U. S. DEPARTMENT OF COMMERCE

DANIEL C. ROPER, Secretary
NATIONAL BUREAU OF STANDARDS
LYMAN J. ERIGGS, Director

CIRCULAR OF THE NATIONAL BUREAU OF STANDARDS C406

(Supersedes Circular C399)

STANDARD TIME THROUGHOUT THE WORLD

REAU OF STANDARDS

MAY 71935
LIBRARY
(Issued March 20, 1935)

UNITED STATES
GOVERNMENT PRINTING OFFICE
WASHINGTON : 1935

Riational Bureau of Standards
MAR 231942
53061

STANDARD TIME THROUGHOUT THE WORLD ${ }^{1}$

ABSTRACT
This Circular is a revision and enlargement of Circulars 280 and 399, which it supersedes and which bore the same title. It gives a brief historical sketch of the development of the standard time system, time-zone maps of the United States and of the world, a list of stations transmitting radio time signals, a list of the times used in several large cities, a list of the legal times used in most of the countries of the world, and other information regarding standard time.

CONTENTS
 CONTENTS

Pase 1
I. Introduction
I. Introduction
II. Historical sketch 2
III. Standard time in the United States 3

1. Time zones 3
2. Cities on time-zone boundaries 5
3. Territories and insular possessions 5
4. Time in several large cities of the United States at 12 noon, eastern standard time 6
5. Time signals in the United States 6
IV. Time in foreign countries 7
6. 'Time zones of the world 7
7. International date line. 8
8. Time in several important cities 8
9. Foreign time signals 8
10. Comparative time 12
11. Legal time used in the different countries 13
V. Summer or daylight saving time 23
VI. Selected references 24

I. INTRODUCTION

The development, within the last few years, of means of international communication such as international news service, world-wide telephony, transoceanic aviation, exploration, and radin broadcasting, has brought about an increased consciousness of the difference in time between different geographic centers. The demand for information regarding time used in different parts of the world led to the publication in 1925 of Bureau of Standards Circular 280, "Standard Time Throughout the World". This was revised in 1932 as Circular 399 with the same title. Since then, changes have been made in the times of several localities. The present Circular includes these changes, gives additional information regarding the use of legal time, and supersedes the two former Circulars.

Every effort has been made to give the latest information, and the data are believed to have been the best available at the time this Circular was prepared.

[^0]
II. HISTORICAL SKETCH

From the earliest civilization man has reckoned time by the apparent motion of the heavenly bodies. The rotation of the earth on its axis from west to east causes these bodies to "rise" in the east and "set" in the west. Consequently points to the east of us have sunrise before we do, or, as we say, their time is faster than ours; while points to the west have time that is slower than ours. This rotation of the earth about its axis once in 24 hours gives a time change of 1 hour for every 15° of longitude. That is, if observations were made on the transit of the sun across the meridian at points separated by 15° of longitude, it would be found that the time of transit at two such points would differ by 1 hour. If the separation of the points of observation were decreased, the difference in time would be decreased in the same proportion. These times would all be true local times, using the transit of the sun across the meridian as a standard.

Since the distance around the earth is less at points not on the Equator than at the Equator the distance on the earth's surface corresponding to a time difference is also less in the same proportion. For example, at the Equator 15° corresponds to about 1,040 miles, while at the latitude of New York 15° corresponds to only about 784 miles. Or, at the Equator, a difference of about 17 miles makes a time difference of 1 minute, while in the latitude of New York a difference of only 13 miles makes a difference of 1 minute in true local time.

The need of a uniform time began to be felt in the United States about 1870, and the railroads gradually adopted a system for use on their roads specifying definite important centers or junction points at which changes of 1 hour should be made. As means of communication still further developed, it became apparent that some system of international time must be established.

In 1884 an international congress was called in Washington to consider the subject of a world standard of time. The world was divided into zones, each covering 15° of longitude, the time for each zone being that of the meridian passing through its approximate center and the time in adjacent zones differing by 1 hour. The meridian passing through the observatory at Greenwich, England, was chosen as the zero meridian from which all time should be reckoned. Although there was no definite agreement as to the adoption of this time by the different nations, the plan was gradually accepted.
The adoption of time differing from Greenwich by an odd number of half hours soon made its appearance. This slight departure from the original plan is of advantage in some places, since it more nearly agrees with true local time. In New Zealand the time is $11 \frac{1}{2}$ hours faster than Greenwich time, in Burma $61 / 2$ hours faster, while in India, excepting Calcutta, it is $5 \frac{1}{2}$ hours faster.

Table 1 shows the spread of the use of the International Time Zone System. In some countries, as in the United States, standard time came into use without any legislative action. The dates given are either those of official adoption or of the earliest recorded use of standard time.

Table 1.—Showing increasing adoption of International Time Zone System

${ }^{1}$ Netherlands changed to Amsterdam time in 1903.

III. STANDARD TIME IN THE UNITED STATES

1. TIME ZONES

Although the United States has used standard time since 1883, no legislative action for the country as a whole is recorded until March 19, 1918, when Congress directed the Interstate Commerce Commission to establish limits for the various time zones in this country. Changes in these boundaries have been made from time to time, in order that the time changes may occur at such points as to result in a minimum of inconvenience.

The United States is divided into four standard time zones, each approximately 15° of longitude in width. All places in each zone use, instead of their own local time, the time counted from the transit of the "mean sun" ${ }^{2}$ across the meridian which passes through the approximate center of that zone.

These time zones are designated as Eastern, Central, Mountain, and Pacific, and the time in these zones is reckoned from the 75th, 90th, 105th, and 120th meridians west of Greenwich, respectively.

[^1]Figure 1.-Standard time zones of the United States, with adjacent parts of Canada and Mexico

The time in the various zones is slower than Greenwich time by $5,6,7$, and 8 hours, respectively.

The question of changing from the time of one time zone to that of an adjacent zone arises in practice largely in the operation of railroads. Because of the inconvenience of changing the time by the necessary amount of 1 hour at every point where a railroad crosses one of these boundary lines, the more convenient practice has usually been followed of making the change at some terminal or division point on the road, at some junction point, or at the boundary line between the United States and Canada. The result is that practically the boundaries of the time zones are defined by the lines connecting these points of railroad time change. Because of the location of these railroad junctions or terminals the resulting lines are somewhat irregular.

Figure 1 shows the time zones and present boundary lines as defined by the Interstate Commerce Commission.

2. CITIES ON TIME-ZONE BOUNDARIES

There are listed below some of the more important cities on the boundaries of the time zones.
(a) The following municipalities located on the boundary between the Eastern and the Central Time Zones use eastern standard time:

Detroit, Mich.
Toledo, Ohio, and all other cities in Ohio situated on this boundary.
Williamson, W. Va.
Dungannon, Va.
Bristol, Va.

Asheville, N. C.
Franklin, N. C.
McDonough, Ga.
Macon, Ga., and points on Southern Railway between McDonough and Macon.

Perry, Ga.
Thomasville, Ga.
Apalachicola, Fla.

All other places on this boundary use central standard time.
(b) The following municipalities located on the boundary between the Central and the Mountain Time Zones use central standard time:

Murdo, S. Dak. Mackenzie, S. Dak. Phillipsburg, Kans.

Stockton, Kans. Plainville, Kans.

Ellis, Kans.
Liberal, Kans.

All other places on this boundary use mountain standard time.
(c) All municipalities on the boundary between the Mountain and the Pacific Time Zones use mountain standard time except Huntington, Oreg., which uses Pacific standard time.

3. TERRITORIES AND INSULAR POSSESSIONS

Standard time is also used in the territories outside of the continental United States. The places and the time used are given below:

Alaska (see table 4)	10 hours slower than Greenwich.
Guam.	$91 / 2$ hours faster than Greenwich.
Hawaii	10112 hours slower than Greenwich.
Panama Canal Zon	5 hours slower than Greenwich.
Philippines	8 hours faster than Greenwich.
Puerto Rico	4 hours slower than Greenwich.
Samoa	11 hours slower than Greenwich.
Virgin Islands	4 hours slower than Greenwich.

4. TIME IN SEVERAL LARGE CITIES OF THE UNITED STATES AT 12 NOON, EASTERN STANDARD TIME

5. TIME SIGNALS IN UNITED STATES

The standard time for the United States is derived from star observations made at the United States Naval Observatory, Washington, D. C. After the necessary corrections have been applied, signals from a transmitting device are sent by wire to the radio stations at Arlington, Va., (NAA), and Annapolis, Md., (NSS), where they are automatically broadcast by radio.

All naval time signals are made in a standard manner, which is as follows:

The signals begin 5 minutes before the hour and consist of a dash on each second, except on the seconds listed below:

> 55 minutes; 29,51 , and 56 to 59 seconds. 56 . 56 . 56 minutes; 29,52 , and 56 to 59 seconds. 56 minutes; 29,53 , and 56 to 59 seconds. 58 minutes; 29,54, and 56 to 59 seconds. 59 minutes; 29 , and 51 to 59 seconds.

Beginning exactly on the hour a much longer dash is sent. In all cases the exact second is denoted by the beginning of the dash, the end being without significance. It will be noted that the number of seconds sounded immediately following the single second omission and preceding the long omission at the end of each minute indicates the number of minutes of the signal yet to be sent. For instance, the signal for 56 minutes and 52 seconds is omitted and then 3 seconds are sounded, indicating that 3 minutes of the signal remain to be transmitted.

These time signals, if received directly and automatically are seldom in error by as much as 0.10 second. The average error is generally less than 0.02 second.

The signals from San Francisco, Calif., (NPG), are broadcast from a clock, located at Mare Island, which is first synchronized with the signals from Arlington.

Darien, Canal Zone (NBA), and Honolulu, T. H. (NPM), relay the signals received from Arlington.

Cavite, P. I. (NPO), transmits signals from a clock at the Manila Central Observatory. These signals are independent of Arlington, and the errors may be somewhat greater than for the other stations.

All of these signals are sufficiently close for ordinary commercial use.
Table 2 gives a list of the official naval stations which broadcast the time signals and the time of broadcast.

Table 2.-Radio transmission of official time signals ${ }^{1}$
[The times given in this table are those of the final signal of the series]

[^2]
IV. TIME IN FOREIGN COUNTRIES

1. TIME ZONES OF THE WORLD

Standard time for the world, like longitude, is counted from Greenwich as the prime meridian. As explained in section II, places to the east of Greenwich have faster time then Greenwich, while places to the west have slower time.
Figure 2 shows how the world is divided into time zones of approximately 15° for every hour. Since Greenwich is in the 0 zone, the number of any zone in figure 2, if added algebraically to the time in Greenwich, will give the corresponding time in that particular zone. It must be remembered that not all countries follow the International Time Zone System, but that some use the time of some principal city as a standard and others have no standard of time. Table 4 and figure 3 will be found useful in such cases.

2. INTERNATIONAL DATE LINE

The International Meridian Conference, held in Washington, D. C., in 1884, established as the prime meridian, from which time was to be counted, the meridian passing through Greenwich, England. The meridian 180° from this prime meridian was made the International Date Line, but, in order to include islands of the same group in the same day, it has been necessary to vary the line from the 180th meridian at some places. The official date line runs from $70^{\circ} \mathrm{N}$. to $60^{\circ} \mathrm{S}$. in accordance with the following description:

Starting at the 180 th meridian at $70^{\circ} \mathrm{N}$., thence southeasterly to $169^{\circ} \mathrm{W} ., 65^{\circ} \mathrm{N}$., thence southwesterly to $170^{\circ} \mathrm{E} ., 52^{\circ} 30^{\prime} \mathrm{N}$., thence southeasterly to the 180 th meridian at $48^{\circ} \mathrm{N}$., thence southerly on the 180 th meridian to $5^{\circ} \mathrm{S}$. , thence southeasterly to $172^{\circ} 30^{\prime} \mathrm{W}$., $15^{\circ} 30^{\prime}$ S., thence southwesterly to the 180 th meridian at $51^{\circ} 30^{\prime}$ S., thence southerly on the 180 th meridian to $60^{\circ} \mathrm{S}$.
When crossing this line in a westerly direction (i. e., from west longitude to east longitude), the date must be advanced 1 day, and when crossing in an easterly direction (east longitude to west longitude), the date must be set back 1 day.

3. TIME IN SEVERAL IMPORTANT CITIES

The following list gives the time in some important cities of the world, outside of continental United States, at 12 noon eastern standard time.

Several foreign radio stations broadcast official time signals at stated times each day, the time of transmission varying for $\mathrm{h}^{\boldsymbol{\theta}}$ different stations.

In some countries the hours of the day are numbered from 0 to 24 beginning at midnight. This is less confusing than the double 12 system used in this country and is the system used in the list given below. The corresponding times in the two systems are:

24-hour system	Double-12 system	24-hour system	Double-12 system
1.	$1 \mathrm{a} . \mathrm{m}$.	13	$1 \mathrm{p} . \mathrm{m}$.
2	$2 \mathrm{a} . \mathrm{m}$.	14	$2 \mathrm{p} . \mathrm{m}$.
3	$3 \mathrm{a} . \mathrm{m}$.	15.	$3 \mathrm{p} . \mathrm{m}$.
4	$4 \mathrm{a} . \mathrm{m}$.	16	$4 \mathrm{p} . \mathrm{m}$.
5	$5 \mathrm{a} . \mathrm{m}$.	17.	$5 \mathrm{p} . \mathrm{m}$.
6	$6 \mathrm{a} . \mathrm{m}$.	18.	$6 \mathrm{p} . \mathrm{m}$.
7	$7 \mathrm{a} . \mathrm{m}$.	19	$7 \mathrm{p} . \mathrm{m}$.
8	$8 \mathrm{a} . \mathrm{m}$.	20	$8 \mathrm{p} . \mathrm{m}$.
9.	$9 \mathrm{a} . \mathrm{m}$.	21	$9 \mathrm{p} . \mathrm{m}$.
10	$10 \mathrm{a} . \mathrm{m}$.	22	$10 \mathrm{p} . \mathrm{m}$.
11	$11 \mathrm{a} . \mathrm{m}$.	23----	11 p.m.
12	12 noon.	0 or 24	12 midnight.

The systems of transmitted signals used by the different stations are not the same. A few stations use a special system of their own, but most stations use one of the systems described below. The signals are preceded by warning or some kind of preliminary signals to indicate the station.

The International System of Time Signals is as follows:
$57^{\mathrm{m}} 0^{\mathrm{s}}$ to $57^{\mathrm{m}} 49^{\mathrm{s}}$ the letter $\mathrm{X}(\ldots \ldots)$ repeated every 5 seconds
$57^{\mathrm{m}} 50^{\mathrm{s}}$ to $57^{\mathrm{mm}} 55^{\mathrm{s}}$ silent period

$58^{\mathrm{m}} \quad 8^{\mathrm{s}}$ to $58^{\mathrm{m}} 10^{\mathrm{s}} 08 \quad 09 \quad 10$
$58^{\mathrm{m}} 18^{\mathrm{s}}$ to $58^{\mathrm{m}} 20^{\mathrm{s}} 18 \quad 19 \quad 20$
$58^{\mathrm{m}} 28^{\mathrm{s}}$ to $58^{\mathrm{m}} 30^{\mathrm{s}} \quad 28 \quad 2930$
$58^{\mathrm{m}} 38^{\mathrm{s}}$ to $58^{\mathrm{m}} 40^{\text {s }} 38 \quad 3940$
$58^{\mathrm{m}} 48^{\mathrm{s}}$ to $58^{\mathrm{m}} 50^{\mathrm{c}} 48 \quad 4950$
$58^{\mathrm{m}} 50^{\mathrm{s}}$ to $58^{\mathrm{m}} 55^{\mathrm{s}}$ silent period
$58^{\mathrm{m}} 55^{\mathrm{s}}$ to $59^{\mathrm{m}} \quad 0^{\mathrm{s}} 55 \quad 56 \quad 57 \quad 58 \quad 59 \quad 0$
$59^{\mathrm{m}} \quad 6^{\mathrm{s}}$ to $59^{\mathrm{m}} 10^{\mathrm{s}} \quad 06 \quad 07 \quad 08 \quad 09 \quad 10$
$59^{\mathrm{m}} 16^{\mathrm{s}}$ to $59^{\mathrm{m}} 20^{\mathrm{s}} \quad 16 \quad 17 \quad 18 \quad 19 \quad 20$
$59^{\mathrm{m}} 26^{\mathrm{s}}$ to $59^{\mathrm{m}} 30^{\mathrm{s}} \underline{26} \quad 27 \quad 28 \quad 2930$
$59^{\mathrm{m}} 36^{\mathrm{a}}$ to $59^{\mathrm{m}} 40^{\mathrm{s}} \frac{36}{} \frac{37}{} \frac{38}{} \frac{39}{40}$
$59^{\mathrm{m}} 46^{\circ}$ to $59^{\mathrm{m}} 50^{\mathrm{B}} \quad 46 \quad 47 \quad 48 \quad 49 \quad 50$
$59^{\mathrm{m}} 50^{\circ}$ to $59^{\mathrm{m}} 55^{\mathrm{s}}$ silent period
$\begin{array}{lllllllll}59^{\mathrm{m}} & 55^{\mathrm{s}} \text { to } & 0^{\mathrm{m}} & 0^{\mathrm{B}} & 55 & 56 & 57 & 58 & 59 \\ 0\end{array}$

The New International System is the same as the International System except that the 3 dashes from 55^{8} to 0^{8} are replaced by 6 dots 1 second apart, thus, $\begin{array}{llllll}55 & 56 & 57 & 58 & 59 & 0 .\end{array}$
Table 3.-Radio transmission of foreign time signals
[The times shown in this table are those of the final signal. The system of signals is preceded by warning or identifying signals in each case. The signals are transmitted daily

		$\left\lvert\, \begin{aligned} & \text { JCS } \\ & \text { JOKK } \end{aligned}\right.$	$\begin{aligned} & 500 \\ & 700 \end{aligned}$	$\left\|\begin{array}{l} 2: 04^{4} \text { and } 12: 04^{4}----\mid \\ 3 \text { and } 12: 40 \end{array}\right\|$	$\begin{aligned} & \text { 11:044 and } 21: 04 \\ & \text { 12 and } 21: 40 \end{aligned}$	$\begin{aligned} & \text { _do } \\ & \text {-do } \end{aligned}$	Astronomical Obs., Tokyo. Tokyo Central Broadcasting
Japan	Shizuoka	JOPK	780	3 and 12:40	12 and 21:40		Station. Do.
	Tokyo (Funabashi)	JJC	39	1:044 and 12:04 ${ }^{\text {c }}$---	11:04 4 and 21:04	Special, preceded by Rhyth mic.	Astronomical Obs.
Africa:							
	Massawa	IRG	$\left\{\begin{array}{l}117.4 \\ 5,454\end{array}\right.$	4 and 18---------------------		-	\int Pendulum and chronometer checked against Bordeaux (FYL).
Italian Somaliland.-	Magadiscio (Mogdishu) .----	ISG	$\left\{\begin{array}{c} 153.8 \\ 5,450 \\ 195 \end{array}\right.$	${ }_{22} 9$ and 22.10 ---------	12 and 1		Pendulum checked against Bordeaux (FYL). Campos Rodriques Obs.
	(Polona (Lorenco Marques)	CRAP		8 and 19-	10 and 21	New Int	
rica.	$\left\{\begin{array}{l}\text { Ponta Vermelha (Lorenço } \\ \text { Marques). }\end{array}\right.$	CQE	500	8 and 19.	10 and 21	-.do	Do.
Union of South Africa--	Capetown -----------	ZTC	800			do	Royal Obs.
Union or South Africa--	Slangkop (Capetown)	ZSC	480				
North America:							
Canada	Chebucto Head, N. S...----	VAV	500	14-.-.-	10--.-.-	Special	St. Johns Obs.
Mexico	Menzales Hill, B. City (Chapultepec)-	VAK	405 51.7	3 and 18 1 and 19	10 and 17	U. S. ${ }^{\text {do- }}$	Gonzales Obs. Tacubaya Obs.
South America:							
ArgentinaBrazil	(Buenos Aires-Darsena Norte	LOL	$\left\{\begin{array}{r}285 \\ 8,690\end{array}\right.$		10^{6} and 22^{56}	\}New International ----------	Buenos Aires Naval Obs.
	(Monte Grande	$\left\{\begin{array}{l}\text { LSD } \\ \text { LSF }\end{array}\right.$	$\begin{array}{r} 8,830 \\ 19,600 \end{array}$			Modified Rhythmic	
	(National Obs. (Rio de\}						
	Janiero). $\}$	PPE	8,720.9	$\left\{\begin{array}{l}0: 104 \\ 0.20\end{array}\right.$	$21: 104$	U. S--	Rio de Janiero Obs.
	Rio de Janiero	PPR	300	0	21.	New International	Do.
Chile	Valpariso-Las Salinas	CCL	140	$1{ }^{2}$	202	U. S	Hydrographic Office.
Peru	La Punta (Callao)	OBE	$\left\{\begin{array}{r}250 \\ 13,043\end{array}\right.$			Old	Naval School of Peru.
Australia and East Indies:	Lima-El Progreso	OAZ	-85.7	192		do	Do.
	Adelaide, S. A-------........	VIA		0:30 and 12:30------	10 and 22----------	International ----.-	Adelaide Obs.
Australia-----------------------------------	Melbourne, Victoria---------	VIM	500	2 and 14------------	0 and 12-------------	New International.	
	Perth, W. A.--------------	VIP	500	1 and 13	9 and 21	Internationa	Perth Ob
		\{PKA	19		13 and ${ }^{13}$	Special-----	
			19	17	8:30	Inta	
Java-------------------		$\begin{aligned} & \text { PLO } \\ & \text { ZLY } \\ & \text { ZLW } \\ & \text { VQF } \end{aligned}$	14, 440		8:30-		
New Zealand.	Dominion Obs. (Wellington) Wellington. Kuching		500 500	98 and 23 98	$20: 30^{8}$ and $10: 30$ $20: 308$ and $10: 30$	Special	Dominion Obs.
Sarawak			193		$\begin{aligned} & 20: 30^{8} \text { and } 10: 30 \\ & 7: 30 \end{aligned}$		Station ZLY.

[^3]${ }^{1}$ Time signals start at 10 hours.
${ }_{3}^{2}$ Signals not sent on Sundays

- Signals not sent Sundays and holidays.

The United States System is described on page 6.
The Rhythmic System, sometimes called the coincidence, the scientific, or the vernier system, consists of a series of 61 evenly spaced dots each minute for 5 minutes, making a total of 305 dots in 300 seconds. This system is sometimes modified by replacing the final dot of each minute by a dash.

Table 3, compiled from authoritative sources, lists a number of foreign stations which transmit time signals. When signals end at times other than on the hour, they start the necessary number of seconds ahead of the final signal.

5. COMPARATIVE TIME

In order to illustrate more clearly the difference in time as one travels from place to place upon the earth, the chart shown in figure 3 has been prepared. On this chart the outer circle shows the longitude east and west of Greenwich; the middle circle gives the time as compared with noon in Washington, D. C., and the inner circle shows the time difference from Greenwich.

This diagram will be found useful in picturing the relative locations of various countries and for computing the comparative time between them.

Example: The standard meridian for Japan is 135° E. and that for Turkey is $30^{\circ} \mathrm{E}$. What is the time in each place at noon in Washington and what is the time difference between Japan and Turkey?

Following the radius through $135^{\circ} \mathrm{E}$. toward the center, we find that the time in Japan is 9 hours faster than Greenwich and that its time is 2 a . m. next day when it is noon in Washington.

Following the radius through $30^{\circ} \mathrm{E}$. toward the center, we find that the time for Turkey is 2 hours faster than Greenwich and that its time is $7 \mathrm{p} . \mathrm{m}$. when it is noon in Washington.

Since Japan is 9 hours faster than Greenwich and Turkey is only 2 hours faster than Greenwich, Japan must be 9 hours minus 2 or 7 hours faster than Turkey.

Where parts of an hour are involved the fraction may be added to the full hour difference shown in the diagram.

Example: What is the time in Honolulu ($157^{\circ} 30^{\prime}$ W.) at noon in Washington and how much difference is there in time between Honolulu and England?

Following the outer circle we find that $157^{\circ} 30^{\prime}$ W. is halfway between $150^{\circ} \mathrm{W}$. and $165^{\circ} \mathrm{W}$. The time of Honolulu must then be half way between the time for the two meridians. The middle circle shows that this would give the time in Honolulu as 6:30 a. m. at noon in Washington, and the inner circle shows that Honolulu time is $10 \frac{1}{2}$ hours slower than Greenwich.

Figure 3.-Comparative time chart.

6. LEGAL TIME USED IN THE DIFFERENT COUNTRIES

Nearly every country of the world has established a legal time upon which to operate, and also a legal time for islands and dependencies under its control. (See fig. 2.) Table 4 shows the authorized time and compares this time with both Greenwich, England, and Washington, D. C. Where the legal time conforms to the International Standard Time System the standard-time meridian is indicated.

Table 4.-Time compared with Greenwich mean time and Washington, D. C., noon

${ }^{1}$ The time noted is in the morning of the following day.
${ }^{2}$ Although Congress has authorized only one time, that of $150^{\circ} \mathrm{W}$., for Alaska, several times are used and recognized in commerce. The times used are given bere.

Table 4.-Time compared with Greenwich mean time and Washington, D. C., noonContinued

Table 4.-Time compared with Greenwich mean time and Washington, D. C., noonContinued

${ }^{1}$ The time noted is in the morning of the following day.

Table 4.-Time compared with Greenwich mean time and Washington, D. C., noonContinued

${ }^{1}$ The time noted is in the morning of the following day.

Table 4.-Time compared with Greenwich mean time and Washington, D. C., noonContinued

Country	General location	Standard meridian		Time compared with Greenwich		Noon at Washington, D. C. (eastern standard time)		Remarks
Isle of Man.-.-.-.........--	British Isles....--	0° 750		$\mathrm{h}_{0}^{\mathrm{h}} \mathrm{~m}$		$\frac{\mathrm{h}}{5} \mathrm{~m}$	p. m.	$\begin{aligned} & \text { Western Eu- } \\ & \text { rop opan } \\ & \text { time. } \end{aligned}$
Italy-.-	est Indies		$\begin{aligned} & \text { W. } \\ & \text {. } \end{aligned}$		$\begin{aligned} & \text { Slow } \\ & \text { fast } \end{aligned}$		noon. $\mathrm{p} . \mathrm{m}$	Middle Eu-
								ropean time.
Ivory Coast....-.-......--	Africa	0°		0		5	p. m.	
Jamaica	West Indies.	75°	W.	5	slow		noon.	
Jan Mayen Island.-------	$\begin{aligned} & \text { Arctic Ocean (} 10^{\circ} \\ & \text { W.). } \end{aligned}$							No standard
Japanese Empire...------	Asia	135°	E.		fast	2	${ }^{1} \mathrm{a} . \mathrm{m}$.	$\begin{aligned} & \text { Japanese } \\ & \text { standard } \\ & \text { time. } \end{aligned}$
Korea (Chosen)		135°	E.	9	fast	2	${ }^{1} \mathrm{a} . \mathrm{m}$.	Do.
Jappen Islands.----------	East Indie	135°	E.	9	fast	2	${ }^{1} \mathrm{a} . \mathrm{m}$.	New Guinea time.
Java Juan Fernandez Island...	\mid	$112^{\circ} 30^{\circ}$	$\stackrel{\mathrm{E}}{\mathrm{~W}} .$	${ }_{5}^{7} 30$	$\begin{aligned} & \text { fast } \\ & \text { slow } \end{aligned}$	$\left.\right\|_{12} ^{12} 30$	$\begin{aligned} & \text { 1} \mathrm{a} . \mathrm{m} . \\ & \text { noon. } \end{aligned}$	Java time.
Karaginski Island	Bering Sea	165°	E.	11	fast	4	${ }^{1} \mathrm{a}$. m.	
Kei Islands..	East Indies	135°	E.	9	fast	2	${ }^{1} \mathrm{a} . \mathrm{m}$.	New Guinea
Kenya--	Africa----------	$37^{\circ} 30^{\prime}$	E.	230	fast	730	p. m.	
Kodiak Island.	Gulf of Alaska.-	150°	W.		slow		a. m.	
Komandorski Isla	Bering Sea-..	165°	E.	11	fast	4	${ }^{1} \mathrm{a} . \mathrm{m}$.	
Kotelni Island.	Arctic Ocean.	135°	E.	9	fast	2	${ }^{1} \mathrm{a} . \mathrm{m}$.	
Kuril Islands.	Japan----	135°	E.	9	fast	2	${ }^{1} \mathrm{a} . \mathrm{m}$.	
Laccadive Island	Indian Ocean.	$82^{\circ} 30^{\prime}$	E.	530	fast	1030	p.m.	
Latvia...	Europe--------	30°	E.		fast		p.m.	$\begin{aligned} & \text { Eastern Eu- } \\ & \text { rop ea n } \\ & \text { timp } \end{aligned}$
Liberia	Africa			044	slow	416	p.m.	
Libia		15°	E.	1	fast	6	p.m.	
Liechtenstein	Europe		E.	1	fast	6	p.m.	$\begin{aligned} & \text { Middle Eu- } \\ & \text { ropean } \end{aligned}$
Lithuania	do	15°	E.	1	fast	6	p.m.	time.
Lombok Island	East Indies	$112^{\circ} 30^{\prime}$	E.	730	fast	1230	${ }_{1} \mathrm{a}$ a.m.	Java time.
Lord Howe Island	South Pacific.	150°	E.	10	fast		${ }^{1} \mathrm{a} . \mathrm{m}$.	
Loyalty Islands.		165°	E.	11	fast	4	${ }^{1}$ a. m.	
Luxemburg----------------	Europe.-...-----	15°	E.	1	fast	6	p. m.	Middle European time.
Macquarie Islands.	Antarctic Ocean							No standard
Madagascar Island	Indian Ocean..-	45°	E.	3	fast			
Madeira Island.	North Atlantic--	15°	W.		slow	4	p. m.	
Mahon Islan	Mediterranean	0°		0			p. m.	
Malay States, Federated.-	Asia------------	105°	E.	7	fast	12	night.	
Maldive Islatids..--	Indian Ocean-.-			454	fast	954	p. m.	
Malta Island.	Mediterranean		E.	1	fast		p. m.	
Marianas Islands (Ladrones).	South Pacific	150°	E.	10	fast		${ }^{1}$ a.m.	
Marquesas Islands	do	150°	W.	10	slow	7	a. m.	
Marshall Islands.	North Pacific..-	165°	E.	11	fast	4	${ }^{1}$ a. m.	
Martinique Island	West Indies..-.-	60°	W.	4	slow	1	p. m.	
Mauritania --.--	Africa----------	15°	W.	1	slow	4	p. m.	
Mauritius Island	Indian Ocean..-	60°	E.	4	fast	9	p. m.	
Mexico (except lower California north of 28°).	North America--	90°	W.	6	slow	11	a. m.	
Lower California (north of $28^{\circ} \mathrm{N}$.).		120°	W.	8	slow	9	a. m.	
Miquelon Island.---------	Gulf of St. Lawrence.	60°	W.	4	slow	1	p. m.	$\begin{aligned} & \text { Atlantlc } \\ & \text { standard } \\ & \text { time. } \end{aligned}$
Monaco...	Europe.	0°		0			p. m.	Western European time.
Mono Island.	East Indies (155 ${ }^{\circ}$							No standard time.
Morocco..	Africa.............	0°		0		5	p.m.	.

${ }^{1}$ The time noted is in the morning of the following day.

Table 4.-Time compared with Greenwich mean time and Washington, D. C., noonContinued

Table 4.-Time compared with Greenwich mean time and Washington, D. C., noonContinued

Table 4.-Time compared with Greenwich mean time and Washington, D. C., noonContinued

1 The time noted is in the morning of the following day.

Table 4.-Time compared with Greenwich mean time and Washington, D. C., noonContinued

${ }^{1}$ The time noted is in the morning of the following day.

Table 4.-Time compared with Greenwich mean time and Washington, D. C., noonContinued

${ }^{1}$ The time noted is in the morning of the following day.

V. SUMMER OR DAYLIGHT SAVING TIME

The use of summer or daylight saving time developed largely during the World War. The plan was to advance the time in a certain area by a definite amount during the summer months to permit greater use of daylight hours.
In the United States, Congress in the Act for Saving Daylight passed in March 1918, advanced the time for all sections of the country 1 hour from the last Sunday in April to the last Sunday in September, the change being made at $2 \mathrm{a} . \mathrm{m}$. when it would cause the least disturbance in schedules. This act was reenacted in October 1919 omitting the daylight saving clause, but some. States and communities still use daylight saving time by local legislation. The use is by no means general and is entirely a matter of local legislation, having no effect on standard time or time zone boundaries.

Canada took similar action by the adoption of the Daylight Saving Act of 1918. This act lapsed after that year, but, as in the United States, certain sections still continue to use daylight saving time by local legislation.

In Europe "summer time" was used by many countries, but the method and time of application varied greatly. Some countries have retained the summer time laws and still use advanced time for certain periods of the year.

Table 5 gives the countries using summer time and the period of the year in which it is applied.

Table 5.-Countries using "summer time" ${ }^{1}$

Country	Period when used	$\begin{aligned} & \text { Advance } \\ & \text { made } \end{aligned}$
Great Britain.		
Ireland---		
Channel Island	Apr. 14, $2 \mathrm{a} . \mathrm{m}$. to Oct. 6, $2 \mathrm{a} . \mathrm{m}$	1 hour.
Luxemburg		
France--		
Monaco	Last Saturday in March to first Saturday in October	1 hour.
Portugal	Fixed annually	
Netherlands	April to October by Royal Decree	1 hour.
Gold Coast	September 1 to Decemkier 31.	$20 \mathrm{~min}-$
U. S. S. R	The time for all zones in the Union was advanced 1 hour from June 20 to Sept. 30, 1930, only.	

[^4]Table 5.-Countries using "summer time"-Continued

Country	Period when used	Advances made
Sarawak.	September 14 (midnight) to December 14 (midnight)..	20 min -
New Zealand.-	Second Sunday in October to third Sunday in March.	30 min
Canada	By local legislation only.	
United States...		
British Honduras	October 1 to February 14 (approximately)	30 min -
Chile-	September 1 to March 31	1 hour.
Argentina	Fixed annually Last week end in September to next to last week end in March	
New foundland..	First Sunday in May ($10 \mathrm{p} . \mathrm{m}$.) to first Sunday in October (11 p. m.).	1 hour.

VI. SELECTED REFERENCES

The following list is intended to give the reader sources of general and specific information on standard time. The indexes of the publications named give specific references to the subject.
British Astronomical Association (London) Journal.
Bureau des Longitudes (France) Annuaire (1892-1934).
Bureau of Foreign and Domestic Commerce (Washington).
Geographic News Bulletins.
World Short Wave Radiophone Transmitters.
Bureau of International Telecommunication Union (Berne).
Stations performing special services Nov. 1933.
Dominion Observatory (Ottawa).
Standard Time and Time Zones in Canada.
Federal Statutes of United States.
An act for saving daylight Mar. 19, 1918. Chapter 24, paragraphs 1-5, 40 Stat.

Reenactment of above act omitting the daylight saving clause Aug. 20, 1919. Chapter 51, 41 Stat. 280.

Hydrographic Office, U. S. Navy Department.
Radio Aids to Navigation.
Time Zone Chart of the World No. 5192.
Interstate Commerce Commission (Washington).
Standard Time Zones Investigation Bulletins.
International Meridian Conference.
Report of the Washington Conference, 1884.
National Bureau of Standards.
Standard Time Conversion Chart, Miscellaneous Publication M84.
Time Zone Map of United States, Miscellaneous Publication M111.
Nautical Almanac Office, Royal Naval College (London).
Standard Times, 1935.
Royal Astronomical Society (London).
Monthly Notices.
Societe belge d'astronomie (Brussels).
Ciel et Terre.
Soviet Union, Guide Book by A. Rado, 1928.
Standard Time in North America 1883-1903 by W. F. Allen.
The Hydrographic Office of the Royal Navy (London).
Time Zone Map of the World.
The Observatory (London) 1880-93.
U. S. Naval Observatory.

Present Status of Standard Time, vol. IV, appendix IV, 1905.
World Almanac and Book of Facts.
Published annually by New York World-Herald.

[^0]: ${ }^{1}$ Prepared bs Ralph E. Gould, Chief, Time Section.

[^1]: 2 The interval between successive passages of the sun across the meridian is somewhat variable, and for this reason apparent solar days are unequal. Therefore, mean time has been adopted, which is kept by a fictitious or "mean sun" moving uniformly in the Equator at the same average speed as that of the real sun, thus making days of equal length. It is "mean noon" when this "mean sun" crosses the meridian.

[^2]: ${ }^{1}$ The information given in this table is as of October 1934, and is subject to change by the U. S. Navy Department.
 ${ }_{2}$ The U. S. Naval Observatory issues its reports in Greenwich civil time and numbers the hours of the day from i to 24 , beginning at 12 midnight.

[^3]: ${ }^{5}$ Sundays and holidays only.
 ${ }^{6}$ From Nov. 1 t Mar. 1 the signals are sent 1 hour earlier

[^4]: ${ }^{1}$ This table was compiled largely from notes in the 1935 Report of the Nautical Almanac Offec, Royal Naval College, England.

