
NISI

PUBLICATIONS

United States Department of Commerce
National Institute of Standards and Tectinology

ATL INST OP STAND & TECH RJ.C.

A111D3 7iaS3E

NIST Technical Note 1288

Video Processing With the Princeton

Engine at NIST

Bruce F. Field and Charles Fenimore

I

I

I

—QC

100

U5753

1288

1991

C.2

NIST._ Technical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology -Reports NIST
research and development in those disciplines of the physical and engineering sciences in which

the Institute is active. These include physics, chemistry, engineering, mathematics, and computer

sciences.

Papers cover a broad range of subjects, with major emphasis on measurement methodology and

the basic technology underlying standardization. Also included from time to time are survey

articles on topics closely related to the Institute's technical and scientific programs. Issued six

times a year.

Nonperiodicals

Monographs— Major contributions to the technical literature on various subjects related to the

Institute's scientific and technical activities.

Handbooks -Recommended codes of engineering and industrial practice (including safety codes)

developed in cooperation with interested industries, professional organizations, and regulatory

bodies.

Special Publications -Include proceedings of conferences sponsored by NIST, NIST annual

reports, and other special publications appropriate to this grouping such as wall charts, pocket

cards, and bibliographies.

Applied Mathematics Series -Mathematical tables, manuals, and studies of special interest to

physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series- Provides quantitative data on the physical and chemical

properties of materials, compiled from the world's literature and critically evaluated. Developed

under a worldwide program coordinated by NIST under the authority of the National Standard

Data Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data

(JPCRD) is published bi-monthly for NIST by the American Chemical Society (ACS) and the

American Institute of Physics (AIP). Subscriptions, reprints, and supplements are available from

ACS, 1155 Sixteenth St., NW., Washington, DC 20056.

Building Science Series -Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test

methods, and performance criteria related to the structural and environmental functions and the

durability and safety characteristics of building elements and systems.

Technical Notes -Studies or reports which are complete in themselves but restrictive in their

treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive

in treatment of the subject area. Often serve as a vehicle for final reports of work performed at

NIST under the sponsorship of other government agencies.

Voluntary Product Standards— Developed under procedures published by the Department of

Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all concerned interests with a basis

for common understanding of the characteristics of the products. NIST administers this program

as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series -Practical information, based on NIST research and experience,

covering areas of interest to the consumer. Easily understandable language and illustrations

provide useful background knowledge for shopping in today's technological marketplace.

Order the above NIST publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NIST publications-FIPS and NISTIRs-from the National Technical Information

Sen/ice, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB) -Publications in this series

collectively constitute the Federal Information Processing Standards Register. The Register serves

as the official source of information in the Federal Government regardmg standards issued by

NIST pursuant to the Federal Property and Administrative Services Act of 1949 as amended,

Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315,

dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)-A special series of interim or final reports on work

performed by NIST for outside sponsors (both government and non-government). In general,

mitial distribution is handled by the sponsor; public distribution is by the National Technical

Information Service, Springfield, VA 22161, in paper copy or microfiche form.

mi

NIST Technical Note 1288

Video Processing With the Princeton

Engine at NIST

Bruce F. Field

Charles Fenimore

Electricity Division

Electronics and Electrical Engineering Division

National Institute of Standards and Technology

Gaithersburg, MD 20899

August 1991

o .—2^ >

U.S. Department of Commerce
Robert A. Mosbacher, Secretary

National Institute of Standards and Technology

John W. Lyons, Director

National Institute of Standards U.S. Government Printing Office For sale by the Superintendent

and Technology Washington: 1991 of Documents

Special Publication U.S. Government Printing Office

Natl. Inst. Stand. Technol. Washington, DC 20402

Tech. Note 1288

51 pages (Aug. 1991)

CODEN: NTNOEF

Video Processing Witii the Princeton Engine at NIST iii

Table of Contents

The NIST Program in Digital Video
Program Objectives 1

Outside Users 1

The NIST Video Processing Laboratory

Facility Description 2

Supporting Equipment 3

The Princeton Engine

General Description 4

Data Row Within the Princeton Engine 5

Instruction Flow Within the Princeton Engine 6

Real-Time Operation 6

Non-Real Time Operation 7

Advanced Features 7

Programming the Princeton Engine

Programming Philosophy 11

Programming Examples 12

Example 1 - Creating Circuit Diagrams 13

Example 2 - Creating New Modules 16

Controlling/Debugging a Running Program 23

Future Programming Languages 24

The NIST Training Program 25

NIST Contacts 25

APPENDICES
A- Module Library for the Princeton Engine 27

B- Processor Operations 33

C- Technical Paper 35

(The Princeton Engine: A Real-Time Video System Simulator)

Video Processing With the Princeton Engine at NiST

The NIST Program in Digital Video

Program Objectives

The Institute has embarked on a program of measurement technology for

advanced imaging systems as part of its mission to provide support to

industry and government in the development of measurement techniques

and standards. The program is designed in part to respxjnd to the emerging

technologies for digital video processing by developing the technical basis

for making measurements and setting standards.

The first major component of the program is the creation of the NIST Video

Processing Laboratory, a real-time, video processing facility centered around

a sf)ecial purpose video supercomputer, the Princeton Engine. The Princeton

Engine was developed by the David Samoff Research Center and provided

to NIST by the Defense Advanced Research Projects Agency (DARPA)
because NIST is open to government and industry users and has a tradition

of independence and objectivity. It is intended that this program will contrib-

ute to the development of generic technology for image and video processing

through open collaborations with other government agencies, universities,

and industry. We will also cooperate with, and provide technical information

to, voluntary standards organizations.

Outside Users

Although provided to NIST primarily to support DARPA contractors

developing improved video and imaging systems, other acadennic and

industrial researchers working on digital video processing, storage, and

transfer may apply for access to the NIST Video Processing Laboratory and

use of the Princeton Engine. Projects which contribute to the development of

measurement technology and of open, interoperable, standards are of special

interest. Because NIST strives to contribute to the development of measure-

ments in an open manner, research which is principally proprietary or which

has immediate commercial impact, especially in the consumer electronics

market, is not appropriate. Those projects which are suitable for collaborative

research with NIST personnel and which exploit the capabilities of the

Princeton Engine at NIST will be given a high priority.

The purpose of this publication is to sununarize for potential users the

resources of the NIST Video Processing Laboratory including the capabilities

of the Princeton Engine. It is our hope that this information will enable

you to assess the applicability of the Princeton Engine and of the NIST
facility to your projects. Interested users may contact the technical personnel

listed on page 25.

Video Processing Witli tlie Princeton Engine at NIST

The NIST Video Processing Laboratory

Facility Description

The NIST Video Processing Laboratory has been created to provide hard-

ware and technical support for governmental, industrial, and academic

researchers working on digital video processing. It is located at the NIST
Gaithersburg campus and offers users access to laboratory video equipment
and office space.

The centerpiece of the facility is a video supercomputer, the Princeton

Engine. Designed and constructed by the David Samoff Research Center in

Princeton, NJ, it was delivered to NIST in April 1991. The Princeton Engine

provides real-time video and image-processing capability. It can accept a

variety of video formats over multiple, wideband input channels and can

output NTSC, high definition, or other video formats. Because the Princeton

Engine is programmable, it is possible to use it to evaluate prototypes of

video processing components rapidly and at a cost below that of building

hardware. The Princeton Engine at NIST is the only one open to governmen-

tal, industrial, and academic users.

Laser DisI

Recorder/

Player

^

-(D
S-VHS

Camcorder

Television

Signal

Generator

<8)

In^

-®
MTSC

Demodulator

S-VHS VIdi

Cassette

Recorder

NTSC
Monitor

uu

HDTVVide<i?
Tape

Recorder

"I

Video RGB
Switcher

M

PRINCETON
ENGINE

Host

Work-

station

B)

19"

Multiscan

Monitor

<4)

<i)

29" HDTV
Monitor

<D

Multiscan

Projector

-®

Host

Work-

statlon

®

8-1/2" X 11

Laser Printer

<^

36"

Plotter

-©

-®
Color Video

Printer

Fig. 1 . Approximate representation of equipment configuration

available in the NIST Video Processing Laboratory.

Video Processing With the Princeton Engine at NiST

The NIST Video Processing Laboratory

Supporting Equipment

The specific supporting equipment available with the Princeton Engine is

evolving, however, figure 1 describes the laboratory as it soon will be

configured. Typical operation involves connecting a video source to the

Princeton Engine through the video switcher, downloading an executable

code segment from a host workstation, and viewing or recording the pro-

cessed video output on a monitor or video recorder.

The listing below includes a more complete identification of the available

equipment. (Numbered items are keyed to the numbered circles attached to

the blocks in figure 1.) The use of specific product names does not indicate

that the item is the best available for the application nor does it constitute an

endorsement by NIST; names are shown only to clearly identify the equipn

ment in use.

1. Sony LVS-5000A, Laser Disk Processor and Recorder/Player,

with 12" monitor

2. JVC RRS600U, S-VHS Video Cassette Recorder, with 400-line resolution

3. Sony HDDIOOOPAC, HDTV Digital Processor and Recorder/Player (*)

4. Barco ICD451B, 19" Multiscan Video Monitor (3 units)

5. Panasonic AG540, S-VHS Camcorder, with character generator

6. Dynair FR-8704A, RGB Video Switcher

7. Shibasoku CM65B6, 29" HDTV Multiscan Monitor

8. Tektronix TSG 1001, Programmable Television Signal Generator

9. Sony, Multiscan Projector

10. Videotek DM141S, NTSC Demodulator
11. QMS 820, 8-1/2" x 11" User Printer

12. Calcomp 58436XP, 36" Plotter (*)

13. Apollo DN400tc, Color Graphics Workstation (*)

14. Apollo DN4500, Color Graphics Workstation (2 units)

15. Shinko CHC-743MV, Color Video Printer

Not shown, but also available:

Lyon-Lamb RTC, Converter

Lyon-Lamb ENC, Encoder/Transcoder

JVC RRS600U, S-VHS Video Cassette Recorder with 19" Monitor

(*) not presently available, to be delivered

Video Processing With the Princeton Engine at NIST

The NIST Video Processing Laboratory

In addition to the equipment listed above, the workstations in the laboratory

are linked to other workstations at NIST (and to the Internet) for data trans-

fer to and from a variety of additional disk and tape storage units. Generally,

data transfer to and from the Princeton Engine is accomplished through the

high-speed video channels. But, small amounts of data can be downloaded
from the host workstations, or captured from the Princeton Engine outputs

and saved on a host workstation, if necessary.

The Princeton Engine

General Description

The Princeton Engine was developed at David Samoff Research Center,

originally to provide television system developers with the capability of

simulating video systems in real-time. It processes a video signal one scan

line at a time, performing either an identical set of op>erations on each scan

line, or one of several sets of operations in a line-dependent manner. Field

and frame processing is accomplished by storing samples of successive scan

lines in processor memory. "Programs" resemble electronic circuit diagrams

and are developed using computer-aided-design (CAD) tools on a host

workstation. Instead of electronic components that are connected by wires,

the "circuit" consists of functional modules, representing predefined compu-
tational subroutines, that are connected by data flow paths. After compila-

tion, the object code is downloaded to the Princeton Engine and run in

real-time.

The ability to make changes to the circuit diagram and re-run the modified

simulation quickly, as well as the ability to define run-time user parameters,

allows the Princeton Engine to serve as a testbed for new system/circuit

designs where the engineer can ask "what if?" and observe the results as

real-time video. The architecture and programming environment is designed

to enable the user to simulate digitally, in real-time, very complex analog and

digital video processing devices.

A simplified diagram of the architecture is shown in figure 2. The Princeton

Engine is a Single-Instruction-Multiple-Data (SIMD) massively parallel

supercomputer. That is, all the processors execute the same instruction

simultaneously but use different input data. In its present configuration at

NIST it has 1024 processors.

Video Processing Willi the Princeton Engine at NIST

The Princeton Engine

VIDEO IN
NTSC -
RGB
HDTV

r
A/D INPUT SHIFT REGISTER

Hii n

PRINCETON
ENGINE

1024

interprcx:essor
communication (ipc)

128 KB MEMORY
PER PROCESSOR

VIDEO OUT
NTSC
RGB
HDTV

APOLLO
HOST

Fig. 2. Simplified functional diagram of the Princeton Engine and

the Apollo host workstation.

Data Flow Within the Princeton Engine

The architecture of the Princeton Engine is one of the most distinctive

features of the machine. As shown in figure 2, the incoming video data

stream (either compKJsite or component) is sampled and converted from

analog to digital form, line-by-line, by one of several 8-bit analog-to-digital

(A/D) converters. The sampling rate can be set by the user to 14.32, 28.64, or

57.27 MHz. Additional circuitry (not shown) provides synchronization to

the scan line rate for NTSC, PAL, and several HDTV formats. Moreover, this

circuitry may be software-configured to employ sampling rates that are

indef)endent of the syncronization rate.

As the data samples are acquired along the scan line, they are moved serially

into the upper shift register, and once each scan line the samples are moved
in parallel directly to the processors, one sample or pixel per processor. Each

processor operates on one pixel in each scan line. The output data are then

moved to registers and thence to digital-to-analog (D/A) converters which
reconstruct an analog signal for output to a video display device.

Video Processing With the Princeton Engine at NIST

The Princeton Engine

instruction Flow Within the Princeton Engine

In general all of the 1024 processors of the Princeton Engine execute the same
instruction at the same time. Thus for the purposes of programming, the

processor array may be modeled as if it were a single processor. Instructions

for all the processors are stored in a single instruction store memory, and
each instruction is sent in turn simultaneously to all processors. The instruc-

tion sequence is restarted at the beginning of each scan line.

All program development is done on the Apollo host system, including

creating (writing) and compiling programs. After being compiled on the

Apollo host, instructions (object code) are downloaded into the instruction

store memory of the Princeton Engine and executed. As mentioned above,

generally all processors execute the same instruction, however rudimentary

program branching is possible by conditionally "locking" a subset of proces-

sors, forcing them to execute null operations, while the unlocked set contin-

ues execution of the main instruction stream.

Execution of different programs on different scan lines is also possible. For

example, one program may execute during the first half of the frame or field,

and a second program during the second half providing comparison view-

ing. As, another example, one program may execute during the visible

portion of the picture and a second may operate during the vertical retrace

interval. This process is discussed in more detail in Line Dependent

Programming (LDP) below.

Real-Time Operation

In real-time op>eration, data are processed and output at the same rate as they

are input. This imposes a limit on the number of instructions for each scan

line because the processing time per scan line must not exceed the horizontal

scan period. For NTSC this real-time instruction limit is approximately 910.

For other video formats the real-time instruction limit may be calculated

from the horizontal scan rate and the processor instruction clock of nearly

14.32 mega-instructions p)er second. For an HDTV standard, 1050 lines/frame,

interlaced scan, 29.97 frames/second, the maximum number of instructions

is 455 , i.e., 14,318,182/(29.97 x 1050).

Parallelism within the processor permits up to six processor operations to

occur within one instruction. Processor operations include moving data

between registers, accessing local memory, multiplying two op>erands, and

performing arithmetic logic operations. Not all operations can be executed

together within the same clock cycle, but significant reductions in the num-
ber of required instruction cycles can be achieved by efficient scheduling of

operations.

Video Processing With tiie Princeton Engine at NIST

The Princeton Engine

Non-Real-Time Operation

For those video processing algorithms that exceed the real-time instruction

limit, instructions may be included to store the incoming video data (at

incoming video rates) into local processor memory. Once sufficient data have

been accumulated (or the memory is full) processing of the stored data can

be started. When complete, the processed data (still in local memory) are

distributed to the output for reassembly into a continuous video stream for

viewing as real-time video. This mode of operation is called video-clip

processing.

The maximum length of a video clip is determined by the processor memory
and the format of the video sequence to be stored. For example, each proces-

sor has 128 Kbytes of memory organized as 64 K of 16-bit words, with

approximately 49 Kwords available for user storage. NTSC video has

525 lines per frame and a 1 /29.97 second frame rate, thus requiring

525 x 29.97 = 15,734 pixels per second per processor. Packing two pixels into

every 16-bit word, 50,176 words per processor provides up to 6.37 seconds of

NTSC video storage.

More generally, non-real-time operation is possible with either video or non-

video data. Integer arrays or fixed point real arrays may be stored in the

local processor memory subject to the limits discussed above. The indepen-

dent instruction store memory (common to all the processors) can hold up to 64

different programs each of which may be as long as 4096 instructions. By

combining multiple programs so that they execute as one, a program of up to

262,144 instructions can be executed. This permits the execution of very long

algorithms.

Advanced Features

In addition to "standard" video data flow, hardware has been included to:

- provide multiple viewable outputs on one viewing screen and /or

multiple viewing screens for side-by-side comparison of algorithms,

- execute different programs on different scan lines, for comparison of

multiple algorithms,

- transfer pixel data between processors,

- acquire portions of the output data in a capture memory for subsequent

transmission back to the Apollo host,

- route selected digital output data back to the input for further

processing.

Please refer to figure 3, a more detailed diagram of the Princeton Engine, for

the following discussion of the advanced features.

Video Processing With the Princeton Engine at NIST

The Princeton Engine - Advanced Features

14, 28, or 57 MHz
i

A.

Input Clock = 28 MHz

VIDEO

INPUT

^ VIDEO

-P^ OUTPUT

Seven

-[>- 9-bit D/A

Fig. 3. Princeton Engine system diagram.

Comparison Viewing

A specialized output formatter, the Output Timing Sequence (OTS) facility,

permits split images on the output video monitor where each image is

derived from a different video signal. For example, two outputs could be

displayed, each occupying a vertical stripe of width one-half of the total

screen width. A typical use might be to compare the results of two algo-

rithms; or with three stripes to display the two results and the difference

between them. Different outputs could be assigned to different points along

a circuit diagram to observe the progression of the signal through the pro-

cessing chain. Up to four vertical stripes may be defined.

Video Processing With the Princeton Engine at NIST

The Princeton Engine - Advanced Features

In addition to using the OTS to specify the formatting of the entire picture

(i.e., a vertical stripe), several OTS patterns can be constructed and each

"mapped" to operate on certain scan lines. This "line-dependent" OTS
feature can be used to specify up to 16 OTS patterns per channel (64 total).

The screen can thus be broken into a checkerboard of video outputs.

Line-Dependent Programming

The program memory map in the microsequencer allows the user to execute

different programs during a single field or frame, as opposed to normal

operation where the same program is executed for each scan line. This

permits the user to compare the results of different programs for example by
specifying program "A" for the top half of the screen and program "B" for

the bottom half.

The advantage of line-dependent programming for comparison viewing of

multiple algorithms in real-time is particularly apparent. It is possible to

combine multiple algorithms into a single program and use OTS mapping to

select outputs from the different algorithms for comparison viewing, but in

this case the multiple algorithms must all run (sequentially) within a single

scan line period. In LDP each program is executed independently for its

particular scan line(s). Thus, (for real-time NTSC operation) each line-depen-

dent program/algorithm is limited to 910 instructions, while with OTS, the

total number of instructions for all algorithms combined must not exceed

910 instructions.

Up to 64 different programs, of up to 4096 instructions each, and a program

sequence map can be downloaded into the microsequencer to specify which

of the 64 programs is to be executed for each scan line.

Communication Between Processors

In the discussion so far, the data for each pixel on a scan line was sent to its

corresponding processor; no data sharing or transfer between processors was
attempted. However some applications will require that a processor have

knowledge of data sent to, or computed by, a neighboring processor. The

InterProcessor Communication (IPC) bus allows any data within a processor

to be sent to another processor.

To use the IPC, data generated (or received) in a processor is loaded into the

IPC bus register for that processor and an IPC bus transmit command is

executed (by all the processors) to shift all the loaded data either left or right

on the bus (multiple times if necessary) until they reach their destination

10 Video Processing With the Princeton Engine at NIST

The Princeton Engine - Advanced Features

processors. Data at each end of the bus may be looped around to the proces-

sor at the other end of the bus (to the leftmost processor for a right shift, the

rightmost processor for a left shift) or a constant user specified value may be

shifted into the ends.

Also permitted is selective transmission and reception of shifted data by
processors. Any processor may be excluded from exporting data to the IPC

bus and/or receiving data. For example, data from every fourth processor

may be sent to the three adjacent processors to its left (or right) or every

second processor can send data to the second processor on its left, skipping

its nearest neighbor. Finally, a single processor may be selected to broadcast

to all other processors, or a subset of all other processors.

Feedback—Output-to-lnput

A 32-bit wide digital path connects the final digital output of the Princeton

Engine back to the input. This permits iterative processing of data, or com-

parison of processed data to incoming data. One possibility is to use OTS to

map the feedback path to different processors. This mapping method may be

more efficient than using multiple IPC shifts and/or broadcasts, which

require one or more processor instruction cycles per shift.

Data Capture

It is also possible to "capture" a portion of the output data stream and

upload it to the Apollo host workstation where it is stored as numerical data

in a file. The user must specify (in advance, via a mapping file) which scan

lines for which processors are to be captured. At present a maximum of 32

lines may be captured at one time.

The reverse of this process, that is, taking numerical data from the Apollo

and downloading it into the Princeton Engine for processing is accomplished

in a round about way. Directly dumping data from the Apollo to the

Princeton Engine input is not practical. The data must be loaded into specific

local processor memory locations before processing is started, and the

Princeton Engine program must be written to expect the input data in the

local processor memory rather than from the usual video source.

Video Processing With the Princeton Engine at NIST 11

Programming the Princeton Engine

Programming Philosophy

Unlike conventional computers where a program is created as lines of text,

programs for the Princeton Engine are created graphically. A "circuit dia-

gram" is drawn to represent a video processing function the user wishes to

simulate. Boxes represent modules of program code and connecting "wires"

indicate data flow paths. Figure 4 is an example of such a circuit diagram or

program. Here, a composite NTSC video signal is digitized by an analog-to-

digital converter and then fed to a delay line (HDEL.M), adders, subtracters,

dividers (DIV2.M), and filters (F1R7.M) to separate the luminance and
chrominance components. Further manipulation by various modules pro-

duces the red, green, and blue video components which drive the three

digital-to-analog converters. (The synchronization and timing circuits of the

Princeton Engine cause this program to be run at the start of each scan line.)

This one circuit diagram represents the code for all 1024 processors as each

processor executes the same instruction as its neighbor, but with different

parts of the video signal as an input. This one processor model will be used

nearly universally when discussing programming. (One exception to this

model is the ability to conditionally prevent specific processors from execut-

ing instructions while normal program execution proceeds on the others, i.e.,

rudimentary branching.)

COMP VIDEO

D i

CONTRAST BRIGHTNESS

• IUSER_riWU «IUS£R_P)UU
° X. " *> X,

' «

*ff))-^"^l^^-K+> Ki^ 3©^

saturatkm

»|user_pXra

RR7.M ss
Cx)»—3

=

M
»>

TOT

S|USER_P|W

*r
CVT-^

*..•
T1NT.M^

UATnX

RED

GRE

BLU

mfjuninm

Fig. 4. A program for the Princeton Engine. This program

decodes an NTSC composite video signal into red, green,

and blue component video.

12 Video Processing Witli the Princeton Engine at NIST

Programming the Princeton Engine

Many modules have been previously coded and are available in a user

library (see Apjjendix A for a list of the available modules). When necessary,

new modules may be created by the programmer. Code within the modules
is based on the 16-bit arithmetical and logical computational abilities of the

individual processors.

All programming, creation of modules and circuit diagrams, compiling, and
linking, is done on an Apollo workstation and only the final machine code is

downloaded to the Princeton Engine for execution. Although the Engine is a

single user machine, multiple users may share its use by developing pro-

grams simultaneously on the Apollo workstations and running their code in

turn. Video monitors are provided alongside all Apollo workstations for

viewing the video outputs.

More traditional text-based compilers are under development, and may in

the future augment or partially replace the programming tools available

today. These compilers are discussed in the "Future Programming Lan-

guages" subsection on page 24. However, to appreciate the role these compil-

ers will play in program development we suggest you read the "Program-

ming Examples" section (below) first.

Programming Examples

The programming environment for the Princeton Engine is unusual in that it

is based on a computer-aided-design tool—the Mentor Graphics CAD
system for circuit diagram construction. This has the advantage of being a

familiar environment for many electronics engineers, but computer scientists

and other programmers may need to translate their traditional techniques to

this new method.

As implied by the discussion in a previous sub-section, two levels of pro-

gramming are available for the Princeton Engine. "High level" programming
is the construction of the circuit diagram. In many cases all the necessary

modules for the circuit have already been created and construction of the

circuit diagram is all that is required. However, if some specialized modules

are not available, "low level" assembly language programming will be

required for creation of the modules. The two examples that follow illustrate

these two programming processes.

Video Processing Witli the Princeton Engine at NIST

Programming the Princeton Engine

13

Example 1 - Creating Circuit Diagrams

This first example demonstrates the construction of a circuit diagram.

Figure 5 is a flow chart for the algorithm to be implemented. It processes a

3-component input signal in color-difference format (Y, R-Y, B-Y) and

produces three 3-component outputs: the input converted to RGB format, a

frame delayed or a still image (frame frozen) RGB output, and the difference

between the first two outputs (the motion components).

INPUT

Y, R-Y, B-Y

NO(0)

UPDATE
BUFFER

MATRIX
MULTIPLY

DETECT
MOTION

YES(1)

DISPLAY

ORIGINAL,

FREEZE, and

DIFFERENCED
FRAMES

Input a 3-component video signal

(Y, R-Y, B-Y).

Matrix multiply the (Y, R-Y, B-Y)

color difference vector, converting

it to RGB format.

Difference incoming frame with

current frame buffer contents

(last or frozen frame) to detect

motion.

Under run-time user control, either

replace frame buffer contents with

present input, or leave frame buffer

unchanged (freeze previous

image).

Output three RGB video signals:

the original signal, the frozen or

delayed signal, and the difference

or motion detected signal.

Repeat for each frame.

Fig. 5. Row chart for the example algorithm to be implemented

on the Princeton Engine. A 3-component color difference

video signal is processed to produce a 3-component RGB
video output signal and to detect motion between

video frames.

14 Video Processing With the Princeton Engine at NIST

Programming the Princeton Engine

The NETED window environment is illustrated in figure 6. NETED is the

NETwork EDitor of the Mentor Graphics CAD system, and is used for

creation of all circuit diagrams/programs. Mouse controlled menus are used

for window management, drawing, and editing functions. Most operations

take place in the EDIT window where the circuit program is built from

modules and interconnecting wires, or nets in the ISTETED teminology.

In figure 6 construction has been started on the motion detection and freeze

frame circuit. A freeze frame and differencing sub-assembly has been created

by selecting the FREEZE.M and SUB.M module symbols, one at a time, from

the parts list (which automatically placed them into the active part window).

From the active part window they were copied to the edit window and

PIN •pKlng: 0.2 InchM
GRID: Snap 0.2 0.2

Dtiplay awry 1

Select Count 4 | HELP | WINDOWS
||

RLE | SETUP | BASIC ADVANCED

ACTIVE PART WINDOW

•ofasl.r

•oft_*vfltch.m

ftutLm
sub_abt.m
sit)_fflv2.m
MAmatn.m
•ub*afnp.m
tlnl.m
tlito_b*f>cfc

lwo*c.m
uOTr_jtari.m
wte.m
wt«2.m
wr_t)_r»g.m
wr mom.m
wrftfl_l(nBg«jn
lor.m
zona.m

PARTS
UST

VlEy<jyJINDOVJ

EDIT WINDOW

^ rir~p

-mr
J^d^

Hi ^.«,j_,(5^

- Noi*: ihMl ofitor alaaya M (0.0): tiy moving oli|«1s toward center (Iroin ktoafNMEdfSoo OC)
Zoom oijt TRANSCRIPT
Zoom Out
[ACrivaw COMPonMH fUMr/p*_macra/nibjn WINDOW

Fig. 6. NETED, the graphical circuit editor for developing

programs for the Princeton Engine. Major constituents are

the EDIT WINDOW (upper right) where drawing is done,

the ACTIVE PART WINDOW (upper left) where parts are

loaded from the PARTS LIST in preparation for copying to

the edit window, the VIEW WINDOW for simultaneous

viewing of a different part of the circuit, or a different

circuit, and the TRANSCRIPT WINDOW which contains a

historical list of the commands that have been executed.

Video Processing With the Princeton Engine at NIST

Programming the Princeton Engine

15

placed in their desired locations. Interconnecting nets were then routed

between the module pins. Finally, the subassembly was copied twice to

produce the complete drawing shown in the figure. (As an example of the

capabilities of the drawing program, note that the standard SUB.M module,

shown in the active part window, has been flippjed about its horizontal axis

before being placed in its final position in the edit window.)

The circuit is completed by copying the necessary remaining modules into

the edit window and drawing connecting nets. When the final wiring is

complete, the design "syntax" is checked for disconnected or misconnected

nets and if no errors are obtained the design is saved to disk. After construc-

tion with NETED, the design must be compiled and linked using the Graphi-

cal Program Comp>oser (GPC). The resulting machine code may then be

downloaded and run on the Princeton Engine.

R-Y

B-Y

ADC MO PROBE 1

HOOCrBI.

FREO = 14HHZ

ADC M1

VOOE^W.
FREa = 1«HZ

ADC M2

MOOEsBl.
FHEa = 1«IHZ

MATRIX

i RGB.M

6

•*

vm.
—

FREEZE.M ky-T

TOT
.
FREEZE.M ky-f

-, FREEZE.M L^yJ

RED8 4

SCALE =1X
OTt MAP RLE = m.0T9i

GRE6 4

9CALE:1I
OTI lAP FILE^UXOTai

BLUB 4

SCALE r 11

OTS lAP RLE=UX.OTSa

RED

GREEN

BLUE

Fig. 7. The complete example circuit converts color-difference

video signals to RGB. The circuit displays four outputs (as

indicated by the 4 input signals to each DAC), the original

video input, a frame delayed or a still image video signal,

the difference between the delayed or still image signal

and the original signal, and a probe output. The probe

input can be temporarily attached to any net (wire) in the

circuit for viewing the signal along that segment. (For this

example the probe input has been attached to the output of

ADCMO as indicated by the PROBEl label; routing wires

are not used to indicate probe input cormections.)

16 Video Processing With the Princeton Engine at NIST

Programming the Princeton Engine

Example 2 - Creating New Modules

New modules may be needed when preceded modules are not available to

do a specialized operation, or if it is desired to combine several modules into

a single module to eliminate redundant instructions. New modules are

created in a two-step procedure.

1. Create machine code using the Graphical Program Editor (GPE).

2. Generate a symbol to represent the code on a NETED schematic using

the Mentor Graphics SYMbol EDitor (SYMED).

As a second exercise we examine an already coded module which has been

develof>ed using GPE. The module FREEZE.M has two inputs, A and CTRL,
and one output Y. The purpose of the module is to freeze (or pass through)

one video frame, input through A, and output to Y depjending on the status

of CTRL. If CTRL - then A is passed through to Y delayed by one frame

time and is simultaneously stored in a frame buffer in local processor

memory. If input CTRL ^ then the last stored frame is output.

Creating code with GPE

The Graphical Programming Environment (GPE) is used to produce the

machine-level code which makes up the low level modules in the program-

ming hierarchy. Figure 8 shows the GPE programing environment with no

instructions yet defined. As with NETED, because all the processors execute

the same instruction, the entire processor array may be modeled as a single

processor. GPE shows a representation of that processor on the screen, and

its various components (registers, ALU, RAM access, etc.) can be intercon-

nected by drawn lines. GPE shows three instructions simultaneously, the

one being created or modified in the main or lower panel, the previous

instruction in the upper-left panel, and the next instruction in the

upper-right panel. (The previous and next instruction panels are blank here

as we are showing how a new module is started and no instructions have

been defined.)

Video Processing With the Princeton Engine at NiST

Programming the Princeton Engine

17

Processor resources available to the programmer include:

- a 64-register register file (REG_FILE) for temporary storage,

- access to the interprocessor communication bus for shifting data to

neighboring processors (LEFT, IPC_BUF, RIGHT, COM_REG),
- a 2-input arithmetic-logic unit (ALU) for arithmetic and logic

operations,

- a 2-input multiplier (MPY, PP, and P) for multiplication and product bit

extraction,

- access to RAM for local data storage and module input and output, and
- the use of intermediate registers IREGl, IREG2, Dll for access to

the register file (REG_FILE) and intermediate register DI for

access to RAM.

Operations generally consist of moving data to and from the ALU or multi-

plier and the intermediate registers. To improve code readability, the regis-

ters may be labeled by the user to indicate their contents.

[D9RC - PflMCETON ENGME GfUPHCAl. PROCRAUUNG EDITQn - VERSKM 2.0 i

on
1

REC-
1

>>i_*Dn pj>on

poim

HEQI MEGI

£

VTI*)
1

PP

>nm
1

CUn BtVT: 1 EMCwnnwuPvrf EOT UOOe. STNCMlOMOUt

piCKPftooam nwCHcm.

Fig. 8. Graphical Programming Editor showing the PE processor

model and pop-up menu controls for selecting processor

operations.

18 Video Processing With tlie Princeton Engine at NIST

Programming the Princeton Engine

We will now briefly discuss the GPE program instructions for the FREEZE.M
example. Figure 9 shows the first instruction of the program listing of the

FREEZE.M module as produced by GPE. (The seven additional instructions

for the module continue on the next several pages.) Data flow between

registers is indicated by lines with arrowheads which are drawn between the

source and destination register. We recommend that labels be assigned to the

registers to indicate their contents. For example, note that the register indi-

cated as IREGl in figure 8 (its real name) is labeled in figure 9 below, as it

will contain zero after execution of the instruction. Not all registers can be

directly interconnected, hardware restrictions prohibit connecting the

register labeled LCM to accumulator ACCl, for example. Pop-up menus
(not shown) are used to select ALU operations. A complete listing of all

processor operations is included in Appendix B.

LEFT IPC BUF RIGHT COM_REG

CUP OFF

INPUT_PIN(aRL)

ALU(A)

\>)

ALU(B) /

MPY(A)

PP

MPY(B)

ACCl

INST1

Fig. 9. The first GPE instruction for the FREEZE.M module.

(Seven additional instructions continue on the next 4 pages.)

Instruction 1: Communication between modules is accomplished by storing

output data in a defined location in local processor memory where the next

module will be instructed to look for it. The program compiler (Graphical

Program Composer, GPC) resolves these memory location definitions

between modules; the programmer assigns an input or output to the appro-

priate pin name on the module symbol. For our example, input to the

module is obtained through the input pins A, and CTRL. In instruction 1

input CTRL is loaded from RAM into the RAM-intermediate-register, here

labeled "CTRL" to remind us of its contents. At the same time registers 54

and 33 of the register file are loaded into PORTl and PORT2 intermediate

registers labeled "0" and "LCM." Registers 54 and 33 contain predefined

values of zero, and the current scan line number, LCM, respectively.

Video Processing With the Princeton Engine at NIST

Programming the Princeton Engine

19

Instruction 2: LCM is moved from its PORT2 intermediate register, through

the ALU (which is set to output ALU(A)) to accumulator ACCl. CTRL is

moved from its RAM intermediate register through intermediate register DIl

into register 4 of the register file as designated by the 4 in the PORTl address

register and simultaneously into the PORT2 intermediate register previously

occupied by LCM. Further, input A is accessed from memory and moved
into the RAM intermediate register just vacated by CTRL. The updated

contents of the registers will be available for the next instruction.

LER IPC_BUF RIGHT COM_REG

1 (

REG_HLE

ACC2
uururr

FBUF ACCESS

1 P2_ADR
ALU(A)

>
V B 1

PORTl P0RT2

/ Q-—^H7m
ALU(B)

pjp_~n
CTRL H

MPY(A)

pp P

MPY(B)

NST3

Instruction 3: Input A is moved through intermediate register DIl to register

1 of the register file. The line counter, LCM, is used as an index to be added
to the base address of the frame buffer, FBUF, located in local memory. The
frame buffer contents are moved into the RAM intermediate register vacated

by input A.

20 Video Processing Witli tiie Princeton Engine at NIST

Programming the Princeton Engine

LEFT IPC_BUF WOHT COM_REG

Oil

CUP OFF
A+B

ACC2

'J P2_ADR
I—JIJiUHv

LCM RA^^jiIH P0RT2 .JmS ;—*^j]]j|y^
^E^KEIH

1 A(F)
1

RAM1 1

MPY(A)

pp P

MPY(B)

INST 4

COND_LOCK

IF NONZERO

BIN = 001

Instruction 4: The zero in the PORTl intermediate register is moved to

ALU(B), and the value of A in register 1 replaces it. CTRL from the PORT2
intermediate register is moved to ALU{A) and the two values are added and
tested for equality to zero. This effectively tests whether CTRL is zero or not.

1

LEFT IPC_BUF RIGHT COM_REG

DI1

CUP OFF
ACC2

Dl C

P1_ADR P2_ADR
ALU(A)

)
LCM RAPORTl P0RT2 >

ALU(B)

A IREG2
1 .. 1

RAM1
^ '

1

MPY(A)

PP P

HPY(B)

irJST5

Instruction 5: If the test in the previous instruction was true, i.e., CTRL ^ 0,

the processors are "locked" from executing further instructions. This pro-

duces a global locking (or not) of all processors since the test condition,

CTRL ^ 0, produces the same results for all processors.

Video Processing With the Princeton Engine at NIST

Programming the Princeton Engine

21

LOT IPC_BUF BGHT COM_REG

Otl
Acca

REG..RLE FBUF ACCESS

P1_ADR P2_ADR
ALU(A)

> V 1.
PORTI P0RT2

/ Q- •'W^^ 1

ALU(B) '
VI IREG2 V^^m
^t 1

^^>
1 MW 1

MPY(A)

pp p fMPY(B)

NST6

Instruction 6: This instruction is only executed if the processors were not

locked in the previous instruction. If the processors are locked, this instruc-

tion will effectively be replaced by a no-operation. The current value of input

A is stored in the frame buffer at index LCM overwriting the existing

contents.

otl

REG .RLE

P1_ADR P2_ADR

PORTI P0RT2

A IREG2

INST 7

CUP OFF

ALU(A)

\> >

ALU(B) /

MPY(A)

PP

MPY(8)

LCM
[HI]

RAH

GLOBAL UNLOCK

Instruction 7: Globally, unconditionally, unlock all processors.

22 Video Processing With the Princeton Engine at NIST

Programming the Princeton Engine

LER IPC BUF RIGHT

ni

REG.HLE

P1_ADR P2_ADR

P0RT1 P0RT2

CUP OFF

IREG1 IREG2

ALU(A)

\>)

ALU(B) /

MPY(A)

PP

MPY(B)

COM_REG

ACC2

ACC1

OUTPUT_PIN<Y)

irCTS

Instruction 8: Move the old value of A obtained from the frame buffer, and

previously stored in the RAM intermediate register, to output pin Y.

Note that if CTRL ^ 0, then globally locking the processors prevents the

frame buffer from being updated in instruction 6, thus the value of A that

will be obtained from the frame buffer during the next cycle (in instruction 3)

will be the last stored value, thus freezing the picture.

Generating a symbol

Symbol generation is done using the Mentor Graphics SYMED program.

Generation is simplified however by the use of a symbol generation macro

that interrogates the user about the number of input and output pins, their

names, and their locations, and then draws an appropriate symbol part. The

symbol (figure 10) is also labeled with the number of instructions in the

module (8). In most cases this is all that is required. For specialized symbols,

all the tools of the SYMED program are available to customize the size,

shape, and other features of the symbol.

OUT

Fig. 10. NETED symbol for FREEZE.M module.

Video Processing With the Princeton Engine at NIST

Programming the Princeton Engine

23

Controlling/Debugging a Running Program

Control of the Princeton Engine is accomplished by sending specialized

conimands (SPES commands) from the Apollo workstations. These 43

predefined SPES commands control all aspects of Princeton Engine opera-

tion, including loading programs, setting input and output configurations,

changing program variables while the program is running, initializing or

loading data into local processor memory, and capturing output data.

Although the user can t)^ the commands directly, two methods have been

developed to make the system easier to use. A graphical control environ-

ment (GCE) program can be run on the Apollo to provide an interface

between the user and the SPES commands, or NETED can be placed in a

GCE mode to provide control over some operations.

The GCE display is shown in figure 11 with the applications menu pulled

down. This configurable menu allows the user to execute a series of SPES
commands (previously defined in a text file) to set the Princeton Engine

environment and download an application in one operation. User param-

eters defined in the downloaded program will show in the boxes to the left.

The present value of the parameter is shown in the box immediately below

the parameter name, and the value is changed by clicking on the up or down
arrows. Additional menus at the top of the display allow the user to conve-

niently execute some of the more common SPES commands.

PE Graphical Control Environment. [Version 1.1] (C)f' '^

EXIT][^ COMMANDS][PE_TOOLS][MENTOR

i.m tcimoHt

NTSC_DECODE

FHEEZE_FRAME

FRAME_LINE_COMB

QBERT

SOBErFILTER

COLOR_EDGE_DETECT

QUANTIZER

PSEUDO_COLOR

ZONE_PLATE^GEN

FIELD_PRO_SCAN

LDP_DEMO

MY_APPLICATION_1

MY APPLICATION 2

Fig. 11 Graphical Control Environment display with controls for

modifying user parameters contrast, brightness, saturation,

and tint of the BASIC_NTSC program shown in Fig. 4.

24 Video Processing With the Princeton Engine at NIST

Programming the Princeton Engine

When NETED is used to control the Princeton Engine, it is placed in the GCE
mode. Drawing operations are suspended, but revised menus are made
accessible for downloading the program displayed in the NETED edit

window, controlling the input and output registers, and changing user

parameters and filter coefficients. The most important feature, however, is

the ability to attach a moveable probe to different parts of the circuit and
"view" the data at that point. To do this the outputs of up to 3 probes may be

assigned to DAC inputs, and the actual probe-input position in the circuit is

then assigned (or changed) at run time. (See figure 7 for an example of a

circuit diagram with a probe.) Probing is one of the more jxjwerful methods

for debugging circuits.

Future Programming Languages

A C-compiler and a FORTRAN compiler are presently under development at

the David Samoff Research Center. Although both compilers will be cross-

compilers, i.e., they run on the Apollo workstations and produce code for the

Princeton Engine, their functions will not be interchangeable.

At the present time the Graphical Program Editor (CPE) is the only tool

available for developing assembly code for a module for the Princeton

Engine. The Princeton Engine C-compiler (PEC) will implement a subset of

the C language and eventually can replace GPE in the code development

process. It is important to note that the PEC produces code for a module

which then must be linked to other modules using a higher level program-

ming environment such as NETED; one cannot develop a complete program

using the initial release of the PEC. Initial testing of the C-compiler suggests

that the code which it produces is nearly as efficient as hand-optimized code

produced using GPE, moreover, program control functions such as "loops"

may be used only via PEC. Delivery of the compiler is expected in the near

future.

Alternatively, the Princeton Engine FORTRAN 90 compiler (which will

implement a subset of FORTRAN 90) will be a substitute for NETED for the

construction of a complete program. Preliminary results suggest that there

will be a high overhead associated with the FORTRAN compiler.

Video Processing With the Princeton Engine at NIST 25

The NIST Training Program

NIST will provide training in the use of the Princeton Engine for DARPA
contractors and users from other collaborating organizations. This includes

training for:

- the Apollo/Aegis operating system,

- Mentor Graphics CAPTURE schematic drawing software,

- using previously constructed library modules,
- construction of user-programmed modules,
- and using Princeton Engine-specific run-time operating software.

The more advanced features of the Princeton Engine (line-dependent pro-

gramming, OTS mapping, and line-dependent OTS) will not normally be

included in the training because they will not be needed by most users, are

relatively complex, and require a thorough knowledge of the Princeton

Engine hardware. (See the section on The Princeton Engine - Advanced Features

for further detail about these topics.) Instead, NIST personnel will assist the

user directly, providing specific solutions for the user's problem if the use of

such advanced capabilities becomes necessary.

The training program consists primarily of self-directed study using refer-

ence material and workbook exercises provided by NIST. NIST experts will

be on hand to answer questions or to explain difficult concepts. Sufficient

student time will be made available on tiie Apollo workstations and the

Princeton Engine for running and testing the workbook exercises or other

problems the student may wish to try.

The training program is expected to take from 1 to 2 weeks to complete,

depending on previous experience the student may have with the Aegis

operating system or the Mentor Graphics CAD software. At the end of the

program the student should have basic compjetency in developing programs

for the Princeton Engine and running and debugging those programs.

NIST Contacts

For more information about the NIST laboratory or the Princeton Engine at

NIST contact:

Dr. Bruce F. Field

(301) 975-4230, email: field@eeel.nist.gov

or

Dr. Charles Fenimore

(301) 975-2428, email: fenimore@eeel.nist.gov

National Institute of Standards and Technology

B344, Metrology Building

Gaithersburg, MD 20899

Video Processing With tlie Princeton Engine at NIST 27

APPENDIX A

Module Library for the Princeton Engine

There are presently over 150 modules in the Princeton Engine Library. These

nnodules are general purpose code elements that form the basis for develop-

ing Princeton Engine "programs" using the NETED circuit diagramming
software. (See Programming the Princeton Engine for more detail about

NETED). A list of the modules is presented below, categorized by
module function.

Analog-to-Digital Conversion Modules (video input)

Several modules have been created to represent and control the analog-

to-digital (ADC) hardware inputs. They convert an input analog video

signal to a digital stream for processing by other modules. The output is

represented in either two's-complement or binary format depending on
the module used. Different A/D modules are also used to represent one

of three main or three subchannels.

main channel #0, two's-complement

main channel #0, binary format

main channel #1, two's-complement

main channel #2, two's-complement

sub channel #0, two's-complement

sub channel #1, two's-complement

sub channel #2, two's-complement

ADC MO 8-bit ADC
ADC MOB 8-bit ADC
ADC Ml 8-bit ADC
ADC M2 8-bit ADC
ADC SO 8-bit ADC
ADC SI 8-bit ADC
ADC S2 8-bit ADC

Digital-to-Analog Conversion Modules (video output)

These modules are used to route the processed digital video signal from

other modules to the output digital-to-analog (DAC) converters. Some
modules include additional digital inputs (up to four) that are routed to

additional OTS registers so that the separate video signals may be

displayed in vertical strijDes on the same monitor. (See T/ie Princeton

Engine, Advanced Features for additional information about OTS channel

outputs.) All modules are two's-complement.

RED8 1 8-bit DAC
REDS 2 8-bit DAC
RED8 4 8-bit DAC
GRE8 1 8-bit DAC
GRE8 2 8-bit DAC
GRE8 4 8-bit DAC
BLU8 1 8-bit DAC
BLU8 2 8-bit DAC
BLU8 4 8-bit DAC
DAC3.8 1 8-bit DAC
DAC3.8 2 8-bit DAC

single-input red DAC
2-input red DAC
4-input red DAC
single-input green DAC
2-input green DAC
4-input green DAC
single-input blue DAC
2-input blue DAC
4-input blue DAC
single-input DAC#3
2-input DAC#3

28 Video Processing With the Princeton Engine at NIST

APPENDIX A - Module Library for the Princeton Engine

DAC3.8_4
DAC4.8_1
DAC4.8_2
DAC4.8_4
DAC5.8_1
DAC5.8_2
DAC5.8_4
DAC6.8_1
DAC6.8_2
DAC6.8 4

8-bit DAC
8-bit DAC
8-bit DAC
8-bit DAC
8-bit DAC
8-bit DAC
8-bit DAC
8-bit DAC
8-bit DAC
8-bit DAC

4-input DAC#3
single-input DAC#4
2-input DAC#4
4-input DAC#4
single-input DAC#5
2-input DAC#5
4-input DAC#5
single-input DAC#6
2-input DAC#6
4-input DAC#6

Logical/Arithmetic Modules

These modules perform the indicated computation on one or more 16-bit

two's complement inputs and produce a 16-bit output. Inputs are

typically denoted by A, B, ... etc. (Exceptions are noted.)

ABS.M lAI

ADD.M A + B
ADD3.M A + B + C
ADD DIV2.M (A + B)/2
AND.M Bitwise logical 'AND' of A and B
CLIP.M Clip input-A to lie within inputs LOL and UPL.

COMP.M Output 1 if input-A >= input-TH, if A < TH.

CONST.M Constant (user specified on NETED).

D1V2.M A / 2^ (N = 2 to 7).

- DIV128.M
INV.M Binary NOT(A

)

LTl.M A limited to N bits (N = 1 to 9).

-LT9.M
MEDIAN3.M Median of three inputs. A, B, C
MIN.M Minimum of two inputs. A, B

MAX.M Maximum of two inputs. A, B
MAX3.M Maximum of N inputs (N = 3 to 7).

- MAX7.M
MIXER.M A X K + B X (1-K) (A, B, and K are inputs, K is an

8-bit input,0<K<l).
MULT.M (A X B) / 2«

MULT2.M A X 2^ (N = 2 to 7).

- MULT128.M
ONESC.M one's complement(A)

OR.M Bitwise logical 'OR' of A and B

PROC_NUM.M Processor number {- to 1023).

QUANT8.M A quantized to 8 bits.

SDIV.M Two outputs, Q = INT(A/B);

Video Processing With tiie Princeton Engine at NIST

APPENDIX A - Module Library for the Princeton Engine

29

SEG.M

SUB.M
SUB_DIV2.M
TWOSC.M
XOR.M

If (input-A is between two inputs ST and END)
then output = input-MAX
else output = input-MIN

A-B
(A-B)/2
two's complement(A) (A is one's complement).

Bitwise logical exclusive 'OR' of A and B

Control Structures

Branching and looping are presently supported only by forcing selected

processors to execute NOPs (no operations) while other processors

continue to execute the instruction stream.

BRANCH_TEST.M Branch test module is an example of this condi-

tional execution.

MUX2.M

MUX4.M

SOPT SWITCH.M

2-input multiplexer, one of two inputs selected

based on third input CNTL = or 1.

4-input multiplexer, one of four inputs selected

based on third input CNTL = 0, 1, 2, or 3.

Effective dissolve between 2 inputs A and B.

Four inputs and one table are required. A, B are

video inputs K, and TH are control inputs, and

table Tl is the dissolve mapping function.

Control of Interprocessor Communication Operations

BC1.M
-BC5.M

BP.M

CLEAR IPC.M

IPC_LS.M
- IPC_LS3.M

IPC_RS.M
- IPC RS3.M

Input broadcast to other processors according to

broadcast pattern BCl. Modules provide from

one to five wait instructions.

Configures the IPC circuitry to bypass processors

according to a pattern defined at compile time.

Clear Interprocessor Communication circuitry

erasing any previously loaded broadcast or

bypass pattern.

Interprocessor left shift N times. (N = 1 to 3).

Interprocessor right shift N times. (N = 1 to 3).

30 Video Processing With the Princeton Engine at NiST

APPENDIX A - Module Library for the Princeton Engine

Filters

A number of finite impulse response filters for spatial and temporal

filtering are included. Initial values for the filter coefficients are specified

while creating the circuit using NETED but they may be updated later

during run-time.

FIRXX_YY.M is a generic two-dimensional filter with the following

naming convention:

XX - the horizontal filter length, and

YY = the vertical (temporal) filter length.

The internal accuracy of these filters is limited to 8 bits.

nR00_03.M, nR00_05.M, nR00_07.M, nR00_{)9.M,

nR03_00.M, nR03_03.M, nR03_05.M, nR05_00.M,
nR05_05.M, nR07_00.M, nR07_07.M, nR09_00.M,
nR09 09.M

nR3.M, nR7.M,
nR9.M

nR16 39 OO.M

Horizontal 8-bit filters with 3, 7, and 9 taps

respectively.

A two-dimensional 16-bit accuracy filter, horizon-

tal filter length = 39, vertical filter length = 0.

Delay Modules and Local Processor Memory Operations

FRAME_BUF.M

FRAME_BUF2.M

FREEZE.M

FREEZE2.M

HDEL.M
HDELOl.M

- HDEL07.M

RD MEM.M

Output is frame delayed version of input. The

frame time is defined by the video input format.

Two outputs are frame delayed versions of inputs

A and B. (Frame size is defined by the video

input format.)

Output frame delayed version of input-A if input-

CTRL = 0, if CTRL = 1 output previously stored

frame.

Output frame delayed versions of inputs A and B

if input-CTRL = 0, if CTRL = 1 output previ-

ously stored frame.

Input delayed by one scan line.

Each module produces multiple outputs (YOl ...

YON, N = 1 to 7), delayed versions of input by N
scan lines.

MEM_LOC(3800 + input-OFF)

Read (and output) a memory location in local

processor memory specified by address

input-OFF (relative to 3800 HEX)

Video Processing With the Princeton Engine at NIST

APPENDIX A - Module Library for the Princeton Engine

31

RD_FB_REG.M Read a memory location in local processor

memory specified by a compile time address.

Address also provided to output R_AD.
RD_IFRAME_STORE.M Read input-A into frame buffer specified by

input-ST_R.

READ_IMAGE.M Output data from frame buffer sp)ecified by input-

ST_ADRS.
Output data for global (to all modules) frame

buffer specified by input-ST_R.

Two simultaneous outputs from double global

frame buffer specified by input-STR.

Write input data to global frame buffer specified

by input-ST_R.

Write input data to double global frame buffer

specified by input-ST_R.

Output data from local processor memory from

address specified by input-R_AD. Write input-A

to a memory location R_AD.
MEM_LOC(3800 + input-OFF)

Write input to a memory location in local

processor memory specified by address input-

OFF (relative to 3800 HEX).

RFS.M

RFS2.M

WFS.M

WFS2.M

WR FB REG.M

WR MEM.M

Video Controls and A/TSC Specific Modules

BRCT.M

CBS AT.M

CTBR.M
DEMOD.M

DEMOD_SUB.M
FCOMB.M

FLD262.M

FLD DELAY.M

FLD_SWITCH.M
FRAME COUNT.M

Modify video input by brightness and contrast

values.

Given Y and C inputs, apply brightness, contrast,

and saturation values, and separate into RGB
components.

Modify input by contrast and brightness values.

Chroma demodulator separates the NTSC chroma

(C) signal into two components (1 and Q).

Chroma demodulator for the sub channel.

Separates composite NTSC signal into luminance

output and chrominance output using a frame

comb.

Output F262 is input A delayed by 262 horizontal

scan lines.

Outputs D262, D263, and D264 are input A
delayed by 262, 263, and 264 horizontal scan

lines respectively.

If NTSC field is even then output=0 else output=l

.

(Dutputs a count that increments on the first line of

every NTSC frame (every 525 lines).

32 Video Processing With the Princeton Engine at NIST

APPENDIX A - Module Library for the Princeton Engine

FRMFLD_BUF.M

FRMFLD2_2.M

G525.M
MATRIX.M

PROBE_l
- PR0BE_3

PROBE_lS
- PR0BE_3S

SUB_MAIN.M

TINT.M

Provides two outputs, a 262 line delayed, and a

frame delayed version of the input.

Provides 262, 263, and 525 line delayed outputs for

two inputs.

Outputs to 524, a line counter.

Converts Y, I, and Q into R, G, and B using

standard NTSC weighting.

Assigns probe channels to DAC ports. Probes

allow internal signals on the NETED circuit

diagram to be displayed on the video monitors.

Assigns probe channels to DAC p>orts for sub

channels.

Synchronize timing of subchannel to main chan-

nel.

lOUT and QOUT are the phase rotated versions of

the quadrature inputs I_IN and Q_IN.

Miscellaneous Modules

INPUT_CONTROL

EXT_FBO_IN
EXT_FB1_IN
EXT_FB2_IN
EXT_FB3_IN
EXT_FB0_OUT
EXT_FBl_OUT
EXT_FB2_OUT
EXT_FB3_OUT
LUT8.M

- LUT10.M

SUBSAMP.M

USER PARA.M

Control variable set by GCE during run-time (to

select different algorithms for example).

Input from external feedback channel

Input from external feedback channel 1

Input from external feedback channel 2

Input from external feedback channel 3

Send input to external feedback channel 0.

Send input to external feedback channel 1.

Send input to external feedback channel 2.

Send input to external feedback channel 3.

Output value from lookup table using address

input. Pathname of lookup table specified using

NETED. (Module number specifies number of

address bits of lookup table.)

Subsample input, output = input-IN AND
MEM_LOC(input-OFF + 3800).

Output user parameter to circuit. Parameter

appears in GCE control environment for user

modification at run time.

Larger Demonstration Modules

QBERT.M
SOBEL
ZONE.M

Adaptive Line Comb NTSC Decoder

Sobel Edge Detection Module
Zone Plate Test Pattern Generator

Video Processing With tiie Princeton Engine at NIST

APPENDIX B

33

Processor Operations

Processor operations consist of moving data between the intermediate

registers, the arithmetic logic unit (inputs ALU(A) and ALU(B)), the multi-

plier (inputs MPY(A) and MPY(B)), and the interprocessor conununication

bus (IPC_BUF).

The ALU performs arithmetic, logical, and functional operations on 16-bit

data with its output routed to one or both of the output accumulators, ACCl
or ACC2 dep>ending on the operation.

The multiplier operates on two 16-bit two's complement inputs routed to

MPY(A) and MPY(B) producing a 32-bit intermediate value. The Product

Picker (PP) allows the user to select 16 contiguous bits of the 32-bit product

for placement into the output register P. The product picker effectively

provides division by powers of 2 and can facilitate fixed point arithmetic.

The figure below is a representation of the processor.

The interprocessor communication bus is used to transfer data between

processors. Within a processor, data is routed to the IPC_BUF register before

the transfer and the data received from a second processor is routed from the

IPC_BUF register after the transfer is complete. The LEFT and RIGHT boxes

on the diagram serve to initiate shifting operations. More complicated

transfer patterns are invoked using the COM_REG.

LEFT IPC BUF RIGHT C0lyl_REG

DI1

REG.RLE

P1_ADR P2_ADR

PORTI P0RT2

CUP OFF

IREGI IREG2

ALU(A)
\>)

ALU(B) /

MPY(A)

PP

MPY(B)

ACCl [^
RAM

GPE processor model which includes an ALU, hardware Multi-

plier, 64-register register file, RAM access, and IPC access.

34 Video Processing Witfi the Princeton Engine at NIST

APPENDIX B - Processor Operations

ALU Operations

CLIP ON

CUP OFF
A + B

A + B + C

A-B
B-A
A-B + C

B-A + C

A + B + 1

CON[A - B]

A ORB
AANDB
AXORB
ABS(A)
A
B

ISC(A)

2SC(A)

MAX(A, B)

MIN(A, B)

ST_DIV
CONT_DrV
END_DIV
PACK

Prevents overflow by limiting ALU output to 7FFF

or 8000 HEX.
No overflow correction is performed.

Add inputs A and B.

Add inputs A and B with carry from previous

operation.

Subtract B from A.

Subtract A from B.

Subtract B from A with borrow from previous

operation.

Subtract A from B with borrow from previous

operation.

Add inputs A, B, and 1.

Conditional subtract. If (A - B) > result is A - B,

otherwise result is A.

Bitwise logical OR of A and B.

Bitwise logical AND of A and B.

Bitwise logical XOR of A and B.

Absolute value of input A.

Route ALU input A through ALU to ACCl.
Route ALU input B through ALU to ACC2.
Convert two's complement to one's complement.

Convert one's complement to two's complement.

Maximum of A and B.

Minimum of A and B.

Start software divide of A/B.

Continue software di\'ide (one instruction p>erbit).

End software divide with quotient and remainder.

Pack lower 8 bits of A and B into 16-bit result.

Video Processing With the Princeton Engine at NIST 35

APPENDIX C- Technical Paper

The Princeton Engine: A Real-Time Video System Simulator

D. Chin

J. Passe

R Bernard

H.Taylor

S. Knight

©IEEE. Reprinted with permission from

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS

Vol 34, No. 2, pp. 285-297, May 1988

NOTE: A few technical details in "The Princeton Engine: A Real-Time Video

System Simulator" may disagree with material presented in the body of this

technical note. This is a result of upgrades and improvements made to the

Princeton Engine after publication of the paper. In the event of a disagree-

ment it is generally safe to assume that the information in the body of the

technical note is correct.

Chin, et al.: The Princeton Engine: A Real-Time Video System Simulator 28S

THE PRINCETON ENGINE: A REALTIME VIDEO SYSTEM SIMULATOR

D. Chin, J. Passe, F. Bernard, H. Taylor, 8. Knight

David Sarnoff Research Center

CN 5300, Princeton, NJ 08543-5300

(609) 734-2301 TELEX: (609) 734-2221

Abstract

The Princeton Engine is a 29.3 GIPS image processing

system capable of simulating video rate signals - includ-

ing NTSC and HDTV video - in real-time. It consists of a

massively-parallel arrangement of up to 2048 processing

elements. Each processing element contains a 16-bit

arithmetic unit, multiplier, a 64-w/ord triple-port register

stack (one write, two read), and 16,000 words of local

processor memory. In addition, an interprocessor commu-

nication bus (IPC) permits exchanges of data between

neighboring processors during one instruction cycle. We
further describe a new method of parallel programming

for DSP applications and provide several examples.

^ItrQdilSdQQ

The design of an NTSC digital television has required

extensive computer simulations to verify digital signal

processing algorithms. High-level language programs

have been used to simulate a few fields of the target

video system [1, 2]. New signal formats such as Ad-

vanced Compatible TV
(ACTV) [3] also require

significant manpower and

simulation time to obtain

acceptable results. While

these simulations are im-

portant to the design pro-

cess, they provide limited

intormation about the per-

formance of the actual

system under real-time

conditions. This has result-

ed in a costly development

cycle in which hardware

prototypes are built for

each of several genera-

tions of experimental sys-

tems.

Processor

mic steps per pixel. If each pixel is clocked at 14MHz

(70ns cycle) rate, a single processor would have to be

able to execute one algorithmic step every 20 picosec-

onds to sustain real-time operation. This is about two or-

ders of magnitude greater than the next generation of

supercomputers.[4] In addition to the intensive computa-

tional requirements, a real-time video simulation system

must be able to continuously sustain I/O at 14MHz or

better.

Numerous attempts have been made at applying super-

computer or multiple processor architectures to image

processing and real-time video simulation problems. Fig-

ure 1 compares the different approaches in terms of pro-

cessor topology - how they are mapped onto an array of

pixels. The first approach ("A" in Figure 1) employs a

single, very high performance computational node or sev-

eral nodes such as a Cray X-MP. In the Connection Ma-

chine [5] system, 64,000 sequential single bit processors

operate in a Single Instruction Multiple Data (SIMD)

mode. Pixel data is mapped in a processor per pixel

mode, as shown in "B" in Figure 1 , for the entire array of

pixels. This method is

also referred to as fine

grain parallel process-

ing, wherein many sim-

ple processors are used

to simultaneously per-

form the same compu-

tation on a large array

of data [6].

An alternative to fine

grain architectures for

a multiple processor

system is the course

grained approach in

which considerably few-

er processors of great-

LEGEND
A-SUPEHCOMPUTER

B - PFOCESSCW PER PIXEL (SYSTOLC)

C - DISTTRBUTED PnOCESSOR ARRAY
FOR M X N PIXELS

D - ONE PROCESSOR PER COLUMN

The problem of performing true, real-time video simula-

tions can be characterized in the following terms: the al-

gorithms necessary to implement an advanced, motion

adaptive, NTSC decoder requires about 1400 algorith-

Figure 1.

To Pixel Mapping Schemes.

er computational power are employed. One such system

from NHK [7], uses standard bit-slice processors as pro-

cessing elements. Up to eight 16-bit processing units run-

ning at 7.16MHz and connected unidirectionally have been

implemented in this system. Each processor contains a

replication of a full frame of image data in memory, elim-

Contributed Paper

Manuscript received March 17, 1988.

0098 3063/88/0200 0285$01.00 © 1988 IEEE

286 IEEE Transactions on Consumer Electronics, Vol. 34, No. 2, MAY 1988

inating memory access contention. As shown in ap-

proach "C" in Figure 1 , each processor executes the al-

gorithm for a specific region of pixels in the image plane.

This system has been used for real-time frame syn-

chronizing and mixing.

Another mapping of processor topology to an array of

pixels is the Scan Line Array of Processors approach,

or SLAP [8]. In this system, a linear array of identical

processors are connected in a nearest neighbor fashion

and are operated in an SIMD mode (as shown in "D" of

Figure 1). Each processor contains an integer arithmetic

unit, register file and a single stage of a shift register.

As an image scan line is loaded into the array, each pro-

cessor latches one pixel. Algorithm ex-

ecution proceeds with processors in

parallel. A 512 processor SLAP imple-

mentation with a 250ns instruction cy-

cle time can perform about 125 real

time instructions for each pixel of a

512x512 image. A more recent imple-

mentation of SLAP will yield about

500 instructions [9]; however, extend-

ed instructions, such as multiply, will

take as many as ten instructions.

Thus, real-time simulations of large

video systems are not possible.

eo is performed in a processor per column architecture,

similar to the SLAP system (see "D" in Figure 1). The

processors are tightly coupled by a communication net-

work which supports nearest neighbor exchanges of

data in a single cycle and random exchanges between

any two processors in a 64 processor boundary in one

cycle. A local memory with sufficient storage for 32

frames of video data makes it possible to implement

both temporal and vertical algorithms.

System Operation Overview

The initial application for the Princeton Engine will be in

performing real-time video simulations of NTSC and

ONE CYUNDEn Of COLUMN

UU.TPIE

drKXar G ,

*" B ,

'••pwy G ,

'^'
B,

SOURCE
SELECmON

DISPLAY

INTERFACE

^

•CLOCK GEN,

4.INE LOCKED
-BURST LOCKED

Several architectures have been pro-

posed which combine features of both

coarse and fine grain processing. One
such architecture is the Warp Comput-

er, a linear systolic array of proces-

sor cells [1 1]. Each processor cell con-

tains a 32-bit multiplier and ALU unit

capable of sustaining 10 Mflops. I/O

between processor cells occurs at

20MHz, and the combination of high, single processor per-

formance and I/O bandwidth are claimed to make both

fine and coarse grain processing possible. However, real-

time video and image processing simulations are greatly

limited by a small number of processing cells (see "B" in

Figure 1) and the need to interface an I/O frame store

buffer. Temporal processing across multiple fields is lim-

ited by a mapping scheme where each processor cell

must act as a fine grain processing element for a large

number of pixels.

The Princeton Engine combines features of both coarse

and fine grain processing architectures. It is implemented

from a large number (up to 2048) of high speed (14

MHz), single cycle, 16-bit processors. Processing of vid-

• TEST SIGNAL
GEhEHATON

^ PRINCETON ENGINF
(N - 010 fw NTSC)

INPUT SHIFT REGISTER
H Sag—

ijuiii
INTHRPROCeSSOfla»*A

NStagnw
LINEAR ARRAY

of

N-PARALLEL
PROCESSORS

with

NX 16X 16K

LOCAL MEIuCIRIES

||
' MULTIIMULTIPORT RAM OUTPUT Si

HOST
COMVIER

I/O

CO^fTROL

Ouvul Coniral 2^

. NPV/T / OUTRJT TUNG

Figure 2. Princeton Engine System Overview

ACTV video systems. In the Princeton Engine system,

digitized video is continuously shifted into the input shift

register (top of Figure 2). After a line of video is com-

pletely loaded into the registers, the video is transferred

in parallel to the interprocessor communication (IPC)

buffers. The processor can then fetch the data and op-

erate on it locally or globally. After all pixels are pro-

cessed, they are downloaded to the output section within

a line time. In this way, continuous video can be produced

at the output. The processing should be completed in less

than a line time to achieve real-time simulation. For four

times subcarrier sampled NTSC data, the maximum

number of instructions for real-time simulation, Np^ , is:

Chin, et al.: The Princeton Engine: A Real-Time Video System Simulator 287

input parallel load period ^ 910x70ng ^ g^g instructions

instruction period 70ns

for a 910 processor system. This is the total number of

instructions available to accomplish the 1400 algorithmic

steps required to implement the example NTSC system.

In the Princeton Engine, each processor micro-instruction

can typically achieve three algorithmic steps yielding a

total capability of 2730 algorithmic steps. By doubling

the number of processors to 1820, Np^ , is:

2 X 910 x70ns = 1820 instructions,

70ns

for a total of 5460 algorithmic steps.

The Princeton Engine achieves a linear speedup in the

number of instructions which can be executed while still

maintaining real-time operation. Likewise, this same

speedup can be realized by halving the instruction period.

Engine Controller Input and Output

All system program control, video input and output is

contained in the controller. A Video Input section which

allows source signal selection and

data conversion (A/D and D/A

converter) is shown at left in Fig-

ure 2. Up to 48 total bits of video

input source with three indepen-

dent clocks can be processed (six

8 bit sources, three 16-bit sourc-

es, etc). A multibus interface be-

tween the host computer and the

controller permits program and

control code to be downloaded.

Within the controller, there is a

16,000 instruction memory (word

length is 89 bits). The controller

transfers instructions from this

program memory by sending a

stream of identical instructions

to each of the processing ele-

ments in the array. Video data is

transferred in parallel to the ar-

ray of processors - one line of

video at a time - each processor

receiving a single sample. The
overall transfer rate of the input

Figure 3.

video data is 1 .3 Gbit/second (48 x 28.64MHz). The con-

troller also includes a video output timing and display

section. In this section, a stream of pixels, 64 bits wide

(i.e. eigiii 8 bit channels, four 16-bit channels, etc.), is

transferred from the array of processors back to the

output and display section at 1.8 Gbit/second (64 x

28.64MHz). The arrangement of pixels at output is com-
pletely programmable via the Output Timing Sequence
bus (OTS) within the Graphical Control Environment

(GCE) and occurs in parallel with instruction execution.

TTie Processing Element

The engine core consists of an array of up to 2048 pro-

cessing elements. Figure 3 shows a block diagram of the

processing element. Each element has a 16-bit ALU, a
16-bit Multiplier, a 64-word triple-port register stack and

a 16-bit address/data external memory interface. In ad-

dition, processing elements are connected at the chip lev-

el via a 16-bit programmable data bus (IPC), which sup-

ports rapid exchanges of data between processors. A
full compliment of processors can realize a throughput of

29.3 GIPS (2048 X 14.32MHz).

The processing element also contains special hardware

support for maintaining lookup tables in external memo-
ry. External addressing can be of either an absolute, an

indirect or a table index type. During each instruction cy-

IB (IMD Fd)

All butMS aro 16 brts witk

url«s5 otherwiw noted

IMD ; Irrmxlals Oiti

NND : Non Normal DiU

Processing Element Block Diagram.

cle memory addresses can be directly encoded into the

immediate field of the instruction. Next, the address can

be generated indirectly from a register or the accumula-

tor; finally, the address can be formed by combining a

288 IEEE Transactions on Consumer Electronics, Vol. 34, No. 2, MAY 1988

register value with immediate data to form

a table index. In table index mode, 8 MSB
bits of immediate data provide a bit mask
index. This mask determines which bits of

the lower eight bits form the table address.

Memory access is completed in one cycle.

The immediate field of any instruction can

also be used to load a data constant into

the ALU, Multiplier or on-chip memory stack.

BROADCAST

e-B
Broadcasting

Processor

APPLICATION : adaptive filtering . histograms

BYPASS

Total throughput of the system is signifi-

cantly increased by the incorporation of mul-

tiple internal data paths within the process-

ing element. This permits a high degree of

secondary parallelism in program operation.

For example, in filter operations, a pixel can

be shifted left, while simultaneously, an

ALU operation, a multiply operation, and an

external memory access are being per-

formed. The use of secondary parallelism in this way

results in at least a 3:1 reduction in the number of in-

structions when compared to the number required on a

conventional microprocessor.

Interprocessor Ccnfimunication Bus

The Interprocessor Communication Bus (IPC) provides

high speed exchanges of data between processing ele-

ments and the video input/output processing logic. IPC

bus operations can be of a broadcast type (one proces-

sor to many) or of a bypass type (where there are ran-

dom length non-overlapping bidirectional connections be-

tween processors). A new IPC bus topology for the

entire engine can be generated in two instructions. Figure

4 illustrates these two communication schemes and their

applications.

-» II

I

-n~

APPLICATION

Bypassed^

Processors

fault tolerance ; TREE S HISTOGRAM CALCULATIONS

Figure 4. Broadcast and Bypass IPC Modes.

Once a bypass pattern is set, communication is bidirec-

tional - e.g. left and right I/O operations send correspond-

ing data n processors up or down stream, according to

the bypass pattern configuration. Connections within a

64-processor boundary will require only one instruction,

while a worst case bypass pattern will require five in-

structions. During exchanges which require more than

one instruction, processors can continue to perform all

other ALU, Multiplier, internal register and external

memory operations.

This communication topology is the key to implementing

horizontal filtering algorithms. And, because of the large

local memory and register stack sizes, vertical and tem-

poral filter operations can be efficiently performed, as

well. Figures 5 and 6 illustrate possible vertical and tem-

poral operations using local memory to store data for

in the Broadcast mode (top of Figure 4), one

processor is designated as the sender and as

many of the other processors as are required

by the algorithm can be designated as receiv-

ers. Data transfer is accomplished in one in-

struction to any of the processors within the

transmitter's 64-processor boundary. In the

worst case (assuming 2048 total processors),

it would take five instructions from any one

processor to all others.

Bypassing operates in a similar manner, ex-

cept multiple processors can be connected in

any pattern, provided no two paths cross.

LINEAR -VERTICAL

Pn.i P

01
-» I III

^^^
. • m VI •

I
« V ^

l::i m:
I

I

'

APPI ICATIQN :

VERTICAL FW FLTERS.NEAREST NEIGHBOR CALCULATIONS

Figure 5. Vertical Filter Operations.

Chin, et al.: The Princeton Engine: A Real-Time \'ideo System Simulator 289

LINEAR -TEMPORAL

n^
n-1

Bf --*
-» 1 1 1

1

APPLICATION :

3-D FIR FILTERS,NEAREST NEISHBOR CALCUUVT10NS,TEMP0RAL PROCESSING

Figure 6. Temporal Filter Operations,

image columns (N-1) and (N) in processors, P(N-1). and

Pn, respectively. Each local memory can store up to 32

frames of 16-bit video data for one column. Usually, only

two or three frames at most will be stored. Local memo-

ry will also store lookup tables, constants and modified

or intermediate field data that may be of interest at dis-

play time.

Fault Tolerant Linear Array Model

Several researchers have considered the issue of imple-

menting testable and reconfigurable fault tolerant ar-

rays [11,12]. In Kumar [11], a design criteria for a suc-

cessful model of fault tolerant computing is proposed.

This model includes the following:

A) A linear processor arrangement with local parallel

busses. The processor configuration and
IPC bus in the Princeton Engine (PE)
meets this criterion and is fully pro-
grammable.

B) Propagation delay is assumed to be proportional

to wire length. Introduce unit delay whenever a pro-

cessor is bypassed. In the case of an iso-
lated faulty processor, PE bypassing
modes permit single instruction ex-
changes of data between adjacent pro-
cessors. In general, bypassing faulty
processors in the PE will meet this
criterion.

C) The clock rate is independent of the number of

faults in the array. This criteria is met giv-
en the limit of the fault covering a
boundary of 64 processors. In the PE,
the I/O clock rate is independent of
the processor clock rate.

D) Busses, unlike processing elements, are

assumed to be reliable. This is also
the assuinption in the PE.

E) Fault tolerance depends on being able to

connect good PE's into a linear connected

array. The IPC bus of the Prince-
ton Engine guarantees this.

Fault tolerance for video applications is main-

tained in the Pnnceton Engine, provided there

are more processors available than pixels in

the particular display format. In a two cabinet

engine, there are positions for 1024 proces-

sors, which is 114 more than the number re-

quired for NTSC signal processing. A diagnos-

tic program runs during system initialization and tests

each processor. Those processors which fail are immedi-

ately bypassed. Provided there are sufficient proces-

sors, and regardless of the resulting bypass configura-

tion, all programs will run unaltered.

Graphical Programming

The complexity of a system of 2048 processors requires

a new method of program development which enables

the engineer to implement algorithms at a high level of

abstraction without having to consider details of code

generation for all the potential processors in the system.

A software development environment, which permits a

high degree of programming parallelism, has been imple-

mented. Figure 7 shows the overall system software

flow. The development system consists of four major

components: a Graphical Program Composer (GPC), a

Graphical Programming Editor (GPE), the Concurrent

System Simulator and Debugger (CSSD), and the

Graphical Control Environment (GCE).

Signal processing engineers conceptualize systems in

terms of high-level building blocks, where the functional

behavior of each block is usually well understood. It is

the unique composition of these blocks which creates

new and novel systems. Simulations for such systems

using conventional programming languages require a

change in the designers' conceptual framework from an

inherently parallel one to a sequential one. In actual DSP

system implementations, however, processing is fre-

. quently performed in parallel.

The GPE permits the user to symbolically lay out an al-

290 IEEE Transactions on Consumer Electronics, Vol. 34, No. 2, MAY 1988

GPE
Graphical

Progra mming
Environment

Lisp & C
Editors

Compiler

DSP

15
Klock!

GPC
Graphical
Program
Composer

CSSD

DSP Library
Modules :

-Flltcra
111 Comb
211 Comb
-PI P
• Luma/Cltroma
-NTSC Matrix
-tic . . .

Concurrent
Simulator &

System
Debugger

OCE

Host
Computer

Graphical
Control

En vi ron ment
Multibus I/O

Test Video
Data

Engine
Controller

TT
Engine

A/D

D/A

D/A

D/A

bit picked product (PP) output is routed to

the ALU and stored in the accumulator at

the end of the instruction cycle. In addition,

data from the I/O buffer (IPC_BUF) is

sent "left" as indicated in the graphical lay-

out. At any specific time within the GPE,
the user can increment or decrement in-

structions, return to the first or last in-

struction, insert or delete instructions or

print out a graphical transcript of the entire

program.

The selection of an appropriate ALU opera-

tion is made from an on-screen, mouse sen-

sitive menu which displays all possible ALU
operations. These ALU operations include

several functions specifically designed to

simplify the task of programming DSP algo-

rithms, such as clipping, sign extension,

byte packing, byte swapping, minimum,

maximum, absolute value and two's com-

plement arithmetic. Minimum and maximum
functions are useful for median filters while

byte swapping and packing improve local

memory storage efficiency. Two's comple-

(1 of 6) ment capability provides for simplified arith-

metic operations on bipolar signal inputs.

• Real Time
Video Input

,R

Figure 7. Software Development Environment

gorithm using a picture of a single pseudo-processor (re-

fer to Figure 8). Each instruction is created by graphical-

ly routing data between various source and destination

points within the processor. Instruction flow is controlled

from within the GPE environment by simple interactive

graphic commands using a mouse pointing device. Paths

are selected by pointing to the graphic icon representing

the operator or register within the processor. For exam-

ple, referring to Figure 8, Inst 2 , a path is selected from

the memory input buffer (Dl) to the multiplier where the

product of a filter coefficient and a pixel are generated.

The filter coefficient value was entered via the immedi-

ate field and appears on the display as the I(X)C3 lable

on the multiplier icon. At the same time, the data from

the memory input buffer (Dl) is routed to the I/O buffer

(IPC_BUF).

The multiplier has a programmable product picker which

enables any 16-bit subrange of the 32 bit product to be

selected as output. In the third instruction, Inst 3, the 16-

As instructions are graphically generated,

a transcript of operations is maintained.

This includes data slots for labels, lookup

tables, branch operations and immediate

field entries. Branch operations give the system the cap-

ability to conditionally execute a string of instructions

based on the result of an ALU operation. Status condi-

tions for nearly all ALU operations have been provided:

<=0, >0 >=0, =0, <>0, A>B, A<B, overflow and under-

flow. Branch control is achieved by conditionally locking

those processors which fail the status condition. They

remain locked until either a conditional unlock or global

unlock command is issued. The GPC code generator in-

serts the correct branch ID codes into the instruction

field to accomplish branching. Up to 256 branch ID's can

be used in one simulation.

Program controls and binary codes for the engine are

generated automatically by the system from this tran-

script of graphical operations. In the Princeton Engine

system, the user builds a simulation data base using the

GPE to implement primitive DSP functions such as FIR

filters. Figure 9 shows the block diagram for a basic

five-tap filter. Filter coefficients, CI through C5, are ini-

Chin, et al.: The Princeton Engine: A Real-Time Video System Simulator 291

«« PRWCET6H mw mmthi mtJ^MM mm »»

I
itFT

I I

irc_iiF
I I

iitir
I I

cii.itcl

lEC FILE
rrjiif]rrjn
jitrr fStn

taU l[r«|ltt«r

IICCl IIEC2

Inst 1

30ttj(t)\

lEC FILE

rsiJi TStn

SktFt I Itft
L*a4 IiC3 tat* ICCl

|ItECl||HEC?|

Inst 3

COHHANDS ftLU OPERnnONS PICK PROD BnS SICH EXP BRANCH CONTROL IPC CONTROL EDIT MODE

File Na«e: fir5 No. of Inst : 13 Selected Register: None Date: 2/9/1988 Tine: 12:17

ALU OPERATIONS:

CLIP ON CLIP OFF

LEFT RIGHT CON REG

A t B

B - A

A OR fi

A XOR B

ISC(A)

HAX(A,B)

ST DIV

END DIV

A*B*C

A-BtC

B-A*C

A AND B

ABS(A)

2SC(A)

HIN(A,B)

CONT DIV

PACK

DIl

REG..FILE

P1_ADR P2_ADR

PORTl P0RT2

IREGl IREG2

CLIP OFF

ACC2

Pixel X « Coeff C3
Load X into IPC BUF

K

ALU(A)

ÂLU(B)

ACCl RA

.PPIOST.

-mm
RAN

Inst 2 EDIT MODE : SYNCHRONOUS

CPE>

Figure 8. GPE Example of FIR Filter Program.

respectively. The GPE program requires twelve micro-

instructions to perform the 35 algorithmic steps neces-

sary to implement this five tap FIR filter. In general, an

N-tap horizontal FIR filter can be programmed in N+8
processor instructions. Figure 8 shows the GPE envir-

ment and first three instructions of the horizontal FIR Fil-

ter example.

The GPE implementation steps are as follows:

First, the current pixel is loaded from external mem-
ory into data input port, Dl, using the immediate field

for the address. During the second instruction, the

immediate field contains the value of the filter coeffi-

cient, Cn, and is loaded into multiplier input port,

MPY(B). Then the current pixel is multiplied by the

coefficient, Cn, and again, in parallel , the pixel (X)

is transfered to the IPC_BUF. During the third in-

struction, the product is summed into the accumula-

tor, while, in parallel , the pixel (X) is shifted left. Be-

cause each processor is performing the shift opera-

tion simultaneously, at the end of the third instruc-

tion cycle each processor's IPC_BUF will contain the

pixel from the processor to the right, (X+1). Figure

10 shows the entire graphic programming sequence

for the twelve instruction program. During the fourth

instruction, this pixel must be stored in a register,

while, in parallel, the next shift operation is per-

formed. This pattern of instructions repeats to the

(X-2) (X-1)

Flltor Inpi

Flllac OufKjl

Figure 9. Five Tap FIR Filter Example.

292 IEEE Transactions on Consumer Electronics. Vol. 34. No. 2, MAY 1988

^
LEFT 1 ! IPt.llFl

{
iicir 1 ciijE({

j

Itti Clilir
litt II ri|

lllllCI)
titir

LEFT IIJIIH j IIEi: 1 CIIJE! riiii I ctiff a
Lltd I lit! Ift_HF

1 11
l«Ct2| [

riTP iff! i

IICC2HI
! 1

Ill 1

lEt FILE 1lEt rilE '

ff?

CLIf IFF

U
71 iffFJ Hi

IlLlCI)/
1

rFi uTtj hi |4LIU>\

lILICDt/
ICClnV\' iMlrj'

-fii
IlECi: IIEC2; lltECl IIEC:' — '"

!

Inst 2

nn

DiirT(i)" 1
] 1

mSJL^i*
Inst 1

iicir , cii lEc;
I

Skirt i lift
=

' L>l< llC3 lit! icci

I lEt FILE
\

i>atn Mir;;

illEEi; illECZ;

Inst 3

CLIP iff' i

s k >ww
i

—

trimw Hg

ft
[TP,

|^^«—^^23 '' '"'^
'
ciijEi Skm I lift

im (I>1) liti IIEC2

EST
lEC FILE

irECl 1^3

fTUTTTTK

Unci),'
licet : 11

Inst ^

ifFd)
j I 1 B

1 -^————

—

{
lECIF CII.IEC| Lll4 (ItUi

Ltl< (I>2>
:< uti r

lilt iie;2
;
licir cii_iE(iiiiw ciitir fiiiici)

^ i

1ICC2

CI If iffI

ICCIIil iTt ptdicti

1^
1 '"-—

—

' III
: !

' LlK Clt2)iC5 lltl P

"i

II

lEt FILE CLIP IFF.

|LI(ii\
1> > liCCl

iLi(i)/
;

[111

PI lEC Pc III „

iiEii ^22 IT-

-yg^" M -^
ii«"^ l!,!^iJ

-cnn/ in
III

rill ffW f ...
I — '-^ ! "

Inst 5

"SlEHI imalil~lB
Ins I S

LEFT il.'ll.i—JlM'lI 1 CII.IEt' SklC. I rljlil^^^^^^ ^^^^ icciiMliti inriictl
litl ICCl

LEF- aij* ! i»—fHI ! CII IE! Skid (I-l) rl)kl^^^^ ^^^ LIK tI-1) lltl IIEtZ

i Hi
i

ICC2 kllM |1CC2

1 rit FILE S4'.'"^ tr. FUf ti-iF iff;

V-"rp;_i» —icnQi. —
'^^^^^-^ —St)—'i '

"
MM MM Tornx, i— ;—

,

piiri rrm -s ^n i.m it.

-nnrcSa ^'^^
' ^

1 tr [Ml
^^

In 1 lU
'"">:,»

' !_, '
1

liprcDi: ' !"!
;ip>av: :

•

Inst 7

llfKIV " '

Inst 8

—^^^—^^—

^

]

lltIT I ' CII_tEt: , Llll (I-l)lC2 1 ti p

HEC2
LEFT i ' IPC.IIFJ 1 1 ICir ' CM lEC Icciiiliti irKictt

lltl ICCl
Lll^ (I-2)iCl lltl P

i

I.CC2! IICC2

n TP IFF
' lEt FILE

III
i

' IE; FILErrrp iff! i

[iLKlbK '

>

—

:) '"1
:

"
1 ILKI)/

Pinri"nlr}:
1
^

r-

—

*t
[_mcr UjjJ

i

^ HiiiEiiirTTn 1

^
iir \ ,T

'

til ^
[111

111

Inst 9
!

1KQ2lJll~lfl
Insl 10

1

LEFT
I I

IPC IIF
1

I IKir
I

I CII lECl I Icciiiliti llll pridict1,-1
i^j^ j^^j

Inst 11

IIECl||IIEtT]
I

^^
I

I

1ft
II III

LEFT, 1 IPCJIF IltIT iCIIIEt ; LiH (11 tir litllt
'

'
'

'
'

'

= '

tl III

IE; FILE

Ttrrr

IIECli :IIEC2

Inst 12

^ Mn S—

I

l:j

Figure 10. GPE Program for Five Tap FIR Filter.

Chin, et al.: The Princeton Engine: A Real-Time Video System Simulator

Composite Video Signal

Combed Chroma
Line Comb Filter

Vertlcle Detail

niter (VOF)

Combed LUr

Chroma BarxJpass

RIter (CBPF)

£
l/Q Demodulation |_

J'

Q Low Pass

Fitter (OLPF)

I Low Pass

niter (ILPF)

Chroma Channel Features

~~f f

\ LUMA
\ Channel Features

(R-Y)

Color Matrix

(G-Y)

INTP

i-

(B-Y)

IE
INTP

f
axiE

Figure 11. GPC Example of DTV.

formed. This pattern of instructions repeats to the

left and right until all the pixels are multiplied by their

corresponding coefficients and summed into the ac-

cumulator.

It should be noted that the frequent use of the immediate

field in the previous example illustrates the degree of

modularity possible in the programming environment of

the system. A filter module can be created in which the

coefficients are entirely parameterizable. For each in-

stantiation of a particular module, the immediate field

slots can be filled in with appropriate coefficient values.

Most system engineers will use the Graphical Program

Composer (GPC) to assemble video and DSP systems

by composing block diagrams of their design ideas. A ro-

bust library of primitive DSP functions has been created

using the GPE. In addition, a block diagram component

has been created for each DSP function. Figure 11

shows a Digital Television system [2] composed of GPE
building blocks. Engineers will configure the engine for

293

NTSC or any television standard, entirely via the GPC.
Since most of the existing video systems (NTSC, PAL,

etc.) will be included in a library, these will become a logi-

cal starting place for new users.

The initial GPC environment uses a commercial EWS
schematic capture and netlisting facility. This provides a

robust graphical editor in which the user creates a block

diagram of the target system using components from a

DSP library. This approach provides DSP system de-

signers the same tools, symbols and notation used by

other engineers to constmct system hardware and VLSI

block diagrams. Once the design has been captured, an

expansion program extracts the topology and component

names from the design and links together the resulting bi-

nary codes from each of the individual modules. If the de-

sign contains lookup tables, then the corresponding file

name must be attached to the symbol for that function.

When a particular DSP primitive module (i.e. a new filter

design) does not exist, it must be created using the

GPE.

Developing simulation data bases for complex video sys-

tems will be a comprehensive and time consuming task.

In most engineering facilities, a single, full capacity simu-

lation system will be shared among the community of en-

gineers. In order to enable hierarchical modules to be de-

veloped and debugged, we have implemented a host

computer based software simulation system, the Con-

current System Simulator and Debugger, or CSSD.

The CSSD is a LISP-based, object-oriented simulation of

the engine system. It is used to develop algorithms and

debug application code. Each engine prxessor is modeled

as an independent object. Internal registers and external

memory are accessible as data arrays associated with

each processor instance. Processors exchange data by

sending messages from one processor object to another.

During each instruction time, a global message (89 bit

word length) is sent to all processors, which, in turn, de-

code the operands and execute the appropriate opera-

tions. At any time during the simulation, the user can ex-

amine internal registers or status by sending a message

to the specific processor or processors. CSSD supports

edit and debug operations including break point, tracing

and single step.

GCE

The run time environment on the Princeton Engine, the

294 IEEE Transactions on Consumer Electronics, Vol. 34, No. 2, MAY 1988

(A) NORMAL OPERATION

PROCESSOR #1 PROCESSOR #2 PROCESSOR #3 PROCESSOR #910

Regiilcr #1 ^ui VicUo Puei (AI

Regisier #2

Rrginer #3

Regiiter «4

Mss V«)0o Pisel (A2 Video Pus) (A3 Mud Vid«o Pul(A910)

OlTTPirr VIDEa A1 A2 A3 .

.

OUTPUT SEQUENCE: (ProoMor) 12 3..
(Regifler) 111..

(B) PROSCAN OPERATION
PROCESSOR #1 PROCESSOR #2 PROCESSOR #3

A9I0

910

1

PROCESSOR #910

Regiiier #1

#2

#3

#4

RcJ V«l«, Pi«£l (Rl)

Regiller IcQagsiary Pixel (11)

Regiiler

Regisier

Rckl Video Puid fR2)

lma«uiny Pixal (\2)

Ral Video Puxl (R3)

ltni£U)DT Pixel (13)

VluQ Video Pijtel(1l910

m^inuy Puiel(1910)

* ^

fcr Odd Lna

OUTPUT VIDEa Rl R2 R3 ... R910
OUTPUTSEQUENCE:(ProcesiDr) i 2 3 ... 910

(Register) 1 1 1 ... 1

II 12 13 ..

1 2 3 ...

2 2 2 ...

1910

910

2

and selection of system clocks are

accomplished under the GCE. Addi-

tional control commands permit users

to modify simulation attributes during

run time. This permits ordinary video

system control operations, such as

changing tint, saturation and con-

trast to be performed in real-time.

The ability to make real-time up-

dates to the entire microword of the

processor instruction provides a ro-

bust mechanism for modifying filter

coefficients and other simulation con-

trol variables. Within the GCE envi-

ronment, the value of any field of an

instruction in the sequencer program

memory can be changed during the

vertical blanking interval.

Figure 12. OTS Programming of Progressive Scan.

GCE, has the look and feel of a studio - as though the

designer is using a signal generator, logic analyzer and

appropriate monitors to evaluate a proposed system on

actual video signals. There is a high degree of flexibility

in signal source selection as well as output display lay-

out. The display can be configured for picture-in-picture

processing or with graphic overlays for histograms or

non-video analysis. If desired, the user can make small

changes to the GPE or GPC based design, re-compile

and re-run a simulation.

Actual control of an engine simulation is accomplished

through the interactive GCE program running on the host

computer. A complete assembly of engine instruction bi-

nary codes are downloaded by the host via a multibus in-

terface into the program memory located on the control-

ler logic board. When a simulation is invoked, the stream

of instructions are passed in parallel from the I/O con-

troller to each of the processors. The control program

running on the host must perform all the initialization

functions including preloading processor memory with

program data and running system diagnostics to verify

that the correct number of processors are operational.

Simulation attributes, such as video sources, clock and

sync signal generation, are all controlled by the GCE.
Control command sequences must be sent to the control-

ler at simulation initialization. In addition, selection and

planning of the output display layout, pixel placement,

Dynamic configuration of the output

display layout is provided through the

Output Timing Sequencer (OTS)

bus, which Is programmed under control of the GCE. The

OTS bus controls the order of pixels being sent to the

video output channels. Unlike most parallel machines, the

data output processing of the Princeton Engine is com-

pletely random, as if all the output data were stored in a

single RAM. Furthermore, each of the 64-output bit

streams can select from one of four registers from each

processor. If the 64-output bits of a 2048 processor ma-

chine are programmed as 8 channels, each 8 bits wide,

then the total number of 8-bit registers which can be ran-

domly addressed by its corresponding OTS bus would be:

(# of processors) X (# of registers/channel) = 2048 X 4

= 8192

The OTS bus has a processor address field and a regis-

ter address field. Figure 12 shows a pictorial representa-

tion of the output RAM for one of four output groups

(each 16-bits wide). The OTS control of output data

read from tlie output RAM is given by the output proces-

sor sequence and register numbers. In a normal output

sequence, the OTS bus will fix the register address at 1

and sequentially address the processor number as shown

in Figure 12A. This would occur anytime one particular

channel needs to be transferred to the output at 14MHz.

In the case of progressive scan, the second line, or the

computed, imaginary line, has its pixel data stored in

register 2 as shown in Figure 12B. The OTS bus will se-

quentially address the processor with the register ad-

Chin, et al.: The Princeton Engine: A Real-Time Video System Simulator 295

dress fixed at 1 and then change the register address to

2 at the end of the first line. The output sequence rate is

28f\/1Hz for progressive scan operation.

There are some cases in which it would be necessary to

use all four registers to generate the complete display. In

the case of a multiple Picture-in-a-Picture (PIP) simula-

tion, register 1 will store the main picture data and regis-

ters 2 through 4 will be used to store additional picture

inserts.

Running a simulation on the Princeton Engine requires as-

sembling three major GCE program segments. The first

segment is the SIMD program code, a run-time sequence

of instructions for the processing elements implementing

all the algorithms in the target system. This sequence of

instructions is the result of the design expansion of a

GPC-based description of the system. The second seg-

ment is the overall control program which must preload

any tables in processor memory, switch the appropriate

video sources and select the Output Timing Sequencer

registers. Wrapped around these two segments of the

GCE is a third segment which is an interactive program

running on the host computer. The engineer interacts

with this segment to organize the output, to change run-

time parameters and to start the simulation. This inter-

active segment must load the program and control seg-

ments into the controller and perform any of the multibus

operations necessary to transfer data and program, as

well as begin program execution.

Impiementation

Initial Princeton Engine systems will be comprised of a

sufficient number of processors to implement ACTV and

HDTV systems (1216 and 1536 processing elements, re-

spectively). A system is implemented in processor

boards each with 32 PROC IC's and 16 I/O IC's. The

processor boards are 22"x17", contain 12,000 holes and

have been implemented using high density discrete wire

technology. Each PROC IC contains two processing ele-

ments. The PROC and I/O IC's have been implemented

in two 75,000 gate, 1.5 micron, CMOS gate arrays.

Each IC is packaged in a 223 pin grid array. Local memo-
ry consists of four 16Kx4 static RAMS per processor

which are contained on a daughter board assembly

mounted adjacent to each double processor IC.

The speed of the PROC IC is currently limited by the

gate-array designed multiplier. We believe that a custom

design of the PROC chip would realize instruction rates

around 30MHz.

An Engine cabinet contains eight processor boards for a

total of 512 processors. All controller and analog to digi-

tal interfaces are contained in a separate cabinet. A

1536 processor Princeton Engine consists of four small

cabinets and consumes two kilowatts of power.

Summary

This paper described a powerful parallel computer archi-

tecture which has been organized specifically for video

and image processing. This architecture combines a high

speed dual processor IC with an I/O IC specifically de-

signed to perform very high speed video simulation com-

putational tasks. The approach makes possible for the

first time, true, real-time simulations of very large video

systems and permits an entirely new design methodology

to be realized in which engineers can explore their design

ideas interactively. In addition, the system can be ex-

panded from a single 64-processor board up to a system

totaling 2048 processors, with full upward compatibility

of GPE/GPC based libraries and making the startup

cost low. The Princeton Engine system will be used in the

development of signal processing functions and features

for existing TV standards (NTSC, PAL,...), as well as

to define signal formats for ACTV and HDTV.

While the emphasis of this paper has been on an applica-

tion specific parallel computer, the SIMD architecture

used here is also applicable to the solution of a broad

range of problems. SIMD machines have been used to

solve a variety of problems including FFT's, terrain map-

ping, fluid dynamics [13], circuit simulation[14] and logic

simulation[15]. They have also been proposed for a va-

riety of other computational problems including IC pro-

cess and device simulation and animation.

Acknowtedaement

We would like to acknowledge the contributions to this

project of Robert Mature, Anthony Guyer, John Lee and

Smith Freeman. Bob and Tony were instrumental in see-

ing the system hardware of the Princeton Engine become

a reality. John kept all our computers working and Smith

helped produce test vectors for the PROC and I/O IC's.

We also wish to thank the Thomson/GE/RCA Consu-

mer Electronics Division for support of this work.

296 IEEE Transactions on Consumer Electronics, Vol. 34, No. 2, MAY 1988

References

1. Strolle.C.H., Smith.T.R., Reitmeier, G.A., and Bor-

chardt, R.P., "Digital Video Processing Facility with Mo-

tion Sequence Capability", International Conference on

Consumer Electronics Digest of Technical Papers, p.178,

June 1985.

2. Bernard, F. S., Law, K. A., "An Engineering Worksta-

tion and Video Frame-Store Peripheral for Simulating

Digital TV Signal Processing", RCA Review, Vol. 47,

March 1986, pp. 32-66.

3. Isnardi, M.A., Fuhrer, J.S., Smith, T.R., Koslov, J.L.,

Roeder, B.J., Wedam,W.F., "A Single Channel, NTSC
Compatible Widescreen EDTV System", presented at

the HDTV Colloquium, Ottawa, Canada, Oct 4-8, 1987.

4. Hwang, K., "Advanced Parallel Processing with Su-

percomputer Architectures", Proceedings of the IEEE,

Vol. 75, No. 10, October 1987, pp. 1348-1379.

5. Hillis,W. D., "The Connection Machine", MIT Press,

Cambridge, Mass, 1985.

6. McMahon, E.P., "Applications of Fine Grain Parallel

Processing", Signal, April 1987, pp 69-74.

7. Enami, K., Yagi, N., and Murakami, K., "Real-Time

Video Signal Processor", SMPTE Journal, December

1987, pp. 1158-1165.

8. Fisher, A. L., "Scan Line Array Processors for Image

Computation", Computer Architecture News, Vol. 14,

No. 2, p. 338, June 1986.

9. Fisher, A. I., Highman, P.T., Rockoff, T.E.,

"Architecture of a VLSI SIMD Processing Element.",

ICCD, 1987.

10. Kung, H. T., Webb, Jon A., etal, "Warp Architecture

and Implementation", Conference Proceedings on the

13th Annual International Symposium on Computer Ar-

chitecture", 1986, pp. 346-356.

11. Kumar, V.K.P., Tsai,Y.C., "On Mapping Algorithms

to Linear and Fault Tolerant Systolic Arrays.", to ap-

pear in IEEE Transactions on Computers.

12. Rosenberg, A. "The Diogenes Approach to Testable

Fault-Tolerant Networks of Procesors.", IEEE Transac-

tions on Computers, CO-32, No.10, 1983, pp. 902-910.

13. Waltz, D.L., "Applications of the Connection Ma-

chine.", Computer, January 1987, pp 85-96.

14. Webber, D.M. and Sangiovanni-Vincentelli, A. "Circuit

Simulation on the Connection Machine." 24th ACM/IEEE

Design Automation Conference, 1987, pp 104-1 13.

15. Agrawal, P., Dally, W.J., Ezzat, A.K., Fischer, W.C,
Jagadish, H.V., Krishnakumar, A.S., "Architecture and

Design of the MARS Hardware Accelerator", 24th

ACM/IEEE Design Automation Conference. 1987, pp.1 01-

107.

Chin, et al.: The Princeton Engine: A Real-Time Video System Simulator 297

Biographies :

Danny Chin (MTS) received a BSEE degree in 1979 and an MSEE degree in

1981, both from Columbia University. He joined the David Sarnoff Research

Center in 1979 where his work has covered digital TV tuning systems,VLSI de-

signs, automatic manufacturing methods, digital TV circuit designs including de-

lay line convergence, progressive scan and all aspects of chroma processing,

parallel computing architectures and real-time simulation. He has received

nine U.S. patents and one RCA Laboratories Outstanding Achievement award.

Stanley P. Knight (GH) received the BSEE degree from the University of

Kentucky in 1961 and the MSEE degree from Newark College of Engineering in

1969. In 1961, Mr. Knight joined RCA Astro-Electronics where he worked until

1970 on RF system and circuit design and the development of thin and thick film

technologies for microwave circuits. He worked at Zenith Radio from 1970 to

1973 on advanced TV tuner designs. He joined the David Sarnoff Research Center

in 1973 and became Group Head in 1977. He and his groups have been involved in

all aspects of TV receiver design. Since 1982 his group has concentrated on digital

signal processing functions and features for future digital TV's. He holds four US
patents and has received an IR100 Award for work on MIC's plus three RCA La-

boratories Outstanding Achievement awards.

Herb Taylor (MTS) received a B.A. in Physics in 1976 from Franklin and

Marshall College. He worked at Tl from 1977 to 1981 on various VLSI designs

relating to graphics and computers. He joined the David Sarnoff Research Center

in 1981 where he contributed to the development of a design methodology of VLSI

for digital television, to architectures for parallel computing and to a graphics

chip design for the RCA-GE DVI system. From 1985 until 1987, Mr. Taylor

represented RCA as a Member of the Technical Staff of the Microelectronics and

Computer Technology Corporation (MCC) in Austin, TX.

Joseph Passe (MTS) received a BSEE degree in 1967 and an MSEE degree in

1968, both from Rutgers University. He served as an officer in the United States

Marine Corps from 1969 to 1972. He held positions of Senior Engineer through

Staff Engineer from 1972 to 1985, working at TAL-STAR Computer Systems,

Autodynamics Inc., and Lockheed Electronics Co., Inc. where his work included all

phases of digital logic design for micro- and mini- computer based systems.

Since joining the David Sarnoff Research Center in 1985, he has been involved

in the design of digital TV signal processing circuits and parallel computing

architectures.

Francis S. Bernard (MTS) earned a BS degree in Electrical Engineering from

Rutgers University in 1982 and a MS degree in Electrical Engineering from

Georgia Institute of Technology in 1984. He joined the David Sarnoff Research

Center in 1984. His work has concentrated on digital signal processing and

features for digital TV including picture-in-a-picture, delay-line convergence,

field progressive scan systems and graphical programming techniques for parallel

computing architectures. He holds one US patent.

NIST-114A U.S. DEPARTMENT OF COMMERCE
(REV. 3-90) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBUCATION OR REPORT NUMBER
NIST/TN-1288

PERFORMING ORQANIZATION REPORT NUMBER

3. PUBUCATION DATE
August 1991

4. TITLE AND SUBTITLE

Video Processing with the Princeton Engine at NIST

5. AUTHOR(S)

Bruce Field and Charles Fenimore

6. PERFORMINO ORQANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

Final
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

Same as item #6.

10. SUPPLEMENTARY NOTES

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOQRAPHY OR
UTERATURE SURVEY, MENTION IT HERE.)

This document describes the NIST program in digital processing, including a newly created
Image Processing Laboratory at NIST that is available to governmental, industrial, and
academic researchers working on digital image processing. The centerpiece of the
laboratory is a video supercomputer, the Princeton Engine, designed and constructed by the
David Sarnoff Research Center. The engine provides real-time video and image-processing
capability, accepting a variety of video formats over multiple wideband input channels
and outputting real-time video for immediate viewing. Because the Engine is programmable,
it is possible to use it to evaluate prototypes of image processing components rapidly
and efficiently.

The hardware capabilities of the Princeton Engine are described as well as the available
supporting video equipment in the Laboratory. Two programming examples are included to

demonstrate the unusual programming environment and "language" used to program the
Engine. Appendices list the available predefined library modules, and the processor
assembly language instructions.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

data compression; digital video; image processing; supercomputer; video processing

13. AVAILABIUTY

UNUMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

X

JL

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

14. NUMBER OF PRINTED PAGES

51
15. PRICE

ELECTRONIC FORM

U.S. Department of Commerce
National Institute of Standards and Technology

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

