

NIST Special Publication 800-107
Revision 1

Recommendation for Applications
Using Approved Hash Algorithms

Quynh Dang

Computer Security Division

Information Technology Laboratory

C O M P U T E R S E C U R I T Y

August 2012

U.S. Department of Commerce

Rebecca M. Blank, Acting Secretary

National Institute of Standards and Technology

Patrick Gallagher, Under Secretary of Commerce for Standards and Technology and Director

i

Abstract

Hash functions that compute a fixed-length message digest from arbitrary length
messages are widely used for many purposes in information security. This document
provides security guidelines for achieving the required or desired security strengths when
using cryptographic applications that employ the approved hash functions specified in
Federal Information Processing Standard (FIPS) 180-4. These include functions such as
digital signatures, Keyed-hash Message Authentication Codes (HMACs) and Hash-based
Key Derivation Functions (Hash-based KDFs).

KEY WORDS: digital signatures, hash algorithm, hash function, hash-based key
derivation algorithms, hash value, HMAC, message digest, randomized hashing, random
number generation, SHA, truncated hash values.

ii

Acknowledgements

The author, Quynh Dang of the National Institute of Standards and Technology (NIST)
gratefully appreciates the contributions and comments from Elaine Barker, William E.
Burr, Shu-jen Chang, Lily Chen, Donna F. Dodson, Morris Dworkin, John Kelsey, Ray
Perlner, W. Timothy Polk and Andrew Regenscheid. The author also appreciates
comments from Daniel Brown, Hugo Krawczyk, Praveen Gauravaram and Richard Davis
during the development of this Recommendation.

1

Table of Contents
1 Introduction .. 2

2 Authority .. 2

3 Glossary of Terms, Acronyms and Mathematical Symbols 3

3.1 Terms and Definitions.. 3

3.2 Acronyms ... 6

3.3 Symbols.. 6

4 Approved Hash Algorithms ... 6

4.1 Hash Function Properties ... 6

4.2 Strengths of the Approved Hash Algorithms ... 8

5 Hash function Usage .. 9

5.1 Truncated Message Digest .. 9

5.2 Digital Signatures.. 10

5.2.1 Full-length Message Digests ... 11

5.2.2 Truncated Message Digests .. 11

5.3 Keyed-Hash Message Authentication Codes (HMAC) 13

5.3.1 Description .. 13

5.3.2 The HMAC Key .. 13

5.3.3 Truncation of HMAC Output.. 14

5.3.4 Security Effect of the HMAC Key .. 14

5.3.5 Security of the HMAC Values .. 15

5.4 Hash-based Key Derivation Functions .. 16

5.4.1 Using a Hash Function Directly for Key Derivation 16

5.4.2 Using HMAC for Key Derivation During a Key Agreement
Transaction .. 16

5.4.3 Using HMAC for Key Derivation from a Pre-shared Key 17

5.5 Random Number (Bit) Generation... 18

6 References .. 18

Appendix A : Actual Second Preimage Resistance Strengths of Approved
Hash functions ... 21

Appendix B : Document Changes .. 22

 2

Recommendation for Applications Using Approved Hash

Algorithms

1 Introduction

A hash algorithm is used to map a message of arbitrary length to a fixed-length message
digest. Federal Information Processing Standard (FIPS) 180-4, the Secure Hash Standard
(SHS) [FIPS 180-4], specifies seven approved hash algorithms: SHA-1, SHA-224, SHA-
256, SHA-384, SHA-512, SHA-512/224 and SHA-512/256.

This Recommendation provides security guidelines for supporting the required or desired
security strengths of several cryptographic applications that employ the approved hash
functions specified in FIPS 180-4, such as digital signature applications specified in FIPS
186-3 [FIPS 186-3], Keyed-hash Message Authentication Codes (HMACs) specified in
FIPS 198-1 [FIPS 198-1] and Hash-based Key Derivation Functions specified in SP 800-
56A [SP 800-56A] and SP 800-56B [SP 800-56B]. While the use of hash functions in
HMAC-based key derivation functions is specified in SP 800-56C [SP 800-56C] and SP
800-108 [SP 800-108], these documents sufficiently address the security aspects of their
use, so discussions of SP 800-56C and SP 800-108 are not included herein.

2 Authority

This Recommendation has been developed by the National Institute of Standards and
Technology (NIST) in furtherance of its statutory responsibilities under the Federal
Information Security Management Act (FISMA) of 2002, Public Law 107-347.

NIST is responsible for developing standards and guidelines, including minimum
requirements, for providing adequate information security for all agency operations and
assets, but such standards and guidelines shall not apply to national security systems.
This recommendation is consistent with the requirements of the Office of Management
and Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information
Systems, as analyzed in A-130, Appendix IV: Analysis of Key Sections. Supplemental
information is provided in A-130, Appendix III.

This Recommendation has been prepared for use by Federal agencies. It may be used by
non-governmental organizations on a voluntary basis and is not subject to copyright
(attribution would be appreciated by NIST).

Nothing in this Recommendation should be taken to contradict standards and guidelines
made mandatory and binding on Federal agencies by the Secretary of Commerce under
statutory authority. Nor should this Recommendation be interpreted as altering or
superseding the existing authorities of the Secretary of Commerce, Director of the OMB,
or any other federal official.

 3

Conformance testing for implementations of this Recommendation will be conducted
within the framework of the Cryptographic Algorithm Validation Program (CAVP) and
the Cryptographic Module Validation Program (CMVP). The requirements of this
Recommendation are indicated by the word “shall”. Some of these requirements may be
out-of-scope for CAVP and CMVP validation testing, and thus are the responsibility of
entities using, implementing, installing, or configuring applications that incorporate this
Recommendation.

3 Glossary of Terms, Acronyms and Mathematical Symbols

3.1 Terms and Definitions

Adversary An entity that is not authorized to access or modify information,
or who works to defeat any protections afforded the
information.

Algorithm A clearly specified mathematical process for computation; a set
of rules that, if followed, will give a prescribed result.

Approved FIPS-approved and/or NIST-recommended. An algorithm or
technique that is either 1) specified in a FIPS or NIST
Recommendation, 2) adopted in a FIPS or NIST
Recommendation or 3) specified in a list of NIST-approved
security functions.

Approved hash
algorithms

Hash algorithms specified in FIPS 180-4.

Bit string An ordered sequence of 0 and 1 bits. In this Recommendation,
the leftmost bit is the most significant bit of the string. The
rightmost bit is the least significant bit of the string.

Bits of security See security strength.

Block cipher An invertible symmetric-key cryptographic algorithm that
operates on fixed-length blocks of input using a secret key and
an unvarying transformation algorithm. The resulting output
block is the same length as the input block.

Collision An event in which two different messages have the same
message digest.

Collision resistance An expected property of a hash function whereby it is
computationally infeasible to find a collision, See “Collision”.

 4

Digital signature The result of applying two cryptographic functions (a hash
function, followed by a digital signature function; see FIPS 186-
3 for details). When the functions are properly implemented, the
digital signature provides origin authentication, data integrity
protection and signatory non-repudiation.

Hash algorithm See hash function. “Hash algorithm” and “hash function” are
used interchangeably in this Recommendation.

Hash function A function that maps a bit string of arbitrary length to a fixed-
length bit string. The function is expected to have the following
three properties:

1. Collision resistance (see Collision resistance),

2. Preimage resistance (see Preimage resistance) and

3. Second preimage resistance (see Second preimage
resistance).

Approved hash functions are specified in
[FIPS 180-4].

Hash output See “message digest”.

Hash value See “message digest”.

Key A parameter used with a cryptographic algorithm that
determines its operation in such a way that an entity with
knowledge of the key can reproduce or reverse the operation,
while an entity without knowledge of the key cannot. Examples
applicable to this Recommendation include:

1. The computation of a keyed-hash message authentication
code.

2. The verification of a keyed-hash message authentication
code.

3. The generation of a digital signature on a message.

4. The verification of a digital signature.

Key Derivation Key A key used as an input to a key derivation function to derive
other keys.

Keying Material A bit string, such that any non-overlapping segments of the
string with the required lengths can be used as symmetric
cryptographic keys and secret parameters, such as initialization
vectors.

L-bit Hash Function A hash function for which the length of the output is L bits.

MAC algorithm An algorithm that computes a MAC from a message and a key.

 5

Message digest The result of applying a hash function to a message. Also
known as a “hash value” or “hash output”.

Preimage A message X that produces a given message digest when it is
processed by a hash function.

Preimage resistance An expected property of a hash function such that, given a
randomly chosen message digest, message_digest, it is
computationally infeasible to find a preimage of the
message_digest, See “Preimage”.

Random bit A bit for which an attacker has exactly a 50% probability of
success of guessing the value of the bit as either a zero or one. It
is also called an unbiased bit.

Random bit generator A device or algorithm that can produce a sequence of bits that
appear to be both statistically independent and unbiased.

Randomized hashing A process by which the input to a hash function is randomized
before being processed by the hash function.

Random number A value in a set of numbers that has an equal probability of
being selected from the total population of possibilities and, in
that sense, is unpredictable. A random number is an instance of
an unbiased random variable, that is, the output produced by a
uniformly distributed random process. Random numbers may,
e.g., be obtained by converting suitable stings of random bits
(see [SP 800-90A], Appendix B.5 for details).

Second preimage A message X’, that is different from a given message X , such
that its message digest is the same as the known message digest
of X.

Second preimage
resistance

An expected property of a hash function whereby it is
computationally infeasible to find a second preimage of a
known message digest, See “Second preimage”.

Secret keying material The binary data that is used to form secret keys, such as AES
encryption or HMAC keys.

Security strength
(Also “bits of
security”)

A number associated with the amount of work (that is, the
number of operations) that is required to break a cryptographic
algorithm or system. If 2N execution operations of the algorithm
(or system) are required to break the cryptographic algorithm,
then the security strength is N bits.

Shall Used to indicate a requirement of this Recommendation.

Shared secret A secret value that has been computed using a key agreement
algorithm and is used as input to a key derivation function.

 6

3.2 Acronyms
FIPS Federal Information Processing Standard

SHA Secure Hash Algorithm

KDF Key Derivation Function

MAC Message Authentication Code

HMAC Keyed-hash Message Authentication Code

RBG Random Bit Generator

3.3 Symbols
K HMAC key.

L Length in bits of the full message digest from a hash function.

MacTag Transmitted full or truncated HMAC output.
min(x, y) The minimum of x and y. For example, if x < y, then min(x, y) = x.

λ The length in bits of a MacTag, or the length in bits of a truncated
message digest (used, for example, by a digital signature algorithm).

4 Approved Hash Algorithms

Currently, there are seven approved hash algorithms specified in FIPS 180-4: SHA-1,
SHA-224, SHA-256, SHA-384 SHA-512, SHA-512/224 and SHA-512/256. These hash
algorithms produce outputs of 160, 224, 256, 384, 512, 224 and 256 bits, respectively.
The output of a hash algorithm is commonly known as a message digest, a hash value or
a hash output.

4.1 Hash Function Properties
An approved hash function1 is expected to have the following three properties:

1. Collision resistance: It is computationally infeasible to find two different inputs to
the hash function that have the same hash value. That is, if hash is a hash
function, it is computationally infeasible to find two different inputs x and x’ for
which hash(x) = hash(x’). Collision resistance is measured by the amount of work
that would be needed to find a collision for a hash function with high probability.
If the amount of work is 2N, then the collision resistance is N bits. The expected
collision-resistance strength of a hash function is half the length of the hash value
produced by that hash function, i.e., for an L-bit hash function, the expected
security strength for collision resistance is L/2 bits. For example, SHA-256
produces a (full-length) hash value of 256 bits; SHA-256 provides an expected
collision resistance of 128 bits (see Table 1 in Section 4.2).

1 The terms “hash function” and “hash algorithm” are used interchangeably, depending on the context of
the discussions throughout this Recommendation.

 7

2. Preimage resistance2: Given a randomly chosen hash value, hash_value, it is
computationally infeasible to find an x so that hash(x) = hash_value. This
property is also called the one-way property. Preimage resistance is measured by
the amount of work that would be needed to have a high probability of finding a
preimage for a hash function. If the amount of work is 2N, then the preimage
resistance is N bits. The expected preimage-resistance strength of a hash function
is the length of the hash value produced by that hash function, i.e., for an L-bit
hash function, the expected security strength for preimage resistance is L bits. For
example, SHA-256 produces a (full-length) hash value of 256 bits; SHA-256
provides an expected preimage resistance of 256 bits (see Table 1 in Section 4.2).

3. Second preimage resistance: It is computationally infeasible to find a second input
that has the same hash value as any other specified input. That is, given an input
x, it is computationally infeasible to find a second input x’ that is different from x,
such that hash(x) = hash(x’). Second preimage resistance is measured by the
amount of work that would be needed to have a high probability of finding a
second preimage for a hash function. If the amount of work is 2N, then the second
preimage resistance is N bits. In general, the expected second preimage strength
of a hash function is the length of the hash value produced by that hash function,
i.e., for an L-bit hash function, the expected security strength for second preimage
resistance is L bits. For example, SHA-256 produces a (full-length) hash value of
256 bits; SHA-256 provides an expected second preimage resistance of 256 bits
(see Table 1 in Section 4.2). However, for some hash functions, the second
preimage resistance strength also depends on the message length processed by the
hash function. More details can be found in Appendix A.

The security strength of a hash function is determined by its collision resistance strength,
preimage resistance strength or second preimage resistance strength, depending on the
property(ies) that the cryptographic application needs from the hash function. If an
application requires more than one property from the hash function, then the weakest
property is the security strength of the hash function for that application. For instance, the
security strength of a hash function for digital signatures is defined as its collision
resistance strength, because digital signatures require both collision resistance and second
preimage resistance from the hash function, and the collision resistance strength of the
hash function (L/2) is less than its second preimage resistance strength (i.e., L).

A hash function that is not suitable for one application might be suitable for other
cryptographic applications that do not require the same security properties. SHA-1 is not
suitable for general-purpose digital signature applications (as specified in FIPS 186-3)
that require 112 bits of security. In the case of digital signatures, SHA-1 does not provide
the 112 bits of collision resistance (see Table 1 in Section 4.2) needed to achieve the
security strength. On the other hand, SHA-1 does provide the 112 bits of preimage
resistance that is needed to achieve the 112-bit security strength for HMAC. The security
strengths of the approved hash functions for different applications can be found in SP
800-57, Part 1 [SP 800-57].

2 There are slightly different definitions of preimage resistance of hash functions in the literature.

 8

4.2 Strengths of the Approved Hash Algorithms
Table 1 provides a summary of the security strengths for the hash function security
properties (discussed in the previous section) of the approved hash functions.

Table 1: Strengths of the Security Properties of the Approved Hash Algorithms

 SHA-1 SHA-
224

SHA-
256

SHA-
384

SHA-
512

SHA-
512/224

SHA-
512/256

Collision
Resistance
Strength in

bits

< 80 112 128 192 256 112 128

Preimage
Resistance
Strength in

bits

160 224 256 384 512 224 256

Second
Preimage
Resistance
Strength in

bits

105-
160

201-
224

201-
256 384 394-

512 224 256

As mentioned in Section 4.1, the expected collision resistance strength of any approved
hash function is, in general, half the length of its hash value. This is currently believed to
be true for all the approved hash functions except SHA-1. The latest cryptanalytic results
for SHA-1 [SHA1 Attack] indicate that it may have a collision resistance strength that is
considerably less than its expected strength of 80 bits.

The expected preimage resistance strengths of the approved hash functions are provided
in the above table. At the time that this Recommendation was written, there had been no
known short cuts for finding preimages of the hash values generated by the approved
hash algorithms.

Except for SHA-384, SHA-512/224 and SHA-512/256, the second preimage resistance
strengths of the approved hash functions depend not only on the functions themselves,
but also on the sizes of the messages that the hash functions process [Second Preimage
Attack]. In Table 1, the low end of each range applies to the situation where the length of

 9

the message input to the hash function is the maximum length allowed by the hash
function, while the high end of the range applies to the situation where the message input
length is relatively small. Information on determining the actual second preimage
resistance strengths of the approved hash functions for different message lengths is
provided in Appendix A. In the case of SHA-384, SHA-512/224 or SHA-512/256, the
second preimage resistance strength does not depend on the message length; details can
be found in Appendix A.

Note that the preimage resistance and the second preimage resistance strengths are
greater than the collision resistance strength for each of the approved hash algorithms
specified in FIPS 180-4.

5 Hash function Usage

5.1 Truncated Message Digest
Some applications may require a value that is shorter than the (full-length) message
digest provided by an approved hash function as specified in FIPS 180-4. In such cases, it
may be appropriate to use a subset of the bits produced by the hash function as the
(shortened) message digest.

Let the (shortened) message digest be called a truncated message digest, and let λ be its
desired length in bits. A truncated message digest may be used if the following
requirements are met:

1. The length of the output block of the approved hash function to be used shall be
greater than λ (i.e., L > λ).

2. The λ left-most bits of the full-length message digest shall be selected as the
truncated message digest.

For example, if a truncated message digest of 96 bits is desired, the SHA-256
hash function could be used (e.g., because it is available to the application, and
provides an output larger than 96 bits). The leftmost 96 bits of the 256-bit
message digest generated by SHA-256 are selected as the truncated message
digest, and the rightmost 160 bits of the message digest are discarded.

3. If collision resistance is required, λ shall be at least twice the required collision
resistance strength s (in bits) for the truncated message digest (i.e., λ ≥ 2s).

These specifications for truncating the output of a cryptographic hash function promote
application interoperability in situations where the use of shortened message digests is
appropriate (and permissible), as determined by implementers and application developers
acting in conformance with NIST Standards and Recommendations.

Truncating the message digest can impact the security of an application. By truncating a
message digest, the expected collision resistance strength is reduced from L/2 to λ/2 (in
bits). For the example in item 2 above, even though SHA-256 provides 128 bits of
collision resistance, the collision resistance provided by the 96-bit truncated message
digest is half the length of the truncated message digest, which is 48 bits, in this case.

 10

The truncated message digest of λ bits provides an expected preimage resistance of λ bits,
not L bits, regardless of the hash function used.

The expected second preimage resistance strength of a message digest truncated to λ bits
sometimes depends on the length of the message. This dependence is determined as
specified in Appendix A. Note that there are situations for which the expected second
preimage resistance strength does not depend on the message length. For example, a 130-
bit truncated message digest generated using SHA-256 has an expected second preimage
strength of 130 bits, rather than a value in the range specified in Table 1 above for SHA-
256.

Truncating the message digest can have other impacts, as well. For example, applications
that use a truncated message digest risk attacks based on confusion between different
parties about the specific amount of truncation used, as well as the specific hash function
that was used to produce the truncated message digest. Any application using a truncated
message digest is responsible for ensuring that the truncation amount and the hash
function used are known to all parties, with no chance of ambiguity.

5.2 Digital Signatures
A hash function is used to map a message of any eligible length (see FIPS 180-4) to a
fixed-length message digest. In a digital signature generation process, this message digest
is then signed by a signing operation, such as an RSA private key operation, to produce a
digital signature. The resulting digital signature is used to verify who signed the message
and whether or not the message was altered (either deliberately or accidentally) after it
was signed.

When two different messages have the same message digest (i.e., a collision is found),
then a digital signature of one message could be used as a digital signature for the other
message. If this happens, then a verified digital signature does not guarantee the
authenticity of the signed message, because either one of the two messages could be
considered valid. Therefore, a hash function used for digital signatures requires collision
resistance. The approved hash functions are considered to provide the collision resistance
strengths as specified in Table 1 of Section 4.2.

For digital signature applications, the security strength of a hash function without any
preprocessing is generally its collision resistance strength. When appropriate processing
is applied to the data before the hash value is computed, the security strength may be
more than the collision resistance strength (see Section 5.2.3).

Without any preprocessing of the message input to the hash function, the security
strength of any digital signature that is generated using an algorithm specified in FIPS
186-3 is the minimum of the collision resistance strength of the hash algorithm and the
security strength provided by the signing algorithm. More information on security
strengths can be found in SP 800-57, Part 1. For instance, if a digital signature that is
generated by one of the approved digital signature algorithms with SHA-1 as the hash

 11

function and key sizes specified in FIPS 186-33, then the security strength of this digital
signature is less than 80 bits (see Table 1 in Section 4.2); i.e., the strength of the digital
signature process is determined by the strength of SHA-1, rather than the strength of the
key, in this case. Therefore, SHA-1 shall not be used in any new digital signature
applications that require at least 80 bits of security strength. Furthermore, SHA-1 shall
not be used for the generation of digital signatures after the end of 2013 (see SP 800-
131A [SP 800-131A] for information about the required key lengths for digital signature
applications). More information on the security strengths of digital signature applications
using the approved hash algorithms and the recommended lifetimes of cryptographic
algorithm usage can be found in SP 800-57, Part 1.

There are several ways to use hash functions with digital signature algorithms as
described below.

5.2.1 Full-length Message Digests
When the untruncated output of an approved hash function (as specified in FIPS 180-4) is
used by an approved digital signature algorithm (as specified in FIPS 186-3), the
resulting full-length message digests can support security strengths up to those given in
Table 1 of Section 4.2 (for collision resistance).

5.2.2 Truncated Message Digests
In some specific situations, truncated message digests are used in generating digital
signatures. (Details about these situations, including the lengths required for the truncated
hash values, can be found in FIPS 186-3.) In such cases, the security strength that can be
supported by a hash function depends on the length of these truncated values, as well as
the particular hash function that is used.

As noted in Section 5.1, when the outputs of an approved L-bit hash function are
truncated to λ bits (where λ < L), the collision resistance strength supported by the
truncated message digests is reduced to λ /2 bits. Therefore, in addition to the
requirements/restrictions imposed by FIPS 186-3, the value of λ shall be at least twice the
desired security strength (in bits) required for the digital signature.

For example, if a security strength of 112 bits is required for digital signatures, a
(truncated) message digest of (at least) 224 bits must be used. If required/desired, any
approved hash functions except SHA-1 could be employed to generate (truncated)
message digests of exactly 224 bits in length. (For SHA-224 and SHA-512/224, the hash
function's output would not require truncation.) It is recommended that the hash function
chosen should minimize the number of truncation operations required to achieve the
required/desired length for the hash value. For the 224-bit example above, SHA-512/224
should be chosen over SHA-384 and SHA-512/256. All three hash functions employ one
(internal) truncation operation to produce their output, but SHA-384 and SHA-512/256
would each require an additional (external) truncation operation to pare their output down
to the desired length of 224 bits.

3 Key sizes that provide at least 112 bits of strength are provided.

 12

5.2.3 Randomized Hashing for Digital Signatures
As described in Section 5.2, the overall security strength of a digital signature is limited
by the collision resistance strength of the hash function. However, when using the
randomized hashing technique specified in SP 800-106 [SP 800-106], a randomized hash
function may support a higher level of security with respect to a particular potential
vulnerability, offering enhanced protection to a message signer against a collision attack
by a malicious message preparer who formulates the message to be signed, but does not
actually sign the message.

In such an attack, the malicious message preparer would endeavor to find two messages
that hash to the same value. Once the message signer had generated a signature for one of
the messages, the malicious preparer could accuse the signer of having signed the other
message instead.

In situations where one party is asked to sign messages prepared by another party, the
level of protection (in bits) that is provided to the message signer against a collision
attack by using randomized hashing is determined by the minimum of the following three
quantities:

• The second preimage resistance strength (in bits) of the hash function.

• The security strength (in bits) of the random bit generator (RBG) employed by the
signer to produce bit strings used to randomize messages, or, the collision
resistance strength (in bits) of the hash function – whichever is larger.

• The sum of the collision resistance strength (in bits) of the hash function and the
smaller of these two quantities:

(1) The length (in bits) of bit strings used to randomize messages (denoted rv
in SP 800-106), and

(2) The length (in bits) of the RBG output used to generate rv (as specified in
Section 3.3 of SP 800-106).

When randomized hashing is used, the RBG (see Section 5.5 below for more
information) employed to produce the bit strings used to randomize messages shall
support a security strength that is equal to or greater than the security strength of the
signing algorithm. See SP 800-57, Part 1, for information about security strengths of
different signing algorithms. The randomization process itself shall conform to the
specifications of SP 800-106 for digital signature applications supporting at least 112 bits
of security. Under these conditions, SHA-1-based randomized hashing could provide 112
bits of security strength against a collision attack by a malicious message preparer, even
though the unrandomized SHA-1 function has a collision resistance strength that is less
than 80 bits.

It is important to note what the use of randomized hashing for digital signatures does and
does not provide:

1) Randomized hashing can offer a message signer additional protection by
reducing the likelihood that a message preparer can find multiple
messages that yield the same hash value during the digital signature

 13

generation process – even if it is practical to find collisions for the
unrandomized hash function.

2) Randomized hashing does not offer the message preparer or the signature
verifiers any additional protection from a misbehaving signer (who may,
for example, generate one signature that can be associated with either of
two chosen messages after finding randomized versions of those messages
that hash to the same value).

3) Randomized hashing does not improve the assurance of origin
authenticity, data integrity, and/or signatory non-repudiation provided by
the digital signature to signature verifiers (i.e., relying parties).

5.3 Keyed-Hash Message Authentication Codes (HMAC)

5.3.1 Description
Message authentication codes (MACs) provide data authentication and integrity
protection. Two types of algorithms for computing a MAC have been approved: 1) MAC
algorithms that are based on approved block cipher algorithms (more information can be
found in [SPs 800-38B, C and D]) and 2) MAC algorithms that are based on hash
functions, called HMAC algorithms, that are specified in FIPS 198-1. This section
discusses the use of HMAC.

An output from an HMAC algorithm is called an HMAC output. The HMAC output is
either used in its entirety, or is truncated (see Section 5.3.3) when it is transmitted for
subsequent verification. The transmitted value is called a MacTag. The HMAC
algorithm requires the use of a secret key that is shared between the entity that generates
the HMAC output (e.g., a message sender), and the entity (or entities) that need to verify
the transmitted MacTag (message receiver(s)).

The HMAC output is generated from a secret key and the string of “text” to be MACed
(e.g., a message to be sent) using the HMAC algorithm. The MacTag is provided to the
MacTag verifier, along with the “text” that was MACed (e.g., the sender transmits both
the MacTag and the message to the intended receiver).

The verifier computes an HMAC output on the received “text” using the same key and
HMAC algorithm that were (purportedly) used to generate the received MacTag,
generates a (new) MacTag (either a full or truncated HMAC output), and then compares
the verifier-generated MacTag with the received MacTag. If the two values match, the
“text” has been correctly received and the verifier is assured that the entity that generated
the MacTag is a member of the community of users that share the key.

The security strength provided by the HMAC algorithm depends on the security strength
of the HMAC key, the underlying hash algorithm and the length of the MacTag.

5.3.2 The HMAC Key
The security strength of the HMAC algorithm depends, in part, on the security strength of
the HMAC key, K. An HMAC key shall have a security strength that meets or exceeds
the security strength required to protect the data over which the HMAC is computed.

 14

The HMAC key shall be kept secret. When the secrecy of the HMAC key, K, is not
preserved, an adversary that knows K, may impersonate any of the users that share that
key in order to generate MacTags that seem to be authentic (i.e., MacTags that can be
verified and are subsequently presumed to be authentic).

 HMAC keys shall be generated as specified in SP 800-133 [SP 800-133].

5.3.3 Truncation of HMAC Output

When an application truncates the HMAC output to generate a MacTag to a desired
length, λ, the λ left-most bits of the HMAC output shall be used as the MacTag.
However, the output length, λ, shall be no less than 32 bits. For example, a low
bandwidth channel or a desired high efficiency computation application such as audio or
video casting application might use 32-bit MacTags.

5.3.4 Security Effect of the HMAC Key
Let C denote the bit length of the internal hash value that is denoted H in FIPS 180-4.
(This H is often called the “chaining value” in descriptions of Merkle–Damgård-style
hash functions.) Note that C is not (necessarily) equal to L, the bit length of the hash
function’s output (see, for example, SHA-384 or SHA-512/t for any t < 512, for which L
< 512 = C). In all currently approved hash functions, L ≤ C (with L = C for SHA-1, SHA-
256, and SHA-512).

The effective security strength4 of the HMAC key is the minimum of the security
strength of K and the value of 2C. That is, security strength = min(security strength of
K, 2C). For example, if the security strength of K is 128 bits, and SHA-1 is used, then the
effective security strength of the HMAC key is 128 bits, since for SHA-1, 2C= 320. Note
that, in this example, even if the security strength of K is greater than 320 bits, the
effective security strength of the key is limited to 320 bits (the value of 2C for SHA-1). In
general, there is no benefit in generating K with more than 2C bits of security. In
particular, it is not sensible to generate K with a bit length that exceeds the input block
size of the approved L-bit hash function employed in the HMAC construction. Such a K
is hashed, and the resulting L-bit value is used instead. Returning to the SHA-1 example,
suppose that the key K has a bit length greater than 512 (the input block size for SHA-1).
Instead of using K directly, HMAC replaces K by its 160-bit SHA-1 hash value, and so
the effective security strength of that choice of K is no more than 160 bits.

4 As described in [BCK1], the success of a collision attack on any approved HMAC algorithm in FIPS 198-
1 that uses SHA-1 would require the collection of at least 280 pairs of chosen plaintexts and their
corresponding HMAC values. This is an impractical task. So, the collision attack is not considered in this
document. In this Recommendation, the strength of the HMAC key is considered to be the amount of work
required for an attacker who performs a brute-force attack to discover the HMAC key K or the first hash
values (Hs) from hashing the two strings:(K0 ⊕ opad) and (K0 ⊕ ipad) separately in the HMAC
construction (see FIPS 198-1) in order to generate authentic MacTags at any time.

 15

5.3.5 Security of the HMAC Values
The successful verification of a MacTag does not completely guarantee that the
accompanying text is authentic; there is a slight chance that an adversary with no
knowledge of the HMAC key, K, can present a (MacTag, text) pair that will pass the
verification procedure. From the perspective of an adversary that does not know the
HMAC key K (i.e., the adversary is not among the community of users that share the
key), the assurance of authenticity provided by a MacTag depends on its length and on
the number of failed MacTag verifications allowed by a system for each value of the
HMAC key.

Let 2t be the number of failed MacTag verifications allowed by a system for each value
of the HMAC key. The MacTag length, λ, and the value of t need to be chosen to avoid
an unacceptable probability of falsely accepting forged data. The likelihood of accepting
forged data as authentic is (1/2)(λ - t). For example, if λ is 32, and a system allows 212
failed MacTag verifications for any given value of the HMAC key, then the likelihood of
accepting forged data is (1/2)20. In order to increase assurance of authenticity, either λ
would need to be increased, or the number of allowed failed MacTag verifications for
each value of the HMAC key would need to be decreased. To avoid having an
unacceptable probability of falsely accepting forged data at any time, the value of the
HMAC key must be changed to a new value before the number of failed MacTag
authentications reaches the maximum allowed number (2t). For the example above, with
λ = 32 and t = 20, the HMAC key must be changed before the number of failed MacTag
verifications reaches 212.

The table below provides the likelihoods of accepting forged data for different MacTag
lengths and allowed numbers of MAC verifications using a given value of the HMAC
key. This table is intended to assist the implementers of HMAC applications in security-
sensitive systems to assess the security risk associated with using MacTags.

λ
Number of Failed Verifications Allowed (2t):
 220 230 235

40 2−20 2−10 2−5

64 2−44 2−34 2−29

96 2−76 2−66 2−61

Table 2: Risks/Likelihoods of Accepting Forged Data
Each 2-x entry displayed in Table 2 is the probability of accepting forged data given the
indicated choices for the MacTag length and the number of failed MacTag verifications
allowed for a fixed value of the HMAC key. If the probability is not acceptable for the
system, the HMAC key shall be changed to a new value before the number of failed
MAC verifications reaches 2t.

A commonly acceptable length for the MacTag is 64 bits; MacTags with lengths shorter
than 64 bits are discouraged.

 16

5.4 Hash-based Key Derivation Functions
Hash functions can be used as building blocks in key derivation functions (KDFs) (e.g.,
as specified in SP 800-56A, SP 800-56B, SP 800-56C and SP 800-108).

The KDFs specified in future versions of SPs 800-56A and B are expected to use the hash
functions either directly or indirectly in an HMAC construction. The method specified in
SP 800-56C is an additional approved method for key derivation purposes in SPs 800-
56A and B. The key derivation functions in SP 800-56A, B and C are used to generate
(i.e., derive) secret keying material from a shared secret computed during a key
agreement transaction between communicating parties.

The hash-based KDFs specified in SP 800-108 use an HMAC construction and can be
used either: (1) to derive keying material from an existing key, or (2) as a key-expansion
step in the key derivation method specified in SP 800-56C.

In addition to the KDFs in SPs 800-56A, B and C, and in SP 800-108, there are several
other allowed application-specific KDFs described in SP 800-135 [SP 800-135]. These
application-specific KDFs are approved for use in their own protocols with specific
conditions; see SP 800-135 for detailed information.

5.4.1 Using a Hash Function Directly for Key Derivation
This section discusses and provides security requirements for the KDFs in SP 800-56A
and B that use the hash function directly as their building block (i.e., in the concatenation
and ASN.1 KDFs). The KDFs derive the keying material from a shared secret computed
during the key agreement transaction and other input attributes.

The security strength that can be provided by a derived key depends on the security
strength of the asymmetric keys used to generate the shared secret, the preimage strength
of the hash function used in the KDF and the length of the derived key. Therefore, if a
derived key is intended to provide s bits of security strength, then each of the following
shall be equal to or greater than s:

• The security strength supported by the asymmetric keys,

• The preimage strength of the hash function, and

• The length of the derived key in bits.

5.4.2 Using HMAC for Key Derivation During a Key Agreement Transaction
This section discusses and provides security requirements for the key derivation methods
in SP 800-56A, B and C that use the hash function in an HMAC construction.

The KDFs specified in SPs 800-56A and B derive keys in a single step, and are being
revised to allow the use of HMAC with an approved hash function for key derivation. SP
800-56C specifies a two-step key derivation procedure in which HMAC can be used
during the key derivation process.

5.4.2.1 Using HMAC in the Single-Step Key Derivation Process

 17

SP 800-56A and B specify single-step key derivation functions using HMAC in the
concatenation and ASN.1 forms.

The security strength that can be provided by a derived key depends on the security
strength of the asymmetric keys used to generate the shared secret, the preimage strength
of the hash function used in the HMAC construction in the KDF and the length of the
derived key. Note that in this case, the key used for HMAC is a salt, which can be a
publicly known value, a secret value, or a combination of both. Therefore, if a derived
key is intended to provide s bits of security strength, then each of the following shall be
equal to or greater than s:

• The security strength provided by the asymmetric keys,

• The preimage strength of the hash function used in the HMAC construction, and

• The length of the derived key in bits.

5.4.2.2 Using HMAC in the Two-Step Key Derivation Process
SP 800-56C specifies a two-step key derivation procedure, which is also known as an
“extraction-then-expansion” procedure. This procedure is included by reference in SPs
800-56A and B.

The extraction-then-expansion procedure in SP 800-56C is comprised of two separate
steps: randomness-extraction and key-expansion, both of which can be implemented
using an HMAC construction; when this construction is used, the same hash function is
used for the randomness extraction and key expansion steps.

The security strength that can be provided by a key derived using the two-step procedure
depends on the security strength of the asymmetric keys used to generate the shared
secret, the preimage strength of the hash function used in each HMAC construction and
the length of the derived key. In the randomness extraction step, the key used for HMAC
is a salt, which can be a publicly known value, a secret value, or a combination of both;
the result of this step is a key derivation key. In the key expansion step, the key used for
HMAC is the entire key derivation key that was output from the randomness extraction
step, e.g., if SHA-1 is used during the randomness extraction step, then the output is 160
bits in length, and is used as the key derivation key for the key expansion step.

When this two-step procedure is used, if a derived key is intended to provide s bits of
security strength, then each of the following shall be equal to or greater than s:

• The security strength provided by the asymmetric keys,

• The preimage strength of the hash function used in the HMAC construction of
each step of the procedure, and

• The length of the derived key in bits.

5.4.3 Using HMAC for Key Derivation from a Pre-shared Key
This section discusses and provides security requirements for the KDFs in SP 800-108
that are used to derive keying material from a pre-shared (i.e., existing) key, called a key-

 18

derivation key. HMAC can be used with an approved hash function to derive keying
material.

The security strength of a derived key depends on the security strength provided by the
key-derivation key, the hash function used in the HMAC construction and the length of
the derived key. If a derived key is intended to provide s bits of security strength, then
each of the following shall be equal to or greater than s:

• The security strength provided by the key-derivation key,

• The preimage strength of the hash function used in the HMAC construction, and

• The length of the derived key in bits.

5.5 Random Number (Bit) Generation
A random bit generator (RBG) is used to produce random bits. These bits may be used
directly or may be converted to a random number (integer). Approved RBGs that use
deterministic algorithms5, along with methods for converting a bit string to an integer can
be found in SP 800-90A. Other approved random number generators were either
specified or approved by reference in FIPS 186-2 [FIPS 186-2]; however, their use is
limited (see SP 800-131A [SP 800-131A]).

RBGs may be constructed using hash functions. The hash function used by the RBG
shall be selected so that the RBG can provide a security strength that meets or exceeds
the minimum security strength required for the random bits that it generates. See SP 800-
57, Part 1, for the security strength that can be provided for each approved hash function
for random number generation.

6 References

[SP 800-38B] NIST Special Publication (SP) 800-38B,
Recommendation for Block Cipher Modes of Operation:
The CMAC Mode for Authentication, May 2005.

[SP 800-38C] NIST Special Publication (SP) 800-38C,
Recommendation for Block Cipher Modes of Operation:
the CCM Mode for Authentication and Confidentiality,
July 2007.

[SP 800-38D] NIST Special Publication (SP) 800-38D,
Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC, November
2007.

[SP 800-56A] NIST Special Publication (SP) 800-56A,
Recommendation for Pair-Wise Key Establishment

5 Commonly known as deterministic random bit generators or pseudorandom number generators.

 19

Schemes Using Discrete Logarithm Cryptography, March
2007.

[SP 800-56B] NIST Special Publication (SP) 800-56B,
Recommendation for Pair-Wise Key Establishment Using
Integer Factorization Cryptography, August 2009.

[SP 800-56C] NIST Special Publication (SP) 800-56C,
Recommendation for Key Derivation through Extraction-
then-Expansion, November 2011.

[SP 800-57] NIST Special Publication (SP) 800-57, Part 1,
Recommendation for Key Management: General,
(Revision 3) July 2012.

[SP 800-90A] NIST Special Publication (SP) 800-90A,
Recommendation for Random Number Generation Using
Deterministic Random Bit Generators, January 2012.

[SP 800-106] NIST Special Publication (SP) 800-106, Randomized
Hashing for Digital Signatures, February 2009.

[SP 800-108] NIST Special Publication (SP) 800-108, Recommendation
for Key Derivation Using Pseudorandom Functions,
November 2008.

[SP 800-131A] E. Barker and A. Roginsky, “Transitions:
Recommendation for Transitioning the Use of
Cryptographic Algorithms and Key Lengths”, NIST
Special Publication 800-131A, January 2011.

[SP 800-133] NIST 800-133 Recommendation for Cryptographic Key
Generation, (Draft), August 2011.

[SP 800-135] NIST Special Publication (SP) 800-135,
Recommendation for Existing Application-Specific Key
Derivation Functions, Revision 1, December 2011.

[FIPS 180-4] Federal Information Processing Standard 180-4, Secure
Hash Standard (SHS), March 2012.

[FIPS 186-2] Federal Information Processing Standard 186-2, Digital
Signature Standard (DSS), January 2000.

[FIPS 186-3] Federal Information Processing Standard 186-3, Digital
Signature Standard (DSS), June 2009.

[FIPS 198-1] Federal Information Processing Standard 198-1, The
Keyed-Hash Message Authentication Code (HMAC),
July 2008.

[SHA1 Attack] Wang X., Yin Y., and Yu H., Finding Collisions in the
Full SHA-1, The 25th Annual International Cryptology

 20

Conference, Santa Barbara, California, USA, August
2005.

[Second Preimage Attack] Kelsey J. and Schneier B., Second Preimages on n-bit
hash functions for Much Less than 2n Work, Lecture
Notes in Computer Science, Vol. 3494, Springer, 2005,
ISBN-10 3-540-25910-4.

[BCK1] M. Bellare, R. Canetti, and H. Krawczyk, Keyed Hash

Functions for Message Authentication, Proceedings of
Crypto'96, LNCS 1109, pp. 1-15.
(http://www.research.ibm.com/security/keyed-md5.html)

 21

Appendix A : Actual Second Preimage Resistance Strengths of
Approved Hash functions

In an application, if the size of the messages is small, then the second preimage resistance
strengths of the hash functions are practically the same as their preimage resistance
strengths described in Section 4.2.

The actual second preimage resistance strength for SHA-1, SHA -224, SHA-256 and
SHA-512 is approximately (L – M), where L is the output block size of the hash function,
and the message is 2M input blocks in length.

For example, if a message that is 233 bits in length (i.e., a gigabyte long) is hashed by
SHA-256 (whose input block size is 29 bits), the second preimage resistance strength is
(L – M) = (256 – 24) = 232 bits (where L = 256, and M = log2(233/29) = (33 – 9) = 24).
That is, the amount of work required to find a second preimage is 2232.

It is important to note that the amount of work is based on the number of compression
function executions (compressing single message blocks), not on the number of hash
function executions (hashing messages of more than one block in length).

The actual second preimage resistance strength of SHA-1, SHA -224, SHA-256 and
SHA-512 varies, depending on the maximum size of the messages in the application
using the hash function.

The second preimage resistance of SHA-384, SHA-512/224 or SHA-512/256 does not
depend on the message length because the attack described in [Second Preimage Attack]
would actually require more work than a brute-force approach, which will break the
second preimage resistance of SHA-384, SHA-512/224 or SHA-512/256 with work of
384, 224, or 256 bits, respectively.

For any truncated message digest of λ bits, the actual second preimage resistance strength
of SHA-1, SHA-224, SHA-256, and SHA-512 is the minimum of (L – M) and λ, where λ
≤ 160 for SHA-1, λ ≤ 224 for SHA-224, λ ≤ 256 for SHA-256, and λ ≤ 512 for SHA-512.

The actual second preimage resistance strengths of SHA-384, SHA-512/224 and SHA-
512/256 is λ (where λ ≤ 384 for SHA-384, λ ≤ 224 for SHA-512/224, and λ ≤ 256 for
SHA-512/256).

 22

Appendix B : Document Changes

The original version of this document was published in February 2009. The main
technical additions to this revision are:

1) Adding and addressing the security properties of SHA-512/224 and SHA-
512/256.

2) Expanding the discussion of the security of HMAC values in Section 5.3,

3) Revising Section 5.2, especially sub-section 5.2.3 : Randomized Hashing for
Digital Signatures, and

4) Section 5.4: Hash-based Key Derivation Function was rewritten to incorporate the
“extraction-then-expansion” key derivation procedure specified in SP 800-56C
and to discuss different approved hash-based key derivation functions.

	1 Introduction
	2 Authority
	3 Glossary of Terms, Acronyms and Mathematical Symbols
	3.1 Terms and Definitions
	3.2 Acronyms
	3.3 Symbols

	4 Approved Hash Algorithms
	4.1 Hash Function Properties
	4.2 Strengths of the Approved Hash Algorithms

	5 Hash function Usage
	5.1 Truncated Message Digest
	5.2 Digital Signatures
	5.2.1 Full-length Message Digests
	5.2.2 Truncated Message Digests

	5.3 Keyed-Hash Message Authentication Codes (HMAC)
	5.3.1 Description
	5.3.2 The HMAC Key
	5.3.3 Truncation of HMAC Output
	5.3.4 Security Effect of the HMAC Key
	5.3.5 Security of the HMAC Values

	5.4 Hash-based Key Derivation Functions
	5.4.1 Using a Hash Function Directly for Key Derivation
	5.4.2 Using HMAC for Key Derivation During a Key Agreement Transaction
	5.4.2.1 Using HMAC in the Single-Step Key Derivation Process
	5.4.2.2 Using HMAC in the Two-Step Key Derivation Process

	5.4.3 Using HMAC for Key Derivation from a Pre-shared Key

	5.5 Random Number (Bit) Generation

	6 References
	Appendix A : Actual Second Preimage Resistance Strengths of Approved Hash functions
	Appendix B : Document Changes

