 11/2 5 9/2 4 7/2 3 5/2 2 3/2 1 1/2 0	 	 0.050000 -0.200000 0.250000	 0.050000 -0.175000 0.175000	 0.050000 -0.160000 0.140000	 0.050000 -0.150000 0.120000	0.050000 -0.142857 0.107143	0.050000 -0.137500 0.098214 	0.050000
{ 13/2 6 11/2 5 9/2 4 7/2 3 5/2 2 3/2 1 1/2 0	 0.071429 -0.250000 	0.071429 -0.178571 0.250000	0.071429 -0.142857 -0.053571 0.125000 0.250000		0.071429 -0.107142 -0.078571 0.042857 0.171429	0.071429 -0.096939 -0.081633 0.025510 0.153061	0.071429 -0.089286 -0.082908 0.014031 	0.071429 -0.083333 -0.083333 0.005952
(15/2 7 13/2 6 11/2 5 9/2 3 7/2 3 5/2 2 3/2 1 1/2 0	 0.083333 -0.250000 0.200000	 0.083333 -0.166667 -0.050000 0.200000	 0.083333 -0.125000 -0.091667 0.050000 0.200000	-0.100000 -0.100000 -0.006667 0.110000 -0.200000	 0.083333 -0.083333 -0.100000 -0.033333 0.063333 0.150000 -0.200000	0.083333 -0.071429 -0.097619 -0.047619 0.035714 0.119048 0.178571	0.083333 -0.062500 -0.094643 -0.055952 0.017857 0.098214 	0.083333 -0.055556 -0.091667 -0.061111 0.005556 0.083333

Table II	I. Valu	les	of	[3/4C(C+1])-I(I+1))J(J+l)]/21	(2I-1)	(2J-1)	(2J+3),	where	C=F(F+	1)-I(I+l)	-
						「(J+l) _	-Cont	inued							

	I	1	3/2	2	5/2	3	7/2	4	9/2
J	F 17/2 15/2 7 13/2 6 11/2 5 9/2 4 7/2 3/2 3/2 1/2 0	0.090909 -0.250000 0.178571	 0.090909 -0.15091 -0.071429 0.178571	0.090909 -0.113636 -0.105519 0.0178571 0.178571	 0.090909 -0.086364 -0.107792 -0.037662 0.071429 0.178571	0.090909 -0.068182 -0.103246 -0.061039 0.019481 0.107143 0.107143	0.090909 -0.055195 -0.097403 -0.071892 -0.009276 0.065399 0.132653 0.178571	0.090909 -0.045455 -0.091721 -0.077110 -0.026670 0.38729 0.102389 0.102389 0.151786 0.178571	0.090909 -0.037879 -0.086580 -0.079545 -0.037879 0.020563 0.081169 0.132576 -0.166667
5	(19/2 9 17/2 8 15/2 7 13/2 6 11/2 9/2 4 7/2 3 5/2 2 3/2 1 1/2	 0.096154 -0.250000 0.166667	 0.096154 -0.153846 -0.083333 0.166667 	0.096154 -0.105769 -0.112179 0 0.166667	 0.096154 -0.076923 -0.110256 -0.053846 0.050000 	0.096154 -0.057692 -0.102564 -0.074571 -0.003846 0.083333 -0.166667 	0.096154 -0.043956 -0.094322 -0.082418 -0.032051 0.036630 -0.107143 -0.166667	0.096154 -0.033654 -0.086767 -0.085165 -0.048077 0.008013 -0.069368 -0.125000 -0.166667	0.096154 -0.025641 -0.080128 -0.085470 -0.057692 -0.010684 0.043803 -0.096154 0.138889 0.166667
6	21/2 10 19/2 9 17/2 8 15/2 7 13/2 6 11/2 5 9/2 4 7/2 3 5/2 2 3/2	0.100000 250000 .159091	0.100000 150000 090909 .159091	 0.100000 115909 011364 159091	 0.100000 070000 110909 063636 .036364 159091	 0.100000 050000 081818 018182 .068182 .159091 	0.100000 035174 090909 087662 045455 .018331 090909 .159091 	0.100000 025000 081981 088474 060065 010389 048864 .107955 .159091	0.100000 016667 074242 087121 068182 028788 021212 .074485 .121212 159091

Table III. Values of [3/4C(C+1)-I(I+1)J(J+1)]/2I(2I-1)(2J-1)(2J+3), where C=F(F+1)-I(I+1)-J(J+1)-Continued

T	1	3/2	2	5/2	3	7/2	4	9/2
		5/2	~	5/2		1/2		
J F								1020/1
11							.102941	
21/2					1020/1	.102941	01 02 02	009804
10				.102941	.102941	029412	018382	069193
9			.102941		044118		077771	
17/2	1020/1	.102941	095588	064705	099095	087750		087104
- 15/2	.102941	147059		110859		090498		074284
7	250000		118212		086425		067469	0/02/7
13/2	.153846	096154	019231	070136	027828	054157	022503	040347
11/2		.153846		.026923		.006787		.006222
5			.153846	1538/6	.057692	079670	.034947	058069
4					.153846		.096154	
7/2						.153846		.108974
5/2							.153846	.153846
(-/~								
25/2							0 105263	0.105263
23/2						0.105263		004386
11					0.105263		013158	
21/2			0.105263	0.105263		024436	074154	064912
19/2		0.105263		060526		084962		086404
9	0.105263		092105	110526	097368		090132	070070
8 8	250000	144/3/	119737	110926	089474	092105	072368	070070
15/2		100000		074737		060150		048246
13/2	.150000	1 50000	025000	020000	034737	- 001880	031015	- 004386
6			.150000		.050000		.024906	
11/2				.150000	1,50000	.071429		.046930
9/2					.150000	.150000	.087500	.100000
4							.150000	
(7/2								.150000
(27/2								.107143
13						1001/2	.107143	
12					.107143	.107145	008929	
23/2				.107143		020408		061275
21/2		107143	.107143		035714		071053	- 085434
10	.107143		089286		095798		090036	
19/2	250000	142857	100700	110084		093037		080532
17/2	290000	102941	120798	078151	091597	064526	075780	053922
8	.147059		029412		039916		037290	
15/2		.147059	147059	.014706	044118	008403	017332	012255
13/2				.147059		.065126		.038515
11/2					.147059	1/7050	.080882	002127
5						.14/059	.147059	.092107
9/2								.147059
Contract of the local division of the local	1			1				

				(
I	1	3/2	2	5/2	3	7/2	4	9/2
J F (29/2 14 27/2 13 25/2 23/2 11 21/2 10 10 19/2 9 17/2 8 15/2 7 13/2 0 11/2 10/2	0.108696 250000 144737	0.108696 141304 105263 .144737	0.108696 086957 121568 032895 .144737	0.108696 054348 109610 080778 .010526 144737	0.108696 032609 094394 093135 043936 039474 144737	0.018696 017081 080418 093576 067833 013485 060150 144737	0.108696 005435 068384 089715 078253 042089 042089 001142 .075658 .144737	0.108696 003623 058162 084382 082189 058162 018307 .031941 .087719
(/~					1			

Table III. Values of [3/4C(C+1)-I(I+1)J(J+1)]/2I(2I-1)(2J-1)(2J+3), where C=F(F+1)-I(I+1)-J(J+J(J+1))-Continued

INDEX I

MOLECULES BY CHEMICAL SYMBOL

Empirical Formula	Structural or Common Formula	Page No.	Empirical Formula	Structural or Common Formula	Page No.
AsCl ₃			CH5N	CHONHO	
AsF3			CIN	TCN	
AsH3			со		
B2BrH5	B2H5Br		COS	OCS	
BrCl			COSe	OCSe	
BrF			CSSe	SCSe	
BrF ₃ Si	SiF3Br		C ₂ F ₃ N	CF 3CN	
BrGeH3	GeH3Br		C2HC1	HCCC1	
BrH3Si	SiH3Br		C2H2C1F	CH2CFC1	
Br ₃ P	PBr ₃		$C_2H_2F_2$	CH ₂ CF ₂	
CBrF3	CF3Br		C ₂ H ₂ O	H ₂ C ₂ O	
CBrN	BrCN		C ₂ H ₃ Br		
CClF ₃	CF3C1		C ₂ H ₃ Cl		
CCIN	CICN		C ₂ H ₃ F ₃	CH ₃ CF ₃	
CF3I			C ₂ H ₃ N	CH3CN	
CHBr ₃				CH3NC	
CHClF ₂			C2H3NS	CH3NCS	
CHC13				CH3SCN	
CHF3	HCF ₃		C ₂ H ₄ O	СН₃СНО	
CHN	HCN		C ₂ H ₆ O	C ₂ H ₅ OH	
CHNO	HNCO		C ₃ HF ₃	CF3CCH	
CHINS	HNCS		C ₃ HN	HCCCN	
CH ₂ Br ₂			C ₃ H ₃ Br	CH ₃ CCBr	
CH ₂ Cl ₂			C ₃ H ₄	СН₃ССН	
CH ₂ O	H ₂ CO		C ₃ H ₆ O	(CH ₃) ₂ CO	
CH ₂ O ₂	HCOOH		C ₄ H ₉ Br	(CH ₃) ₃ CBr	
CH ₃ BO	BH ₃ CO		C ₄ H ₉ Cl	(CH3)3CC1	
CH ₃ Br			C ₄ H ₉ I	(CH3)3CI	
CH ₃ BrHg	CH ₃ HgBr		C ₄ H _{lO} O	(C ₂ H ₅) ₂ O	
CH Clus			C_6H_5Br		
CH ₃ CIHg	CH ₃ HgCl		ClF	FCl	
CH.F.C.			ClF₃Ge	GeF3Cl	
CHeHet	CH3SiF3		ClF₃Si	SiF ₃ Cl	-
CHaT			ClGeH ₃	GeH3C1	
CHaNOs			ClH ₃ Si	SiH ₃ Cl	
CH ₂ O	CH OU		Cli	ICl	
	UngUn		CINO	NOCL	

INDEX I—Continued

Empirical Formula	Structural or Common Formula	Page No.	Empirical Formula	Structural or Common Formula	Page No.
Cl ₃ OP	POC13		HN 3		
Cl ₃ P	PC1 ₃		H ₂ O		
Cl ₃ PS	PSC13		H ₂ S		
Cl ₃ Sb	SbCl ₃		H ₃ N	NHa	
FH3Si	SiH ₃ F		H ₃ P	PH ₃	
F3HSi	SiHF3		H ₃ Sb	SbH3	
F3N	NF ₃		NO ₂		
F3OP	POF3		N ₂ O		
	OPF3		02		
F3P	PF3		02S	SO2	
F3PS	PSF3		~	2	
	SPF3				

INDEX II

MOLECULES BY NAME

Page No.

Acetone (see 2-propanone) Acetonitrile (see ethanentrile) Acetylene, bromomethyl- (see propyne,	64 55
1-bromo-)	63
, chloro- (see ethyne, chloro-)	54
, cyano	62
, methyl- (see propyne)	63
, trifluoromethyl	61
, nitrile (see acetylene, cyano-)	
Aminomethane (see methylamine)	62
Ammonia	38
Antimony trichloride	81
Antimony trihydride	75
Arsenic trichloride	87
Arsenic trifluoride	1
Arsenic trihydride	1
Arsine (see arsenic trihydride)	2
Benzene, bromo	2
Borine carbonyl	67
Bromine monochloride	20
Bromine monofluoride	3
Bromobenzene (see benzene, bromo-)	4
Bromodiborane	67
Bromoetnene (see etnene, bromo-)	2
Bromolorm (see methane, tribromo-)	53
Bromogermane (see germane, bromo-)	13
Bromomethane (see methane, bromo-)	5
Bromosilane (see silane, promo-)	22
bromotrilluoromethane (see methane,	
Promotrifluorogilana (coo gilana	5
bromotrificorostiane (see sitane,	
D POHO I P T T T T O P O - 1	
Butyl bromide (tertiary) (see propage	6
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-)	6
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-) Butyl chloride (tertiary) (see propane	6 4
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-) Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-)	6
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-) Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-) Butyl iodide (tertiary) (see propane.	6 4 65
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-) Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-) Butyl iodide (tertiary) (see propane, 2-iodo-2 methyl-)	6 4 65
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-) Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-) Butyl iodide (tertiary) (see propane, 2-iodo-2 methyl-) Carbon monoxide	6 4 65 65
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-) Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-) Butyl iodide (tertiary) (see propane, 2-iodo-2 methyl-) Carbon monoxide Carbon oxysulfide (see carbonyl sulfide)	6 4 65 65 66
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-) Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-) Butyl iodide (tertiary) (see propane, 2-iodo-2 methyl-) Carbon monoxide Carbon oxysulfide (see carbonyl sulfide) Carbon sulfoselenide	6 4 65 65 66 41 42
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-) Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-) Butyl iodide (tertiary) (see propane, 2-iodo-2 methyl-) Carbon monoxide Carbon oxysulfide (see carbonyl sulfide) Carbon sulfoselenide Carbonyl selenide	6 4 65 65 66 41 42 47
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-) Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-) Butyl iodide (tertiary) (see propane, 2-iodo-2 methyl-) Carbon monoxide Carbon oxysulfide (see carbonyl sulfide) Carbon sulfoselenide Carbonyl selenide	6 4 65 65 66 41 42 47 45
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-) Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-) Butyl iodide (tertiary) (see propane, 2-iodo-2 methyl-) Carbon monoxide Carbon oxysulfide (see carbonyl sulfide) Carbon sulfoselenide Carbonyl selenide Carbonyl selenide Carbonyl sulfide	6 4 65 65 66 41 42 47 45 42
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-) Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-) Butyl iodide (tertiary) (see propane, 2-iodo-2 methyl-) Carbon monoxide Carbon oxysulfide (see carbonyl sulfide) Carbon sulfoselenide Carbonyl selenide Carbonyl selenide Carbonyl sulfide Chlorine monofluoride Chloroacetylene (see ethyne chloro-)	6 4 65 65 66 41 42 47 45 42 67
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-) Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-) Butyl iodide (tertiary) (see propane, 2-iodo-2 methyl-) Carbon monoxide Carbon oxysulfide (see carbonyl sulfide) Carbon sulfoselenide Carbonyl selenide Carbonyl selenide Carbonyl sulfide Chlorine monofluoride Chloroacetylene (see ethyne chloro-)	6 4 65 65 66 41 42 47 45 42 67
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-). Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-). Butyl iodide (tertiary) (see propane, 2-iodo-2 methyl-). Carbon monoxide. Carbon oxysulfide (see carbonyl sulfide). Carbon sulfoselenide. Carbonyl selenide. Carbonyl selenide. Carbonyl sulfide. Chlorine monofluoride. Chloroacetylene (see ethyne chloro-). Chlorodifluoromethane (see methane, chlorodifluoro-).	6 4 65 65 66 41 42 47 45 42 67 13
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-). Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-). Butyl iodide (tertiary) (see propane, 2-iodo-2 methyl-). Carbon monoxide. Carbon oxysulfide (see carbonyl sulfide). Carbon sulfoselenide. Carbonyl selenide. Carbonyl selenide. Carbonyl sulfide. Chlorine monofluoride. Chloroacetylene (see ethyne chloro-). Chlorodifluoro-). Chloroethene (see ethene, chloro-).	6 4 65 65 66 41 42 47 45 42 67 13 48
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-). Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-). Butyl iodide (tertiary) (see propane, 2-iodo-2 methyl-). Carbon monoxide. Carbon oxysulfide (see carbonyl sulfide). Carbon sulfoselenide. Carbonyl selenide. Carbonyl selenide. Carbonyl sulfide. Chlorine monofluoride. Chloroacetylene (see ethyne chloro-). Chlorodifluoro-). Chloroethene (see ethyne, chloro-).	6 4 65 65 66 41 42 47 45 42 67 13 48 54
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-) Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-) Butyl iodide (tertiary) (see propane, 2-iodo-2 methyl-) Carbon monoxide Carbon oxysulfide (see carbonyl sulfide) Carbon sulfoselenide Carbonyl selenide Carbonyl sulfide Carbonyl sulfide Chloroacetylene (see ethyne chloro-) Chlorodifluoro-) Chloroethene (see ethyne, chloro-) Chloroform (see methane, trichloro-)	6 4 65 65 66 41 42 47 45 42 67 13 48 54 14
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-) Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-) Butyl iodide (tertiary) (see propane, 2-iodo-2 methyl-) Carbon monoxide Carbon oxysulfide (see carbonyl sulfide) Carbon sulfoselenide Carbonyl selenide Carbonyl selenide Carbonyl sulfide Chloroacetylene (see ethyne chloro-) Chlorodifluoro-) Chloroethene (see ethyne, chloro-) Chloroform (see methane, trichloro-) Chloroform (see germane, chloro-) Chloroethene (see germane, chloro-) Chloroethene (see germane, chloro-) Chlorogermane (see germane, chloro-) Chloroethene (see germane, chloro-) Chlorogermane (see germane, chloro-) Chloroethene (see germane, chloroethene (see germane, chloroethene (see germane).	6 4 65 65 66 41 42 47 45 42 67 13 48 54 14 69
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-) Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-) Butyl iodide (tertiary) (see propane, 2-iodo-2 methyl-) Carbon monoxide Carbon oxysulfide (see carbonyl sulfide) Carbon sulfoselenide Carbonyl selenide Carbonyl sulfide Carbonyl sulfide Chloroacetylene (see ethyne chloro-) Chlorodifluoro-) Chloroethene (see ethyne, chloro-) Chloroform (see methane, trichloro-) Chloroform (see methane, thloro-) Chloromethane (see methane, chloro-) Chloromethane (see methane, trichloro-) Chloromethane (see methane, chloro-) Chloromethane (see methane, chloro-) Chl	6 4 65 65 66 41 42 47 45 42 67 13 48 54 14 69 26
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-) Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-) Butyl iodide (tertiary) (see propane, 2-iodo-2 methyl-) Carbon monoxide Carbon oxysulfide (see carbonyl sulfide) Carbon sulfoselenide Carbonyl selenide Carbonyl sulfide Carbonyl sulfide Chloroacetylene (see ethyne chloro-) Chlorodifluoro-) Chloroethene (see ethyne, chloro-) Chloroform (see methane, trichloro-) Chloroform (see methane, thloro-) Chloromethane (see silane, chloro-) Chlorosilane (see silane) Chlorosilane (see silane) Chlorosilane (see silane) Chlorosilane (see silane)	6 4 65 65 66 41 42 47 45 42 67 13 48 54 14 69 26 69
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-) Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-) Butyl iodide (tertiary) (see propane, 2-iodo-2 methyl-) Carbon monoxide Carbon oxysulfide (see carbonyl sulfide) Carbon sulfoselenide Carbonyl selenide Carbonyl sulfide Carbonyl sulfide Chloroacetylene (see ethyne chloro-) Chlorodifluoro-) Chloroethene (see ethyne, chloro-) Chloroform (see methane, trichloro-) Chloroform (see methane, trichloro-) Chlorogermane (see germane, chloro-) Chlorosilane (see silane, chloro-) Chlorosilane (see germane, and the see germane, and the see germane, the see germ	6 4 65 65 66 41 42 47 5 42 67 13 48 54 14 69 26 69
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-) Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-) Butyl iodide (tertiary) (see propane, 2-iodo-2 methyl-) Carbon monoxide Carbon oxysulfide (see carbonyl sulfide) Carbon sulfoselenide Carbonyl selenide Carbonyl selenide Carbonyl sulfide Chloroacetylene (see ethyne chloro-) Chlorodifluoromethane (see methane, chlorodifluoro-) Chloroethene (see ethyne, chloro-) Chloroform (see methane, trichloro-) Chloroform (see methane, chloro-) Chlorositane (see silane, chloro-) Chlorotrifluorogermane (see germane, chlorotrifluoro-) Chlorotrifluoro-) Chlorotrifluoro-) Chlorotrifluoro-) Chlorotrifluoro-) Chlorotrifluoro-) Chlorotrifluoro-) Chlorotrifluoro-) Chlorotrifluoro-) Chlorotrifluoro-) Chlorotrifluoro-) Chlorotrifluoro-) Chlorotrifluoro-)	6 4 65 65 66 41 42 47 45 42 67 13 48 54 14 69 26 69 68
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-) Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-) Butyl iodide (tertiary) (see propane, 2-iodo-2 methyl-) Carbon monoxide Carbon oxysulfide (see carbonyl sulfide) Carbon sulfoselenide Carbonyl selenide Carbonyl sulfide Carbonyl sulfide Chloroacetylene (see ethyne chloro-) Chlorodifluoromethane (see methane, chlorodifluoro-) Chloroethyne (see ethyne, chloro-) Chloroform (see methane, trichloro-) Chloroform (see methane, chloro-) Chlorosilane (see silane, chloro-) Chlorotrifluorogermane (see germane, chlorotrifluoromethane (see methane, chlorotrifluoromethane (see methane, chlorotrifluoro-) Chlorotrifluoromethane (see methane, chlorotrifluoromethane (see methane, chlorotrifluoro-)	6 4 65 65 66 41 42 47 45 42 67 13 48 54 14 69 26 69 68
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-) Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-) Butyl iodide (tertiary) (see propane, 2-iodo-2 methyl-) Carbon monoxide Carbon oxysulfide (see carbonyl sulfide) Carbon sulfoselenide Carbonyl selenide Carbonyl sulfide Carbonyl sulfide Chloroacetylene (see ethyne chloro-) Chlorodifluoromethane (see methane, chlorodifluoro-) Chloroethene (see ethyne, chloro-) Chloroform (see methane, trichloro-) Chloroform (see methane, chloro-) Chlorosilane (see silane, chloro-) Chlorotrifluorogermane (see germane, chlorotrifluoroj Ch	6 4 65 65 66 41 42 47 45 42 67 13 48 54 14 69 26 69 68 9
Butyl bromide (tertiary) (see propane, 2-bromo-2 methyl-) Butyl chloride (tertiary) (see propane, 2-chloro-2 methyl-) Butyl iodide (tertiary) (see propane, 2-iodo-2 methyl-) Carbon monoxide Carbon oxysulfide (see carbonyl sulfide) Carbon sulfoselenide Carbonyl selenide Carbonyl selenide Carbonyl sulfide Chloroacetylene (see ethyne chloro-) Chlorodifluoromethane (see methane, chlorodifluoro-) Chloroethene (see ethyne, chloro-) Chloroform (see methane, trichloro-) Chloroform (see methane, chloro-) Chlorosilane (see silane, chloro-) Chlorotrifluoromethane (see methane, chlorotrifluoro-) Chlorotrifluoro-) Chlorotrifluorosilane (see silane, chlorotrifluoro-) Chlorotrifluorosilane (see silane, chlorotrifluoro-)	6 4 65 65 66 41 42 47 45 42 67 13 48 54 14 69 26 9 68 9 68

· · ·	Page	No.
Cvanoacetylene (see acetylene cvano-)		62
Cvanogen bromide	••••	02
Cyanogen chloride	• • • •	
Cyanogen iodide	• • • •	20
Cyanotrifluoromethane (see	• • • •	29
ethanentrile trifluore)		~~
Dibromomothano (aco mothano dibromo	••••	22
Dichloromothane (see methane, dichloro	· · · ·	17
Disthul sther (see methane, distribute.)	-)	17
Dieunyi euner (see eunane, eunoxy-)	• • • •	67
blildorodniorolorm (see methane,		
	• • • •	13
Dilluoroethylene (unsym) (see ethylene	,	~ ~ ~
1, 1-difluoro-) ·····	• • • •	50
Ethane, 1, 2-epoxy	• • • •	59
, ethoxy	• • • •	67
, 1, 1, 1-trifluoro	• • • •	54
Ethanenitrile	• • • •	55
, trifluoro		54
Ethanol		61
Ethene, bromo	• • • •	53
, chloro		48
Ethenone (see Ketene)		52
Ethoxyethane (see ethane, ethoxy-)		67
Ethyl alcohol (see ethanol)		61
Ethylene. 1. 1-chlorofluoro		49
1. 1-difluoro		50
Ethylene oxide (see ethane. 1. 2-epoxy.	-)	59
Ethype chloro-	,	48
Fluoroform (see methane trifluoro-).		14
Fluoromethane (see methane fluoro-)		28
Fluorosilane (see silane fluoro-)	••••	75
Formaldebude (see methanal)		18
Formia said (see methanoia said)		20
Cormano bromo.	• • • •	5
chloro		60
chlonotnifluono		60
	• • • •	70
Hydrazoic acid		19
Hydrocyanic acid	• • • •	10
Hydrogen cyanide (see hydrocyanic acid,) • • •	10
Hydrogen sullide		80
Iodine monochioride	• • • •	7-
Iodometnane (see metnane, 10do-))-)
Isocyanic acid	• • • •	16
Isothiocyanic acid		16
Ketene		52
Methanal.		18
Methane, amino- (see methylamine)		38
, bromo		22
, bromotrifluoro	• • • •	6
, bromotrimethyl- (see propane,		
2-bromo-2 methyl-)		65
, chloro		26
, chlorodifluoro		13
, chlorotrifluoro		9
, chlorotrimethyl- (see propane,	,	
2 chloro-2 methyl-)		65
, cyanotrifluoro- (see		
ethanentrile, trifluoro-)		55
dibromo-		17

, dichloro	17
, fluoro	28
, iodo	30
, iodotrimethyl- (see propane,	
2-iodo-2 methyl-)	66
, nitro	32
, tribromo	13
, trichloro	14
, trifluoro	14
, trifluoroiodo	12
Methanoic acid	20
Methanol	18
Methylacetylene (see propyne)	63
Methyl alcohol (see methanol)	18
Methylamine	38
Methyl bromide (see methane, bromo-)	22
Methyl chloride (see methane, chloro-)	26
Methyl cyanide (see ethanenitrile)	55
Methyl fluoride (see methane, fluoro-)	28
Methyl fluoroform (see ethane, 1,1,1-	
trifluoro-)	54
Methyl iodide (see methane, iodo-)	30
Methyl isocyanide	57
Methyl isothiocyanate	58
Methylmercury bromide	25
Methylmercury chloride	28
Methylmercury iodide	29
Methyl thiocyanate	59
Methylene bromide (see methane, dibromo-).	17
Methylene chloride (see methane.	
dichloro-)	17
Nitrogen dioxide	87
Nitrogen peroxide (see nitrogen dioxide).	87
Nitrogen trifluoride	76
Nitromethane (see methane, nitro-)	32
Nitrosvl chloride	72
Nitrous oxide	87
Oxygen	88
Phenylbromide (see benzene, benzene)	67
Phosphine	87
Phosphorus oxytrichloride	73
Phosphorus oxytrifluoride	77
Phosphorus sulfatrichloride (see phos-	
phorus thiotrichloride)	74
Prior de ouroor rouror reo / ***********************************	,

Phosphorus sulfatrifluoride (see phos-	
phorus thiotrifluoride)	78
Phosphorus Thiotrichloride	74
Phosphorus Thiotrifluoride	78
Phosphorus tribromide	6
Phosphorus trichloride	73
Phosphorus trifluoride	78
Phosphoryl chloride (see phosphorus	
oxytrichloride)	73
Phosphoryl fluoride (see phosphorus	
oxytrifluoride)	77
Propane, 2-bromo-2 methyl	65
Propane, 2-chloro-2 methyl	65
Propane, 2-iodo-2 methyl	66
2-Propanone	64
Propyne	63
, l-bromo	63
Silane, bromo	5
, bromotrifluoro	4
, chloro	69
, chlorotrifluoro	68
, fluoro	75
, Trifluoro	76
, trifluoromethyl	29
Stibine (see antimony trihydride)	87
Sulfonyl selenide (see carbon sulfo-	1~
selenide)	4'/
Sullur dloxide	89
Tribromomethane (see methane, tribromo-)	13
Trichioromethane (see methane, trichioro-)	14
trifluoroadetonitrile (see ethanentrile,	E)
Trifluoroiodomothane (cee methane	24
trifluonoi odo-)	10
Trifluoromethane (see methane trifluoro)	12
Trifluoromethylagetylene (see seetylene	그나
trifluonomethyl_)	61
Trifluoromethyleilane (see silane	OT
trifluoromethyl)	29
Trifluorosilane (see silane, trifluoro-)	76
Vinvl bromide (see ethere bromo-)	53
Vinyl chloride (see ethene, chloro-)	48
Water	79
	12

Page No.

INDEX III

The authors quoted are listed alphabetically, and the molecules in connection with which they were quoted are given together with the reference number under that molecule in table I. $"H_3N$ Int." and "Int." refer to the brief introduction to the Ammonia molecule and to the introduction to the paper as a whole respectively, each of which have separate lists of references.

Author	Molecule and Reference Number
Aamodt, L. C.	CClN 3, CH ₃ Cl 8
Amble, E.	HN ₃ l
Anderson, R. S.	CHN 2, 0 ₂ 5
Anderson, W. E.	CBrN 5, CIN 7, CH3Br 5, CH3Cl 7, CH3I 5, C3HF3 1, ClF3Ge 1
Anderson, P. W.	H ₃ N Int. 22, Int. 11
Bak, B.	CSSe 1, CH ₃ NO ₂ 2, CH ₄ O 5, C ₂ H ₂ O 1, C ₂ H ₆ O 1, C ₃ H ₆ O 1, C ₆ H ₅ Br 1
Bardeen, J.	Int. 8
Beard, C. I.	CHNS 1, 2, CH3NCS 1, CH3SCN 1
Beringer, R.	02 2
Bianco, D. R.	COS 11, CH ₃ C1 3
Bleaney, B.	H ₃ N 2, H ₃ N Int. 2, 15
Boyd, A. W.	C ₂ H ₄ O 3
Bragg, J. K.	CH20 1, C2H2ClF 1, C2H3Cl 1, BrH3Si 2, H3N 8, H3N Int. 5
Burg, A. B.	CH ₃ BO 1, 4
Burkhalter, J. H.	0 ₂ 5
Cannon, W. F.	H ₃ N Int. 17
Carter, R. L.	H ₃ N Int. 18
Casimir, H. B. G.	Int. 6
Cleeton, C. E.	H ₃ N Int. 1
Cohen, W. V.	COS 10
Coles, D. K.	$CC1F_3$ 1, 2, COS 1, CH ₄ O 3, 6, 8, C ₄ H ₁₀ O 1, H ₃ N 3, N ₂ O 1, 2, 4, CH ₃ CN 3, H ₃ N Int. 25, Int. 14
Cornwell, C. D.	B ₂ BrH ₅
Cross, P. C.	H ₂ O 2, Int. 4, 5
Cunningham, G. L.	C ₂ H ₄ O 2, 3
Dailey, B. P.	<pre>AsF₃ 1, 2, CClN 4, CHClF₂ 1, CHNS 1, 2, CH₂Cl₂ 2, CH₃Br 3, CH₃Cl 5, 6, 8, CH₃F₃Si 2, CH₃I 4, CH₃NO₂ 1, CH₄O 2, C₂H₃F₃ 3, CH₃NCS 1, CH₃SCN 1, C₂H₄O 1, F₃P 2, BrGeH₃, 1, BrH₃Si 2, ClGeH₃ 1, ClH₃Si 1, HN₃ 1, N₂O 3, O₂S 1, H₃N Int. 9</pre>
Dakin, T. W.	COS 1
Dennison, D. M.	H ₃ N Int. 17
Deutsch, M. L.	H ₂ O 4
Edgell, W. F.	C ₂ H ₂ F ₂ 1, C ₂ H ₃ F ₃ 1
Edwards, H. D.	CHF3 1, CH3F 2, CH4O 7, CH5N 2, CH3CN 1. CH3NC 1
Elyash, E. S.	N ₂ 0 1
Geschwind, S.	COS 5, 13, COSe 2
Gilbert, D. A.	ClF 1

Gilliam, O. R.	CIN 5, CO 1, CHF ₃ 1, CH ₃ F 2, CH ₃ I 2, CH ₄ O 7, CH ₅ N 2, F_3^P 1
Glockler, G.	CH ₃ Cl 3
Golden, S.	H ₂ O 3, O ₂ S 1
Goldstein, J. H.	C ₂ HCl 1, C ₂ H ₃ Cl 1
Good, W. E.	COS 1, CH40 6, 8, H3N 3, N2O 4, CH3CN 3, H3N Int. 2, 8, 25
Gordy, W.	 BrF₃Si 1, Br₃P 1, CBrF₃ 2, CBrN 1, 3, CC1N 1, Cf₃I 1, CIN 1, 3, CO 1, CHBr₃ 1, CHF₃ 1, CHN 1, 2, CH₃BO 1, 4, CH₃Br 1, CH₃BrHg 1, CH₃Cl 1, CH₃ClHg 1, CH₃F 1, 2, 3, CH₃F₃Si 1, CH₃HgI 1, C₃H₃Br 1, C₃HF₃ 1, 5, CH₃CN 1, CH₃NO 1, 4, CH₅N 1, CH₄O 7, CH₃I 1, 2, C₄H₉I, C₄H₉Cl 1, C₄ H₉Br 1, C₃H₄ 1, ClF₃Si 1, ClF₃Ge 1, Cl₃OP, Cl₃PS, F₃OP 2, F₃P 1, F₃
	PS 2, F ₃ HSi 1, O ₂ 5, H ₃ N 6, F ₃ N 1, H ₃ N Int. 12
Gorman, J. G.	N ₂ 0 1
Griswold, P. A.	ClF 1
Gunther-Mohr, R.	COS 13
Gwinn, W. D.	C ₂ H ₄ O 2, 3
Hainer, R. M.	H ₂ O, Int. 4, 5
Henderson, R. S.	H ₃ N Int. 13
Hershberger, W. D.	CH40 1, CH5N 1
Herzberg, G.	Int. 3 ^a
Hill, A. G.	COSe 1
Hillger, R. G.	COS 2, H ₂ O 3, 4, H ₂ S 1, H ₃ N 4, 5, H ₃ N Int. 16
Holden, A. N.	CBrN 2, CC1N 2, CIN 2, COS 3, C1I 2, Int. 13
Howard, R.	H ₃ N Int. 24, Int. 10
Hughes, R. H.	CClF ₃ 1, 2, CH ₄ O 6, 8, N ₂ O 2, 4, CH ₃ CN 3
Ingersoll, J. G.	0 ₂ 4
Jauch, J. M.	H ₃ N Int. 26
Jen, C. K.	H ₃ N Int. 27, 28
Johnson, C. M.	CIN 5, CO 1, CH ₃ F 3
Johnson, H. R.	C ₂ H ₂ O 2
Jones, L. H.	CHNO 1
Karplus, R.	CH ₃ Cl 2
Kessler, M.	CH ₃ NC 1, 4, CH ₃ CN 1, 5, H ₃ N 10
King, G. W.	H ₂ O 2, Int. 4, 5
Kisliuk, P.	AsCl ₃ 1, AsF ₃ 3, Cl ₃ P 1, Cl ₃ Sb 1, Int. 2
Klein, J. A.	CBrN 4, CIN 4, H ₃ N 9
Knudsen, E. S.	CH ₃ NO ₂ 2, CH ₄ O 5, C ₂ H ₂ O 1, C ₂ H ₆ O 1, C ₃ H ₆ O 1, C ₆ H ₅ Br 1
Koski, W.	COS 10
Kraitchman, J.	CH ₃ Cl 8
Kyhl, R. L.	H ₃ N 4, 5, H ₃ N Int. 6, 9
Lamont, H. R. L.	02 3
Lawrance, R. B.	CH ₂ O 2, CH ₃ BO 3
LeVan, W. I.	C ₂ H ₄ O 2, 3
Lide, D. R.	C ₄ H ₁₀ O 1, N ₂ O 4
Livingston, R.	CH ₃ I 2

AsH₃ 1, CH₃BO 3, C₃H₆O 1, H₃P 1, H₃Sb 1 Loomis, C. C. Loubser, J. H. N. H₃N 9 CBrN 4, CIN 4, 6, COS 8, 12, COSe 3, HaN 7 Low, W. H3N 10 Lyons, H. CBrF₃ 1, C₂H₂ClF 1, BrH₃Si 1, H₃N 8, H₃N Int. 5 Madison, T. C. Madsen, E. CH₃NO₂ 2, CH₄O 5, C₂H₂O 2, C₂H₆O 1, C₃H₆O 1, C₆H₅Br 1 H₃N Int. 16, 29 Margenau, H. Matlock, G. CH₃Cl 3 Mattern, J. CH₃Br 2 CH₃Cl 5, CH₃F₃Si 2, BrGeH₃ 1, ClGeH₃ 1, ClSiH₃ 1, 2 Mays, J. M. McAfee, K. B. Jr. NO2 1 Meng, C. Y. 02 4 Merritt, F. R. CBrN 2, CClN 2, CIN 2, COS 3, ClI 2, H₂O 1, Int. 13 Miller, S. L. CH₃Cl 8 Minden, H. COSe 2, CH3F3Si 2, C2H3F3 2 Mizushima, M. H₃N Int. 19 Nielsen, H. H. CH₃CN 2, CH₃NC 2, H₃N Int. 7 Nuckolls, R. G. H₃N 10 Pearsall, C. S. CH₃BO 2 17 Penrose, R. P. H₃H 2, H₃N Int. 2, 15 Pietenpol, W. J. CH₂Br₂ 2, CH₂O₂ 1, C1NO 1, 2 Pond, A. T. H₃N Int. 17 Pritchard, B. S. CBrF₃ 1, BrGeH₃ 1, BrH₃Si 2, FH₃Si 1 Rastrup-Anderson, J. C2H20 1 Ring, H. CBrN 1, CC1N 1, CIN 1, CH₃BO 1, 4, CH₃CN 1, 5, CH₃NC 1, 4 Roberts, A. COS 4, 11, CH₃Cl 3, C₂H₂F₂ 1, C₂H₃F₃ 1, ClF 1, F₃PS 1 Rogers, J. D. CH₂Br₂ 2, CH₂O₂ 1, C1NO 2 Rueger, L. J. H₃N 10 Rusinow, K. AsF₃ 1 Senatore, S. J. F30P 1 Sharbaugh, A. H. CBrF₃ 1, CH₂O 1, CH₃Br 2, CH₃C 1, 2, C₂H₂ClF 1, H₃BrGe 1, H₃BrGe 1, H₃BrGe 1, H₃BrSi 1, 2, H₃FSi 1, H₃N 8, H₃N Int. 5, 9 Sheridan, J. BrF₃Si 1, CBrF₃ 2, CF₃I 1, CH₃BrHg 1, CH₃ClHg 1, CH₃F₃Si 1, CH₃HgI 1, C3HF3 1, C1F3Si 1, C1F3Ge 1, C13OP, C13PS 1, F3OP 2, F3PS 1, F3HSI 1 Shoolery, J. N. CHNO 1 Shulman, R. G. AsF3 1, 2, CC1N 4, COS 9, 14, CHN 3, CHNO 1, CH3Br 3, CH3Cl 6, CH3I 4, C₂H₃F₃ 2, 3, C₂H₄O 1, F₃P 2, N₂O 3 Simmons, J. W. CBrN 3, CIN 3, 7, CHN 1, 2, CH₃Br 1, 4, 5, CH₃Cl 1, 4, 7, CH₃F 1, CH₃I 1, 4, 5, H₃N 6, H₃N Int. 12 Sirvetz, M. H. SO2 2 Sloan, R. CSSe 1 Smith, A. G. CBrN 1, 3, CC1N 1, CIN 1, 3, CHCl₃ 1, 2, CHN 1, CH₃Br 1, CH₃Cl 1, CH₃I 1, CH₃F 1 Smith, D. F. BrCl 1, BrF 1, CH₃NC 3, CH₃CN 4, H₃N Int. 21

Smith, W. V.	CBrN 1, 3, CClN 1, CIN 3, 1, CHCl ₃ 1, 2, CHN 1, O ₂ 5, H ₃ N Int. 18,23 Int. 10
Strandberg, M. W. P.	COS 2, 6, 7, COSe 1, CH ₃ BO 2, H ₂ O 3, 4, 5, 6, H ₃ N 4, 5, O ₂ 4, H ₃ N Int. 6
Swan, W. O.	CH ₃ Br 4
Thomas, V. G.	BrGeH ₃ 1, BrH ₃ Si 1, 2, FH ₃ Si 1
Tidwell, M.	BrCl 1, BrF 1, CH ₃ CN 4, CH ₃ NC 3
Townes, C. H.	AsCl ₃ 1, AsF ₃ 1, 2, CBrN 2, 4, CClN 2, 3, 4, CIN 2, 4, COS 3, 5, 8, 9, 11, COSe 3, CHN 3, CH ₃ Br 3, CH ₃ Cl 5, 6, 8, CH ₃ I 4, C ₂ H ₃ F ₃ 3, C ₂ H ₄ O 1, ClI 2, Cl ₃ P 1, F ₃ P 2, H ₃ N 1, 7, H ₂ O 1, ClGeH ₃ 1, ClH ₃ Si 1, N ₂ O 3, H ₃ N 3, Int. 2, 8, 13
Trambarulo, R.	CHCl ₃ , CH ₃ CN 5, CH ₃ NC 4, C ₃ H ₄ 1
Turkevitch, J	CH40 1, CH5N 1
Turner, T. E.	CH ₂ Br ₂ 1, CH ₂ Cl ₂ 1
Unterberger, R. R.	CHCl ₃ 1, 2
Van Vleck, J. H.	0 ₂ 1, H ₃ N Int. 9, 10, Int, 7, 9
Wannier, G. H.	H ₂ O 4
Watts, R. J.	H ₃ N Int. 11
Weidner, R. T.	ClI l
Weingarten, I. R.	H ₃ N Int. 20
Weiss, M. T.	CH ₃ BO 2, 3
Weisskopf, V	Int. 9
Wentink, T. Jr.	COS 2, 10, COSe 1, H ₂ O 3, 4, H ₃ N 4, 5, H ₃ N Int. 6
Westenberg, A. A.	C ₂ HCl 1, C ₃ HN 1
White, H. E.	H ₃ N Int. 13, 14
Williams, D.	CSSe 1, CH ₂ O ₂ 1, ClNO 1, 2, F ₃ OP 2, F ₃ PS 2, H ₃ N Int. 11
Williams, D. V. P.	BrCl 1, BrF 1, CH ₃ CN 4, CH ₃ NC 3
Williams, N. H.	H ₃ N Int. 1
Williams, Q.	Br ₃ P 1, CHBr ₃ 1, C ₄ H ₉ Br 1, C ₄ H ₉ Cl 1, C ₄ H ₉ I 1, Cl ₃ OP 1, Cl ₃ PS 1
Wilson, E. B. Jr.	CH3NO2 1, CH4O 2, C2HCl 1, 2, C3HN 1, O2S 1, H3N Int. 9
Yost. D. M.	CHNO 1

.

PERIODICALS OF THE NATIONAL BUREAU OF STANDARDS

Is the principal agency of the Federal Government for fundamental research in physics, chemistry, nathematics, and engineering, the National Bureau of Standards conducts projects in fourteen fields: electricity, optics, metrology, heat and power, atomic and radiation physics, chemistry, mechanics organic and fibrous materials, metallurgy, mineral products, building technology, applied mathematics, electronics, and radio propagation. The Bureau has custody of the national standards of measurement, and conducts research leading to the improvement of scientific and engineering standards and of techniques and methods of measurement. Testing methods and instruments are developed; physical constants and properties of materials are determined; and technical processes are investigated.

Journal of Research

Internationally known as a leading scientific periodical, the Journal presents research papers by authorities in the specialized fields of physics, mathematics, chemistry, and engineering. Complete details of the work are presented, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Each of the monthly issues averages 85 two-column pages; illustrated. Annual subscription: domestic, \$5.50; foreign, \$6.75.

Technical News Bulletin

Summaries of current research at the National Bureau of Standards are published each month in the Technical News Bulletin. The articles are brief, with emphasis on the results of research, chosen on the basis of their scientific or technologic importance. Lists of all Bureau publications during the preceding month are given, including Research Papers, Handbooks, Applied Mathematics Series, Building Materials and Structures Reports, Miscellaneous Publications, and Circulars. Each issue contains 12 or more two-column pages; illustrated. Annual subscription: domestic, \$1.00; foreign, \$1.35.

Basic Radio Propagation Predictions

The Predictions provide the information necessary for calculating the best frequencies for communication between any two points in the world at any time during the given month. The data are important to all users of long-range radio communications and navigation, including broadcasting, airline, steamship, and wireless services, as well as to investigators of radio propagation and ionosphere. Each issue, covering a period of one month, is released three months in advance and contains 16 large pages, including pertinent charts, drawings, and tables. Annual subscription: domestic, \$1.00; foreign, \$1.25.

Order all publications from the Superintendent of Documents U. S. Government Printing Office, Washington 25, D. C.

