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Manipulator Primitive Level Task Decomposition

1. Introduction

This document describes the structure, function, and interfaces of a trajectory generation

module in a hierarchical manipulator control system. The overall framework of such a control

system is described in [2], and it will be assumed that the reader is familiar with this refer-

ence. Figure 1 provides a pictorial representation of the initial concept of the control system

hierarchy. The module described in this document is part of the task decomposition hierar-

chy, which subdivides high-level tasks into simpler and simpler subtasks. The decomposi-

tion performed by this module is to generate a time sequence of closely-spaced manipulator

goal states from a static description of a desired motion. As such, it generates primitive tra-

jectories, and is called the Primitive (Prim) task decomposition module. The relationship of

this module to other elements of the control system is shown in figure 2. Figure 3 highlights

the elements of the control system discussed in this document.

As shown in the first three figures, Prim receives commands from either the Elemental

Move (E-move) level of the task decomposition hierarchy, which performs such functions as

grasp planning and planning of gross and fine motions, or from the Operator Control. The

output commands of the E-move level are time-independent descriptions of motions, for

example static position or position and force paths, or directional //e/<i5. In the first case, the

position and/or force commands are in the form of parameterized paths to be followed. In the

case of a directional field description, the command takes the form of position-dependent

fields which indicate the desired direction of motion or force application. In addition to these

types of commands, E-move can also simply specify a set of termination conditions, or goal

states, along with an algorithm specification which determines the strategy to be used to

achieve them. This type of command is useful for sensory-interactive algorithms such as

Cartesian end point servoing with vision. Motion commands from E-move may be large, as

with gross motion paths specified for free space motions, or relatively small, as in fine motion

segments for an assembly task.

Prim generates the time sequence of attractor sets needed to produce a dynamic trajecto-

ry from the E-move or Operator Control command, and sends these as commands to the Ser-

vo level of the task decomposition hierarchy. The Servo level, the lowest level in the hierar-

chy, controls the behavior of the manipulator in performing small motions between closely-

spaced goals, or attractor sets. The function and interfaces of a Servo level for manipulators

which accommodates a broad spectrum of known control algorithms is described in [20]. In

addition to determining position, velocity, acceleration, and/or force trajectories to be com-

manded to Servo, Prim also has the task of determining appropriate manipulator impedance,

stiffness, damping, and inertial characteristics which are controlled by adjusting the servo

loop gains commanded to Servo.

The remainder of the document is arranged as follows. First, an overview of the architec-

ture of the Prim level will be presented. As described in [2], the Prim task decomposition
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module consists of Job Assignment, Planning, and Execution submodules. Following the dis-

cussion of the general operation of these components, each will be described in greater de-

tail. First, the Job Assignment module will be discussed by identifying the interfaces (sec.

3) and describing the operation (sec. 4), Section 5 discusses the interfaces of the Planning

module (sometimes called the Planner), while section 6 describes the operation of this mod-

ule, including examples of trajectory generation for several types of algorithms. Following

the same pattem, the Execution interfaces and operation are discussed in section 7 and sec-

tion 8. Finally, some implications of the module design in terms of implementation are dis-

cussed in section 9. This document does not discuss the relative merit of various representa-

tions which may be used for the information in the interfaces. Also, the document does not

directly address the issues involved with end-effector control or control configurations for du-

al-arm cooperation, although the proposed interfaces should be useful for these applications.

Throughout the document, position refers to position and orientation, and force refers to

force and torque unless it is clear from the discussion that a more restricted interpretation is

implied.

2. Overview of Prim Architecture

As illustrated in figure 4, the Prim task decomposition module is composed of three sub-

components; the Job Assignment module, the Planning module, and the Execution module.

These correspond to the processes JA(2), PL(2,s), and EX(2,s) (s=l,...,n, where n is the di-

mensionality of the trajectory generation problem), of [2]. The input commands to Prim are

queued so that future commands will be available to the Planning module, and the Job As-

signment module manages this command queue. The Prim Planning module handles the gen-

eration of a plan for a dynamic trajectory (for example, time functions of manipulator position,

velocity, acceleration, and/or force). Plans may also take the form of trajectory parameters

which specify the shape or characteristics of a trajectory, without indicating the exact path to

be followed, as in the case of sensory-interactive trajectories. This planning is performed

according to the algorithm specified in the command specification. The trajectory functions

are then evaluated by the Execution module, which computes outputs to the Servo level at

time intervals specified by the Planning module. Each of the Job Assignment, Planning, and

Execution modules is a cyclically-executing process, in that each continually reads inputs,

performs computation, and then writes output in a cyclic manner. The advantages to this

type of execution and communication are discussed in [20].

Information about the state of the manipulator and the world is needed to perform plan-

ning and execution tasks. This information is provided to the task decomposition module via

the world modeling support module shown in figures 2, 3, and 4. This module accesses data

stored in the global data system by the sensory processing side of the control hierarchy (figs.

2 and 3). The Prim world modeling support module may access information which has en-

tered the data system through any level of the sensory processing hierarchy. This is indicat-

ed by the vertical data path between the two columns of world modeling support modules in

figures 2 and 3. Note that this implies there is no direct correspondence between sensory

processing levels and task decomposition levels. The generic term "world model" will often

be used in this document to refer to the Prim world model support module and the global data

system collectively.



Manipulator Prim Level

E-move

Global
Data

System

World
Modeling

Prim
Support

<—*«

<«

—

>

<

—

*i h«-

Operator

Control

Job
Assignment

JA(1)

Planning

PL(l,s)

Execution
EX(l,s)

Servo

Figure 4. Prim task decomposition structure.

Also shown in the figures is an operator control module. The operator can enter com-

mands into the command queue, control the velocity of the manipulator as it executes a

planned trajectory, and single-step the operation of the Execution module. The operator al-

ways has ultimate control over the contents of the queue of input commands. The operator

also has access to status information which is pertinent to controlling the system at the Prim

level.

Figure 5 again shows the three components of the task decomposition module, with the

addition of a detailed list of the types of information which may flow across the Prim task de-

composition module boundaries. This information and the interfaces between the module

subcomponents will be discussed further in the sections that follow.
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3. Prim Job Assignment Module Interfaces

The Prim Job Assignment module receives commands from the Task Decomposition mod-

ule of the E-move level and from the Operator Control. Figure 6 shows the information

which passes in and out of the Job Assignment module. The data which comprise the inter-

faces between these units will be described in the following sections. The Job Assignment

module takes the commands and places them in a command queue, which is accessible to

the Planning module. The input command queue and operation of the Job Assignment mod-

ule are discussed in section 4.

3.1 E-move to Prim Job Assignment Interface

The nature of Prim input commands from E-move is indicated in figure 6. The command
specification consists of an algorithm and a set of parameters. The parameters which have

been included represent commonly-used means of describing manipulator motions in a time-

independent manner, and expressing what factors are important in transforming the command
into a dynamic movement. It is important to recognize, therefore, that the particular combina-

tion of parameters for a given command will depend on the nature of the algorithm. Also, in

many cases a particular command will only be a segment of a longer trajectory, where differ-

ent algorithms may be used for different segments. After the command interface has been

described in the following, a table will be presented which shows typical combinations of pa-

rameters for different types of commands. Examples of input command specifications and

more details on how they are used are also presented in section 6, Prim Planning Operation.

The command interface from the E-move Task Decomposition module to the Prim Job As-

signment module consists of the following information; the symbol (if any) which may be

used to refer to a given element is also given:

Command number

The command number identifies the current command. Since Prim can accept a number of

commands to be working on, it needs a way to associate the status it provides to E-

move with a particular command.

Prim algorithm

The Prim algorithm specifies the algorithm to be used to generate a trajectory. The algo-

rithm determines the type of manipulator behavior desired in performing a command. It is

up to Prim to determine specifics of the behavior, such as velocity, acceleration, stiffness,

and the like. Several example algorithms are discussed in section 6.

Coordinate system, C

The coordinate system indicates what frame of reference is to be used for motion descrip-

tions. The format of C^ is (coordinate system, T^, T^), where T^ represents a transfor-

mation from the robot base to the desired reference coordinate system and T represents

a transformation from end-effector coordinates to the frame which is desired to follow the

specified motion (see fig. 7). The possibilities for C^ are:

(joint, -, -) => path description in joint space
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held object

• .-X

destination
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(end-effector, -, T )

(worid, T^, T^)

Figure 7. Coordinate frames for C

=> motion direction or force in Cartesian system fixed with respect

to the end-effector

=> path description or other motion goal for Cartesian system fixed

with respect to the end-effector, in terms of Cartesian system

related to the manipulator base by T,w

The transformations T and T may be fixed, rigid-body, homogenous coordinate

transformations. Alternatively, the transformations may be defined symbolically by spec-

ifying the name of an object, in which case the exact transform may be time varying.

Object names (which may designate specific features of objects), may be used to periodi-

cally obtain either absolute or relative position information about the objects from the

world model, depending on the trajectory algorithm.

Position command description, P

Force command description, F

The position and force command descriptions are used when it is desired to command fair-

ly specifically how Prim is to move to achieve the goal conditions (given by the termina-

tion conditions, below). The format of each of the command descriptions P and F is

(vector function, tolerance function). The vector functions may represent two different

types of commands. In one case, the commands represent position and force paths

parameterized in the variable s, which represents the fraction of the path traversed. In

10
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this case, the force path specifies the desired force at each point along the commanded
position path through space. The other possibility is to have the functions represent posi-

tion-dependent fields of desired position and force directions. The type of function (path

or field) is indicated in the representation of the function. The two possibilities will now
be discussed in more detail.

If the functions represent paths, they must have continuous first derivatives and the com-

mon path parameter s must increase monotonically. If it is desired to command a position

path composed of non-smooth segments (for example, a series of straight lines), these

segments may be commanded as consecutive commands. The position path description

does not represent an exact position goal for the manipulator; it must be considered along

with the position path tolerance. The position tolerance defines a sphere at each point

along the path within which the trajectory generated by Prim must fall. For Cartesian

paths, the position tolerance consists of two separate components; one for translation

and one for rotation. For joint space motions, there is only one component, which gives

the allowable distance from the desired path in terms of the Euclidean norm of the individ-

ual joint deviations. Together, the position path description and tolerance define a gener-

alized cyUnder [12], which Prim is free to plan a trajectory anywhere within. Similarly,

there is a tolerance function associated with the commanded force path. Note that a path

description cannot be used if the end-effector coordinate system is selected, as the refer-

ence coordinate system would move as the path was traversed.

If the command descriptions specify position and force directional fields, they must again

have continuous first partial derivatives. This type of motion specification may be used

when it is desired to command the manipulator to move in a particular direction (which

may depend on the position relative to some object). Such a specification would be used

with generalized damper control [57], for instance, where the manipulator is commanded
to move in some direction, and slides along the surface of an object when contact is

made. Another example would be resolved motion rate control. In either case, the Prim

Planning module must determine an appropriate nominal velocity to command in the spec-

ified direction. The directional fields also have associated tolerances, which may also be

position-dependent. The tolerance functions in this case specify the amount of allowable

deviation between the direction of force and motion specified by E-move and the actual

direction of the force and velocity commanded by Prim to Servo.

Examples of both types of command descriptions may be found in section 6. The reader

should keep in mind that it is not always necessary to use the position and force com-

mand descriptions; they are used when it is desired to command motion along a specific

path or in a particular direction to achieve the goal indicated in the termination condition.

Held object, HO

Destination object, DO

The held object and destination object specifications indicate what object is currentiy held

by the end-effector and what object, if any, the held object will contact during the com-

manded motion. This information is included in the input command so that Prim may easi-

ly access information about the contacting objects, such as stiffness, friction, and inertial

characteristics, from the world model. These characteristics are needed by Prim to deter-

11
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mine appropriate values for stiffnesses, damping coefficients, and velocities to be used

during contact operations. The object names include the names of the specific features

which will be contacting. If the Prim Planning is not smart enough to figure out reason-

able gains and velocities given the object characteristics, it should at least be able to look

up appropriate values to use given the names of the contacting features.

Termination condition(s), TC

The termination conditions are the desired goal states which should be achieved by the

end of command execution. They specify the criteria to be used to evaluate when a Prim

command is "done". The termination conditions may be given in terms of desired values

of sensed forces, positions, velocities, elapsed time, or desired states of other world mod-
el variables. The termination conditions therefore provide a means of implementing the

guarded moves used in many manipulation strategies [4,17,37,59].

Redundancy resolution specification, R

The redundancy resolution specification indicates what technique should be used to con-

vert a 6 degree of freedom (dof) Cartesian input command into a 7 or more dof output

command.

Priority

The priority specification indicates which manipulator is to have priority if there is a con-

flict for path space. The Prim level may use this information to decide whether to alter

the current trajectory if collision with another manipulator is imminent [18,21]. Since the

priorities for individual manipulators depend on the task and must be set with all manipu-

lators in mind, they should be set by the E-move level.

Objective function, OF

The objective function is used to communicate what factors are important in generating a

dynamic trajectory from the static motion description. For example, it may be important

that time or expended energy be minimized for a particular motion.

As mentioned previously, different combinations of parameters are used for different

types of input commands. Table 1 lists typical sets of input command parameters that might

be used with some different types of algorithms. Note that these parameter combinations

are only examples; particular algorithms within a group may use somewhat different combina-

tions.

The Job Assignment Module returns the following status information to the E-move Task

Decomposition module:

Job Assignment status

The Job Assignment status lets E-move know whether or not Prim has operator com-

mands in the queue. The job assignment status may take at least the following values:

accepting autonomous => the Job Assignment module can accept new commands

from E-move; no operator commands are in the command

12
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Table 1. Parameter sets for some types of input commands.

Free-space Hybrid force/pos. Gen, damper Sens. Interactive

Command number X

Prim algorithm X

Coordinate system X

Position cmnd. descr. X

Force cmnd. descr. -

Held object X

Destination object -

Termination cond. X

Red. resol. spec. X

Priority X

Objective function X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

accepting operator

queue

=> the Job Assignment module has commands from the oper-

ator in the queue and will ignore any commands sent from

E-move

Planning command number

The Planning command number indicates which command is currently being processed by

the Planning module.

Planning status

The Planning status element indicates the current status of the Prim Planning module.

The Planning status may indicate the following conditions:

ready for next command => the Planner is ready to receive the next command
specification

need next command => the Planner needs to have a command added to the queue

in order to plan the trajectory for the next command sched-

uled for execution. If a command is not added to the queue

then the manipulator will have to stop.

13
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Execution command number

The Execution command number indicates which command is currently being processed

by the Execution module.

Execution status

The Execution status indicates the status of the command currently being processed by

the Execution module. The execution status may have the following values:

executing => the command currently being processed is executing

done => the command currently being processed has finished

error => an error has occured in executing the current command

Execution status basis

The Execution status basis indicates more fully the meaning of the execution status. For

example, if the status of the current command is done, the Execution status basis indi-

cates what termination conditions were met (i.e. was position goal achieved, or was max-

imum time reached). If there is an error status, it may indicate the nature of the error.

Estimated termination time

The estimated termination time provides E-move with Prim's best estimate of how long

it will take to complete the current command. This is not practical to do with all algo-

rithms, but for those that it is, the estimated termination time should be a useful piece of

information for E-move scheduling. A lack of an estimate of the termination time may be

indicated by setting this parameter to 0.

3.2 Prim Operator Control to Job Assignment Interface

In order to support teleoperation mode where commands are entered by an operator

rather than the level above, there is an interface between the Prim Job Assignment Module

and the Operator Control, through which operator interactions take place. Complete Prim

input commands may be submitted to the Job Assignment module through the Operator Con-

trol. Another important aspect of teleoperation or manual modification of autonomous opera-

tion at the Prim level is the capability for an operator to manually override the planned veloci-

ty for an otherwise autonomous trajectory. The operator may do this by operating a joystick

potentiometer or similar device. Of course, the particular device must have been previously

identified. The information which passes from the Operator Control to the Prim Job Assign-

ment module to provide these capabilities consists of the following:

Operator command specification

The operator command specification consists of an algorithm and complete set of parame-

ters specified by the operator. The components of the operator command specification are

of the same type as those supplied by E-move, as discussed above.

14



Manipulator Prim Level

The Job Assignment module returns the following information to the Operator Control:

Operator status

The operator status includes the same types of information as provided to E-move.

3.3 Prim Job Assignment to World Modeling Interface

At this time it appears that the Job Assignment module need not share an interface with

the world model. All the information the Job Assignment module needs to perform its func-

tions are provided by either the E-move Execution module or the Operator Control.

4. Prim Job Assignment Module Operation

The primary function of the Prim Job Assignment module is to manage the queue of input

commands. An input command queue is necessary because the Prim Planning module needs

information about future commands in order to plan smooth transitions between trajectory

segments. During autonomous operation, the Job Assignment module accepts commands
from E-move and places them in the queue as they are sent down. The Job Assignment

module erases a command from the queue after it has finished executing and shifts the other

commands forward. When the operator wishes to take control at the Prim level, he or she

may do so by editing the queue to insert and delete commands. There are a number of ways

in which the operator might be allowed to edit the command queue, but it seems reasonable

to require that whenever the operator enters a command in the queue, the Job Assignment

module will empty any autonomous commands scheduled to be performed after the operator

command(s). In addition, the Job Assignment module should let E-move know (via the Job

Assignment status) that there are operator commands in the queue and that any commands
sent from E-move will be ignored, until the operator commands have finished executing.

This approach seems reasonable since the task should be replanned from the top down after

operator intervention, as conditions may have changed which will affect task execution.

Since the operator is allowed to edit the queue, it would be convenient to have a mechanism

associated with the queue (e.g. a counter for each queue position) that allows the Planning

module to determine when a change has occurred in a planned trajectory or one that is being

planned.

5. Prim Planning Module Interfaces

The interfaces between the Prim Planning module, the Job Assignment module, the world

model, and the Execution module are shown in figure 8. The first two of these interfaces are

described in this section. The interface to the Execution module is discussed in section 6.

5.1 Prim Job Assignment to Planning Interface

The input to the Planning module consists of the commands in the Job Assignment

queue, which have come from either E-move or the Operator Control. The format of the com-

mands does not change when they are entered in the queue; therefore the interface to the

Planning module consists of the same information as contained in the Job Assignment input

command specification, described in section 3.1.

The Planning module returns the following to the Job Assignment module:
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Job Assignment/

Planning interface

Command number

Prim algorithm

Coordinate system

Position command descri[)don

Force command description

Held object

Destination object

Termination condition(s)

Redimdancy resolution specification

Priority

Objective function

Planning command number

Planning status

Execution command number

Execution status

Execution status basis

Estimated termination time

Planning/

World Modeling

interface

Prim algorithm for command _^
to Execution

Position and velocity of all

arms in vicinity

Manipulator dynamics terms

Actuator limits

Constraint frame position

Inverse kinematics

Object data:

position and velocity

friction characteristics

stiffness

held by other manipulator?

tolerances and fits

assembly force limits

Gain information

Planning/Execution

interface

Planning

PL(2,s)

Command number

Servo algorithm

Coordinate system

Position function

Velocity function

Acceleration function

Jerk function

Force function

Time derivative of force function

Servo loop gains

TerminaticHi conditions

Redundancy resolution specification

Priority

Position/force selection matrices

Evaluation interval

Command number

Execution status

Execution status basis

Estimated termination time

Figure 8. Prim planning module interfaces.
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Planning command number

Planning status

Execution command number

Execution status

Execution status basis

Estimated termination time

All of these command and status elements correspond to the like-named items in the E-

move to Prim Job Assignment interface. The execution-related parameters are passed

straight through from the Execution module to the Job Assignment module.

5.2 Prim Planning to World Modeling Interface

In order to plan reasonable and effective trajectories the Prim Planner requires a substan-

tial amount of information from the world model. The Prim Planner must be able to obtain the

following information from the world model (as a minimum):

Inverse kinematics

Given the manipulator position and velocity in one coordinate system, the world model

must be able to provide manipulator position and velocity in the desired coordinate sys-

tem. The world model can also transform forces from one coordinate system to another.

Actuator limits

The world model must be able to provide actuator torque and acceleration limits as a func-

tion ofjoint position and speed. Joint position limits must also be available.

Manipulator dynamics terms

World modeling must also have the capability of providing manipulator dynamics terms,

including inertial, Coriolis, friction, and gravity terms; given the manipulator position and

velocity.

Object data

A variety of information relating to objects must be available from the world model. This

includes stiffness, friction, mass, and tolerance information, in addition to geometry data.

The position and velocity of objects may also be useful for trajectory planning if the object

motion is predictable. The amount and type of data required by the Prim Planning module

depends greatly on the reasoning capability of the Planner. For example, the Planning

module may determine appropriate servo gains for an assembly operation based on the

object characteristics mentioned above, or it may simply use the names of the objects

(and, more specifically, of the mating features), as keys to retrieve pre-stored parame-

ters to be used for the operation.

Gain information

Information about appropriate gains to use for different types of motion is available from

the world model. The Planning module may obtain this information and specify gains

when fixed gains are to be used for an entire motion segment.
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The Prim Planning module provides the worid model with the Prim algorithm used for the

command sent to Execution. This is included to assist the sensory processing and the worid

model in selecting appropriate sensors for use in sensory-interactive trajectories.

6. Prim Planning Module Operation

This section discusses a number of ways in which Prim can plan a trajectory from the

motion specification supplied from E-move and/or the Operator Interface. The nature of the

planning performed depends to some extent on the type of motion commanded. For instance,

the planning for a free space motion using a simple trajectory generation algorithm may be

quite different from that for more complex sensory-interactive motions. This section discuss-

es planning for several trajectory generation algorithms.

For preplanned free space motions, the Planning module must determine manipulator

position, velocity, acceleration, and/or jerk as a function of time to satisfy the commanded
path constraints. In doing so, it must in some way take into consideration the dynamics of

the task, and the limitations of the joint actuators. Joint actuators have limitations on maxi-

mum speed, and maximum force or torque output. The torque limitation places configuration-

dependent bounds on the maximum acceleration of a joint. In addition, joint travel limits

must not be exceeded. One approach is to use worst-case bounds on joint accelerations to

generate a trajectory. This is the tack taken by the algorithms discussed in section 6.1 and

section 6.2. This approach is straightforward and simple since the manipulator dynamics

need not be computed. However, it does not allow maximum utilization of the actuator capa-

bilities to obtain minimum-time trajectories, nor does it enable the generation of the most en-

ergy-efficient trajectories. To obtain maximum manipulator performance, the complete dy-

namics of the manipulator and payload, and the joint actuator limits must be taken into ac-

count simultaneously in determining a trajectory. Section 6.3 and the second part of section

6.4 discuss algorithms that incorporate manipulator dynamics in trajectory planning.

It is important to realize that the terms "trajectory planning" and "trajectory generation

algorithm" as used here do not always refer to methods of preplanning the exact position,

velocity, and acceleration of the manipulator at every instant during the motion. Instead, the

Planning module may only determine functions or parameters which determine what the gen-

eral profile should look like for the motion, and the exact path the robot takes during execu-

tion is determined by sensory or other external inputs. Such is the case for certain sensory-

interactive trajectory generation algorithms, as discussed in section 6.5. Another way of in-

corporating sensory interaction is to plan an explicit trajectory based on sensory inputs avail-

able at the time of planning, but then replan the motion frequently during execution to incorpo-

rate new sensor information [2,5]. A replanning interval of 50-150 msec appears to be ap-

propriate for such algorithms [2,5].

For planning all types of motions, the Prim Planning module looks ahead by an amount of

time which depends on several factors, including the length of the motion itself and the nature

of the objective function to be optimized during the motion (i.e. minimum-time vs. minimum

energy). The planning horizon is not fixed, therefore; but it will typically be on the order of 1

to a few seconds.
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In addition to planning a suitable trajectory, the Planning module must also select an

appropriate servo algorithm and servo loop gains. In most cases, the Prim algorithm will

imply the servo algorithm to be used. Otherwise, Prim can choose an appropriate algorithm

based on heuristics. The position, force, and torque servo loop gains determine the behavior

of the manipulator in response to new position and force goals, and to external disturbances.

The Prim Planning module may determine the apparent manipulator impedance by adjusting

these gains. A constant set of gains that works reasonably well for a variety of manipulator

configurations and payloads might be used for free space moves. Such gains result in com-

promised performance, however, since the manipulator dynamics are configuration-depen-

dent. Alternatively, gain scheduling may be used to vary the gains as a function of the

manipulator state during trajectory execution [3, 41]. In this case, on-line gain modification

is performed by the Execution module. Time-varying gains may also be used to generate tra-

jectories with a constant position [13], as discussed briefly in section 6.6. For constrained

motions, the gains might be set using heuristics or by optimizing an objective function speci-

fied from E-move; to minimize or maximize work done on the environment, for instance [23].

The Planning module also determines the intervals of time for which the position and force

trajectory functions should be evaluated.

In order to plan smooth transitions between consecutive path segments, the Planning

module must have some knowledge of future commands. The Prim Planning module has a

command queue to buffer a number of future input commands. For many algorithms which

have been suggested for splining together manipulator motion segnients, the current goal

point plus the next two future points are sufficient [14,30,43,55]. When the Planning module

needs an additional future command in order to plan the current one, it sets the planning sta-

tus to "need next command".

6.1 Joint Interpolated Motions

It is often useful to command motions in joint space. Linear joint space motions have

been shown to be close to time-optimal in certain situations where the manipulator dynamics

are dominant [48], and the problem of excessive joint velocities at singular configurations is

often avoided (depending on the length of the path in Cartesian space). In addition, at least

one path planning algorithm is performed in joint space [33], in which case joint space would

be a natural choice for the command to Prim. A typical command specification to Prim for a

linear joint space motion with a cubic polynomial trajectory function is given below. For clari-

ty, the path specification z^(s) is represented by 9^(s) when C^ = (joint, -, -).

Command number = n

Prim algorithm = cubic polynomial

Coordinate system = (joint, -, -) <= joint space

Pos. cmnd. descr. = (0^(s) = Sq + s(0j - 0q), Cqj) <= straight line, constant tol.

Force cmnd. descr. = null

Held object = null

Destination object = null
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Termination cond.

Red. resol. spec.

Priority

= G^withincQj of 0p 9^ =

= default

= 1

Objective function = minimize OF = (T^ - T^^^)

<= at goal position, zero velocity

<= minimize difference between

desired and actual traversal

times

Such a path results in all joints reaching the final position at the same time. E-move must of

course check that the joint space path is free of obstacles—not a trivial task in a cluttered

environment.

Once a parameterized path has been specified, Prim must generate a dynamic trajectory

according to the specified algorithm. One method of generating joint positions as a function

of time for linear joint space motions is presented by Taylor [55]. With this algorithm speci-

fied, the motion from Pq to P^ is given by

Ti-t
e(t) = 0i-^;— (ei-0( i)

and the transition between the path segment from Pq to Pj and the segment from Pj to P2 is

calculated using

ace -n' (W + to2

6(0 = ^1 "4^ J (ei-Qo)+ 4t T. (^2"^l)
ace 1 ace 2

where t' = T,-

1

t^^^ = half of the transition time

Tj = traversal time for the segment from Pq to P,

T2 = traversal time for the segment from P, to P2.

In this case, a constant acceleration is used to accelerate the manipulator from the first

segment velocity to the second segment velocity, resulting in a parabolic transition path.

Suitable segment traversal and transition times must be determined by the Prim Planning

module.

There are other possibilities for joint interpolated motions, of course. For example, for a

single-segment cubic polynomial joint space path the trajectory functions for each joint may
be determined as follows [15]:

6(t) = aQ -1- a^t -1- a^t-^ + a3t^

e (t) = aj + 2a2t + 3a3t

9 (t) = 2a2 + 6a3t

20



Manipulator Prim Level

where Hq = 9q

h = %

3_
^Qq Qj

0Q, 6q = initial position, velocity

0p 0j= final position, velocity

T = traversal time.

In the case of the example command specification given above, the desired traversal time

'^seed
^^'^^^ ^^ ^^^^ ^^^ ^^^ parameter T in the above equations. The resulting trajectory

equations would then be checked and modified to make sure joint velocity and acceleration

bounds will not be exceeded. If the desired traversal time is not indicated in the objective

function, then the Prim Planning module must determine an appropriate value, probably based

on some heuristic. The planned trajectory functions are sent to the Execution module (see

sec. 8), which evaluates them for the desired intervals and commands the results to Servo.

Similarly, higher order polynomials may also be used, if continuous acceleration is also de-

sired [11,15]. Parabolic blends may also be used between trajectory points, as can transcen-

dental and exponential functions [11,15]. Still other trajectory generation functions for splin-

ing together points in joint space are discussed in [30,31,34].

6.2 Linear Cartesian Space Motion

In many cases, it is desirable to command motion segments in Cartesian space. Carte-

sian straight line paths are particularly useful for controlled trajectories in a cluttered environ-

ment and when the payload dynamics are dominant. Although Cartesian straight line mo-

tions cannot be performed exactly (for articulated manipulators), a reasonable approximation

may be achieved by interpolating the manipulator through a large number of closely-spaced

points in joint space such that the resulting motion is sufficiently close to the desired path.

The command parameters for free space Cartesian motions are the same as those used for

joint space motions, with C^ selecting one of the Cartesian frames mentioned previously. For

Cartesian space motions, the commanded path z,(s) must specify Cartesian translation and

rotation. It is also possible to command Cartesian motions using the "field" position com-

mand description. In this case, the (possibly position-dependent) directions in which the

manipulator is to move are commanded in the form of a directional field.

The translation portion of the commanded Cartesian path consists of a three-component

vector function, which will be represented by X ,(s). To command a Cartesian straight line

path segment from position Xq to position X,, for example, the position function would be
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X^(s) = Xo + s(Xi-Xo).

The orientation specification for Cartesian space motions is somewhat more difficult to

visualize. Consider an initial orientation given by a vector n^ and an angle 9q, written as

Rot(nQ, 6q), and a goal orientation Rot(np 6j). For the moment, it will be assumed that the

end-effector is to be smoothly reoriented about the single axis n^. by the angle 9^. which will

take it from the initial orientation to the final orientation as in [55]. The orientation as a func-

tion of s may then be expressed as the initial rotation multiplied by a parameterized rotation:

Rot(s) = Rot(nQ, 0q) RotCUj., sGp.

Alternatively, the reorientation may be specified by a combination of two simultaneous

rotations: one, Rot(k, 9j^) that rotates nQ to n^ about a mutually perpendicular axis k, and

another, Rot(z, (t)^), that gives the rotation about the instantaneous approach axis z [44]. In

this case, the rotation may be specified as:

Rot(s) = Rot(nQ, 9q) Rot(k, s0j^) Rot(z, s(l)^).

Still other Cartesian orientation functions are possible, although they may be difficult to visu-

alize.

A widely known approach to Cartesian motion planning is that of Paul [42,43,44,45],

who uses a time-varying "drive" transform to take the manipulator from the initial to the final

configuration along a straight path. The drive transform is a parametrically-defined matrix

that relates the goal position to the current position.

For constant-velocity motion from Xq to Xp Paul uses the functions

Xit) = XQ + ^(X^-XQ)

and

Rot(t) = Rot(nQ, 9q) Rot(k, ^ \) Rot(z, ^ (^^).

To transition between path segments, Paul uses a polynomial interpolation function for

both translations and rotations. Assuming that the transition time 2 t required to acceler-

ate from the velocity of one segment to the velocity of the next may be determined based on

some available acceleration and/or the amount of allowable path deviation at the intermedi-

ate point, the manipulator position during the transition from the segment from Pq to Pj to the

segment from Pj to P2 may be given by

X(t) = Xq +/fAXj, AX2, Tj, T^, t^^^, t)
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t + t

k(t) = Rot(kjX k2
, ^

^^^
cos'^ (kj- k^)) k^

ace

Rot(t) = RotdiQ, eo)Rot(k,/fA0j, Ae^, Tj, T^, t^^^, t))Rot(z,/fA(})p A(^^, T^, T^, t^^^, t))

for -t ^^ < t < r ^, where k, and L, are unit vectors and /fA,, A^, T,, T., t„^^, t) is an appro-
aCC aCC 1 Z i -^ 1 Z- clCC

priate interpolation function. For example, a polynomial function may be used to connect the

segments:

T -

1

t

X(t) = Xq + AXj-Y^ + [(AX2 Y^
- AXp h + 2 AXj] h

where AXj = (Xj - X^)

AX2 = (X2 - xp

, ace

ace

- 1 <t<t .

ace aec

Determining the drive transform defines the manipulator motion as a function of time

(when used in Paul's "fundamental equation of manipulation"), and this is performed by the

Prim Planning. The drive transform is then evaluated by the Prim Execution module at a

fixed sample rate, which is set fast enough to yield a sufficiently accurate Cartesian path.

The result is used to generate the string of Servo command positions required to perform the

motion.

Taylor [55] has suggested several modifications to Paul's technique. First, he has sug-

gested the use of quaternions as a more efficient representation of rotations. In addition,

Taylor suggests using a rotation about a single axis, rather than two separate rotations, to

achieve new orientations. The third modification is to compute the instantaneous position by

subtracting a shrinking value from the destination rather than adding a growing value to the

initial position. That is, form Pq to P,, the motion would be defined by

X(t)=Xj- ^(Xj-Xq)

and

R(t) = RjRot(nj^,-^e^).

In this manner, small changes in the destination location may be automatically compen-

sated for. To transition between segments, a constant acceleration may be assumed, from

which an expression of position is obtained through integration, as an alternative to a match-
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ing polynomial. In this case, the trajectory function for the transition is the same as that giv-

en in the previous section for constant acceleration transitions between straight line joint

space segments.

Another approach to trajectory planning is to use energy methods to set up artificial

dynamic potential functions, or fields, which will be evaluated as the manipulator performs

the motion [40]. Such an approach is particularly consistent with the directional field com-

mand description. The commanded field can be thought of as an attractor field, but without

magnitudes assigned. The magnitude of the attractor field can be assigned by Prim based on

the desired dynamic performance, maximum kinetic energy, and actuator capabilities. Simi-

larly, braking fields can be devised which will result in the manipulator stopping as it reaches

the goal. The superimposed fields can be logically combined, and the gradient of the resul-

tant field used to determine the commanded manipulator forces. Such an approach is applica-

ble to minimum-time motion planning, obstacle avoidance, and time-optimal interception of

moving targets without impact [40].

6.3 Optimal Trajectory Planning

There has been a good deal of interest recently in developing algorithms that, given a

parameterized path specification, will determine the time sequence of torques required to

travel the path in minimum time or some other optimal fashion [10,16,27,46,51,52]. These

algorithms all use the manipulator dynamics and actuator torque constraints in computing the

optimal trajectory. The required input from E-move is a parameterized path description, an

algorithm specification, and a performance index, all of which are provided by the proposed

interface.

As an example of this type of algorithm, the minimum-cost trajectory planning (MCTP)
technique [51] will be discussed. The function of MCTP is to determine the control signals

that will drive a given robot along a specified curve in joint space with minimum cost, given

constraints on the magnitudes and derivatives of the control signals. For MCTP the com-

manded geometric path is assumed to have the form

e^ = f*(s), 0<s<s^

where 0' represents the position of the i joint for an n-jointed manipulator. The path pa-

rameter may be limited to < s < 1 without loss of generality. Either E-move commands a

joint space path directly or E-move commands Cartesian path segments, which must be

splined into a joint space path by the Prim Planner before applying MCTP.

If symmetrical actuator torque constraints are assumed, they may be given in terms of

the robot's position and velocity as

F G F(0,e)

where F is the vector of actuator torques/forces and F(0,0) is the set of realizable actuator

efforts. If the actuator torque constraints are direction-dependent, then two sets of con-

straints may be provided. In addition, it may be desirable to limit the derivatives of the joint

torques. This constraint may be expressed as
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|F|<K

where K is a constant.

The manipulator dynamics are needed in terms of the parameterized path, which results

in the form

^i-^ijdr^'"'^^iji?^^%drdr)^^ "^y dT^+^i

where J- • is the inertia matrix

Cj^ is the array of centrifugal and Coriolis coefficients

R- is the viscous friction matrix

G- is the gravitational loading vector

ji = s is the path velocity

The cost function for MCTP takes the form

1

C = J L(s,e,F)ds.

For example, the cost function

df'C = r,J^^s^rJ^^2Rijf-ds

minimizes a combination of traversal time and frictional losses. The MCTP problem is then

to minimize the cost function subject to the actuator torque constraints and the manipulator

dynamics.

For the Prim level currently discussed, the bounds on torque and the time derivative of

torque may be accessed from the world model. The world model is also the logical place to

retrieve the J.., C-. , R.., and G. terms of the dynamic equations. The commanded path and
IJ IJK IJ 1

cost function are provided by the input command from E-move. Once so defined, the MCTP
problem can be solved, for example, using dynamic programming as shown in [51]. The solu-

tion is based on calculating the cost associated with discrete points on a grid which divides

the phase plane (s - |i plane), and then applying the dynamic programming technique to find

the optimal positions and velocities.

As an example of how an MCTP motion is commanded, consider the following input com-

mand specification:

Command number = n

Prim algorithm = MCTP
Coordinate system = (world, -, -)
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Pos. cmnd. descr. = (X^(s) = (1 - s)^Xq + 3s(l - s)^Xj + 3s^(l - s)X2 +5^X3, e^j)

Force cmnd. descr. = null

Held object = null

Destination object = null

Termination cond. = X^ within eQ, of X^, X^ =0

Red. resol. spec. = default

Priority = 1

Objective function = minimize OF = T

The position path description in this case defines a cubic Bezier spline segment where the

points Xq through X^ are control points which describe the start, intermediate shape, and end

of the curve [16,19]. The path is described in world coordinates. The termination conditions

are that the manipulator be within tolerance of the goal point and stopped. The objective

function indicates that the cost to be minimized is proportional to segment traversal time.

6.4 Taking Advantage of Path Tolerance

The algorithms discussed up to this point have not addressed the issue of taking maxi-

mum advantage of the positional freedom allowed by the positional path tolerance. For many
paths the positional tolerance may be significant. Often there will be paths within the cylin-

drical path description which are more efficient than the one that follows the spine along the

center of the path. Taylor recognized this, and devised the bounded deviation strategy as an

alternative approach to performing Cartesian trajectories. Given a Cartesian straight line

path and an allowable deviation, the bounded deviation strategy will determine the number of

points to be traversed in joint space which will keep the trajectory within the stated bounds.

This strategy would make direct use of the position path deviation specified in the input com-

mand for the entire path, not just at via points. The steps of the algorithm for Cartesian

straight line motion from Pq to Pj with allowable path position deviation e and rotation devi-

ation e are as follows [55]

:

1. Compute the joint configurations 0^ and 0. which correspond to Pq to Pj.

(01 -0o)
2. Compute the jomt space midpoint, ©^j = ©^ -—

^

. Use 0j^ to compute Xm ^^

Rj^, the Cartesian position and orientation corresponding to .

(Xq + Xj) -0^

3. Compute the Cartesian path midpoint, X = 2 ' ^cm ~ ^1 ^^^Cn^. ,

—
-),

where RotCn^. ,0^.) = Rq'^ Rj.

4. Compute the deviation between X^^ and X ,
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- ' ^m " ^cm

Aj. = I angle part of R^^^ R^^ I.

5. If A^<e and A < e^., then the procedure is finished. Otherwise, the joint solution

corresponding to the Cartesian midpoint is computed and steps 2-5 are applied recursive-

ly for the path subsegments until a sufficient number of joint space positions are identified.

The joint positions as a function of time are then computed using the interpolation technique

described previously for joint space motions.

Taylor's bounded deviation algorithm increases computational efficiency, since it mini-

mizes the number of kinematic inversions required to follow a Cartesian straight line path

with the desired accuracy. The resultant path is not strictly guaranteed to stay within the

Cartesian bounds, however, since the maximum deviation does not necessarily occur at the

midpoint of the Cartesian straight line. Also, the trajectory knot points are required to be on

the spine of the tubular path, which may not result in the "best" path through the tube. Other

paths may be faster or more energy efficient. Finding a true minimum-time trajectory

through a generalized cylinder path, while respecting actuator torque and velocity, and joint

position limits is a difficult problem. Minimum-time trajectory planning has been investigat-

ed by a number of authors, as discussed in section 5.3; however, in most cases they do not

take advantage of the additional position freedom provided by the path tolerance.

The use of path tolerance in minimum-time trajectory planning has been addressed by

Suh and Bishop [53], however. The algorithm discussed in [53] consists of two phases.

First, an optimal set of quartic polynomials which connect points on the spine which are

equally-spaced in time is determined. Then, using this as an initial feasible solution, the gra-

dient method is used to find the optimal placement of knot points when they are not required

to lie on the spine. The path description consists of straight line cylindrical segments

between reference points, with a specified cross sectional radius for each segment. Although

it is theoretically possible to perform the minimum time trajectory planning for both transla-

tions and rotations, the problem is more tractable if the rotation part is ignored. Suh and

Bishop do this, by assuming a spherical approximation to account for the swept volume of the

end-effector during wrist motions. While this may be appropriate in some instances, requir-

ing a free volume to be large enough to allow any orientation of the end-effector may at times

be too restictive, especially if a large object is held. Also, this type of algorithm takes a rel-

atively long time (on the order of minutes) to plan, and once planned, such time-optimal tra-

jectories are not easily modified in real time (in response to sensor data, for instance), since

any modification would require reevaluation of the actuator and path constraints for the new
trajectory. Thus, it may be most appropriate for use in off-line planning of trajectories that

will be executed many times.

6.5 Sensory-Interactive Trajectory Generation

There are many situations where it may not be possible or appropriate to define the

desired path of the manipulator a priori. In some cases, it may be more appropriate to simply

command a goal state which defines what is to be achieved, along with an algorithm specifi-

cation that defines how to achieve it. This is true for vision-servoed trajectories, for example
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[5,29,56]. These types of algorithms perform what is referred to here as sensory-interactive

trajectory generation. As mentioned previously, sensory interaction may be accomplished

either by frequent replanning of the trajectory as it is executed or by planning a trajectory

function which represents a general profile of the desired motion, with the trajectory details

produced dynamically as the trajectory is executed. Examples of both approaches will be dis-

cussed here.

Consider the task of moving an object held by the manipulator end-effector to a position

relative to a moving object, as shown in figure 9. The vector r^^ defines the position of the

manipulator end-effector relative to the base, or world frame of the manipulator. The location

of the goal position relative to the same world frame is given by r . The vector r„ represents

the position of the goal relative to the current end-effector position; in other words, the error

(in Cartesian space) which must be nulled in order to accompUsh the motion. The object

moves with some velocity v . Assume cameras are available which may provide ro or re di-

rectly (although this is non-trivial).

For the replanning approach, one possibility is to determine the goal position relative to

the world frame, plan a trajectory which takes the end-effector to the goal state, and replan

the trajectory periodically with updated information about the location of the goal. In planning

the trajectory, the current position and velocity of the object should be used to predict the

goal position at the end of the planned motion. This estimation need not be extremely accu-

rate at the beginning of the trajectory, since future replanning will provide better estimates.

Andersson [5] uses this approach (although in joint space) to move the paddle of a ping-

pong playing robot to predicted hit locations. A command specification for this type of trajec-

tory would look like the following:

Command number

Prim algorithm

Coordinate system

Pos. cmnd. descr.

= n

joint space quintic polynomial with replanning

(world, block.hole, peg.tip)

null

destination
object

Figure 9. Position relationships for sensory-interactive motion.
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Force cmnd. descr. = null

Held object = peg

Destination object = block

Termination cond. = sensed position and orientation within tolerance of goal (Cartesian

position of peg.tip with respect to block.hole)

Red. resol. spec. = default

Priority = 1

Objective function = minimize OF = (t^ - t^^j)

Notice that, although the trajectory will be planned and executed in joint space, the goal

position is defined in Cartesian space. The end-effector offset frame is indicated by an object

name including the name of a particular feature. The offset of the world frame is also indicat-

ed symbolically, by giving the name of the destination object and a particular feature on the

object. For the trajectory algorithm described presently, these offsets must be evaluated by

obtaining the positions of the held and destination objects relative to the end-effector and the

robot base, respectively. A trajectory function to perform the motion is planned by obtaining

this information from the world model and computing coefficients as before. Since the world

frame offset changes with time, however, the position of the destination object will have to

be retrieved periodically and used to replan the trajectory as it is being performed. This in-

volves estimating what the manipulator and object states will be at the start of execution of

the updated trajectory function, and using this information to determine the new function it-

self.

The cameras (or other sensors) must be calibrated with extreme care for this approach to

be successful, and if the robot trajectory is described in Cartesian space, the kinematic model

of the robot must be highly accurate, as well. While this approach may be appropriate in

some situations, a more robust approach in terms of sensitivity to modeling inaccuracies is to

measure the relative position (error) directly. This error may then be used to generate an

incremental motion toward the target. This approach has been used for simulated satellite

docking [29]. The algorithm used in [29] computes an appropriate portion of the total Carte-

sian error to move each cycle, where the magnitude of the increment (and therefore, the end-

effector velocity), is a function of the distance of the end-effector from the target.

For this type of algorithm, the Planning module doesn't plan functions of manipulator

position, velocity, and acceleration as functions of time, but rather computes only the trajecto-

ry parameters which affect the general profile of the motion. Once the trajectory parameters

for the desired velocity profile have been planned, the execution takes place without replan-

ning, and the exact manipulator trajectory is determined as it is executed. The Execution

module obtains updated object position information from the world model every cycle in this

case. The command specification for this type of algorithm is similar to the previous one.

However, the offset of the world frame (the position of the object relative to the robot base)

in this case need not be explicitly evaluated—the sensory-interactive motion is performed by

making incremental steps until the relative position goal has been achieved.

Although much of the work is performed by the Execution module for algorithms of this

type, the Planning module does perform some functions. For example, the Planning module

may select Servo gains directly, or it may decide to let the Execution module determine con-
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figuration-dependent gains as the trajectory is executed. The Servo algorithm must also be

selected, if it has not been specified in the input. In addition, the Planning module may deter-

mine certain trajectory parameters which control the motion profile (velocity as a function of

distance from the target, for example). The execution of sensory-interactive commands is

discussed in section 8.2.

6.6 Biologically-Motivated Trajectory Techniques

Related to sensory-interactive trajectory generation is an approach used by Bullock and

Grossberg [13] to explain some characteristics of biological movements. In this approach,

the trajectory (positions, velocities, and accelerations) is not planned ahead of execution.

Rather, the trajectory is determined as it is being performed (as with sensory-interaction),

and comes about by multiplying time-varying position and velocity gains by the difference

between the current and target joint space positions. The shape and speed of the movement
is determined by the gain function, which could be specified by the Planning module. This

type of trajectory generation could be commanded by specifying the goal position in the termi-

nation condition list as with sensory-interactive trajectories, and indicating the proper algo-

rithm. Although this algorithm does not provide for gravity and dynamics compensation, and

further analysis and experiments would have to be performed to determine the usefulness

and stability of the technique in manipulator applications, it is interesting in terms of its

apparent similarity to some human movements.

6.7 Trajectory Planning in a Non-Stationary Environment

In general, the environment in which a manipulator operates will have in it other objects

that move; other manipulator arms, machines, human trespassers, for example. The E-move

path planner is concerned with the movement of such obstacles in terms of allocating the

workspace resource, but cannot effectively alter manipulator trajectories to avoid rapidly-

moving obstacles since it has very limited control over manipulator behavior in terms of

time. The responsibility of avoiding moving obstacles in the near term is logically a function

of the Prim level, which determines the time history of manipulator movement. There are two

cases of object motion that need to be addressed. The first is when the object motion

(current and future) is known or can be estimated with a large degree of confidence when the

trajectory is being planned. For instance, the planned trajectories of other manipulators in

the work volume may be available through the world model. In this case, the motion of the

other objects may be included in the planning process, and some work in this area will be dis-

cussed in the following paragraph. In the other case, an unanticipated object may be detect-

ed as the manipulator is executing a planned trajectory. Any obstacle avoidance maneuvers

which are to be performed in this case are determined by the Execution module. Such reflex-

ive obstacle avoidance actions are discussed in section 8.5.

Kant and Zucker [25] have proposed that the trajectory planning problem (TPP) be

decomposed into a static path planning problem (PPP) and a temporal velocity planning prob-

lem (VPP). Assuming that E-move has solved the PPP, it remains for the Prim Planning

module to solve the VPP. In [25], velocity functions are determined by searching for free

paths in path-time (s x t) space. Obstacles crossing the path of the manipulator are repre-

sented as rectangles in this space. A path is then found in s x t space which avoids the for-
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Figure 10. Generalized damper motion.

bidden areas, meets monotonicity and maximum velocity constraints, yields a smooth veloci-

ty profile (finite acceleration), and meets some other criterion such as arriving at the goal at

a fixed time or in minimum time. This approach works best in environments where obstacles

are sparsely distributed and move relatively orthogonally to the manipulator path, since it

does not allow the manipulator to leave the planned path. The development presented in

[25] deals with point robots; real manipulator end-effector dimensions may be accounted for

by "growing" the obstacles, but manipulator links pose a more difficult problem. Also, since

the approach assumes complete, accurate knowledge of object trajectories, these trajectories

must be estimated frequently if they are not known exactly. Consequently, the manipulator

trajectory must be replanned frequently as well, in this case.

6.8 Generalized Damper Motion

Much of the work to date toward the development of automatic fine motion planners

[17,32] has assumed that the manipulator is capable of executing generalized damper

motions [57]. Generalized damper motions are executed by commanding a nominal velocity

in the desired direction and specifying the relationship between the velocity error and contact

forces. This type of control is intended to enable the manipulator to sHde objects along con-

strained directions in order to achieve assembly goals, as shown in figure 10. An example

command specification for the motion shown in figure 10 is given below.

Command number = n

Prim algorithm = Generalized damper
Coordinate system = (world, block.hole, peg)

Pos. cmnd. descr. = (0i-.707j-.707k,ef)

Force cmnd. descr. = null

Held object = peg

Destination object = block.hole
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Termination cond. = velocity = and peg in hole to within tolerance

Red. resol. spec. = default

Priority = 1

Objective function = null

In this example, world coordinates are chosen (although end-effector coordinates would

serve just as well), and a constant motion direction field is used as the position command de-

scription. This means that E-move has determined that the insertion operation can be per-

formed by commanding the manipulator to move in a constant direction from the current posi-

tion. The commanded direction should be within the given tolerance, which defines the allow-

able variation of the direction of the commanded velocity at each point. In order to plan this

motion. Prim needs to determine an appropriate velocity and reasonable servo gains. Gener-

alized damper movements for assembly tasks will typically not require moving large distanc-

es, which means that Prim can command low velocities to minimize the energy of impact

without incurring a serious time penalty. The velocity error gain must be set fairly low (a low

damping coefficient) to prevent excessive forces when the manipulator is displaced from the

commanded direction due to sliding along a constrained surface. Prim might reason the gains

from object characteristics, such as stiffness [57]; or, more likely, specific values of velocity

and damping coefficient might be stored under the object names.

This example has not dealt with rotations, but a rotational field can be commanded simi-

larly. One possibility is to consider the rotational subspace as a sphere of radius 2n, with

the direction of a vector from the origin to a point within the sphere giving the orientation of

the gripper axis and the length giving the roll of the gripper. A vector field may be described

within this subspace to specify the direction in which to rotate, for each orientation. For in-

stance, a constant rotational field about an arbitrary axis Xq i + yQ j + Zq k may be given as:

(yoz - zqy) i

+

(zq^ " ^0^) J "^
(^oy yo^)

^•

The output from the Planning to the Execution module for field commands such as this

generalized damper motion consists primarily of a velocity field (the direction field scaled by

the Prim-determined velocity), and the servo loop gains. The Execution module must evalu-

ate the field equations for the current manipulator position on every cycle in order to calculate

the next command to Servo.

Generalized damper motions are a subset of what is known as impedance control

[22,48,56]. Impedance control may be used for free space and constrained motions alike, by

commanding a nominal position path (or direction) and controlling the manipulator impedance

to prevent excessive reaction forces when contact is made.

6.9 Hybrid Force/Position IVIotion

A different approach to performing constrained motion tasks is to explicitly command de-

sired force and position paths (or directions). This type of control has become known as hy-

brid force/position control [47]. Using this approach, forces and positions are both command-

ed explicitly in the desired reference coordinate system, as depicted in figure 11. If the de-
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Figure 11. Hybrid force/position motion.

sired motion/force is commanded with respect to the end-effector, then forces and motion di-

rections are specified by E-move. In this case a position path cannot be commanded since

the coordinate system moves with the end-effector. If a world coordinate system is speci-

fied, the commanded motion consists of the desired forces and either a position path or a mo-

tion direction. At any given instant, certain freedoms of the manipulator will be free for posi-

tion control, and the remaining orthogonal freedoms will be constrained, requiring force con-

trol [36]. Either position or force will be controlled along any given degree of freedom. This

is enforced by the selection matrix that is commanded to the Servo level. The selection ma-

trix is based on the constraint frame, which describes the constraint situation of the manipu-

lator. It is the task of the world model to determine the constraint frame of the manipulator

at any given time.

Three pieces of information are needed to perform a hybrid force/position motion: the de-

sired nominal force/position trajectory, the trajectory of the constraint frame, and which free-

doms of the constraint frame are constrained. The first of these is provided by the command
from E-move. The second two should be available from the world model. There are several

approaches to determining the constrained directions of manipulator motion. One possibility

is to rely on predefined position and geometry information. This approach has the disadvan-

tages of requiring geometric reasoning capabilities, and of not being very robust to modeling

inaccuracies. Recently, several researchers have begun to investigate the possibility of sens-

ing the manipulator constraints. For instance, Asada and Izumi [6] use force and position

measurements, obtained while a human operator manually leads the manipulator through the

task, to generate a sequence of force and position (without changing orientation) commands

in the proper directions to perform the task automatically.

The process of determining the constraints begins with decomposing the sensed reaction

force into tangent and normal components, with the tangent direction determined by differen-

tiating the sensed position data. For these two directions, position control can be used for
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motion along the tangent, while force control should be used in the normal direction. For the

remaining degree of freedom perpendicular to both the tangent and the normal directions,

some assumptions about the task geometry and the order of reducing the positional freedoms

are used to disambiguate the proper control mode. Although the interpretation of sensory

information takes place off line in [6], some of the techniques described could be used with

instantaneous data in real-time; for instance to determine the proper control modes for fol-

lowing an unknown surface. A somewhat similar approach is used by Merlet [38] to deter-

mine the constraint frame. Merlet, however, identifies the constraint situation by evaluating

the measured positions and forces encountered when small successive motions are com-

manded along each degree of freedom. Further information on using force measurements to

determine contact geometries and reduce positional uncertainties may be found in [50] and

[9].

6.10 Kinematic Redundancy

Kinematic redundancy can add another dimension of complexity to the Prim Planning pro-

cess. As mentioned previously, if the technique used to resolve the redundancy performs the

function of transforming a static motion description (path or direction) into a dynamic trajecto-

ry, then it should be executed by the Prim Planning module. If the redundancy resolution is a

static inverse kinematic transformation, it is also performed by Prim, but at the Execution

level. If the redundancy resolution technique is an integral part of a servo algorithm that out-

puts joint space torques given a Cartesian input command, then the redundancy resolution

takes place at the Servo level and is specified by the algorithm.

An example of redundancy resolution performed by the Prim Planning module is when
global optimization techniques are used to determine the joint positions or torques for an

entire trajectory [53,39]. Nakamura's method makes use of Pontryagin's Maximum Princi-

ple to determine how the extra degree(s) of freedom may best be used over an entire trajec-

tory to globally optimize a specified performance index. HoUerbach uses a similar method

which is theoretically equivalent, but less formidable to compute.

7. Prim Execution Module Interfaces

The Prim Execution module shares an interface with the Planning module, the world mod-

el, and the Servo Level Task Decomposition module. This section describes the information

passed across each of these interfaces, which are shown in figure 12.

7.1 Prim Planning to Execution Interface

Having planned the manipulator position and force trajectory and appropriate gains, the

Planning module sends the following information to the Execution module:

Command number

A command number is passed from the Planning module to the Execution module to indi-

cate when a new information is being sent. This command number is independent of the

numbers associated with Job Assignment and Planner module commands.
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Planning/Execution
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Command number
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Priority

Evaluation interval
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Estimated termination time

a

Execution/

World Modeling

interface

Manipulator goal state

Position and velocity of other

arms and objects in the

workspace

Sensed position and velocity

Sensed force

Object position and velocity

Gain information

Operator command velocity

Operator single-step command

Prim/Servo

Task Decomposition

interface

Servo algorithm

Coordinate system

Desired position

Desired velocity

Desired acceleration
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Figure 12. Prim execution module interfaces.
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Servo algorithm

The Servo algorithm specifies the Servo level behavior to be used in executing the com-
mand.

Coordinate system, C^

The coordinate system again determines the reference frame in which the command is to

be interpreted.

Position function, z ,(t)

The position function specifies the desired position as a function of time. It represents

the plan for the desired trajectory.

Velocity function, z ,(t)

The velocity function gives the desired velocity as a function of time. It must be compati-

ble with the position function, if one is specified.

Acceleration function, z ,(t)

The acceleration function indicates the desired acceleration as a function of time. Again,

it must be compatible with the other trajectory functions.

Jerk function, z '^(t)

The jerk function specifies the desired rate of acceleration as a function of time. Control

of the jerk may result in less drivetrain wear and decreased excitation of structural reso-

nances [44]. The jerk function must also be compatible with the other trajectory func-

tions.

Force function, f ,(t)

The force function provides the desired force as a function of time.

Time derivative of force function, f^(t)

Sometimes it may be desirable to command the rate of change of force as a function of

time. This function allows such a command.

Servo loop gains, Kp, K^, K., Kp^ K^^ K.^ K^

The gains which are to be used in the control laws of the Servo level may be determined

by the Prim Planning module and commanded to Servo through the Execution module.

The gains may be functions of time to be evaluated by the Execution module.

Termination conditions, TC

The termination conditions are passed through the Planning module to the Execution

module, which checks for their attainment.
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Redundancy resolution specification, R

When a trajectory plan is specified in Cartesian space and it is desired to servo the arm

in joint space, the Execution module will be required to perform inverse kinematics. In

order to do so, the method to be used to resolve redundancy (for manipulators with more

than 6 dof) must be given. The redundancy resolution specification will either have been

determined by E-move and passed down through the Planning module, or the Planning

module itself will have determined which method to use.

Evaluation interval

The evaluation interval specifies how frequently the position and force trajectory func-

tions are to be evaluated. For predetemined trajectories (where desired position and

force have been specified as a function of time), the evaluation interval indicates the par-

ticular values of time that the functions are to be evaluated for. Note that in this case,

the actual evaluation need not occur at the times specified by the evaluation interval. For

sensory-interactive trajectories, however, the evaluation interval gives the desired cycle

time for executing the trajectory generation algorithm. Thus, execution of a sensory-

interactive trajectory will result in commands to Servo every evaluation interval.

The Execution module returns the following items back to the Planning module:

Command number

Execution status

Execution status basis

Estimated termination time

These items are the same as those discussed in section 2.1, except for the command number,

which simply echos the input command number.

7.2 Prim Execution to World Modeling Interface

The Execution module needs several different types of information from the world model.

It requires the sensed position and velocity of the manipulator to evaluate termination condi-

tions. Other sensed values available from the world model may be needed for the evaluation

of termination conditions, such as sensed forces or tactile information. For sensory-interac-

tive trajectories, the Execution module needs to know the position and velocity of objects

which are being tracked, and the values of sensors (as interpreted by the world model) which

may be used to control the trajectory manually, such as a joystick or "sensorball" [22]. The

exact information required from the world model will depend on the nature of the sensory-

interactive algorithm, so it is not possible to delineate all possible information which may be

needed from the world model, but these are some examples. In addition, the Execution mod-

ule may obtain manipulator state-dependent gains from the world model to use in the com-

mand to Servo. The output of the sensor used to manually-control the manipulator velocity

must also be available, as well as the control signals required to perform single-stepping of

Execution module operation.
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7.3 Prim Execution to Servo Task Decomposition Interface

The output of the Prim Execution module consists of commands which contain the follow-

ing information:

Servo algorithm

The Servo algorithm specifies the control algorithm to be used by the Servo level in trying

to achieve the commanded goal state. It determines the general behavior of the manipu-

lator in response to errors and disturbances.

Coordinate system, C^

The coordinate system indicates the reference frame of the commanded goal state. Again,

the format of C^ is (coordinate system, T. , T ). For the Prim-to-Servo interface, the

coordinate system can have the following values:

(motor, -, -) => path description in motor space

(joint, -, -) => path description in joint space

(end-effector, -, T ) => motion direction or force in Cartesian system fixed with respect

to the end-effector

(world, T^, Tg) => path description of Cartesian system fixed with respect to the

end-effector in terms of Cartesian system related to the manip-

ulator base by T,

The coordinate systems indicate the same relationships as those discussed in section

2.1. In Prim output commands to Servo however, the transformations T, and T are not

allowed to be defined symbolically (i.e. by names of objects). If a transformational rela-

tionship is time-varying, it must be updated in the commanded C^, not by the world mod-

el. The reason for this restriction is to be able to meet strict timing requirements at the

Servo level.

Desired position, velocity, acceleration, and jerk; z^, z^, z^, z'^

The desired position, velocity, acceleration, and jerk indicate the position-related portion

of the commanded attractor set, in the specified coordinate system.

Desired force and time derivative of force; f ,, f.

The desired force and time derivative of force form the force-related portion of the com-

manded attractor set, also in the coordinate system specified by C^.

Servo loop gains, Kp, K^, K^, Kp^^ K^^ K^ K^

The Servo loop gains, along with the Servo algorithm, are the predominant factors in

determining the manipulator behavior.
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Position/force selection matrices, S, S'

The position/force selection matrices specify which degrees of freedom are to be position-

controlled and which are to be force-controlled. They may also be used as generalized

task specification matrices [26].

Time stamp

The time stamp parameter contains two pieces of information, the synchronization flag

and the time variable, t . The time stamp is used to direct the timing of Servo command

execution, as described in section 8.1.

A single parameter is returned to Prim from Servo:

Status

The status parameter from Servo contains the status of execution of the most recent com-

mand. As a minimum, the Servo level must be able to inform Prim of the following condi-

tions:

executing => Servo is processing the most recent command

ready-next-point => Servo Job Assignment is ready for additional data

command error => Servo could not process the last command

Servo error => Servo encountered a fatal error during execution

8. Prim Execution Module Operation

The Prim Execution module has two primary functions. First, it must evaluate the posi-

tion, velocity, acceleration, jerk, force, and time derivative of force functions of time for the

intervals specified by the Planning module. This results in the point attractor vectors which

are sent as commands to the Servo level. In addition, the Execution module is responsible

for monitoring position, velocity, force, and other sensor states or world model conditions for

achievement of the termination conditions.

For a limited number of trajectory algorithms (those which plan a trajectory in Cartesian

space, but then send joint space commands to Servo) the Execution module also performs

static inverse kinematics. The Cartesian to joint space transformation is performed by Prim

in this case so that the commands to Servo will be in the coordinate system used to compute

the servo error [20]. However, for servo algorithms that compute a Cartesian error, the Ser-

vo module performs this transformation (typically Jacobian-based in this case).

The Prim Execution module must check for closeness to kinematic singularities as the

trajectory is being evaluated and perform any trajectory modifications which may be neces-

sary to negotiate the singularity in a controlled manner. Also, the resolution of redundancy, if

it is performed by kinematic criteria, is performed by the Execution module. Furthermore, the

Execution module incorporates the operator velocity control and single-step interactions.

The Execution module also should calculate the estimated termination time, since it may
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alter the commanded trajectory as a result of these interactions. The following sections dis-

cuss various aspects of the operation of the Execution module.

8.1 Executing Completely-Planned Trajectories

The execution of trajectories which have been completely planned by the Planning module

is fairly straightforward. The position and force trajectory functions are simply evaluated for

the indicated time intervals, and the results are sent to the Servo level as commands. The

commands to Servo are associated with the time they are to be executed through the use of

the time stamp parameter. To synchronize with the Servo clock, the Prim Execution module

sets the synchronization flag, and zeros the time parameter, t . Thereafter, the synchroniza-

tion flag is reset and t is updated for each command to Servo. For hybrid position/force tra-

jectories, there is the added complication of determining the constraint frame of the manipula-

tor.

Most conventional robot controllers use joint coordinates for servoing, even if the desired

trajectory is described in task (Cartesian) space. If Cartesian trajectories are to be executed

in this manner, then the Prim Execution module must perform the following functions:

1. Evaluate the Cartesian trajectory functions for the desired time intervals.

2. Transform the resulting Cartesian goal position into joint space.

3. Plan a smooth joint space trajectory to traverse the joint space goals.

4. Execute the joint space trajectory and send the results to Servo, while checking the

commanded joint velocities and modifying the output command as necessary to

negotiate singular configurations.

It is possible, however, to use a servo algorithm that computes errors in the task space

instead of joint space [15,26]. If a Cartesian space path is commanded from E-move, this is

a much more appropriate means of servoing to the desired trajectory. In this case, the Prim

Execution module does not need to perform any kinematic transformations or do joint space

trajectory planning. All that is required is to evaluate the trajectory functions and send the

resulting Cartesian goals to Servo. The Servo level Cartesian control algorithm must incor-

porate an effective and appropriate method for handling motions near/through singular posi-

tions. Prim should still check its output commands and scale or otherwise modify them to

make sure they will be dynamically small in joint space as well as in Cartesian space, how-

ever. Negotiation of singular configurations is discussed further in section 8.3.

8.2 Executing Sensory-Interactive Trajectories

In the case of sensory-interactive trajectory algorithms which use replanning to respond

to world modeling updates, the execution of replanned trajectories is performed in a manner

similar to that for completely planned motions, in the previous section.

For sensory-interactive trajectories which use only a planned motion profile, the manipu-

lator responds to world model information according to the commanded algorithm. For exam-

ple, execution of the vision servo without replanning discussed in [29] consists of the follow-

ing steps, which are executed according to the time interval specified by the Planning module:
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1. Obtain the sensor pose and velocity from the worid model, given the algorithm (the worid

model selects a suitable sensor).

2. Compute the translation and rotation increments of the sensor to go to the new goal,

according to an exponential velocity law (as the goal is approached the velocity is

decreased).

4. Obtain the desired manipulator motions from the world model given the desired sensor

motions.

5. Determine the status of the command by comparing the current and goal positions.

6. Transform the Cartesian goal points into joint space commands, scaling for singularities

and checking for joint limits.

7. For the first output of the command, set the synch flag to 1, and set t to 0. Thereafter,

set the synch flag to and increment t each execution cycle.

A typical output to the Servo level then, would look like:

Servo algorithm = joint PID

Coordinate system = (joint)

Desired position =
^d

Desired velocity = null

Desired acceleration = null

Desired jerk = null

Desired force = null

Desired deriv. force = null

Servo loop gains = S'^v'Ki
Pos./force sel. mat. = null

Time stamp = (0,tp)

8.3 Negotiating Singular Configurations

An important aspect of trajectory generation in Cartesian space is the negotiation of the

manipulator around or through singularities, or degenerate positions of the manipulator. Sin-

gular configurations present a problem when a Cartesian space trajectory is transformed into

a joint space trajectory. A singularity causes a loss of a degree of manipulator freedom, and

a direct result of passing near or through a singular configuration is that goal points which are

closely spaced in Cartesian space may in fact require extremely large joint motions. Thus, in

order for Prim to make sure that the commands sent to Servo are "small in a dynamic sense",

the Prim Execution module should monitor the nearness of computed goals to singularities,

and modify them as necessary before sending them to Servo. To the extent possible, this
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should be done even when Prim sends Cartesian goals to Servo, so that only dynamically

realizable goals are commanded.

If Prim is sending joint space commands to Servo, there are several techniques available

to modify goals in the Execution module. One approach is to simply check the calculated goal

velocity of each joint, and when a joint reaches its maximum allowable velocity, scale back

the other joint commands before sending them down to Servo. This results in the manipula-

tor following the commanded trajectory, although at a diminished speed, and may be used

with several different trajectory generation algorithms. Another possibility is to allow a

small amount of orientation error near singularities [55]. In this case, the manipulator posi-

tion and speed are maintained, but the orientation accuracy is compromised. A modification

to inverse Jacobian rate control has been proposed in [1] for dealing with singularities in

which wrist joint velocities are monitored. When a joint rate becomes excessive, it is limited

to a maximum value and a modified inverse Jacobian is used to calculate the rates for the

remaining joints. This control also results in (only) an orientation error from the desired

motion. In other cases, maintaining orientation may be more important than achieving the

desired position.

An effective means of handling singularities is to provide the manipulator with one or

more redundant degrees of freedom. This will be discussed in the following section. Redun-

dancy allows a variety of joint configurations for a given end-effector position. As mentioned

previously, if the technique used to resolve the redundancy performs the function of trans-

forming a static motion description (path or direction) into a dynamic trajectory, then it

should be executed by the Prim level. Otherwise, the Servo level will perform redundancy

resolution as indicated by the parameter R passed from E-move through Prim.

8.4 Kinematic Redundancy

Singularity avoidance is a prime motivation for using kinematicaUy redundant manipulator

mechanisms. Redundancy resolution is performed by the Execution module if a purely kine-

matic technique is used [7,8,28]. In addition to singularity avoidance, kinematic redundancy

may be exploited to achieve other goals, as well. One approach to redundancy utilization is

to view the various goals as prioritized subtasks [35,39,60]. For instance, following the de-

sired end-effector path might be the highest priority goal. Given that this can be accom-

plished in an infinite number of ways with a redundant arm, other goals, such as singularity

and obstacle avoidance, may be used to fully determine the joint trajectories.

8.5 Reflexive Obstacle Avoidance

The Prim Execution module should have some facilities for attempting to avoid unantici-

pated obstacles. This type of "reflexive" obstacle avoidance should be performed by the

Execution module because the sensors used to detect such obstacles must be monitored at a

higher rate than that used for planning (and replanning), and appropriate action must be tak-

en immediately. At the Prim level, such reflexive behavior consists of modifying the ideal tra-

jectory to prevent unwanted collisions, although no avoidance algorithm can guarantee colli-

sion-free motion in a dynamic environment [40]. A major problem in trying to incorporate

reflexive behavior of any sort lies in defining what the "appropriate action" is, provided that

some reflex situation has been identified (another difficult problem). A third problem is dis-

42



Manipulator Prim Level

criminating between desired and undesired collisions. For obstacle avoidance, one can imag-

ine a multitude of proximity sensors which provide a sensing field of some useful range about

the manipulator links, or at least those most likely to encounter unforeseen or misrepresent-

ed obstacles. The use of such a set of sensors for obstacle avoidance is discussed by Espiau

and Boulic [18]. They interpret the sensor outputs as repulsive displacements which are ap-

plied to the nominal trajectory to prevent collision both for the end-effector and links of a re-

dundant manipulator.

8.6 Operator Velocity Control

A very desirable characteristic of a control system architecture for telerobots is to pro-

vide a means by which a human operator can control the speed of manipulator movements.

While it is fairly straightforward to provide a means for modifying the speed of an entire tra-

jectory by applying a uniform time scaling [24], it is considerably more difficult to determine

the effects of velocity changes commanded by the operator during execution of a motion,

which are expected to be responded to in real time.

8.7 Operator Single-Step Control

Another desirable capability for telerobot control is to allow the operator to step through

a trajectory by executing knot points one-at-a-time. This capability is often useful for test-

ing purposes, and can be provided by having the Execution module monitor the state of sin-

gle-step control switches. Based on the state of these switches, the Execution module can

determine if the next command to Servo is to be issued immediately, or if it should wait for

stepping of execution by the operator. The Execution module would reset the synchroniza-

tion flag for every Servo command in this mode of operation. Of course, single-stepping

capability may not be appropriate for some Prim algorithms (a Cartesian vision servo, for

instance). Manual control of the manipulator will be discussed further in a subsequent docu-

ment.

9. Implementation Issues

This section discusses two important implementational aspects of the Prim task decom-

position module described in the preceeding sections; the size of the module interfaces and

the computational requirements of the module.

9.1 Interface Size and Information Flow Rates

The input command interface, described in section 3.1, contains a considerable amount of

information. The size of this interface will of course depend upon the details of the implemen-

tation, but a rough estimate may be made nonetheless:

Command number => 1 word

Prim Algorithm => 1 word

Coordinate System => 33 words

Position command description => 100 words

Force command description => 100 words
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Held object => 3 words

Destination object => 3 words

Termination conditions => 13 words

Redundancy resolution specification => 1 word

Priority => 1 word

Objective function => 13 words

269 words

If 32-bit words are used, then a complete command consists of slighdy over 1 K bytes,

which will be sent on the order of every 100-1000 ms. This implies a required communica-

tions bandwidth of about 80 K bits/s for the input command interface. The output status of

the Prim task decomposition module is much smaller and adds Uttle to the bandwidth require-

ment. Of course, it is likely that some of the parameters above would be implemented as

ASCII strings, which would probably result in a somewhat larger interface.

The size of the output command interface to Servo is about 512 bytes [20]. For a Servo

command update rate of 10 ms, the required bandwidth to update the entire command every

cycle would be about 400 K bits/s.

9.2 Processing Requirements

The interfaces described above allow for a variety of trajectory generation techniques.

The computational requirements for a few of the simpler algorithms will be discussed below.

Most of the Prim task decomposition processing occurs in the Planning and Execution mod-

ules. Although the Planning process executes cyclically, the time between consecutive plan-

ning operations will vary (typically 40-500 ms), depending on trajectory generation algo-

rithm, the length of the motion segment and the degree to which sensor feedback indicates

that the motion is proceeding as planned. The Prim Execution process, on the other hand,

must update commands to Servo every 10-20ms. The estimated computational complexity

involved in the Planning and Execution processes for several simple algorithms follow. The

numbers provided are for a single manipulator.

1. Joint interpolated trajectory composed of quintic polynomial segments; output joint

position, velocity, and acceleration:

Planning requirement: 98 n operations/planning cycle

Executing requirement: 102 n operations/execution cycle,

where n = number of manipulator joints

2. Cartesian straight line trajectory generator with 7th order polynomial transition

between trajectory segments; output Cartesian position, velocity, and acceleration:

Planning requirement: 240 operations/planning cycle
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Executing requirment: 614 operations/execution cycle

3. Same as (2), but output joint space position (and not velocity or acceleration).

Planning requirement: 240 operations/planning cycle

Executing requirement: 656 operations for a 6-dof manipulator

Trajectory generators (1) and (2) provide a closely-spaced sequence of position, veloci-

ty, and acceleration goals, and allow for smooth transitions between path segments. Of
course, it is possible to command only positions, resulting in some computational savings.

This would be desirable for the third trajectory generator in particular, since the inverse kine-

matics are involved. A factor of two has been included in these estimates to allow for over-

head, and the estimates are derived primarily from [61]. Note that the computational cost for

the second trajectory planner is independent of the number of manipulator joints, since both

the input and the output of the algorithm are in Cartesian space.

For the above simple cases, the Planning module calculates the parameters which define

the manipulator position (and velocity and acceleration, in some cases) as a function of time

which will perform the next desired motion. The Planning module thus looks ahead and

determines the future manipulator positions for the entire duration of the planned motion seg-

ment. The planned trajectory functions are then evaluated by the Execution process for incre-

mentally larger values of time at each cycle to produce the string of closely spaced goals for

Servo. The planning and execution of the algorithms has been discussed in previous sec-

tions. The trajectory generation process for the above algorithms is very simplistic, with no

replanning or explicit incorporation of manipulator or payload dynamics being performed in the

Planning module; only the most basic functions required to compute trajectories.

Although these algorithms provide much less tiian the full desired capabilities, they

nonetheless provide a baseline for the minimal amount of computation performed by Primi-

tive. For these simple cases, the computational requirement (<75 K real operations per sec-

ond) is well within the capabilities of current computing hardware. Depending on the actual

capabilities built into the level, however, the processing requirements can be much higher.

For example, the inclusion of procedures to calculate gains and full manipulator dynamics,

check planned trajectories to remain within hardware constraints, and use the freedoms

allowed by the position tolerance and extra manipulator degrees of freedom to optimize an

objective function wiU all add to the number of planning operations required. Many trajectory

planning algorithms which have been developed (particularly for motion that is optimal in

some sense) require considerable computation, and are actually intended to be performed off

line. For example, the MCTP algorithm discussed in section 6.3 may take from 1-110 sec-

onds to compute (on a VAX 11/780 for a 3 degree of freedom arm), depending primarily on

the size of the grid used in the dynamic programming optimization [51]. In the Execution

process, the monitoring of the manipulator state to determine the execution status and the

modification of command outputs to successfully negotiate singular configurations are exam-

ples of necessary processing which has not been specifically included in the above estimates.
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10. Conclusion

The function and interfaces of the Prim level of a hierarchical manipulator control system

have been described. Examples of several types of commands and different trajectory plan-

ning algorithms have been presented to show how they are accommodated by the proposed

interfaces. The interfaces to the world model are difficult to specify precisely, and depend

heavily on what is implemented in the Task Decomposition module. However, many desir-

able types of information which may be required have been identified.
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