

Archived NIST Technical Series Publication

The attached publication has been archived (withdrawn), and is provided solely for historical purposes.
It may have been superseded by another publication (indicated below).

Archived Publication

Series/Number:

Title:

Publication Date(s):

Withdrawal Date:

Withdrawal Note:

Superseding Publication(s)

The attached publication has been superseded by the following publication(s):

Series/Number:

Title:

Author(s):

Publication Date(s):

URL/DOI:

Additional Information (if applicable)

Contact:

Latest revision of the

attached publication:

Related information:

Withdrawal
announcement (link):

Date updated: June 9, 2015

NIST Special Publication 800-5

A Guide to the Selection of Anti-Virus Tools and Techniques

December 1992

Computer Security Division (Information Technology Lab)

http://csrc.nist.gov/

i
NIST Special Publication 800-5

U.S. DEPARTMENT OF
COMMERCE
Technology Administration

National Institute of Standards

and Technology

NATl INST OF STAND « TECH R 1

C

A111D3 TES7b2

NIST

PUBLICATIONS

A Guide to the Selection

of Anti-Virus Tools

and Techniques

W. Timothy Polk and Lawrence E. Bassham III

7he National Institute of Standards and Technology was established in 1988 by Congress to "assist

industry in the development of technology . . . needed to improve product quality, to modernize

manufacturing processes, to ensure product reliability . . . and to facilitate rapid commercialization ... of

products based on new scientific discoveries."

NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S.

industry's competitiveness; advance science and engineering; and improve public health, safety, and the

environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national

standards of measurement, and provide the means and methods for comparing standards used in science,

engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized

by the Federal Government.

As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic

and applied research in the physical sciences and engineering and performs related services. The Institute

does generic and precompetitive work on new and advanced technologies. NIST's research facilities are

located at Gaithersburg, MD 20899, and at Boulder, CO 80303. Major technical operating units and their

principal activities are listed below. For more information contact the Public Inquiries Desk, 301-975-3058.

Technology Services
• Manufacturing Technology Centers Program

• Standards Services

• Technology Commercialization

• Measurement Services

• Technology Evaluation and Assessment

• Information Services

Electronics and Electrical Engineering
Laboratory
• Microelectronics

• Law Enforcement Standards

• Electricity

• Semiconductor Electronics

• Electromagnetic Fields'

• Electromagnetic Technology'

Chemical Science and Technology
Laboratory
• Biotechnology

• Chemical Engineering'

• Chemical Kinetics and Thermodynamics
• Inorganic Analytical Research

• Organic Analytical Research

• Process Measurements
• Surface and Microanalysis Science

• Thermophysics^

Physics Laboratory
• Electron and Optical Physics

• Atomic Physics

• Molecular Physics

• Radiometric Physics

• Quantum Metrology

• Ionizing Radiation

• Time and Frequency'

• Quantum Physics'

Manufacturing Engineering Laboratory
• Precision Engineering

• Automated Production Technology
• Robot Systems

• Factory Automation
• Fabrication Technology

Materials Science and Engineering
Laboratory
• Intelligent Processing of Materials

• Ceramics
• Materials Reliability'

• Polymers

• Metallurgy

• Reactor Radiation

Building and Fire Research Laboratory
• Structures

• Building Materials

• Building Environment

• Fire Science and Engineering

• Fire Measurement and Research

Computer Systems Laboratory
• Information Systems Engineering

• Systems and Software Technology
• Computer Security

• Systems and Network Architecture

• Advanced Systems

Computing and Applied Mathematics
Laboratory
• Applied and Computational Mathematics^

• Statistical Engineering^

• Scientific Computing Environments^

• Computer Services^

• Computer Systems and Communications^

• Information Systems

'At Boulder, CO 80303.

^Some elements at Boulder, CO 80303.

I
00

NiST Special Publication 800-5 A Guide to the Selection •

^^^5
of Anti-Virus Tools

and Techniques

W. Timothy Polk and Lawrence E. Bassham III

COMPUTER SECURITY

Computer Systems Laboratory

National Institute of Standards

and Technology
Gaithersburg, MD 20899

December 1992

U.S. DEPARTMENT OF COMMERCE
Barbara Hackman Franklin, Secretary

Technology Administration

Robert M. White, Under Secretary for Technology

National Institute of Standards and Technology

John W. Lyons, Director

Reports on Computer Systems Technology

The National Institute of Standards and Technology (NIST) has a unique responsibility for computer

systems technology within the Federal Government. NIST's Computer Systems Laboratory (CSL) devel-

ops standards and guidelines, provides technical assistance, and conducts research for computers and

related telecommunications systems to achieve more effective utilization of Federal information technol-

ogy resources. CSL's responsibilities include development of technical, management, physical, and ad-

ministrative standards and guidelines for the cost-effective security and privacy of sensitive unclassified

information processed in Federal computers. CSL assists agencies in developing security plans and in

improving computer security awareness training. This Special Publication 800 series reports CSL re-

search and guidelines to Federal agencies as well as to organizations in industry, government, and

academia.

National Institute of Standards and Technology Special Publication 800-5
Natl. Inst. Stand. Technol. Spec. Publ. 800-5, 46 pages (Dec. 1992)

CODEN: NSPUE2

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1992

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

Abstract

Computer viruses continue to pose a threat to the integrity and availability

of computer systems. This is especially true for users of personal computers. A
variety of an ti-virus tools are now available to help manage this threat. These

tools use a wide range of techniques to detect, identify, and remove viruses.

This guide provides criteria for judging the functionality, practicality, and

convenience of anti-virus tools. It does not weigh the merits of specific tools,

however it forms a basis with which readers can then evaluate which tools are

best suited to target environments.

Keywords: availability, change detection, integrity, personal computer, precise

identification, scanners, system monitor, virus, virus removal.

iii

Contents

1 Introduction 1

1.1 Audience and Scope 1

1.2 How to Use This Document 2

1.3 Definitions and Basic Concepts 2

2 E\inctionality 5

2.1 Detection Tools 5

2.1.1 Detection by Static Analysis 5

2.1.2 Detection by Interception 5

2.1.3 Detection of Modification 6

2.2 Identification Tools 6

2.3 Removal Tools 6

3 Selection Factors 7

3.1 Accuracy 7

3.1.1 Detection Tools 8

3.1.2 Identification Tools 8

3.1.3 Removal Tools 9

3.2 Ease of Use 9

3.3 Administrative Overhead 10

3.4 System Overhead 10

4 Tools and Techniques 11

4.1 Signature Scanning and Algorithmic Detection 11

4.1.1 Functionality 12

4.1.2 Selection Factors 12

4.1.3 Summary 14

4.2 General Purpose Monitors 14

4.2.1 Functionality 15

4.2.2 Selection Factors 15

4.2.3 Summary 16

4.3 Access Control Shells 16

4.3.1 Functionality 17

4.3.2 Selection Factors 17

4.3.3 Summary 18

4.4 Checksums for Change Detection 19

4.4.1 Functionality 19

4.4.2 Selection Factors 20

4.4.3 Summary 21

4.5 Knowledge-Based Virus Removal Tools 21

4.5.1 Functionality 21

v

4.5.2 Selection Factors 22

4.5.3 Summary 22

4.6 Research Efforts 22

4.6.1 Heuristic Binary Analysis 23

4.6.2 Precise Identification Tools 24

4.7 Other Tools 25

4.7.1 System Utilities 25

4.7.2 Inoculation 26

5 Selecting Anti-Virus Techniques 27

5.1 Selecting Detection Tools 27

5.1.1 Combining Detection Tools 30

5.2 Identification Tools 31

5.3 Removal Tools 31

5.4 Example Applications of Anti-Virus Tools 31

5.4.1 Average End-User 31

5.4.2 Power Users 32

5.4.3 Constrained User 32

5.4.4 Acceptance Testing 32

5.4.5 Multi-User Systems 32

5.4.6 Network Server 33

6 Selecting the Right Tool 35

6.1 Selecting a Scanner 35

6.2 Selecting a General Purpose Monitor 36

6.3 Selecting an Access Control Shell 36

6.4 Selecting a Change Detector 36

6.5 Selecting an Identification Tool 37

6.6 Selecting a Removal Tool 37

7 For Additional Information 39

References 41

Index 43

vi

1

1 Introduction

This document provides guidance in the selection of security tools for protection against

computer viruses. The strengths and limitations of various classes of anti-virus tools are

discussed, as well as suggestions of appropriate applications for these tools. The technical

guidance in this document is intended to supplement the guidance found in NIST Special

Publication 500-166, Computer Viruses and Related Threats: A Management Guide [WC89].

This document concentrates on widely available tools and techniques as well as some emerg-

ing technologies. It provides general guidance for the selection of anti-virus tools, regardless

of platform. However, some classes of tools, and most actual products, are only available

for personal computers. Developers of anti-virus tools have focused on personal computers

since these systems are currently at the greatest risk of infection.

1,1 Audience and Scope

This document is intended primarily for technical personnel selecting anti-virus tools for an

organization. Additionally, this document is useful for personal computer end-users who wish

to select appropriate solutions for their own system. This document begins with an overview

of the types of functionality available in anti-virus products and follows with selection criteria

which must be considered to ensure practicality and convenience. The body of the document

describes specific classes of anti-virus tools (e.g., scanners) in terms of the selection criteria.

This document closes with a summary comparing the different classes of tools and suggests

possible applications.

The guidance presented in this document is general in nature. The document makes no

attempt to address specific computer systems or anti-virus tools. However, at this time the

computer virus problem is most pressing in the personal computer arena. Consequently,

most types of anti-virus tools are available as personal computer products. As a result, some

information will address that specific environment.

Certain commercial products are identified in this paper in order to adequately specify procedures

being described. In no case does such identification imply recommendation or endorsement by the National

Institute of Standards and Technology, nor does it imply that the material identified is necessarily the best

for the purpose.

2 1 INTRODUCTION

1.2 How to Use This Document

The remainder of this section is devoted to terminology and basic concepts.

Section 2 describes the different types of functionality that are available in anti-virus tools.

Several different types of detection tools are described, as well as identification and removal

tools. This information should assist readers in identifying the classes of products appropriate

for their environment.

Section 3 describes some critical selection factors, including accuracy, ease of use, and ef-

ficiency. The description of each of these factors is dependent on the functional class of

product in question. These selection factors are used to describe product classes in the

sections that follow.

Section 4 describes specific classes of tools, such as scanners or checksum programs, and the

techniques they employ. This section provides the reader with detailed information regarding

the functionality, accuracy, ease of use and efficiency of these classes of tools.

Section 5 presents guidelines for the selection of the most appropriate class of anti-virus

tools. It begins by outlining the important environmental aspects that should be considered.

Next, the information from Section 4 is summarized and a variety of tables comparing and

contrasting the various classes of tools are presented. The remainder of the section provides

several hypothetical user scenarios. A battery of tools is suggested for each appHcation.

Section 6 presents guidelines for the selection of the best tool from within a particular class.

Important features that may distinguish products from others within a particular class are

highlighted.

This document will be most useful if read in its entirety. However, the reader may wish to

skip the details on different tools found in Section 4 on an initial reading. Section 5 may
help the reader narrow the focus to specific classes of tools for a specific environment. Then

the reader may return to Section 4 for details on those classes of tools.

1.3 Definitions and Basic Concepts

This section presents informal definitions and basic concepts that will be used throughout

the document. This is intended to clarify the meaning of certain terms which are used

inconsistently in the virus field. However, this section is not intended as a primer on viruses.

Additional background information and an extensive "Suggested Reading" list may be found

in NIST Special Publication 500-166 [WC89].

1.3 DeBnitions and Basic Concepts 3

A virus is a self-replicating code segment which must be attached to a host executable.^

When the host is executed, the virus code also executes. If possible, the virus will replicate

by attaching a copy of itself to another executable. The virus may include an additional

"payload" that triggers when specific conditions are met. For example, some viruses display

a message on a particular date.

A Trojan horse is a program that performs a desired task, but also includes unexpected

(and undesirable) functions. In this respect, a Trojan horse is similar to a virus, except a

Trojan horse does not repHcate. An example of a Trojan horse would be an editing program

for a multi-user system which has been modified to randomly delete one of the user's files

each time that program is used. The program would perform its normal, expected function

(editing), but the deletions are unexpected and undesired. A host program that has been

infected by a virus is often described as a Trojan horse. However, for the purposes of this

document, the term Trojan horse will exclude virus-infected programs.

A worm is a self-replicating program. It is self-contained and does not require a host

program. The program creates the copy and causes it to execute; no user intervention is

required. Worms commonly utilize network services to propagate to other computer systems.

A variant is a virus that is generated by modifying a known virus. Examples are modifi-

cations that add functionality or evade detection. The term variant is usually applied only

when the modifications are minor in nature. An example would be changing the trigger date

from Friday the 13th to Thursday the 12th.

An overwriting virus will destroy code or data in the host program by replacing it with the

virus code. It should be noted that most viruses attempt to retain the original host program's

code and functionality after infection because the virus is more likely to be detected and

deleted if the program ceases to work. A non-overwriting virus is designed to append

the virus code to the physical end of the program or to move the original code to another

location.

A self-recognition procedure is a technique whereby a virus determines whether or not

an executable is already infected. The procedure usually involves searching for a particular

value at a known position in the executable. Self-recognition is required if the virus is to

avoid multiple infections of a single executable. Multiple infections cause excessive growth

in size of infected executables and corresponding excessive storage space, contributing to the

detection of the virus.

A resident virus installs itself as part of the operating system upon execution of an infected

host program. The virus will remain resident until the system is shut down. Once installed

in memory, a resident virus is available to infect all suitable hosts that are accessed.

^An executable is an abstraction for programs, commaind files and other objects on a computer system

that can be executed. On a DOS PC, for example, this would include batch command files, COM files,

EXE-format files and boot sectors of disks.

4 1 INTRODUCTION

A stealth virus is a resident virus that attempts to evade detection by concealing its presence

in infected files. To achieve this, the virus intercepts system calls which examine the contents

or attributes of infected files. The results of these calls must be altered to correspond to

the file's original state. For example, a stealth virus might remove the virus code from an

executable when it is read (rather than executed) so that an anti-virus software package will

examine the original, uninfected host program.

An encrypted virus has two parts: a small decryptor and the encrypted virus body. When
the virus is executed, the decryptor will execute first and decrypt the virus body. Then

the virus body can execute, repUcating or becoming resident. The virus body will include

an encryptor to apply during replication. A variably encrypted virus will use different

encryption keys or encryption algorithms. Encrypted viruses are more difficult to disassemble

and study since the researcher must decrypt the code.

A polymorphic virus creates copies during replication that are functionally equivalent

but have distinctly different byte streams. To achieve this, the virus may randomly insert

superfluous instructions, interchange the order of independent instructions, or choose from

a number of different encryption schemes. This variable quality makes the virus difficult to

locate, identify, or remove.

A research virus is one that has been written, but has never been unleashed on the public.

These include the samples that have been sent to researchers by virus writers. Viruses that

have been seen outside the research community are termed "in the wild."

It is difficult to determine how many viruses exist. Polymorphic viruses and minor variants

complicate the equation. Researchers often cannot agree whether two infected samples are

infected with the same virus or different viruses. We will consider two viruses to be different

if they could not have evolved from the same sample without a hardware error or human
modification.

5

2 Functionality

Anti-virus tools perform three basic functions. Tools may be be used to detect, identify, or

remove viruses.^ Detection tools perform proactive detection, active detection, or reactive

detection. That is, they detect a virus before it executes, during execution, or after execution.

Identification and removal tools are more straightforward in their application; neither is of

use until a virus has been detected.

2.1 Detection Tools

Detection tools detect the existence of a virus on a system. These tools perform detection at

a variety of points in the system. The virus may be actively executing, residing in memory,

or stored in executable code. The virus may be detected before execution, during execution,

or after execution and replication.

2.1.1 Detection by Static Analysis

Static analysis detection tools examine executables without executing them. Such tools can

be used in proactive or reactive fashion. They can be used to detect infected code before it is

introduced to a system by testing all diskettes before installing software on a system. They

can also be used in a more reactive fashion, testing a system on a regular basis to detect any

viruses acquired between detection phases.

2.1.2 Detection by Interception

To propagate, a virus must infect other host programs. Some detection tools are intended

to intercept attempts to perform such "illicit" activities. These tools halt the execution of

virus-infected programs as the virus attempts to replicate or become resident. Note that

the virus has been introduced to the system and attempts to replicate before detection can

occur.

few tools are designed to prevent infection by one or more viruses. The discussion of these tools is

limited to Section 4.7.2, Inoculation, due to their limited application.

6 2 FUNCTIONALITY

2.1.3 Detection of Modification

All viruses cause modification of executables in their replication process. As a result, the

presence of viruses can also be detected by searching for the unexpected modification of

executables. This process is sometimes called integrity checking.

Detection of modification may also identify other security problems, such as the installation

of Trojan horses. Note that this type of detection tool works only after infected executables

have been introduced to the system and the virus has replicated.

2.2 Identification Tools

Identification tools are used to identify which virus has infected a particular executable. This

allows the user to obtain additional information about the virus. This is a useful practice,

since it may provide clues about other types of damage incurred and appropriate clean-up

procedures.

2.3 Removal Tools

In many cases, once a virus has been detected it is found on numerous systems or in numerous

executables on a single system. Recovery from original diskettes or clean backups can be

a tedious process. Removal tools attempt to efficiently restore the system to its uninfected

state by removing the virus code from the infected executable.

7

3 Selection Factors

Once the functional requirements have been determined, there will still be a large assort-

ment of tools to choose from. There are several important selection factors that should be

considered to ensure that the right tool is selected for a particular environment.

There are four critical selection factors: Accuracy, Ease of Use, Administrative Overhead

and System Overhead. Accuracy describes the tool's relative success rate and the types of

errors it can make. Ease of use describes the typical user's ability to install and execute the

tool and interpret the results. Administrative overhead is the measure of technical support

and distribution effort required. System overhead describes the tool's impact on system

performance. These factors are introduced below. In depth discussions of these factors are

in subsequent subsections.

Accuracy is the most important of the selection factors. Errors in detecting, identifying or

removing viruses undermine user confidence in a tool, and often cause users to disregard

virus warnings. Errors will at best result in loss of time; at worst they will result in damage

to data and programs.

Ease of use is concerned with matching the background and abilities of the system's user

to the appropriate software. This is also important since computer users vary greatly in

technical skills and ability.

Administrative overhead can be very important as well. Distribution of updates can be

a time-consuming task in a large organization. Certain tools require maintenance by the

technical support staff rather than the end-user. End-users will require assistance to interpret

results from some tools; this can place a large burden on an organization's support staff. It

is important to choose tools that your organization has the resources to support.

System overhead is inconsequential from a strict security point of view. Accurate detection,

identification or removal of the virus is the important point. However, most of these tools

are intended for end-users. If a tool is slow or causes other applications to stop working,

end-users will disable it. Thus, attention needs to be paid to the tool's ability to work quickly

and to co-exist with other applications on the computer.

3.1 Accuracy

Accuracy is extremely important in the use of all anti-virus tools. Unfortunately, aU anti-

virus tools make errors. It is the type of errors and frequency with which they occur that is

important. Different errors may be crucial in different user scenarios.

8 3 SELECTION FACTORS

Computer users are distributed over a wide spectrum of system knowledge. For those users

with the system knowledge to independently verify the information supplied by an anti-

virus tool, accuracy is not as great a concern. Unfortunately, many computer users are not

prepared for such actions. For such users, a virus infection is somewhat frightening and very

confusing. If the anti-virus tool is supplying false information, this will make a bad situation

worse. For these users, the overall error rate is most critical.

3.1.1 Detection Tools

Detection tools are expected to identify all executables on a system that have been infected

by a virus. This task is complicated by the release of new viruses and the continuing invention

of new infection techniques. As a result, the detection process can result in errors of two

types: false positives and false negatives.

When a detection tool identifies an uninfected executable as host to a virus, this is known

as a false positive (this is also known as a Type I error.) In such cases, a user will waste

time and effort in unnecessary cleanup procedures. A user may replace the executable with

the original only to find that the executable continues to be identified as infected. This

will confuse the user and result in a loss of confidence in either the detection procedures or

the tool vendor. If a user attempts to "disinfect" the executable, the removal program may
abort without changing the executable or will irreparably damage the program by removing

useful code. Either scenario results once more in confusion for the user and lost confidence.

When a detection tool examines an infected executable and incorrectly proclaims it to be

free of viruses, this is known as a false negative, or Type II error. The detection tool has

failed to alert the user to the problem. This kind of error leads to a false sense of security

for the user and potential disaster.

3.1.2 Identification Tools

Identification tools identify which virus has infected a particular executable. Defining failure

in this process turns out to be easier than success. The identification tool has failed if it

cannot assign a name to the virus or assigns the wrong name to the virus.

Determining if a tool has correctly named a virus should be a simple task, but in fact it

is not. There is disagreement even within the anti-virus research community as to what

constitutes "different" viruses. As a result, the community has been unable to agree on the

number of existing viruses, and the names attached to them have only vague significance.

This leads to a question of precision.

3.2 Ease of Use 9

As an example, consider two PC virus identification tools. The first tool considers the set of

PC viruses as 350 distinct viruses. The second considers the same set to have 900 members.

This occurs because the first tool groups a large number of variants under a single name.

The second tool will name viruses with greater precision (i.e., viruses grouped together by

the first tool are uniquely named by the second).

Such precision problems can occur even if the vendor attempts to name with high precision.

A tool may misidentify a virus as another variant of that virus for a variety of reasons. The

variant may be new, or analysis of samples may have been incomplete. The loss of precision

occurs for different reasons, but the results are no different from the previous example. Any
"successful" naming of a virus must be considered along with the degree of precision.

3.1.3 Removal Tools

Removal tools attempt to restore the infected executables to their uninfected state. Removal

is successful if the executable, after disinfection, matches the executable before infection on a

byte-for-byte basis. The removal process can also produce two types of failures: hard failure

and soft failure.

A hard failure occurs if the disinfected program will no longer execute or the removal program

terminates without removing the virus. Such a severe failure will be obvious to detect and

can occur for a variety of reasons. Executables infected by overwriting viruses cannot be

recovered in an automated fashion; too much information has been lost. Hard failures also

occur if the removal program attempts to remove a different virus than the actual infector.

Removal results in a soft failure if the process produces an executable, which is slightly

modified from its original form, that can still execute. This modified executable may never

have any problems, but the user cannot be certain of that. The soft failure is more insidious,

since it cannot be detected by the user without performing an integrity check.

3.2 Ease of Use

This factor focuses on the level of difficulty presented to the end-user in using the system

with anti-virus tools installed. This is intended to gauge the difficulty for the system user to

utiHze and correctly interpret the feedback received from the tool. This also measures the

increased difficulty (if any) in fulfilling the end-user's job requirements.

10 3 SELECTION FACTORS

Ease of Use is the combination of utilization and interpretation of results. This is a function

of tool design and quality of documentation. Some classes of tools are inherently more
difficult to use. For example, installation of the hardware component of a tool requires

greater knowledge of the current hardware configuration than a comparable software-only

tool.

3.3 Administrative Overhead

This factor focuses on the difficulty of administration of anti-virus tools. It is intended to

gauge the workload imposed upon the technical support team in an organization.

This factor considers difficulty of installation, update requirements, and support levels re-

quired by end-users. These functions are often the responsibility of technical support staff

or system administrators rather than the end-user. Note that an end-user without technical

support must perform all of these functions himself.

3.4 System Overhead

System overhead measures the overall impact of the tool upon system performance. The
relevant factors will be the raw speed of the tool and the procedures required for effective

use. That is, a program that is executed every week will have a lower overall impact than a

program that runs in the background at all times.

11

4 Tools and Techniques

There is a wide variety of tools and techniques which can be appHed to the anti-virus effort.

This section will address the following an ti-virus techniques:

• signature scanning and algorithmic detection

• general purpose monitors

• access control shells

• checksums for change detection

• knowledge-based removal tools

• research efforts

— heuristic binary analysis

— precise identification

• other tools

— system utilities as removal tools

— inoculation

For detection of viruses, there are five classes of techniques: signature scanning and algo-

rithmic detection; general purpose monitors; access control shells; checksums for change de-

tection; and heuristic binary analysis. For identification of viruses, there are two techniques:

scanning and algorithmic detection; and precise identification tools. Finally, removal tools

are addressed. Removal tools come in three forms: general system utilities, single-virus

disinfectors, and general disinfecting programs.

4.1 Signature Scanning and Algorithmic Detection

A common class of anti-virus tools employs the complementary techniques of signature scan-

ning and algorithmic detection. This class of tools is known as scanners, which are static

analysis detection tools (i.e., they help detect the presence of a virus). Scanners also per-

form a more limited role as identification tools (i.e., they help determine the specific virus

detected). They are primarily used to detect if an executable contains virus code, but they

can also be used to detect resident viruses by scanning memory instead of executables.

They may be employed proactively or reactively. Proactive application of scanners is achieved

by scanning all executables introduced to the system. Reactive application requires scanning

the system at regular intervals (e.g., weekly or monthly).

12 4 TOOLS AND TECHNIQUES

4.1.1 Functionality

Scanners are limited intrinsically to the detection of known viruses. However, as a side effect

of the basic technique, some new variants may also be detected. They are also identification

tools, although the methodology is imprecise.

Scanners examine executables (e.g., .EXE or .COM files on a DOS system) for indications

of infection by known viruses. Detection of a virus produces a warning message. The
warning message will identify the executable and name the virus or virus family with which

it is infected. Detection is usually performed by signature matching; special cases may be

checked by algorithmic methods.

In signature scanning an executable is searched for selected binary code sequences, called

a virus signature, which are unique to a particular virus, or a family of viruses. The virus

signatures are generated by examining samples of the virus. Additionally, signature strings

often contain wild cards to allow for maximum flexibility.

Single-point scanners add the concept of relative position to the virus signature. Here the

code sequence is expected at a particular position within the file. It may not even be detected

if the position is wrong. By combining relative position with the signature string, the chances

of false positives is greatly reduced. As a result, these scanners can be more accurate than

blind scanning without position.

Polymorphic viruses, such as those derived from the MtE (mutation engine) [Sku92], do not

have fixed signatures. These viruses are self-modifying or variably encrypted. While some

scanners use multiple signatures to describe possible infections by these viruses, algorithmic

detection is a more powerful and more comprehensive approach for these difficult viruses.

4.1.2 Selection Factors

Accuracy

Scanners are very reliable for identifying infections of viruses that have been around for some

time. The vendor has had sufficient time to select a good signature or develop a detection

algorithm for these well-known viruses. For such viruses, a detection failure is unhkely with

a scanner. An up-to-date scanner tool should detect and to some extent identify any virus

you are likely to encounter. Scanners have other problems, though. In the detection process,

both false positives and false negatives can occur.

False positives occur when an uninfected executable includes a byte string matching a virus

signature in the scanner's database. Scanner developers test their signatures against libraries

of commonly-used, uninfected software to reduce false positives. For additional assurance,

4.1 Signature Scanning and Algorithmic Detection 13

some developers perform statistical analysis of the likelihood of code sequences appearing in

legitimate programs. Still, it is impossible to rule out false positives. Signatures are simply

program segments; therefore, the code could appear in an uninfected program.

False negatives occur when an infected executable is encountered but no pattern match is

detected. This usually results from procedural problems; if a stealth virus is memory-resident

at the time the scanner executes, the virus may hide itself. False negatives can also occur

when the system has been infected by a virus that was unknown at the time the scanner was

built.

Scanners are also prone to misidentification or may lack precision in naming. Misidentifica-

tion will usually occur when a new variant of an older virus is encountered. As an example, a

scanner may proclaim that Jerusalem-B has been detected, when in fact the Jerusalem-Groen

Links virus is present. This can occur because these viruses are both Jerusalem variants and

share much of their code. Another scanner might simply declare "Jerusalem variant found

in filename." This is accurate, but rather imprecise.

Ease of Use

Scanners are very easy to use in general. You simply execute the scanner and it provides

concise results. The scanner may have a few options describing which disk, files, or directories

to scan, but the user does not have to be a computer expert to select the right parameters

or comprehend the results.

Administrative Overhead

New viruses are discovered every week. As a result, virus scanners are immediately out of

date. If an organization distributes scanners to its users for virus detection, procedures must

be devised for distribution of updates. A scanner for a DOS PC that is more than a few

months old will not detect most newly developed viruses. (It may detect, but misidentify,

some new variants.) Timely updates are crucial to the effectiveness of any scanner-based

anti-virus solution. This can present a distribution problem for a large organization.

Installation is generally simple enough for any user to perform. Interpreting the results

is very simple when viruses are correctly identified. Handling false positives will usually

require some assistance from technical support. This level of support may be available from

the vendor.

Efficiency

Scanners are very efficient. There is a large body of knowledge about searching algorithms,

so the typical scanner executes very rapidly. Proactive application will generally result in

higher system overhead.

14 4 TOOLS AND TECHNIQUES

4.1.3 Summary

Scanners are extremely effective at detecting known viruses. Scanners are not intended to

detect new viruses (i.e., any virus discovered after the program was released) and any such

detection will result in misidentification. Scanners enjoy an especially high level of user

acceptance because they name the virus or virus family. However, this can be undermined

by the occurrence of false posi'tives.

The strength of a scanner is highly dependent upon the quahty and timeliness of the signature

database. For viruses requiring algorithmic methods, the quality of the algorithms used will

be crucial.

The major strengths of scanners are:

• Up-to-date scanners can be used to reliably detect more than 95 percent of all virus

infections at any given time.

• Scanners identify both the infected executable and the virus that has infected it. This

can speed the recovery process.

• Scanners are an established technology, utilizing highly efficient algorithms.

• Effective use of scanners usually does not require any special knowledge of the computer

system.

The major limitations of scanners are:

• A scanners only looks for viruses that were known at the time its database of signatures

was developed. As a result, scanners are prone to false negatives. The user interprets

"No virus detected" as "No virus exists." These are not equivalent statements.

• Scanners must be updated regularly to remain effective. Distribution of updates can

be a difficult and time-consuming process.

• Scanners do not perform precise identification. As a result, they are prone to false

positives and misidentification.

4.2 General Purpose Monitors

General purpose monitors protect a system from the replication of viruses or execution of

the payload of Trojan horses by actively intercepting malicious actions.

4.2 General Purpose Monitors

4.2.1 Functionality

15

Monitoring programs are active tools for the real-time detection of viruses and Trojan horses.

These tools are intended to intervene or sound an alarm every time a software package

performs some suspicious action considered to be virus-Uke or otherwise malicious behavior.

However, since a virus is a code stream, there is a very real possibility that legitimate

programs will perform the same actions, causing the alarms to sound.

The designer of such a system begins with a model of "malicious" behavior, then builds

modules which intercept and halt attempts to perform those actions. Those modules operate

as a part of the operating system.

4.2.2 Selection Factors

Accuracy

A monitoring program assumes that viruses perform actions that are in its model of suspi-

cious behavior and in a way that it can detect. These are not always valid assumptions. New
viruses may utilize new methods which may fall outside of the model. Such a virus would

not be detected by the monitoring program.

The techniques used by monitoring tools to detect virus-like behavior are also not fool-

proof. Personal computers lack memory protection, so a program can usually circumvent

any control feature of the operating system. As a part of the operating system, monitoring

programs are vulnerable to this as well. There are some viruses which evade or turn off

monitoring programs.

Finally, legitimate programs may perform actions that the monitor deems suspicious (e.g.,

self-modifying programs).

Ease of Use

Monitoring software is not appropriate for the average user. The monitor may be difficult to

configure properly. The rate of false alarms can be high, particularly false positives, if the

configuration is not optimal.

The average user may not be able to determine that program A should modify files, but

program B should not. The high rate of false alarms can discourage such a user. At worst,

the monitor will be turned off or ignored altogether.

16 4 TOOLS AND TECHNIQUES

Administrative Overhead

Monitoring programs can impose a fairly heavy administrative workload. They impose a

moderate degree of overhead at installation time; this is especially true if several different

systems are to be protected. The greatest amount of overhead will probably result from false

positives, though. This will vary greatly according to the users' level of expertise.

On the other hand, the monitoring software does not have to be updated frequently. It is not

virus-specific, so it will not require updating until new virus techniques are devised. (It is

still important to remain up-to-date; each time a new class of virus technology is developed,

a number of variations emerge.)

Efficiency

Monitoring packages are integrated with the operating system so that additional security

procedures are performed. This implies some amount of overhead when any program is

executed. The overhead is usually minimal, though.

4.2.3 Summary

Monitoring software may be difficult to use but may detect some new viruses that scanning

does not detect, especially if they do not use new techniques.

These monitors produce a high rate of false positives. The users of these programs should

be equipped to sort out these false positives on their own. Otherwise, the support staff will

be severely taxed.

Monitors can also produce false negatives if the virus doesn't perform any activities the

monitor deems suspicious. Worse yet, some viruses have succeeded in attacking monitored

systems by turning off the monitors themselves.

4.3 Access Control Shells

Access control shells function as part of the operating system, much like monitoring tools.

Rather than monitoring for virus-like behavior, the shell attempts to enforce an access control

policy for the system. This policy is described in terms of programs and the data files they

may access. The access control shell will sound an alarm every time a user attempts to

access or modify a file with an unauthorized software package.

4.3 Access Control Shells 17

4.3.1 Functionality

To perform this process, the shell must have access to identification and authentication

information. If the system does not provide that information, the access control shell may
include it. The access control shell may also include encryption tools. These tools can be

used to ensure that a user does not reboot from another version of the operating system

to circumvent the controls. Note that may of these tools require additional hardware to

accomplish these functions.

Access control shells are policy enforcement tools. As a side benefit, they can perform real-

time detection of viruses and Trojan horses. The administrator of such a system begins with

a description of authorized system use, then converts that description into a set of critical

files and the programs which may be used to modify them. The administrator must also

select the files which require encryption.

For instance, a shipping clerk might be authorized to access the inventory database with a

particular program. However, that same clerk may not be allowed to access the database

directly with the database management software. The clerk may not be authorized to access

the audit records generated by the trusted application with any program. The administrator

would supply appropriate access control statements as input to the monitor and might also

encrypt the database.

4.3.2 Selection Factors

Accuracy

Access control shells, like monitoring tools, depend upon the virus or Trojan horse working in

an expected manner. On personal computer systems, this is not always a valid assumption.

If the virus uses methods that the access control shell does not monitor, the monitor will

produce false negatives.

Even with the access control shell, a well-behaved virus can modify any program that its

host program is authorized to modify. To reduce the overhead, many programs will not be

specifically constrained. This will allow a virus to replicate and is another source of false

negatives.

False positives can also occur with access control shells. The system administrator must have

sufficient familiarity with the software to authorize access to every file the software needs. If

not, legitimate accesses will cause false alarms. If the system is stable, such false positives

should not occur after an initial debugging period.

18 4 TOOLS AND TECHNIQUES

Ease of Use

These tools are intended for highly constrained environments. They usually are not appro-

priate for the average user at home. They can also place a great deal of overhead on system

administrators. The access control tables must be rebuilt each time software or hardware

is added to a system, job descriptions are altered, or security policies are modified. H the

organization tends to be dynamic, such a tool will be very difficult to maintain. Organi-

zations with well-defined security policies and consistent operations may find maintenance

quite tolerable.

This software is easy for users, though. They simply log in and execute whatever programs

they require against the required data. If the access control shell prevents the operation,

they must go through the administrator to obtain additional privileges.

Efficiency

An access control shell modifies the operating system so that additional security procedures

are performed. This implies some amount of overhead when any program is executed. That

overhead may be substantial if large amounts of data must be decrypted and re-encrypted

upon each access.

Administrative Overhead

An access control shell should not require frequent updates. The software is not specific to

any particular threat, so the system will not require updates until new techniques are devised

for malicious code. On the other hand, the access control tables which drive the software

may require frequent updates.

4.3.3 Summary

Access control shells may be difficult to administer, but are relatively easy for the end-

user. This type of tool is primarily designed for policy enforcement, but can also detect the

replication of a virus or activation of a Trojan horse.

The tool may incur high overhead processing costs or be expensive due to hardware compo-

nents. Both false positives and false negatives may occur. False positives will occur when

the access tables do not accurately reflect system processing requirements. False negatives

will occur when virus replication does not conflict with the user's access table entries.

4.4 Checksums for Change Detection 19

4.4 Checksums for Change Detection

Change detection is a powerful technique for the detection of viruses and Trojan horses.

Change detection works on the theory that executables are static objects; therefore, modifi-

cation of an executable imphes a possible virus infection. The theory has a basic flaw: some
executables are self-modifying. Additionally, in a software development environment, exe-

cutables may be modified by recompilation. These are two examples where checksumming

may be an inappropriate solution to the virus problem.

4.4.1 Functionality

Change detection programs generally use an executable as the input to a mathematical

function, producing a checksum. The change detection program is executed once on the

(theoretically) clean system to provide a baseline^ for testing. During subsequent executions,

the program compares the computed checksum with the baseline checksum. A change in the

checksum indicates a modification of the executable.

Change detection tools are reactive virus detection tools. They can be used to detect any

virus, since they look for modifications in executables. This is a requirement for any virus

to replicate. As long as the change detector reviews every executable in its entirety on the

system and is used in a proper manner, a virus cannot escape detection.

Change detection tools employ two basic mathematical techniques: Cyclic Redundancy

Checks (CRC) and cryptographic checksums.

CRC-Codings

CRC checksums are commonly used to verify integrity of packets in networks and other types

of communications between computers. They are fairly efficient and well understood. CRC-
based checksums are not extremely secure; they are based on a known set of algorithms.

Therefore they can be broken (the particular algorithm can be guessed) by a program if it

can find the checksum for a file.

CRC checksum tools, like all change detection tools, can only detect that a virus has repli-

cated. Additionally, the executable must be appear in the baseline.

Cryptographic Checksums

Cryptographic checksums are obtained by applying cryptographic algorithms to the data.

Both public and private key algorithms can be used. In general, private key algorithms are

^The original file names and their corresponding checksums.

20 4 TOOLS AND TECHNIQUES

used for efficiency. These techniques are sometimes used in conjunction with two other pro-

cedures to decrease system overhead. These techniques are message digesting and hashing.'*

In Message Digesting, hashing is used in conjunction with cryptographic checksums. The
hash function, which is very fast, is applied directly to the executable. The result is much
smaller than the original data. The checksum is computed by applying the cryptographic

function to the hash result. The final result approaches the cryptographic checksum for

security, but is much more efficient.

4.4.2 Selection Factors

Accuracy

Properly implemented and used, change detection programs should detect every virus. That

is, there are no false negatives with change detection. Change detection can result in high

numbers of false positives, however. Programs tend to store configuration information in

files containing executable code. If these files are checksummed, as they should be, a change

in configuration will trigger the change detector. Additionally, the system must be virus-free

when the checksums are calculated; resident viruses may fool the change detection software.

Ease of Use

Change detection software is more challenging to use than some other anti-virus tools. It

requires good security procedures and substantial knowledge of the computer system. Pro-

cedurally, it is important to protect the basehne. The checksums should be stored off-line or

encrypted. Manipulation of the baseline will make the system appear to have been attacked.

Analysis of the results of a checksumming procedure is also more difficult. The average

user may not be able to determine that one executable is self-modifying but another is not.

False positives due to self-modifying code can discourage such a user, until the output of the

change detector is ignored altogether.

Administrative Overhead

Change detection software is easy to install and it requires no updates. The baseline must be

established by a qualified staff member. This includes the initial baseline, as well as changes

to the baseline as programs are added to the system. Once in operation, a high degree of

support can be required for the average end-user, however. A qualified staff member must

be available to determine whether or not a change to a particular executable is due to a virus

or simply a result of self-modification.

^Discussion of cryptographic terminology is beyond the scope of this document. Please see [Sim92]

4.5 Knowledge-Based Virus Removal Tools 21

EfSciency

Change detectors do not impose any overhead on general system use. There is, however,

some storage overhead for the baseline checksums. These are best stored off-line with the

checksum program.

The calculation of checksums is computationally intensive; the mathematical functions must

be calculated on at least a portion of the executable. To be exhaustive, the function should

be calculated on the entire executable.

4.4.3 Summary

If change is detected, there are several possibilities: a virus infection, self-modification,

recompilation, or modification of the baseline. A knowledgeable user is required to determine

the specific reason for change.

The primary strength of change detection techniques is the ability to detect new viruses and

Trojan horses. The limitation of change detection is the need for a knowledgeable user to

interpret the output.

4.5 Knowledge-Based Virus Removal Tools

The primary means of automated removal of virus infection is knowledge-based removal

tools. These removal tools attempt to reverse the modifications a virus makes to a file.

After analyzing a particular virus to determine its effects on an infected file, a suitable

algorithm is developed for disinfecting files. Tools are available which address only a single

virus. These single virus disinfectors are usually developed as the result of a particularly

virulent outbreak of a virus. Others detectors are general virus removal programs, containing

removal algorithms for several viruses.

4.5.1 Functionality

Knowledge-based removal tools restore an executable to its pre-infection state. All modifica-

tions to the original executable must be known in order to accomplish this task. For example,

if a file is infected with an overwritting virus, removal is not possible. The information that

was overwritten cannot be restored.

22

i

1

4 TOOLS AND TECHNIQUES

The most critical piece of information in the removal process is the identity of the virus itself.

If the removal program is removing Jerusalem-DC, but the host is infected with Jerusalem-

E2, the process could fail. Unfortunately, this information is often unavailable or imprecise.

This is why precise identification tools are needed.

4.5.2 Selection Factors

Disinfecting software is not very accurate, for a variety of reasons. The error rates are fairly

high; however, most are soft errors. This is a result of incomplete information regarding the

virus and the lack of quality assurance among virus writers. Additionally, removal techniques

tend to fail when a system or file has been infected multiple times (i.e., by the same virus

more than once, or by more than one virus).

These programs are relatively easy to use and can disinfect large numbers of programs in

a very short time. Any system overhead is inconsequential since the system should not be

used until the virus is removed.

4.5.3 Summary

Accurate removal may not be possible. Even if it is theoretically possible, precise identifica-

tion of the virus is necessary to ensure that the correct removal algorithm is used.

Certain viruses (e.g., overwriting viruses) always cause irreparable damage to an executable.

Some extraordinarily well-behaved viruses can be disinfected every time. Most viruses fall

somewhere in between. Disinfection will often work, but the results are unpredictable.

Some executables cannot be recovered to the exact pre-infection state. In such a case, the

file length or checksum of the disinfected executable may differ from the pre-infection state.

In such a case, it is impossible to predict the behavior of the disinfected program. This is

the reason virus researchers generally dislike removal programs and discourage their use.

4.6 Research Efforts

The following subsections describe research areas in the anti-virus field. New tools, based

on techniques developed in these and other areas, may be available in the near future.

4.6 Research Efforts 23

4.6.1 Heuristic Binary Analysis

Static analysis detection tools, based upon heuristic binary analysis, are a focus of research

at this time. Heuristic binary analysis is a method whereby the analyzer traces through an

executable looking for suspicious, virus-like behavior. If the program appears to perform

virus-like actions, a warning is displayed.

Functionality

Binary analysis tools examine an executable for virus-like code. If the code utilizes techniques

which are common to viruses, but odd for legitimate programs, the executable is flagged as

"possibly infected." Examples include self-encrypted code or code that appears to have been

appended to an existing program.

Selection Factors

Both false positives and negatives are sure to result with use of this type of software. False

positives occur when an uninfected program uses techniques common to viruses but uncom-

mon in legitimate programs. False negatives will occur when virus code avoids use of those

techniques common to viruses.

Binary analysis tools are fairly easy to use. The user simply specifies a program or directory

to be analyzed. Analyzing the results is more difficult. Sorting out the false positives from

real infections may require more knowledge and experience than the average user possesses.

Heuristic analysis is more computationally intensive than other static analysis methods.

This method would be inappropriate for daily use on a large number of files. It is more

appropriate for one-time use on a small number of files, as in acceptance testing.

A heuristic analysis program will require updates as new techniques are implemented by

virus writers.

Summary

Early examples of this class of tool appear to have fairly high error rates as compared with

commercial detection software. As with system monitors, it is difficult to define suspicious

in a way that prevents false positives and false negatives. However, these types of tools

have been used successfully to identify executables infected by "new" viruses in a few actual

outbreaks.

Heuristic binary analysis is still experimental in nature. Initial results have been sufficiently

encouraging to suggest that software acceptance procedures could include these tools to

augment more traditional technology.

24

I

4 TOOLS AND TECHNIQUES i

4.6.2 Precise Identification Tools

Precise identification tools are a means by which viruses are named with a much higher

degree of assurance. These tools are intended to augment detection tools. Once a virus has

been detected, a precise identification tool would be invoked in order to more accurately

identify the virus.

Functionality

Virus scanners, currently the most common virus detection method, generally employ signa-

ture scanning to detect and identify viruses. This method, however, can lead to misidentifi-

cations. The signature that the scanner matched could appear in more than one variant of

the virus. To avoid mis-identification the whole virus must match, not just a subset of the

virus (i.e., the signature). It is neither feasible nor desirable for identification software to

be distributed containing the code to all viruses it can detect. Therefore, prototype precise

identification tools utilize a "virus map" to represent the contents of the virus. The virus

map contains checksum values for all constant parts of the virus code. The map skips over

sections of the virus that contain variable information such as text or system dependent data

values.

If the checksums generated by the corresponding portions of the program match, the program

is almost certainly infected by the virus corresponding to the map. If none of the maps in

the database correspond, the program is infected by a new virus (or is uninfected.)

Selection Factors

The quality of the results produced by a precise identification tool is dependent upon the

quality of the virus map database. If that has been done well and kept current, these tools

are extremely accurate and precise when identifying known viruses. Conversely, if the virus

is new or has no corresponding entry in the database, the precise identification tool should

always "fail" to identify the viruses.

This type of tool is easy to use. The user simply specifies an executable, and the tool returns

a name, if known. The results are straightforward; it is virus "X," or unknown.

Precise identification tools are slow due to the intensive nature of the computations. These

tools may be used to perform an identification pass after the use of a more efficient detection

tool. Such a plan would provide the user with the benefits of precise identification without

great overhead. Once a virus has been detected, the user wants to know exactly what virus

he has and time is not a significant factor.

4. 7 Other Tools 25

Summary

Users want to know more about the virus infecting their systems. Precise identification will

help them obtain more complete information and can also facilitate automated removal.

Researchers will also wish to use this type of tool. It will allow them to separate samples of

known viruses from new ones without performing analysis.

4.7 Other Tools

The remaining tools, system utilities and inoculation, are included for completeness. These

tools can be used to provide some measure of functionality. In general, however, these tools

are weaker than general anti-virus tools.

4.7.1 System Utilities

Some viruses can be detected or removed with basic system utilities.^ For example, most

DOS boot sector infectors and some Macintosh viruses can be removed with system utilities.

System utilities can also be used to detect viruses by searching for virus signatures. These

tools have a rather limited focus, though.

Viruses that can be disinfected "by hand" are generally the extremely well-behaved, highly

predictable viruses that are well understood. Such viruses are the exception, not the rule.

There are many more viruses that cannot be disinfected with these tools.

Where possible, disinfection with system utilities will produce dependable results. A rea-

sonable amount of knowledge is required about the computer system and the virus itself,

though. This technique can also be very laborious if a large number of systems are infected.

System utilities are an inefficient means of detection. Generally, only one signature can be

handled at a time. This might be a useful technique if a specific virus is to be detected.

Summary

Accurate removal by system utilities is frequently impossible. Certain classes of viruses (e.g.,

overwriting viruses) always damage the executable beyond all hope of repair. Others modify

the executable in rather complicated ways. Only viruses that are extremely well-behaved can

be disinfected every time. Similarly, detection with system utilities has limited application.

^Two examples of these system utilities are Norton Utilities for the PC and ResEdit for the Macintosh.

26 4 TOOLS AND TECHNIQUES

4.7.2 Inoculation

In some cases, an executable can be protected against a small number of viruses by "in-

oculation." This technique involves attaching the self-recognition code for the virus to the

executable at the appropriate location.

Since viruses may place their self-recognition codes in overlapping locations, the number of

viruses that can be inoculated against simultaneously will be small. To make matters worse,

a common way to create a new variant is to change the self-recognition code. Thus, this

technique will often fail when tested by minor variants of the viruses inoculated against.

Inoculation is no substitute for more robust anti-virus tools and procedures. It might be

useful, though, if an organization has had recurring infections from a single virus. For

example, after cleaning three or four outbreaks of a particular virus from a network of PCs,

inoculation might be considered as a desperation measure.

27

5 Selecting Anti-Virus Techniques

The selection of the appropriate class of anti-virus tools requires answers to the following set

of questions:

• What is the probability of a virus infection?

• What are the consequences of a virus infection?

• What is the skill level of the users in your organization?

• What level of support is available to the end-user?

The first two questions address risk; security should always be commensurate with need. The
third and fourth questions address the limitations of the tools and personnel. The answers

will be different for each person or organization.

Every organization is at some risk of virus infection. Virus infections can occur whenever

electronic information is shared. Every organization shares information in some way and is

a potential victim of a virus infection. Most organizations should have some tools available

to detect such an infection.

Personal computer users may benefit from tools to identify viruses, since so many viruses

exist. Identification tools are not necessary where viruses are few or only theoretically

possible.

The use of removal tools is generally not required.® It may be desirable in situations where

a single person or a small team is tasked with cleaning up after an infection or where high

connectivity can result in rapid spread of the virus (such as networks).

5.1 Selecting Detection Tools

The first point to consider when selecting a detection product is the type of viruses likely

to be encountered. Approximately 95 percent of all virus infections are accounted for by a

small number of viruses. The viruses that constitute this small set can vary geographically.

The common viruses can be distinct on different continents, due to the paths in which they

travel. Of course, different hardware platforms will be at risk from different viruses.

International organizations may be vulnerable to a larger set of viruses. This set may be

obtained by merging the sets of viruses from different geographical regions where they do

^Exceptions, such as the DIR-2 PC virus, may be extremely difficult to remove without appropriate tools.

In this case, the only alternative to removal tools is to format the disk.

28 5 SELECTING ANTI-VIRUS TECHNIQUES

business. Organizations with contacts or installations in locations where virus writers are

particularly active [Bon91] are also more likely to encounter new viruses.

Risk from new viruses is an important consideration. Scanners are limited by their design to

known viruses; other detection tools are designed to detect any virus. If your organization is

at high risk from new viruses, scanners should not be the sole detection technique employed.

Another important criteria to consider is the number and type of errors considered tolerable.

The tolerance for a particular type of error in an organization will vary according to the

appUcation. Table 1 shows the types of errors which should be expected. An estimate of

the frequency that this class of error is encountered {Infrequent, Frequent, or Never) is also

given for each class of tools and error type. All anti-virus tools are subject to errors, but

their relative frequencies vary widely. Scanners probably have the lowest overall error rate.

Checksummers do not produce false negatives.

\. Detection

NTool

Error

Types

Scanner Checksum
Binary

Analysis

Generic

Monitor

Access

Control

Shell

Infrequent Frequent Frequent Frequent Frequent

False
Signatures Every time In our Whenever Whaiever

Positives
can occur a program test, 15% a legitimate a legitimate

in valid is modified errors program performs program performs

files virus-like actions virus-like actions

False

Negatives

Infrequent

May not detect

variants; won't

detect new

viruses

Never

Viruses

always change

executables

Frequent

In our

test, 8%

errors

Frequent

Viruses that

circumvent OS

can be missed

Frequent

Viruses that

circumvent OS

can be missed

Table 1: Types of errors.

The third and fourth items to consider when selecting anti-virus tools are the ease of use

and administrative overhead required for each tool. Questions to consider are:

• What is the average skill level of your organization's end-user?

• Does your organization have a support staff to assist user with more technical problems?

Table 2 includes a general evaluation of the ease of use and administrative overhead imposed

by each class of tools.

5.1 Selecting Detection Tools 29

\. Detection

NTool

Criteria

Scanner Checksum
Binary

Analysis

Generic

Monitor

Access

Control

Shell

Easy of

Use

Very Good

Reouires no

special

knowledge of

the system

Average

Haw to iisp"

results may

be difficult

to interpret

Poor

pflcv to IKP*

results must

be verified

Poor

difficult

to interpret

Average

Pocv tn iicp'

Configuration

is an impediment

Administrative

Overhead

Low

Requires fre-

quent updates.

Little add'l

support req'd

Low

No updates

req. Assist in

interpreting

results

High

Few updates.

Much verifi-

cation of

results

High

Few updates.

Much verifi-

cation of

results

High

Few updates.

Much verifi-

cation of

results

Table 2: Personnel requirements.

If several tools still appear to be candidates, consider the functionality of these tools beyond

virus detection. Viruses are only one of the many threats to computer security. All detection

tools except scanners have general security applications beyond viruses. Scanners are limited

in application to viruses, but have the added functionality of virus identification.^ Consider

the added functionality which is most needed by your organization and choose accordingly.

The alternatives are outlined in table 3.

Detection Tool

Scanner Checksum
Binary

Analysis

Generic

Monitor

Access

Control

Shell

Additional

Functionality

Identification;

May also

detect known

trojan horses

Detection of

trojan horses

and altered

data

Detection of

trojan horses

Detection of

trojan horses

Enforcing

organizations

security

policy

Table 3: Additional functionality.

The final selection criteria to be considered is when does the tool detect viruses. Proactive

detection tools allow the user to keep viruses off a system by testing incoming software. These

^Some scanners can also detect known Trojan horses.

30 5 SELECTING ANTI-VIRUS TECHNIQUES

tools only allow one chance of detecting a virus (upon initial introduction to the system).

Active detection tools intervene during the replication phase itself. Reactive detection tools

can be used any time after a virus has entered the system. Additionally, reactive tools are

not as rigorous in their demands on system performance. Table 4 shows when these different

tools detect viruses.

Detection

\Tool

Point of\^
Detection

Scanner Checksum
Binary

Analysis

Generic

Monitor

Access

Control

Shell

Static

Executable
Yes No Yes No No

Replication

Phase
No No No Yes Yes

After

Infection
Yes Yes Yes No Yes

Table 4: When tools detect?

5.1.1 Combining Detection Tools

The most complete protection will be obtained by combining tools which perform in radically

different fashion and protect against different classes of viruses. For instance, when used

together a scanner and a checksum program will protect against both known and unknown

viruses. The scanner can detect known viruses before software is installed on the system. A
virus can be modified to elude the scanner, but it will be detected by the checksum program.

The two tools should have different "additional functionality" (see table 3) to form the most

comprehensive security package. For instance, the combination of a checksum program and

an access control shell would also detect Trojan horses and enforce organizational security

policy in addition to virus detection. On the other hand, adding a binary analyzer to a

system that already employs checksumming would not provide additional functionality.

If you must use two scanners, be sure that they use different search strings. A number of

tools are based on published search strings; shareware tools commonly utilize the same public

domain signature databases. Two different scanner engines looking for the same strings do

not provide any additional protection of information.*

^Algorithms for detection tend to be independently developed.

5.2 Identification Tools 31

5.2 Identification Tools

Currently, scanners are the only effective means of identifying viruses. As discussed in

Section 3.1.2, the accuracy to which scanners identify viruses can vary. In the future, precise

identification tools should offer greatly increased accuracy.

5.3 Removal Tools

The most dependable technique for virus removal continues to be deletion of the infected

executable and restoration from a clean backup. If backups are performed regularly and in

a proper manner, virus removal tools may be neglected.

In large organizations with high connectivity, automated removal tools should be obtained.

Virus eradication through the removal of infected executables may require too much time

and effort. Knowledge based tools will disinfect the largest number of different viruses, but

proper identification of the virus prior to disinfection is critical. Even with knowledge based

removal tools, disinfection of executables is not always reliable (see Sec. 3.1.3). Test all

disinfected executables to be sure they appear to execute properly. There is still a chance,

however, that soft errors will occur.

5.4 Example Applications of Anti-Virus Tools

This section provides hypothetical scenarios for the use of anti-virus tools. For each appli-

cation, a battery of tools is suggested. There are several ways these tools can be appHed to

the same scenario; this text represents just one set of rational solutions.

5.4.1 Average End-User

Detailed knowledge of the computer system is not required for the average end-user to

perform one's job. Such a user should not be required to obtain detailed knowledge just

to use anti-virus tools. This impHes that scanners are probably most appropriate for the

average end-users. Any other choice will require support from a technical support team

or computer security incident response team. Of the remaining tools, the best option is a

checksum program. By executing the checksum program regularly, for example weekly or

monthly, infections will be detected within a limited timeframe.

Another possibility is to relieve these users of the responsibility of detecting viruses entirely.

If a technical support team is already providing other regular services (e.g., backup), the

support team can use any combination of anti-virus tools deemed necessary.

32 5 SELECTING ANTI-VIRUS TECHNIQUES

5.4.2 Power Users

Power users, those with detailed knowledge of their computer systems, will be better equipped

to handle a larger variety of anti-virus tools. A power user is more able to determine whether

a change detected by a checksum program is in fact legitimate. Additionally, a power user

is going to be better equipped to configure some of the other tools, such as general purpose

monitors and access control shells.

5.4.3 Constrained User

If the user is constrained by policy to run a small set of programs against a known set of

data files, an access control shell may be the appropriate choice. As an example, consider a

data entry clerk who is permitted to run one particular database application and a basic set

of utilities: mail, word processing, and a calendar program. An access control shell can be

configured so that any changes to executable files by that user are deemed illegal operations.

Additionally, if the set of executable files is restricted for the user, it is difficult to introduce

a virus into the system. The virus is unable to spread if it can never be executed.

5.4.4 Acceptance Testing

Acceptance testing is a means by which software is verified to be "virus-free" before it is put

into daily use. This is usually accomplished by placing the software on an isolated system

and performing tests that are intended to mimic every day use. A combination of anti-

virus tools is required to adequately perform this function, which must detect both known

and future viruses. In particular, a checksum program is most useful. Even if the trigger

conditions for the payload are not met, the virus will still most likely attempt to replicate.

It is the result of the replication process that a checksum program detects.

5.4.5 Multi-User Systems

Although viruses found in the wild have been limited to personal computer systems, viruses

for multi-user systems have been demonstrated in a number of laboratory experiments.

Therefore, the potential exists for viruses on multi-user systems. As a result, it is prudent

to ensure that the security measures taken on a multi-user system address viruses as well.

Currently, administrators of multi-user systems have a limited number of options for virus

protection. Administrators of these systems cannot use monitors or scanners. Since there are

no known viruses, there are no signatures to search for or expected virus behavior to detect.

An option that is available to administrators of multi-user systems is change detection. Many

5.4 Example Applications of Anti-Virus Tools 33

of these systems are already equipped with a checksum program. Access control shells are

another possibiUty for many systems. Like access control, though, they are not usually

designed for virus detection.

5.4.6 Network Server

Network servers present an interesting problem. They can support a wide variety of machines,

but may run an entirely different operating system. For instance, a UNIX server may support

a network of PC and Macintosh workstations.

The UNIX system cannot be infected by the Jerusalem-B or WDEF viruses, but infected files

may be stored on its disk. Once the network server has infected files on it, the workstations

it supports will rapidly become infected as well.

Since the viruses never execute on the server, the administrator is limited to static detection

techniques such as scanners or change detectors. The nature of network servers allows these

tools to be run automatically during off-peak periods.

35

6 Selecting the Right Tool

Once an anti-virus technique has been selected, an appropriate tool from that class must

be selected. This section presents several features to be considered when selecting a specific

product from a class of tools.

6.1 Selecting a Scanner

Scanners are implemented in several forms. Hardware implementations, available as add-

on boards, scan all bus transfers. Software implementations include both non-resident and
resident software for the automatic scanning of diskettes.

Non-resident software is sufficiently flexible to meet most needs; however, to be effective the

user must execute the software regularly. Hardware or resident software are better choices

for enforcing security policy compliance. Resident scanners may be susceptible to stealth

viruses.

Although most scanners use similar detection techniques, notable differences among products

exist. Questions that potential users should consider when selecting a scanner include:

• How frequently is the tool updated? A scanner must be updated regularly to remain

effective. How frequently updates are needed depends on which platform the scanner

is used. Update frequency should be proportional to the rate at which new viruses are

discovered on that platform.

• Can the user add new signatures? This can be very important if a particularly harmful

virus emerges between updates.

• Does the tool employ algorithmic detection? For which viruses does the tool use algo-

rithmic detection? Algorithmic detection is preferable to the use of multiple signatures

to detect polymorphic viruses.

• How efficient is the tool? Users are less likely to use a slow scanner. There can be a

significant difference in performance between different search algorithms.

• Does the vendor develop their own virus signatures, or are the signatures based on

published search strings? There is nothing particularly wrong with published search

strings, but it indicates the level of resources the vendor has committed to the product.

• What is the level of documentation? Some packages arrive with large fact-filled binders;

other packages are a single floppy disk with a few ASCH files describing installation

and parameters.

36 6 SELECTING THE RIGHT TOOL

6.2 Selecting a General Purpose Monitor

General purpose monitors are usually implemented in software; however, hardware imple-

mentations do exist. Hardware versions may be more difficult to circumvent, but they are

not foolproof. The following questions should be considered when selecting a general purpose

monitor:

• How flexible are the configuration files? Can different parts of the monitor be disabled?

Can the monitor be configured so that certain executables can perform suspect actions?

For example, a self-modifying executable will still need to be able to modify itself.

• What types of suspect behavior are monitored? The more types of behavior monitored,

the better. A flexible configuration to select from the set of features is desirable.

• Can the monitor be reconfigured to scan for additional virus techniques? Are updates

provided as new virus techniques are discovered?

6.3 Selecting an Access Control Shell

Access control shells may be implemented in software or as hybrid packages with both

hardware and software components. If encryption modules are required, they can be designed

as software or hardware. The following questions should be considered when selecting an

access control shell:

• What type of access control mechanism does the shell provide and does it fit your

security policy?

• If encryption is employed, what is the strength of the algorithms used? In general,

publicly scrutinized algorithms are to be preferable to secret, proprietary algorithms

where you are depending on the secrecy of the algorithm, rather than secrecy of the

key.

• How strong are the identification and authentication mechanisms? [FIP85] provides

basic criteria for analyzing the strength of these mechanisms.

• Are the passwords themselves adequately protected? Passwords should never be stored

in cleartext.

6.4 Selecting a Change Detector

Due to cost considerations, change detection tools are usually implemented in software.

However, hardware implementations do speed the calculation of cryptographic checksums.

The following questions should be considered when selecting a change detector:

6.5 Selecting an Identification Tool 37

• What kind of checksum algorithm does the tool use - CRC or cryptographic? CRC
algorithms are faster. Cryptographic checksums are more secure.

• Can the tool be configured to skip executables that are known to be self-modifying?

Consistent false positives will eventually cause the end-user to ignore the reports.

• How are the checksums stored? Some tools create a checksum file for every executable,

which tends to clutter the file system and wastes disk space. Other tools store all

checksums in a single file. Not only is this technique a more efficient use of disk space,

but it also allows the user to store the checksum file off-line (e.g., on a floppy).

6.5 Selecting an Identification Tool

The following questions should be considered when selecting a scanner for identification:

• How many viruses does it detect? How many different viruses are identified? The

former asks how many different viruses are detected, whereas the latter asks how

many different names are assigned to these different viruses. If a scanner is using

signature strings, signatures can appear in variants. These questions will give some

understanding regarding the level of precision provided by a particular tool.

• What names are used by the identification tool? Many viruses have numerous "aliases,"

so different scanners will produce different names for the same infection. This is es-

pecially true with IBM PC viruses. The identification feature of the scanner is only

useful if the scanner comes with a virus catalog or uses the same nameset as an available

catalog.

Precise identification tools will be more useful when they become available, although the

same limitations regarding a virus information catalog will still apply.

6.6 Selecting a Removal Tool

Removal tools are more difficult to evaluate, but the following items may be of assistance:

• Ask for a list of viruses that can be removed, and the general level of accuracy. (For

example, "75% of disinfections will result in a working executable.") Ask for a Ust of

viruses that cannot be removed. Use the ratio for the basis of a rough comparison.

• Get a scanner and removal tool that work from the same naming space. The removal

tool works on the basis of the virus you name. You need to supply it with the name

by which it knows the virus. Matched identification and removal tools are required to

make it work.

39

7 For Additional Information

The National Institute of Standards and Technology's Computer Security Division maintains

an electronic bulletin board system (BBS) focusing on information systems security issues.

It is intended to encourage sharing of information that will help users and managers better

protect their data and systems. The BBS contains the following types of information specific

to the virus field:

• alerts regarding new viruses, Trojan horses, and other threats;

• anti-virus product reviews (IBM PC and Macintosh);

• technical papers on viruses, worms, and other threats;

• anti-virus freeware and shareware; and

• archives of the VIRUS-L forum.

Occasionally, the alerts contain signature strings to update scanners. The anti-virus prod-

uct reviews examine and evaluate specific tools. The papers provide an extensive body of

basic knowledge regarding these threats. The VIRUS-L forum has served as a world-wide

discussion forum for the exchange of information regarding viruses since April 1988. The

past issues are available for download.

Access Information

The NIST Computer Security Resource Center BBS can be access via dial-up or through

the Internet via telnet:

Dial-up access: (301) 948-5717 (2400 baud or less)

(301) 948-5140 (9600 baud)

Internet: telnet cs-bbs.ncsl.nist.gov (129.6.54.30)

REFERENCES 41

References

[Bon91] Vesselin Bontchev. The bulgarian and soviet virus factories. In Proceedings of the

First International Virus Bulletin Conference, 1991.

[BP92] Lawrence E. Bassham III and W. Timothy Polk. Precise identification of computer

viruses. In Proceedings of the 15th National Computer Security Conference, 1992.

[Coh92] Dr. Frederick Cohen. Current best practices against computer viruses with examples

from the DOS operating system. In Proceedings of the Fifth International Computer

Virus & Security Conference, 1992.

[FIP85] Password Usage. Federal Information Processing Standard (FIPS PUB) 112, Na-

tional Institute of Standards and Technology, May 1985.

[Rad91] Yisrael Radai. Checksumming techniques for anti-viral purposes. In Proceedings of

the First International Virus Bulletin Conference, 1991.

[Sim92] Gustavus J. Simmons, editor. Contemporary Cryptology: The Science of Informa-

tion Integrity. IEEE Press, 1992.

[Sku92] Fridrik Skulason. The mutation engine - the final nail? Virus Bulletin, pages 11-12,

April 1992.

[Sol92] Dr. Alan Solomon. Mechanisms of stealth. In Proceedings of the Fifth International

Computer Virus & Security Conference, 1992.

[WC89] John Wack and Lisa Carnahan. Computer Viruses and Related Threats: A Man-

agement Guide. Special Publication 500-166, National Institute of Standards and

Technology, August 1989.

I

INDEX 43

Index

access control shells, 11, 16-18, 36

accuracy, 7-9

administrative overhead, 7, 10

algorithmic detection, see scanners

baseline, 19

BBS, 39

bulletin board system, see BBS

change detection, 11, 19-21, 36

checksum, 19

checksums, see change detection

CRC, 19

cryptographic checksums, 19

Cyclic Redundancy Check, see CRC

detection, 5

ease of use, 7, 10

executable, 3

general purpose monitors, 11, 14-16, 36

heuristic binary analysis, 11, 23

identification, 6

inoculation, 11, 26

integrity checking, 6

Message Digesting, 20

NIST SP 500-166, 1, 2

precise identification, 11, 24, 37

removal, 6

scanners, 11-14, 35

single-point, 12

self-recognition, 3

signature scanning, see scanners

system overhead, 7, 10

Trojan horse, 3

* U.S. G.P.O. :1993-341-832:60388

variant, 3

virus, 3

encrypted,

4

"in the wild", 4

non-overwriting, 3

overwriting, 3

polymorphic, 4, 12

research,

4

resident, 3

stealth, 4

variably encrypted, 4

VIRUS-L, 39

worm, 3

NIST-114A U.S. DEPARTMENT OF COMMERCE 1. PUBUCATION OR REPORT NUMBER

(REV. 3-90) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY NIST/SP-800/5
2. PERFORMINO OROANIZATION REPORT NUMBER

BIBLIOGRAPHIC DATA SHEET
3. PUBUCATION DATE

December 1992
4. TITLE AND SUBTITLE

A Guide to the Selection of Anti-Virus Tools and Techniques

S. AUTHOR(S)

W. Timothy Polk and Lawrence E. Bassham III

6. PERFORMINO ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COM»
NATIONAL INSTITUTE OF ST
QAITHERSBURQ, MD 20899

U.S. DEPARTMENT OFCOMMERCE /ne-T \
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY K^bL)

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

Same as item #6.

10. SUPPLEMENTARY NOTES

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR
LITERATURE SURVEY, MENTION IT HERE.)

Computer viruses continue to pose a threat to the integrity and availability

of computer systems. This is especially true for users of personal computers.

A variety of anti-virus tools are now available to help manage this threat.

These tools use a wide range of techniques to detect, identify, and remove

viruses.

This guide provides criteria forjudging the functionality, practicality, and

convenience of anti-virus tools. It furnishes information which readers can

use to determine which tools are best suited to target environments, but it

does not weigh the merits of specific tools.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

availability, change detection, integrity, personal computer, precise identification.

scanners, system monitor, virus, virus removal.

13. AVAILABIUTY 14. NUMBER OF PRINTED PAGES

X UNUMrTEO

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

46

X ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON. DC 20402.

IS. PRICE

X ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS)-i SPRINGnELD. VA 22161.

ELECTRONIC FORM

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SECURITY

Superintendent of Documents

Government Printing Office

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Institute of Standards and Technology Special Publication 800-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

liJLkjJ. Technical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology— Reports NIST
research and development in those disciplines of the physical and engineering sciences in which
the Institute is active. These include physics, chemistry, engineering, mathematics, and computer
sciences. Papers cover a broad range of subjects, with major emphasis on measurement
methodology and the basic technology underlying standardization. Also included from time to time
are survey articles on topics closely related to the Institute's technical and scientific programs.
Issued six times a year.

Nonperiodicals

Monographs — Major contributions to the technical literature on various subjects related to the
Institute's scientific and technical activities.

Handbooks — Recommended codes of engineering and industrial practice (including safety codes)
developed in cooperation with interested industries, professional organizations, and regulatory

bodies.

Special Publications — Include proceedings of conferences sponsored by NIST, NIST annual
reports, and other special publications appropriate to this grouping such as wall charts, pocket
cards, and bibliographies.

Applied Mathematics Series — Mathematical tables, manuals, and studies of special interest to

physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series — Provides quantitative data on the physical and chemical
properties of materials, compiled from the world's literature and critically evaluated. Developed
under a worldwide program coordinated by NIST under the authority of the National Standard
Data Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data
(JPCRD) is published bimonthly for NIST by the American Chemical Society (ACS) and the

American Institute of Physics (AIP). Subscriptions, reprints, and supplements are available from
ACS, 1155 Sixteenth St., NW., Washington, DC 20056.

Building Science Series — Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test

methods, and performance criteria related to the structural and environmental functions and the

durability and safety characteristics of building elements and systems.

Technical Notes — Studies or reports which are complete in themselves but restrictive in their

treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive

in treatment of the subject area. Often serve as a vehicle for final reports of work performed at

NIST under the sponsorship of other government agencies.

Voluntary Product Standards — Developed under procedures published by the Department of

Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all concerned interests with a basis

for common understanding of the characteristics of the products. NIST administers this program
in support of the efforts of private-sector standardizing organizations.

Consumer Information Series — Practical information, based on NIST research and experience,

covering areas of interest to the consumer. Easily understandable language and illustrations

provide useful background knowledge for shopping in today's technological marketplace.

Order the above NIST publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NIST publications— FIPS and NISTIRs—from the National Technical Information

Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB) — Publications in this series

collectively constitute the Federal Information Processing Standards Register. The Register serves

as the official source of information in the Federal Government regarding standards issued by
NIST pursuant to the Federal Property and Administrative Services Act of 1949 as amended,
Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315,

dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)—A special series of interim or final reports on work
performed by NIST for outside sponsors (both government and non-government). In general,

mitial distribution is handled by the sponsor; public distribution is by the National Technical

Information Service, Springfield, VA 22161, in paper copy or microfiche form.

o
"o
c
x:
u
u
H

a> c

1 "H
s °^

^ §

B u

Q S

Q

3
X)

3
CQ

>

P Z O O <x

	SP800-5
	nistspecialpublication800-5

