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MINIMAX THEOREMS*

by

Ky Fan

Department of Mathematics, University of Notre Dame

Various generalizations of von Neumann’s minimax theorem^

2 2
have been given by several authors (J. Ville

, A, Wald ,

2 ^ h-
S» Karlin , H. Kneser

, K. Fan ). In all these theorems, the

structure of linear spaces is always present. This Note con-

tains some new minimax theorems involving no linear space.

1

.

Let f be a real-valued function defined on the product

set X X Y of two arbitrary sets X,Y (not necessarily topologized)

f is said to be convex on X , if for any two elements x^ ,x
2 £ X

and two numbers :>, 0, f
2 > 0 with f

^

+ ?
2

= 1 » there exists

an element x
q £ X such that f(x

Q ,y) < ?
1
f(x

1
,y) + *?

2
f(x

2 ,y)

for all y £ Y. Similarly f is said to be concave on Y , if for

1

.

Von Neumann, J. , "Zur Theorie der Gesellschaf tsspiele"
,
Math.

Annalen . 100, 295-320 (1928); von Neumann, J. ,
and Morgens tern, 0.

,

Theory of Games and Economic Behavior , Princeton Univ. Press,
Princeton, 19^» pp« 1 53-1 55

«

2. For the references concerning minimax theorems of J. Ville,
A. Wald and S. Karlin, see the Bibliography in Contributions to
the Theory of Games , edited by H.W.Kuhn and A. W. Tucker, Prince-
ton Univ. Press, Prince^on^ 1950.

3. Kneser, H., "Sur un theoreme fondamental de la theorie des
jeux", C.R.Acad.Sci, Paris , 23^, 24l 8-24-20 (1952).

4. Fan, K.
,
"Fixed-point and minimax theorems in locally convex

topological linear spaces", Proc. Nat. Aca d , Sci , , 38 ,
121-126

(1952).
This work was perforated in' part under the sponsorship of toe Pi

of Naval Research, and in part under a National Bureau of Standard
contrac t .with American University w.V'H the sponsorship of the Air
Research and Development Command, ’.]•

. . . .
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any two elements ,y2
Y and two numbers ^0, ^ ^ 0 with

*?1 + ^ = 1 ,
there exists an yQ €, Y such that f(x,y

o
> > ^ f ( x >y-|)

+ 72f ( x >y2^ * or x € X,

THEOREM 1 . Let X,Y be two compact Hausdorff spaces and f

a real-valued function defined on X x Y. Suppose that, for every

y€Y
9 f(x,y) is lower semi-continuous (l.s.c.) on X; and for

every x €. X,f(x,y) is upper semi-continuous (u.s.c.) on Y»

Then ;

(i) The equality

min max f(x,y) = max min f(x,y) (1)
x€X y £ Y y <=Y x € X

holds, if and only if the following condition is satisfied ;

For any two finite sets (x^ ,
x
2 , . * . ,xn ) C X and

{y
1
,y2 , • • • »ymi C Y, there exist x

Q £ X and yQ €. Y such that

f ^xo ,yk^ « f (xi»y0 )» (1 < i < n, 1 < k < ra) (2)

(ii) In particular, if f is convex on X and concave on Y,

then (1 ) holds .

Proof ; Observe first that, regardless of the condition

stated in (i)
,

the expressions on both sides of (1) are mean-

ingful. In fact, for each x €. X, f(x,y) is u.s.c. on the

compact space Y, so that max f(x,y) exists. As maximum of a

y€ Y
family of l.s.c. functions on X, max f(x,y) is a .L , s . c . f unc tion

y € Y
on the compact space X and therefore min max f(x,y) exists.

x€X ye Y

(i) The necessity of the condition being trivial, we only

prove its sufficiency. According to this condition,
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min max f(x,y.) < max min f(x.,y)
xeX 1<k<m K 'yfeY 1<i<n 1

hold for any two finite sets {x^ , X
2
>... ? x n } C X and

{y 1
^ Yo Th en any real number or satisfies at least

one of the two inequalities

min max f(x,y.) < Of, max min f(x.,y) > 0(

x€X 1<k<m
=

y € Y 1<i^n 1

Let L(y; a ) = {x £ X I f(x,y) £ aj
, U(x; (X) = {y£Y I f(x,y)

which are closed subsets of X,Y respectively. Then for any real

Of and any two finite sets {x
1
,x

2 ) • . • ,xn } C X,

{y -1
c Y, the two intersections L( y k ; 0() and

n

iQ1
U(x^; (X) are never both empty. As X,Y are compact, it

follows that for any real Of, at least one of the two inter-

sections Q y
L(y; Of ) and U(x 5

°f) is not empty. That is,

either there exists x
Q Q X such that f(x

Q ,y) £ Of for all y£Y,

or there exists y Q
E Y such that f(x,y

Q ) £ Of for all x £ X.

In other words, any real Of satisfies at least one of the two

inequalities

;

rain max f(x,y) < Of
,
max min f(x,y) >. <x,

x £ X y£Y y£Y x£X

Hence min max f(x,y) < max min f(x,y) and therefore (1).
x€X y£Y "y€Y x£X

(ii) Assume now that f is convex on X and concave on Y.

In order to prove (1), it suffices to verify the condition stated

in (i). Let{x
1
,x

2 , . . . ,xn )
C x and [y 1

,y2 > • • • >ym ]
C Y be

1 ’

given. By von Nuemann's minimax theorem ,
there exist two sets
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Ms

’

m

k= 1 \ = 1

j o£ nonnegative numbers with

such that

max
1 <k<m

f(x. ,y k ) < min
'1<i<n £ ^k f ^xi ,yk^

k=i

( 3 )

Since f is convex on X and concave on Y, there exist x 6X, y 6Y
7 o 7 o

such that

*(x
0 ,yk > <

,
2

» ^ f(x
i ,y k ) , ( 1 <k^m)

m
f(xi>y0 ) £ ZI *?

k
f(x

i} yk
)o ( 1 <i<n)

k— 1

( 5 )

Then (2)follows from ( 3 )> (*+) , ( 5 )»

In (ii) of Theorem 1 , we have an easily applicable sufficient

condition for equality (1). It can be used to provide simple

proofs for minimax theorems for infinite games (for instance,

the generalized Ville's minimax theorem as stated in our earlier
Lj.

Note is a special case of part (ii) of Theorem 1). Since the

proof of (ii) is based on von Neumann's minimax theorem, its

application in proving a minimax theorem for infinite games

amounts essentially to a reduction of the latter to von Neumann's

theorem for finite games.

2. Theorem 2 below generalizes Kneser's minimax theorem*'

by eliminating the structure of linear spaces. Theorem 2 also

improves (ii) of Theorem 1. Our proof of Theorem 2 is a modifi-

cation of Kneser's proof of his theorem.
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THEOREM 2 . Let X be a compact Hausdorff space and ¥ an arbi-

trary set (not topoloqized) . Let f be a real-valued function on

XX Y such that, for every y£Y, f(x,y) is l.s.c. on X. If f is

convex on X and concave on Y, then

rain sup f(x,y) - sup rain f(x,y) (6)
x€X y€Y y e Y x€X

Proof

s

Observe first that the expressions on both sides of

(6) have meaning, although their values may be + oo , We divide

the proof of (6) into four steps:

(i) Let yo€ Y be such that X
Q = {x6 X

|
f (x ,yQ ) < o} is not

empty o If we replace X by X
Q

, and restrict f on X
Q X

Y , then the

hypothesis of Theorem 2 remains fulfilled .

We need only to verify that f restricted on X
Q
X Y is convex

on X
Q

o Let x^ ,X
2 £ Xq) and ^ 9 > 0 , £j + £2 = 1 be given.

By convexity of f on X, there exists x
Q
€ X such that

f(x
Q ,y) < €

1
f(x.,,y) + £ 2 f ^ x2 >y) for a11 y eY » (7)

Since f (x^ ,yQ ) < 0, f(x
2 >yo ) < 0, the case y = y Q

of (7) implies

f ( xo’ yo> = °» iee ° x
o
€ X

o°

(ii) If [y 1
,y2 ]

C Y is such that

max f(x,y. ) > 0 for all xSX, (8)

k=1,2 K

then there exists y_6.Y such that— ——— — * o

f(x,y
o ) > 0 for all x£X. (9)
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Let Xj, = ;jx €. X I i(x,y^) < Oj
,

(k=1,2), which aro disjoint

closed sets in X. We assume that none of them is empty (otherwise

(ii) is trivial). We have -f(x,y|) > 0 and f(x,y
2 ) > 0 for

x £ X. , so that ,y 1 ^ is u.s.c. and > 0 on X. . Let x. £ X.
1 T - 1 11

and /fj 0 be such that

max
x£X

1

-*(x,y.,) -f(x
1 ,y^

f (x ,y2 )
" f (x

1 ,y2 )
" # ( 10 )

Similarly, let x
2
£X

2
and /<

2 ^ 0 be such that

-f(x,y
2 ) -f(x

2 ,y2 )

*eL
= /V ( 11 )

We claim that ^ /^2 <1. To verify this, we may assume

j*
1 j

*2 ^ 0. Since f(x
1
,y^) 1 0, f(x

2 ,y
1
> > 0, we can find

?
1^ 2 ^ ^ such that + £2 = 1 and

£<1 f(x
1
,y

1
) + ?

2
f(x

2 ,y
1
) = 0. (12)

f being convex on X, there exists x
Q € X such that

f(x
0 ,y) < ?

1
f(x

1
,y) + ^

2
f(x

2 ,y) for all y £ Y. (13)

From (12), (13),we have f(x
Q ,y^)

<0 and therefore, by (8),

f(x
o »y2 ) > 0, so that

0 < f(x
1
,y2) + ?

2
f(x

2 ,y2 ).

Using (10), (11) and the fact > 0, the last inequality may be

written

5
1

f(x
1
,y

1
) + ^ H2^2 f(x

2 sy1^ < 0 ’

which compared with (12) yields /^j
/^

2 < 1*



Take
2^ ,

V
2
such that ^ > /^ , > /t,,

2^
>
2

= 1 * Let

-1-^2 >9 _ ^1 _ 1 mL~
T+TT

=
T +V

2
’ '2 TT^

- ~ T+ir • Then

1

71
fUjy-j) + ^2 f(x,y

2 ) > 0 for all x £ X. (1*0

In fact, if x is not in X
1
U X

2 , (1^) is trivial. If x € X
1 ,

we have 0 < f(x,y.,) + f(x,y
2 ) < f(x,y.,) +

2^
f(x,y

2 >
=

(1+^)C f ( x , y 1
)
+ V

)

2

f ( x >y2 ^J»
Similarly one verifies (14)

for x £ X
2

» Finally the existence of y Q € Y with property (9)

follows from (l4) and the concavity of f on Y,

(iii) If a finite set
|y-j ,y2 , • • • >ym j C Y is such that

max f(x,y,.) > 0 for all x £, X, 0 5)
1<;k<m

K "

then there exists yQ 6. Y satisfying (9).

We prove this by induction on m. Let X = x £ xl f(x,y ) < 0

We assume that X is not empty (otherwise we take y = y ). By

(i), we can apply our induction-assumption to f restricted on

X X Y. Since max f(x,y. ) > 0 for all x X ,
there exists

111

1<klm-1
K 111

^m+1
^ ^ suc ^ that f(x,y

m+ ^) > 0 for all x € Xm » Then

max f(x,y. ) > 0 for all x 6. X. By (ii), there exists
k=ra,ni+1

y 0
e Y satisfying (9).

(iv) For any real number Ct
,
either there exists an

x
Q

X such that f (x
o ,y) < oc for all y Y, or there exists an

y Q 6. Y such that f (x ,y o ) > & for all x 6 X. (Therefore the

right side of (6) is not less than the left side, and conse-

quently the two are equal.)
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Suppose the first alternative is not true. Then y^y L(y;cx)

is empty, where L(y;0() = jx £ X
|
f(x,y) ^ Of] 0 As X is compact,

there exists a finite set {y^ ,y^ >
* * • >y

ra }
C Y such that ^ L(y^;Of)

is empty. That is, max f(x,y. ) > 0( for sll x £ X. Then an appli-
1 <^klm

cation of (iii) to the’function f-or shows that the second alter-

native is true.

3. The next theorem is free of topological structures. This

is made possible by generalizing von Neumann's almost periodic

functions on a group s A real-valued function f defined on the

product set X X Y of two arbitrary sets X,Y (rtot topologized) is

said to be right almost periodic , if f is bounded on X X Y and if,

i

ra
’

for any £> 0, there exists a finite covering Y = Y^ of Y

such that If (x ,
y

' ) - f(x,y")| < € for all x £ X, whenever y' ,y"

belong to the same Y^. Left almost periodic functions are de-

fined similarly. However, every right almost periodic function

5. Von Neumann, J„, "Almost periodic functions in a group, I",
Trans. Amer. Math. Soc ., 36, 445-492 (193*0; Maak, W.

,

"Eine neue Definition der f as t-periodischen Funktionen",
Abhandl. Math. Sem. Hans. Univ . , 11, 240-244 (1936).



Thus weon X ;< Y is also left almost periodic and vice versa. Thus we

simply use the term almost periodic ,

THEOREL 3c
/ Let f be a real-valued almost periodic function

on the product set X X Y of two arbitrary sets X, Y ( not topo-

loqized ) » .

Then s

(i) The equality

inf sup f(x,y) = sup inf f(x,y) (16)
x£X y£Y y£Y x6X

holds, if and only if the following condition is satisfied ; For

any £ > 0 , any two finite sets [x^ ,x
2 j » ® <• ,x

a }
C X and

{y
1 ,y2 , » o o ? y

ra
} CY, there exist x

Q € X, y Q € Y such that

f(x
o ,yk ) “ f(x

i ,y0 ) 3 £ o (1 < i ^ n, 1 < k < ra). (17)

6o Let f be right almost periodic. Given £ > 0 , let Y -
jJJ

Y^ be

a finite covering of Y with the property corresponding*^! t/s
required in the definition of right almost periodicity,. Let

s a hounded function on X,

X^k' 0 f x such that

If (x Jyk
)“f (x* 1

?y k )l < § whenever x',x" £ X^*^ f or gome i. Then

the common refinement of these m finite coverings of X has th

property corresponding to £ required in the definition of lef
almost periodicity,,

7° It should be said that the absence of topological structures
in Theorem 3 is more apparent than real. In fact, the almost
periodicity of f is a necessary and sufficient condition in
order that X,Y can be made iffto two precompact (in the sense
of Bourbaki, but not necessarily separated) uniform spaces in
such \v:v/ %i:

.

£ f is uniformly continuous on the product uni-
form spaca XX Y»

y kS Y
k
(1^k<m) , For each k,f(x,y

k
)

there is a finite covering X =
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(ii) In particular, if f is convex on X and concave on Y,

then (1 6) holds .

Proof ; We only prove the sufficiency part of (i). Consider

an arbitrary £ > 0. Let X = ^ X^ be a finite covering of X

with the property corresponding to £ required in the definition
m

of left almost periodicity. Let Y = ^ Y^ be a finite covering

of Y with the property corresponding to £ required in the de-

finition of right almost periodicity. Let x^ £ X^(1<i<n),

y. £ Y. (1<k<ra). Then sup f(x,y) < max fCx^y,,) + £ holds for
k ' y£Y *1<k<ra

all x £ X; and inf f(x,y) > rain f(x.,y) -£ holds for all
x £ X ~1^i<n 1

y £ Y.
8

Hence

inf sup f(x,y) < inf max f(x,y
k ) + £ , (18)

x£X y£Y xeX 1 ^k<ra

sup inf f(x,y) > sup min f (x
i ,y) - £ . (19)

y£Y x6X y Y 1 <i<n
TZ- S

Using our condition, there exist x
Q
£. X, yQ £ Y satisfying (IV).

From (17)> (18), (19)> we get

0 < inf sup f(x,y) - sup inf f(x,y) < 3£ >” xex y£ Y y£Yx£X

which holds for any £> 0. Thus (16) is proved.

8. Here we see that the hypothesis in Theorem 3 on almost period
icity of f can be considerably weakened.
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