DEPARTMENT OF COMMERCE

BUREAU OF STANDARDS

S. W. STRATTON, DIRECTOR

No. 100

NICKEL

MARCH 21, 1921

PRICE, 20 CENTS

Sold only by the Superintendent of Documents, Government Printing Office Washington, D. C.

> WASHINGTON GOVERNMENT PRINTING OFFICE 1921

DEPARTMENT OF COMMERCE

OF THE

BUREAU OF STANDARDS

S. W. STRATTON, DIRECTOR

No. 100

NICKEL

MARCH 21, 1921

....

PRICE, 20 CENTS

Sold only by the Superintendent of Documents, Government Printing Office Washington, D. C.

> WASHINGTON GOVERNMENT PRINTING OFFICE 1921

CIRCULAR

FUREAU OF STANDARDS

0 - 1 - 101 - 1

10 100

THE PLANE

NICKEL

CONTENTS

Introduction	rage
PART A. Nickel	5
I. Sources, metallurgy, refining	5
II. Commercial grades—uses and applications	10
III. Statistics of production	13
IV. Metallography	14
V. Chemical properties.	17
VI. Physical properties	18
I. Density	18
2. Change of state	18
3. Specific heat	19
4. Thermal expansivity	20
5. Thermal conductivity	20
6. Electrical resistivity	20
7. Thermoelectromotive force	23
8. Magnetic properties	23
9. Electrolytic-solution potential; passivity	23
10. Optical properties	25
II. Elasticity	26
12. Hardness	27
13. Tensile properties.	27
VII. Effect of impurities on the properties of nickel	28
VIII. Technology.	32
I. Casting	32
2. Rolling, forging, annealing	33
3. Welding and soldering.	35
4. Electrodeposition	36
PART B. Alloys of nickel	30
IX. Equilibrium of binary alloys of nickel	39
X. Commercial alloys	40
I. Monel metal:	
(a) Metallography	42
(b) Uses and applications.	42
(c) Physical properties.	44
2. Copper-nickel alloys	50
3. Copper-nickel-zinc alloys; nickel silver (nickelene)	55
4. Ferronickel alloys:	55
(a) Nickel steels	62
(b) Invar and related alloys	70
5. Allovs for electrical purposes	71
6. Acid-resisting alloys.	78
7. Miscellaneous allovs.	70
PART C. Appendixes	85
I. Definitions of physical terms.	85
2. List of United States patents on pickel alloys (1000-1020).	80
3. Typical specifications for nickel alloys	OI
A. Bibliography.	04
0-T-J	T

D- -0

INTRODUCTION

The Bureau is continually in receipt of requests for information concerning the properties, statistics, and manufacture of metals and of alloys, coming from other departments of the Government, technical or purchasing agents of manufacturing firms, or from persons engaged in special investigative work in universities and private technical institutes. Such information is rarely to be found in systematic form; usually the sources of such information are difficult of access, and their accuracy not always certain. Often quoted information of this sort is valueless, either for the reason that the data upon which it is based are actually incorrect or that they have not been properly interpreted.

There are, therefore, being issued from time to time in response to these demands circulars on individual metals or alloys, with the idea of grouping in these circulars all of the best information which the Bureau has as a result of its tests and investigations, together with that available in all records of published tests and investigations of such material.

The circulars deal primarily with the physical properties of the metal or alloy. All other features, except a few statistics of production and such as methods of manufacture, presence of impurities, etc., are discussed only in their relation to these physical properties. It must be realized that the physical properties of metals and alloys are often in great degree dependent upon such factors, so that the statement of values for such properties should include accompanying information regarding these factors by which the properties are affected.

The endeavor, therefore, in the circulars is to reproduce only such data as have passed critical scrutiny and to qualify suitably in the sense outlined above all statements, numerical or otherwise, made relative to the characteristics of the metal. The probable degree of accuracy of data is indicated or implied by the number of significant figures in the values given.

The Bureau has received much valuable assistance and information in the preparation of this circular from The International Nickel Co., the American Brass Co., the Scovill Manufacturing Co., the Driver-Harris Co., the Electrical Alloys Co., the Hoskins Manufacturing Co., and others, for which it wishes to express its grateful appreciation.

PART A. NICKEL

I. SOURCES, METALLURGY, REFINING

The ores from which commercial nickel is obtained are of three classes: (1) Sulphides, represented by the pyrrhotite-chalcopyrite ores of Sudbury, Canada, and of Norway, and which contain from 1 to 3 per cent each of copper and nickel, with pentlandite as the nickel carrier; (2) silicates and oxidized ores, which are found principally in New Caledonia and contain from 5 to 6 per cent of nickel (plus cobalt), with garnierite as the principal nickel carrier; and (3) arsenical ores, which are found in Canada and on the Continent (Saxony) and elsewhere. Of these the first two classes only are of much commercial importance, and the first class furnishes by far the greater proportion of the present output of this metal. In addition to the metal produced from these ores, a small amount of nickel is recovered annually from blister copper.

Sulphide ores are roasted and smelted in the blast furnace to a matte containing approximately 24 per cent of nickel plus copper, 45 per cent of iron, and the balance sulphur. This matte is then blown in a converter to one containing essentially only nickel, copper, and sulphur, which is ready for the refining.

Although the smelting practice of the companies operating with sulphide ore of the Sudbury type is essentially the same, as well as the product (which is usually known as Bessemer matte), the refining of this matte to metal and the separation of the nickel and copper are accomplished by quite widely different processes, of which the following three are the most important:

(1) The Hybinette process, which is in operation in Norway, is essentially an electrolytic one. The matte is roasted to remove the bulk of the sulphur and leached with 10 per cent sulphuric acid, whereby a large proportion of the copper with very little nickel is dissolved out. The residue is melted and cast into anodes, containing about 65 per cent nickel and from 3 to 8 per cent of sulphur, from which, by a combination of electrolysis and cementation of the copper by waste anodes, nickel cathodes and both cement and cathode copper are obtained.

(2) In the Mond process, which is operated in England, the Bessemer matte is first roasted and the copper removed in part by leaching with sulphuric acid with the formation of a solution of copper sulphate. The residue, containing nickel oxide with some copper oxide and iron, is reduced at a low heat to a finelydivided metallic powder. This is carefully protected from contact with the air, and carbon monoxide is passed over it at from 50 to 80° C. At these temperatures nickel-carbonyl vapor is formed and is decomposed by passing it through a tower containing shot nickel heated to about 200° C; a layer of nickel is formed on the shot, and the carbon monoxide is regenerated and returned to the volatilizing towers. The nickel shot is alternately exposed to and withdrawn from the action of this gas, and in this way a series of concentric layers of nickel are built up around the original nucleus, like the coats of an onion. Mond-nickel shot may readily be distinguished by hammering it upon an anvil, when the various coatings will be broken open, revealing its layer structure.

(3) The Orford process, which is the oldest process for the separation of copper and nickel, is being operated in this country. The Bessemer matte is melted with salt cake, or niter cake, together with coke, in the blast furnace. The sodium sulphide formed by the reduction of the sodium sulphate by the coke, together with the copper sulphide, forms a matte of low specific gravity. The product of the blast furnace is allowed to cool in pots, in which a separation occurs, the upper portion or "tops" containing the greater part of the copper sulphide together with the sodium sulphide, the lower portion or "bottoms" containing the greater part of the nickel sulphide. The "tops" and "bottoms" are readily split apart when cold. Several treatments are required to effect a sufficiently complete separation. The "tops" go to the copper cupola and converter, where they are blown to blister copper. The "bottoms," consisting, essentially, of nickel sulphide or matte, are roasted and leached alternately until they have been completely changed to nickel oxide. This is reduced with charcoal in crucibles or reverberatory furnaces to metallic nickel at a temperature above its melting point, such that the resulting product may be cast into ingots, or blocks, or poured into water to form shot. Electrolytic nickel is also produced by casting this reduced metal at once into anodes and obtaining pure nickel cathodes from them by electrolysis with an electrolyte of nickel sulphate.

The silicate ores of New Caledonia, which contain no sulphur, are first mixed with sulphur-bearing materials, such as gypsum or pyrites, and smelted in the blast furnace to a matte, which is shipped for refining, which in this case, in the absence of copper, consists merely of roasting the nickel matte to oxide and reducing the oxide with charcoal.

						Ŭ	onstituent	s (percer	tages)					
Name	Source	Form	G	Ni and Co	ပိ	e H	w	55	υ	Mn	As	Sn and Sb	Insol.	Remarks
Norway nickel	V. Hybinette	Electro.	0.06	99.52	0. 89	0.36								
Canadian nickel	D. H. Browne	do	.01	99.80		. 12		_			Trace	Trace	0.015	
			.01	99.84			0.005		0.005		0.01	0.01	.003	Analyzed by Orford
Orford nickel	International Nickel Co.	do	0	00 00	G		Terre						,	(1908).
			20.	00.55	. 00		- anert							Allalyzed by Orlord
Electrolytic nickel	Hybinette process	do	. 10	98.75		.50	.01							Royal Ontario Nickel
			063	00 63		u u		2	ç					Commission.
Nickel shot	U. S. Nickel Co	Shot.	90°	98.98	1.01	. 85	.006	00.0	16		Trace	003		
Mond nickel	L. Mond (England)	do	.03	99.36	.06	. 39	. 002	. =	1 =	0.09				
Metallic nickel	U. S. Nickel Co	do	. 05	98.20		. 80								
			None	99.80	None	-	.006	None	. 05					Analyzed by Had-
Mond nickel.	Mond Nickel Co	do	000	50 00	Mono	000	Mono	400	000	-	-			field (1899.)
			2000 .	76 '66	anon	. 040	anon	700.	. 050 .					Analyzed by Mond
		A shot	.15	98. 65	. 80	. 50	.06	.15	. 45		.015	.015		Analyzed by Orford
		X shot	. 15	99. 05	. 80	.47	. 04	.10	. 18		. 015	. 015		(1914). Do.
Nickel shot	International Nickel Co.	A shot		98.60		.50	. 050 .		.50					
		X shot.	.10	99.08		.46	. 024	. 05	. 05					Royal Ontario Nickel
Mond nickel	Mond		,	08 00						-				Commission.
Nickel shot.	International Nickel Co.	X shot	. 20	00 .66		.50	.035	. 15	. 018					
Nickel cubes	U. S. Nickel Co	Cubes	. 065	99.16		. 32	-		. 41			_		
Metallic nickel.	Le Nickel	do		99. 41			. 015	.04	.176 .	_	_			
a The nickel values	of some of the samples n	nentioned by the	Royal C	Intario N	ickel Cor	mmission	include	nickel or	dy while	e in othe	cases th	iey inclu	de nicke	il plus cobalt.

TABLE 1.—Composition of Various Grades of Commercial Nickel^a

Nickel

7

			1	-			onstitue	ats (perc	entages)			failer from a failer and		
;	;				-					-		-		
Source Form Cu	Form	Си		NI and Co	C	Fc	S	SI	C	Mn	As	Sn and Sb	Insol.	Kemarks
0. 10	Cubes 0. 10	0.10	_	99.00		0. 23	0.008	0.12	0.07	6 8 8 8 8 8 8 8 8 8	8			Royal Ontario Nicke Commission
Wigginsdo	do		:	99. 25										Do.
American Nickel Grain	Grain	. 13		99.17		.51					:		1.06	
Ludwick Mond do 01	do	.01	4	99.57		. 133	. 003		. 23		Trace	Trace	. 03	
Le Nickel	do		:	99.38			.010	.109	. 048	0.01				
do Rondelle 11	Rondelle 11	.11	2	99.01		. 13	. 024		- 037				.068	
II.]	п.]	. 11		99.09	0.32	. 65	.04	.01	- 04		0.02	0.02		Analyzed by Le
International Nickel Co. Ingots	Ingots	.13		99.10	.80	.50	90.	. 10	. 10		.015	.015		Nickel (1905). Analyzed by Orlord
														(1914).
Le Nickel	Brick			99.60			.01	. 104	. 111					
H Baker & Co Bode 18	Pode 18	18		07 58		38	. 000	101.	107.	1 60				
International Nickel Co. do	do10	. 10	_	99.40	.80	. 30	. 015	.10	9		Trace	Trace		Analyzed by Orlord
			-											(1914).
dodo	do		:	99,00		. 55	. 025	.10	15	. 15			* * * * * * *	Typical analyses O
													-	ford Works.
dodo	do			98. 75		.50	. 025	. 20	.15	1.75				D0.
do	do			96.75		. 75	. 03	. 20	. 15	1.75				Do.
H. Boker & Co Tube 1.75	Tube 15	. 75	-	97.12		. 65		.10	.13	1.15				
International Nickel Co. Castings	Castings			98, 95		. 50	. 035		.16					Do.
Fleitmann Witte & Co. Sheet 12	Sheet	. 12		99. 37					. 019					
Krupp (Germany) Sheet No. 1 12	Sheet No. 1 12	. 12		99.26		. 40	. 024	. 17	. 045	Trace .				
dodo	Sheet No. 2 1			99.05	_	.40	. 045	.16	. 13	. 13			_	

TABLE 1.-Composition of Various Grades of Commercial Nickel-Continued

8

Circular of the Bureau of Standards

	1	21	0	Royal Ontario Nickel	Commission.		D0.	Do.	Do.	Do.	Do.	
												1
.021		14		0								
. 018						Trace						
1. 32 Trace	. 22 . 66	. 30	.15	.16						í		
. 042	.07	. 13			0	. 39	IIN			Trace		
20 .	.02	.16				. 21	.042	.13	. 30	. 19		
. 05	.01	.06				. 025	. 025			.05		
. 49 4. 05 . 31	.40	.80	.57	1.22		. 21	. 48	1.60	. 98	. 45	. 75	
.88 1.36	.54 .62			Trace		. 12	IIN			1.45	1.60	
97. 99 99. 26 99. 23	99. 20 99. 13	98. 47	98.96	98.60		99.02	99. 29	98.00	98. 23	97.87	98.00	
. 12 . 083 . 089	. 10					. 05		.50		.10	. 05	-
0.0001 by 12 in. Coindo	Wire rod	0.081-in. wire	Wire	do		Various						
Baker & Co. France	Berndorf, Austria England	Driver-Harris.	Soler Co. (Ltd.)	Fleitmann Witte & Co.		U. S. Nickel Co	Kalmus & Harper	New Caledonia	do	Basse and Selve	Deloro Mining	
Rolled nickel sheet French 25 centimes 20-centisimi piece	Arthur Krupp nickel Nickel rod	Electromalleable nickel.	Gas mantle	Malleable nickel		Metallic nickel	Pure nickel.	Nickel	Do	D0	Do	

9

II. COMMERCIAL GRADES: USES AND APPLICATIONS

Nickel appears on the market in the following forms:

(a) Grains, cubes, rondelles, or powder reduced at a low temperature from nickel oxide and not fused in the process of manufacture.

(b) Nickel deposited in concentric layers from nickel carbonyl and not fused in the process of manufacture.

(c) Nickel deposited electrolytically in the form of cathode sheets.

(d) Nickel in the form of shot or blocks made by reducing nickel oxide above the melting point of nickel and casting the resulting molten metal or pouring it into water without deoxidation.

(e) Malleable nickel made in the same manner as (d) but treated with some deoxidizer before pouring or teeming into ingots. This nickel appears in the usual commercial forms: rods, sheet, wire, etc.

Most of the commercial production of nickel falls in class (d).

The International Nickel Co. has described certain grades and gives the following average analyses of these materials:

"A" shot nickel, a high carbon nickel used by manufacturers of anodes for nickel plating, containing approximately:

Per cent	Per cent
Nickel ¹ 98.40	Carbon 0. 50
Iron	Silicon
Copper	Sulphur

"X" shot nickel, a purer material used by the manufacturers of crucible nickel steel and of nickel silver, containing approximately:

Per cent	1	Per cent
Nickel	Carbon	0. 18
Iron	Silicon	. 15
Copper	Sulphur.	. 035

Ingot or block nickel is almost identical in composition with "X" shot. It is sold in 25 and 50 pound blocks or ingots and is used in the manufacture of open-hearth and electric steel.

Electrolytic nickel in the form of cathodes 24 by 36 inches, weighing about 100 pounds, or in smaller squares for convenience, is used in the manufacture of high-grade nickel silver and cupronickel alloys. It contains approximately:

Per cent	Percent
Nickel 99.80	Carbon 0.00
Iron	Silicon
Copper	Sulphur

¹ The nickel produced by this company contains about 0.4 per cent cobalt which is included in the figure given for the nickel content.

Malleable nickel, intended for rolling into sheets or rods or for drawing into wire, is made in various grades, according to the purpose for which it is destined. All malleable nickel is treated before casting into ingots with some deoxidizer, generally magnesium, for the purpose of removing the nickel oxide present and making the metal suitable for rolling or forging. Manganese is also added both for the purpose of cleaning the metal and as an alloying element. Nickel can not in general be rolled or forged without this preliminary treatment with a deoxidizer.

The following grades of malleable-nickel ingots are produced for rolling into rods, sheet, and drawing into wire:

Grade "A" malleable nickel:

ac in maneable mener	orade o maneaste mener.
Per cent	Per cent
Nickel	Nickel
Iron	Iron
Manganese	Manganese 1. 50– 2. 00
Copper	Copper
Carbon	Carbon 0. 20
Silicon	Silicon
Sulphur	Sulphur

Grade "C" malleable nickel:

Grade "D" malleable nickel is high manganese nickel having practically the same analysis as Grade "C" except that the manganese content is higher, varying from 3 to 6 per cent. This is used principally for spark-plug wire. Wire of this composition resists the action of high temperatures and combustion gases better than the other grades.

Table 1 gives the chemical analyses of a number of samples of commercial nickel, including that of foreign manufacture.

Besides the commercial forms of nickel described above, the metal is on the market in the form of anodes for the metal-plating industry. These cast anodes are quite variable in composition and contain from 88 to 95 per cent of nickel, together with iron, aluminum, tin, silicon, sulphur, and carbon. A typical analysis of a commercial anode is the following:

P	er cent	I	Per cent
Graphitic carbon	1.70	Copper	0.15
Silicon	. 50	Aluminum	. 03
Iron	. 80	Nickel	96. 82

The principal commercial application of nickel is in the manufacture of nickel steel, and this industry absorbed fully 75 per cent of the total nickel production during the war and probably 65 per cent normally. Nickel steels are discussed briefly on page 62.

Besides its use in steel it is used quite extensively as an alloying element with nonferrous metals, principally copper. Many of these alloys are discussed in more detail below. About 15 per cent of the production is normally utilized in the manufacture of alloys of nickel such as cupronickel and especially nickel silver, the former series of alloys having come into prominence during the war. Nickel coinage and the electroplating industries may each absorb from 2 to 5 per cent of the production, the latter requiring the metal both in the metallic form and in the form of nickel salts; the single salts NiSO₄.7H₂O, and the double salt, NiSO₄.(NH₄)₂SO₄.6H₂O.

The Bureau has been advised by one of the largest producers of nickel that the nickel of the world, exclusive of that sold as Monel metal, is consumed in the following materials in about the following proportions:

Per o	cent		Per	cent
Nickel steel	65	Malleable nickel		5
Nickel anodes	5	Miscellaneous		10
Nickel silver	15			

The production of malleable nickel, although never relatively large compared to that used in the manufacture of steel, has amounted to about 5 per cent of the total production and is steadily growing in volume as the properties of the metal in this form become better known. Malleable nickel is produced in all commercial forms and is used, perhaps, principally for coinage, cooking utensils (chiefly abroad in Germany and Austria), and ornamental and household stampings and fittings. In the form of wire it is much used for motor-ignition spark-plug points, for the suspension wires in electric-light bulbs, for electrical-resistance pyrometers, electrical instruments, and recently in the construction of the audion amplifier.

Some malleable nickel is produced in the form of castings for apparatus—digestions, evaporations, etc.—for the chemical industry, for which its resistance to corrosion in sulphuric and other acids make it peculiarly suitable.

The Edison storage cell contains nickel both in the form of nickel oxide and as nickel anodes. Finely divided nickel is much used as a catalytic agent in the hydrogenation or hardening of oils following the discovery of this property by Sabatier and Senderens (59).² Much information concerning this use of nickel may be found in a recent book by C. Ellis.³ Nickel oxide is used in the ceramic industries for the production of under, or holding, coats of enamel on steel, and also for coloring glazes on pottery.

² These figures relate to the numbered references in the "Bibliography" at the conclusion of this Circular. ³ The Hydrogenation of Oils, Van Nostrand Co., 1919.

Nickel castings have been used with much success as rabble shoes by the International Nickel Co. in calcining furnaces roasting nickel matte. The shoes are exposed to oxidizing and sulphurizing gases at temperatures from 600 to 1000° C and to severe mechanical abrasion; they have stood up in this severe service for nine months, whereas iron shoes would last no more than six or eight weeks.

III. STATISTICS OF PRODUCTION

Tables 2 to 6 show the exports and imports of nickel and nickel products from and into the United States during recent years according to data of the United States Geological Survey (25, 28).

 TABLE 2.—Nickel Content of Nickel Salts and Metallic Nickel Produced in the United States as a By-Product in the Electrolytic Refining of Copper, 1911-1919

Year	Quantity	Value	Year	Quantity	Value
	Short tons			Short tons	
1911	445	\$127 000	1916	918	\$671 192
1912	328	93 600	1917	402	331 556
1913	241	79 393	1918	441	401 000
1914	423	313 000	1919	511	434 485
1915	822	538 222			

TABLE 3.-Nickel Imported for Consumption in the United States, 1913-1919

Year	Nickel, nich matte, ni alloys of copper, etc.	kel ore and ickel oxide nickel with	Value of manufac- tured articles of nickel and	Total value
	Quantity	Value	sheets and strips	
	Pounds			
1913	47 446 520	\$6 562 555	\$38 200	\$6 600 755
1914	35 098 958	5 000 594	28 224	5 028 818
1915	56 599 381	7 629 686	6 458	7 636 144
1916	72 649 377	9 899 340	25 880	9 925 220
1917	75 526 767	9 617 163	45 248	9 662 411
1918	73 207 147	11 520 775	115 243	11 636 018
1919	36 562 388	8 334 135	90 451	8 424 586

TABLE 4.—Nickel Imported for Consumption in the United States, 1916–1919, by Forms

	19	916	1917		
Form	Quantity	Value	Quantity	Value	
	Pounds		Pounds		
Nickel, alloys, pigs, bars, etc	29 917	\$7 869	48	\$19	
Ore and matte (nickel content)	72 611 492	9 889 122	75 510 400	9 612 400	
Nickel oxide	7 968	2 349	15 926	4 744	
Nickel sheets and strips		4 896			
Nickel, all other manufactures of		20 984		45 248	
Total	72 649 377	9 925 220	75 526 767	9 662 411	

Circular of the Bureau of Standards

-	19	918	1919			
Form	Quantity	Value	Quantity	Value		
	Pounds		Pounds			
Nickel, alloys, pigs, bars, etc	40	\$8	7 258 082	\$2 553 431		
Ore and matte (nickel content)	79 193 205	11 517 546	29 303 228	5 780 380		
Nickel oxide	13 902	3 221	1 078	324		
Nickel sheets and strips	8 612	6 881	10 152	4 889		
Nickel, all other manufactures of	10 495	108 362	87 527	85 562		
Total	73 226 254	11 636 018	36 660 067	8 424 586		

TABLE 4.—Nickel Imported for Consumption in the United States, 1916–1919, by Forms—Continued

TABLE 5.—Imports of Nickel Ore and Matte into the United States in 1917 and 1918, by Countries

1917			1918					
Country	Nickel ore and matte			N	lickel ore and	Manufa	Manufactures	
	Quan- tity	Nickel content	Value	Quan- tity	Nickel content	Value	Quan- tity	Value
Canada	Short tons	Pounds	\$0.128.004	Short tons	Pounds	£10 074 225	Pounds	84 441
Australia	2 463	1 090 524	472 406	2 220	2 027 950	\$10 974 323 422 979	9 518	34 441
Australia.	2 405	1 900 334	473 400	4 90	400 023	455 676		•••••
Chile			•••••	409	409 023	05 954		•••••
French Oceania			•••••	112	111 207	23 365		
France				115	111 507	20 000	86	411
Switzerland							1 172	12 339
England							9 328	5 517
Japan							4 870	6 671
Total	68 379	75 510 793	9 612 400	66 776	73 193 205	11 517 546	24 974	29 379

 TABLE 6.—Nickel, Nickel Oxide, and Matte a Exported from the United States, 1909–1918

Year	Quantity	Value Year		Quantity	Value	
	Pounds			Pounds		
1909	12 048 737	\$4 101 976	1914	27 595 152	\$9 455 528	
1910	15 244 937	4 704 088	1915	26 418 550	10 128 514	
1911	25 099 586	8 283 777	1916	33 404 011	12 952 493	
1912	25 815 016	8 515 332	1917	21 992 820	8 936 620	
1913	29 173 088	9 686 794	1918	17 469 500	6 927 041	

^a No nickel matte is known to have been exported in the years 1911 to 1918, inclusive.

IV. METALLOGRAPHY

As far as is known, nickel exists in only one solid modification or phase which is stable at all temperatures up to that of its melting point. It suffers, however, a magnetic transformation, in a

14

manner quite similar to iron, at about 360° C. Below this temperature it is ferromagnetic, above it is only weakly paramagnetic. Values of the temperature of this transformation varying from 320 to 370° C have been obtained by different investigators working with nickel of different degrees of purity and are shown in Table 7. There is, therefore, some uncertainty attaching to the exact temperature of this transformation, and the value accepted above represents the results of those who worked with the purest material. The magnetic transformation of nickel, as in the case of iron, is accompanied as well by changes in the other physical properties, such as density, resistivity, and thermoelectromotive force or in their temperature derivatives.

According to Hull (35) the atoms are arranged in a nickel crystal in the face-centered-cube formation, giving rise to the regular crystalline form of this metal.

As the magnetic transformation of nickel is not accompanied by any determinable alteration in structure or recrystallization, the microstructure of this material is relatively simple, at least when compared with that of iron and steel. The impurities which are invariably found in commercial nickel are with three exceptions soluble in the solid state in the amounts in which they are usually present; namely, iron, copper, manganese, cobalt, and silicon. Nickel oxide, sulphides (of nickel or manganese), and carbon are at times visible as separate constituents in nickel. In addition there may be found in all malleable nickel a small amount of compounds (oxides) of magnesium in the form of small round particles.

Defense		Tempera- ture of				
Kelerence	Cu	Fe	Co	Si	с	trans- formation
Conaux (82)	Per cent	Per cent	Per cent	Per	cent	°C
Guertler and Tammann (337)	Trace	0.47	1.86		-)	320-325
Curie		0. 17				340
	(0.20	Trace	. 15	c)	345
	. 80	Trace	Trace	. 2	20	340
Pecneux (115)	. 40	. 60	. 10	.1	5	345
	Trace	1.50	. 50	.1	.0	335
Jänecke (38)						347-356
Werner (40)						352-355
Stark-Tatarczenko (42)						370
Baikow (44)		•••••				360

TABLE 7.- Temperature of the Magnetic Transformation of Nickel

^a Cobalt-free nickel melted under hydrogen.

Fig. I shows the structure of commercial nickel blocks and the appearance of the nickel, nickel-oxide eutectic, which is found of course only in nonmalleable nickel, as it is impossible to work the metal containing it at any temperature. The structure of malleable nickel in the form of hot-rolled rod is shown in Fig. 2; only the grains of nickel and the small particles of magnesium (and possibly manganese) oxides are visible. Carbon is soluble in nickel to the extent usually of 0.40 per cent, and is, therefore, not ordinarily found in any other form in commercial nickel. Above that percentage, however, it begins to separate out in the form of graphite; Fig. 3 shows the appearance of graphite in rolled nickel.

Nickel is subject to a peculiar type of intercrystalline brittleness which has been well described structurally by Rawdon and Krynitzky (37). When exposed at high temperatures—that is, from 1000 to 1200° C—to the action of oxidizing or sulphurizing gases the boundaries of the grains at the surface are attacked, either oxidized or sulphurized, and the cohesion between the grains destroyed. These surface layers become quite brittle and will not elongate or flow under subsequent drawing or rolling operations, but there is produced a network of fine cracks on the surface under such treatment. The presence of these cracks indicates a faulty heating operation; that is, either the flame was too oxidizing and "burnt" the metal or it introduced sulphur into it. Fig. 4 shows the structure of such "heat-checked" nickel sheet.

Nickel is best etched for metallographic examination with nitric acid, and for that purpose a volume concentration from 75 to 100 per cent acid may be used. Somewhat better results may be obtained by using a solution of nitric acid of a volume concentration of from 50 to 75 per cent, made up by diluting the concentrated acid with a solution containing 50 per cent glacial acetic acid in water; these acetic acid solutions appear to give more uniform results than the aqueous solution, in which the metal is readily inclined to assume the passive state.

Electrolytic etching is also recommended for nickel, an electrolyte of sulphuric acid and hydrogen peroxide being used:

Sulphuric acid 2	22
Hydrogen-peroxide solution	12
Water	56

Bureau of Standards Circular No. 100

FIG. 1.—Microstructure of nickel blocks showing nickel, nickel-oxide eutectic. \times 100

FIG. 2.—Microstructure of hot-rolled nickel rod showing oxides inclusions. ×100

Bureau of Standards Circular No. 100

FIG. 3.—Microstructure of rolled nickel rod containing precipitated graphite in the form of fine particles. \times 100

FIG. 4.—Microstructure of cross section of heat-checked nickel sheet, showing intercrystalline oxidation of surface layers. ×100

Nickel

V. CHEMICAL PROPERTIES

Nickel is not an active element chemically. It is not attacked at ordinary temperatures by air, by fresh or sea water, or combinations of the two. Organic acids such as acetic, oxalic, tartaric, and citric acids attack it appreciably only after long periods of contact. Sulphuric and hydrochloric acids dissolve it slowly only; in nitric acid on the other hand it is very readily dissolved. Alkalis either in the fused state or in solution in water are without effect upon it, and for this reason, laboratory fusions with these substances are carried out in crucibles of this metal. At temperatures around 500° C it becomes slightly oxidized in the air and also decomposes water with formation of hydrogen.

Hale and Foster (64) have measured the rate of solution of nickel sheet in various solutions at ordinary temperature, and their results expressed in loss of weight per 100 cm² are given in Table 8.

Specimens immersed in-	Loss of weight in 7 days (solution renewed daily)	Loss of weight in 28 days (solution not renewed)
HNO ₈ $(N/5)$. HCl $(N/5)$. H ₂ SO ₄ $(N/5)$ MgCl ₂ $(N/5)$ NaOH $(N/5)$	grams 4.2 .25 .05 .00	grams 2.1 .45 .40 .10 .00
Cacl ₂ (N/5). NaCl (N/5). NH ₄ OH (N/5). Na ₅ CO ₈ (N/5).	.08 .00 .00	.00

TABLE 8.—Corrosion Tests of Nickel

The use of nickel for cooking utensils which is quite extensive in Germany has inspired numerous investigators to study the question of the solution of the nickel by the liquids used and its absorption by the food, as well as the physiological effect of the amounts thus absorbed (65–70). The results of these investigations have usually been expressed in terms of milligrams of nickel found in 100 g of the food and varied from 0.01 mg to a maximum of 64 mg, the high results being obtained by the use of salt and vinegar, or food containing both. Vuk (65) found losses of from 15 to 65 mg of nickel per square meter of exposed surface after boiling in 5 per cent acetic acid for two and one-half hours. These

17634°-21-2

small amounts of nickel thus absorbed by food from nickel utensils have been regarded as being entirely harmless physiologically.

The heats of formation of some of the more important compounds of nickel are given by Richards (19).

NiO NiS.	grams 74.5 90.5	Cal./gram 61 500 19 500
NiO	74.5	61 50
NiS.	90.5	19 50

Sieverts (56) has determined the solubility of hydrogen in nickel and finds that it forms with nickel a homogeneous solid solution. The solubility of hydrogen both in solid and in molten nickel is proportional to the square root of the hydrogen pressure. He found that 100 g of nickel absorb

0.16	mg	of	hydrogen	at	760	mm	pressure,	212 [°]	С
.39	mg	of	hydrogen	at	760	mm	pressure,	520°	С
.98	mg	of	hydrogen	at	760	mm	pressure,	1023°	С
1.50	mg	of	hydrogen	at	760	mm	pressure,	1400°	С

and that this amount liberates 1.9 mg of hydrogen upon solidification at 1452° C in a hydrogen atmosphere of 760 mm pressure.

VI. PHYSICAL PROPERTIES

1. DENSITY

The density and specific gravity of nickel varies greatly according to its chemical composition, physical condition, and the mechanical treatment which it has received. Metal which has been reduced by carbon, or carbon monoxide, to a powder or sponge, contains numerous voids and may have a density as low as from 7.7 to 8.0, values which have been obtained for powder and rondelles, or grain nickel.

Dense nickel, such as electro, or malleable nickel will vary in density from 8.70 to 8.90, averaging about 8.84, which may be taken as quite closely representing the bulk of commercial material. This corresponds to 552 pounds per cubic foot, or 0.319 pound per cubic inch.

2. CHANGE OF STATE

The melting point of nickel is given by the Bureau of Standards (84) as 1452° C. The element undergoes a magnetic transformation, accompanied possibly by a phase change at from 340 to 360° C (Copaux, 82; Pecheux, 115). The transformation point in commercial nickel, containing impurities is lower, usually in the region of 320° C (Guertler and Tammann, 337; Pecheux 115).

The boiling point of nickel has never been determined.

18

Nickel

The heat of transformation is 1.33 cal./gram according to Wüst (90), and the heat of fusion, 56.1 cal./gram. Dr. W. P. White has recently determined the latent heat of fusion of nickel at 1450° C as 74 cal./gram.

3. SPECIFIC HEAT OF NICKEL (WÜST)

Wüst has recently (90) determined the specific heat of nickel (analysis not given) from 0 to 1520° C (results given in Table 9).

Temperature	Mean specific heat	True specific heat	Temperature	Mean specific heat	True specific heat
	$\frac{q_t - q_o}{t}$	$\frac{dq}{dt}$		$\frac{q_t - q_o}{t}$	$\frac{dq}{dt}$
°C	cal./ gram/°C	cal./ gram/°C	• c	cal./ gram/°C	cal./ gram/°C
0		0.1095	900	0.1299	0.1295
100	0.1147	.1200	1000	. 1298	. 1295
200	. 1200	.1305	1100	. 1298	. 1296
300	. 1252	.1409	1200	. 1298	. 1296
320	. 1263	. 1430	1300	. 1298	. 1296
330	.1306	. 1294	1400	. 1298	. 1296
400	.1304	. 1294	1451	. 1298	. 1296
500	.1302	. 1294	1451	. 1684	. 1338
600	. 1301	. 1294	1500	.1673	. 1338
700	.1300	. 1295	1520	.1668	. 1338
800	. 1299	.1295			

TABLE 9.-Specific Heat of Nickel

Jaeger and Dieselhorst (121) determined the true specific heat at 18 and at 100° C of a sample of nickel containing:

Pe	er cent	Pe	r cent
Co	1.36	Si	0. 06
Cu	. 15	Mn	1.04
Fe	. 44	A REAL PROPERTY AND A REAL	

They find the following values:

 $\sigma_{18\circ C}$ =0. 1065 cal./gram/° C, and $\sigma_{100\circ C}$ =0. 1160 cal./gram/° C

Schimpff (93) finds the following values of the mean specific heat of nickel containing 1.5 per cent Co, 0.6 per cent Fe, and 97.9 per cent Ni:

> $\sigma_{m} (17 \text{ to } 100^{\circ} \text{ C}) = 0. \text{ 1084 cal./gram/}^{\circ} \text{ C}$ $\sigma_{m} (17 \text{ to } 79^{\circ} \text{ C}) = .0973 \text{ cal./gram/}^{\circ} \text{ C}$ $\sigma_{m} (17 \text{ to } 190^{\circ} \text{ C}) = .0830 \text{ cal./gram/}^{\circ} \text{ C}$

4. THERMAL EXPANSIVITY

Guillaume (107) gives the equation for the thermal expansivity between 0 and 40° C of five bars of commercial nickel:

$$\frac{\Delta l}{l_{o}t} = (a+bt) \ 10^{23}$$

in which coefficients a and b had the following values:

	a	Ъ		a	Ъ
1 2 3	12.65 12.52 12.49	0.0055 .0066 .0070	4	12.49 12.55	0.0079 .0054

Tutton (105) finds the following values of a and b for the same equation, between 6 and 121° C: a = 12.48, b = 0.0074.

Between 0 and 300° C Harrison (103) finds that the expansivity of "pure nickel" can be represented by the following equation:

$$\frac{\Delta l}{l_o t} = (12.80 + 0.0075 \ t + 0.000035 \ t^2) \ 10^{-6}$$

Above 375° C Holborn and Day (104) give the following equation for the expansivity, as calculated from their measurement on a nickel of which no analysis is given:

$$\frac{\Delta l}{l_0 t} = (13.46 \pm 0.0033 \ t) \ 10^{-5}$$

	Average coet	ficients3 of exp	mansion $ imes$ 10°.
Material	Room temperature to 100° C	Room temperature to 300° C	300 to 600° C
10 samples of commercial nickel (94 to 99 per cent nickel) 10 samples of monel metal (60 to 63 per cent nickel)	12.9 to 13.5 14.5 to 15.1	13.8 to 14.6 14.9 to 15.1	15.3 to 17.0 15.9 to 18.4

^a As recently determined by Souder and Hidnert at the Bureau of Standards.

5. THERMAL CONDUCTIVITY

The best determinations of the thermal conductivity of nickel are those of Lees (110) and of Jaeger and Dieselhorst (121):

Fig. 5 gives results by Lees and by Angell (109) on the thermal conductivity at higher and lower temperatures.

6. ELECTRICAL RESISTIVITY

A number of precise determinations of the electric resistivity of nickel have been made, but the nickel used was in many cases

Nickel

quite impure and the values of the resistivity so obtained are much higher than the value for pure nickel. The following table gives several of the values which have been observed:

Reference	Material	Electrical re- sistivity at 0° C	Temperature coefficient 0 to 100° C
		microhms-cm	
Fleming (120)	Electrolytic, no analysis given	6.926	0.0061
Copaux (82)	Pure, reduced fron oxalate, no analysis	6.4	. 0066
Campbell (119)	Purchased in Germany in 1901	8	
Pecheux (115)	0.20 Cu, 0.15 Co, No C or Si, trace Fe, 0.35 total impurities	9	. 0058
Ruer and Kaneko (298)	Kahlbaum, 0.035 C.	7.7	
Jaeger and Dieselhorst (121)	1.36 Co, 0.44 Fe, 1.04 Mn, 0.15 Cu, 0.06 Si.	a 11.76	. 0044

^a At 18° C.

TABLE 10.-Electrical Resistivity of Nickel

Curve 2, from determinations of Angell (109) on nickel rod from Boker, no analysis given

The most probable value for the resistivity of pure nickel from the above determinations is the lowest, that of Copaux; with this lowest value is associated also the highest temperature coefficient. The other values are higher, due to the presence of impurities which depress also the value of the temperature coefficient. The most probable value of the latter between o and 100° C is that given by Copaux; that is, 0.0066.

Fig. 6 gives the results of several determinations of the electrical resistivity at higher and lower temperatures, and Fig. 7 the results of one series of determinations of the influence of temperature on the temperature coefficient of resistivity by Somerville (116). At the transformation point the resistivity-temperature curve changes

FIG. 6.—The electrical resistivity of nickel at higher and lower temperatures

Curve *z*, from determinations of Lees (110) on 99 per cent nickel bar Curve *z*, from determinations of Angell (109) on nickel rod from Boker, no analysis given Curve *z*, from determinations of Niccolai (117) on Kahlbaum nickel, analysis not given Curve *z*, from determinations of Harrison (118) on nickel wire, not otherwise described Curve *z*, from determinations of Fleming (120) on electrolytic nickel, annealed in hydrogen and drawn into wire, no analysis given Curve *z*, from determinations of Pecheux (115) on nickel of the following composition:

our to s, none determinations of a ceneux (113) of meker of enerono ming composition.	
Cu	er cent
Fe	Trace
Co 0. 15 p	er cent
C+Si	None
Total impurities=0.35	

its slope and there is a marked change in the value of the temperature coefficient.

The Driver-Harris Co. reports its 99 per cent nickel (grade A above) wire as having a resistivity of 64.3 ohms-mil-foot (10.68

Nickel

microhm-cm) at 24° C, with a temperature coefficient, $\alpha_{24^{\circ}C}$, of 0.0041. The other grades of malleable nickel of higher manganese content have higher values of resistivity and its temperature coefficient, thus:

Grade D nickel (4.5 per cent of manganese) has a resistivity of 20 microhm-cm with a temperature coefficient of 0.0020.

7. THERMOELECTROMOTIVE FORCE

Fig. 8 gives the results of determinations of the thermoelectromotive force of nickel to platinum, lead, copper, and silver.

8. MAGNETIC PROPERTIES

Nickel is ferromagnetic at ordinary temperatures and up to the temperature of its magnetic transformation, at 340 to 360° C.

FIG. 7.—The temperature coefficient of electrical resistance of nickel according to Somerville (116)

The coefficient measured is: $\frac{r dr}{r_0 dt}$ when r_0 =the resistivity at 0° C

Above this temperature it is paramagnetic and follows Curie's law (132). Fig. 9 gives the results of some magnetic tests of nickel.

The susceptibility of nickel in any direction is markedly diminished by the application of a tensile stress and augmented by that of compressive stress in that direction (140, 141).

The permeability of nickel increases with temperature up to 300 to 340° C (Ewing, 143, 145).

9. ELECTROLYTIC-SOLUTION POTENTIAL; PASSIVITY

The true reversible potential of nickel in a normal aqueous nickel-sulphate solution is given by Schoch (152) as -0.48, measured against the normal calomel electrode. Schoch attributes

the higher values obtained by other investigators to occluded hydrogen.

Schweitzer (151) gives the value —0.612 volt for the potential of nickel powder in contact with N NiSO₄ and —0.596 volt for nickel powder in contact with N/1 NiCl₂. Both were measured against the normal calomel electrode.

Measurement has been made by N. Isgarischew (154) of the potential of nickel against a solution of NiCl₂ in methyl alcohol. The combination was:

At a temperature of 25° C the potential difference was 0.247 volt.

FIG. 8.—The thermo-electromotive force of nickel to platinum, copper, and silver

Ni-Ag, according to determinations of Hevesy and Wolff (125) on nickel wire, no analysis given, furnished by the Vereinigte deutsche Nickel Werke

Ni-Pt, calculated from the preceding results on the Ni-Ag couple, together with those of Holborn and Day on the Ag-Pt couple

Ni-Cu, according to determinations of Pecheux (126) on nickel wire of the following compositions: Cu, 0.20; Co, 0.15; Fe, trace; C+Si, none; total impurities, 0.35

Ni-Pb, according to determinations of Dewar and Fleming (128) on Mond nickel

The electromotive force developed is such that the current flows at the o° C junction from the Ag, the Cu, or the Pt to the Ni, when the EMF is +

Nickel becomes passive (157); that is, it behaves like a noble metal to a greater degree than do other metals of high solution potential. This state may be established by simple immersion in strong oxidizing agents like nitric acid or bichromate solutions. The condition of passivity may often be destroyed by slight changes in the chemical environment or by scratching or mechanical shock. Pure nickel as an anode is readily rendered passive in electrolytes containing salts of oxygen acids, especially at high

24

Nickel

current densities. The presence of impurities in the anodes as well as of chlorides or fluorides in the electrolyte tends to prevent passivity. Coincident with the establishment of passivity there is pronounced drop in the solution potential.

FIG. 9.—The magnetic properties of nickel

Curve *i*, induction curve for malleable nickel (International Nickel Co) containing: Ni, 98.82 per cent; Fe, 0.46 per cent; C, 0.11 per cent; S, 0.22 per cent; Cu, 0.18 per cent; Mn, 0.27 per cent; Si, 0.13 per cent. (Burrows method)

Curve 2, permeability curve for same material

Curve 3, induction curve of nickel, composition unknown. Perkins (146) Curve 4, induction curve of nickel, composition unknown. Ewing (145)

10. OPTICAL PROPERTIES

One of the commercially most important properties of nickel is its ability of taking and retaining a high polish and of reflecting a large percentage of light incident on such a polished surface. This is, for example, one of the properties which make the metal valuable for electroplating. In Table 11 are given the best values of the reflectivity of both nickel and Monel metal; those of the Bureau of Standards are recent (1920)⁴ and were obtained on samples of typical commercial rolled materials.

W. W. Coblentz, Reflecting power of Monel metal, stellite, and zinc, B. S. Sci. Papers, No. 379.

Meyer (170) gives the following values for the optical constants of nickel:

Reflectivity =65.5 per cent for λ =0.589 μ Absorption index (K)= 3.42 per cent for λ = .589 μ Refractive index (n) = 1.58 per cent for λ = .589 μ

TABLE 11.-Optical Reflectivity of Nickel and Monel Metal

Wave length of light in microns	Hagen and Rubens values on electro- lytically deposited nickel	Bureau of Standards values (1920) on commercial rolled nickel	Bureau of Standards values (1920) on commercial rolled Monel metal
	Per cent	Per cent	Per cent
0.42	56.6		
,50	60. 8	61. 5	57.7
.55		63. 2	59.0
,60	64.9	64.0	60. 1
.65		65.1	61.6
.70	68.8	67.1	62.8
.75		68.5	64.5
.80.		67.2	a 67. 2
1.00.		72. 5	a 72. 5
2.00.		83.8	a 83. 8
3.00.		88.7	a 88. 7
4.00		91. 0	a 91. 0

a Infra-red.

11. ELASTICITY

According to determinations of Harrison (177), Grüneisen (179), Schaefer (189), Searle (191), and Guillaüme (107), the value of Young's modulus for nickel varies from 21 000 to 23 000 kg/mm² (30 000 000 to 33 000 000 lb./in.²)

Koch and Dannecker (176) and Harrison (177) have determined the values of the modulus of torsional elasticity and of Young's modulus, respectively, at higher temperatures; their values are given in Table 12.

Temperature in degrees centigrade	Modulus of elasticity in torsion	Young's modulus	Temperature in degrees centigrade	Modulus of elasticity in torsion	Young's modulus
	kg/mm ²	kg/mm ²		kg/mm ²	kg/mm ²
20		22 000	400	7120	
27.5	7300		401		15 700
96		21 300	465		11 900
110	6430		600	6080	
200	6860		800	4940	
222		20 300	1000	3730	
300	7390		1200	2900	
329		17 800	1300	2480	

TABLE 12 .- Modulus of Elasticity of Nickel

Poisson's ratio for nickel is 0.33 according to Benton (190).

Nickel

12. HARDNESS

In the annealed condition the scleroscope hardness of nickel of low carbon (0.10 per cent) and manganese (0.30) content will vary from 9 to 12 (universal hammer). The Brinell hardness (3000 kg) of the same material varies from 80 to 100. The effect of carbon and manganese on the hardness of annealed metal is discussed below. When hardened by cold working the scleroscope hardness may be raised to 40 to 45, the Brinell hardness, to 250 to 350.

13. TENSILE PROPERTIES

Table 13 gives the values usually obtained for the tensile properties of nickel of low carbon and manganese content in various conditions. (These values refer to malleable A-nickel of the International Nickel Co.; for compositions, see p. 7).

Kind of nickel		Tensile strength				Yield point				Clonga- tion in inches	Reduc- tion in area
			Lbs.	/in.2			Lbs.	$/in.^2$	P	Per cent	Per cent
Rolled an	nd annealed malleable nickel	65	000 to	75	000	20	000 to	25 000		40-50	40-60
Hot-rolled	d rods	68	000 to	78	000	21	000 to	26 000		40-50	40-60
C1	Hard-rolled	120	000 to	130	000	110	000 to	120 000		5-10	20-40
Sneet	Kind of nickel Tensile strength Yield point Elongation in 2 inchestion in 2 inchestinal in 2 inchestion in 2 inchestion in 2 inchestion in 2 inchest	40-50	40-60								
	Hard-drawn	120	000 to	160	000						
Wire	Annealed	65	000 to	750	000						
Cast nick	el (deoxidized)			55	000			20 000		25	

TABLE 13.-Tensile Properties of Nickel

Table 14 gives the results of tests by Bregowsky and Spring (195) of the tensile properties of nickel at higher temperatures.

 TABLE 14.—Tensile Properties at Higher Temperatures According to Bregowsky and Spring (195) of Cast Nickel of Unknown Purity

Temperature in degrees	Tensile	Yield	Temperature in degrees	Tensile	Yield	
centigrade	strength	point	centigrade	strength	point	
21 149 232 315 399	Lbs./in. ² 38 000 40 900 36 700 35 900 36 600	Lbs./in. ² 23 800 25 100 25 100 22 900 22 600	460 482 499 538	Lbs./in. ² 28 500 27 800 31 900 16 800	Lbs./in. ² 14 200	

Mr. W. P. Sykes,⁵ of the Cleveland Wire Division, National Lamp Works, has carried out some very valuable tensile tests of

⁵ Private communication; the results of Mr. Sykes's tests will appear in the Bulletin of the A. I. M. M. E. for 1921.

Circular of the Bureau of Standards

relatively pure nickel wire at low and high temperatures from which the following values are chosen as representative. This wire was drawn from 0.095 to 0.025 inch diameter and annealed at 800° C; it contained 99.8 per cent nickel and 0.15 per cent iron (besides probably 0.4 per cent cobalt).

Tomperatura la dorress continuedo	Tensile	strength	Elonga	ion in 2 hes	Reduction of area		
Temperature in degrees centigrade	Slow	Rapid	Slow	Rapid	Slow	Rapid	
-185	Lbs. in.º	Lbs. in.: 84 000	Per cent	Per cent 22.0	Per cent	Per cent	
25	60 000	62 000	22.0	23.5	75	75	
100	56 000	57 000	20.3	20.3	73	71	
200	50 000	51 000	15.5	18.7	68	75	
300	50 000	51 000	17.5	14.0	75	79	
400	43 000	47 000	17.3	19.5	75	80	
500	34 000	36 000	19.5	20.0	75	75	
600	25 000	29 000	15.5	19.5	65	60	
700	17 000	21 000	15.5	14.0	60	60	
800	13 000	17 000	15.5	15.5	45	48	
900	9 000	11 000	15.5	20.0	39	48	
1000	7 000	9 000	26.5	19.0	48	43	

VII. EFFECT OF IMPURITIES ON THE PROPERTIES OF NICKEL

With reference to the effect which they exert upon the physical properties of nickel the ordinary impurities fall naturally into two classes; that is, those which are soluble in the solid state in nickel and those which are not. Those of the former class act in general only to increase more or less the hardness and strength of the metal, and of course to diminish its electrical conductivity. Those of the latter class affect chiefly the hot but also cold working properties of the metal.

CARBON.—Carbon is hardly to be looked upon as an impurity in nickel any more than it is to be so regarded in steel; it is an element which is never absent in the metal, and its presence is necessary, in the present state of the art, for the production of malleable nickel on a commercial scale.

The nickel-carbon equilibrium diagram has received some attention at the hands of investigators, but there are still many gaps in our knowledge of the constitution of this binary system. With increasing carbon content the melting point of pure nickel is progressively lowered from 1452 to 1311° C, at which nickel forms a eutectic with 2.2 per cent carbon in the form of graphite. The liquidus temperature then rises again with increasing carbon

content, and at 2100° C the metal absorbs 6.42 per cent carbon. apparently in the form of a carbide, Ni₃C (284), which is, however, rapidly decomposed at lower temperatures with formation of graphite. The equilibrium below the eutectic temperature has never been satisfactorily worked out; Ruff, Borman, and Keilig (285) state from the results of their investigations that the solubility of graphite in nickel in the solid state is not greater than 0.5 per cent at the eutectic temperature, but they give no information about the solubility at lower temperatures which presumably diminishes. Although we do not have the exact knowledge of the equilibrium at lower temperatures which would be desirable, it is known that the presence of carbon introduces no transformation such as that which occurs in steel and with which might be associated the possibility of altering profoundly the physical properties of the alloys by means of a suitable heat treatment.

Within the limits in which carbon is usually found in nickel it occurs in solid solution and merely increases the hardness and strength of the metal. It increases the ease of hot-working operations by making the metal tougher at these temperatures and less susceptible to edge cracking. On the other hand it increases the difficulties of cold working both because with increased carbon the metal is initially harder and also because it hardens more rapidly with progressive cold work. The effect of carbon in increasing the hardness of nickel is illustrated in Table 15.

Chemical composition						Tensile pi	roperties	Hard	lness		
с	Mn	Si	s	Fe	Yield point	Tensile strength	Elonga- tion in 2 inches	Reduc- tion of area	Brinell 3000 kg	Sciero- scope	Remarks
Per ct.	Per ct.	Per ct.	Per ct.	Per ct.	Lbs./in.2	Lbs./in.2	Per ct.	Per ct.			
0.08		0.04	0.026	0.63	22 000	69 000	46	50	103	10	Hot-rolled.
. 26	0.48	. 13	.016	. 56	34 000	93 000	40	35	132	17	Do.
. 19	.26	. 33		. 68					131	15	Annealed.
.06	. 21	.33		. 59					97	10	Do.

TABLE 15.-Effect of Carbon on the Hardness and Tensile Strength of Nickel

When the percentage of carbon exceeds 0.40 per cent the separation of graphite may take place, a change accompanied by a loss of malleability. Free graphite should not be present in goodquality malleable nickel. The statement that carbon is harmful to malleable nickel and that its presence should be avoided is not correct, but becomes so when the carbon is in form of graphite. NICKEL OXIDE (NiO).—This compound can not be present in malleable nickel and is, therefore, in a sense not to be regarded as an impurity of it; on the other hand, the potential effect of it on the properties of the metal makes necessary certain procedure in the preparation and deoxidation of malleable nickel of the utmost importance. It does occur in shot and in blocks and occasions the complete lack of malleability of these forms of the metal.

The equilibrium of nickel and nickel oxide has not been systematically studied. The only mention of it is by Ruer and Kaneko (300) who state that the presence of NiO in molten nickel depresses the melting point by about 10° C and give a photomicrograph showing the eutectic structure of it in nickel. Apparently nickel dissolves several per cent of nickel oxide in the liquid state, which is completely insoluble in the solid state and separates out in the form of a eutectic. Fig. 1 shows the appearance of this eutectic in nickel blocks.

As nickel oxide is always found and probably is formed as well in molten nickel in process of being refined, it is necessary to remove it before pouring the metal into ingots for forging or rolling. This may be done by means of manganese, aluminum, or magnesium, but the latter element is by far the best and is generally used. It is introduced in the form of 1 to 2 inch rod either into the crucible or teeming ladle; it must be plunged to the bottom and stirred around briskly in order that it will not merely float to the surface and burn off. Approximately $1\frac{1}{2}$ ounces to the hundred pounds of metal is added; more magnesium will do positive harm, as it appears to make the melted metal thick and sluggish to pour.

Chemical composition											
No.	с	Mn	Fe	Si	s	Propor- tional limit	Yield point	Tensile strength	Elon- gation in 2 inches	Re- duc- tion of area	Electrical resistivity
	Per	Per	Per	Per	Per	Lbs./in.2	Lbs./in.2	Lbs./in.2	Per cent	Per	microhm -cm
1	0.06	3.00	0.62	0.22	0.018	20 000	23 500	74 100	51	60	14.5
2	.06	3.58	. 62	. 23	.018	22 500	23 700	74 400	50	62	
3	.06	4.40	. 73	. 27	. 021	25 000	27 500	75 500	43	63	17.9
4	.05	5.06	. 72	. 28	. 020	22 500	26 800	77 500	48	62	19.2
5	. 07	6.78	. 89	. 34	. 020	31 000	30 500	82 000	50	66	23.6
6	. 08	6.84	.91	- 35	. 020	31 500	31 200	81 300	36	50	24.6
7	.10	9.18	.95	. 42	. 021	32 000	32 900	84 100	48	62	29.3
8	.10	9.24	. 94	. 41	. 020	31 000	32 800	83 800	48	64	29.7

TABLE 16.-Effect of Manganese on the Physical Properties of Hot-Rolled Nickel Rod

MANGANESE.—Manganese is generally absent from nonmalleable nickel but is added intentionally to malleable metal both because of its effect on its ultimate properties and because of its usefulness in decreasing manufacturing difficulties. It renders the metal less tender just after freezing and thus aids in the production of ingots free from "pulls" and hot cracks. It also increases the fluidity of the molten nickel and thus renders easier the production of ingots of good surface.

The advantages of its presence as far as ease of manufacturing is concerned are obtained with small additions. Added in larger amounts it increases the resistance of nickel to oxidation and renders it less susceptible to the action of sulphur in the fuels used in hot rolling. Thus it is the C and D grades of nickel containing from 1.50 to 6 per cent manganese which are largely used for the spark points of motor ignition systems.

The equilibrium of the system manganese-nickel has been studied by Zemczuzny, Urasow, and Rykowskoff (374) who find that the two metals are soluble in all proportions both in the solid and in the liquid state. This agrees with our rather meager knowledge of the properties of high manganese-nickel alloys. These may be rolled readily up to 10 per cent of manganese and probably beyond, although the 50 per cent alloy is known to be quite brittle. Within these limits the addition of manganese mildly increases the hardness and strength of nickel without materially decreasing the ductility. The addition of manganese, however, does decrease the electrical conductivity of nickel markedly (552); thus the resistivity of nickel, drawn and annealed, was increased from 12.43 microhm-cm to 28.0 and 51.2 microhmcm with the addition of 10 and of 20 per cent respectively of manganese. Table 16 shows the effect of manganese on the tensile properties and resistivity of hot-rolled nickel rod.

SULPHUR.—The form in which the usual small amounts of sulphur occur in commercial nickel is not known, but it is present presumably as a sulphide of nickel or of manganese. Its presence in amounts above about 0.05 per cent decreases the ductility both hot and cold, and it should be held as low as possible in nickel intended for malleable ingots.

Judging therefore by its effect on the properties of the metals it is present in the form of a separate constituent, insoluble in the solid state in nickel. Bornemann (397, 398) has investigated the equilibrium of the system nickel-sulphur and finds that a compound is formed, Ni_3S_2 , which is soluble in the liquid state in nickel but which forms a eutectic with it at 21.5 per cent sulphur and 644° C upon solidifying. The solubility of Ni_3S_2 in nickel in the solid state at the eutectic temperature is about 0.5 per cent and rapidly approaches zero at lower temperatures.

IRON.—This element is always present in commercial nickel due both to imperfect removal of the iron originally present in the ores and to the wear and solution of tools used in the roasting and refining furnaces. The amount present is usually less than I per cent and has no appreciable effect upon the properties of the metal. The system nickel-iron has been investigated by Guertler and Tamman (368), Ruer and Schüz (366, 367), and others who find that the metals form an uninterrupted series of solid solutions, with certain interesting anomalies described below.

COBALT.—This element in amounts up to 1 per cent and averaging about 0.4 per cent in American nickel is invariably found in nickel and is usually included in the figure given for the nickel content. It is soluble in the nickel in all proportions both in the liquid and in the solid state and in these amounts does not exert any appreciable effect upon the properties of nickel except probably the electrical resistivity.

SILICON.—According to Guertler and Tammann (394) this element forms a compound, Ni₃Si, with nickel which is soluble in molten nickel, but upon solidifying forms a eutectic with it at 10.6 per cent silicon and 1153° C. The solubility of this compound in the solid state in nickel is equivalent to 6 per cent of silicon at the eutectic temperature, decreasing to 2.5 per cent at 660° C and approaching lower values as the temperature decreases.

Silicon is always present in furnace-refined nickel in amounts generally under 0.25 per cent and has comparatively little effect in these amounts. In larger amounts the hardness of the metal is increased and its ductility decreased, and with increasing amounts the malleability, both hot and cold, is diminished and finally destroyed completely. This occurs at from 3 to 5 per cent of silicon.

VIII. TECHNOLOGY 1. CASTING

Nickel is cast from the furnace into open molds to produce blocks for remelting, into ingot molds after deoxidation with manganese and magnesium for the production of malleable nickel and into sand molds for nickel castings. It is also poured directly into water to form nickel shot.
For the production of castings, the metal in the form of blocks or shot may be remelted in crucibles or in an oil-fired or electric furnace with the addition of charcoal to reduce the oxide which is present and which is formed during remelting. When at the proper temperature, it is poured into a ladle and deoxidized in the same manner as for the production of malleable ingots and poured into the molds. The chief difficulty in the remelting of nickel is in the proper adjustment of carbon and oxide content of the molten metal prior to deoxidation, which is called "bringing the metal to pitch;" this operation consequently requires the services of an experienced furnace operator and may be an absolute failure without him.

Platers' anodes are melted with carbon and may be poured at a much lower temperature than is malleable nickel and do not require deoxidation treatment of any kind; they are consequently much easier to handle in the foundry than is low-carbon metal.

The molding of nickel castings follows the practice used for steel castings, generally speaking, an allowance of one-fourth inch to the foot being made for shrinkage.

Other than the process of deoxidation, which is absolutely essential, the production of malleable nickel ingots requires no novel operations not known for instance in the steel industry. Deoxidized nickel solidifies without blowholes but with a pronounced pipe, which renders the use of proper risers or hot-tops and properly designed molds necessary.

2. ROLLING, FORGING, ANNEALING

In the hot-working of nickel, both the temperature and the condition of the heating flame should be subject to careful control. The temperature for preheating and rolling should be from 1100°C to 1180°C and ingots should not be subjected to temperatures much in excess of this, as they become somewhat hot-short at higher temperatures. Below this temperature the metal may be too hard to roll satisfactorily. The flame used for heating should be as nearly neutral as possible, and a low-sulphur fuel (oil) is essential for successful heating.

For hot-rolling bars and rods of the usual cross sections, the same designs of rolls as are used for steel may be and are employed with success. Pure nickel and nickel alloys of high nickel content are very easily "guide marked" when hot.

17634°-21----3

The remarks of the first paragraph above apply also to the forging of nickel. Nickel is much more successfully forged under the hammer than under a press; in fact, the metal has a pronounced

tendency to crack under the slow action of the press, which may be due to the fact that the surface cools more readily than under the quick blows and short contact of the hammer.

34

Nickel

In order to soften nickel which has been worked cold, it must be heated to at least 750° C, the minimum temperature of the annealing range, allowed to remain in the furnace until thoroughly heated throughout; it may be cooled rapidly or slowly, as desired, as there is no alteration in the properties of the metal produced by cooling after annealing. For the commercial annealing of nickel a temperature of 900° C should be used, as this will ensure a more thorough and homogeneous anneal than might be accomplished at lower temperatures.

Price and Davidson (36) have studied the annealing of nickel of commercial pure grade (A) and their results are shown in Fig. 10. The annealing range for the metal is from 600 to 800° C; commercially the metal is usually annealed at 900° C.

Whenever possible the metal should be annealed in tight boxes to prevent the formation of oxide, and any oxide formed may be reduced by the creation of a reducing atmosphere in the box, either by the presence of a small amount of charcoal or by the admission of some reducing gas. When annealing is done in this manner no pickling is required, and on account of the difficulty and expense pickling should only be adopted as a last resort.

If necessary, pickling may be accomplished by the use of sulphuric acid with some oxidizing agent, such as ferric sulphate or chromic acid, at a temperature around 60 to 70° C, but it is a slow and tedious process.

3. WELDING AND SOLDERING

Nickel can not be smith-welded owing to the formation of a coating of nickel oxide which can not be fluxed, and which prevents the adherence of the two surfaces to be welded. On the other hand, under conditions under which a reducing atmosphere may be maintained the metal may be welded, such as by the use of the oxy-acetylene torch, or by electric resistance welding. It is by the latter process that nickel wire is welded to iron wire to form tips or points for spark plugs.

Under suitable reducing conditions nickel may be plastically welded to steel, and an interesting process, invented by Dr. Fleitman about 35 years ago, of producing nickel-coated steel sheets is based upon this possibility. A steel sheet bar, about three-fourths inch thick, is cleaned and pickled and placed between two thinner plates of clean nickel. Around the whole is wrapped thin steel sheet, which protects the nickel against oxidation and is dissolved off by later pickling. The compound sheet bar is heated in a reducing atmosphere and then rolled and crossrolled into a solid, compound sheet. Needless to say the nickel coating so produced is thicker and more durable than electrolytically deposited metal.

4. ELECTRODEPOSITION

Outside of the production of electrolytic nickel, the chief chemical application of nickel deposition is in the nickel-plating of steel, brass, zinc, and numerous alloys, generally in the form of castings or stampings, partly for protection against corrosion but primarily for the improvement of appearance. Its chief value for this purpose lies in its relative hardness and its resistance to abrasion and atmospheric corrosion. Nickel is used to a limited extent in electrotyping, in which case it may be deposited directly upon the wax or lead mold, producing a true nickel electrotype; or it may be deposited upon the face of a finished copper plate, making a nickel-plated electrotype. In general, the function of the nickel upon electrotypes is to give a harder wearing surface, which is also more resistant than copper to the action of the colored inks frequently employed. The production of nickel articles, for example, tubes, etc., by deposition upon wax or other fusible molds has never been commercially successful, though processes recently devised appear promising for this purpose.

The principal salts of nickel used in plating and electrotyping are nickel sulphate and nickel-ammonium sulphate (known commercially as "single" and "double" salts, respectively). The nickel-ammonium sulphate has the advantage of better conductivity but the disadvantage of lower solubility than the nickel sulphate. Mixtures of the two are frequently used. In 1878 Weston patented the use of boric acid in nickel baths, which has come into quite general use. The presence of the boric acid appears to favor more uniform operation of the baths, and to produce brighter deposits. Experiments of L. D. Hammond (222) indicate that the essential function of the boric acid, is the maintenance of a uniform slight acid or hydrogen-ion concentration in the solution. He found that good deposits can be obtained from solutions slightly acidified with strong or weak acids, none of which, however, is so suitable as boric acid for continued service.

As noted on page 24 pure nickel exhibits in a marked degree the phenomenon of passivity when it is made the anode in most acids or salts. In consequence the use of pure nickel anodes in nickel-

Nickel

sulphate solutions would soon bring about an improverishment in nickel and the liberation of free sulphuric acid. Hence it has been customary to add to nickel anodes, appreciable amounts of iron, carbon, and tin, which by local action increase the solution tension of the nickel. Incidentally they lower the fusing point, and thereby facilitate the casting of the nickel anodes. Many of the nickel anodes in use contain only 88 to 90 per cent of nickel, thus avoiding the contamination of the solutions and accumulations of slimes. This development has been rendered possible by the addition of chlorides, or more recently of fluorides, to nickel baths, both of which reduce anode passivity and increase the corrosion. Chlorides of sodium, ammonium, nickel, or magnesium are frequently added.

The fluorine is usually added in the form of hydrofluoric acid, though it is preferable first to neutralize this acid with nickel carbonate, thus forming nickel fluoride.

In addition to aiding in anode corrosion, the presence of sodium or ammonium chloride increases the conductivity of the solutions. Other salts are sometimes added to nickel solutions to increase the conductivity; for example, ammonium sulphate (in the form of, or in addition to nickel-ammonium sulphate) and magnesium sulphate. Salts of organic acids, such as tartrates, citrates, etc., which have also been added, may serve (1) to regulate the acidity, (2) to dissolve basic compounds, especially of iron, and (3) to reduce the rate of chemical deposition of nickel by more positive metals. The latter function is especially useful in the nickelplating of zinc and zinc alloys.

In general nickel-plating has been conducted at low temperatures, but Watts has shown that in solutions containing nickel chloride or sulphate and boric acid hot solutions may be employed to advantage, and may permit the use of much higher current densities.

The following formulas illustrate the various types of nickel baths in actual commercial use. It is not implied, however, that these formulas will always be satisfactory, much less that they are the best for a given class of work.

	Grams	Ounces
(I) Nickel electrotyping:	liter	gallon
Nickel ammonium sulphate	• 45	6
Nickel sulphate	. 15	2
Sodium chloride	. 7.5	I
(2) Nickel-plating-double-salt solution:		
Nickel ammonium sulphate	. 90	12
Ammonium chloride	. 22.5	3
Boric acid	. 15	2
(3) Nickel-plating—single-salt solution:	Ũ	
Nickel sulphate	120	16
Ammonium chloride.	22. 5	3
Boric acid	IS	2
(4) Nickel-plating (Watts)-for high current density, or in hot solutions	:	
Nickel sulphate	240	32
Nickel chloride	15	2
Boric acid	30	4
(5) Nickel-plating on zinc (Hammond):	Ŭ	
Nickel sulphate	240	32
Nickel chloride	15	2
Boric acid	30	A
Sodium citrate	175	23

PART B. ALLOYS OF NICKEL

IX. EQUILIBRIUM OF BINARY ALLOYS OF NICKEL

The constitution of most of the important binary-alloy series with nickel has been investigated fairly completely and the principal results of these investigations are given in Tables 17, 18, 19, 20. It is observed that nickel has a strong tendency to form solid solutions with other metals, either of limited compositions or in all proportions. It is, structurally speaking, perhaps mainly for this reason that the metal forms a constituent of so many commercially useful ferrous and nonferrous alloys.

TABLE 17 .--- Binary Alloys of Nickel Having Limited Miscibility in the Liquid State

	Temperatu	re of begin-	Solubility in solid state		
	ning 1	nelting	of—		
Nickel and-	Tempera-	Composi-	(x) in	Nickel in	
	ture	tion	nickel	(X)	
Lead	° C	Per cent Ni	Per cent (x)	Per cent Ni	
	326	97-0	3	0. 7	
Silver Thallium	961 320	100-0 97-0	3	0	

 TABLE 18.—Binary Alloys of Nickel in Which the Two Metals Form a Simple Eutectiferous Series

	Eut	ectic	Solubility at eutectic temperature		
Nickel with-	Tempera-	Composi-	(x) in	Nickel	
	ture	tion	nickel	in (x)	
Gold	° C	Per cent Ni	Per cent (X)	Per cent Ni	
	950	27	16?	6?	

 TABLE 19.—Binary Alloys of Nickel in Which the Two Metals Are Soluble in All

 Proportions in the Solid State

Nickel and—	Melting point of the two metals	Maximum or minimum melting point	Composi- tion at maximum or minimum melting point
	°C	°C	Per cent Ni
Chromium.	1452-1520	1290	40
Cobalt	1452-1480		
Copper	1452-1083		
Iron	1452-1530	1425	70
Manganese	1452-1260	1000	44
Palladium.	1452-1549		
Platinum	1452-1755		

Circular of the Bureau of Standards

		Nickel rich alloys				(x) rich alloys			
	Compounds formed		Eutecti		Eutectic		Solu-		tectic
Nickel and—		Com- pound	Solu- bility of com- pound in nickel	Tem- pera- ture	Com- posi- tion	Com- pound	of com- pound in (x) at eu- tectic tem- pera- ture	Tem- pera- ture	Com- posi- tion
			Per ct.		Per ct.		Per ct.		Per ct.
		-	(X)	°C	(x)		Ni	°C	Ni
Aluminum	NIA1; NIAl2; NIAl3.	NiA1	14	a 1370	13	NiAls	(?)0	630	7
Antimony	SbNi3; Sb2Ni5;	$Sb_2Ni_5(1)$	7.5	1100	35	SbNi	0	612	4
	SbNi								
Arsenic	NiAs ₂ ; Ni ₅ As ₂ ; Ni ₃ As ₂ ; NiAs	Ni5As2	5. 5	898	28		•••••		•••••
Bismuth	NiBi; NiBi3	NiBi	2	a 655		NiBi3	0	272	0
Cadmium	NiCd4					NiCd4	0	321	0
Carbon	Ni ₃ C(?)	• • • • • • • • • • • •	• • • • • • • • •			•••••	•••••		•••••
Magnesium	Ni ₂ Mg; NiMg ₂	Ni ₂ Mg	0	1082	12	NiMg ₂	0	512	32
Molybdenum.	MION1	MoN1	33	1300	50	• • • • • • • • • • • •	• • • • • • • • •		
Phosphorus Selenium	$N_{13}P; N_{15}P_2; N_{12}P$	N15P2	0	880	12		••••••		
Silicon	Ni ₃ Si, Ni ₂ Si, Ni ₃ Si ₂ , NiSi	Ni ₂ Si	б	1153	10. 6		•••••		
Sulphur Tellurium	Ni ₃ S ₂ ; NiS	Ni ₃ S ₂	0. 5	644	23				
Tin	Ni ₄ Sn;Ni ₃ Sn;Ni ₃ Sn ₂	Ni ₃ Sn	15	1135	33	Ni ₃ Sn ₂ .	0	229	(?)1
Zinc	NiZn; NiZn ₃	NiZn	30(?)	a 1035		NiZn3	0	419	0

TABLE 20.—Binary Alloys of Nickel in Which the Two Metals Form One or More Compounds

^a Peritectic.

X. COMMERCIAL ALLOYS

1. MONEL METAL

This alloy was introduced by the International Nickel Co. about 1905 and named after its then president, Ambrose Monell. It is a natural alloy produced directly from Canadian Bessemer matte by roasting and reducing with charcoal and has the following average composition:

	 ei cent
Nickel	 67
Copper	 28
Other metals (iron, manganese, silicon)	 5

Several grades of this metal are produced for different purposes, of which the following typical analyses are given:

40

	Constituents						
Material	с	Mn	Fe	Si	s		
Rolled Monel metal sheet	Per cent 0.11 .26 .12 .18	Per cent 0. 15 1. 78 1. 66 . 25	Per cent 1.76 2.00 2.10 1.90	Per cent 0. 18 . 20 . 13 1. 06	Per cent 0. 026 . 035 . 025 . 03		

TABLE 21 .- Typical Analyses of Monel Metal

It will be noted that the wire is made with low carbon content in order that it may be readily cold-drawn, whereas hot-rolled rods are produced with somewhat more carbon in order to increase the ease of their hot-rolling.

The practice in producing castings and malleable ingots of this alloy follows very closely that of the production of malleable nickel and nickel castings which has already been described. After bringing to pitch in the furnace—that is, adjusting the carbon and oxide content—it is deoxidized with manganese, or ferromanganese, and magnesium, the latter being used in the same proportions as for nickel and poured into ingot molds or sand castings. Unless so deoxidized it is, generally speaking, not malleable and can not be rolled or forged.

The ingots so produced may be rolled or forged at from 1040 to 1100° C, by using the same precautions as in the case of nickel against oxidation and absorption of sulphur during heating. Rods are produced by hot rolling or forging; from these bright, cold-drawn rods are also produced by close-annealing and colddrawing. Wire is drawn from hot-rolled, close-annealed wire rod about one-fourth to three-eighths inch in diameter. Annealing of hot-rolled Monel metal preparatory to cold-rolling or drawing is carried out at about 900° C, preferably in charcoal boxes, to prevent scaling. Light scaling may, however, be removed by pickling with sulphuric acid and ferric sulphate, as in the case of nickel, but it is a slow and rather unsatisfactory process.

The metal is on the market in the usual commercial forms,⁶ sheet, bars, wire, and various special manufactured forms, such as wire cloth, screens, nails, chain, bolts, nuts, golf-club heads, and in the form also of castings.

⁶ Booklets by the Monel Metal Products Co. and by the International Nickel Co. describe the properties and uses of this alloy.

(a) METALLOGRAPHY.—The elements entering into the composition of Monel metal form with each other a continuous series of solid solutions, consequently the structure of the annealed or rolled metal is quite simple and similar to that of nickel, consisting of grains of solid solution with small particles of the oxides ⁷ of magnesium and manganese. This is illustrated in Fig. 11; the typical structure of cold-drawn rods of Monel is illustrated in Fig. 12. The structure of cast Monel metal is, however, quite different from that of cast nickel and is that characteristic of solid solutions; it has the cored or dendritic structure illustrated in Fig. 13. The darker portions are richer in copper than the light areas, due to the selective method of solidification. This heterogeneity of concentration is relieved by annealing and by the processes incident to hot forging or rolling.

Monel metal may be etched with satisfactory results by the use of the 50 per cent nitric acid solution containing 25 per cent of glacial acetic acid, described above. It is also attacked by ferric-chloride solutions, and such solutions are also suitable for metallographic etching; a solution containing I g FeCl₃ and 2 cc concentrated HCl, diluted to 2 or 3 volumes with water, is recommended.

Monel metal exhibits the same phenomenon as does nickel of intercrystalline brittleness produced by exposure at rolling temperature to the action of oxidizing or sulphurizing gases and which was described on page 16.

(b) USES AND APPLICATIONS.—The principal properties of this metal which render it of commercial value are perhaps the following: Resistance to corrosion, the bright nickel finish which it takes and retains, its strength and hardness—particularly at high temperatures, and its resistance to erosion by water and steam.

Monel metal resists excellently the action of ammonia, solutions of ammonium hydroxide, fused and dissolved caustic alkalis and carbonates, fatty and many other organic acids, sea water, solutions of neutral salts such as alum, sulphates, chlorides, etc., gasoline and mineral oils generally, phenol and cresols, photographic chemicals, urine, dry mercury, dyeing solutions, alcoholic and other beverages. It resists fairly well the action of sulphuric, weak phosphoric, hydrocyanic acids, hydrofluoric, acetic and citric acid, ferrous sulphate, and dry chlorine. It is not resistant to the action of hydrochloric and nitric acids, molten lead and

⁷ Or possibly other compounds.

Bureau of Standards Circular No. 100

FIG. 11.—Microstructure of rolled Monel metal rod. \times 100

FIG. 12.—Microstructure of cold-drawn Monel metal rod. ×150

Bureau of Standards Circular No. 100

FIG. 13.—Microstructure of cast Monel metal. ×100

zinc, potassium cyanide, fused or in solution, sulphurous acid, ferric chloride, and chromic acid.

Monel-metal sheet showed the following losses in weight upon exposure to the action of boiling acetic acid for eight hours:

Loss in weight per square inch per hour, in 10 per cent acid=0.07 mgLoss in weight per square inch per hour, in 26 per cent acid=0.08 mgLoss in weight per square inch per hour, in 56 per cent acid=.11 mgLoss in weight per square inch per hour, in 90 per cent acid=.12 mg

It lost 0.076 mg per square inch per day during eight months' exposure to cold glacial acetic acid.

Because of its relative incorrodibility it has been used to some extent for roofing material. The roof of the Pennsylvania Terminal in New York City is covered with Monel sheet selected because of its superiority over other roofing materials demonstrated during a 10-year test. It is also used for window screens for the same reason.

Both rods and castings are used to a large extent in the manufacture of pumps, pump liners, rods, valves, etc., for handling sea water, mine waters, and acid and alkaline corrosive solutions generally. One of the principal applications of the metal is in the construction of pickling tanks and crates for pickling steel; rods are used for this purpose and have apparently proved superior to any other material. In this connection the results of corrosion tests of Monel-metal rod in pickling acid are of interest. Rods exposed for 90 days to the action of continually renewed 6° Be (6 to 7 per cent) sulphuric acid at 74° C lost weight at the average rate of 0.0045 g per square inch per day, corresponding to the removal of a layer 0.00003 inch thick per day; the removal of a 0.1 layer would therefore by extrapolation require about 10 years. In fact, Monel-metal pickle pins and rods have been removed from service after eight years and found to show practically no evidence of corrosion. Their average life is perhaps three years. On account also of its resistance to corrosion it is used in the construction of mining machinery, mine screens, dyeing machinery and equipment, and in the chemical and oil industries for miscellaneous parts exposed to severely corrosive conditions.

Monel metal takes and retains a finish almost identical with that of pure nickel and is for this reason much used for small fittings, trimmings, and stampings, for golf-club heads, and for knives. This property in conjunction with its resistance to corrosion by substances used in preparation of foods and in washing have made it valuable for the construction of certain cooking utensils and for washing tanks, cream-separator machinery, etc.

The resistance of the alloy to steam erosion and its strength at high temperatures, which seems to be higher than that of the steels or bronzes, have caused its extensive application in the production of steam pressure valves and steam-turbine blading. For these purposes it is well suited also by reason of the fact that its thermal expansivity is approximately equal to that of steel with which it is usually associated in such construction.

Marine propellers have been cast of Monel metal. In connection with its quite widespread use in naval construction it may be recalled that the steam yacht *Sea-Call* was covered with Monel sheathing, in this particular case unsuccessful for the reason that the galvanic action between it and the exposed steel parts of the hull caused accelerated corrosion of the latter. It is obvious that construction of this sort must be avoided, involving Monel metal and steel in galvanic contact and exposed to the action of an electrolyte such as sea water or other aqueous solutions; the entire construction should be of Monel.

Monel metal is remarkably resistant to oxidation even at high temperatures (750° C) and is used for electrical resistance and spark-plug wire and other parts exposed to high temperatures. Monel metal is made up into screen of various types, into filter cloth used in filtering corrosive liquids, and into screw machine products of all kinds.

(c) PHYSICAL PROPERTIES—The physical properties of Monel metal are described by the International Nickel Company (450). Its melting point is about 1360° C, its density in the rolled condition, 8.97 (0.323 pound per cubic inch). The mean coefficient of thermal expansion between 20 and 100° C, as well as between 20 and 400° C, is 0.000015. For the latest data, see second table on page 20. Its electrical resistivity in the form of wire is 42.5 microhm-cm (256 ohm-mil-foot), temperature coefficient of resistivity, 0.0019 per degree centigrade. The thermal conductivity of Monel metal is one-fifteenth that of copper or about 0.06 cal./cm³/sec/°C. The optical reflectivity of Monel metal is not markedly different from that of nickel; values for its reflectivity are given in Table 11.

The mean specific heat of Monel metal between 20° C and its melting point is 0.127 cal. per gram according to recent determina-

tions of Dr. W. P. White, who finds its latent heat of fusion to be 67 cal./gram.

Monel metal is slightly magnetic and its permeability varies markedly with composition and mechanical and heat treatment. An annealed rod of Monel metal containing 66.1 per cent nickel, 28.8 per cent copper, 2.68 per cent iron, 1.91 per cent manganese, 0.22 per cent carbon, and 0.29 per cent silicon gave the following values of magnetic induction in recent rests by Dr. Chas. W. Burrows.

Magnetizing	Magnetic	Magnetizing	Magnetic	Magnetizing	Magnetic
force	induction	force	induction	force	induction
Gausses	Gausses	Gausses	Gausses	Gausses	Gausses
1	413	10	1203	75	1300
2	699	20	1244	100	1317
4	989	50	1282	150	1346

TABLE 22.-Magnetic Induction of a Monel Metal Rod

With varying treatment values of the magnetic induction for a magnetizing force of 50 gausses, varying from 500 to 2000, may be obtained.

The modulus of elasticity (Young's modulus) is $22\,000\,000$ to $23\,000\,000$ pounds per square inch. The hardness varies with the form and condition of the metal as may be seen in Table 23.

Material	Scleroscope	Brinell hardness 0.10 mm ball		
	hammer	500 kg	3000 kg	
Hot-rolled Monel-metal rods.	20-30	100–130 150–170	145–170 180–200	
Cast Monel metal	20-25	90-100		
Annealed Monel metal	15-20	80–100		

The tensile properties of Monel metal vary also with the composition, condition, and size of the rod; values are given in Table 25. The proportional limit of hot-tolled rods averagesfrom 30 000 to 45 000 pounds per square inch, that for castings from 15 000 to 25 000 pounds per square inch.

Specifications are issued by the U. S. Navy Department for this alloy in its different forms and from which further information may be obtained about its tensile properties. (See appendix.) The torsional properties of Monel metal hot-rolled rods have the following range of values:

Shearing stress at outermost fiber at—		Lbs./in.	2
Proportional limit	20	000-40	000
Vield point	50	000-80	000
Maximum	75	000-95	000

Direct shearing tests on hot-rolled Monel metal rods carried out in the engineering laboratory of Lehigh University gave the following average results:

TABLE 24 .--- Shear Tests of Monel Metal Rods

Diameter of test bar	Single shear maximum stress	Double shear maximum stress
1-inch ∛₄-inch	Lbs./in. ² 55-61 000 45-50 000	Lbs./in. ² 115-127 000 90-103 000

Compression tests of rods and castings give the following results:

Property	Rods	Castings	
Proportional limit	Lbs./in. ² 25 000-50 000 60 000-70 000	Lbs./in. ² 15 000–25 000 20 000–30 000	

TABLE 25.-Tensile Properties of Monel Metal

	Average	tensile pro	perties	Average range of tensile properties				
Material	Yield Tensile point strength		Elonga- tion in 2 inches	Yield point	Tensile strength	Elonga- tion in 2 inches	Reduc- tion of area	
Hot-rolled rods:	Lbs./in.2	Lbs./in.2	Per cent	Lbs./in.2	Lbs./in.2	Per cent	Per cent	
Up to 1 inch in diameter.	63 100	94 600	40	1				
1 1 to 1 1	62 000	93 000	39					
134 to 278	50 100	87 700	42	50-75 900	85- 110 000	28-55	45-65	
2½ to 3½	43 800	85 300	44					
Over 3 ¹ / ₂	47 300	84 800	43					
Castings	37 100	72 300	34	32-44 000	65- 85 000	25-45		
Annealed sheet					60- 75 000	30-40		
Cold-drawn rods				60-80 000	87- 96 000	30-40	50-65	
Wire:								
Annealed					60- 75 000			
Hard-drawn					110-150 000		•••••	
						1		

46

Nickel

Very few tests have been made of the resistance of Monel metal to the action of alternating stresses but the indications of a few tests are that hot-rolled rods about 1 inch in diameter will withstand approximately 10 000 000 complete reversals of stress; that is, from tension to compression at 25 000 pounds per square inch maximum fiber stress, these tests having been made in the White-Souther machine.

The effect of temperature on the tensile and torsional properties of Monel metal has been studied by Bregowsky and Spring (195), and by Arnott (455), whose results are given in Tables 26, 27, and 28.

TABLE	26.—Tensile	Properties	of	Monel	Metal	and	30 p	per	cent	Nickel	Steel	at
	High	er Tempera	ıtuı	es (Bre	gowsky	and	Sprin	ng,	195)			

		Rolled M	onel metal		Rolled 30 per cent nickel steel				
Temperature in de- grees centigrade	Tensile strength	Elastic limit	Elonga- tion in 2 inches area		Tensile strength	Elastic limit	Elonga- tion in 2 inches	Reduc- tion in area	
	Lbs./in.2	Lbs./in. ²	Per cent	Per cent	Lbs./in.2	Lbs./in.2	Per cent	Per cent	
21	104 900	78 350	31. 3	61.7	94 498	39 850	51.2	59.8	
149	97 400	58 500	29.7	57.8	97 000	37 100	64.1	65.0	
233	97 800	58 690	29.7	51.0	84 950	32 250	62.5	65.0	
275	96 400	58 400	32.8	59.5	83 000	26 200	59.4	66.8	
317	89 600	57 950	32.8	59.5	69 575	25 650	56.3	72. 6	
399	67 600	42 550	28.1	58.1	45 650	21 100	43.0	59.0	
510									
5 55	47 200	26 800	28. 1	60. 7	36 350	15 500	37.5	55.7	

Arnott (455) gives the values shown in Table 27 as the average of 18 tests:

TABLE 27.— Tenshe Properties of Money Metal at Figh Temperatures (Arnott, 43	TABLE 27.—Tensile I	operties of Mone!	l Metal at High T	emperatures	(Arnott,	455
--	---------------------	-------------------	-------------------	-------------	----------	-----

Temperature in degrees centigrade		Yield point	Elonga- tion in 2 inches	Reduc- tion of area
	Lbs./in.2	Lbs./in.2	Per ct.	Per ct.
20	92 700	47 700	51	69
320	86 200	38 100	48	62
410	75 700	35 600	49.5	63
500	64 300	34 100	45	56
630	36 300	23 300	33	
700	23 100	17 700	27	36
905	6 300	3 600	27	28

Material	Temper- ature	Torsional strength	Elastic limit	Angle of twist
	°C	Lbs./in. ²	Lbs./in.2	0
	21	94 610	45 510	12 turns 150°
%-inch rolled Monel metal	196	83 030	33 940	5 turns 0
	317	72 290	31 300	5 turns 205
	426	40 610	10 910	6 turns 240
	21	91 990	37 780	11 turns 150
	196	78 030	36 140	4 turns 320
1 ¹ / ₈ -inch rolled Monel metal	217	∫ 54 210	19 800	4 turns 340
	517	59 591	26 123	4 turns 90
	426	38 600	10 680	7 turns 50
		1		

TABLE 28.—Torsional Properties of Monel Metal at Higher Temperatures (Bregowsky and Spring, 195)

It is evident that Monel metal retains its strength to a remarkable extent at higher temperatures as compared with brasses, bronzes, and steel.

Webster (481) has studied the effect of cold-rolling on the tensile properties of Monel metal and has given the following values:

Material	Tensile strength	Elonga- tion in 4 inches	Reduc- tion of area
	Lbs./in.2	Per ct.	Per ct.
Normalized Monel	79 000	26	35
Same after 20 per cent reduction	102 000	4	22
Same after 40 per cent reduction	118 000	3	18
Same after 60 per cent reduction	132 000	2	17

TABLE 29.-Effect of Cold-Rolling on Tensile Properties of Monel Metal

The discussion above on the effect of impurities on the properties of nickel applies with almost equal force to Monel metal. Carbon, as in the case of nickel, acts to harden the metal and render it easier to roll and forge hot, but hardens it and makes it more difficult to roll cold. The separation of graphite begins at a somewhat lower content of carbon than in the case of nickel, viz, in the neighborhood of 0.35 per cent.

Although a long, tough chip is produced in the machining of this metal it may readily be machined when proper conditions are observed. Tools are required of high-grade, high-speed steel and should be ground with large rake or lip and kept sharp. It may be machined either dry or with lubricant, and a good average speed for general work is from 50 to 60 feet per minute with a one-eighth-inch cut and a one-thirty-second-inch feed.

48

Nickel

Monel metal may be soldered and brazed in the same manner as is iron or steel and it may be acetylene welded. The welded joint will, however, not be as strong as the original metal and will have little ductility. Ordinary Monel wire rod may be used as

FIG. 14.—Equilibrium diagram of copper-nickel alloys according to Guertler (259)

welding rod. Acetylene welding of this metal as well as of nickel should be executed with a nearly neutral flame as the metal is highly sensitive at these temperatures to the presence of oxygen. Welded Monel metal and nickel tubes are being manufactured by the oxyacetylene process.

17634°-21-4

2. COPPER-NICKEL ALLOYS

These are undoubtedly among the earliest alloys of any sort known to man. Thus Muspratt⁸ mentions Bactrian coins containing 77 to 78 per cent copper and 22 to 23 per cent nickel dating from 235 B. C.; this composition is almost identical with our present nickel-coinage alloy. In spite of their antiquity the pure copper-nickel alloys have not perhaps come into the commercial prominence which their unusual properties should give them, although the recent war, with its large requirements of these

FIG. 15.—The hardness of copper-nickel alloys according to Kurnakov and Rapke (321). Rolled and annealed samples; 10 mm ball, 500 kg load

alloys for bullet jackets and driving bands, has served to stimulate interest in them.

Nickel and copper form solid solutions in all proportions as may be seen from Fig. 14, which gives the equilibrium diagram of this binary series. In conformity with this type of equilibrium the physical properties of the alloys vary continuously with composition, maximum and minimum values being encountered within the series. Figs. 16 and 17 show the variation of electrical resistivity, its temperature coefficient and the thermoelectromotive force with composition of copper-nickel alloys.

Throughout the entire range of composition the alloys are ductile and malleable; their tensile strength and hardness reaches a maximum in the neighborhood of 50 per cent of copper; this is seen from Fig. 15. Table 30 gives typical values of the tensile properties for commercial compositions of copper-nickel alloys in different forms.

FIG. 16.—The electrical resistivity of copper-nickel alloys according to Feussner and Lindeck (342)

Baucke (328) has shown that small amounts of nickel increase the toughness of copper as indicated by the notch-bar impact test. He obtains the following results on forged and annealed test bars:

	Specific impact work		
	in kilogram-meters		
Electrolytic copper	14. I		
0.17 per cent nickel	20. 0		
.31 per cent nickel	22.0		
1.52 per cent nickel			

Even in small amounts nickel decolorizes copper (and its alpha alloys). Thus bullet-jacket stock containing 15 per cent of nickel is practically white when freshly cut or polished.

Circular of the Bureau of Standards

Cher comp	mical osition	Form	Yield	Tensile	Elonga-
NI	Cu		point	strengta	tion
Per cent	Per cent		Lbs./in.2	Lbs./in.º	Per cent
2	98	Tubes, soft a		39 200	44
2	98	Tubes, hard a		63 500	5.5
5	95	Sheet, soft a	 .	39 200	50
5	95	Sheet, hard a		67 500	4
20	80	Sheet, soft a		47 200	35
20	80	Sheet, hard a		90 000	4
25	75	Sheet, soft a		60 500	31
2.5	97.50	Driving band b	14 340	31 770	a 69.6
2.5	97.50	Wire (0.08 inch diameter), hard b		72 150	a 1.6
10	90	Strip, annealed b		48 450	c 28.4
15	85	Strip, hard b		71 000	c 3
15	85	Strip, annealed b		47 000	¢ 28
20	80	5/8-inch rod, hard b	57 800	61 500	¢ 14.8
20	80	5/8-inch rod, annealed b	18 000	47 600	c 40
25	75	5/8-inch rod, hard b	58 000	64 000	c 17
25	75	5/8-inch rod, annealed b	21 000	51 600	c 39
40	60	1/8-inch rod, annealed b.		69 400	c 28

TABLE 30 .- Typical Values of the Mechanical Properties of Commercial Cupronickel Compositions

a Values quoted by Hiorns (254).

c Elongation in 2 inches.

FIG. 17.—The thermo-electromotive force of copper-nickel alloys toward iron; Bash (537)

The alloys containing less than 60 per cent of nickel are not perceptibly magnetic, but above that percentage of nickel the magnetism of the alloys may readily be detected with a small magnet.

There are several compositions of copper-nickel alloys now in common commercial use. The most prominent ones are the following:

(1) Two and one-half per cent (2.5 per cent of nickel) cupronickel for driving bands of shells.

(2) Fifteen per cent cupronickel, used largely for bullet jackets and by the United States Navy for condenser tubes and feedwater heaters, containing from 14 to 16 per cent of nickel.

(3) Nickel-bronze, or coinage bronze, used for baser currency and containing 25 per cent of nickel.

(4) Copper-nickel, containing 50 per cent of nickel, used for remelting in the manufacture of nickel-copper alloys.

(5) Constantan, used as one element in the construction of thermocouple pyrometers and also as electrical-resistance wire, containing 45 per cent of nickel. (See pp. 55 and 71.)

Of these perhaps the most interesting, in view of its large use during the war, is the bullet-jacket composition commonly known as cupronickel. This alloy is generally made by melting copper in crucibles together with shot or electrolytic nickel, following the practice in melting brass and bronze. The metal has a strong affinity for gases and oxygen and before casting is usually deoxidized with from 0.5 to 1.0 per cent of cupromanganese in order to secure a sound ingot; it may also be readily deoxidized with magnesium. These ingots are cold-rolled to the size required and annealed at about 700° C.

A striking property of this composition is its great malleability, as evidenced by the fact that a cast bar 1.25 inches thick may be cold-rolled to 0.040 inch, or thinner, without intermediate annealing. Webster (481) has determined the effect of cold reductions upon the tensile properties of cupronickel.

TABLE 31.—Effect of Cold Rolling Upon the Tensile Properties of Cupronickel

Reduction in cross section, per cent	Tensile strength	Elonga- tion in 4 inches	Reduc- tion of area
	Lbs./in. ²	Per cent	Per cent
Normalized	50 000	28	63
20	60 000	5	58
40	70 000	3	56
60	80 000	2	53
		1	

A typical analysis and tensile test of this metal are the following:

Copper (per cent)	85.16
Iron (per cent)	. 23
Manganese (per cent)	. 11
Carbon (per cent)	. 029
Nickel (difference) (per cent)	14.47
Tensile strength after cold-rolling to 0.040 inch and anneal-	
ing (in pounds per square inch)	46 9 00
Yield point (per cent)	22 300
Elongation in 2 inches (per cent)	35.4

Alloys of this composition are also quite resistant to corrosion and are therefore in wide use as Benedict metal for condenser tubes. (See U. S. Navy Department specifications 46N1a of 1917.) The following values of the tensile properties are typical for this material in the form of tubes.

TABLE	32.—Tensile	Properties	of Benedict	Metal Tubes	
-------	-------------	------------	-------------	-------------	--

Outside diameter	Wall thickness	Tensile strength	Elongation in 10 inches	Remarks
Inch	Inch	Lbs./in. ²	Per cent	
0.517	0.038	43 080	39.0	Annealed.
.516	.036	51 520	8.1	Light drawn.
. 750	.047	60 300	a 4.2	Medium drawn.
. 750	.047	75 800	a 2.0	Hard drawn.

a In 8 inches.

Bengough (325) has studied the effect of high temperatures on the tensile properties of a 20 per cent copper-nickel alloy.

This metal is subject to a curious type of intercrystalline brittleness at present insufficiently understood. After annealing it frequently is so brittle that it will bend only a few degrees. Under the microscope it presents the appearance shown in Fig. 19, whereas normal annealed cupronickel has a structure shown in Fig. 18, consisting of an aggregate of grains of copper-nickel solid solution. The intercrystalline appearance in the embrittled metal is rather similar to that which occurs on "burning" nickel and Monel metal described above. By some (see Thompson and Barclay, 304) this brittleness is considered as being associated with the precipitation of graphitic carbon, and on this account manufacturers of this metal aim to keep the percentage of total carbon below about 0.04 per cent. It may be noted that 15 per cent cupronickel may be etched and with pleasing results in a solution containing—

> 20 per cent conc. HNO₃. 40 per cent glacial acetic acid. 40 per cent acetone.

54

Bureau of Standards Circular No. 100

FIG. 18.—Microstructure of normal annealed cupronickel sheet. Etched with 20 per cent nitric acid, 40 per cent acetic acid, 40 per cent acetone. ×150

FIG. 19.—Microstructure of brittle cupronickel sheet showing intercrystalline alteration. Etched in the same manner as Fig. 18. ×150

.

The cupronickel alloys are found not to be subject to corrosion, or season cracking as are the brasses, bronzes, and also the nickelsilver alloys.

The composition used for "nickel" coinage—that is, containing 25 per cent of nickel—is a very old one. This material has essentially the color of pure nickel, is hard and resistant to abrasion and corrosion; being softer than pure nickel it is not so difficult to stamp as is the latter. It is manufactured in much the same manner as cupronickel. It is estimated that the total amount of nickel used in nickel coinage is not over 15 000 tons.

The alloy, constantan, or copper-nickel, which also is sold under a number of trade names (see Table 47), is chiefly used for pyrometer and electrical resistance wire. It is generally made in a hearth furnace and cast into ingots which are first hot-rolled to wire rod and then cold-drawn with intermediate annealing into wire. It may be rolled at the temperatures (1175 to 1200° C) used for Monel metal and annealed at a slightly lower temperature; that is, 850° C. The tensile properties of copper-nickel alloys containing approximately 45 per cent of nickel will average as follows:

	TABLE	33	Tensile	Properties	of the 45	per cent	Copper-Nickel	Alloys
--	-------	----	---------	------------	-----------	----------	---------------	--------

Tensile property	¹ ⁄4-inch hot-rolled	Annealed	Hard-drawn
	wire rod	wire	wire
Tensile strength (pounds per square inch) Elongation in 2 inches (per cent)	65 000-85 000 25-49	60 000-65 000	110 000-140 000

The values of the electrical properties of these compositions are given in Table 47.

3. COPPER-NICKEL-ZINC ALLOYS; NICKEL SILVER (NICKELENE)⁹

This series of alloys is also of very old origin, having been known in China under the name of packfong, or white copper. The most common name for them at one time was German silver, but since the war the trade has accustomed itself to the term nickel silver. The compositions of this series of alloys which are in commercial use are quite numerous; they will vary usually within the following limits:

Po	er cent
Copper	52-80
Zinc	10-35
Nickel	5-30

⁹ The name recently suggested by the nonferrous nomenclature committee of the American Society for Testing Materials.

Nickel silver is marketed in several grades, depending chiefly on the nickel content, high-grade alloys containing about 20 per cent and low-grade ones less than 10 per cent. Abroad these are called firsts, seconds, thirds, fifths, etc., but in this country are named according to their nickel content. An idea of the various names which have been given to these alloys may be obtained from Table 34.

Alloy	Perce	ntages o omponen	f chief ts	Percentages of other components
	Cu	Ni	Zn	sector will be allowed
		-		
Extra white metal	50	30	20	
White metal	54	24	22	-DATE THE AUTOM
Arguzoid	48.5	20.5	31	the second s
Best best	50	21	29	
Firsts or best	56	16	28	
Special firsts	56	17	27	and a state of a second
Seconds	62	14	24	
Thirds	56	12	32	- 100 - 0 I
Special thirds	56.5	11	32.5	
Fourths	55	10	35	
Fifths, for plated goods	57	7	36	and the second second second second
Alfenide	50-70	10-20	5-30	
Alpakka	65.2	13	19.5	
Amberoid				
Argentan	50-70	10-20	5-30	
Argentan solder	35	8	57	
Argentin				
Argiroid				
Argozoil	54	14	28	Sn 2, Ph 2, ornamental casting,
Arguzoid	55.78	13.45	23.2	Sn 4.03. Pb 3.54.
Arguzoid	48.5	20.5	31	
Argyrolith	50-70	10-20	5-30	1 11
Aterite	55-60	12-18	13-20	Ph 1-2 5 Fe 6-10
Carbondale silver	66	18	16	1010.0, 10 010
Colorado silver	57	25	18	
China silver	50-70	10-20	5-30	1
Creig gold	80	10	10	
Flectronlate	50-70	10-20	5 20	
Electrum	51 5	26	22 5	
Germon silver	51.5	20	22.3	
Keeps allow				
Luterin				
Maillechort a	66.2	16.4	13.4	Pb 0.15, Fe 3.2, Sn 0.22. French analysis.
Markus alloy				
Neogen	58	12	27	Sn 2, Al 0.5.
Nevada silver				
New silver				
Nickelin	68-55	31-32	0-13	For resistance wire.
		1		

TABLE 34	Some Names	and Com	positions of	Nickel	Silver
----------	------------	---------	--------------	--------	--------

^a French generic name for this type of alloy; analysis given is of particular sample and is not necessarily general.

56

Alloy	Perce	ntages o omponen	f chief ts	Percentages of other components
	Cu	Ni	Zn	
Nickelin	74.5	25		Fe 0.5
Nickel Oreide	66-87	5-10	0-10	
Platinoid	54.04	24.77	20.42	Fe 0.5, Mn 0.5.
Platinoid	60	14	24	W 1-2.
Popes Island metal a	70	14	15	-
Potosi Silver				
Ruelz alloys				
Spoon metal				
Silveroid				
Silverite				
Silverine				
Sterline	68	17-18	13-14	Fe 0.575.
Sterlin	68.5	17.88	12.84	Pb 0.76.
Suhler white copper	40.4	31.6	25.4	Sn 2.6 Cc 0.56.
Futenay	45.7	17.3	37	
Victor metal				
Virginia silver				
Weiss Kupfer				
White metal				
White copper				
Weiss Kupfer				
Wessells silver	51-65	19-32	12-17	Ag 2, FeO 0.5

TABLE 34 .- Some Names and Compositions of Nickel Silver-Continued

^a French generic name for this type of alloy; analysis given is of particular sample and is not necessarily general.

These alloys are largely used as substitutes for silver and as base metals for plated silverware of all sorts, their suitability for both purposes being due to the fact that their color is very similar to that of silver. They are used in the production of a large number of ornamental and other fittings and stampings for which an attractive finish and resistance to corrosion is desired and also in the form of wire for small springs and for electrical purposes. (See p. 71.) Their color varies from a nearly white, nickel color with the higher percentages of nickel to a yellowish-white color in the compositions of lower grade or nickel content.

The compositions of nickel-silver used for any specific purpose are quite variable; there are given below in Table 35 both typical compositions and ranges of compositions for different classes of service. It will be noted that lead is added when ready machinability is desired (key stock); it is kept out, however, in material which is to be spun or drawn, as it diminishes the ductility of the alloy.

Material	Nickel	Copper	Zinc	Lead
Cutlery and knife stock	15-25	55-65	14-20	Fe 0.5-1.5
Key stock	8-18	55-65	15-35	1-2
Jewelers' wire	5-25	53-63	25-32	
Brazing solder	8-20	35-40	40-55	
Watchcase metal.	10-28	55-65	16-30	0-1
Spoon and fork stock	10-20	57-66	20-30	
Platers' bars and cores	5–25	56-70	18-24	

TABLE 35 .- Percentage Compositions of Nickel Silver in Commercial Use

		[]		1
30 per cent.	30	46. 67	23. 33	
25 per cent	25	50	25	
Spoon stock	20	60	20	
20 per cent	20	53. 33	26.67	
Spoon stock	18	65	17	
18 per cent	18	72	10	
Bolster silver	18	65.50	16	0.50
Spring silver	18	54.67	27.33	
Spinning silver	17.50	67	-15.50	
Spinning silver	16	67	17	
Bolster silver	16	56	28	
15 per cent	15	60	25	
15 per cent	15	56.67	28. 33	
12 per cent	12	58.67	29. 33	
Spinning silver	12	66	22	
Key stock	12	60	26	2.0
Key stock	12	65	22	1.0
10 per cent	10	62	28	
10 per cent	10	60	30	
8 per cent	8	61. 33	30. 67	
5 per cent	5	72	23	
5 per cent	5	63. 33	31.67	
				1

TYPICAL COMPOSITIONS USED IN AMERICAN MANUFACTURED PRODUCTS

Results of analyses of two typical compositions of nickel silver follow:

Metal	No. 1	No. 2
Copper	Per cent 63. 03	Per cent 63. 39
Lead	None	None
Iron	. 12	. 13
Manganese	. 037	
Nickel	16.69	18.37
Zinc	Remainder	17. 98

TABLE 36 .- Typical Compositions of Nickel Silver

The alloys are produced by melting copper together with nickelsilver scrap in graphite crucibles, adding the nickel and zinc, deoxidizing with from one-fourth to one-half of 1 per cent of cupromanganese and pouring into ingots, which are cold-rolled, with annealing and pickling, into the sheet or strip required or drawn into wire. The presence of zinc renders this alloy much easier to cast in a sound condition than cupronickel. Annealing is carried out usually at 700° C in a muffle furnace, to exclude air.

Copper, zinc, and nickel in the proportions used in nickel silvers unite to form a solid solution; these alloys are therefore similar structurally to high and low brass, or to copper-nickel alloys and consist of one (alpha) constituent only. They may be etched with ammonium hydroxide and hydrogen peroxide in the manner used for high brass.

An idea of the tensile properties of the copper-nickel-zinc alloys may be obtained from Table 37, which gives some typical values for commercial material:

	Tensile	Elonga-	Percentage composition			
Form	strength	tion in 2 inches	Nickel	Copper	Zinc	
	Lbs./in.2	Per cent				
Strip, hard	130 000	2	30	47	23	
Strip, annealed	73 000	32	30	47	23	
Strip, annealed	71 000	38	25	55	20	
Strip, hard	94 000	2.5	18	64	18	
Strip, annealed	58 000	33	18	64	18	
Strip, hard	107 000	2	18	55	27	
Strip, annealed	69 000	29	18	55	27	
Strip, hard	92 000	4	10	62	28	
Strip, annealed	63 000	48	10	62	28	

TABLE 37Tensile	Properties of	Copper-Nickel-Zinc	Alloys
-----------------	----------------------	--------------------	--------

Table 38 gives some very interesting data taken from an article by Price and Davidson (486) on the effect of cold-rolling and annealing on different compositions of nickel-silver strip.

 TABLE 38.—Effect of Cold-Rolling and Annealing on the Mechanical Properties of Nickel Silver; Annealing Temperature Ranges (Price and Davidson, 486)

		Anneal-	Previous						
ING. OF ALLOY	Cu	Pb	Fe	Ni	Mn	Zn	ing range	reduction	
	Per cent	Per cent	Per cent	Per cent	t Per cent Per cent		°C	Per cent	
A	64.68	Trace	0.194	6.73	0.06	Remainder	300-450	20-60	
В	65.82	1.27	. 227	6.17	.06	Remainder	300-450	20-60	
C	65.44	Trace	.345	17.83	. 08	Remainder	450-600	20-60	
D	65.60	1.08	. 238	17.77	.06	Remainder	450-600	20-60	

 TABLE 38.—Effect of Cold-Rolling and Annealing on the Mechanical Properties of Nickel Silver; Annealing Temperature Ranges (Price and Davidson, 486)—Con.

		Prop	erties of co	Properties of annealed strip					
No. of alloy	Yield point b	Tensile strength	Elonga- tion in 2 inches area h		Brinell hardness¢	Sclero- scope hardnessd	Tensile strength	Elonga- tion in 2 inches	Sclero- scepe hardnessd
-	1000 Ibs./in.	1000 lbs./in.	Per cent	Per cent	_		1000 lbs./in.	Per cent	
A e	80-110	80-110	2-6	25-45	140-175	30-50	50-65	5065	12-17
В е	80-110	80-110	2-7	18-45	145-175	35-50	50-60	50-60	12-17
C f	85-100	85-100	2-4	20-45	160-175	30-45	55-65	35-40	12-17
D f	85–100	85–100	1-4	20-40	160-175	35-45	55–60	3035	12-17

^a The values are for reductions of from 35 to 75 per cent, respectively.

b Load producing set of o.or in 2 inches; that is, one-half of 1 per cent.

¢ 10 mm ball, 500 kg.

d Universal hammer.

e The annealed values are for metal annealed at from 500-650° C after cold reductions of from 20 to 60 per cent.

/ The annealed values are for metal annealed at from 600-750° Cafter cold reductions of from 20 to 60 per cent.

4. FERRONICKEL ALLOYS

The alloys of nickel with iron, including nickel steels, are by far the commercially most important alloys of this metal, and the range of compositions used is a very wide one—from the alloys of low nickel content, the nickel steels, to those containing 30 per cent and more of nickel. These alloys were first discovered in the composition of meteorites and have since not ceased to interest and puzzle investigators because of the unusual properties of the alloys containing from 5 to 40 per cent of nickel.

Binary alloys of all compositions solidify as solid solutions which upon cooling suffer both phase and magnetic transformations of great scientific interest and technical importance. The constitution diagram of the alloys of nickel and iron is given in Fig. 20. Without entering upon a detailed discussion of the constitution of these alloys for which further references (522, 523) should be consulted, it is observed that the addition of nickel to iron and steel immediately depresses the temperature of both the A₂ and A₃ transformation and in addition increases the temperature difference or lag between Ac2 and Ar2; that is, the temperatures at which iron loses its magnetism upon heating and regains it upon cooling, respectively. This temperature range, between Ac_2 and Ar_2 , within which the alloy may be either magnetic or nonmagnetic, depending on whether it has been heated or cooled to that range, is widened from practically zero for pure iron to about 500° C for an alloy containing 25 per cent of nickel; at the same time the magnetic transformation range is lowered

Nickel

to ordinary temperatures and below. With increasing nickel content the temperature range of magnetic transformation again rises and becomes quite narrow; that is, there is little lag in the transformation on heating and cooling. Steels of the former group, containing from 3 to about 30 per cent nickel have become known as irreversible steels, whereas those of higher nickel content are called reversible ones. Accompanying these magnetic changes

which characterize reversible and irreversible steels are corresponding ones in other properties, such as thermal expansivity, elasticity, electrical resistivity, the thermal alterations of which are also reversible or irreversible depending on the composition.

The presence of carbon causes further complications in the properties and behavior of these alloys and will be considered only in connection with the nickel steels of low nickel content.

(a) NICKEL STEELS

Nickel steel was the fourth alloy steel to be introduced and was first described in some detail by James Riley (530). The general subject of nickel steels is too broad for anything but the merest mention in this place, and references should be consulted for further details.

The principal effects of the addition of nickel to steel are the following:

(1) Nickel depresses the critical temperature ranges of steel, and according to the degree of such depression we may consider three groups of nickel steels—namely, pearlitic steels, which have normal transformation and heat treatment or critical ranges and

FIG. 21.—Structural classification of nickel steels according to Guillet

are similar to ordinary carbon steels in a general sense; martensitic steels, self-hardening but too brittle to be of any importance commercially; and austenitic steels, which are not susceptible to hardening by thermal treatment, and may perhaps more properly be considered as ferronickel alloys containing carbon. The nickel and carbon content of the steel determine its inclusion in any one of the above groups. Fig. 21 according to Guillet gives a classification of different compositions of nickel steels.

(2) Nickel dissolves in the ferrite of steel and increases the hardness and strength without a corresponding loss of ductility. Thus Bullens (516) states that the addition of each 1 per cent (up to 5 per cent) of nickel to steel of forging grades will, without loss of ductility, increase the tensile strength and yield point from 4000 to 6000 pounds per square inch, in the natural or unheat-treated

Nickel

condition. But it is in the heat-treated condition that the superiority of steels containing nickel is most evident and of most commercial importance. This is illustrated from the following data, Table 39, collected by the Society of Automobile Engineers, showing a comparison between the tensile properties of a 0.40 per cent carbon steel without nickel and the same with 3.5 per cent of nickel in the heat-treated condition.

TABLE	39.—Comparison	of Ter	nsile	Properties	s of	a	0.40	Per	Cent	Carbon	Steel
		With	and	Without	Nic	ke	1 -				

Material	Yield point	Tensile strength	Elonga- tion in 2 inches	Reduc- tion of area	
0.40 per cent carbon steel 0.40 per cent carbon, 3.5 per cent nickel steel	Lbs./in. ² 53 000 83 000	Lbs./in. ² 90 000 108 000	Per cent 25 25	Per cent 62.5 66	

(3) Nickel exerts an influence on the grain size of ferrite and pearlite, tending to produce a finer grain structure and finer pearlite, shading into sorbite. In the same sense it diminishes the rate of grain growth within the heat treatment temperature ranges and thus minimizes the danger of overheating during heat treatment.

(4) The structural effects of nickel noted above make a nickel steel (2-3.5 per cent Ni, 0.10-.20 per cent C) invaluable for case-hardening and superior to carbon steels in (a) uniformity of zone of carburization and (b) in mechanical properties of the core after heat treatment.

The beneficial effects of nickel upon steel are intensified by the presence of other elements, particularly chromium, and chromiumnickel steels are perhaps more widely used to-day for heat-treated forgings for automobiles and other construction than are the straight nickel steels.

The following grades of steel are in most common commercial use:

(a) STRUCTURAL 3¹/₂ PER CENT NICKEL STEEL.—This is the oldest and best known composition of nickel steel and constitutes the bulk of commercial nickel steel produced to-day. Its composition will average:

It is usually made in the open-hearth furnace and is used both in the rolled or forged condition and after heat treatment. In the former condition it is much used for structural shapes in construction of bridges and similar structures. It has also been used in the form of rails, although the advantage in point of economy of it for this purpose over carbon steel has not been satisfactorily demonstrated. In the heat-treated condition it is used for gun, engine and locomotive forgings, as well as for many automobile parts of which the service is too severe for ordinary carbon steels. The average physical properties of this

FIG. 22.—Mechanical properties of 3½ per cent heat-treated nickel steel; Society of Automotive Engineers, (Bullens, 516)

composition of steel in the heat-treated condition are shown in Fig. 22.

(b) NICKEL-CHROMIUM STEELS FOR HEAT-TREATED AUTOMO-BILE AND OTHER FORGINGS.—These compositions constitute the most prominent group of "automobile" steels and are used for a great variety of parts and construction where high strength, toughness, and ductility are required.

TABLE 40.—Typical Ranges of Composition of Nickle-Chromium Steels

Kind	Chromium	Nickel	Carbon	
	Per cent	Per cent	Per cent	
Low	0.5	1.5	0.2050	
Medium	0. 5–1. 5	1. 5–3. 5	. 20 50	
High	1.5	3.5	. 40 50	
The "low" and "medium" nickel-chromium steels are used primarily in the automobile industry for crank shafts, axles, driving shafts, spindles, bolts, etc., and for casehardened pivot pins, and cam rollers. The "high" nickel-chromium steels are used in the manufacture of heat-treated gears. The latter compositions are the principal ones used also in the manufacture of both armor plate and of armor-piercing projectiles. The physical

FIG. 23.—Mechanical properties of heat-treated "low" nickel-chromium steel; Society of Automotive Engineers, (Bullens, 516)

properties of typical compositions of these steels are given in Figs. 23 and 24 in the heat-treated condition.

(c) NICKEL STEEL FOR CASEHARDENING.—The principal properties of nickel steel which make it invaluable for casehardening are noted above under (4); in addition there exists the possibility in the case of high nickel steels (nickel, 5 to 7 per cent) of obtaining an air or self-hardening casehardened surface layer together with a tough pearlitic core. Typical compositions used for casehardening are given below:

	Per cent	
Nickel	1.5 -3.5	Low nickel
Carbon	. 10 20	LOW MICKEI
Nickel	5-7	Thigh mightal
Carbon	10-15	Flight meker

(d) MAYARI STEEL FROM CUBAN ORES.—This is a natural alloy produced in the blast furnace and open-hearth furnace; it has 17634°—21—5

65

been used principally in the form of rails and track bolts. Its composition averages:

Nickel	 	1.0 -1.5
Chromium	 •	. 20 70

(e) HIGH-NICKEL STEELS—These are perhaps more properly ferronickel alloys.

These alloys are austenitic and not subject to heat treatment; they are, however, naturally quite tough and strong, have a low

FIG. 24.—Mechanical properties of heat-treated "high" nickel-chromium steels; Society of Automotive Engineers, (Bullens, 516)

thermal expansivity and are very resistant to corrosion in air, fresh or sea water. They are much used for gas engines, valves, and spindles, for ignition and boiler tubes, for valve stems on sea-water pumps. The alloys may be rolled and forged, but are not so readily machined as ordinary steel. They will have the following average tensile properties in the natural, unheat-treated state:

Tensile properties	Results for 25 to 28 per cent nickel, 0.3 to 0.5 per cent carbon	Results for 30 to 35 per cent nickel	Results for 35 to 38 per cent nickel
Tensile strengthlbs./in. ² .	85-92 000	85-95 000	100-115 000
Yield pointlbs./in.2.	35-50 000	40-50 000	64-78 000
Elongation in 2 inchesper cent	30-35	30-40	25-35
Reduction of areaper cent	50-60	40-60	50 .

TABLE 41.-Tensile Properties of High-Nickel Steels

66

The alloys containing about 25 per cent of nickel are much used for electrical-resistance wire in the construction of rheostats and electrical heaters. Table 42 gives values of the electrical and thermal properties of binary alloys of nickel and iron.

TABLE 42.-Electrical and Thermal Properties of Nickel-Iron Alloys

Nickel, per cent	resistivity a (Burgess and Aston (365))	resistance, 20° C (L. R. Inger- soll and others ^b)	cient of resistance, 0-100° C (L. R. In- gersoll and others ^b)	conduc- tivity, 20-100°C (L. R. In- gersoll and others ^b)	Thermoelectric power (against copper) 0-96° C (L. R. Ingersoll and others ^b)	Mean coefficient of resistivity between 0° and t°C (Guillaume (527))
	microhm-cm	microhm-cm		cgs units	microvolts/°C	
0	. 12.1			0.1428		
0. 27	. 13.1					
0.56	. 15.4					
1.07	. 16.9			. 1035		
1.93	. 16.4			. 1009		
4. 0		20.9	0.0020		2.32	
7.0		25.2	.0023	•••••	7.32	
7.05	. 26.9			.0727		
8.17	. 26.7			•••••		
10.20	. 28.6			.0687		
11.29	. 29.4					
12.07	. 30.3				•••••	
13.0		33.0	.0018		16.9	
13.11 c	. 34.8			.0534		
14.0		33.9	.0016		17.2	
18.0	. <mark></mark>	35.9	.00084	• • • • • • • • • • • • • •	21.0	
19.21	. 36.2			.0502		
21.0		38.8	. 0018	••••	23.5	
22.0+3Cr	•		•••••			(784-0.13t) 10 ⁻⁶
22.11	. 38.7	40.0	.0018	.0490	21.0	
25.20	. 63.2		•••••	.0320		
26.2	• • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • •		(844+0.01t) 10 ⁻⁶
26.40	. 65.5	35.9	.0016	•••••	16.7	
28.42	. 82.0			.0278		•••••
28.7		•••••	• • • • • • • • • • • • • • • •			$(700-0.20t) 10^{-6}$
30.4	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • •	•••••	•••••••	(897-0.43t)10 ⁻⁶
35.0		•••••	• • • • • • • • • •			(1561-1.69t)10-1
35.09	. 81.1	92.0	.0011	. 0262	9.79	
35.7	• • • • • • • • • • • • • • • • • • • •			•••••		(1161-1.68t)10-0
40.0		74.1	.0022	• • • • • • • • • • • • • • • • • • • •	22.4	
45.0.			0005	0058	29.0	•••••
47.08	44.7	47.5	.0036	.0367	31.9	•••••
/5.06	22.1		0024	.0091	1/7 0	
100.00	10.4	15.5	.0034	1402	17.9	•••••
100.00	12.4	• • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •	. 1404	•••••	•••••

^a Alloys produced in magnesia crucible from electrolytic iron and electrolytic nickel; carbon less than 0.10 per cent.

b The Physical Review, 16, p. 126; alloys are the same as those used by Burgess and Aston, see footnote a. Contains 0.888 per cent carbon.

See also section X, 5 on "Alloys for electrical purposes" for further information on this application of the ferronickel alloys. Within the range of compositions from 20 to 30 per cent nickel, the ferronickel alloys may readily be obtained in a nonmagnetic condition by cooling at normal rates from rolling or forging temperatures. They are used in this condition for the production of nonmagnetic parts requiring strength and toughness. Table 43 gives some values of the magnetic properties of ferronickel alloys. Information concerning the effect of high temperatures on the tensile properties of 30 per cent nickel steel will be found in Table 26.

			H	egg, 1910 (3	64)		
I	Nickel, per cent		Transfe tempe (Curie	ormation tratures points)	Saturation at 0° al	n values osolute	Curie con-
		Density, D	Heating	Cooling	Magnetic moment per unit mass	в-н	stants a
	•	g/cm ³	°C	°C			
0		7.875	758		223. 2	22 090	0.072
10		7.89	730	532	221.0	21 910	. 0577
20		8.02	625	218	210. 8	21 240	. 0460
30		8.06	533	127	203. 6	20 620	. 0315
40		7.63	365		184. 2	17 660	. 0251
50		8.05	527		169. 2	17 120	. 0227
60		8.29	599		146.8	15 290	. 0185
70		8, 39	613		127.1	13 400	. 0157
80		8. 52	562		103.1	11 040	. 0126
90		8.60	480		80.6	8 710	. 0100
100		8.86	374		58.8	6 550	. 0056

TABLE	43Magnetic	Properties of	Nickel-Iron	Alloys
-------	------------	---------------	-------------	--------

a Weiss and Foex, 9111.

More recently Yensen (352) has made a thorough study of the electrical and magnetic properties of iron-nickel alloys prepared by melting in vacuo. In Figs. 25 and 26 are reproduced some of his typical results. He finds that the alloys containing approximately 50 per cent of nickel can be forged and worked and that they have the following average electrical and magnetic properties which may be compared with those of pure iron and nickel:

Metal	Flux density $H=100$ gausses	Saturation value	Hysteresis loss B=10000 ergs/cm/cycle	Electrical resistivity
Pure iron 50 per cent alloy Pure nickel	18 500 15 500 6 000	gausses 22 500 15 500 6 000	1 100 800 25 000	microhm-cm 11 45 8

68

FIG. 25.—The magnetic permeability of iron-nickel alloys melted and annealed in vacuo for H equals 100 (Yensen 352)

FIG. 26.—The electrical resistivity of iron-nickel alloys melted and annealed in vacuo (Yensen, 352)

As the 50 per cent alloys are relatively incorrodible, they should be of value under special conditions in the construction of electromagnetic equipment. Another interesting magnetic characteristic of this alloy is the fact that the B-H curve up to B = 2000to 4000 gausses is nearly linear, which makes it of value for certain electromagnetic meters.

(b) INVAR AND RELATED ALLOYS

Beginning at about 25 per cent of nickel the thermal expansivity of the ferronickel alloys at 20° C diminishes rapidly with increasing nickel content up to about 34 per cent; thereafter again increasing, first rapidly and then more slowly, to that of pure nickel. These curious changes are utilized in the manufacture of three patented alloys—invar, dilver, and platinite—having respectively a very low thermal expansivity at ordinary temperature, and values of it nearly equal to those of glass and of platinum.

Table 44 gives values of the thermal expansivity of ferronickel alloys.

Nickel, per cent	Mean coefficients of linear expan- sions×10 ⁶	Nickel, per cent	Mean coefficients of linear expan- sions×10 ⁶
0	10.354+0.00523t	44. 4	8.506-0.00251
5.0	10.529+0.00580t	48.7	9.901-0.00067
19.0	11.427+0.00362t	50.7	9.824+0.00243
26.2	13.103+0.02123t	53.2	10.045+0.00031
27.9	11.288+0.02889t	70.3	11.890+0.00387
28.7	10.387+0.03004t	100.0	12.661+0.00550
30. 4	4.570+0.01194t	12.2+1 Cr	11.714+0.005084
31. 4	3.395+0.00885t	16.8+1 Cr	11.436+0.00170
34.6	1.373+0.00237t	16.2+2.5 Cr	19.496+0.004320
35. 6	0.877+0.00127t	21.3+3 Cr	18.180+0.00426
37.3	3.457-0.00647t	34.8+1.5 Cr	3. 580-0. 001324
39.4	5.357-0.00448t	35.7+1.7 Cr	3.373+0.001654
43. б	7.992-0.00273 <i>t</i>	36.4+0.9 Cr	4.433-0.00392

 TABLE 44.—Thermal Expansivity of Nickel-Iron Alloys Between 0 and 38° C (Guillaume, 527)

The alloy called invar contains about 36 per cent of nickel and has a mean linear thermal expansivity of approximately 0.000001 per degree centigrade between 0 and 40°C. It melts at 1425°C, has a density of 8.0 grams per cm³ and an electrical resistivity of about 80 microhm-cm. It is very resistant to corrosion in water and may be immersed in it for days without the appearance of rust spots. Platinite is quite similar except that it has a thermal expansivity equal to that of platinum, approximately 0.000009

per °C, and contains about 46 per cent of nickel. Dilver has a thermal expansivity coefficient of 0.000008 per °C. Invar as well as the other alloys of similar character and composition may be rolled, drawn, and machined and is used for the manufacture of measuring tapes, length standards, instruments, and chronometers of high accuracy for which temperature-length changes must be almost wholly eliminated. These and similar alloys are produced now in this country. For further information concerning invar, Circular No. 58 of the Bureau of Standards should be consulted. Perhaps the principal present use for platinite is for the sealing-in-wire of electric light bulbs.

5. ALLOYS FOR ELECTRICAL PURPOSES

The chief electrical purposes for which alloys containing nickel are used are for the construction of pyrometer thermocouples, rheostats and electrical heating devices. The use of an alloy containing from 3 to 5 per cent manganese for spark-plug terminals has been mentioned above. The characteristic which renders this group of nickel alloys of value for these purposes is their resistance to oxidation and alteration at the higher temperatures (up to 2000°F) at which they are used, in conjunction with their high electrical resistivity, low-temperature coefficient of electrical resistivity and either high or low thermal electromotive force against iron or copper.

The principal alloys used commercially to-day for base metal thermocouples are copper-constantan, iron-constantan (Leeds and Northrup, Bristol, Brown pyrometers) and Chromel-alumel (the Hoskins thermocouple). The temperature-electromotive force relation of these three elements are given in Tables 45 and 46, the values being average or standard ones. Adams (539) has shown how to apply deviation curves based on one temperature-electromotive force measurement to lots of such wire at slightly different temperature-electromotive force relations. The compositions of these alloys are given in Table 47.

The alloys used for electrical heating and for the construction of rheostats or electrical resistances may be divided into several groups: (1) The nickel-chromium alloys having a high electrical resistivity, low-temperature coefficient together with maximum resistance to oxidation and alteration at higher temperatures; (2) the ferronickel alloys with lower resistivity and resistance to oxidation but considerably cheaper; (3) copper-nickel alloys having lower resistivity and inferior heat-resisting properties than the first class but with practically negligible temperature coefficient of resistivity at ordinary temperatures, a very necessary property in the construction of precise electrical resistances for measuring instruments, etc.; and (4) the alloys similiar to nickel silver which are the oldest alloys used for electrical purposes and are being displaced by the former classes.

The compositions of alloys manufactured commercially to-day are listed in Table 47, together with approximate compositions and physical properties as described principally by the manufacturers. It may be noted that the nickel-chromium alloys are now sold only under license from the Hoskins Manufacturing Co. and the General Electric Co., owners of the Marsh patents; they may be sold only to those having licenses or permission from these owners to use the alloys. Applications for the right to operate under the Marsh patents or for permission to buy the commercial alloys should be addressed to them.

Most of these alloys are furnished in wire and in ribbon form, manufactured by melting either in crucible or electric furnace, pouring into small ingots, which are first hot-rolled and annealed and then cold-drawn with annealing into the finished form.

The general subject of electrical resistance has received much attention by Hunter and Sebast, Sebast and Gray (552, 554). Some of their principal conclusions are here reproduced. An alloy of very high resistivity (113 microhm-cm) and of negligible temperature coefficient (0.000078 per 1° C) was found containing 17 per cent chromium, 71 per cent nickel, and 12 per cent of copper, which would appear to have commercial possibilities; it resists oxidation at higher temperatures to a remarkable degree and is easily manipulated in drawing. An alloy was found containing 48 per cent copper, 39 per cent nickel, and 10 per cent manganese which has a resistivity of 70 microhm-cm and zero temperature coefficient at 20° C; this is superior to manganin in its higher resistivity. The highest values of the resistivity were found in the binary nickel-manganese and nickel chromium and in the ternary ferronickel-manganese, ferronickel-chromium and coppernickel-chromium alloys. The ternary alloys have a higher value of the resistivity than the binary alloys. Alloys of low temperature coefficient were found chiefly among the copper-nickelmanganese alloys.

An interesting corollary of the development of electricalresistance alloys for rheostats and heaters has been that of *heatresisting alloys*, and many compositions used at first because of their electrical and heat or high-temperature resisting properties are now used because of the latter alone. The nickel-chromium alloys in the form of castings are now much used for furnace muffles, carbonizing and annealing boxes, and pyrometer protection tubes. These alloys (see Table 47) withstand very well the action of gas and oil flames as well as that of molten lead, cyanide, or of carbonizing mixtures at temperatures up to 2000° F (1100° C).

 TABLE 45.—Calibration Data of Representative Couples.
 Cold-Junction Temperature, 0° C (Foote, Harrison, and Fairchild, 540)

[B represents mean calibration by United States Bureau of Standards of iron-constantan couples from all sources. L represents mean calibration of Leeds & Northrup's iron-constantan couple]

Copper-constantant Emf Tem-perature millivolts ° C 0 0 1 25 2 49 3 72 4 94 5 115 6 136 7 156 8 175 9 194 10 213	onstantan	Irc	on-constant	tan	Chrome	l-alumel
Emf	Tem-	Emf	Temp	erature	Emf	Tem-
	perature		В	L		perature
millivolts	°C	millivolts	°C	°C	millivolts	°C
0	0	0	0	0	0	0
1	25	5	105	95	5	122
2	49	10	204	186	10	243
3	72	15	299	277	15	363
4	94	20	392	367	20	482
5	115	25	483	457	25	601
6	136	30	574	546	30	721
7	156	35	662	632	35	844
8	175	40	749	713	40	970
9	194	45	836	792	45	1100
10	213	50	924	871		
11	232	55	1011	950		
12	250	60		1030		
13	268					
14	285					
15	302	•••••				
16	319	•••••				
17	336					
18	353					

TABLE 46.-Chromel-Alumel Thermocouple a

Tempe	erature	Electro- motive force	Tempe	rature	Electro- motive force
°C	°F	millivolts	°C	°F	millivolts
- 38	100	1.50	760	1400	31.60
94	200	3.90	815	1500	33.90
149	300	6.22	872	1600	36.20
204	400	8.45	· 927	1700	38.45
261	500	10.72	984	1800	40.60
316	600	13.00	1038	1900	42.70
371	700	15.25	1092	2000	44.80
427	800	17.60	1150	2100	46.90
482	900	20.00	1205	2200	49.00
538	1000	22.30	1260	2300	51.06
594	1100	24.70	1316	2400	53.05
650	1200	27.00	1371	2500	55.08
705	1300	29.30			

^a Data from Hoskins Míg. Co.

Indicat Chemical composition Electrical resistivity M tich Ni Cr Cu Fe Mn Resistivity Parature																	
A. Witch - Christian Description Contraction South of the conter South of the contraction <th< td=""><td>Ű</td><td>1)</td><td>hemic</td><td>al com</td><td>position</td><td>-</td><td>1</td><td>Elec</td><td>trical resistiv</td><td>ity</td><td>Mechan</td><td>ical prope</td><td>rties</td><td></td><td></td><td>Recom-</td><td></td></th<>	Ű	1)	hemic	al com	position	-	1	Elec	trical resistiv	ity	Mechan	ical prope	rties			Recom-	
A. Wicket-Chro- mitum Alloys: P. et.,	in .		Cr	Cu	Fe	Ш	Resis- tivity	Tem - perature coefficient	Resistivity	Temperature coefficient	Brinell hardness, 3000 kg	Tensile strength	Elon- gation	Den- sity	Melt- ing or range	ed max- imum vorking tem- pera- ture	Thermal expan- sivity
	P. ct. 60		P. ct. 12	P. ct.	P. ct.	P. ct.	microhm- cm 109. 5	Per °C 0.00017	ohm-mil-ft. 660(75 °F)	Per °F 0.00005	179	Lbs./in. ² 100 000 50-55 000	P. ct.	g/cm ³ 8.15 8.15	ů	°C 1000	Per °C 0.000016
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	99		22		10	2	110-113	. 00017	660-680 (75 °F)	.000095				8.02		1100	
	85		15				96.4	. 00024	580-610	. 00013							
	80 85		20				103	.00011	620 (75 °F) 535 (75 °F)	.00006(75-1800 °F) .00006(75-1800 °F)				8.3 8.46		1100	
$ \begin{bmatrix} 12 \\ 12 \\ 14 \\ 15 \\ 15 \\ 15 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16$	64 5		11		25	0	1108	.00018	650 (75 °F)	.00010(75-1000 °F)				8.16			
14 92 92 554 15 95.7 .00018 575 .0001 10 26 3 107 644 10 1 93 644 10 1 3 644	65		12		53 53		103	.00036	620	. 0002		160 000 hard 80 000		8.15	1530	1000	. 000016
A. Wickel - Chro- mium Alloys: v/ve, ribon columnet v/ve, ribon columnet run Per °C committed run Per °C committed run Per °C committed run Per °C run Pur °C run Pur °C run Pur °C run Pur °C Pur °C <t< td=""><td>85</td><td></td><td>14</td><td></td><td>5.</td><td>.5</td><td>92</td><td></td><td>554</td><td></td><td></td><td>l soft</td><td>_</td><td></td><td></td><td></td><td></td></t<>	85		14		5.	.5	92		554			l soft	_				
Nichrome II s, a. Wire, ribbon 66 22 10 2 10-11 $(73 \cdot T)$ (0005) $()$ 8.02 $()$ 8.02 $()$ <td>85</td> <td></td> <td>15</td> <td></td> <td></td> <td></td> <td>95.7</td> <td>.00018</td> <td>575</td> <td>.000</td> <td></td> <td>160 000 hard 80 000 soft</td> <td></td> <td>8.05</td> <td>1530</td> <td>1100</td> <td>.000015</td>	85		15				95.7	.00018	575	.000		160 000 hard 80 000 soft		8.05	1530	1100	.000015
Nichtrome I_1 , Castings. I </td <td>61</td> <td>_</td> <td>10</td> <td></td> <td>26</td> <td>3</td> <td>107</td> <td></td> <td>644</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	61	_	10		26	3	107		644								
Excello 85 14 5.5 92 554 554 100 801 100	8		10		1												
0 7 50 3	15		16		62								~				
	40		2	-	50	3							-				

TABLE 47.--Composition and Properties of Electrical Alloys

74

Circular of the Bureau of Standards

:			1000171	000171	00016	00017				000144		00014		-nuuu	rivate	vivate		
														te c	ap	u a p		
1100					600	600						500		a priva	pany in	npany i		
				:	1510	1510						1210		any in	tis com	this cor		
			8.14	8.14	8.15	8.10				8.9		8.9		s comp	by th	ed by		
							_				_			by this	pplied	suppli		
					150 000 hard 70 000 soft	140 000 hard 70 000	soft				115 000	hard 60 000	soft	supplied	kindly su	ion kindly		
														ion kindly	ormation	informati		
														ıformat	rom int	nd from		
	:		4		5	н						03		from it	and fi	logue ai		
			.0005	.0004	. 00039	. 00061						. 0000		ie and	talogue	ir catal		
			500	525	525	500	506 -	512		294		296		atalogr	leir cat	m the		
														their c	rom th	ken fro		
			. 00098	.0007	. 0007	.0011	-			IIN		.000005		ten from M. S.; 192	e taken fi	ta were ta		
12Si .			83.1	87.2	87.0	83.1	84.0 . 85.0 .	85.1		48.9		49.2		vere tak . A. T.	ata wer	hese dat		
_			:	:	:	:	: :			1		:	1	data 7 ; Bull	hese o	Co.: t		
			:							0.7	1.2			these	t	uring	•	
50			75	68	Bal.	Bal.	Bal.					i		s Co.;	bo C	utacti		
										Bal.		55		Harri chron	n at i (cm. ical Al	s Man		
20	25			2	n									Driver- Vickel	II./grai I./sec./ Flectri	Hoskin		
23	75		25	30	32	25	28			44-46		45		y the I Hart, I	o341 ca v the	v the l		
s			ibbon						•	noddi				Leon J	oy=o. =	ared b		
Casting			Wire, ri	do	đo	do				Wire, ri		do		aper by]	I this all ictivity	lanufacti		
f		kel							Cop-	-				lloys n also p	lcondi	on. llovs n		
oloy e,	nax.	ronic	IX a.	93 a	t c	ix c	zoid g.	lin g	ckel - r Alloy	nce a.		c		hese a. L. See	herma herma	nication hese al		TILE
Nichr	Chron	Allo	Clima	No. 19	Come	Pheni	Ferroz Krupp	Vesta	in Nie	Advar		Ideal		a T ication		IL p		

communication. f Chemical composition includes ½ Al.rC,rV, in addition to the elements given. Ø Data by Law (247).

			Chemi	cal con	positio	a		Ele	ctrical resisti	vity	Mechan	ical proper	ties		<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	ecom-	
Name of alloy	Form in which produced	Ni	ర్	Ğ	ъ В	Mn	Resis- tivity	Tem- perature coefficient	Resistivity	Temperature coefficient	Brinell hardness, 3000 kg	Tensile strength	Elon- gation	Den-Den-	Acit- ing oint i or w ange	ed mum orking pera- ture	Thermal expan- sivity
C. Nickel - Copper Alloys-Con.		P. ct.	P. ct.	P. ct.	P. ct.	P. ct.	microhm- cm	Per °C	ohm-mil-ft.	Per °F		Lbs./in. ²	P. ct. 8	/cm 3	ν	ç	Per °C
Lucero a	Wire, ribbon	65		30		Bal.	46.5	0.0007	280	0.00039		hard 65 000		8.9	350	009	0.000014
Nickelin ^b , c,		31-32		55-68			43.0		258			soft					
Ferry b,c		40		Bal			47.2		284								
Eureka b,c	Similar to	2					50.2		302								
Monel.	constantan Wire, ribbon	67		28	Bal.	Bal.	42.5	. 0019	256	.0011							
D. Nickel-Copper-						_		-			-			_			
18 per cent d	Wire						36.3	. 00030	218	.00017				8.5			
7 per cent b							18.0		108								
10 per cent b							21.0		126								
20 per cent b							29.0		174						-		
30 per cent b							40.2		241								
Platinoid			•••••				41.0		246								
Rheotan IIe		25		52.5	5								_	-		_	

TABLE 47 .-- Composition and Properties of Electrical Alloys-Continued

76

Circular of the Bureau of Standards

			1400 800 0.0000		d by this company in a priva	
			(140 000 hard 65 000	soft	ation kindly supplie	
					atalogue and from inform	
	250-290	246	520		e taken from their ca	
	42-48	41	86.4		iese data were	
	1-12	2 11-13	1/2		Alloys Co.; th	1.
N Si=1	41 AI=2 58-84	84-86	95		the Electrical A	
	do	Cuproman ganese	Wire, ribbon		nanufactured by	(241).
E. Miscellaneous Alloys:	Manganin b.	Tarnac b Resistin b.	Magno a		a These alloys n communication.	b Data by Law (

d These alloys manufactured by the Driver-Harris Co.; these data were taken from their catalogue and from information kindly supplied by this company in a private com-

munication. See also paper by Leon Hart, Nickel chromitian alloys; Bull. A. T. M. B.; 1920. Chemical composition includes Zn, 18, in addition to the elements given.

6. ACID-RESISTING ALLOYS

Many of the nickel alloys display an even greater resistance to acid corrosion than nickel itself. The acid-resisting properties of Monel metal have already been discussed; it is not resistant to the action of nitric acid.

The chromium-nickel alloys are acid resisting and are used for dipping baskets and other articles exposed to acid corrosion. The following results of tests (Table 48) communicated by the Driver-Harris Co. indicate the degree of resistance to acid corrosion afforded by the composition used for nichrome castings.

Asid	Loss in	weight in (125 g)	per cent per day	of weight
Aciu	20 per cent acid	30 per cent acid	50 per cent acid	60 per cent acid
Sulphuric	0.009	0.005	0.005	0.005
Nitric	. 08	. 13	. 22	. 30

TABLE 48.—Resistance to Acid Corrosion of Nichrome Castings a

a Samples (125 g weight) immersed in cold acid (300 cc) for 200 hours.

Prof. S. W. Parr (569) has developed an alloy which he calls Ilium, of the following composition:

1	Per cent	P	er cent
Copper	6.42	Aluminum	1.09
Manganese	. 98	Iron	0.76
Silicon	1.04	Chromium	21.07
Tungsten	2. 13	Molybdenum	4.67
Nickel	60.65		

This alloy has been applied by him with success in the construction of combustion chambers of calorimeters as it is practically unattacked by 25 per cent nitric acid. The alloy may be cast and machined, although with some difficulty; it has a tensile strength of about 50 000 pounds per square inch.

Tungsten-nickel alloys have been prepared by Irmann (567) and their resistance to the action of sulphuric acid studied. He discovered that the resistance of nickel to the action of 65 per cent acid, which itself is considerable, is increased fourfold by the addition of 5 per cent of tungsten and twelvefold by the addition of 10 per cent. Alloys containing under 18 per cent have sufficient ductility that they may be formed into sheets.

Fairlie (570) has reported some tests of nickel-lead alloys for acid-resisting purposes. Alloys containing from 1 to 3 per cent of nickel and balance lead, were more resistant to the action of 50 to 60° B sulphuric acid, both hot and cold, than pure lead and had a tensile strength of about 3000 pounds per square inch, about 30 per cent greater than that of lead. The antimony-lead alloys were much harder and stronger, and although resistant to the action of cold acid, were not resistant to the action of hot acid. Some of his results are reproduced in Table 49 below.

	Elonga-	Tongilo	Loss in 50 Be	weight in H_2SO_4	Loss in 50 Be	weight in H ₂ SO ₄
Composition	tion in 0.5 inch	strength	Cold; loss in 1 week	Hot (184° C) loss in 1 week	Cold; loss in 1 week	Hot (184° C) loss in 1 week
1						-
	Per cent	Lbs./in.2	Per cent	Per cent	Per cent	Per cent
100 per cent Pb	110	2360	0.014	0.357	0.078	0.419
80 per cent Pb, 20 per cent Sb	5	7540	.015	2.425	. 091	5.817
99 per cent Pb, 1 per cent Ni	74	3170	.009	. 190	. 035	. 391
96.5 per cent Pb, 3.5 per cent Ni	32	3260	.021	.134	. 057	. 199

TABLE 49.-Acid Resistance of Nickel-Lead Alloys (Fairlie, 570)

The disadvantages of the nickel-lead alloys are their low strength and difficulty of preparation due to the great difference between the melting points of the components.

Clamer has patented compositions of ferronickel alloys for production of noncorrodible sheets, rods, etc. These contain approximately—

	Per cent
Nickel	25-50
Copper	5-20
Iron	Balance.

(See list of patents.)

An alloy of 30 per cent tantalum and 70 per cent nickel is reported to be resistant to the action of bolling aqua regia (400). Siemens-Halske has patented similar compositions for this purpose.

7. MISCELLANEOUS ALLOYS

Besides its use as a principal alloying element in the well-known alloys just considered, nickel enters into the composition of a great variety of other commercial and experimental alloys in which it acts perhaps principally to increase the hardness without appreciable loss of ductility. However, it is considered to exercise other functions as well in such compositions. In Table 28 are assembled data on the chemical composition and use of a number of miscellaneous alloys containing nickel in commercial use or mentioned in the literature; this table does not include alloys which have been listed in Tables 20 and 27 under nickel-silver alloys and those for electrical purposes.

Nickel is used to some extent, particularly abroad, as a component of aluminum bronzes to which it appears to impart desirable properties. Parker (240) has pointed out the desirability of studying the possibilities of these alloys for the construction of high-speed superheated steam blading and mentions several compositions which are in commercial use in Great Britain:

Composition	Per cent	Per cent	Per cent
Соррег	82.07	79.63	79.0
Aluminum	2. 54	9.77	11.5
Nickel	14.64	4.13	5.0
Manganese	Nil	. 94	Nil
Zinc	. 68	Nil	Nil
Iron	Trace	4.80	4.5
Silicon	. 04	.14	

Bronzes of similar composition containing aluminum and nickel have also been produced commercially under such names as aluminum silver and minargent as substitutes for nickel silver. They have a fine white color and will take a good polish.

Read and Greaves (425, 431) have contributed results of extensive tests of aluminum-nickel bronzes of this type. These alloys were found to forge and roll satisfactorily and to have good mechanical properties, the hardness increasing with the nickel content. Table 51 contains the results of some of their tensile tests on rolled and annealed alloys. Corrosion tests in fresh and sea water carried out by these investigators indicated that the presence of nickel in aluminum bronzes decreases markedly the corrosion of the alloy in sea water; it does not seem to affect the corrosion of the alloy in fresh water in any definite manner. These conclusions are shown in the results of their tests given in Table 53.

The properties of light-aluminum alloys containing nickel have been studied by Read and Greaves (425), Merica, Waltenberg, and Finn (419), and Merica and Karr (420), and it seems to have been demonstrated that nickel in amounts up to 4 per cent added to aluminum will produce an alloy which will roll and work very readily and have quite satisfactory mechanical properties. Thus an alloy containing 3.9 per cent of nickel in the form of rolled and annealed sheet possessed the following tensile properties:

However, it does not appear that light alloys containing nickel are as strong, hard, and resistant to corrosion as those which have been hardened with copper, manganese, or zinc in similar amounts and would therefore not give much promise of replacing present commercial wrought light alloys of the copper-aluminum, coppermagnesium-aluminum, or zinc-aluminum type.

Promising results have been obtained, however, with the addition of from 1 to 2 per cent of nickel in light-aluminum casting alloys containing also from 2 to 3 per cent of copper, and there seems to be some possibilities of development in this direction. Thus Merica and Karr have obtained the following tensile test results with a sand-cast alloy containing 3 per cent copper, 0.8 per cent manganese, and 1.5 per cent nickel:

In this connection it might be noted that nickel is used in the casting alloy, magnalite, and in certain varieties of magnalium produced abroad; these will contain from 1 to 2 per cent of the nickel.

		C	Chemica	al comp	osition (per cen	t)		
Name of alloy	Ni	Cu	Fe	Zn	Mn	A1	Pb	Sn	Remarks
Aphtit	20-21	70-75		5.2-2.2					Cd 4.5-1.8
Ajax	25-50	5-20	30-70	•••••					Bearing metal, gun mountings
Aluminum-nickel	76.4					23. 6		20	Ag 10
Aluminum-silver.	20	57	20			3			
Aluminum wire(B)	1.3	1				97.7			
Argozie	14	54		28			2		Castings
Ashberry metal	1-3	2-3		1-3				78-80	Sb 14-20. Tableware
Aterite	12-18	55-60	6-10	13-20			1-2.5		Valves and valve parts
Bario metal	90								W 1.22, Si 0.29, Cr 4.25.
						•			Heat and acid resist- ing alloy
Bearing metal	10.4							83. 3	6.3 W. For high speeds
Bismuth brass	31	47		21			.1		Bi 0.1
Bismuth bronze	24	25							Sb 50, Bi 1
Do	10	53		20		1		15	Bi 1
Do	32.5	45		21.5				16	Bi1
17634°	21	-6							

TABLE 50.-Miscellaneous Alloys Containing Nickel

		c	Chemica	l compo	sition (per cent	:)		
Name of alloy	Ni	Cu	Fe	Zn	Mn	A1	РЪ	Sn	Remarks
Chromax bronze	15. 2	66. 7		12. 1		3. 0			Cr 3.0. Can be rolled. Tensile strength 79 000 lbs./in. ² ; 3 per cent elongation
Cooperite	80								W 14, Zr 6. Cutting
Cuniloy	65	25			35		1		Resistance to corrosion and alkalis
Cufenium English nic kel	22	72	6	•••••	·····			•••••	Knives, forks, spoons
(complex)	2	2	0		1			87	Bi05 W15 Sh6
Ilium	60. 6	6.4							Mo 4.6, Cr 21. Acid re-
Invar	37		63						37 per cent nickel steel; see p. 70
Machine bronze	25	50-90		. 30			0-8	0-30	
Do	25	50						25	
Manganin.	8-10	80			10-12				See p. 77
Minargent	39 77	56.82				57			W 2.84
Do	32	46					22		
Mira metal	0. 24	74. 7	. 43	. 62	·····		16.3	. 91	Sb 6.8. For cocks, pipes, etc., to resist acid cor-
									rosion
Neogen	12	58		27	•••••	.5	•••••	2	
Nickel-aluminum	10	00				2			
Dionze	10	68		•••••		4	•••••		
D0	40	10			•••••	30		20	
Nickel Dronze	30	86	•••••	•••••			•••••	11	
Do	20	60	•••••	12		•••••		8	
Dc	25	50		•••••			•••••	25	
Nickeloy	1. 41	4. 15				93. 8	•••••	••••••	Cast gives 20 000 lbs./in. ² tensile strength, 4.5 per cent elongation
Nickel-magan ese									
bronze	2.5	53.4		39	1.7	. 2	. 3	2.6	
Nickel tungsten	25-50								W 50-75. Alloy for mixing
Nickel zirconium	86. 4			•••••		6			Si 6, Zr 1.5, C 0.1. High- speed cutting tools
Plastic bronze	1	64					30	5	
Platinite	46		54						46 per cent nickel
Platinum substitute	72					23.6			Bi 3.7, Au 0.7
Platnam	58.8	32. 55	. 48			. 32	12.72		Used for valve seating
Rosein	40					30		20	Ag 10. Used for jewelers' work
Sea-water bronze	32. 5	45		5. 5				16	Bi 1. Resistant to sea water
Sheathing bronze	32. 5	45		5.5				16	Bi 1.5
Sidiraphite	23	5	65						W 4, Sb 3
Speculum	4	64						32	For telescopes. Does not always contain nickel
Stanniol	. 3	1	.1			J	2.4	96. 2	

TABLE 50.-Miscellaneous Alloys Containing Nickel-Continued

Number		. (Chemica	l compo	osition (j	per cent)		Durada
Name of alloy	Ni	Cu	Fe	Zn	Mn	A 1	Pb	Sn	Remarks
Stellite	1		2	•••••					Co 75, Cr 16.5, Si 3-4, C 2. Pocket and table knives, surgical instruments, machine tools
Stuffing-box alloy	15.5	61.5		11			10	2	For turbines
Toncas metal	28.6	35	7	7			7	7	Sb 7. Ornamental work
Trabuk	5.5							87.5	Sb 5, Bi 2. Substitute
									for nickel silver; re- sistant to vegetable acids
Tungsten brass									See wolfram brass
Turbadium bronze	2	48		46					
Turbiston bronze	2	55	. 84	41	0.16	1			Resistant to salt water
Typewriter metal	20	57		20		3			Used for typewriter parts
Unmagnetiz a b l e									
watch wheels	18	18	•••••		•••••	•••••			Pt 62.75, Cd 1.25. Used for watch wheels
Warne's metal	26							37	Bi 26, Co 11
White gold	59	•••••	•••••	••••••	•••••	•••••	•••••	•••••	Au 41. Substitute for platinum
Do	15	••••		.5	•••••		•••••	•••••	Au 80. Substitute for platinum
White solder	10	45		45					Soldering
Wolfram brass Zamium	14	60	·····	22	••••••	•••••		••••••	W 4

TABLE 50.-Miscellaneous Alloys Containing Nickel-Continued

TABLE 51.—Tensile Properties of Nickel-Aluminum-Copper Alloys (Read and Greaves, 431)

[These values apply to rolled and annealed (900° C) 1 inch diameter rods from 2¹/₄-inch ingots]

Ch	emical compositi	on		Tensile pro	perties	
Cu	Ni	A1	Yield point	Tensile strength	Elongation in 2 inches	Reduction of area
Per cent 89. 94	Per cent	Per cent 10.06	Lbs./in. ² 32 200	Lbs./in. ² 57 500	Per cent 9.0	Per cent 10.4
87.66	2.46	9.88	40 500	71 500	12.3	13. 0
85. 11	4.95	9.94	40 400	77 400	16. 2	17.4
82. 82	7.48	9. 70	42 100	87 000	13. 1	15.1
94. 98		5.02	11 600	49 600	82. 5	78.9
93. 96	. 94	5.10	11 800	51 000	94. 6	76.1
92.68	2.38	4.94	12 300	51 300	90. 2	71.0
89. 84	4.84	5.32	21 100	57 200	70. 0	60.2
87.48	7. 31	5. 21	53 700	87 400	25. 6	26.8

Nickel has been substituted for a portion of the tin in government bronze with good results (Burgess and Woodward, 229); these investigators give results of tensile tests of castings. (See Table 52.)

Composition, per cent	Tensile	Yield	Elonga-	Reduction
	strength	point	tion	of area
88 Cu, 5 Sn, 5 Ni, 2 Zn 89 Cu, 4 Sn, 4 Ni, 3 Zn	Lbs./in. ² 40 700 39 700	Lbs./in. ² 13 100 11 500	Per cent 31. 8 31. 2	Per cent 28. 0 31. 2

TABLE 52.-Tensile Tests of Government Bronze Castings Containing Nickel

These results may instructively be compared with the American Society for Testing Materials specifications for government bronze of composition 88 Cu, 10 Sn, 2 Zn, as follows: Tensile strength, 30 000 pounds per square inch; elongation in 2 inches, 14 per cent. The proposal has also been made to substitute nickel for a portion of the copper in the same composition (228) by using some cupronickel scrap in making the alloy.

 TABLE 53.—Corrosion Tests of Rolled and Annealed Nickel-Aluminum-Copper Alloys (Read and Greaves, 431)

Chemical composition		Corrosion loss in weight per month		Chemical composition			Corrosion loss in weight per month		
Cu	Ni	A1	Sea water	Fresh water	Си	Ni	A1	Sea water	Fresh water
Per cent	Per cent	Per cent	Lbs./ft.2	Lbs./ft.2	Per cent	Per cent	Per cent	Lbs./ft.2	Lbs./ft.2
89.94		10.06	0.00091	0.00009	94. 98		5.02	0.00031	0.00006
89.55	0.97	9.48	.00022	. 00006	94.04	0.92	5.04	. 00031	. 00008
85.15	4.94	9.91	. 00012	.00011	90.09	4.90	5.01	. 00012	. 00007
80.13	9. 98	9. 81	. 00009	. 00009	85.08	10.07	4. 85	.00002	. 00012
					1	L I			1

Nickel is a powerful decolorizing agent for metals such as copper and gold. Several jewelers' white alloys are produced to-day as substitutes for platinum under the name of white gold; they contain from 20 to 50 per cent of nickel with the balance of gold.

An alloy of 90 per cent of nickel and 10 per cent of tin is used to some extent for valve seats and rings.

Nickel in small amounts has been found to exert a beneficial effect on copper-lead bearing bronzes in preventing the segregation of the lead. Thus a much-used railway bearing bronze for heavy bearings contains—

Per cent	Per cent
Copper	Lead 30
Tin 5	Nickel 1

An alloy of nickel and zirconium called Cooperite (see Table 28) after its discoverer has been patented for machine tools and appears to have shown some very interesting test results in comparison with ordinary high-speed steel.

WASHINGTON, September 29, 1920.

PART C. APPENDIXES

1. DEFINITIONS OF PHYSICAL TERMS

ABSORPTION INDEX.—When monochromatic light traverses a distance equal to its own wave length λ , in a material, is the ratio of the amplitude of the emergent light J'_{λ} to that of the entering light J'_{λ}

$$\frac{J'_{\lambda}}{J^{\circ}_{\lambda}} = e^{-2\pi\kappa}$$

when κ is the absorption index.

(A variety of usage prevails regarding the definition of this term. This definition is used in the Smithsonian physical tables.)

DENSITY.—The density of a substance is the mass per unit volume. It is usually expressed in terms of grams per cubic centimeter.

ELECTRICAL CONDUCTIVITY AND RESISTIVITY (χ , ρ).—There are two methods of expressing electrical resistivity in common use, each being defined quantitatively in terms of the resistance of a unit specimen. The volume resistivity is ρ in the equation

$$R = \frac{\rho l}{s}$$

in which R=resistance, l=length, and s=cross section. The volume resistivity thus defined may be expressed in various units, such as microhm-cm (microhm per centimeter cube), ohms per foot of a uniform wire r mil in diameter, etc. The commonly used units, in abbreviated terminology, are:microhm-cm, microhm-inch, ohm (meter, mm), ohm (meter, mm²), ohm (mil, foot).

The other kind of resistivity is mass resistivity, and is defined as δ in the equation

$$R = \frac{\delta l^2}{m}$$

in which m = mass of the wire. The usual units of mass resistivity are: ohm (meter, gram), and ohm (mile, pound).

PER CENT CONDUCTIVITY.—The term "conductivity" means the reciprocal of resistivity, but it is used very little in wire calculations. In connection with copper, however, extensive use is made of the per cent conductivity, which is calculated in practice by dividing the resistivity of the International Annealed Copper Standard at 20° C by the resistivity of the sample at 20° C.

TEMPERATURE COEFFICIENT OF RESISTANCE.—The temperature coefficient of electrical resistance is the fractional change of resistance per degree change of temperature. Its value varies with the temperature, and hence the temperature from which the resistance change is measured must always be stated or understood. For a temperature t_1 , the temperature coefficient t_1 is defined, for a metal like copper, by

$$R_{t} = R_{t_{1}} [\mathbf{1} + \alpha_{t_{1}} (t - t_{1})],$$

in which R_{t1} =resistance at the temperature t_1 and R_t =resistance at any other temperature t_1 . The temperature coefficient that is usually used at 20°, for example, is

$$\alpha_{20} = \frac{R_t - R_{20}}{R_{20}(t - 20)}$$

BOILING POINT.—The boiling point of a liquid is the temperature at which it boils under atmospheric pressure, or better the temperature at which its vapor pressure is equal to the external pressure. BRINELL TEST.—An indentation is made, by pressure, on a polished surface of the material, using a hardened steel ball. There are several ways of expressing the hardness:

The commonest definition of the Brinell hardness is the pressure in kilograms per unit area (square millimeters) of the spherical indentation. (Hardness numeral= H. N.)

H. N. =
$$\frac{\text{Pressure}}{\text{area of spherical indentation}} = \frac{P}{t\pi D}$$

where

$$t = D/_2 - \sqrt{D^2/_4 - d^2/_4}$$

P =pressure used.

t =depth of indentation.

D = diameter of sphere.

d = diameter of indentation.

ELECTROLYTIC SOLUTION POTENTIAL (E).—At the junction of a metal and any conducting liquid there is developed a solution potential, which is a measure of the freeenergy change of the chemical reaction which is possible at the surface of the metal and liquid. In particular if the chemical reaction consists in the solution of the metal, forming ions, the emf is given by the formula

$$E = \frac{RT}{nF} \log_e \frac{P}{p}$$

R =the gas constant.

T = absolute temperature.

n =valence of metal.

F = 96 500 coulombs, the Faraday constant.

P=solution pressure of metal.

p=osmotic pressure of metal ion formed in solution.

In any electrolytic cell the sum or difference of two such potentials is measured, one of which may be a standard electrode; for example, the hydrogen or the calomel electrode. The emf of an electrolytic cell of the following type: Metal – solution – normal hydrogen electrode is often called the single emf (e_h) for the metal in the solution; that is, arbitrarily assuming the emf of the normal hydrogen electrode to be zero.

EMISSIVITY (E OR E_{λ}).—The coefficient of emissivity E for any material represents the ratio $\frac{J'_{\lambda}}{J_{\lambda}}$ of the intensity, J'_{λ} , of radiation of some particular wave length or color, λ , emitted by the material at an absolute temperature T to that, J_{λ} , emitted by a black body radiator at the same temperature.

The coefficient of total emissivity E for any material represents that ratio $\frac{f_1}{f}$ of the

intensity of radiation of all wave lengths, J_1 , emitted by the material at an absolute temperature, T, to that, J, emitted by a black body radiator at the same temperature.

This coefficient is always less than τ , and for metals is equal to τ minus the reflection coefficient for normal incidence (Kirchhoff's law).

For any optical pyrometer using monochromatic light a value of the observed or "black body" temperature of any substance (not inclosed) is reduced to the true temperature by the following formula:

$$\frac{1}{T} - \frac{1}{T_o} = \frac{\lambda \log_{10} E_{\lambda}}{6232}$$

T =true absolute temperature.

 T_o =observed absolute temperature.

 λ =wave length in microhm (0.001 mm).

 E_{λ} =relative emissivity of substance for wave length.

ERICHSEN TEST.—This test is carried out to determine the ductility of sheets. An indentation is made in the sheet with a die with hemispherical end. The greatest depth of indentation which can be made without incipient cracking of the sheet, measured in inches or millimeters, is known as the Erichsen value for the sheet.

HEAT OF FUSION.—The heat of fusion of a substance is the quantity of heat absorbed in the transformation of unit mass (1 g) of the solid substance to the liquid state at the same temperature.

MAGNETIC PROPERTIES.—The usual magnetic characteristics of a substance are given either by the permeability, μ , or the susceptibility, κ . Permeability is the ratio of the magnetic induction (B: in gausses per square centimeter) to the magnetizing force (H: in gausses per square centimeter). This is indicated by the relation

 $\kappa = \frac{B}{H}$

Susceptibility is given, in corresponding units, by

$$\kappa = \frac{\mu - r}{4\pi}$$

For all materials except iron and a few other ferromagnetic metals μ is very nearly unity and κ is only a few millionths. When κ is positive in sign the substance is paramagnetic, when negative diamagnetic. The susceptibility as thus defined is sometimes called volume susceptibility and indicated by κ_v . A quantity called mass susceptibility is also used, and is equal to the volume susceptibility divided by the density of the material; it is represented by κ_m .

MELTING POINT.—The melting or fusing point of a substance is the temperature at which it fuses (under atmospheric pressure), or more accurately the temperature at which the solid and the liquid metal are in equilibrium with each other.

PELTIER EFFECT (π).—When at the junction of two metals current flows from one to the other, heat is in general absorbed or liberated (see "thermoelectromotive force" below); the coefficient, the amount of heat liberated when a unit quantity of electricity flows across the junction, is known as π (measured either in calories per coulomb or in volts), the Peltier effect.

REFRACTIVE INDEX.—The ratio of the velocity of light in vacuum to that in any material is called the refractive index (η) of that material. (This physical quantity ceases to have a meaning at or near an absorption band in the material.

SCLEROSCOPE TEST (SHORE).—A hardened hammer falls from a constant height onto a polished surface of the material, and the distance of rebound is measured on a scale 10 inches long, divided into 140 equal parts. The scleroscope hardness is expressed as the distance of rebound on this arbitrary scale, the value 100 representing the hardness on this scale of hardened steel.

SPECIFIC HEAT (σ).—The true specific heat of a substance is $\frac{du}{dt}$ when u is the total internal heat or energy of unit mass of the substance. The mean specific heat is defined as $\frac{q}{t_1-t_2}$ per unit mass when q is the quantity of heat absorbed during a temperature change from t_2 to t_1 . It is generally considered as the quantity of heat (calories) required to raise the temperature of unit mass (grams) by unity (degrees centigrade), either at constant volume or at constant pressure. Unless otherwise noted the specific heat of solids refers to that at constant (atmospheric) pressure. The true specific heat (constant pressure) of metals may usually be expressed sufficiently by an equation of the type

$$\sigma = A + Bt + Ct^2 + \dots$$

TENSILE TEST.—The quantities determined in the tension test are the following:

The *ultimate tensile strength* is the maximum load per unit area of original cross section borne by the material.

The *yield point* (American Society for Testing Material) is the load per unit of original cross section at which a marked increase in the deformation of the specimen occurs without increase of load.

The *elastic limit* (American Society for Testing Materials) is the greatest load per unit of original cross section which does not produce a permanent set.

The *proportional limit* (American Society for Testing Materials) is the load per unit of original cross section at which the deformations cease to be directly proportional to the loads.

The *percentage elongation* is the ratio of the increase of length at rupture between arbitrary points on the specimens to this original length.

The *percentage reduction of area* is the ratio of the decrease of cross section at the "neck" or most reduced section at rupture to the original section.

THERMAL CONDUCTIVITY (λ) .—The coefficient of thermal conductivity (λ) expresses the quantity of heat (small calories) which flows in unit time (seconds) across a unit cube (centimeter) of the material whose opposite faces differ in temperature by unity (1° C.). Its *temperature coefficient* is expressed as

$$\alpha_{t_0} = \frac{\lambda_t - \lambda_{t_0}}{\lambda_{t_0}(t - t_0)}.$$

THERMAL EXPANSION.—If l_t is any linear dimension of a solid at any temperature $\frac{dl}{ddt}$ is the linear coefficient of thermal expansivity of that solid in the direction of l_{\bullet} . It is not in general proportional to the temperature except approximately over small temperature intervals, but may be expressed in the following manner:

$$\frac{dl}{ldt} = a + bt + ct^2 \dots$$

For small temperature intervals a mean coefficient (α) is often determined; that is,

$$\alpha_{t_o} = \frac{l_t - l_{t_o}}{l_{t_o}(t - t_o)}$$

THERMOELECTROMOTIVE FORCE (E).—In an electric circuit composed of two dissimilar conductors, the two junctions being at different temperatures, there exists in general an electromotive force, called the thermoelectromotive force, between the two metals, the value of which is a function both of the temperature and the difference of temperature between the two junctions. It is shown thermodynamically that this emf is related to the Thomson and Peltier effects in the following manner:

 $\pi = \frac{T}{J} \frac{dE}{dt}$ $\sigma_1 - \sigma_2 = -\frac{T}{J} \frac{d^2E}{dt^2}$ and expressed in calories per coulomb when $J = \frac{418 \text{ dynes} \times 10^6}{\text{calories}}$

when E is the thermal emf, T the absolute temperature, $\frac{dE}{dt}$ the thermoelectric power (see below), and $\sigma_1 - \sigma_2$ the difference in the Thomson effect of two materials. The form of the function E=E(T) is not known. In general the equation $\frac{dE}{dt}=A+BT$ satisfactorily fits the experimental data over a limited range of temperature of a few hundred degrees.

It has been shown that the Thomson effect for lead is practically zero. This metal has served as a comparison metal in studying the thermoelectric forces of others.

THERMOELECTRIC POWER.—If E is the thermoelectromotive force of any two dissimilar metals, $\frac{dE}{dt}$ =the thermoelectric power; it is at any temperature therefore approximately the thermal emf of a couple of which the temperatures of the two junctions differ by 1° C.

THE THOMSON EFFECT.—When a current flows in a conductor from a point at one temperature to one at another, heat is in general liberated, or absorbed, and an emf

or counter emf is produced. The coefficient of the Thomson effect is the amount of heat liberated or absorbed when unit quantity of electricity flows from a point at temperature, t, to one at a temperature, t+dt, and is equal to σdt calories per coulomb where σ is the so-called Thomson specific heat of electricity. It is called positive for any material when heat is generated in that material as a current flows from a region of higher to one of lower temperature.

2.	LIST	OF	UNITED	STATES	PATENTS	ON	NICKEL	ALLOYS	EXCLUSIVE
				OF NI	CKEL STE	EL,	1900–1920		

Patent No.	Date	Patentee	Device or process patented
648428	1900	J. Patrick	Use of magnesium with cast nickel.
646118	1900	G. H. Clamer	Use of 1 per cent nickel in copper-lead.
655392	1900	J. G. Henderson	Alloys to prevent segregation.
702996	1902	W. Pruszkowski	Alloys of iron, manganese, nickel, cobalt, and aluminum,
709268	1902	D. P. James	Copper-tin-nickel-silver-aluminum alloy.
811239	1906	A. Monel	Manufacture of Monel metal.
824103	1906	W. B. Driver	Electrical-resistance alloy.
824618	1906	C. H. Birmingham	Silver-nickel-bismuth-gold alloy.
827717	1906	T. A. Edison	Composite metals.
834099	1906		Nickel-lead.
839444	1906	G. F. Allen	Nickel-copper-lead.
846851	1907	A. Hobson	Copper-zinc-nickel-manganese alloy.
854462	1907	G. E. Buttenshaw	Copper-zinc-nickel-lead alloy.
859608	1907	A. L. Marsh	Electrical-resistance alloy.
864139	1907	W. Rubel	Copper-iron-nickel-aluminum alloy.
864140	1907	W. Rubel	Zinc-aluminum-silicon-copper.
873346	1907		Nickel-chromium.
901428	1908	J. T. H. Dempster	Electrical-resistance alloy.
926980	1909	Dempster	Add chromium and manganese to nickel.
937285	1909	[E. B. Craft	Alloy with nickel for electrical contacts.
938422	1909	G. Hartmann	Aluminum solder containing nickel.
939938	1909	C. F. Ackermann	Copper-nickel-zinc
943066	1909	William B. Driver	Electrical-resistance alloy.
959156	1910	J. Naulty	Chromium-copper-nickel-zinc alloy
961217	1910	W.B. Driver	Electrical-resistance alloy.
963123	1910	J. T. H. Dempster	Do.
965871	1910	G. H. Clamer	Manufacture of iron-nickel-copper alloy.
9 74419	<mark>1910</mark>	J. Naulty J. Scanlin	Alloys of copper with chromium and nickel alloys.
981542 993042	}1911	W.B.Driver	Electrical-resistance alley.
1003806	1911	A. J. Rossi	Titanium-nickel alloy.
1012391	1911	A. L. Marsh	Utensil holder (chromium-nickel).
1016549	1912	G. H. Clamer	Iron-nickel-copper alloy.
1020513	1912	A. J. Rossi	Purifying nickel.
1044761	1912	J. F. Duke	Iron-copper-nickel alloy.
1050342	1913	G. H. Clamer	Do.
1057755	1913	A. L. Marsh	Nickel-silicon resistance alloys.
1069113	1913	J. Coup	Copper-nickel-zinc-aluminum-phosphorus alloy.
1070007	1913	• • • • • • • • • • • • • • • • • • • •	Add aluminum and zinc to nickel.
1076455	1913	W. Rubel	Iron-nickel-manganese-aluminum alloy.
1086314	1914	G. H. Clamer	Manufacture of nickel-iron-copper alloy.
1093557	1914	E. D. Gleason	Iron-nickel-copper-aluminum boiler tubes.
1103482	1914	C. Canzler	Alloy for welding copper and nickel.

Circular of the Bureau of Standards

2. LIST OF UNITED STATES PATENTS ON NICKEL ALLOYS EXCLUSIVE OF NICKEL STEEL, 1900-1920—Continued

Patent No.	Date	Patentee	Device or process patented
1106206	1	0.7.0.11	
1106207	1914	C. E. Guillaume	Nickel-iron alloy for springs, peculiar elastic properties.
1110303	1914	H. Kreusler	Manufacture of alloys of tungsten and nickel.
1114055	1914	E. Smith	Copper-nickel-zinc-tin alloy.
1115239	1914	S. W. Parr	Illium.
1127624	1914	G. C. Holder	Nickel-lead-copper for packing rings.
1147398	1915	R. H. Henemier	Nickel-aluminum-copper for tire valves.
1162226	1915	C. R. Denton	Copper-nickel-zinc alloys.
11 63 813	1915	P. J. A. Douglass	Hardening nickel-copper alloys.
1164840	1916	P. G. Miller	Uniting nickel-alloy pipe to vitreous ware.
1168074	1916	M. A. Hunter	Electrical-resistance alloy.
1175172	1916	W.E. Oakley	Nickel-iron-copper valve alloy (Monel).
1175724	1916	W. B. Driver	Chromium resistance alloy.
1100652	1910	H. W. Gaskill	Copper-nickel-zinc-manganese alloy.
1202190	1910	J. C. Henderson	Contomitum-mickle anoy for high temperatures.
1203180	1916	T. B. Brix	Nickel alloy.
1211943	1917	M.A. Hunter	Electrical resistance alloy.
1217578	1917	W. B. Driver	Do.
1221769	1917	H. S. Cooper	Zirconium-nickel-iron for tools.
1223001	1917	H. K. Sandell	Copper-antimony-lead-nickel bearings.
1223002	1.01.0	T G G ()	Nickel-carbon for spark points.
1229037	1917	H. S. Cooper	Nickel-silver-palladium, electrical contacts.
1240055	1917	K. M. Keeney	Nickel-uranium alloy.
1244742	1017	C. I. Jones	Nickel-conner allow
1252038	1018	H K Sandell	Gold-tungsten-nickel for dental work
1257272	1918	G. M. Laird	Electrical-resistance alloy.
1263831	1918	M. R. Walford	Heat-resistance nickel-iron alloy.
1268495	1918	H. K. Sandell.	Nickel-tungsten electrical contacts.
1274395	1918	W.B. Driver	Alloy, spark plugs.
1277989	1918	F. Milliken	Copper-nickel-zinc alloy.
1274250	1918	W. B. Driver	Electrical-resistance alloy.
1273877	1918	P. R. Kuehnrich	Nickel-iron-copper-aluminum tools.
1278304 1277046	1918	H. S. Cooper	Nickel-aluminum-zirconium-silicon for tools.
1279448	1918	H. K. Sandell	Nickel-copper-iron alloy.
1291408	1919	L. W. Chubb	Nickel-iron for high magnetic permeability.
1305551	1918	H. C. Kirk	Aluminum-nickel-copper alloy, light.
1310363	1918	F. Millikin	Copper-nickel-zinc-iron.
1314417	1918	do	Zinc-nickel-iron-manganese.
1340451	1918	T. Koch	Gold-nickel-manganese jewelry alloy.
1341540	1920	J. P. Copland	Alloy of iron with chromium, nickel, tungsten, and manganese for
			cast furnace linings.
1346188			
1346189	1920	F. A. Fahrenwald	Nickel-chromium-iron alloys for gun barrels.
1346190			
1346191	1	M M Columb	Allows of misleal and size
1349918	1920	D. Beililler	Anoys of mickel and zinc.
1350166	1920	F. Ivilliken	Copper-maker-mon-zinc alloy for electrical resistance.
1350359	1920	F. Millikor	Conner-nickel-lead allow mine weter values
1351911	1020	A. Tedesco	Nickel-conper-tungsten alloy, noncorresive high electrical reside
1001011	1920	*** * CUUSUU	tivity.

3. TYPICAL SPECIFICATIONS FOR NICKEL ALLOYS

NAVY DEPARTMENT SPECIFICATIONS

MONEL METAL, CAST, OR COMPOSITION Mo-c

(Standard Stock Catalog designation: Monel metal (Composition Mo-c), cast)

GENERAL SPECIFICATIONS

r. General specifications for inspection of material, issued by the Navy Department, in effect at date of opening of bids, shall form part of these specifications.

CHEMICAL PROPERTIES

2. The chemical requirements are as follows:

Copper, minimum	Nickel, minimun	Iron, maximum	Aluminum, maximum	Manganese, maximum	Carbon and silicon combined, maximum
Per cent	Per cent	Per cent	Per cent	Per cent	Per cent
23. 0	60. 0	3.5	0. 5	3.5	0. 8

PHYSICAL PROPERTIES

3. The physical properties of the metal shall conform to the requirements of the table given below:

Minimum tensile strength (pounds per square inch)	Minimum yield point (pounds per square inch)	Minimum of clonga- tion in 2 inches
65 000	32 500	Per cent 25

WORKMANSHIP

4. The castings must be made in accordance with the drawing and specifications—sound, clean, free from blowholes, porous places, cracks, or any other defects which will materially affect their strength or appearance or which indicate an inferior quality of metal.

TEST LOTS

5. Castings weighing less than 250 pounds finished may be tested by lot or heat, a lot not to exceed 250 pounds and a heat not to exceed 500 pounds of finished castings. Each lot or heat will be represented by one test specimen when attached to a casting or when a casting is sacrificed to obtain a test specimen.

TEST COUPONS

6. If the castings are too small for the attachment of coupons, the test pieces may be cast separately, from the same metal, under as nearly as possible the same conditions as the casting. Where test pieces are cast separately from the castings, two pieces will be required, one to be poured before and one after the castings. Coupons shall not be detached from castings until they are stamped by the inspector. If the test pieces are cast separately from the casting, they must be cast in the same flask with the casting and must be removed from it in the presence of the inspector and stamped by him at the time they are taken out of the molds.

FRACTURE

7. The color of the fracture section of test pieces and the grain of the metal must be uniform throughout.

PURPOSES FOR WHICH USED

8. The material is suitable for the following purposes: Valve fittings, plumbing _fittings, boat fittings, propellers, propeller hubs, blades, engine framing, pump liners, valve seats, shaft nuts and caps, and composition castings requiring great strength.

SPECIFICATIONS, WHERE OBTAINABLE

NOTE.-Copies of the above specifications can be obtained upon application to the Bureau of Supplies and Accounts, Navy Department, Washington, D. C.

REFERENCES

S. E., 169686-687-4-S, Jan. 12, 1916. C. & R., Z46M1a-M, Jan. 21, 1916. Ord., 29752/167 (B1)-O, Jan. 21, 1916. S. & A., 380-938.

> **401VL7** D MAY 1, 1917 SUPERSEDING 46M7a Feb. 1, 1916

NAVY DEPARTMENT SPECIFICATIONS

ROLLED MONEL METAL (COMPOSITION Mo-r), BARS, PLATES, RODS, SHEETS, ETC.

GENERAL SPECIFICATIONS

I. General Specifications for Inspection of Material, issued by the Navy Department, in effect at date of opening of bids, shall form part of these specifications.

SCRAP

2. Scrap shall not be used in the manufacture, except such as may accumulate in the manufacturers' plants from material of the same composition.

CHEMICAL REQUIREMENTS

3. The chemical properties shall be as follows:

Copper, minimum	Nickel, minimum	Iron, maximum	Aluminum, maximum	Manganese, maximum	Carbon and silicon, combined maximum
Per cent	Per cent	Per cent	Per cent	Per cent	Per cent
23. 0	60.0	3.5	0.5	3.5	0.8

92

PHYSICAL REQUIREMENTS

4. The physical properties of the metal shall conform to the requirements of the tables given below:

RODS AND BARS

	Minimum yield point per square inch	Minimum ultimate tensile strength per square inch	Minimum elongation in 2 inches
Rounds and squares: Up to and including 1 inch. 1 1/16 inches to and including 1 11/16 inches 1 3/4 inches to and including 2 7/16 inches 2 1/2 inches to and including 3 1/2 inches Over 3 1/2 inches Rectangles. Hexagons.	Pounds 40 000 50 000 45 000 37 000 40 000 40 000 40 000	Pounds 80 000 85 000 80 000 77 000 75 000 75 000 80 000	Per cent 25 28 30 32 32 32 32 32

SHEETS AND PLATES

Tensile strength, minimum pounds per square inch	Yield point, mini- mum pounds per square inch	Elonga- tion, mini- mum in 2 inches
65 000	30 000	Per cent 15

NOTE.-No material less than 1/4 inch in thickness or diameter need be tested physically.

ADDITIONAL TESTS

- 5. All bars shall stand—
 - (a) Being hammered hot to a fine point.
 - (b) Being bent cold through an angle of *120*° and to a radius equal to the diameter or thickness of the test bar.

SURFACE INSPECTION

6. Material shall be free from all injurious defects, clean, straight, smooth, of uniform color, quality, and size, and within the gauge and weight tolerances.

TRIMMING

7. (a) Rods and bars.—Rods and bars will be received in stock lengths unless it is specifically stated that exact lengths are required. Stock lengths will be as follows:

> I to 4 inches, δ to 20 feet Over 4 inches, δ to 20 feet

(b) Plates and sheets.—Plates and sheets will be cut to the required dimensions and will be ordered in as narrow widths as can be used.

TOLERANCES

8. No excess weight will be paid for, and no single piece that weighs more than 8 per cent above the calculated weight will be accepted. The base or unit weight for such calculations shall be taken as 558 pounds per cubic foot, or .323 pound per cubic inch.

UNDERWEIGHT TOLERANCES

	Tolerance
Widths of sheets or plates: Up to 48 inches. 48 to 60 inches. Over 60 inches.	Per cent 5 7 8

Note.-Material shall not vary throughout its length or width more than the given tolerance.

FRACTURE

9. The color of the fracture section of test pieces and the grain of the material shall be uniform throughout.

PURPOSES FOR WHICH USED

10. The material is suitable for parts requiring strength or incorrodibility, such as propeller-blade bolts, air-pump and condenser bolts, and pump rods.

NOTE FOR SUPPLY OFFICERS

The material covered by these specifications will be called for as follows: Monel-metal, rolled, bar and rod.

Monel-metal, rolled, plate and sheet.

SPECIFICATIONS, WHERE OBTAINABLE

NOTE.--Copies of the above specifications can be obtained upon application to the Bureau of Supplies and Accounts, Navy Department, Washington, D. C.

REFERENCES:

S. E., 22033 4 687-S, Apr. 4, 1917. C. & R., Z46M7b, Apr. 9, 1917. Ord., 29752/344 (B2)-O, Apr. 11, 1917. S. & A., 380-938.

4. **BIBLIOGRAPHY**

Tort		
refer-	Year	Name and title
ences		
		NICKEL
1		International Nickel Co., pamphlet on nickel.
2	1919	Friend, J. N., Cobalt, nickel, and the elements of the platinum group. C. Griffin & Co.,
3	1920	Cone, E. F., Rolled products of 99 per cent nickel. Iron Age, 105, p. 1713.
4	1920	McDonald, A. E., A comparison of nickel with other metals for coinage, Canadian Chem.
5	1010	Jour., 4, p. 106. Bechstein O Future outlook of conner, brass nickel lead tin, and other scarce metals
5	1515	in chemical apparatus, Chem. App., 6, pp. 3-4.
б	1919	Sutherland, W. F., Nickel, The story of, Scientific American, 121 (1919), No. 20, pp. 480- 481 492 496 502
7	1918	Production of pure nickel, Stahl u. Eisen, Nov. 7, p. 1044.
8	1917	Mylius and Hüttner, Production of pure nickel, Stahl u. Eisen, Oct., p. 954. From report
9	1917	Report and appendix of the Royal Ontario Nickel Commission, A. T. Wilgress, Toronto.
10	1914	Prior, G. T., Nickel in meteoric stones, Mineral Mag., 17, pp. 127, 135.
11	1909	Gmelin-Kraut, Handbuch der Anorganischen Chemie.
		METALLURGY OF NICKEL
12	1918	International Nickel Co.'s refinery at Port Colborne, Canada, Min. Inl. (Aug. 1, 1918).
	1010	39, pp. 262-263.
13	1918	Gowland, G., The metallurgy of the non-ferrous metals, C. Griffin & Co., London.
15	1917	Hybinette electrolytic nickel refining method. Min. and Sci. Press, 114, p. 666.
16	1916	Occurrence and utilization of nickel ores, Bull. Imp. Inst., 14, p. 228.
17	1913	Coleman, A. P., Nickel smelting by the Mond process, Min. and Sci. Press, 107, pp. 412-417.
18	1911	Richards, I. W., Metallurgical calculations.
20	1904	Schnabel, C., Handbuch der Metallhüttenkunde.
21	1904	Borchers, W., Electric smelting and refining, London edition, C. Griffin & Sons.
22	1903	McMilland and Cooper Electro-metallurgy C. Griffin & Co. London.
20		Merinnang and Cooper, Meens metanargy, et Crimin & Cot, Minden
		STATISTICS OF NICKEL
24	1919	Aldrich, H. R., and Schmuckler, J., Prices of ferro-alloys, non-ferrous and rare metals,
25	1010	War Industries Board Price Bulletin No. 34.
25	1919	pp., issued Feb. 25, 1919.
26	1918	Gibson, T. W., Nickel, Mineral Industry, 27, p. 506.
27	1917	Pig iron and metal products of the U. S., Met. Ind., 15, p. 57.
28	1917	Hess, F. L., Nickel, Milleral Resources of the U. S., U. S. Geol. Survey (1915), p. 743.
30	1015	Achter I. Nickel and cohelt Mineral Industry 94 nn 517-524
31	1913	Coleman, A. P. The nickel industry Bulletin No. 170 of the Canadian Bureau of Mines.
32	1911	Vogt, J. H. L., Om Bergverksdriften paa Nickel, navelig om Utviklingen i de sidste 10 Aar, Tak Utch 96 (11) p. 147
33	1907	Meeks, R., Nickel and cobalt, Mineral Industry, 16, p. 733.
34	1905	Krull, F., Production and market position of copper, lead, zinc, tin, nickel, and aluminum,
		Zeit. f. angew. Chem., 18, pp. 84-92.

94

4. BIBLIOGRAPHY-Continued

Text refer- ences	Year	Name and title
		METALLOGRAPHY OF NICKEL
35	1919	Hull, A. W., The crystal structure of ferromagnetic metals, Philadelphia meeting of Am
36	1919	Phys. Soc., Oct., 1919. Price, W. B., and Davidson, P., Discussion, Physical properties of nickel by Browne and Thompson, Transactions Am. Inst. Min. Eng., 1919.
37	1919	Rawdon, H. S., and Krynitzky, A. I., Deterioration of nickel spark-plug terminals in
38	1918	Janecke, New method for determining the allotropic transformation of nickel, Zeits. für Electrochemie, Jan. 1, p. 9; Zeit, Angew. Chem., 31, 1, p. 229; Alst. (Am), p. 922.
39 40	1915 1914	Etching of nickel, Stahl u. Eisen, Nov., p. 1132. Werner, W., Polymorphic transformation in tellurium, tin, zinc, and nickel, Zeit. Anorg. chem., 83, pp. 275-321.
41	1913	Guillet, L., Annealing of cold worked metals and alloys, Rev. de Met., 10, pp. 665-676 (Abstr. I. Inst. Met. 1913).
42	1 9 10	Stark, B., Tatarczenko, D., Über Dimorphismus des Nickels, J. Russ. Metrg. Ges. 1 (10),
43	1910	Cohen, Strain disease of metals—Cold worked nickel and the meta-stable state, De Inge- nieur, 25, pp. 349, 1910.
44 45	1910 1910	Baikow, The polymorphism of nickel. Journ. Russ. Phys. Chem. Ges, 42, pp. 1380–1381. Guillet, L., Annealing iron and nickel. C. R., 151, p. 1127.
46	1908	Carpenter, H. C. H., The structural changes in nickel wire at high temperatures. Collected researches of the National Physical Laboratory, 3, p. 261.
47	•••••	CHEMICAL PROPERTIES OF NICKEL
48	1920	Richardson, W. D., A new type of catalyser for hydrogenation. Chem. and Met. Engineer-
49	191 9	ing, 22, No. 17, p. 793. Armstrong, E. F., and Hilditch, T. P., Catalytic action of nickel. Proc. Roy. Soc., London,
50 51	1917 1916	Selber, C., Colloidal nickel. Ber. d. deutschen Chem. Ges., 50, p. 1509. Smith, D. P., and Martin, F. H., Occlusion of hydrogen. Journ. Am. Chem. Soc., 38, pp.
52 53	1914 1914	 2577-2594. Douris, Hydrogenation in presence of nickel, C. R., 157, p. 722. Mylius and Hüitner, Purification of nickel. Work of Phys. Tech. Reichsanstall in 1914,
54	1912	Z. Elektrochem, 21, p. 501; 1915. Sieverts, A., and Bergner, E., The solubilities of argon and helium in solid and liquid
55	1911	metals. Ber. d. deutsch. Chem. Ges., 45, pp. 2576-2583. Sieverts, A., The influence of absorbed gases on the electrical resistance of metal wires. Int Zeit Metallographie 3, mn 37-60
56	1911	Sieverts, A., The solubility of hydrogen in copper, steel, and nickel. Zeit. Phys. Chem., 77, pp. 591-613.
57 58 59	1910 1907 1907	Sieverts, A., and Krumbhaar, W., Solubility of gases in metals. Ber., 43, pp. 893-900. Sieverts, A., The occlusion and diffusion of gases thru metals. Zeit. Phys. Chem., 60, p. 129. Sabatier and Senderens, The Sabatier and Senderens hydrogenation of oils by means of nickel. Ann. d. Chem. et d. Phys., 4, pp. 319-488. C. R., 132, pp. 210, 566, 1254.
		Corrosion of Nickel
60	1919	Bauer, O., Corrosion of iron in contact with other metals and alloys. Zeit. Metallkunde, 10,
61 62 63	1917 1916 1915	pp. 124-204. Heath, R. F., Some substitutes for platinum ware. Met. and Chem. Engineering, 17, p. 666. Salskonski, E., Behaviour of metals to acids containing H_2O_2 . Chem. Zeit., 40, p. 448. Jorissen, W. P., Action of lead, tin, nickel, zinc, and aluminum on water. Chem. News.
64	1915	8, pp. 56, 91, 102. Hale A. L. and Foster, H. S. Corrosion of nickel Journ Chem. Soc. p. 464
65 66	1914 1914	Vuk, M., Nickel cosking utensils. Z. zur Unters, Nahr. und Genussmittel, 28, pp. 103-104. Gheorghiu-Ploesti, V., Use of nickel ware in cooking. Ber. d. deutsch. pharm. Ges., 24, pp.
67,	1913	Jorissen, Corrosion of nickel. Comptes Rendus, Int. pharmac. Congress, 1913, also in Engineering, Oct. 23, 1914.
68 69	1913 1913	Offerdahl, Effect of nickel on health. Ber. deutsch. Pharm. Ges., p. 567. Assmann W., u. Hugel, E., Halbmondschrift für Margarine-Industrie, No. 17.
70	1903-4	Farnsteiner, Lendrich, etc., Corrodibility of nickel utensils. Ber. über Nahrungsmittel- kontrolle, Hamburg, p. 95. Zeit.z. Unters. d. Nahr. u. Genussmittel., 1906.
72	1898	Ludwig, E., Oesterr. ChemZeitung., Chem. Zentralblatt, 1898, p. 57.
73 74 79	1895	Vogel, H., Apothekerzeitung., pp. 663, 840. Rohde, A., Corrodibility of nickel utensils. Archv. für Hygiene, 9, pp. 331-349. Lehmann, Arch, f. Hygiene, 68, p. 421.
-		PHYSICAL PROPERTIES OF NICKEL
76	1919	Hagenbach, A., and Langheim, K., Determination of temperature of electrodes of the arc.
77	1919	Arch. Sci, Phys. Nat. 51, p. 48. Browne, D. H., and Thompson, J. F., Physical properties of nickel. Bulletin of A. I. M. M.
78 79	1917 1916	E., Aug., 1919. Moore, W. C., Luminous discharge from nickel. Trans. Am. Electrochem., 30, p. 357. Smithsonian physical tables.

4. BIBLIOGRAPHY-Continued

Text refer- ences	Year	Name and title
		PHYSICAL PROPERTIES OF NICKEL-Continued
80	1914	Onnes, H. K., and Hof, K., Hall effect in metals at low temperatures. Verslag. Akad.
81 82	1912 1905	Landolf-Börnstein-Roth, Physikalisch-chemischen Tabellen. Copaux, M. H., Experimental researches on cobalt and nickel. Ann. d. Chim. et de Phys., 6 (8) no 508-574. C. B. 140 n. 652
83		Mond, Tanger, and Quincke. Journ. Chem. Soc., 57, p. 753.
		THERMAL PROPERTIES OF NICKEL
		Change of State
84 85 86 87 88	1915 1913 1910 1906 1902	Melting points of the chemical elements. Bureau of Standards, Circular No. 35. Werner, Transformation of nickel. Zeit. Anorg. Chem., 83, pp. 275-371. Day and Sosman, Meiting point of nickel. Moissan, C., Volatility of nickel, C. R., 142, p. 425. Hill, B., Magnetic permeability of nickel, Verh. d. deutsch. Phys. Ges., 15 (4), p. 194.
		Specific Heat
89	1918	Durrer, R., Specific heat of nickel. Stahl u. Fisen, Aug. 22, p. 780.
90 91	1918 1914	Wist, F., Die Temperaturo-wärmeinhalts Kurven der technisch wichtigen Metallen, Forschungsarbeiten auf dem Gebiete des Ingeneurwesens, No. 204. Schübel, D., Thermal canacity of metals and metallic compounds from 18 to 600° C., Zelt
92	1914	Anorg, Chem., 87, p. 81. Lasischenko, P. N., Cooling curves of metals, Journ. Russ. Physik-Chem., 46, p. 311.
93 94	1910 1900	Schimpff, H., Heat capacity of metals and metal compounds, Z. Phys. Chem., 71, p. 257. Behn, Specific heat of nickel, Ann. d. Physik, (4), 1, p. 261.
95 96	1900	Tilden, Specific heat of nickel, Phil. Trans., 194, p. 133. Tilden, Specific heat of nickel, Proc. Roy. Soc. Landon, 66, p. 244.
97 98	1888	Naccari, Specific heat of pure nickel, Zeit, Phys. Chem., 2, p. 439. Pionchan, Specific heat of nickel preared by calcination of chemically purified oralate and
99	1000	reduction by hydrogen from 0 to 1150° C., C. R., 103, p. 1123. Behn, Specific heat of 99 per cent rolled nickel from -186 for $\pm 18^{\circ}$ C., Wied, Ann., 66, p. 237.
		Thermal Expansivity
100	1012	Guillauma Ch Ed Über die Temperaturgung debrung von technischem Nickel C. P.
101	1007	154 (12), pp. 748-751; Beibl. Ann. Phys., 36 (12), p. 942. Hanning E. Linear arragion of nickal Ann. der Dhysik (4) 29 p. 631
102	1905	Rondau, H. M., Coefficient of expansion of nickel at its critical temperature, Phys. Rev., 20, p. 85
103	1904	Harrison, E. P., On the temperature variation of the coefficient of expansion of pure nickel, Phil. Mag. (6) 7, p. 626.
104 105	1901 1899	Holborn, L., and Day, A., Linear thermal expansion of nickel, Ann. d. Physik (4), 4, p. 104. Tutton, A. E., The thermal expansion of pure nickel and cobalt, Proc. Roy. Soc. London, 65 p. 306.
106 107 108	1889 1898 1898	Le Chatelier, H., Linear expansion of metals, C. R., 108, p. 1096. Guillaume, Ch. Ed., Researches on nickel and its alloys, L'Éclairage Électrique, 16, p. 287. Guillaume, Ch. Ed., Researches on nickel and its alloys, Arch. des Sci. Phys. et Nat. (4), 5, pp. 255, 305.
		Thermal Conductivity
109 110	1911 1908	Angell, M. F., Thermal conductivity at higher temperatures, Phys. Rev., 33, p. 421. Lees, C. H., Conductivity of metals at low temperatures, Phil. Trans., 208, p. 381.
		ELECTRICAL PROPERTIES OF MICKEL
111	1919	Electrical Resistivity Holborn, L., Temperature coefficient of electrical resistance, Ann. d. Physik, 59, p. 14:
112	1917	J. Inst. Met., 22, p. 348. Honda, K., and Simidu, T., The thermal and electrical conductivity of carbon steels and
113	1914	nickel, Sci. Rep. Tohoku Imp. Univ., 6, p. 219. Schimank, H., Electrical resistivity of metals at low temperatures, Ann. d. Phys., 45 (5).
114	1913	pp. 706-736. Credner, F., Electrical resistance of stretched and twisted wires, Z. Phys. Chem., 82, p. 457.
115	1910	Pecheux, Electrical resistivity of commercial nickel and aluminum and their alloys, La Lumière Électrique, 10, pp. 232-239.
116	1910	Somerville, A. A., Temperature coefficients of electrical resistance, Phys. Rev., 30, pp. 268, 532.
117	1907	Niccolai, G., The electrical resistivity of pure metals at higher and at lower temperatures, Atti d. Accad. d. Lincei, 161 (5), pp. 614, 757, 867, 906.
118	1902	Harrison, E. P., The variation with temperature of the thermoelectromotive force, and of the electric resistance of nickel, iron, and copper, between the temperatures of -200 and 1050° C. Phil. Mar. (6). 8, p. 177.
119 120 121	1901 1900 1900	Campbell, Electrical resistivity of nickel, Electrical Review, 48, p. 1014. Fleming, J. A., Electrical resistivity of electrolytic nickel, Proc. Roy. Soc., 66, p. 50. Jaeger, W., and Disselhorst, H., Thermal and heat conductivity, specific heat and thermo- electromotive force of several metals, Wiss. Abhandl. a. d. Phys. Tech. Reichsanstalt zu Berlin, 3, p. 269.

4. BIBLIOGRAPHY—Continued

ELECTRICAL PROPERTIES OF NICKEL—Continued Thermoelectromotive Force 121 1916 Laschischenko, P. N., Bilkov, S. F., and Efremov, S. V., The thermoelectric propert of some polymorphous metals, Journ. Russ, Phys. Chem. Soc. 48, pp. 272-265. 123 1916 Nummap, B. F., Messurements of resistivity and thermal emotion and the thermal emotion	Text refer- ences	Year	Name and title
Thermoelectromotive Force 122 1916 Laschtechenko, P. N., Billow, S. F., and Erraw, S. V., Sto. 48, pp. 279–266. 123 1916 Northrup, E. P., Measurements of resisivity and thermal ent of a rickel to nichrome, Met, and Chem. Engra, 15, p. 193. 124 1914 Wietzel, G., Thermoelectric behaviour of metals at low temperatures, Ann. d. Physik, 47 126 1900 Wetzel, G., Thermoelectric behaviour of metals at low temperatures, Ann. d. Physik, 47 127 1908 Wagner, E., Effect of pressure upon the thermal end of metals, Ann. d. Physik, 47 (p. 955.) 128 1920 129 Dewar, J., and Fleming, J. A., Thermoelectric properties 121 1919 122 P. 55. 123 1919 124 1919 125 Egr. G., Recent investigations on the magnetic properties of metals and elements, Zeit Metallikung, 10, p. 82, and others. 1291 1919 12191 Weiss, Pierre, and Piccard, A., A new magnetic thermal phenomenon, C. R., N. 66, p. 3. 131 1917 132 Prov. N., Ghangees in Young's modulus of nickel with magnetic field, Proc. Roy. So.			ELECTRICAL PROPERTIES OF NICKEL-Continued
 Laschtschenko, P. N., Bilkov, S. T., and Eframov, S. V., The thermoelectric propertion of some polymophous metals. Journ. Russ. Phys. Chem. Soc., 48, pp. 279-266. Northrup, E. F., Measurements of resistivity and thermal emiof and the thermal emiot of nicklets of the tard Chem. Engrg., 15, p. 193. Wietzel, G., Thermoelectric behaviour of metals at low temperatures, Ann. d. Physik, 47 (Physics, G., and Wolft, E., The nickle-lisiver thermoelectric. Phys. Lett., 7, p. 473. Byon, W. Hevesy, G., and Wolft, E., The nickle-lisiver thermoelectric. Physik, 47 (Physics, G., and Wolft, E., The nickle-lisiver thermoelectric. Phys. Lett., 7, p. 473. Byon, W. Kata, J. and Fleming, J. A., Thermo-electric powers of metals and alloys between t temperatures of the boiling point of water and that of liquid sir, Phil. Mag., 40, pp. 953-1000. Bewur, J., and Fleming, J. A., Thermo-electric poweries of metals and elements, Zeit Metalikunde, 10, p. 82, and others. Weitss, Pierre, and Piccard, A., A new magnetic thermal phenomenon, C. R., 166, p. 3 Williams, S. R., The magnetic and the mechanical properties of steel and nickel, J. Clev. Iand Eng., 502, 9, pp. 138-202. Williams, S. R., The magnetic properties of incon, nickel, with magnetic field, Proc. Roy. So. Dub., 15, pp. 183-192. Honda, K., and Ogura, Y., The magnetization and electrical resistivity of iron, steel, an nickel at high temperatures, Sci. Reports Tohoku Imp. Univ., 8, pp. 113-126; Rev. Ma May, eds., or the engretization of alloys of nickel and chalt, Archives des Sciences, 5 pp. 23-306. Honda, K., and Gura, Y., The magnetization in nickel, Proc. Roy. Soc. Dub., 15, pp. 128-192. Brown, W., Mechanical stress and magnetization in nickel, N. Climento, 1 (D. pp. 276-36. Brown, W., Mechanical stress and magnetization in nickel, N. Climento, 1 (D. pp. 276-36. Brown, W., Mechanical stress and			Thermcelectromotive Force
 121 1916 Relative polynomenous metales, journ, Kuess, Phys. Chem., Soc., 48, pp. 279-296. 124 1917 Relative polynomenous metales, journ, Kuess, Phys. Chem., 2001, 48, pp. 605-62. 125 1910 V. Hevesy, G., and Wolff, E., The nickel-silver thermeelement, Phys. Zeit., 7, p. 473. 126 1920 Pecheux, H., The metalement of temperature by means of the nickel-cooper transport of provide the prov	122	1916	Laschtschenko, P. N., Bükov, S. F., and Efremov, S. V., The thermoelectric properties
 of nickel to nichrome, Met, and Chem. Engrag., 15, p. 193. vietzel, G., Thermeelectric behaviour of metals al fow temperatures, Ann. d. Physik, 4 pp. 605-622. vietzel, G., Thermeelectric behaviour of metals al fow temperatures, Ann. d. Physik, 7 pp. 605-622. Bordon, J., and Fleming, J. A., Thermo-electric powers of metals and alloys between the metal balance of metals and properties of metals and metals, Ann. d. Physik, 27 (pp. 955. Berr, G., Rocent investigations on the magnetic properties of metals and alloys between the metals, Jann, J., and Fleming, J. A., Thermo-electric powers of metals and elements, Zeit Metal Bands, 19, 25, and others. Magnetic Properties Eer, G., Rocent investigations on the magnetic properties of metals and elements, Zeit Metal Bang, Soc., 9, pp. 183-602. Williams, S. R., The magnetic and the mechanical properties of steel and nickel, J. Clifford Properties, Janne Metals, Janne Janne, Janne Janne Metals, Janne Metals, Janne Metals, Janne Metals, Janne Metals, Janne Metals, Janne Janne, Janne Janne, Janne Janne, Janne Janne, Janne Janne Metals, Janne Metals, Janne Janne Janne, Janne Jann	123	1916	Northrup, E. F., Measurements of resistivity and thermal emf of and the thermal emf
 125 1910 V. Havesy, G., and Wolf, E., The nickel-silver thermoetement, Phys. Zeit, 7, p. 47., 79 126 1909 Pecheux, H., The measurement of temperature by means of the nickel-copper therm couple, La Lumière Électrique, 7, p. 137. 127 108 Wagner, E., Effect of pressure upon the thermal end of metals, Ann. d. Physik, 27 (128 128 1995 129 199 Feger, G., Recent investigations on the magnetic properties of metals and alloys between 1 temperatures of the boiling point of water and that of liquid air, Phil. Mag., 40, pp. 95-1 129 1919 Feger, G., Recent investigations on the magnetic properties of metals and elements, Zeit Metalikunde, 10, p. 82, and others. 131 1917 Weilass, S. R., The magnetic and the mechanical properties of steel and nickel, J. Clei land Eng. Soc., 9, pp. 183-202. 131 1917 133 1917 Perrow, M., Magnetic properties of iron, nickel, and cobalt, above the Curie point, Ph. Terry, E. M., Magnetic properties of long. Univ. J. pp. 113-126; Rev. Ma May, p. 483. 134 1917 Honda, K., and Ogura, Y., The magnetization and electrical resistivity of iron, steel, an inckel at high temperatures, Sci. Reports Tohoku Iunp. Univ. 3, pp. 113-126; Rev. Ma May, p. 483. 135 1912 Honda, K., and Ogura, Y., The magnetization and electrical resistivity of iron, steel, an inckel and nickel, Chem. 2, pp. 165-170. 136 1912 137 1912 139 1917 139 1917 130 1917 130 1917 130 1917 131 1918 131 1918 131 1918 131 1917 1310 1310 131 131	124	1914	of nickel to nichrome, Met. and Chem. Engng., 15, p. 193. Wietzel, G., Thermoelectric behaviour of metals at low temperatures, Ann. d. Physik, 43, pp. 605-622.
 Wagner, E., Effect of pressure upon the thermal emf of metals, Ann. d. Physik, 27 (p. 955.) Dewar, J., and Fleming, J. A., Thermo-electric powers of metals and alloys between t temperatures of the boiling point of water and that of liquid air, Phil. Mag., 40, pp. 95-1 Eger, G., Recent investigations on the magnetic properties of metals and elements, Zeit Metalikunde, 10, p. 82, and others. Weiss, Pierre, and Piccard, A., A new magnetic thermal phenomenon, C. R., 166, p. 3 Williams, S. R., The magnetic and the mechanical properties of isele and nickel, J. Clei land Eng. Soc., 9, pp. 183-202. Perry, E. M., Magnetic properties of iron, nickel, and cobalt, above the Curie point, Ph. Terry, E. M., Magnetic properties of iron, nickel, and cobalt, above the Curie point, Ph. Terry, E. M., Magnetic properties of the alloys of nickel inp. Univ., 3, pp. 113-126, Rev. Met May, p. 483. Berown, W., Changes, D.Y. Jung's modulus of nickel with magnetic field, Proc. Roy. So Dub., 15, pp. 185-102. Biot, O., The magnetization of alloys of nickel and cobalt, Archives dees Sciences, 3 (pp. 237-268.) Jezsonniez, A. B., Magnetic properties of the alloys of iron, cobalt, nickel, and mangane within Comgress of Appled Chem, 2, pp. 155-102. Jiot, D., Magnetic astic phenomena in fron and nickel, N. Cimento, 9 (b), pp. 237-268. Jezsonniez, M. B., Magnetic trospertization in nickel, Proc. Roy. Soc., Dub., 15, pp. 237-268. Brown, W., Mcchanical stress and magnetization in nickel, New Notsond Co., thi 199. Boiley, H. E., Magnetic culturion in tickel and nickel, N. Cimento, 9 (b), pp. 238-28. Brown, W., Mcchanical stress and magnetization in nickel, Proc. Dub. Roy, Soc., 12, pp. 309-314. Brown, W., Mcchanical stress and magnetization in nickel, Proc. Noy. Soc., 12, pp. 309-314. Brown, W., Mcchanical stress and magnetization in nickel, Proc. Noy. Soc.,	125 126	1910 1909	V. Hevesy, G., and Wolff, E., The nickel-silver thermoelement, Phys. Zeit., 7, p. 473. Pecheux, H., The measurement of temperature by means of the nickel-copper thermo- couple. La Lumière Électrique, 7, p. 137.
 128 1895 Devan, J., and Fleming, J. A., Thermo-electric powers of metals and alloys between 1 temperatures of the boiling point of water and that of liquid air, Phil. Mag., 40, pp. 95–10 129 1919 Eger, G., Recent investigations on the magnetic properties of metals and elements, Zeit Metalikunde, 10, p. 28, and others. 130 1918 Wellisans, S. R., The magnetic and the mechanical properties of steel and nickel, J. Clev land Eng. Soc., 9, pp. 183–202. 131 1917 Terry, E. M., Magnetic properties of iron, nickel, and cobalt, above the Curie point, Ph. Rev. (2), 9, pp. 255, 394–413. 131 1917 Terry, E. M., Magnetic properties of iron, nickel, and cobalt, above the Curie point, Ph. Rev. (2), 9, pp. 255, 394–413. 131 1917 M., Changes in Young's modulus of nickel with magnetic field, Proc. Roy. So Dub., 16, pp. 185–192. 134 1914 Hang, Coercive force of nickel, Ann. d. Phys., 46 (6), pp. 1065–1072. 135 1913 Gauss, R., Coercive force of nickel, Ann. d. Phys., 46 (6), pp. 1065–1072. 136 1912 Jessonnier, A. B., Magnetic properties of the alloys of iron, cobalt, nickel, and magnet with boron, Eighth Int. Congress of Applied Chem., 2, pp. 1055–107. 136 1911 Both, O., The magnetization of alloys of nickel and cobalt, Archives des Sciences, 3 pp. 237–368. 137 1912 Jessonnier, A. B., Magnetic properties of the alloys of iron, cobalt, nickel, and magnet with boron, Eighth Int. Congress of Applied Chem., 2, pp. 105–170. 137 1912 Brown, W., Mechanical stress and magnetization in nickel, Proc. Noy. Soc. Dub., 19, pp. 24–8. 139 130 141 1910 Brown, W., Mechanical stress and magnetization in nickel, Proc. Roy. Soc., 19, pp. 305–36. 141 1910 Brown, W., Mechanical stress and magnetization in nickel, Proc. Dub. Roy. Soc., 19, pp. 26–36. 142 1902 Hill, B., The magnetic induction in iron and other metals, The Van Nostrand Co., thi edition. 	127	1908	Wagner, E., Effect of pressure upon the thermal emf of metals, Ann. d. Physik, 27 (4),
Magnetic Properties 129 Eger, G., Recent investigations on the magnetic properties of metals and elements, Zeit Metallkunde, 10, p. 82, and others. 131 1918 Wellams, S. R., The magnetic and the mechanical properties of steel and nickel, J. Clev land Eng. Soc., 9, pp. 183-202. 132 1917 Try, K., Magnetic properties of iron, nickel, and cobalt, above the Curle point, Ph. Try, K., Magnetic properties of iron, nickel, and cobalt, above the Curle point, Ph. Try, K., Magnetic properties of recover and the mechanical properties of resolution of nickel and cobalt, above the Curle point, Ph. Try, F. M., Magnetic properties of nickel and cobalt, above the Curle point, Ph. Try, K., M., Magnetic properties of nickel and cobalt, Archives des Sciences, 2 pp. 293-308. 134 1912 Gauss, R., Coercive force of nickel, Ann. d. Phys., 46 (6), pp. 1065-1072. 135 1913 Gauss, R., Coercive force of nickel, Ann. d. Phys., 46 (6), pp. 1065-1072. 136 1913 Gauss, R., Coercive force of nickel, Ann. d. Phys., 46 (6), pp. 1065-1072. 136 1913 Ercolini, G., Magnetic-elastic phenomena in iron and nickel, N. Cimento, 2 (6), pp. 213-214. 137 1912 Jessonnies, A. B., Magnetic and magnetization in nickel, Proc. Roy. Soc., 12, pp. 203-308. 1391 Ercolini, G., Magnetic cultivion in angnetization in nickel, Proc. Roy. Co., 10, pp. 214-214. 1391 Istreet and magnetization in nickel, Proc. Roy. Co.,	128	1895	bewar, J., and Fleming, J. A., Thermo-electric powers of metals and alloys between the temperatures of the boiling point of water and that of liquid air, Phil. Mag., 40, pp. 95-119.
 Igg. Eger, G., Recent investigations on the magnetic properties of metals and elements, Zeit Metalikunde, 10, p. 82, and others. Igg. Weiss, Pierre, and Piccard, A., A new magnetic thermal phenomenon, C. R., 166, p. 3 Igg. Weilams, S. R., The magnetic and the mechanical properties of steel and nickel, J. Clevt land Eng. Soc., 9, pp. 183-202. Igg. Terry, E. M., Magnetic properties of iron, nickel, and cobalt, above the Curie point, Ph. Rev. (2), 9, pp. 255, 394-413. Igg. Mond, K., and Ogura, Y., The magnetization and electrical resistivity of iron, steel, an nicket at high temperatures, Sci. Reports Tokoku Imp. Univ., 3, pp. 113-126; Rev. Mt. Magr, 46. Igo. J., 46. Igo. C., The magnetization of aloys of nickel and cobalt, Archives des Sciences, 5 (2006), O., The magnetization of aloys of nickel and cobalt, Archives des Sciences, 5 (2006), O., The magnetization of aloys of nickel and cobalt, Archives des Sciences, 5 (2006), O., The magnetization of aloys of nickel and cobalt, Archives des Sciences, 5 (2006), O., The magnetic properties of the alloys of iron, cobalt, nickel, and magnetization in nickel, Proc. Roy. Cob., 1 (2007), 203-61. Igssonnier, A. B., Magnetic properties of the alloys of iron, cobalt, nickel, and magnetization in nickel, Proc. Roy. Cob., 1 (2005), 203-204. Igr. Science and magnetization in nickel, Proc. Roy. Soc., 12, pp. 28-48. Igr. M., Magnetic helaviour of nickel-copper and of nickel, in alloys, Verh. deutschen Phys. Ges., 4, p. 194. Igr. H. E., Magnetic qualities of nickel, Phil. Trans., 176, (A), p. 327. Igr. H. E., Magnetic qualities of nickel, Phil. Trans., 176, p. 523. Igr. H. E., Magnetic qualities of nickel, Phil. Trans., 176, p. 523. Igr. H. E., Magnetic qualities of nickel, Phil. Trans., 176, p. 523. Igr. H. E., Magnetic qualities of nickel, Phil. Trans., 176, p. 523. Igr. H.			Magnetic Properties
 Weiss, Pierre, and Poinces. Weiss, Pierre, and Poinceard, A., A new magnetic thermal phenomenon, C. R., 166, p. 3 Weiss, Pierre, and Poincard, A., A new magnetic thermal phenomenon, C. R., 166, p. 3 Pierre, and Poincard, A., A new magnetic thermal phenomenon, C. R., 166, p. 3 Pierre, and Poincard, A., A new magnetic thermal phenomenon, C. R., 166, p. 3 Pierre, and Poincard, A., A new magnetic thermal phenomenon, C. R., 166, p. 3 Pierre, and Poincard, A., Anew magnetic thermal phenomenon, C. R., 166, p. 3 Pierre, and Poincard, A., Anew magnetic thermal phenomenon, C. R., 166, p. 3 Pierre, and Poincard, Y., The magnetization and electrical resistivity of iron, steel, and May, p. 483. Pierre, and Poincard, Y., The magnetization and electrical resistivity of iron, steel, and margane with boron, Eighth Int. Congress of Applied Chem., 2, pp. 165–170. Piercoint, G., Bfetci deformation upon magnetic properties of nickel, N. Cimento, 1 (op. 237–268. Piercoint, G., Magneto-elastic phenomena in iron and nickel, Nr. Cimento, 2 (o), pp. 213–2140. Piercoint, G., Magnetic iros of nickel-copper and of nickel-N. N. Cimento, 1 (op. 237–268. Pionom, W., Mechanical stress and magnetization in nickel, Proc. Roy. Soc. Dub., 1 pp. 237–268. Pionom, W., Mechanical stress and magnetization in nickel, Nr. Cumento, 2 (o), pp. 213–218. Brown, W., Machanical stress and magnetization in nickel, Nr. Cumento, 2 (o), pp. 213–218. Brown, W., Machanical stress and magnetization in nickel, Nr. Ano Nostrand Co., thi deutschen Phys. Ges., 4, p. 144. Brown, W., Magnetic qualities of nickel, Phil. Trans., 179 (A), p. 327. Fining, J. A., Magnetic qualities of nickel, Phil. Trans., 179 (A), p. 327. Fining, C. A., Silliman Amer, Journ, (3), 30, p. 218. Fining, C. A., Silliman Amer, Jour	129	1919	Eger, G., Recent investigations on the magnetic properties of metals and elements, Zeit. f.
 1917 Terry, E. M., Magnetic properties of iron, nickel, and cobalt, above the Curie point, Ph. Rev. (2), 9, pp. 255, 394-413. 1917 Terry, E. M., Magnetic properties of iron, nickel, and cobalt, above the Curie point, Ph. Rev. (2), 9, pp. 255, 394-413. 1914 Honks, K., and Ogura, Y., The magnetization and electrical resistivity of iron, steel, at mice at the magnetization of alloys of nickel and to be the steel, at mice at the magnetization of alloys of nickel and cobalt, Archives des Sciences, 5 (2000). 1912 Bioch, O., The magnetization of alloys of iron, cobalt, nickel, and magnetic properties of the alloys of iron, cobalt, nickel, and magnetic properties of nickel, N. Cimento, 1 (pp. 237-268. 1911 Browin, W., Mechanical stress and magnetization in nickel, Proc. Roy. Soc., Dub., 19, pp. 28-48. 1910 Brown, W., Mechanical stress and magnetization in nickel, Proc. Dub. Roy. Soc., 12, pp. 203-268. 1911 Brown, W., Mechanical stress and magnetization in nickel, Proc. Roy. Soc., Dub., 1 pp. 28-48. 1910 Brown, W., Magnetic induction in nickel-copper and of nickel-tin alloys, Verh. deutschen Phys. Ges., 4, p. 194. 1910 Brown, J. A., Magnetic induction in strong fields at different temperatures, Phil. Mag. 29 (5). 182 Bouis, J. A., Magnetic qualities of nickel, Phil. Trans., 179 (A), p. 327. 184 Bio Sensity, J. A., Magnetic permetale site permetability and maximum of magnetism of nickel at cobalt, Phil. Mag., 48 (4), pp. 213-33. 1912 Schole, A., Silliman Amer. Journ. (3), 30, p. 218. 1874 Rowland, H. A., On the magnetic permetability and maximum of magnetism of nickel at cobalt, Phil. Mag., 48 (4), pp. 213-339. 1911 Brown, S. C. A., Electrolytic Solution Potential 1919 Schole, L. P., Single potential of nickel, Zeit. Electrochem., 15, p. 607. 1919 Schweitzer, A., Electrochemical behaviour of nickel, Trans. Am. Electr	130 131	1918 1917	Weiss, Pierre, and Piccard, A., A new magnetic thermal phenomenon, C. R., 166, p. 352. Williams, S. R., The magnetic and the mechanical properties of steel and nickel, J. Cleve- land Eng. Sec. 0. on 162 302
 1917 Rev. (2), 9, pp. 255, 394-413. 1918 Brown, N., Changes in Young's modulus of nickel with magnetic field, Proc. Roy. So Dub., 15, pp. 185-192. 1914 Honda, K., and Ogura, Y., The magnetization and electrical resistivity of iron, steel, a nickel at high temperatures, Sci. Reports Tohoku Imp. Univ., 3, pp. 113-126; Rev. Ma May, p. 483. 1913 Gauss, R., Coercive force of nickel, Ann. d. Phys., 46 (6), pp. 105-1072. 1914 Bloch, O., The magnetization of alloys of nickel and cobalt, Archives des Sciences, 5 pp. 293-308. 1915 Jessonniez, A. B., Magnetic properties of the alloys of iron, cobalt, nickel, and magnetic groups the solution of alloys of nickel and cobalt, Archives des Sciences, 1 pp. 237-268. 1911 Ercolini, G., Magneto-elastic phenomena in fron and nickel, N. Cimento, 2 (6), pp. 213-2. 1912 Brown, W., Mechanical stress and magnetization in nickel, Proc. Roy. Soc., Dub., 1 pp. 224-48. 1910 Brown, W., Mechanical stress and magnetization in nickel, Proc. Dub. Roy. Soc., 12, p 500-518. 142 1902 Hill, B., The magnetic behaviour of nickel-copper and of nickel-tin alloys, Verh. deutschen Phys. Ges., 4, p. 194. 1900 Du Bois, H. E., Magnetic qualities of nickel, Phil. Trans., 179 (A), p. 327. 147 1885 Ewing, J. A., Magnetic qualities of nickel, Phil. Trans., 179 (A), p. 327. 148 1874 Rowland, H. A., On the magnetic perneability and maximum of magnetism of nickel at cobalt, Phil. Mag., 48 (4), pp. 321-339. 1911 Sinits, A., and Labry de Bryn, C. A., Electrolytic behaviour of nickel, Trans. Am. Electrochem. So 29, pp. 217-254. 1915 1916 Bennett, C. W., and Burnham, S. W., Passivity of nickel, Trans. Am. Electrochem. So 29, pp. 217-254. 1917 Schoel, E. P., Single potential of nickel, Zeit. Electrochem, 15, p. 607. 1918 Schweitzer, A., Electrochemital behaviour of nickel, Trans. Am. Electrochem. 50, 29, pp. 207-290. 1917 Byony 2017-254. 1918 Benett, C	132	1917	Terry, E. M., Magnetic properties of iron, nickel, and cobalt, above the Curie point, Phys.
 Dub., 15, pp. 185-192. Honda, K., and Ogura, Y., The magnetization and electrical resistivity of iron, steel, a nickel at high temperatures, Sci. Reports Tohoku Imp. Univ., 3, pp. 113-126; Rev. Mc May, p. 483. Gauss, R., Coercive force of nickel, Ann. d. Phys., 46 (6), pp. 1055-1072. Bloch, O., The magnetization of alloys of nickel and cobalt, Archives des Sciences, 3 pp. 293-308. Jonz, S., K., Sterner, A. B., Magnetic properties of the alloys of iron, cobalt, nickel, and mangane with boron, Eighth Int. Congress of Applied Chem., 2, pp. 165-170. Broson, G., Barto, G., Magneto-elastic phenomena in iron and nickel, N. Cimento, 2 (6), pp. 213-28. Brown, W., Mechanical stress and magnetization in nickel, Proc. Roy. Soc., Dub., 1 pp. 28-48. Brown, W., Mechanical stress and magnetization in nickel, Proc. Dub. Roy. Soc., Jup. 500-518. Hill, B., The magnetic behaviour of nickel-copper and of nickel-tin alloys, Verh. deutschen Phys. Ges., 4, p. 194. Dus Bois, H. E., Magnetic qualities of nickel, Phil. Trans., 179 (A), p. 327. Berking, J. A., Magnetic qualities of nickel, Phil. Trans., 179 (A), p. 327. Berking, J. A., Experimental researches in magnetism. Phil. Trans., 176, p. 523. Rowland, H. A., On the magnetic perne-ability and maximum of magnetism of nickel at cobalt, Phil. Mag., 48 (4), pp. 321-339. Smits, A., and Labry de Bryn, C. A., Electrolytic behaviour of nickel, Proc. Roy. Aca Sci. Amsterdam, 20, p. 394. Smits, A., and Labry de Bryn, C. A., Electrolytic behaviour of nickel, Proc. Roy. Aca Sci. Misterdam, 30, p. 238. Schweitzer, A., Electronewica on over-voltage, Proc. Manchester Phil. Soc., 61, p. 607. Schweitzer, K., Electronewica behaviour of nickel, Trans. Am. Electrochem. So 29, pp. 217-254. Newberry, E., Recent work on over-voltage, Proc. Manchester Phil. Soc., 61, p. 607.<!--</td--><td>133</td><td>1917</td><td>Brown, N., Changes in Young's modulus of nickel with magnetic field, Proc. Roy. Soc</td>	133	1917	Brown, N., Changes in Young's modulus of nickel with magnetic field, Proc. Roy. Soc
May, p. 483. Gauss, R., Coercive force of nickel, Ann. d. Phys., 46 (6), pp. 1065–1072. Bloch, O., The magnetization of alloys of nickel and cobalt, Archives des Sciences, 1 pp. 293–306. Issonniex, A. B., Magnetic properties of the alloys of iron, cobalt, nickel, and mangane with born, Eighth Int. Congress of Applied Chem., 2, pp. 165–107. Bissonniex, A. B., Magnetic properties of nickel, N. Cimento, 2 (6), pp. 213–2. International Construction of alloys of iron, cobalt, nickel, and mangane with born, Eighth Int. Congress of Applied Chem., 2, pp. 165–107. Bissonniex, A. B., Magnetic properties of nickel, N. Cimento, 2 (6), pp. 213–2. Brown, W., Mechanical stress and magnetization in nickel, Proc. Roy. Soc., Dub., 1 pp. 22-48. Brown, W., Mechanical stress and magnetization in nickel, Proc. Dub. Roy. Soc., 12, p 1000-518. Hill, B., The magnetic behaviour of nickel-copper and of nickel-tin alloys, Verh. deutschen Phys. Ges., 4, p. 194. 114 1900 Du Bois, H. E., Magnetiz ation in strong fields at different temperatures, Phil. Mag. 29 (5). 114 1800 Du Bois, H. E., Magnetic permeability and maximum of magnetism of nickel an cobalt, Phil. Mag., 10, p. 324. 114 1800 Du Bois, H. E., Magnetic permeability and maximum of magnetism of nickel an cobalt, Phil. Mag., 48 (4), pp. 321–33	134	1914	Dub., 15, pp. 185-192. Honda, K., and Ogura, Y., The magnetization and electrical resistivity of iron, steel, and nickel at high temperatures, Sci. Reports Tohoku Imp. Univ., 3, pp. 113-126; Rev. Met.,
 137 1912 Jassoniez, A. B., Magnetic properties of the alloys of iron, cobalt, nickel, and mangane with boron, Eighth Int. Congress of Applied Chem., 2, pp. 165-170. 138 1911 Ercolini, G., Effect of deformation upon magnetic properties of nickel, N. Cimento, 1 (pp. 237-268. 139 1911 Brown, W., Mechanical stress and magnetization in nickel, Proc. Roy. Soc. Dub., 1 pp. 28-46. 141 1910 Brown, W., Mechanical stress and magnetization in nickel, Proc. Dub. Roy. Soc., 12, 1 500-518. 142 1902 Hill, B., The magnetic behaviour of nickel-copper and of nickel-tin alloys, Verh. deutschen Phys. Ges., 4, p. 194. 143 1900 Ewing, J. A., Magnetic induction in iron and other metals, The Van Nostrand Co., thi edition. 144 1890 Du Bois, H. E., Magnetization in strong fields at different temperatures, Phil. Mag. 29 (5). 145 1888 Ewing, J. A., Magnetic qualities of nickel, Phil. Trans., 179 (A), p. 327. 146 1885 Perins, C. A., Silliman Amer. Journ. (3), 30, p. 218. 147 1885 Ewing, J. A., Magnetic presences in magnetism, Phil. Trans., 176, p. 523. 148 1874 Rowland, H. A., On the magnetic perincebility and maximum of magnetism of nickel ar cobalt, Phil. Mag., 48 (4), pp. 321-339. 149 1918 Smits, A., and Labry de Bryn, C. A., Electrolytic behaviour of nickel, Proc. Roy. Aca Sci. Amsterdam, 20, p. 394. 149 1918 Smits, A., and Labry de Bryn, C. A., Electrolytic behaviour of nickel, Proc. Roy. Aca Sci. Amsterdam, 20, p. 394. 150 1917 Newberry, E., Recent work on over-voltage, Proc. Manchester Phil. Soc., 61, Mem. No. Chem. Alst., 11, p. 260. 151 1909 Schweitzer, A., Electrochemical behaviour of nickel, Zeit. Electro-Chem., 15, p. 607. 152 1909 Schweitzer, A., Electrochemical of nickel, Am. Chem. Journal, 41, p. 208. 153 1894 Neumann, B., Z. für Phys. Chem., 14, p. 215. 154 1895 Supp. 217-234. 155 1916 Bennett, C. W., and Burnham, S. W., Passivity of nickel, Trans. Am. Elec	135 136	1913 1912	May, p. 483. Gauss, R., Coercive force of nickel, Ann. d. Phys., 46 (6), pp. 1065-1072. Bloch, O., The magnetization of alloys of nickel and cobalt, Archives des Sciences, 33,
 with boron, Eighth Int. Congress of Applied Chem., 2, pp. 165-170. Ercolini, G., Bfreet of deformation upon magnetic properties of nickel, N. Cimento, 1 (pp. 237-266. 1911 Ercolini, G., Magneto-elastic phenomena in iron and nickel, N. Cimento, 2 (6), pp. 213-2. Brown, W., Mechanical stress and magnetization in nickel, Proc. Roy. Soc. Dub., 1 pp. 28-48. 1910 Brown, W., Mechanical stress and magnetization in nickel, Proc. Dub. Roy. Soc., 12, 1 500-518. 1911 Be, The magnetic behaviour of nickel-copper and of nickel-tin alloys, Verh. deutschen Phys. Ges., 4, p. 194. 1900 Ewing, J. A., Magnetic induction in iron and other metals, The Van Nostrand Co., thi edition. 1910 Du Bois, H. E., Magnetization in strong fields at different temperatures, Phil. Mag. 29 (5). 1828 Ewing, J. A., Magnetic qualities of nickel, Phil. Trans., 179 (A), p. 327. 1838 Ewing, J. A., Magnetic qualities of nickel, Phil. Trans., 179 (A), p. 327. 1848 Ewing, J. A., Chrle magnetic permeability and maximum of magnetism of nickel at orbalt, Phil. Mag., 48 (4), pp. 321-339. 1910 Electrolytic Solution Potential 1911 Smits, A., and Labry de Bryn, C. A., Electrolytic behaviour of nickel, Proc. Roy. Aca Sci. Amsterdam, 20, p. 394. 1917 Newberry, E., Recent work on over-voltage, Proc. Manchester Phil. Soc., 61, Mem. No. Chem. Alst., 11, p. 2640. 1918 Smits, A., and Labry de Bryn, C. A., Electrolytic behaviour of nickel, Proc. Schoch, E. P., Single potential of nickel, Acn. Chem. Journal, 41, p. 208. 192 Schweitzer, A., Electrochemical behaviour of nickel, Zeit. Electro-Chem., 15, p. 607. 193 Schweitzer, A., Electrochemical behaviour of nickel, Trans. Am. Electrochem. So 29, pp. 217-254. 194 Bennett, C. W., and Burnham, S. W., Passivity of nickel, Trans. Am. Electrochem. So 29, pp. 359-372. 1918 Bennett, C. W., and Burnham, S. W., Passivity of nickel, Trans. Faraday Soc., Nov. Byers and	137	1912	pp. 293-308. Jassonniex, A. B., Magnetic properties of the alloys of iron, cobalt, nickel, and manganese
 139 1911 Ercolini, G., Magneto-elastic phenomena in iron and nickel, N. Cimento, 2 (6), pp. 213-22 1911 Brown, W., Mechanical stress and magnetization in nickel, Proc. Roy. Soc. Dub., 1 1910 pp. 28-48. 1902 Hill, B., The magnetic behaviour of nickel-copper and of nickel-tin alloys, Verh. deutschen Phys. Ges., 4, p. 194. 1900 Ewischen Phys. Ges., 4, p. 194. 1900 Bois, H. E., Magnetic induction in iron and other metals, The Van Nostrand Co., thi deutschen Phys. Ges., 4, p. 194. 1830 Du Bois, H. E., Magnetic qualities of nickel, Phil. Trans., 179 (A), p. 327. 1845 Bessen G. C. A., Silliman Amer. Journ. (3), 30, p. 218. 1847 Ewing, J. A., Magnetic qualities of nickel, Phil. Trans., 176, p. 523. 1858 Ferdins, C. A., Silliman Amer. Journ. (3), 30, p. 218. 1867 Ewing, J. A., Experimental researches in magnetism, Phil. Trans., 176, p. 523. 1868 Rowland, H. A., On the magnetic permeability and maximum of magnetism of nickel at cobalt, Phil. Mag., 48 (4), pp. 321-339. 1917 Newberry, E., Recent work on over-voltage, Proc. Manchester Phil. Soc., 61, Mem. No. Chem. Alst., 11, p. 2640. 1918 Smits, A., and Labry de Bryn, C. A., Electrolytic behaviour of nickel, Proc. Roy. Aca Sci. Amsterdam, 20, p. 394. 1909 Schoch, E. P., Single potential of nickel, Am. Chem. Journal, 41, p. 208. 184 1854 Neumann, B., Z. für Phys. Chem., 14, p. 215. 1855 1916 Bennett, C. W., and Burnham, S. W., Passivity of nickel, Trans. Am. Electrochem. So 29, pp. 217-254. 1913 Schnistein, D., Relation between electrolytic and chemical processes, Z. Elektrochem 21, pp. 359-372. 1914 Bennett, Discussion of the passivity of nickel, Trans. Faraday Soc., Nov. Byers and Morgan, Passivity of nickel, Journ. Am. Chem. Soc., 33, pp. 1757-1761. 1913 Schoch, Solution potential and passivity of nickel, Am. Chem., 77, pp. 513-576. 1914 Bennett, Morgan, Passivity of	138	1911	with boron, Eighth Int. Congress of Applied Chem., 2, pp. 165-170. Ercolini, G., Effect of deformation upon magnetic properties of nickel, N. Cimento, 1 (6), pp. 237-268.
 141 1910 141 1910 142 1902 143 1900 144 1890 144 1890 145 1902 146 1890 147 1890 148 1900 148 1900 149 1901 149 1902 149 148 1490 149 149 141 1900 144 1890 145 1888 146 1880 147 1885 148 1890 149 1918 149 1918 149 1918 140 141 1909 141 1919 141 1910 142 1920 144 1890 144 1890 145 1888 146 1880 147 1885 148 1874 149 1918 149 1918 140 141 1919 141 1919 141 1919 141 1910 141 1910 141 1910 141 1910 142 1920 143 1920 144 1890 144 1890 144 1890 145 1888 146 1887 147 1885 148 1874 149 1918 149 1918 140 141 1910 141 19	139 140	1911 1911	Ercolini, G., Magneto-elastic phenomena in iron and nickel, N. Cimento, 2 (6), pp. 213-222. Brown, W., Mechanical stress and magnetization in nickel, Proc. Roy. Soc. Dub., 13, pp. 28-48.
 Hill, B., The magnetic behaviour of nickel-copper and of nickel-tin alloys, Verh. deutschen Phys. Ges., 4, p. 194. Ewing, J. A., Magnetic induction in iron and other metals, The Van Nostrand Co., thi edition. Du Bois, H. E., Magnetization in strong fields at different temperatures, Phil. Ma 29 (5). Ewing, J. A., Magnetic qualities of nickel, Phil. Trans., 179 (A), p. 327. Pertins, C. A., Silliman Amer, Journ. (3), 30, p. 218. Ewing, J. A., Magnetic qualities of nickel, Phil. Trans., 176, p. 523. Rowland, H. A., On the magnetic permeability and maximum of magnetism of nickel at cobalt, Phil. Mag., 48 (4), pp. 321-339. Electrolytic Solution Potential Smits, A., and Labry de Bryn, C. A., Electrolytic behaviour of nickel, Proc. Roy. Aca Sci. Amsterdam, 20, p. 394. Newberry, E., Recent work on over-voltage, Proc. Manchester Phil. Soc., 61, Mem. No. Chem. Alst., 11, p. 2640. Schweitzer, A., Electrochemical behaviour of nickel, Zeit. Electro-Chem., 15, p. 607. Schweitzer, A., Electrochemical behaviour of nickel, Trans. Am. Electrochem. So 29, pp. 217-254. Isgarischew, N., Single potential of nickel, Zeit. Elektrochem, 18, p. 568. Passivity Bennett, C. W., and Burnham, S. W., Passivity of nickel, Trans. Faraday Soc., Nov. Schmidt and Rathert, Discussion of the passivity of nickel, Trans. Faraday Soc., Nov. Schmidt and Rathert, Discussion of the passivity of nickel, Trans. Faraday Soc., Nov. Burnidt and Rathert, Discussion of the passivity of nickel, Trans. Faraday Soc., Nov. Burnidt and Rathert, Discussion of the passivity of nickel, Trans. Faraday Soc., Nov. Burnidt and Rathert, Discussion of the passivity of nickel, Trans. Faraday Soc., Nov. Burnidt and Rathert, Discussion of the passivity of nickel, Am. Chem., Soc., 39, pp. 1757-1761. Grave, Investigation of the passivity of nickel, Am. Chem., Soc., 39, pp. 1757-1761.<td>141</td><td>1910</td><td>Brown, W., Mechanical stress and magnetization in nickel, Proc. Dub. Roy. Soc., 12, pp. 500-518</td>	141	1910	Brown, W., Mechanical stress and magnetization in nickel, Proc. Dub. Roy. Soc., 12, pp. 500-518
 144 1890 144 1890 144 1890 145 1888 146 1888 147 1888 148 1888 148 1888 148 1888 149 1888 149 1885 149 1885 140 1885 141 1885 141 1885 141 1885 142 1885 144 1885 145 1886 146 1885 147 1885 148 1874 144 1885 145 145 1886 146 1885 147 1885 148 1874 149 1918 141 149 1918 141 149 1918 141 149 1918 142 141 149 1491 144 149 1491 144 149 141 145 149 145 149 146 149 146 149 147 1485 148 149 149 141 149 141 149 141 149 141 140 141 141 149 142 149 144 149 144 149 144 149 144 149 144 149 145 145 146 149 146 149 146 149 147 148 148 149 141 149 141 149 141 140 141 141 149 14	142	1902	Hill, B., The magnetic behaviour of nickel-copper and of nickel-tin alloys, Verh. d. deutschen Phys. Ges., 4, p. 194. Ewing J. A. Wagnetic induction in iron and other metals. The Van Nostrand Co. third.
 144 1890 Du Bois, H. E., Magnetization in strong neids at different temperatures, Phil. Ma 29 (5). 1888 Ewing, J. A., Magnetic qualities of nickel, Phil. Trans., 179 (A), p. 327. 146 1888 Perkins, C. A., Silliman Amer, Journ. (3), 30, p. 218. 147 1885 Ewing, J. A., Experimental researches in magnetism, Phil. Trans., 176, p. 523. 148 1874 Rowland, H. A., On the magnetic permeability and maximum of magnetism of nickel an cobalt, Phil. Mag., 48 (4), pp. 321-339. 149 1918 Smits, A., and Labry de Bryn, C. A., Electrolytic behaviour of nickel, Proc. Roy. Aca Sci. Amsterdam, 20, p. 394. 150 1917 Newberry, E., Recent work on over-voltage, Proc. Manchester Phil. Soc., 61, Mem. No. Chem. Alst., 11, p. 2640. 151 1909 Schoeltzer, A., Electrochemical behaviour of nickel, Zeit. Electro-Chem., 15, p. 607. 152 1909 Schoeltzer, A., Electrochemical behaviour of nickel, Trans. Am. Electrochem. So 29, pp. 217-254. 154 Isgarischew, N., Single potential of nickel, Zeit. Elektrochem, 18, p. 568. 155 1916 Bennett, C. W., and Burnham, S. W., Passivity of nickel, Trans. Am. Electrochem. So 29, pp. 217-254. 156 1915 Reliation passivity, Trans. Faraday Soc., Nov. Schmidt and Rathert, Discussion of the passivity of nickel, Trans. Faraday Soc., Nov. 159 1913 Schmidt and Rathert, Discussion of the passivity of nickel, Trans. Faraday Soc., Nov. 159 1913 Byers and Morgan, Passivity of nickel, Journ. Am. Chem. Soc., 33, pp. 1737-1761. 160 1911 Grave, Investigation of the passivity of nickel, Am. Chem. Soc., 30, pp. 173-1761. 161 1909 Schoch, E. P., Passivity of nickel, Journ. Am. Chem. Soc., 30, pp. 173-276. 161 1909 Schoch, E. P., Passivity of nickel, Journ. Am. Chem. Soc., 30, pp. 173-276. 161 1909 Schoch, Solution potential and passivity of nickel, Autum meeting, Am. Electro-Chem. Soc. 164 1904 LeeBlanc, M., and LeeJ, MW. G., The passivity of nickel, Butmann Festschrift, no. 183-164	144	1900	edition.
 145 1888 Ewing, J. A., Magnetic qualities of nickel, Phil. Trans., 179 (A), p. 327. 146 1885 Perkins, C. A., Silliman Amer, Journ. (3), 30, p. 218. 147 1885 Ewing, J. A., Experimental researches in magnetism, Phil. Trans., 176, p. 523. 148 1874 Rowland, H. A., On the magnetic permeability and maximum of magnetism of nickel an cobalt, Phil. Mag., 48 (4), pp. 321-339. 149 1918 Smits, A., and Labry de Bryn, C. A., Electrolytic behaviour of nickel, Proc. Roy. Aca Sci. Amsterdam, 20, p. 394. 150 1917 Newberry, E., Recent work on over-voltage, Proc. Manchester Phil. Soc., 61, Mem. No. Chem. Alst., 11, p. 2640. 151 1909 Schowlizer, A., Electrochemical behaviour of nickel, Zeit. Electro-Chem., 15, p. 607. 152 1909 Schowlizer, A., Electrochemical behaviour of nickel, Trans. Am. Electrochem. Soc. 29, pp. 217-254. 154 Isgarischew, N., Single potential of nickel, Zeit. Elektrochem, 18, p. 568. 155 1916 Bennett, C. W., and Burnham, S. W., Passivity of nickel, Trans. Am. Electrochem. Soc. 29, pp. 217-254. 156 1917 Schmidt and Rathert, Discussion of the passivity of nickel, Trans. Faraday Soc., Nov. 159 1918 Schmidt and Rathert, Discussion of the passivity of nickel, Trans. Faraday Soc., Nov. 159 1911 Grave, Investigation of the passivity of nickel, Zeit. Phys. Chem., 77, pp. 513-576. 161 1909 Schwidt and Rathert, Discussion of the passivity of nickel, App. 1757-1761. 162 1909 Byers and Morgan, Passivity of nickel, Journ. Am. Chem. Soc., 30, pp. 1735-76. 151 1909 Schoch, E. P., Passivity of nickel, Journ. Am. Chem. Soc., 30, pp. 1735-76. 152 193 Schoch, Solution potential and passivity of nickel, Am. Electro-Chem. 82-256. 153 194 Byers and Morgan, Passivity of nickel, Journ. Am. Chem. Soc., 30, pp. 1735-76. 154 195 Grave, Investigation of the passivity of nickel, Am. Chem. Journ., 41, pp. 232-256. 155 1916 Byers, H. G., Passivity of nickel, Mum. Mee	144	1890	29 (5).
 Ewing, J. A., Éxperimental researches in magnetism, Phil. Trans., 176, p. 523. Rowland, H. A., On the magnetic permeability and maximum of magnetism of nickel an cobalt, Phil. Mag., 48 (4), pp. 321-339. Electrolytic Solution Potential Smits, A., and Labry de Bryn, C. A., Electrolytic behaviour of nickel, Proc. Roy. Aca Sci. Amsterdam, 20, p. 394. Isoure and the magnetic permeability and maximum of magnetism of nickel an cobalt, Phil. Mag., 48 (4), pp. 321-339. Electrolytic Solution Potential Smits, A., and Labry de Bryn, C. A., Electrolytic behaviour of nickel, Proc. Roy. Aca Sci. Amsterdam, 20, p. 394. Isoure and the magnetic permeability of nickel, Zeit. Electro-Chem., 15, p. 607. Schweitzer, A., Electrochemical behaviour of nickel, Zeit. Electro-Chem., 15, p. 607. Schoch, E. P., Single potential of nickel, Am. Chem. Journal, 41, p. 208. Neumann, B., Z. für Phys. Chem., 14, p. 215. Isgarischew, N., Single potential of nickel, Zeit. Elektrochem, 18, p. 568. Passivity Bennett, C. W., and Burnham, S. W., Passivity of nickel, Trans. Am. Electrochem. So 29, pp. 217-254. Symposium on passivity, Trans. Faraday Soc., 9, pp. 203-290. Schmidt and Rathert, Discussion of the passivity of nickel, Trans. Faraday Soc., Nov. Byers and Morgan, Passivity of nickel, Journ. Am. Chem., Soc., 33, pp. 1757-1761. Igons and Morgan, Passivity of nickel, Journ. Am. Chem., Soc., 33, pp. 1757-1761. Byers, H. G., Passivity of nickel, Journ. Am. Chem., Soc., 30, p. 1718. Bennett, E. P., Passivity of nickel, autum meeting, Am. Electro-Chem. 82-199. Burta and Passivity of nickel, Journ. Am. Chem., Soc., 30, p. 173-1761. Burta and Levi, M. G., The passivity of nickel, Burtana Festschrift, no. 183-164. Bernett, H. W., Weithy of nickel, autum meeting, Am. Electro-Chem. 83-199. 	145 146	1888 1885	Ewing, J. A., Magnetic qualities of nickel, Phil. Trans., 179 (A), p. 327. Perkins, C. A., Silliman Amer. Journ. (3), 30, p. 218.
Electrolytic Solution Potential 149 1918 Smits, A., and Labry de Bryn, C. A., Electrolytic behaviour of nickel, Proc. Roy. Aca Sci. Amsterdam, 20, p. 394. 150 1917 Newberry, E., Recent work on over-voltage, Proc. Manchester Phil. Soc., 61, Mem. No. Chem. Alst., 11, p. 2640. 151 1909 Schoch, E. P., Single potential of nickel, Zeit. Electro-Chem., 15, p. 607. 153 1894 Neuman, B., Z. für Phys. Chem., 14, p. 215. 154 Isgarischew, N., Single potential of nickel, Zeit. Elektrochem, 18, p. 568. Passivity 155 1916 Bennett, C. W., and Burnham, S. W., Passivity of nickel, Trans. Am. Electrochem. So 29, pp. 217-254. 156 1915 158 1913 159 1916 Bennett, C. W., and Burnham, S. W., Passivity of nickel, Trans. Am. Electrochem. So 29, pp. 217-254. 157 1913 158 1913 159 Schmidt and Rathert, Discussion of the passivity of nickel, Trans. Faraday Soc., Nov. 159 1911 159 1913 150 Schmidt and Rathert, Discussion of the passivity of nickel, Journ. Am. Chem., Soc., 33, pp. 1757-1761. <td>147 148</td> <td>1885 1874</td> <td>Ewing, J. A., Experimental researches in magnetism, Phil. Trans., 176, p. 523. Rowland, H. A., On the magnetic permeability and maximum of magnetism of nickel and cobalt, Phil. Mag., 48 (4), pp. 321-339.</td>	147 148	1885 1874	Ewing, J. A., Experimental researches in magnetism, Phil. Trans., 176, p. 523. Rowland, H. A., On the magnetic permeability and maximum of magnetism of nickel and cobalt, Phil. Mag., 48 (4), pp. 321-339.
 149 1918 Smits, A., and Labry de Bryn, C. A., Electrolytic behaviour of nickel, Proc. Roy. Aca Sci. Amsterdam, 20, p. 394. 150 1917 Newberry, E., Recent work on over-voltage, Proc. Manchester Phil. Soc., 61, Mem. No. Chem. Alst., 11, p. 2640. 151 1909 Schoch, E. P., Single potential of nickel, Am. Chem. Journal, 41, p. 208. 183 1894 Neuman, B., Z. für Phys. Chem., 14, p. 215. 154		1	Electrolytic Solution Potential
 150 1917 Newberry, E., Recent work on over-voltage, Proc. Manchester Phil. Soc., 61, Mem. No. Chem. Alst., 11, p. 2640. 151 1909 Schoch, E. P., Single potential of nickel, Am. Chem. Journal, 41, p. 208. 153 1894 Neumann, B., Z. für Phys. Chem., 14, p. 215. 154 Isgarischew, N., Single potential of nickel, Zeit. Electro-Chem, 15, p. 607. 155 1916 Bennett, C. W., and Burnham, S. W., Passivity of nickel, Trans. Am. Electrochem. So 29, pp. 217-254. 156 1917 Reichinstein, D., Relation between electrolytic and chemical processes, Z. Elektrochem 21, pp. 359-372. 158 1913 Schmidt and Rathert, Discussion of the passivity of nickel, Trans. Faraday Soc., Nov. 159 1911 Byers and Morgan, Passivity of nickel, Journ. Am. Chem., Soc., 33, pp. 1757-1761. 160 1911 Grave, Investigation of the passivity of nickel, Am. Chem., Soc., 39, pp. 153-576. 161 1909 Schoch, E. P., Passivity of nickel, Journ. Am. Chem., Soc., 30, pp. 183-576. 162 1909 Schoch, E. P., Passivity of nickel, autumn meeting, Am. Electro-Chem. 864 1909 Schoch, E. P., Passivity of nickel, autumn meeting, Am. Electro-Chem. 874 1909 Schoch, E. P., Passivity of nickel, autumn meeting, Am. Electro-Chem. 874 1909 Schoch, E. P., Passivity of nickel, autumn meeting, Am. Electro-Chem. 874 1909 Schoch, E. P., M. G., The passivity of nickel, Burn. 875 Non. 183-164 1909 Schoch, E. P., M. G., The passivity of nickel, Burn. 875 Non. 183-164 1909 Schoch, E. P., Mastivity of nickel, Burn. Am. Chem. Soc., 183, pp. 1757-1761. 164 1909 Schoch, E. P., Mathematical and passivity of nickel, Autum meeting, Am. Electro-Chem. 874 1975 Non. 183-164 1909 Schoch, E. P., Mathematical and passivity of nickel, Burn. 875 Non. 183-164 1909 Schoch, Solution potential and passivity of nickel, Burn. 183-164 1909 Schoch, E. P., Passivity of nickel, autum meeting, Am. Electro-Chem. 874 1995 Schoch, E. P., Passivity of nickel, Burn. 875 Non. 183-164 1909 Schoch, Solution potential and passivity of	149	1918	Smits, A., and Labry de Bryn, C. A., Electrolytic behaviour of nickel, Proc. Roy. Acad.
 Schweitzer, A., Electrochemical behaviour of nickel, 2eft. Electro-Chem., 19, p. 607. Schoch, E. P., Single potential of nickel, Am. Chem. Journal, 41, p. 208. Neumann, B., Z. für Phys. Chem., 14, p. 215. Isgarischew, N., Single potential of nickel, Zeit. Elektrochem, 18, p. 568. Passivity Bennett, C. W., and Burnham, S. W., Passivity of nickel, Trans. Am. Electrochem. So 29, pp. 217-254. Reichinstein, D., Relation between electrolytic and chemical processes, Z. Elektrochem 21, pp. 359-372. Symposium on passivity Trans. Faraday Soc., 9, pp. 203-290. Schmidt and Rathert, Discussion of the passivity of nickel, Trans. Faraday Soc., Nov. Byers and Morgan, Passivity of nickel, Journ. Am. Chem., Soc., 39, pp. 1757-1761. Grave, Investigation of the passivity of nickel, Ame. Chem., Soc., 30, p. 1753-576. Byos, H. G., Passivity of nickel, Journ. Am. Chem. Soc., 30, p. 1732-256. Byers, H. G., Passivity of nickel, Journ. Am. Chem. Soc., 14, pp. 232-256. Byers, H. G., Passivity of nickel, Journ. Am. Chem. Soc., 19, pp. 173-276. Byers, H. G., Passivity of nickel, Journ. Am. Chem. Soc., 19, pp. 175-276. Byers, H. G., Passivity of nickel, Journ. Am. Chem. Soc., 19, pp. 178-276. Byers, H. G., Passivity of nickel, Journ. Am. Chem. Soc., 19, pp. 178-276. Byers, H. G., Passivity of nickel, Journ. Am. Chem. Soc., 19, pp. 178-276. Byers, H. G., Passivity of nickel, Journ. Am. Chem. Soc., 10, p. 1718. Hanc, M., and Levi, M. G., The passivity of nickel, Butmann Festschrift. no. 183-164. Leeltanc, M., and Levi, M. G., The passivity of nickel, Butmann Festschrift. no. 183-164. 	150	1917	Newberry, E., Recent work on over-voltage, Proc. Manchester Phil. Soc., 61, Mem. No. 9; Chem. Alst., 11, p. 2640.
 Isgarischew, N., Single potential of nickel, Zeif. Elektrochem, 18, p. 568. Passivity 155 1916 Bennett, C. W., and Burnham, S. W., Passivity of nickel, Trans. Am. Electrochem. So 29, pp. 217-254. 156 1915 Reichinstein, D., Relation between electrolytic and chemical processes, Z. Elektrochen 21, pp. 359-372. 157 1913 Schmidt and Rathert, Discussion of the passivity of nickel, Trans. Faraday Soc., Nov. 158 1913 Schmidt and Rathert, Discussion of the passivity of nickel, Trans. Faraday Soc., Nov. 159 1911 Byers and Morgan, Passivity of nickel, Journ. Am. Chem. Soc., 33, pp. 1757-1761. 160 1919 Schoch, Solution potential and passivity of nickel, Anter. Chem. Journ., 41, pp. 232-256. 161 1909 Schoch, E. P., Passivity of nickel, Journ. Am. Chem. Soc., 30, p. 1718. 164 1904 LeBlanc, M., and Levi, M. G., The passivity of nickel, Buffmann Festschrift, n. 183-16 	151 152 153	1909 1909 1894	Schoch, E. P., Single potential of nickel, Am. Chem. Journal, 41, p. 208. Neumann, B., Z. für Phys. Chem., 14, p. 215.
Passivity 155 1916 Bennett, C. W., and Burnham, S. W., Passivity of nickel, Trans. Am. Electrochem. So 29, pp. 217-254. 156 1915 Reichinstein, D., Relation between electrolytic and chemical processes, Z. Elektrochem 21, pp. 359-372. 157 1913 Schmidt and Rathert, Discussion of the passivity of nickel, Trans. Faraday Soc., Nov. 158 1913 Schmidt and Rathert, Discussion of the passivity of nickel, Trans. Faraday Soc., Nov. 159 1911 Byers and Morgan, Passivity of nickel, Journ. Am. Chem. Scc., 33, pp. 1757-1761. 160 1911 Grave, Investigation of the passivity of nickel, Amer. Chem., Journ., 41, pp. 232-256. 161 1909 Schoch, Solution potential and passivity of nickel, Amer. Chem. Journ., 41, pp. 232-256. 162 1909 Schoch, E. P., Passivity of nickel, Journ. Am. Chem. Soc., 30, p. 1718. 163 1909 Schoch, E. P., Passivity of nickel, Journ. Am. Chem. Soc., 30, p. 178- 164 1904 LeBlanc, M., and Levi, M. G., The passivity of nickel, Buftmann Fetschrift, n. 183-16	154	•••••	isganischew, w., Single potential of nickel, Zen. Elektrochem, 18, p. 508.
 Bennett, C. W., and Burnham, S. W., Passivity of nickel, Trans. Am. Electrochem. So 29, pp. 217-254. Reichinstein, D., Relation between electrolytic and chemical processes, Z. Elektrochen 21, pp. 359-372. Symposium on passivity, Trans. Faraday Soc., 9, pp. 203-290. Schmidt and Rathert, Discussion of the passivity of nickel, Trans. Faraday Soc., Nov. Byers and Morgan, Passivity of nickel, Journ. Am. Chem. Scn., 33, pp. 1757-1761. Grave, Investigation of the passivity of nickel, Amer. Chem., Journ., 41, pp. 232-256. Byers, H. G., Passivity of nickel, Journ. Am. Chem. Soc., 30, p. 1718. Schoch, E. P., Passivity of nickel, Journ. Am. Chem. Soc., 30, p. 1718. Hogen, M. G., The passivity of nickel, Buttrane meeting, Am. Electro-Chem. St. Le Bure, M. M. G., The passivity of nickel, Buttranen Festschrift. no. 183-164. 			Passivity
 156 1915 Reichinstein, D., Relation between electrolytic and chemical processes, Z. Elektrochen 21, pp. 359-372. 157 1913 Symposium on passivity, Trans. Faraday Soc., 9, pp. 203-290. 158 1913 Schmidt and Rathert, Discussion of the passivity of nickel, Trans. Faraday Soc., Nov. 159 1911 Byers and Morgan, Passivity of nickel, Journ. Am. Chem. Soc., 33, pp. 1757-1761. 160 1911 Grave, Investigation of the passivity of nickel, Amer. Chem., Journ., 41, pp. 232-256. 161 1909 Schoch, Solution potential and passivity of nickel, Amer. Chem., Soc., 30, p. 1718. 163 1909 Schoch, E. P., Passivity of nickel, Journ. Am. Chem. Soc., 30, p. 1718. 164 1904 LeBlanc, M., and Levi, M. G., The passivity of nickel, Boltzmann Festschrift. nu. 183-19 	155	1916	Bennett, C. W., and Burnham, S. W., Passivity of nickel, Trans. Am. Electrochem. Soc., 29, pp. 217-254.
 Symposium on passivity, trans. Faraday Soc., 3, pp. 200-20. Symposium on passivity, trans. Faraday Soc., 3, pp. 200-20. Schmidt and Rathert, Discussion of the passivity of nickel, Trans. Faraday Soc., Nov. Byers and Morgan, Passivity of nickel, Journ. Am. Chem. Soc., 33, pp. 1757-1761. Grave, Investigation of the passivity of nickel, Zeit. Phys. Chem., 47, pp. 513-576. Grave, Investigation of the passivity of nickel, Amer. Chem. Journ., 41, pp. 232-256. Byers, H. G., Passivity of nickel, Journ. Am. Chem. Soc., 30, p. 1718. Schoch, E. P., Passivity of nickel, autumn meeting, Am. Electro-Chem. Sof. LeBianc, M., and Levi, M. G., The passivity of nickel, Boltzmann Festschrift. no. 183-19 	156	1915	Reichinstein, D., Relation between electrolytic and chemical processes, Z. Elektrochem., 21, pp. 359-372.
 159 1911 Byers and Morgan, Passivity of nickel, Journ. Am. Chem. Soc., 33, pp. 1757-1761. 160 1911 Grave, Investigation of the passivity of nickel, Zeit. Phys. Chem., 77, pp. 513-576. 161 1909 Schoch, Solution potential and passivity of nickel, Amer. Chem. Journ., 41, pp. 232-256. 162 1909 Byers, H. G., Passivity of nickel, Journ. Am. Chem. Soc., 30, p. 1718. 163 1909 Schoch, E. P., Passivity of iron and nickel, autumn meeting, Am. Electro-Chem. Sol. 164 1904 LeBlanc, M., and Levi, M. G., The passivity of nickel, Boltzmann Festschrift. no. 183-19 	157 158	1913 1913	Symposium on passivity, Trans. Faraday Soc., 9, pp. 203-290. Schmidt and Rathert, Discussion of the passivity of nickel, Trans. Faraday Soc., Nov.
 School, Solution potential and passivity of nickel, Amer. Chem. Journ., 41, pp. 232-256. J909 Byers, H. G., Passivity of nickel, Journ. Am. Chem. Soc., 30, p. 1718. Schoch, E. P., Passivity of iron and nickel, autumn meeting, Am. Electro-Chem. Soc. 164 J904 LeBlanc, M., and Levi, M. G., The passivity of nickel, Boltzmann Festschrift. no. 183-19 	159	1911	Byers and Morgan, Passivity of nickel, Journ. Am. Chem. Soc., 33, pp. 1757-1761. Grave Investigation of the nassivity of nickel, Zeit, Phys. Chem., 77, no. 513-576
 Byers, H. G., Passivity of nickel, journ. Am. Chem. Soc., 30, p. 1718. 163 1909 Schoch, E. P., Passivity of iron and nickel, autumn meeting, Am. Electro-Chem. Soc. 164 1904 LeBlanc, M., and Levi, M. G., The passivity of nickel, Boltzmann Festschrift, no. 183-19 	161	1909	Schoch, Solution potential and passivity of nickel, Amer. Chem. Journ., 41, pp. 232-256.
164 1904 LeBlanc, M., and Levi, M. G., The passivity of nickel, Boltzmann Festschrift, np. 183-19	162 163	1909 1909	Byers, H. G., Passivity of nickel, Journ. Am. Chem. Soc., 30, p. 1718. Schoch, E. P., Passivity of iron and nickel, autumn meeting, Am. Electro-Chem. Soc.
Jour. Soc. Chem. Ind., 23, p. 667.	164	1904	LeBlanc, M., and Levi, M. G., The passivity of nickel, Boltzmann Festschrift, pp. 183-195, Jour. Soc. Chem. Ind., 23, p. 667.

17634°—21——7

4. BIBLIOGRAPHY—Continued

Text refer- ences	Year	Name and title
		ELECTRICAL PROPERTIES OF NICKEL-Continued
		Optical Properties of Nickel
165 166	1919 1919	Takamine, T., The Stark effect for metals, Astrophys. Journ., 50, p. 23. Randall, H. M., and Barker, E. F., Infra-red spectra of cobalt, nickel, manganese, and
167	1919	McLennan, J. C., Ainslee, D. S., Fuller, D. S., Vacuum arc spectra of various elements in
168	1915	Burgess, G. K., and Waltenberg, R. G., The emissivity of metals and oxides, Bull. Bur. Standards, 11.
169 170 171	1911 1910 1900–3	Littleton, J. T., The optical constants of metals, Phys. Rev., 33, p. 453. Meyer, W., Optical constants of metals, Ann. d. Phys. (4), 31, p. 1017. Hagens, E., and Rubens, H., Optical constants of metals, Ann. d. Phys. (4), 8, p. 1, 1902; (4), 11, p. 352, 1900; (4) 11, p. 873, 1903.
		MECHANICAL PROPERTIES OF NICKEL
		Elasticity
172 173	1919 1917	Mallock, A., Elasticity and temperature, Proc. Roy. Soc. Lond., 95, p. 429. Johnstone, A., Effect of elastic stretch on thermal conductivity of nickel and other wires, Proc. Phys. Soc. 29, p. 105.
174 175 176	1917 1915 1915	Williams, S. R., Magneto-striction in nickel, Phys. Rev., 10, p. 129. Heaps, C. W., Magneto-striction and resistance of iron and nickel, Phys. Rev., 6, pp. 34–42. Koch, K. R., and Dannecker, C., Elasticity of metals and alloys at high temperatures, Ann. der Dhueik, 47, p. 107
177	1915	Harrison, E. P., The measurement of the temperature coefficient of Young's modulus for matallic wires with special application to nickal Proc. Phys. Soc. London 27, p. 8
178 179	1910 1907	Faust, O., and Tammann, G., Elastic limit of metals, Z. Phys. Chem., 75, p. 108. Grüneisen, E., Elastic constants of metals under small deformation, Ann. d. Phys., (4) 22, p. 801
180	19067	Wassmuth, Change of elasticity with temperature, Wien. Ber. 115 (2a), p. 223, 1906; 116
189 190 191	1901 1901 1900	(2a), p. 1243, 1907. Schaeffer, C., Drude Ann., (5), p. 220, 1901; (9), pp. 665, 1124, 1902. Benton, J. R., Drude Ann., 3, p. 471 (1900); Phys. Rev. 12, p. 36, 1901. Searle, G., Phil. Mag., (5), 49, p. 193.
		Tensile Properties
192	1919	Guertler, W., Ludwik's investigations on the strength of metals at high temperatures, Zeit.
193 194 195	1915 1912 1912	Metallkunde, 10, p. 225. Tensile strength of nickel at high temperature, Stahl u. Eisen, Nov., p. 1184. Guillaume, C. E., The ductility of commercial nickel, C. R., March, p. 748. Bregowsky, I. M., and Spring, L. W., The effect of temperature on the mechanical properties
196	1902	Wedding, Mechanical properties of nickel and manganese bearing nickel, Stahl u. Eisen, 22. p. 1287.
197	1889	Le Chatelier, H., Tensile properties of metals at high temperatures, C. R., 109, p. 24.
		TECHNOLOGY OF NICKEL
198 199 200 201 202 203	1918 1917 1917 1913 1912 1907	Pure sheet nickel, cold rolled, Metal Industry (Apr. 5, 1918), 12, p. 273. Melting of nickel, Stahl 3. Eisen, Dec., p. 1192. Oxy-acetylene welding of nickel, Chem. and Met. Engng., 17, p. 140. Stephan, M., Electric melting of copper and nickel, Met. and Chem., 11, p. 22. Neumann, B., Electric melting of nickel, Stahl u. Eisen, Jan., p. 67. Preparation of malleable nickel, Metallurgie, 4, p. 538.
204	1907	Sperry, E. S., Preparation of malleable nickel, Brass World and Platers Guide, 3, Jan., pp. 3-10; Metallurgie, 4, p. 155. Wedding Barg, J. Lithorn Zoit, 53, p. 140
205 206 207	1893 1897 1894	Wedding, Berg, u. Hutterini Zeit., 52, p. 149. Garnier, J., The fluidity of melled nickel, C. R., 124, p. 1447. Fleitman, R., Method for producing ductile or malleable nickel, German patent 75848, 73423, 28450 (1884)
208 209 210 211	1884 1880 1880	Selve and Lotter, Malleable nickel, Ber. d. deutsch. Chem. Ges., 17, p. 219. Garnier, Production of malleable nickel, C. R., 91, p. 331. Fleitman, Production of malleable nickel, Monit. Scient., (37) 10, p. 541. Müller, Thermal treatment of metals and alloys, Metall und Erz, 10, p. 219.
		Electrodeposition of Nickel
212	1919	Blum, W., Factors governing the structure of electrodeposited metals, Trans. Am. Electro-
213 214	1919 1918	Froctor, C. H., Nickel plating cast or sheet aluminum, Metal Industry, 17, p. 25. Kohlschutter, V., and Vuilleumier, E., Physical phenomena accompanying cathodic deposition of metals (nickel), Zs. Elektrochem., 24, nn. 300-321.
215 216 217	1918 1918 1918	Later, E. P., Nickel solutions, Foundry, 46, p. 213. Later, E. P., Preparation and use of rapid nickel baths, Foundry, 46, pp. 23-25. Clark, R. F., Depositing nickel on cast iron from a hot electrolyte, Metal Rec. (Dec., 1918), 4, pp. 401-402.

4. BIBLIOGRAPHY-Continued

Text refer- ences	Year	Name and title
		TECHNOLOGY OF NICKEL—Continued
		Electrodeposition of Nickel-Continued
218 219 220 221	1918 1917 1916 1916	Thick deposit of electrolytic nickel, Chem. and Met. Engng., Oct. 15, 1918, 19, p. 640, Krom, L. J., The manufacture of nickel anodes, Met. Industry, 15, pp. 147–148, Watts, O. P., Rapid nickel plating, Trans. Am. Electrochem. Soc., 29, p. 395. Mathers, F. C., Stewart, E. H., and Sturdevant, E. G., Nickel plating, Trans. Am. Elec- trochem. Soc. 29, pn. 383-304
222 223	1916 1914	Hammond, L. D., Electrodeposition of nickel, Trans. Am. Electrochem. Soc., 30, pp. 201–229. Bennett, C. W., Kenny, H. C., and Douglass, R. P., Electrodeposition of nickel, Trans. Am Electrochem Soc. 25, pp. 335–345
224	1913	Kreeman, R., Suchy, C. T., and Maas, R., Electrodeposition of alloys; deposition of iron
225	1913	Watts, O. P., Electrodeposition of cobalt and nickel, Trans. Am. Electrochem. Soc., 23, pp. 99-152.
226 227	1909	Schweitzer, A., The electrochemical behaviour of nickel, D. Ing. Diss. Stuttgart. Kern, E. F., and Fabian, F. G., Electrodeposition of nickel, School of Mines (Columbia) Quarterly, 29, No. 4.
		ALLOYS OF NICKEL
228 229 230	1919 1919 1919	McKinney, P. E., Discussion, A. I. M. M. E., Bull., Dec., p. 3185. Burgess, G. K., and Woodward, R. W., Conservation of tin, Trans. A. I. M. E., 58, p. 175. Melting silver, nickel, and bronze alloys by electricity, Engng. and Min. Jnl. (Feb. 15, 1919), 107 nn 323-324
231	1918	Escard, Jean, The preparation in the electic furnace of some metals of industrial application, Rev. Gen. Elec., 4, p. 375.
232 233	1918 1919	Guillaume, C. E., Substitutes for platinum, Nature, 102, p. 64. Metals and alloys, Metal Industry, London.
234	1918	Performance and equipment of 2-ton electric furnace, Elect. Rev., West. Elect., 73, p. 747.
235	1918	Escard, Jean, Ferrous alloys, Rev. Gen. Sci., 29, p. 706.
237	1917	Kalmus, H. F., and Stoke, K. B., Influence of nickel on the rusting of ingot iron, Journ.
238	1915	Burgess and Ashton, Strength of alloys of electro iron and Monel metal, Met. and Chem. Eng., 8, p. 452; 1915.
239	1915	Parr, S. W., and McFarland, D. F., The analysis of complex alloys of the chromium, nickel, conner type, Trans. Am. Just. Metals, 9, p. 218.
240	1915	Parker, W. B., Alloys for high-speed superheated turbine blading, Journ. Inst. Met., 14, p. 25.
241 242	1914 1913	Law, Alloys and their Industrial Application, Griffin and Co., London. Turbine blade alloys, Metal Industry, 5, p. 451.
243 244	1912 1912	Ghaler, H., Nickeliferous pig iron, Giesserei-Zeitung, Feb., p. 73. Von Miller, H., The effect of additions on the properties of normal tin bronze, Metallurgie, 9, pp. 63-71.
245	1912	Vickers, C., A new alloy of high tensile strength, Foundry, 40, p. 107.
240	1911	Hiorns, A. H., The effect of impurities in alloys, Met. Ind., 9, No. 8.
248	1911	New copper alloy, Practical Engineer, 44, p. 663.
479	1910	Aug., p. 221.
250	1910	Honda, K., The magnetic properties of some alloys as a function of composition and tempera- ture, Ann. der Phys., 32, (4), p. 1003.
251	1909	Wüst, The shrinkage of metals and alloys, Metallurgie, Dec., p. 769.
253	1908	Guillet, L., Special cast iron, particularly that carrying nickel, C. R., 145, p. 552.
254 255	1901 1894	Hiorns, Mixed metals. Styffe, Knut, Nickel and its important alloys, Oest. Zeit. Berg. u. Hüttenm, 42, pp. 307,
256		Portevin, Work of Tammann's Laboratory on alloys, Rev. de Met., 5, p. 838.
257 258	••••••	Wood, R. A., The Waterburry book of alloys. Hatfield, W. H., Cast iron in the light of recent research.
		Binary Alloys of Nickel
259 260	1912 1909–12	Guertler, W., Handbuch der Metallographie, Gebr. Borntraeger, Berlin. Bornemann, K., Die binären Metallegierungen.
		Aluminum-Nickel
261 262	1919 1917	Aluminum and its light alloys, Bureau of Standards Circular, No. 76. Von Zeerleder, Effect of iron, tungsten, and nickel on resistance of aluminum to acid correspondentally up Erz 14, n. 255
263	1915	Schirmeister, H., Zur Kenntnis der binären aluminum-legierungen, Stahl u. Eisen, 35,
264	1915	pp. 049, 873, 990. Schirmeister, H., Investigation of binary aluminum alloys, Stahl u. Eisen, 35, 1916, pp.
265	1914	648, 873, Rev. Metallurgie, 12, 1915, Nos. 12 and 996, pp. 464-470, Canac, J., and Tassilly, E., Aluminum and nickel, Bull. Soc. d'Encour. p. l'Ind. Nat., 121, pp. 366-371.

4. BIBLIOGRAPHY-Continued

Text refer- ences	Year	Name and title
		TECHNOLOGY OF NICKEL-Continued
		Aluminum-Nickel-Continued
266	1908	Gwyer, A. C. C., Alloys of aluminum with copper, iron, nickel, cobalt, lead, and cadmium
267 268 269	1902 1901 1900	Z. anorg. Chemie, 57, 1908, pp. 113-153; Abst. Chem. Zentralblatt, 1908, 1, pp. 1033-1035 Guillet, Aluminum-nickel, Genie Civil, 41, pp. 170, 394. Brunck, O., The aluminum-nickel diagram, Ber., 34, p. 2733. Nickel-aluminum as bell metal, Uhlands Verkehrszeitung u. ind. Rundschau, 14, 1900,
270	1899	Mink, Nickel-aluminum alloy, Metallarbeiter, 25, 1899, No. 2, pp. 734-735.
		Antimony-Nickel
271 272 273	1912 1908 1906	Nickel-antimony alloys, J. Russ. Phys. Chem. Soc., 43, p. 375. Journ. Phys. Chem. Soc., 37, p. 528; C. A., 1908, p. 1415. Lossew, K., The alloys of nickel and antimony, Zeit. Anorg. Chem., 49, p. 58.
		Arsenic-Nickel
274 275 276 277 278	1916 1913 1907 1907 1900	Beutell, A., Nickel-arsenides, Zentralblatt für Mineralogie, p. 49. Friedrich, K., Cobalt-nickel arsenides, Metall. u. Erz, 10, p. 659. Schemtuczny, Alloys of nickel and arsenic, Journ. Russ. Phys. Chem., 39, p. 125. Friedrich, K., and Bennisson, F., Nickel and arsenic, Metallurgie, 4, p. 200. Granger, A., and Didier, G., Nickelous arsenide, C. R., 130, p. 914.
		Bismuth-Nickel
279	1908	Voss, G., The binary alloys of nickel with tin, lead, thallium, bismuth, chromium, mag- nesium, zinc, cadmium, Zeit. Anorg. Chem., 57, p. 34.
		Boron-Nickel
280 281	1915 1896	Giebelhausen, H., Nickel-borides, Z. Anorg. Chem., 91, p. 257. Moissan, H., Nickel and cobalt borides, C. R., 122, p. 424.
		Carbon-Nickel
282	1918	Ruff, O., Bormann, W., Keilig, F., Relation of carbon to manganese, nickel, iron, and cobalt. Mit über Forschungarbeiten auf dem Gebiete des Ingenieurwesens, 209.
283	1915	Briner, E., and Senglet, R., Experiments on the carbides of aluminum, nickel, and copper, Journ, Chim. Phys., 13, pp. 351-375.
284	1915	Borman, W., The temperature concentration diagram of carbon with manganese, nickel, and iron, Diss. Kgl. Techn. Hochschule, Danzig.
285	1914	Ruff, O., and Borman, W., and Keilig, F., Investigation at higher temperatures nickel and carbon, Zs. Anorg. Chem., 88, p. 386; Forschungsarbeiten, No. 209.
286	1913	Ruff, O., and Gersten, E., Carbides of manganese and nickel, Berichte der deutsch. Chem. Ges., 46, p. 400.
287 288	1912 1912	Gersten, E., The carbides of iron, manganese, and nickel, Diss. Hochschule, Danzig, 1912. Ruff, O., Equilibrium diagrams of carbon with iron, nickel, cobalt, and manganese, Ber.,
289	1912	Ruff, O., Martin, W., Über die Löslichkeit von Kohlenstoff in Nickel., Metrg., 9 (12), pp.
290 291	1910 1910	Leroux, Fr., The equilibrium diagram of nickel-carbon alloys, Metallurgie, Jan., p. 10. Friedrich, K., and Leroux, A., The equilibrium of nickel-carbon alloys, Metallurgie, 7, pp. 10-13.
292	1909	Lambris, G., Investigation into the absorption of carbon by metals during electrolysis from aqueous solutions with particular reference to nickel. Doktor-dissertation, Aachen,
293	1907	Wilms, O., Nickel-carbon, DrIng. Diss., Berlin.
		Cerium-Nickel
294	1920	Cerium misch-metal, Brass World, 16, p. 89.
		Chromium-Nickel
295 296	1912 1919	Kowalke, Nickel-Chromium, Eighth Int. Cong. of App. Chem.
		Cobalt-Nickel
297	1914	Waehlert, Cobalt-Nickel and Cobalt-Copper-Nickel, Zeits. Ost. Berg. Hütt., 62, pp. 341, 357, 374, 392, 406.
298	1913	Ruer, R., and Kaneko, K., The electrical resistivity and the hardness of nickel-cobalt alloys, Ferrum, 10, p. 257.
299	1912	Weiss, P., Magnetic properties of ierromagnetic metals; iron-nickel, nickel-cobalt, and cobalt-iron, Trans. Far. Soc., 8, p. 149, 1912
300 301	1912 1911	Ruer, R., and Kaneko, K., The system; nickel-cobalt, Metallurgie, 9, p. 419. Weiss, P., and Bloch, O., Magnetism of nickel and cobalt and their alloys, C. R., 153,
302	1904	Guertler, W., and Tanmann, G., The alloys of nickel and cobalt, Zeit. Anorg. Chem., 42, p. 351.
Nickel

Text refer- ences	Year	Name and title
		TECHNOLOGY OF NICKEL-Continued
		Copper-Nickel
303 304	1920 1919	McDonald, A. E., Nickel coinage, Canadian Chemical Journal, 4, No. 4, pp. 106-108. Thompson, F. C., and Barclay, W. R., Carbon in 80-20 cupro-nickel melted in the electric
305 306	1919 1919	Davis, E. J., Metallography applied to non-ferrous metals, Foundry, 47, pp. 304, 395, 438, Rosenhain, W., and Hanson, D., Properties of some copper alloys, Journ. Inst. Metals
307 308	1919 1919	Eastick, T. H. A., Cupro-Nickel, Metal Ind., London (Feb. 21, 1919), 14, pp. 141-143, Ellis, O. M., The effect of work on metals and alloys, Journ. Inst. Met., 21, p. 319.
309 -	1919 1010	Eastick, T. H. A., Cupro-nickel, Met. Ind., 17, pp. 26-28.
311	1919	Properties of nickel-copper alloys, Foundry, Sept. 1, 1919, p. 607.
312	1918	Braid, A. E., Pure carbon, free manganese, and manganese-copper, Bull. A. I. M. M. E., p. 1697.
313 314	1918 1918	Copper, U. S. Bureau of Standards Circular No. 73. Fonseca, A., Some magnetic properties of nickel and copper alloys, Univ. La Plata (July, 1918), pp. 175-191.
315	1918	Gordon, N. T., and Smith, D. P., Electrolytic potential of copper-nickel alloys, Journ. Phys. Chem., 22, p. 194.
310	1917	Lyon, G., Cupro-Nickel, Met. Ind., 8, p. 69.
318 319	1915 1915	Stahl, W., Effect of nickel on the mechanical properties of copper, Metall u. Erz, 12, p. 179. Gulliver, Quantitative effect of rapid cooling upon the constitution of binary alloys, J. Inst. Metals, 9, p. 120, 11, p. 250, 13, p. 263.
320 321	1914 1914	Guillet, New researches on the alloys of copper and zinc, Rev. de Met., 11, p. 1094, 1914. Kurnakoff, N., and Rapke, J., Hardness and elasticity of copper-nickel alloys, Zs. Anorg, Chem., 87, p. 269.
322 323	1913 1912	Guillet, Copper-nickel, Rev. de Met., 10, p. 1132; 1913. Bornemann and Rauschenplat, Electric conductivity of liquid alloys, Metallurgie, 9, pp. 474-505.
324 325	1912 1912	Kirke Rose, T., The annealing of coinage alloys, Journ. Inst. Met., 8, p. 86. Bengough, G. D., A study of the properties of alloys at high temperatures, Journ. Inst. Met. 7, p. 182.
326 327	1912 1912	Huntington, Effect of temperature on copper and its alloys, J. Inst. Metals, 8, p. 26. Boeddicker, G. A., Discussion of Study of properties of alloys at high temperatures by G. D. Bengough, Journ. Inst. Met., 7, p. 182.
328 329 330	1912 1911 1911	Baucke, Behaviour of copper in the impact cold bend test, Int. Zeit. f. Metallographie, 4, p. 9. Brittleness of copper-nickel alloys, Chemiker Zeitung, 1911, p. 622.
331	1910	Vigoroux, E., Nickel-copper alloys, Bull. de la Soc. Chim., 7, pp. 191-196.
332 333	1909 1909	Adan, R., Advantages of cupro-nickel over bronzes with respect to corrosion, Proc. Seventh Int. Cong. Applied Chem. London, sec. 111A, pp. 103-108. Stahl, Is nickel or arsenical-cooper better for modern conditions? Metallurgie, 6, p. 760.
334	1909	7, p. 14. Heckmann, Is nickel or arsenical-copper better for modern conditions? Metallurgie, 6.
335	1908	p. 760; 7, p. 163. Tafel, V. E., The constitution of the zinc-copper-nickel alloys as well as of the binary systems,
336	1907	copper-nickel, zinc-copper, and zinc-nickel, Metallurgie, 5, pp. 348, 376, 413. Kurnakow, Electrical properties of copper-nickel alloys, Journ. Russ. Phys. Chem. Ges., 39, p. 211.
337 338	1907 1907	Guertler and Tammann, Copper-nickel alloys, Zs. Anorg. Chem., 52, p. 25. Kurnakow, N. S., and Zemczuzny, S. F., The alloys of copper with nickel and gold; the electrical resistivity of the solid solutions. Zeit Anorg. Chem. 54, p. 149
339	1901	Reichardt, Copper-nickel alloys, Annalen der Physik, 6, p. 832.
340	1896	Gautier, H., Metallic alloys, C. R., 123, p. 172.
341 342	1894 1892	Charleton, A. G., Early inistory of the use of inicker coinage, journ. Roy. Soc. Arts, 1894. Feussner and Lindeck, Electrical properties of copper-nickel alloys, Verh. d. Phys. Ges. z. Berlin, 109; Abh. d. Phys. Reichsanstalt, 2, p. 503, 1895.
343	1868	Flight, Dr. Walter, Early history of the use of nickel coinage, Numismatic Chronicle, p. 305.
344 345 346	•••••	History of the growth and development of nickel coinage, Reports of the Royal Mint, London. Nickel coinage, Reports of the French Mint.
347		relation of working to the critical points, Bull. Soc. Ingen. Civ., 63, p. 547. Groves and Turner, Behaviour of alloys when heated in vacuo, J. London Chem. Soc., 91,
348	•••••	p. 585. Bruni and Mineghini, Formation of metallic solid solutions through diffusion in the solid, Inter. Jl. Metall., 2, p. 26.
		Gold-Nickel
349	1912	Beckman, The influence of pressure on the electrical conductivity of alloys, Arkiv. für Math. Astronomie Fysik, 42, p. 7; 1912, 1.
350	1905	Levin, Gold-nickel alloys, Zs. Anorg. Chem., 45, p. 238.

Text refer- ences	Year	Name and title
		TECHNOLOGY OF NICKEL-Continued
		Iron-Nickel
351 352	1920 1920	Yensen, T. D., Forgeability of iron-nickel alloys, Bull. A. I. M. M. E., No. 157. Yensen, T. D., Magnetic and electrical properties of iron-nickel alloys, Trans. A. I. E. E.
353 354 355	1919 1919 1918	Silsbee and Beal, Proc. Wash. Academy of Science. Neumann, B., The electrical resistivity of iron-nickel alloys, Stahl u. Eisen, June 12, p. 665. Honda, K., The electrical and thermal conductivity of iron-nickel and iron-cobalt alloys,
356	1917	Guillaume, C. E., Expansion of iron-nickel alloys after different heat and mechanical treat-
357	1917	Pfann, E., The structure of meteoric iron-nickel alloys, Int. Zs. für Metallographie, March,
358	1916	p. 62. Benvenuti, P., Alloys of iron and nickel deposited electrolytically, Atti v. Inst. Veneto, 76,
359	1916	p. 453. Bureau of Standards, Invar and related nickel steels, Circular No. 58 of the Bureau of
360 361	1914 1914	Standards. Chevenard, P., The dilatation of ferro-nickel, C. R., 159, pp. 175-178. Kohl, W., Nickel steels with 27 and 30 per cent nickel, Stahl u. Eisen, Aug., p. 1351, Thss.
362	1914	Berlin, No. 1913. Schleicher, A. P., and Guertler, W., Resistometric studies of iron-nickel alloys, Zs. Elek-
363 364 365	1912 1910 1910	trochem., 20, pp. 237-252. Kowalke, Nickel-Iron, Eighth Int. Cong. App. Chem. Hegg, Magnetic properties of iron-nickel alloys, Arch. des Sci. Phys. et Nat., 80, p. 15. Burgess, C. F., and Aston, J., Electrical resistivity of iron-nickel alloys, Met. and Chem.
366 367 368	1910 1909 1905	Ruer, R., and Schüz, E., The system; iron-nickel, Mettallurgie, 7, p. 415. Ruer, R., The system iron-nickel, Metallurgie, 6, p. 679. Guertler, W., and Tammann, G., The alloys of nickel and cobalt with iron, Zeit. Anorg.
369	1905	Jamieson, G. S., On the natural iron-nickel alloy, awaruite, Amer. Journ. Science, 19 (4),
		Lead-Nickel
370 371	1915 1907	Nickel-Lead alloys, Gazz. Chim. Ital., 44 (11), p. 375. Portevin, M. A., Alloys of nickel and lead, Rev. de Met., 4, p. 814.
		Magnesium-Nickel
372	1919	Guillet, Transformation of aluminum alloys, C. R., 169, p. 1042; 1919.
		Manganese-Nickel
373 374	1915 1908	Dourdine, A. D., Manganese-nickel alloys, Rev. Met., 12, pp. 125-133. Zemczuzny, Urasow, and Rykovskoff, Alloys of manganese-nickel, Z. Anorg. Chem., 57, p. 263.
		Molybdenum-Nickel
375 376	1911 1900	Baar, N., Alloys of the less common metals, Zs. Anorg. Chem., 70, p. 352. Sargent, C. L., The production of alloys of tungsten and molybdenum in the electric furnace, J. Am. Chem. Soc., 22, p. 783.
		Nitrogen-Nickel
377	1919	Vournasos, A. C., Normal nitrides of nickel and cobalt, C. R., 168, pp. 889-891.
		Oxygen-Nickel
378	1914	Burgess, G. K., and Foote, P. D., The emissivity of nickel oxide in the range 600 to 1300° C,
379	1914	Bull. Bur. Standards, 7, 1914. Sabatier, P., and Espil, L., The reduction of nickel oxide and the existence of a sub-oxide,
380	1914	C. R., 158, p. 668. Sabatier, P., and Espil, L., Reduction of the oxides of copper, lead, and nickel, C. R., 159,
381	1914	pp. 137-142. Berger, E., Reduction by hydrogen of copper and nickel oxides in the presence of a dehy-
382	1912	drating agent, C. R., 158, pp. 1798-1801. Journ. Inst. Metals, 8, p. 326. Wähler, Disconting average of reaction 2000-400 +0.; Zeit Elektrochem
203	1000	17, p. 92.
384	1908	nickel, and antimony, Journ. Am. Chem. Soc., 30, pp. 1344-1350.
385	1908	Chemie, 77, pp. 513-532; Journ. Soc. Chem. Ind., 27, p. 684.
386	1001	Alimand, Calculated oxygen pressure of 2Cu ₂ O ==4Cu+O ₂ from emi of Cu/Cu ₂ O.NaOH/Pt. H ₂ cell, Chem. Soc. Journ., 95, p. 2163. Baudaucad, O. Beagarabas, an elemental caulibria (reduction of risked arida). And do
301	1901	Chimie et de Physique, 24 (VII), pp. 74-85.

Nickel

Text refer- ences	Year	Name and title
		TECHNOLOGY OF NICKEL-Continued
		Palladium-Nickel
388	1913	Heinrich, F., The alloys of palladium and nickel, Zeit, Anorg, Chem., 83, p. 322,
		Phosphorus-Nickel
389 390	1912 1908	Jollibois, P., Some metallic phosphides. Proc. Int. Assoc. Testing Materials, 2, p. 13. Konstantinow, N., Compounds of nickel and phosphorus, Zeit. Anorg. Chem., 60, p. 405;
		66, p. 209. Selenium-Nickel
391	1900	Fonzes-Diacon, The selenides of nickel, C. R., 131, p. 556.
		Silicon-Nickel
392 393 394 395	1913 1911 1906 1895	Marsh, A. L., Nickel-silicon alloy for thermocouple, Brass World, 9, p. 388. Frilley, R., Alloys of nickel and silicon, Rev. Met., 8, p. 484. Guertler, W., and Tanmann, G., The silicides of nickel, Zeit. Anorg. Chem., 49, p. 93. Vigoroux, Nickel and cobalt silicides, C. R., 121, p. 686.
		Silver-Nickel
396	1907	Petrenko, G. J., The alloys of silver with iron, nickel, and cobalt, Zeit. Anorg. Chem., 53,
		p. 212. Sulphur-Nickel
397 398	1910 1910	Bornemann, K., Das System Nickel-Schwefel, Metallurgie, 7, p. 667. Bornemann, K., General characteristics of binary equilibrium diagrams, Metallurgie, 7,
399	1908	p. 740. Bornemann, K., The solidification of nickel-sulphur alloys, Metallurgie, 5, pp. 13, 61.
		Tantalum-Nickel
400	1918	Nickel-Tantalum, Metall u. Erz, Dec. 22, 1918.
		Tellurium-Nickel
401	1887	Fabre, Ch., Heat of formation of several tellurides, C. R., 105, p. 277.
		Tin-Nickel
402 403 404 405 406 407 408 409 410	1911 1911 1907 1907 1907 1897 1896 1890	Nickel-tin alloys, Nuovo Cim., 20 (11), p. 384: C. A., 1911, p. 3369. Bornemann, K., Alloys of tin, Metallurgie, 8, pp. 270, 284. Nickel-tin alloys, Ann. d. Physik, 32, p. 1003. Vigoroux, Em., The alloys of nickel and tin, C. R., 145, pp. 246, 429. Vigoroux, Em., The alloys of nickel and tin, C. R., 144, pp. 639, 712, 1351. Guillet, L., The alloys of nickel and tin, C. R., 144, p. 752, Rev. de Met; 4, p. 535. Charpy, G., Researches on alloys, Bull. Soc. d'Enc. p. VInd., 2 (5), p. 384. Gautier, H., The fusibility of metallic alloys, Bull. Soc. d'Enc. p. VInd., 6, (5) p. 1293. Heycock and Neville, Tin-nickel, Journ. Chem. Soc., 57, p. 376.
1		Titanium-nickel
411	1920	Hunter, M. A., and Bacon, J. W., Electrical properties of titanium alloys, Trans. Am. Electrochem. Soc., 1920.
		Tungsten-nickel
412	1916	Irmann, R., Nickel-tungsten alloys, Metall. u. Erz, 12, p. 358.
413	1915	Vanadium-nickel Giebelhausen, H., Behaviour of vanadium towards nickel, Zeit. Anorg. Chem., 91, pp. 251-262. Zinc-nickel
414 415 416 417 418	1919 1918 1909 1908 1907	Vigoroux, E., and Bourbon, A., Nickel and zinc, Bull. de la Soc. Chim., (4) 9, p. 873. Centnerszwher, M., Velocity of dissolution of metals in acid, Zeit. Phys. Chem., 92, p. 563. Vickers, C., Nickel alloys with zinc, Met. Industry, 1, p. 49. Tafel, V., Zinc-nickel alloys, Met. 5, pp. 413, 428. Tafel, V., Zinc and nickel, Metallurgie, 4, p. 781.
		TERNARY ALLOYS OF NICKEL
419	19 19	Merica, P. D., Waltenberg, R. G., and Finn, A. N., Mechanical properties and resist- ance to corrosion of rolled light alloys of aluminum and magnesium with copper, with nickel, and with manganese, Bureau of Standards Technologic Paper No. 132; Bull. A.I. N. M.E., No. 153.
420	1919	Merica, P. D., and Karr, C. P., Some tests of light aluminum casting alloys; the effect of heat-treatment Bureau of Standards Technologic Paper No. 139: Proc. A. S. T. M. 1919.
421	1917	Tchiyevski, N. P., and Mikailovski, S., The ternary system; iron-boron-nickel, Rev. de Met., Jan., pp. 16-21.

Text refer- ences	Year	Name and title
		TERNARY ALLOYS OF NICKEL-Continued
422	1916	British Thompson-Houston Co., Patented a malleable cobalt-nickel-manganese alloy for leading in wire for electric filament lamps, Journ. Soc. Chem. Ind., 35, p. 695.
423	1916	McFarland, D. F., and Harder, O. E., Chromium-copper-nickel alloys, Un. of Ill. Bull., 14, p. 10 (Bull. No. 93).
424	1915	Chiyevskii, N. P., and Mikhailovski, S., The ternary system iron-boron-nickel, Rev. Met. (Ex), 14, pp. 16-21; 1917, Rev. Soc. Russ. Metal, 1, pp. 547-559.
425	1915	inum alloys, Journ. Inst. Met., 13, p. 100.
420	1914	tenwesen, 42, pp. 341, 357, 374, 392, 406.
427 428	1914 1914	Partavano, N., and Mazzetti, C., Copper-nickel-lead alloys, Gazz. Chim. Ital, 442, p. 375. Gray, G. L., The electrical resistivity and the temperature coefficient of copper-nickel- manganese alloys, Resnselaer Poly. Inst., No. 4.
429 430	1914 1914	A new iron-nickel-copper alloy, Elektrochem. Zeit., 21, p. 27. Cesaris, P. de, Gold-copper-nickel, Gazz, Chim, Ital., 44, p. 27.
431	1914	Read, A. A., and Greaves, R. H., Influence of nickel on some copper aluminum alloys, Journ. Inst. Met., 11, p. 169.
432	1913	De Cesaris, Gold-silver-nickel alloys, Gazz. Chim. Ital., 43, 2, p. 609; 1913. De Cesaris, Copper-nickel-silver, Gazz. Chim. Ital., 43, 2, p. 365; 1913.
434	1912	Parravano, N., Alloys of nickel, manganese and copper, Gazz. Chim. Ital., 42, 2, p. 385.
435 436	1912	Haynes, Elwood, Alloys of nickel, cobalt and chromium, Metallurgie, 8, p. 92.
437	1910	Jänecke, E., Isomorphie ternären Mischungen bei Vorhandensein von Mischungslücken, Metallurgie, 7, p. 510; 1910.
438	1910	Vogel, R., Copper-iron-mickelanoys, Zs. Anorg. Chem., 67, p. 1. Roush, G. H., Hardness tests on alloys of nickel and copper with electrolytic iron, Met.
440	1908	Tafel, E., Studies in the constitution of the zinc-nickel, zinc-copper, and nickel-copper
441	1907	Wedding, H., Report of the melting of chromium-nickel-iron alloys, 7 Oct. meeting of Ver.
442	1901	Haentzschel, New alloys of nickel, copper, and aluminum, Verh. d. Ver. z. Beförderung d. Gewerbefleises: also Journ. Soc Chem. Ind., 20, p. 1217.
443		Dupuy and Portevin, Thermo-electric properties of iron-nickel-carbon alloys, C. R., 155, p. 1081.
444		Campbell and Knight, Cobalt-nickel arsenides of Temiskaming, nickeliferous pyrrhotites, Economic Geology, 2, p. 350; Economic Geology, 1, p. 767.
445		Burgess, C. F., and Aston, J., Strength of alloys of electrolytic iron with Monel metal, Met. and Chem. Engng., 8, p. 452.
		QUATERNARY ALLOYS OF NICKEL
446	1914	Parravano, de Cesaris, Mazzetti, Perret, Copper-nickel-silver-gold alloys, Gazz. Chim. Ital., 44, 2, p. 319; 1914.
447 448	1914 1913	Parravano, N., Copper-gold-silver-nickel alloys, Gazz. Chim. Ital., 44, p. 279. Schafer, Copper-nickel-lead-antimony-tin alloys, Z. prakt, Masch. Bav., 3, pp. —; 1913,
449	1912	Parravano, N., Quaternary alloys of iron, nickel, manganese, and copper, Gazz. Chim. Ital 49 n 580
		MONEL METAL
450	•••••	Monel metal pamphlet, The International Nickel Co.
452	1920	Tanner, J. R., and Smart, G. F., Materials to withstand superheated steam, Mechanical World, 62, p. 157.
453	1920	Williams, H. R., Working of Monel metal, Am. Machinist, 51, p. 509.
454	1920	Arnott, J., Monel metal blades in desiroyer turbines, Power, 51, No. 23. Arnott, J., Monel metal, Journ. Ind. Metal., 23, p. 545.
450	1920	1, No. 2, April, 1920.
457 458 459	1920 1920 1920	Diller, H. E., Foundry standardizes nickel alloys, Foundry, 48, No. 6, p. 209. Arnold, H. S., Use of Monel metal in steam turbines, The Inco, 1, No. 1, Feb., 1920. Coirtz, P., Rapid method ior analysis of Monel metal, Chem. and Met. Engng., 22, No. 1,
460	1919	p. 31. Nachrichten über Monel metal, Metall-Technik (Apr. 5, 1919), pp. 49-50.
461 462	1919	Williams, H. R., Monel metal and its uses, Iron Age (June 26, 1919), pp. 1703-1704.
463	1919	Williams, H. R., Working Monel metal, Am. Machinist (Sept. 11, 1919), 51, pp. 509-511.
464 465 466	1919 1918 1916	Minaus, H. K., Moher metal-me natural alwy, Kaw Waternal (June, 1919), 1, pp. 21/-221. Arnott, J., Note on Monel metal, Engrg. (Oct. 25, 1918), pp. 106, 451. McAdam, jr., D. J., Endurance and impact tests of metals, Proc. A. S. T. M., 16, 2, pp.
467	1916	Morris, G. B., Monel metal pickling trays, Machinery, 22, p. 893.
468 469	1916 1916	Mason, F. H., Monel metal, Mining and Sci. Press, 112, pp. 585-586. Monel metal, Met. and Chem. Engng., 14, p. 110.
470	1915	Parker, W. B., Specifications for alloys for high-speed superheated turbine blading, Journ. Inst. Metals, 14, p. 52.
471 472	1915 1914	Lake, E. F., Casting Monel metal, Machinery, 21, p. 584. Campbell, Wm., Some notes on Monel metal, Trans. Can. Mining Inst., 16, pp. 241-254.

Text refer- ences	Year	Name and title
		MONEL METAL-Continued
473	1914	Croasdale, Corrosion of Monel metal in sulphuric acid and other solutions, Engng. and
474	1914	Oakley, W. E., Monel metal, Metal Industry, 6, p. 61.
475	1913	Roush, Hardness of Monel metal by Scleroscope, Met. and Chem. Eng., 8, p. 468.
477	1912	Monel metal, Engineering, 94, p. 690; 1912.
478 479 480	1912 1912 1912	Resistance of Monel metal to corrosive action, Eng. Contr., 37 (12), p. 82. Duisberg, Carl, Neue Legierungen zur Verwendung zu chemischen Apparaten, 8, Int. Congr. Appl. Chem. Wash. (12), Int. Z. Met., 3 (12), pp. 212-213. Gaines, R. H., Monel metal, Journ. Indus. and Engng. Chem., 4, p. 354.
481	1912	Webster, W. K., Effect of cold working on the physical properties of metals, Proc. Int. Am. T. M., 1912, 7, p. 6. Monel metal Program 94 p. 690
483	1912	Monel metal castings, Met. and Chem. Engng. 9, p. 631.
484 485	1911 1910	Monel metal flux, Met. Industry, 2, p. 19.
		COPPER-NICKEL-ZINC ALLOYS; NICKEL-SILVER
486 487 488	1920 1920 1919	Price, W. B., and Davidson, P., Physical tests on sheet nickel-silver, Bull. A. I. M. E., 1920. Guillet, L., Alloys of copper, zinc, and nickel, C. R., 170, p. 460. Thompson, F. C., Note on graphite and oxide inclusions in nickel-silver, J. Inst. Met., 22,
489	1919	Hutchinson, R. V., Casting nickel-silver, a copper nickel-zinc alloy, Metal. Ind. (Jan.,
490	1919	Hutchinson, R. V., Casting nickel-silver—a copper-nickel-zinc alloy, Metal Ind., London (Feb. 28, 1919), 14, pp. 161–162.
491	. 1919	Magnesium and nickel-silver, Met. Ind., 17, p. 84.
492 493	1918 1918	Bassett, W. H., Causes and prevention of corrosion cracking, Proc. A. S. 1. M., 18, p. 153. Gillett, H. W., and Rhoads, A. E., Melting brass in a rocking electric furnace, Bull. Bur.
494	1917	Thompson, F. C., The annealing of nickel-silver (2), Journ. Inst. Met., 17, p. 119.
495	1916	Thompson, F. C., The appealing of nickel-silver (1), Journ, Just. Met., 15, p. 230.
497	1916	Thompson, F. C., Electrical resistance of copper-zinc-nickel alloys, Journ. Inst. Elect. Eng., 54, p. 222.
498	1915	Wood, R. A., German silver, Met. Ind., pp. 229, 322.
499	1914	Guillet L. Nickel-brasses Rev. Met. 10, np. 1130-1141
501	1914	Thompson, F. C., The metallography of German silver, J. Chem. Soc., 105, pp. 2342-2349.
502 503	1913 1013	Hudson, O. F., Microstructure of German silver, Journ. Inst. Met., 9, p. 109. Hirshberg, L. K., Composition and uses of German silver, Min, and Engng. World, Mar. 19, 1013 p. 624
504	1912	Guillet, L., Alloys of copper, zinc, and nickel, C. R., 155, p. 1512, Journ. Inst. Metals, 9, p. 213: 1913.
505 506	1912 1911	Kloss, H., German silver, Giesserei Zeitung, 9, pp. 347, 410. McWilliam, A., and Barclay, W. R., Adhesion of electro deposited silver in relation to the nature of the German silver base metal, Journ. Inst. Metals, 5, p. 214.
507 508	1909 1908	Leavitt, C. W., Metal Industry, London, 1, p. 210. Tafel, Nickel-silver alloys, Metallurgie, 5, pp. 343, 357, 413 (1908).
509	1903	Diegal, rotes on the corrosion of metals in sea water, Verh. Z. Beford, d. Gewerbelleisses, 1903.
310		NICET STREE ALL DEASS, 25. EJECTIOUREIL, 10, P. 010.
		MICKEL-SIEEL ALLOIS
511 512	1920 1920	Hibbard, H. D., Manufacture and uses of alloy steels, John Wiley & Sons, New York. Archer, R. S., Some metallurgical features of the Liberty engine, Chem. and Met. Engng.
513 514	1919	Morrin, H. A., Nickel-copper steel—its manufacture and use, Raw Material, 1, p. 343. Moore, H. F., and Gehrig, A. G., Some fatigue tests of Nickel-steel and Nickel-chromium
515	1918	steel, Proc. A. S. T. M., 1919. Colvorcoresses, G. M., Nickel-copper steel and its manufacture, Montreal Metallurgical
516	1918	Assoc., Apr., 1918, Chem. and Met. Engng., 20, p. 88. Bullens, D. K., Steel and its heat treatment. John Wiley & Sons.
517 518	1918 1917	Yearbook of the American Soc. for Testing Materials. Abbott, R. R., Topical discussion on the role of the several alloying elements in the alloy
519	1915	Waddell, J. A., Alloy steels in bridgework, Int. Engng. Congress, Sept., 1915.
520	1915	Colonnetti, G., Elasticity and strength of high nickel steels, Atti d. Reale Accademia d. Scienze di Torino, 2, 1915.
521	1915	HIDDard, Henry D., Manufacture and uses of alloy steels, Bur. of Mines (U.S.), Bull. No. 100, John Wiley & Sons, 1919.
566	1914	and carbon, and of nickel, iron, and carbon, Proc. Inst. Mech. Eng., March, May, pp. 223-279.
523 524	1912 1911	Mars, G., Die Spezialstühle, Ferdinand Enke, Stuttgart. McWilliams, A., and Barnes, E. J., Some properties of heat-treated 3 per cent nickel-steels, J. Fron and Steel Inst., 1912, pp. 302-310.

Text refer- ences	Year	Name and title
		NICKEL-STEEL ALLOYS-Continued
525 526 527 528 529 530 531	1910 1908 1904 1903 1902 1889	Clamer, G. H., Cupro-nickel steel, Proc. A. S. T. M., 10, pp. 267, 274. Waddell, J. A. L., Nickel-steel for bridges, Proc. Am. Soc. Civil Eng., 34, p. 726. Guillaume, Ch. Ed., Applications of nickel-steels, Gauthier-Villars, Paris. Colby, A. L., Nickel-steel; its properties and applications, Proc. A. S. T. M., 3, pp. 141-168. Dumas, Nickel-steels, Ann. des Mines, Mémoires, 1, p. 357. Riley, James, Nickel-steel, Journ. Ir. St. Inst., 1, p. 45. Handbook Society of Automotive Engineers.
		ELECTRICAL AND HEAT-RESISTING ALLOYS OF NICKEL
532 53 3	1920 1920	Major, R. M., Electrical alloys, Trans. Am. Electrochem. Soc., 1920. Gatward, W. A., Nickel-chromium alloys and thermocouples, Eng. Soc. of Western Penn-
534	1919	Jenkins, H., Heat treatment for nichrome castings, Canad. Machy. (Oct. 2, 1919), 22, pp.
535 536	1919 1919	Hunter, M. A., and Bacon J. W., Manganin, Trans. Am. Electrochem., Soc., 36. Drury, C. W., Cobalt; its occurrence, metallurgy, uses, and alloys, Ont. Bur. Mines report,
537	1919	Bash, F. E., Manufacture and electrical properties of constantan, Bull. A. I. M. E., No. 153, p. 2409.
538 539	1919 1919	Bash, F. E., The manufacture and properties of manganin, Bull. A. I. M. E., No. 153. Adams, L. H., Tables and curves for use in measuring temperatures with thermocouples,
540	1919	Foote, P. D., Harrison, T. R., Fairchild, C. O., Thermoelectric pyrometry. Bull. A. I. M. E.
541	1919	Lohr, J. M., Alloys suitable for thermocouples and base metal thermoelectric practice. Bull. A. L. M. M. E., No. 153.
542	1919	Kowalke, O. L., Some factors affecting the usefulness of base-metal thermocouples. Bull. A. I. M. M. E., No. 153.
543	1919	Symposium on pyrometry. Bull. A. I. M. M. E., No. 153.
544	1918	Anon., Inermocouples. J. Soc. Chem. Ind., 38, 29A.
546	1918	Thermocouples of nickel nickel-internations. Stablu, Eisen, Nov. 7, p. 1036.
547	1918	Hunter, M. A., and Bacon, J. W., Thermoelectric power of alloys. Trans. Am. Electrochem.
548	1917	Gray, G. L., Electrical resistance and temperature coefficients of copper-nickel-manganese alloys. Electrochem, Z. S. 23-171; C. A., 1919, p. 3143.
549	1917	Anon., Castings to withstand high temperatures. Iron Age, 100, pp. 256–257.
551	1917	Woodward, R. W., and Harrison, T. R., Note on the thermocouple; Nichrome-constantan.
552	1917	Hunter, M. A., and Sebast, F. M., The electrical properties of some high resistance alloys. Journ. Am. Institute of Metals, 11, p. 115.
553 554	1916 1916	Nichrome alloy castings. Chem. and Met. Engng., 15, p. 159. Sebast, F. M., and Gray, G. L., Electric resistance alloys. Trans. Am. Electrochem. Soc., 29 p. 560.
555	1915	Hopkins, A. J., Nichrome gauze. Journ. Am. Chem. Soc., 37, p. 321.
556 557	1912 1911	Kowalke, A study of thermo elements. Eighth Int. Cong. of App. Chem. Somerville, A. A., Temperature coefficients of electrical resistance, III. Phys. Rev., 33,
558	1910	p. 77. Somerville, A. A., Temperature coefficients of electrical resistance, II. Phys. Rev., 31,
559	1907	p. 261. Niccolai, G., Electrical resistivity at higher and lower temperatures. Atti d. Accad. d. Lincei,
560		16 (3), p. 185.
561	•••••	Sebast, Electrical properties of copper-nickel-chromium alloys. Rensselaer Poly. Inst. Eng. and Sci. Series No. 8.
		ACID-RESISTING ALLOYS OF NICKEL
562		Abridgment of United States, British, and German patents on alloys, covering the pro- duction of platinum substitutes including alloys having certain of the properties of platinum. Mock and Blum, 220 Broadway, New York.
563	1919	Matignon, C., Les Métaux resistants aux acides. Chimie et Industrie, 2, Nos. 11-12, pp. 1283-1302; 1919.
564 565	1919 1918	Platinum substitute. Metall u. Erz, 16, p. 129. Fehr, R. B., Comparing the corrosion of alloys. The Iron Trade Review, 63, No. 23, pp. 1296-1298; 1918.
566	1918	Matignon, C., Incorrodible ferro-silicons, acid-resisting. C. R., -, pp. 815-818.
567 568	1917 1915	Irmann, R., Nickel alloys, resistant. Metall u. Erz, 5, pp. 21, 37. Irmann, R., Effect of tungsten on nickel. Metallu. Erz, 12, pp. 358-364, Zeit. angew. Chem.,
569 570	1915 1911	Parr, S. W., An acid resisting alloy. Trans. Am. Inst. Met., 9, p. 211. Fairlie, A. M., Tests of acid resisting alloys. Metal Industry, 8, p. 64.
		, , , , , , , , , , , , , , , , , , , ,