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Foreword

Accurate dynamic measurements of pressure are a necessity in the design

and development of modern rocket engines. Thus, with the growth of missile

and space vehicle programs, such measurements have become increasingly

important. To insure their accuracy, precise calibration methods must be

employed. As pressure changes in rocket engines may exceed 200 psi at fre-

quencies above lOkc/s. the measurement and calibration requirements of the

dynamic pressure transducer are extremely rigorous.

This publication is designed to assist the practicing engineer who is faced

with the problem of making dynamic measurements of such rapidly changing

pressures. It provides a single reference source in which he may find, for a

particular pressure transducer, the appropriate mathematical model, the mathe-

matical and instrumental methods of analysis, the methods of calibration,

and the specific methods for evaluation of test data from each method of

calibration.

A. V. AsTiN, Director.



Preface

This Monograph is published as part of a continuing program on telemetering transducers
which has been conducted in the Mechanical Instruments Section of the National Bureau of

Standards under the sponsorship of the Bureau of Naval Weapons; Aeronautical Systems
Division, U.S. Air Force; White Sands Missile Range, U.S. Army; and the National Aero-
nautics and Space Administration. Publication of the Monograph was conceived while
Edward C. Lloyd was Chief of the Section, and under his direction Dr. Frederick F. Liu of

Dresser Dynamics prepared a report entitled "The Dynamic Calibration of Transducers."
Dr. Liu's report, which was completed in 1959, is a major source of the material included in

this Monograph.
The final manuscript was prepared by Dresser Electronics, Southwestern Industrial

Electronics Division, Houston, Texas under contract with the National Bureau of Standards.
The text was written by Drs. J. L. Schweppe, L. C. Eichberger, D. F. Muster, E. L. Michaels,
and G. F. Paskusz of the University of Houston. Dr. Knut Seeber and the late Dr. H. E.
Hollman of Dresser Electronics, SIE Division made major contributions. Raymond O. Smith,
Pauls. Lederer, and Dr. Hansjorg Oser of the National Bureau of Standards and Dr. Henry
L. Mason, formerly of the National Bureau of Standards and now of the Veterans Adminis-
tration, assisted materially with critical review, comments, and suggestions.

In order to calibrate and use dynamic pressure transducers, the practicing engineer needs
to be familiar with (1) the characteristic differential equations and their solutions, (2) the

methods of analyzing pairs of input and output functions to determine the transfer function

and the frequency response curve, (3) the methods of generating precise input functions, and
(4) the specific methods for using precise experimental measurements to determine the dynamic
characteristics of a particular pressure transducer. The first two of these topics are covered
in chapters 1 through 4, and the last two are covered in chapters 5 through 7.

Chapters 1 through 4 include an introduction to pressure transducer calibration, the

characteristic differential equation, analytical methods of analysis for both linear and nonlinear

transducers, and approximate methods of analysis for both linear and nonlinear transducers.

Chapters 5 through 7 cover the description of many types of input function generators, the

theory of calibration with each generator, the design of the calibration system, and the specific

methods for evaluating the calibration data. Chapter 8 is devoted to a discussion of the

applications and limitations of the electronic compensator, a device designed to compute
the input function directly from the transducer output.

Arnold Wexler, Chiej,

Mechanical Instruments Section.
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when a given function such as /(<) is trans-
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1. INTRODUCTION
L. C. Eichberger ' and J. L. Schweppe ^

1. General

1.1. Statement of Objectives

The purpose of this pubHcation is to provide
assistance to the practicing engineer who is faced

with the problem of making dynamic measure-
ments of rapidly changing pressures. This chapter

and the chapters which follow cover the mathe-
matical models for transducers, the methods of

analyzing pairs of input and output functions to

determine the transfer function and the frequency
response curve, the methods of generating precise

input functions, and the specific methods for

using precise experimental measurements to de-

termine the dynamic characteristics of a pressure

transducer.

The specific objectives of Chaper 1 are to

introduce (1) the types and characteristics of

pressure transducers, and (2) the concepts of

calibration and analysis.

1.2. Background

The missile and space vehicle programs have
brought about a need for precise measurements of

rapidly changing pressures. Along with this

need for high precision and response, there is an
associated need for improved calibration tech-

niques. As a result, both experimental and
analytical methods have evolved rapidly.

For some time the frequency-response concept
has been established in the electronic and servo
fields. It is therefore a natiiral development for

this concept to be applied to pressure transducers,

which are components in electronic systems.
This development has been accelerated by the
increasing application of transform methods such
as Fourier and Laplace. The frequency-response
concept and the use of mathematical methods are

introduced in this chapter.

2. Pressure Transducers

A pressure transducer is an electromechanical
device through which an input pressure signal is

converted to an output electrical signal. In
most pressure transducers the pressure force causes
the displacement of a spring. This displacement
produces a change in some electrical property
which in turn is measured by an appropriate
electrical system. The electrical property of the

transducer is most commonly the resistance of a

potentiometer, the resistance of a bonded or

unbonded strain gage, the capacitance between
two plates, the inductance of a coil, or the piezo-

electric property of a crystal. Depending on the

physical combination of parts, any one of these

gages may either approach a simple oscillator

having one natural frequency, or it may have a

combination of frequencies. And it may have a

linear or nonlinear response to the input signal.

Some good general references on pressure trans-

ducers are Hernandez [1] ^, Borden and Mayo-
Wells [2], Lion [3], and Roberts [4].

2.1. Types of Pressure Transducers

The potentiometric transducer utilizes a poten-
tiometer circuit in which the slider location is

determined by the magnitude of the pressure force,

' Assistant Professor of Mechanical Engineering, The University of
Houston; Technical Staff, Houston Engineering Research Corporation.

2 Professor of Mechanical Engineering, The Universitj' of Houston; Presi-
dent, Houston Engineering Research Corporation.

3 Figures in brackets indicate the literature references on page 9.

figure l.l. A multiplying linkage is used between
the slider and the force-summing member to mini-

mize the required movement of the latter part.

The many moving parts make friction, vibration,

and inertia substantial problems; and, although

these transducers are carefuUy designed to reduce

the effects of friction and vibration, they do not

respond well to high rates of pressure change.

However, because a high-output a-c or d-c signal

may be obtained without use of an amplifier, the

potentiometric transducer is widely used for meas-

uring static and low-rate-of-change pressures.

The strain gage transducer system measures the

pressure through its effect on a bonded or un-

bonded strained element in the transducer. In

the example shown in figure L2, the strain gages

are bonded to a cylindrical strain tube which is

compressed when pressure is applied. A flush

catenary diaphragm separates the transducer com-

ponents from the pressure region and transmits

the pressure to the strain tube. Two strain gages

are bonded, one longitudinally and one circum-

ferentially, to the outside of the tube to form the

two active arms of a Wheatstone bridge. Two
inactive precision resistors and a precision poten-

tiometer are added externally to complete the

bridge. The unbonded strain gage transducer

utilizes the gage directly as the strained element.

That is, no element comparable to the strain tube

of figure 1.2 is used. For further details see

Hernandez [1].

1
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Figure 1.1. Potentiometric pressure transducer.

(a) Photograph and typical dimensions
(Reproduced by courtesy of Fairchild Controls Corporation)

(b) Schematic diagram

Figure 1.3 shows one example of the unbonded
strain gage transducer. Bonded and unbonded
gages are available from a number of manufac-
turers and both may be used to measure either
static or dynamic pressures.

Still another strain gage system measures pres-
sure through its effect on the resistivity of a
semiconductor crystal. In this system the crystal
functions both as the strained element and the
measuring element. The crystal is mounted
between a fixed plane and a diaphragm which
separates the components from the pressure region.
The piezoresistive transducer has a gage factor of
the order of magnitude of 150 compared to 2 to 4
for a conventional strain gage [5].

The capacitive transducer system measures the
pressure through its effect on the electrical capaci-
tance of a movable-plate condenser. In one
system the movable-plate condenser is a part of a
very-high-frequency circuit. As the capacitance
changes, so does the impedance. Since for a fixed
position of the movable plate the impedance is

constant, the capacitive transducer system can be
used for either static or dynamic pressure measure-
ments. It is important to note that the cooxial
cable which connects the transducer with the
external circuit is a part of the circuit whose imped-
ance change is an analog of pressure. Therefore

Figure 1.2. Bonded strain gage pressure transducer.

(Reproduced by courtesy of Norwood Controls Unit of Detroit Controls
Corporation)

(a) Photograph with enlarged view of disassembled pickup
(b) Cross section of catenary diaphragm pressure transducer

electrical characteristics of the coaxial cable are
critical. A photograph, a dimensional drawing,
and a cross-sectional view .of a typical capacitive
transducer are shown in figure 1.4.

The inductive transducer measures the pressure
by its effect on the inductance of a coil or on the
inductance ratio of a pair of coils. In a typical

instrument the pressure force moves a diaphragm
and thereby changes the magnetic coupling
between the coils, figure 1.5. The inductive
transducer has the advantages that it can be used
for static or dynamic measurements and that it

has a high output and high signal-to-noise ratio.

But it is influenced by stray magnetic fields and
it has a low useful frequency range in the order

of 500 c/s.

The piezoelectric transducer system measures
the pressure through its effect on a piezoelectric

material. When the crystal is distorted by the

pressure force, an electric charge is generated.

The amount of this charge, which is a function of

the pressure force, is measured with an electrom-

eter. Since the electric charge leaks off, the

piezoelectric transducer is inherently a transient

device and cannot be used for static measurements.
A photograph and a cross-sectional view are shown
in figure 1.6.
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Figure 1.3. Unbonded strain gage pressure transducer.

(Reproduced by courtesy of Transducer Division, Consolidated Electro-
dynamics.)

(a) Photograph
(b) Typical dimensions
(c) Wiring diagram

Figure 1.5. Inductive pressure transducer.

(Reproduced by courtesy of Astromies Division of Mitchell Camera
Corporation.)

(a) Internal view and typical dimensions
(b) Circuit diagram

INNEFi DIAPHRAGM

WATER PASSAGE

-COIL ASSEMBLY

- INSULATOR ASSEMBLY

COPPER GASKET

STACKED CRYSTAL

CRYSTAL UNIT

CLAMP NUT
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Figure 1.4. Typical capacitive transducer.

(a) Photograph and typical dimensions
(Reproduced by courtesy of Photocon Research Products.)

(b) Cross-sectional view

Figure 1.6. Piezoelectric pressure transducer.

(a) Photograph and tvpical dimensions
(Reproduced by courtesy of Kistler Instruments Corporation.)

(b) Cross section
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2.2. Physical Characteristics of Transducers

The above descriptions of several types of

transducers show the similarities and the differ-

ences in physical characteristics. First, each
transducer must have certain major parts. These
include an active or sensing element, a body to

hold the active element in place in the wall of the

pressure region, a diaphragm or other device to

separate the components from the pressure region

and to transmit the pressure force to the sensing

element, and an electrical means of removing the
output signal from the transducer. The signal

output may be through a simple transmission line

or a rather complicated electronic device such as

a carrier bridge.

A simple or "ideal" transducer would have a

linear response to the input pressure signal, and
it would have a single degree of freedom. That is,

the oscillatory movement would be limited to a

direction parallel to the line of action of the applied

force. Also, the "ideal" transducer would deflect

little when the input pressure is applied, but would
generate a substantial output signal.

A real transducer may have a response which
approaches the ideal linear response to the input
signal, but it will have more than one mode of

oscillation. The number of additional modes and
their importance depend on the particular trans-

ducer. In the analysis which follows, it will be
assumed that the pressure input is applied directly

to the diaphragm. That is, cavity effects will not
be included. Also, it will be assumed that the

///////////////

c

f(t)

Figure 1.7. Single-degree-of-freedom vibrating system.

(a) Mechanical model
(b) Free-body diagram
(c) Electrical force-voltage analog

body of the transducer is rigid—or that it has a
natural frequency so far above the operating
frequency that it need not be considered.

For each transducer, then, two parts are con-
sidered in the synthesis of the mechanical model.
They are the sensing element and the diaphragm
and, in many cases, the electrical equipment
required to complete the energy transformation to

the voltage or current analog. Each of these
parts will have one or more modes of oscillation,

with associated spring constants and damping
factors. Mechanical models for several typical

transducers are synthesized in the next section.

It should be noted that such mechanical models
do not always completely describe the transducer,

but that often one or more additional electrical

modes of oscillation need to be indicated. The
mathematical treatment need not distinguish

between mechanical and electrical resonances.

2.3. Mechanical Models

A mechanical model idealizes a vibrating system.
The model consists of at least one inertial mass,
a spring, a viscous resistance, and an external

driving or exciting force. For the ideal transducer
the spring force and the viscous resistance are

linear, i.e., the spring force is directly proportional
to the change in length and the viscous resistance

is directly proportional to the velocity. Non-
linearity results if the spring force or the viscous

resistance, or both, are nonlinear. The arrange-
ment and number of components establish the
number of degrees of freedom for the model, i.e.,

the minimum number of coordinates necessary to

specify the configuration of the vibrating system
at any time [6, 7].

A single-degree-of-freedom vibrating system can
be idealized by the mechanical model shown in

figure 1.7a. The characteristics of the capacitive

and piezoelectric transducers are approximated by
this model. For these transducers the response,

or output, is normally dependent upon one of two
masses: the mass of the sensing element, or the

mass of the diaphragm. In the capacitive trans-

ducer the moving mass in the sensing element
(air) is negligible compared to the mass of the

diaphragm (active, or movable plate of the capaci-

tor). In the piezoelectric transducer the mass of

the diaphragm normally is negligible compared
to the mass of the sensing element.
A two-degree-of-freedom vibrating system can

be idealized by the mechanical model shown in

figure 1.8a. Lederer and Smith of the National
Bureau of Standards have shown that this model
is a fair approximation for the strain gage trans-

ducer shown in figure 1.2. They considered the

mass of the diaphragm to be negligible and the

mass of the strain-generating tube to respond in

two modes, a longitudinal mode and a radial mode.
In general, the synthesis of a mechanical model

must be preceded by a detailed study of the
arrangement, size, and orientation of the physical

components of a transducer. The validity of the

4



synthesis is verified by comparing the response of

the model to that of the transducer for a given
input, or external driving function.

2.4. Characteristic Differential Equations

Once the mechanical model has been established,

the characteristic differential equation which de-
scribes the motion of the system is obtained by
application of d'Alembert's principle. For the
single-degree-of-freedom vibrating system, figure

1.7b, summing the forces gives

///////////////

111

mx -\-cx-\-kx=f(t)

.

(1.1)

The damping constant, c, is the number of units
of resistive force per unit velocity of motion; the
spring constant, k, is the nimiber of units of force

required to stretch the spring a unit length; and
J(t) is the external driving force, a function of time.

Application of d'Alembert's principle to the
two-degree-of-freedom vibrating system, figure

1.8b, yields

<

t(t)

111

miXi

+

CiXi+kiXi— C2 (iz— Xi) — ^2 (iCz— Xi) = 0

"^2*2+ C2(X2—Xi)+k2(X2— x{) =f(t)

.

(1.2)

The number subscripts distinguish between like

elements.

In general the nimaber of such characteristic

second-order differential equations of motion will

agree with the number of degrees of freedom of the
vibrating system.

Figure 1.8. Two-degree-of-freedom vibrating system.

(a) Mechanical model
(b) Free-body diagram
(c) Electrical force-voltage analog

3. Transducer Calibration and Analysis

Calibration is the establishment of a known
relation or transfer function between the input or
driving function and the output or response func-
tion. This transfer function exists only if the
transducer is describable by a linear differential

equation. For a simple static calibration the
transfer function is the ratio of output to input.
For a dynamic calibration the transfer function is

normally a complex function of frequency in which
are included certain time constants. This func-
tion may be found in one of two ways: (1) If the
transducer system can be described by a charac-
teristic differential equation, the transfer function
may be obtained by analytical solution of the
equation. With this solution the response for a
given input, or the input which will produce a
given response, can be computed. Or (2) if the
characteristic differential equation is not known,
the transfer function can be obtained from knowl-
edge of a pair of associated input and output func-
tions. From this transfer function, frequency-
response curves can be computed, and these curves
can be used to determine the response for a given
input, or the input which will produce a given
response.

In the following, the reader is introduced to the

analytical solution of the characteristic differential

equations, experimental calibration methods, and
the relationship of calibration to analysis.

3.1. Methods of Analysis

Methods used for solving differential equations

of the motion of a vibrating system are dependent
on the type of these differential equations. We
shall deal here exclusively with homogeneous and
nonhomogeneous linear, second-order, differential

equations with constant coefficients.

Several methods are available to find solutions

of these equations. The oldest method, which we
shall refer to as the classical method, consists in

finding one particular solution of the nonhomogene-
ous equation and adding to it the general solution

of the homogeneous equation. The former solu-

tion is also called the steady-state solution, whereas

the latter is the transient solution, which is found,

for example, by substituting exp{rt) into the homo-
geneous equation. Calling the solutions of the

resulting equation rj and Vo, we obtain the general

solution of the homogeneous equation as

5



Ci exp(rif) + C2 exp(r2t), with arbitrary constants

Ci and C2. They are determined from the initial

conditions.

The operational methods are Laplace and
Fourier transformations, which are dealt with in

section 4 of this chapter. Both transient and
steady-state solutions are obtainable by either of

these methods.
Other methods of analysis make use of digital or

analog computers. On the digital computer the

solution is determined on a discrete set of values of

time. Because of the cost of programming high-

speed electronic computers, these machines are

economical only if many differential equations of

the same type have to be solved, or if high accuracy
is desired which is not obtainable otherwise.

However, since automatic programming is now
available for almost any computer, programming
costs have been reduced considerably.

The analog computer simulates the original dif-

ferential equation, the dependent variable usually

being a voltage which is made to satisfy the given

differential equation and the initial conditions.

It is an extremely versatile device which can also

be made to simulate many types of mathematical
nonlinearities or graphic relationships not expres-

sible in analytic form, or even to permit the in-

a

b

Figure 1.9. Associated input and output functions from
shock tube calibration of a pressure transducer.

(a) Input function (b) Output function

elusion of actual transducer components in the
simulated system. The output of the analog
computer may be a continuous curve, e.g., an
inked trace or a display on a cathode ray tube, or
it may be digital through the use of analog-to-
digital converters. Because the parameters and
variables of a problem are uniquely evidenced by
knob settings or dial readings during the solution,

the rapid scanning of parameter influence is pos-
sible. This puts the analog computer clearly

ahead of any other method if some quantitative
results with moderate accuracy are desired.

Purely mathematical methods for other types of

differential equations exist, but their discussion is

outside the scope of this treatise.

3.2. Experimental Calibration Methods

In general, the imposed input for dynamic cali-

bration may be either a nonperiodic or a periodic

function. In either case the dynamic properties

may be expressed as a plot of the instrument's

response to the input. The nonperiodic function

may be an impact of short duration which is

quickly released, or it may be a step function

which changes the pressure level from one specific

value to another in a very short tune. The
dropping ball is an example of the impact-type,

nonperiodic function generator. Step-function

generators include quick-opening devices, explosive

devices, and shock tubes. Figure 1.9 shows the

response of a typical gage to a pressure step

generated in a shock tube in the laboratory at the

National Bureau of Standards.
The ideal periodic-function generator produces

pure sine waves of controlled frequency and am-
plitude, and the frequency response cm-ves are

determined directly as they are for electronic

circuits. Satisfactory sinusoidal calibration os

microphones, a form of pressm-e transducer, if

carried out in air over a wide frequency range

but at very low amplitudes. Since accurately

known sinusoidal input functions in the form of

pressure cannot be generated in a gas at appreci-

able ampUtudes [8, 9], other waveforms describable

as the sum of a number of sinusoids are used when
tests must be conducted at pressxu-es up to 200

psia and at frequencies up to 30 kc/s. Periodic

waveforms used for transducer calibration include

repetitive impulses, square waves, sawtooth waves,

and the like. Periodic-function generators include

acoustical shock generators, rotating valves, shens,

piston-in-cylinder devices, and electrical and

mechanical oscillators. Figure 1.10 shows the

response of a typical pressiu-e transducer to a sine

wave generated by a hydrauUc oscillator [10].

3.3. Relationship of Calibration to Analysis

Even though it may be possible to describe the

characteristics of a real transducer by a simple

mechanical model and the associated differential

equation, the spring constants and damping co-

efficients still must be determined experimentally.
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Figure 1.10. Associated input and output functions from calibration of a pressure transducer with a hydraulic oscillator.

(Reproduced from [10] with permission from J. Sci. Instr., published by The Institutes of Physics and The Physical Society.)
(a) Input function (b) Response function

And, when it is impossible or impractical to

describe the characteristics of the transducer
analytically, the transfer function must be ob-
tained from a knowledge of a pair of associated
input and output functions which must be imposed
and measured experimentally.
These experimental input and output functions

are recorded as a function of time, or are expressed
in the time domain. In order to obtain the transfer

function, which is expressed in the frequency

domain, the input and output functions must be
transformed into the frequency domain. There-
fore, the method chosen for analyzing the experi-

mental input and output functions must include

this transformation. Fourier and Laplace analysis

fulfill this requirement and, at the same time, are

more efficient than methods which operate in the

tune domain. Accordingly, Fourier and Laplace

methods are used exclusively in this work.

4. Fourier Methods and Spectral Analysis

4.1. Fourier Series and Line Spectra

Any periodic function i{z) with period 27r can
be expanded into a Fourier series of the form

/(a;)=^+X) {<^n COS nz+ hn sin nz), (1.3)
^ n=l

where the Fourier coefficients a„ and are given

by
1

o„=- f{z) COS nzdz (1.4)
IT J -r

1 f""b„=- f{z) sin nz dz. (1.5)

The validity of the Fourier series oij{z), eq (1.3),

as used in engineering applications, is covered by
the Dirichlet conditions. Dirichlet proved that,

if j{z) is finite in a given interval and has a finite

number of maxima and minima in one period, the

Fourier series of /(s) is convergent, and its sum is

equal to/(2), if /(e) is continuous at the point z.

If j{z) is discontinuous at the point z, then the
Fourier series will converge to the average value
of f{z) at tliis point. Immediately near and on
both sides of the discontinuity, the Fourier series

overshoots the function /(s). The amount of the
overshoot is about 9 percent of the jump, so the

Fourier series approximation is not very satisfac-

tory for points very near to the discontinuity [11].

In most engineering appfications, a function of

time is given, and eqs (1.3), (1.4), and (1.5) must
be modified. If T is the period in time of the

given function /(O, then z= (2Tr/ T) t==ut, since

z is the argument of the sine and cosine function

and must be an angle. The circular frequency, w,

wiU always have the value of 2ir/T. Therefore

y(i)=^+Xi (an cos nu:t+ bn sin nwt), (1.6)

where, for 71= (0, 1, 2, . . .)

T/2

j{t) cos n(j}t dt (1.7)

-TI2

6„=4 J{t) smnwtdt. (1.8)

Equation (1.6) can also be expressed in an

alternate form:

/(^)=?+Z: c„ cos (nco^-^J (1.9)
n = l

where
,

c„=v^7+^ (1-10)

and
^=tan-' {bja„). (1.11)



0 To T

1.905 ATp

1.652 ATp

Figure 1.11. Characteristic spectral plots.

(a) Harmonic amplitude line spectrum
(b) Eelatlve frequency distribution for a single rectangular pulse

Still another alternate form of the Fourier series

is the complex exponential form which is used to

introduce the Fourier integral and Fourier trans-

form. This form is obtained by substituting the

exponential equivalents of the sine and cosine

terms into eq (1.3). Expanding, collecting like

terms, and writing the results in a symmetrical
form yields

where
re = — 00

1 rT/2

-t J -T/2

(1.12)

(1.13)

Spectral analysis has evolved from Fourier
analysis solutions [12]. A plot of c„ or from
the Fourier series representation of f{t), eq (1.9),

as ordinate and nco as abscissa, consists of discrete

vertical lines and so is called a line spectrum.
Specifically, the c„ and ^„ versus nco plots are,

respectively, the harmonic-amphtude spectrum
and the phase-angle spectrum. In general, plots

of this type are called by that quantity which is

plotted against ?7co, and are a part of the family
referred to as Fourier series spectra (see fig. 1.11a).

For a more detailed discussion on Fourier series

see Pipes [13].

4.2. Fourier Transform and Continuous
Spectrum

The Fourier series is adequate to accomplish
the expansion of any periodic function satisfying

the Dirichlet conditions [11]. However, in many
problems encountered, the given function of time
is aperiodic and such a function cannot be handled
directly by the Fourier series. However, in the
limit, as the fundamental period T becomes
infinite, the series passes into an integral form
[14]. The resulting integral is called the Fourier
integral and is expressed as

fit)=j e'^^'"d<rj f(t)e-^^^'"dt (1.14)

where o- is a real variable. This representation
of J(t) is valid, provided that in every finite

interval /(i) satisfies the Dirichlet conditions and

J
00

\J(t) \dt exists.
- CO

Equation (1.14) may be written in a slightly

different form by the introduction of u=2Ta as a

new variable. With this,

f{t)=^j\^-'do^j^J{t)e-^"'dt. (1.15)

Then, eq (1.15) becomes

y(^)=^ J
V(c.)€^-"'c?co (1.16)

where

(1.17)

Equations (1.16) and (1.17) constitute what is

known as a Fourier transform pair; F{w) is called

the Fourier transform of j{t) and, conversely, j{t)

is called the inverse Fourier transform of F{o})

:

(1.18)

(1.19)

The Fourier transformation of eq (1.18) trans-

forms a function of t (in the time domain) into a

function of co (in the frequency domain). The
inverse Fourier transformation of eq (1.19) trans-

forms a function of w (in the frequency domain)
into a function of t (in the time domain)

.

4.3. Laplace Transform and Continuous
Spectrum

If a function is identically zero before some
time, say t=0, then it may be represented by the

Fourier transform pair, eqs (1.16) and (1.17), if the

lower limit of F(co) is changed from — oo to 0 [16].
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/(i)==l- J *°F(co)e^'-'(/co (1.16)

F(c^)=j^ fit)e-^-'dt. (1.20)

Equations (1.16) and (1.20) are knoAvn as the

unilateral Foiirier transform.

In contrast to the line spectra concept from the

Fourier series anah'sis of periodic functions,

Fourier integral analysis of aperiodic functions

yields a continuous amplitude spectrum. This
transform, when applied to a single rectangular

pulse, yields the spectrum of figure 1.11b.

Equations (1.16) and (1.20) are meaningless if

the integral F{u)) does not exist. A sufficient con-

dition for the existence of F(co) is that f{t) be

absolutely integrable, i.e., that
j:

f(t) \dt exists.

There are cases where f(t) is not absolutely inte-

grable, but still represents a physically well-behaved

stimulus. Examples are the step function and
sin ut. For this reason there is a need for an
extended definition of the transforms which jaelds

F(a)) whenever that integral exists, and also gives

a meaningful answer for some other cases of physi-

cal interest.

If for t tending towards infinity, f(t) remains
finite or tends to infinity at a rate less rapid than

then j^^lM^'"'. dt exists for aU cr>6.

Under these conditions the transforms (1.16) and
(1.20) can be considered for the function g{t)=
fit)e~''\ where g{t) is the modified function and
f{t) is the function of actual interest. Applying
the unilateral Fourier transform

27r J_
6{w)e^"'dc^

g(t)e"=M=~ 0{o>)e''+'''''dw

J -co Jo

In these equations let s=(7-\-jo: and ds=j du.
Since s is a function of u, 6(co) can be replaced bv

^(s)=J^ J(t)e-"dt. (1.22)

Equations (1.21) and (1.22) are the Laplace
transform pair. The function F(.s) is knowm as
the Laplace transform of/(<), and the integral for
f{t) is known as the complex inversion integral:

Fis)= X[f{t)]

f{t)= £-\F{s)].

(1.23)

(1-24)

The Laplace transform, therefore, is a special case
of the unilateral Fourier transform, expressed
symbolically as

xuit)]=m(t)e-''].

That is, the Laplace transform is identical with
the unilateral Fourier transform of the same
function multiplied by a convergence factor. Ap-
plications of both of these transforms are discussed
in chapters 2 and 3.
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2. Analytic Methods for Linear Transducers

L. C. Eichberger '

In this chapter the reader is intioduced to the procedural steps of analytical analysis.

These steps are applied to a hnear tiansducer which, for simplicity, is assumed to be a single-

degree-of-freedom system represented by the mechanical model shown in figure 1.7a. The
characteristic differential equation of motion foi this system is given by eq (1.1). Response
functions for the system are obtained for a given input function by both the classical and
the operational methods of analysis. The periodic (sine, square wave, and rectangular pulse)

and aperiodic (rectangular pulse and step) functions are the input functions considered.
These functions represent the idealized inputs used in experimental dynamic calibration,

as discussed in the later chapters of this work.

1. Input, Output, and Transfer Function Relations

1.1. Direct Input-Output Relation in the

Time Domain

It is assumed that the characteristic differential

equation of motion for the transducer is Imown,
and that the input function / (periodic or aperi-

odic) can be expressed analytically as a function
of time, J{t). Then the general solution, or re-

sponse function, x{t), of the differential equation
of motion can be obtained through the application

of the classical method of analysis. The response
function consists of a complementary function or

transient solution, and a particular integral or

steady-state solution. This operation is illustrated

systematically in figure 2.1 by the path ABC in

the time domain. The differential equation in

this operation acts as a transfer function.

In the actual calculation of a response function
as indicated above, it will be found that the classi-

cal method of analysis is more adaptable to the
periodic class of input functions than the aperiodic
class. Most periodic functions encountered in

transducer analysis will satisfy the Dirichlet con-
ditions [1] ^ and, therefore, can be approximated
by a Fourier series. Standard solutions are readily

available for the sine and cosine terms contained
in the series, and by the principle of superposition

the particular integral is readily obtained.

Aperiodic functions are readily treated by the

Laplace transformation. This method transforms
a given function in the time domain to one in the

domain of the complex variable s=a-\-jco, where
0) is a real frequency. When an aperiodic input
function and the associated differential equation
are known analytically, then the entire equation
is transformed to the frequency domain as an alge-

braic equation. The Laplace transform of the
solution is obtained from this equation and the

> Assistant Professor of Mechanical Engineering, The University of
Houston; Technical StaflE, Houston Engineering Research Corporation.

' Figures in brackets indicate the literature references on p. 28.

inverse transform of this expression yields the

required response function.

On the other hand, if the response function has

been expressed analytically and the characteristic

differential equation of motion is known, the input

function can in theory be determined by substi-

tuting the response function into the differential

equation. In fact, only the particular integral

part of the response function need be used, since

r"

_j

-I

Time Domoin Frequency Domain 1

INPUT FUNCTION

INPUT SPECTRUM

AyPLITUOE PHASE ANGLE

PHASE ANGLE

THANSFEfi FUNCTION

AMPLITUDE

XM
PHASE ANGLE

(Dl RESPONSE SPECTRuy

I I J

Figure 2. 1 . Routes of analysis.
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the complementary function is the solution of the

homogeneous part of the differential equation,

i.e., when/(0 is zero. This op(-ration is illustrated

in figure 2.1 by the path CBA.

1.2. Transformation From Time to Frequency
Domain

With reference to figure 2.1, both the input
function, f{t), and the response function, x{t),

can be transformed from the time to frequency
domain, respectively indicated by the paths from
A io F and C to Z>. The transformed input
function and response function are denoted as the
input and response spectrum, respectively. Both
spectra consist of two distinct parts, an amplitude
and a phase angle. The input and response
functions are related by a transfer function which
also consists of an amplitude and a phase angle.

If the input function is periodic and satisfies the
Dirichlet conditions, then it can be represented
by a Fourier series. When the Fourier series is

expressed in the form shown in eq (1.9), the
amplitude F{u)) and the phase angle ip{u>) are

given by the combined Fourier coefficient c„ and
the phase angle (Pn, respectively.

The response of a linear system to a periodic

input function is also periodic, and therefore can
be represented by a Fourier series similar in form
to that shown in eq (1.9), or

CO

x(0=^o+S COS {nwt—an).
n = l

The amplitude X{o}) of the response spectrum is

given by X„ and its phase angle a(w) by a„.

If the input function /(i) is periodic or aperiodic
and expressed analytically, then the input
spectrum can be obtained directly from the
Laplace transform providing that /(^) = 0 for ^<0

and the integral
J*

\f{t)e''''\dt exists. Since the

Laplace transform of the input function is a
complex number in the frequency domain, it

provides both the amplitude and phase angle of

the input spectrum. Likewise, the Laplace trans-

form of the response function provides both the
amplitude and the phase angle of the response
spectrum.

It should be noted that the phase angles are
an essential part of the frequency domain descrip-
tion for both periodic and aperiodic functions. In
the time domain, any delay of an aperiodic
function is described by the shift factor, e.g.,

mt-T,), p. 22.

1.3. Transfer Function

The transfer function plays an important role

in the analysis of a linear transducer. It allows
the characteristics of the transducer to be described
in the absence of the characteristic differential

equation of motion. The transfer function is

determined from the analytical expressions of the
input and response spectrum. This requires that
an accurate record of the response function for

a known input function be made available, so
that the response function can be expressed
analytically by the methods given in chapter 3.

Such a procedure for obtaining a response record
for a known input function is included in the
dynamic calibration of a transducer.

The transfer function is described by two sepa-
rate characteristics, figure 2.1, which are defined
as follows: the amplitude of the transfer function

Hiw)=X{o:)/F{o:) (2.1)

where X{w) and F(u) represent the amplitudes of

the response and input spectra respectively, and
the phase-angle of the transfer function

/3(a;)=a(co)-^(co), (2.2)

where, respectively, a(co) and ^(w) are the phase
angles of the response and input spectra.

Among aperiodic functions, the pulse of in-

finitely short duration, but of unit area, has
particular significance. The Laplace transform
of the response to this input is the transfer function
itself.

1.4. Input From Transfer Function and
Response Record

If the transfer function for a transducer is

known analytically, and a response record from
the transducer for an unknown input is also

known, then it is possible to determine an ex-

pression for the input function by operational

methods. The stepwise procedure is described

below:
(a) Express the response record as a function

of time, x{t).

(b) For a periodic ftmction evaluate the ampli-

tude and the phase-angle characteristics of the

response spectrum by the Fourier series. For
an aperiodic function, take the Laplace transform

of the response function, which is the frequency
response characteristic in amplitude and phase-

angle. This is step C to D, figure 2.1.

(c) Evaluate the input spectriom by eqs (2.1)

and (2.2). The amplitude and phase-angle trans-

fer functions are known for the transducer, and
the response spectrum was obtained in step (b).

This step is represented by path DEF in figure 2.1

.

(d) Finally, obtain the input function either

by the Fourier series representation, i.e., by
matching c„ and <Pn in eq (1.9), for periodic

fimctions; or by the inverse Laplace transform

for either periodic or aperiodic functions. This

operation is illustrated in figure 2.1 by step F to A.

1.5. Phase-Plane Analysis

In the course of studying dynamical expressions

which are invariant under canonical transforma-

tions, Poincare [2, 3] used the concept of a phase

space, a Cartesian space formed of coordinates

qt and pt (i=l, 2, ... n) in which the complete

dynamical specification of a mechanical system

is given by a point. Other investigators have

12



since used the phase plane (a two-dimensional

phase space) to study the behavior of linear and
nonlinear, damped and undamped dynamical
systems. The most notable among the early

papers on the graphical phase-plane method for

the determination of transient response are,

perhaps, those due to Lamoen [4, 5]. More
recently the graphical phase-plane method was
apparently rediscovered independently by Fuchs
[6], Braun [7], and Rojansky [8]. Bishop [9] has
published a comprehensive survey and Andronow
and Chaikin [10], Minorsky [11], and Kryloff and
Bogoliuboff [12] have included lengthy discussions

of phase-plane techniques in their books on
nonlinear mechanics.

In addition, Truxal [13] and Murphy [14] have
shown the application of the phase-plane method
to the analysis of servomechanisms, particularly
those characterized by nonlinear behavior. Jacob-
sen and A3a;e [15] use the method extensively in

their recent book on vibrations. The current
literature includes numerous applications to spe-

cific problems in the fields of dynamics, the design

of the circuits in electronic instruments and
servomechanisms, and transducer systems. These
include contributions by Klotter [16, 17], Magnus
[18], Gibson [19], Cosgriff [20], Bass [21], Ergin

[22], Stout [23], Jacobsen [24], and Liu [2.5].

2. Periodic Input Functions

In this section, known periodic input functions

are imposed on a hypothetical transducer for the

pm-pose of illustrating the analytical methods of

analysis presented in the previous section. The
order of presentation is preserved and, for simplic-

ity, a single-degree-of-freedom transducer is chosen
for analysis. The mechanical model for this

transducer is shown in figure 1.7a and its charac-
teristic differential equation is given by eq (1.1).

The inputs imposed on the transducer are the

f (t)

sine, square wave, and rectangular pulse functions.
The analysis for the sine function is presented in
detaU, whereas only the results and pertinent
details are given for the square wave and rectan-
gular pulse function.

2.1. Sine Function

a. Direct Input-Output Relation in the Time Domain

The sine input function is shown in figure 2.2a,

f (f)

f (f)

I I

T Tp+ T

kf(t)

F

d

Figure 2.2. Periodic and aperiodic input functions.

(a) Sine function
(b) Square wave function

(c) Rectangular pulse train
(d) Step function
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and is expressed by

f{t) =F sin wt (2.3)

where w is the circular frequency in radians per

unit time.

The characteristic differential equation of mo-
tion for a single-degree-of-freedom transducer,

eq (1.1), becomes

mx-\-cx-\-kx=F sin ut. (2.4)

The transient solution (complementary function)

is obtained from the homogenous part of this

equation, i.e.,

mx-\-cx-\-kx—0. (2.5)

The standard solution to a differential equation

of this type is

Xt=Cie'i'-\-C2e'2* (2.6)

where Ci and C2 are arbitrary constants and Vi

and r2 are the two roots of the auxiliary equation

Solution of eq (2.7) gives two roots

ri
=—c/2m+ Vc74 ^— ^/

w

(2.7)

(2.8)

(2.9)

Since m, c, and k are always positive, the type
of root obtained is dependent upon the evaluation

of the radical. If the radical in eqs (2.8) and
(2.9) is positive, the motion given by eq (2.6)

is of a gradually subsiding nature. If the radical

is negative, the roots are complex numbers and
the motion given by eq (2.6) is of a fluctuating

nature. The limiting case is when the radical

is equal to zero, for which c^=4:km. This value
of c is called the critical damping Cc and is given by

Cc=2-\Jkm=2'mo}n (2.10)

where co„=V^7m is the natural circular frequency.
The dimensionless ratio c/Cc is called the relative

damping ratio f and is given by

(2.11)

When f>l, the damping is called supercritical,

and when f<l, the damping is called subcritical.

Since for practical transducers f<l, it is more
convenient to Mo-ite eqs (2.8) and (2.9) in the form

Then, eq (2.6) becomes for f<l

By introducing new arbitrary constants A and B,
defined by

C,=AI2+Bl2j

a=A/2-B/2j,

and, using the exponential equivalents for the
sine and cosine functions

sm X-

cos x=

2i

eq (2.12) becomes

x,=e-(''n'{A cosVl-fW+5 sinVl-fW},

(KD
which may be written more conveniently in the
form

x,=Xoe-^'^n' cos {Vl-rW-^ol (KD- (2.13)

The constants Xq and <po can be evaluated at the
initial conditions.

The stea-dy-state solution (particular integral)

is obtained by using the complete differential eq
(2.4). For input functions which can be ex-

pressed in terms of sine and cosine functions, the

steady-state solution is taken to be of the form

X5=Csin coi+Z? cos o^t, (2.14)

where C and D are arbitrary constants. Succes-
sive differentiation of eq (2.14) gives

Xs=^Cw cos cot—Do) sin wt (2.15)

Xs=—Cui^ sin wt—DoP' cos wt. (2.16)

Substituting eqs (2.14), (2.15), and (2.16) into

eq (2.4) and collecting like terms yields

mw^)Csin wi+ (t— ww^)D cos coi

—cwD sin wt-j-cwC cos o:t=Fsin wt. (2.17)

Equating coefficients of like terms in eq (2.17)

gives
{k-mw')C-cwD=F (2.18)

cwC+{k-mw^)D=0. (2.19)

Solving eqs (2.18) and (2.19) simultaneously

14



yields

C=

D-
(/t-mo;2)2+c2-.2

and eq (2.14) becomes

[{k—mo}^) sin co^—cwcos ut].

After normalizing the bracketed expression to give

sin a and cos a, this may be written more con-
venietitly in the form

where

md

Xs=X cos (cat—a)

X

(2.20)

(2.21)
V(Ar-mw=')2+cV

a=arc tan (^^^)- (2.22)

Therefore, the required response function (general

solution) is given by

or

X=-X'o«~^'*'"' cos (Vl--pw„<—<^o)+^ cos (w<— a)

(2.23)

where JY'o and <po are constants of integration which
can be evaluated at the initial conditions; and
X and a are given by eqs (2.21) and (2.22).

To obtain the input function when the char-
acteristic differential equation of motion and the
response function are known analytically, sub-
stitute the steady-state solution, eq (2.20), into

the original differential equation of motion, eq
(1.1), and solve for /(<).

b. Transformation From Time to Frequency Domain

The transformation of the input and response
functions from the time to the frequency domain
requires that these functions be expressed as

functions of time. Let us find the spectrum for

the input function Fsin oit. Since this is a periodic

function of time, it can be represented by a Fourier
series of the form given in eq (1.9), i.e.

i^sin (d= Ci cos {wt— (pi) (2.24)

Expandhig the right hand side of eq (2.24) by the
function for the sum of angles yields

F sin u}t= Ci cos oit cos (^i+Ci sin cat sin <pi,

and the equation is satisfied if Ci=F and <pi=Tr/2.

Therefore, the input spectrum for F sin is

and
Fico)=c„=F

<p(w)=^„= 7r/2

(2.25)

(2.26)

where F(u) and (p(ui) are the amplitude and phase
angle of the input spectrum, respectively, and we
see that both are constant for any value of w.

The spectrum for the response function given
by eq (2.23) is evaluated by the same procedure
used for the input spectrum. However, to evalu-
ate the response spectrum, only the steady-state
solution of the response function need be consid-

ered. The steady-state solution of eq (2.23) is a

periodic function of time and has a Fourier series

representation of the form given in eq (1.9).

Therefore,

.X^ cos (it}t
— a)=Ci COS (wt— (pi).

By inspection X=Ci and a=<pi. Then, the
response spectrum is

and
X{u:)=c„=X,

where X and a are given by eqs (2.21) and (2.22)

respectively. Therefore the ampHtude of the

response function becomes

X(a,) =

F
V(A:-maj2)2+cV

and the phase angle

a(w)= arc tan
/k—mui^\

\ —ceo /

(2.27)

(2.28)

c. Transfer Function

The transfer function defined by eqs (2.1) and
(2.2) is obtained from the input and response

spectra. Making use of the input spectra of eqs

(2.25) and (2.26), and the response spectra of

eqs (2.27) and (2.28), eqs (2.1) and (2.2) become

and
V(yt-/nco^)2+cV

(2.29)

^(co) -arc tan (^3^')-7r/2 (2.30)

where H{w) and 0(a), respectively, are the ampli-

tude and phase-angle of the transfer function.

d. Input From Transfer Function and Response Record

Determining an expression for the input function

when the transfer function and the response record

are known requires that the response record be

expressible as a function of time. From the pre-

vious results the spectrimi for the response func-

tion, eq (2.23), is given by eqs (2.27) and (2.28).
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The transfer function is given by eqs (2.29) and
(2.30). Equations (2.1) and (2.2) yield

and
F{<^) = X{<^)IH{o=)=F=c,

(p(w) =a(co) — )3(co) =7r/2= ^i.

Since a periodic response must be the result of a

periodic input, the input function can be repre-

sented by a Fourier series of the form of eq (1.9),

j{t)=Ci cos {o)t—<Pi)

where

cos (ojf— (pi)= cos (wf— 7r/2)= sin cot.

Therefore

f{t) =F sin uf.

This agrees with eq (2.3).

2.2. Square Wave Function

The square wave function, shown in figure 2.2b,

is represented in the time domain for one complete
period by

f{t) = -F for -T/2<:t<0 (2.31)

f{t)=F for 0<t<T/2. (2.32)

The given square wave, being periodic and piece-

wise continuous, can be approximated by a Fourier
series. Since the waveform is an odd function of

t, no cosine terms can be present in the series, i.e.,

a„ in eq (1.6) must be zero. Therefore, it is only
necessary to evaluate b„, the Fourier coefficient of

sin ncjot. By eq (1.8)

F) sin nut dt
T/2

rT/2 AW
+2/T Fsmnwtdt=—^{l-cosn(oT/2]-

Jo ncol

Hence, the Fourier series representation for the
square wave function described bv eqs (2.31) and
(2.32) is

/(0=-^S -
( 1—cos^^ ) sin nw^. (2.33)

The circular frequency w is equal to 2-k\T and
cos W7r=l for n even; therefore eq (2.33) becomes

AF 1
^(0=— S - sin wcof, for w odd. (2.34)

a. Direct Input-Output Relation in the Time Domain

Substituting the Fourier series representation
for the square wave driving function, eq (2.34),
the differential equation of motion, eq (1.1),

becomes

A.F 1
mx-\-czAr^^=— S - sin ncoi, for n odd. (2.35)

K n

The transient solution of eq (2.35) is identical to

the solution of eq (2.5), and is given by eq (2.13).

The steady-state solution is obtained by assuming
the solution to take the form of

a;,,=Xl (C« sin ncoi+Z>,, cos moO- (2.36)

The procedure for evaluating the constants C„
and Dn is the same as that presented in section
2.1 for the sine function. This procedure yields

n _ \^F{k—n^m(jp') » ,

Cn— TTi 2 ON 2 I
s~o s^' lor n odd;

^ 4Fnc(jo

" mr[{k—n'^mu^y-{-n'c^w^

Therefore, eq (2.36) becomes

4:F^ 1

for n odd.

r,, 2 2\2 I 2 2 21 [{k—n^mo}^) sinwa;^

—ncoi cos no}t], for n odd,

which may be written more conveniently in the
form

Xs=Xl cos (r-wi— a„), for n odd (2.37)

where

and

4F

k—rt^mw^^
a„=^arc tan

/k—rrmw^X
\ —new )

(2.38)

(2.39)

Therefore, the response function of eq (2.35) is

x=X^e cos (Vl— Wti^— «Po)

-fy^ Xn cos (na}t—a„), for n odd. (2.40)

The constants Xo and <po are evaluated from a
set of initial conditions, and Xn and a„ are given
by eqs (2.38) and (2.39) respectively.

To obtain the input function when the charac-
teristic differential equation of motion and the
response function are known analytically, substi-

tute the steady-state solution of eq (2.40) into the
original differential equation of motion, eq (1.1),

and solve iorfit).

b. Transformation From Time to Frequency Domain

As shown for the sine function, section 2.1, the
input spectrum of a periodic function is obtained
directly when c„ and (p„ of eq (1.9) are known for

the input function. Therefore, rewriting eq (2.34)
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with 03=2ttIT and sin «,co<=cos {nwt—Tr/2) yields

(no)t—^' for 7?, odd. (2.41)fit)=^-^ cos
no^T

Comparing eq (2.41) to eq (1.9), shows that

and

,=c„, for n odd

Therefore, the amplitude of the input spectrum is

8F
F(u))=Cn=— forw odd

and the phase angle is

<p{ui)=(Pn
IT

(2.42)

(2.43)

Similarly, the response spectrum can be evalu-

ated when c„ and (p„ of eq (1.9) are known for the

response function. These quantities are readily

obtained by equating eq (2.37) to eq (1.9), where
by inspection

and
a„=(p„.

Therefore, the amplitude of the response spectrum
is given by eq (2.38) with cc=2w/T, or

X(co)=c„=
8F

-> for n odd

(2.44)

and the phase angle of the response spectrum is

given by eq (2.39), or

(J^ ^2 ^2\

)' for n odd. (2.45)
—new J

c. Transfer Function

The amplitude of the transfer function H(iS) is

obtained by substituting the amplitude of the
input spectrum 7^(co) and the response spectrum
X(w) into eq (2.1). These quantities are given,

respectively, by eqs (2.42) and (2.44). Therefore,
the amplitude transfer function, eq (2.1), becomes

The phase angle of the transfer function ;8(co) is

defined by eq (2.2), where ^„ and a„ are given by
eqs (2.43) and (2.45), respectively. Therefore,
eq (2.2) becomes

^(ca))=arc tan 0^—^ raw
with «, odd. (2,

\ —nwc / 2
47)

d. Input From Transfer Function and Response Record

The input function can be described by a
thorough knowledge of the input spectrum. The
input spectrum is obtainable from eqs (2.1) and
(2.2). Using the response spectrum described by
eqs (2.44) and (2.45), and the transfer function
given by eqs (2.46) and (2.47), the amplitude of
the input spectrum is

%F
F{w) =^^^' for n odd

and the phase angle of the input spectrum is

<p{(i))=ir/2.

Therefore, since a periodic response is the result

of a periodic input, the input function can be
represented by a Fourier series of the form similar

to that of eq (1.9), where

and
Cn=Fiw)

The input function then becomes

/(0=S ^j;^^^^ (ncof—7r/2), for n odd

or
^F 1

i{t)=— y2, - sin noit, for n odd

which agrees with eq (2.34).

2.3. Rectangular Pulse Train

The train of rectangular pulses to be analyzed is

shown in figure 2.2c, with period T taken to lie

between — T/2 and T/2. Therefore, one complete
period can be represented in the time domain by

f{t) = 0 for -r/2<K0 (2.48)

M-FiovO<t<T, (2.49)

/(0=0 for T,<t<T/2. (2.50)

The Fourier series representation for this

pulse train is obtainable by the evaluation of

an and 6„ given by eqs (1.7) and (1.8), respec-

tively. These equations yield

2F
nwT

sin nwT„

Hiw)= l/^/ik-n'mw')^+nW,ioTnodd. (2.46) and

bn=-^^ (cos nuTp—l).

(2.51)

(2.52)

For n=0, eq (2.51) becomes indeterminate.

However, application of I'Hospital's rule jdelds

2FTr,
(2.53)
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Therefore, the Fourier series, eq (1.6), for the

period rectangular pulse train described by eqs

(2.48), (2.49), and (2.50) yields

FT 2F °° ri
fit) =—Fi^^—7rS - sin nwTp cos nut

1 oil n = l

—- (cosncoTp— 1) sinnojfl
n J

which may be written more conveniently in the

form

J{t)=-7r+TjCnCOsino>t-cp„) (2.54)

where

c«=^^^Vl-cos noiTp (2.55)

and

tPn—QXC tan (
—

-.

TfT-^ )• (2.56)

Note that the average value FTj,lT is really part
of the spectrum, and may be viewed as an "ampli-
tude" at zero frequency.

a. Direct Input-Output Relation in the Time Domain

The differential equation of motion, eq (1.1),

for the given rectangular pulse train input is

CD

mx-\-cx-^kx=FTj,IT-\-Y^ c„ cos {rMt—<Pn) (2.57)
n=\

where c„ and <p„ are given by eqs (2.55) and (2.56),

respectively.

The transient solution of eq (2.57) is given by
eq (2.13). The steady-state solution consists of

two distinct parts: (a) a constant term correspond-
ing to zero frequency, and (b) an oscillatory term with
nco>0. For convenience, the solution is broken
down into two problems, each considered to be
independent of the other. The first problem is

the solution of

mx+cx-^kx=FTplT, (2.58)

for which the solution is a constant, and by
inspection is

XA.. =-FTr,

The second problem is the solution of

(2.59)

Here again assume the solution of eq (2.61) to
take the form of eq (2.36). Applying the same
procedure as presented in section 2.1 for the sine
wave to evaluate C„ and Dn yields

p _2F[ncco sin nwTp— (k—n^mw'^) (cos nuTp—l)]
"~ nwT[{k-n'ma>'y-\-nW]

(2.62)
and

^ _ 2F[{k—n^mo:'^) sin ncoTp+ncwjcos nwTp—l)]
nwT[{k-n'mcoy+nW]

(2.63)

Therefore, eq (2.36) becomes

X]
'

{ [new sin nuiT>o oiTt^xn[{k-n^mo}''Y+nW]

— [k—n^mu') {cos nuTp—l)] sin nut

-\- [{k—n^mu^) sin noiTp

-\-ncw(cos nuiTp—l)] cos nut}.

This expression may be written more conveniently
in the form

a;.]„„>o=Z; X, cos {nut-ard, (2.64)

where

2V2^
^ nuT V(^-i

-COS nuT^

n^m,u^y-\-n^c^(j}^
(2.65)

and

a„=arc tan

^vcoi sin nuTp— (k—n^mu^) (cos nuTp—1)

( {k—n^moo'^) sin nwTp-'rncuicos nuTp

(2.66)

By the principle of superposition, the steady
solution for eq (2.61) is

or
FT

X, COS {nut-aj (2.67)
kT '

t^i

where Xn and a„ are given, respectively, by
eqs (2.65) and (2.66). Therefore, the response

function of eq (2.61) is

mx+cx+kx=^ Cn cos {nut—^n), (2.60) x^X^e cos (Vl—f^^n^— <Po)-f

FTp
kT

where c„ and tpn are given by eqs (2.55) and (2.56),

respectively. Rewriting eq (2.60) more conveniently

2i^ " ri
mx^cx-\-kx=—pf, y] - sin nuTr, cos nutuT t^i \_n

—^ (cos ncoTp— 1) sin nut^ (2.61)

+S cos (moi-aj (2.68)
n = l

where X^ and are evaluated from the knowl-

edge of initial conditions; and, Xn and a„ are

given by eqs (2.65) and (2.66), respectively.

To obtain the input function when the character-

istic differential equation of motion and response
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function are known analytically, substitute the

steady-state response given by eq (2.67) into

the original differential equation of motion,
eq (1.1), and solve for Jit).

b. Transformation From Time to Frequency Domain

The input spectrum is completely described

by eq (2.54). The amplitude of the input spec-

trum F(u) is obtained by adding the constant
amplitude FTJT to the oscillatory amplitude
c„ as given by eq (2.55). The phase angle is

equal to cpn and is given by eq (2.56).

Similarly, the response spectrum is determined
by eq (2.67). The amplitude of the response
spectrum -X'(co) is equal to FTp/kT plus X„, where
Xn is given by eq (2.65); and the phase angle

a(u)) is equal to a„ and is given by eq (2.66).

c. Transfer Function

The transfer function for the system is given

by eqs (2.1) and (2.2). Since the amplitudes
of the input and response spectra both consist of a

constant and oscillatory part, then the amplitude
of the transfer function will also contain these

same characteristics. The amplitude H(ui) of

the transfer fimction is obtained by dividing the

constant amplitude FTp/kT and the oscillatory

amplitude of the response spectriun, eq (2.67),

respectively, by FTp/T and c„ of the input
spectrum, eq (2.54). This may be stated in

equation form as

a(w), eq (2.66), as indicated by eq (2.2).

/3(aj)=arc tan

/ncu) sin nuTp—(k—n^mio^) (cos no}Tp—l) \
Xik—n^moi^) sin tiwTp-fnew (cos nuTp—l)

)

-arc tan
/1-cosn.rA
\ sm noiTp J

d. Input From Transfer Function and Response Record

The input spectrum can be found from F(u) =
X(w)/H{u) and <p(w) = a(co)— /3(w), eqs (2.1) and
(2.2) respectively. Using a transfer function
expressed by eqs (2.69) and (2.70), and a steady-
state response characteristic expressed by eqs
(2.67) and (2.66), these relations become, re-
spectively,

and

7-,, s FTp , 2-J2F n =-
F{u>)=^+^-^ Vl-cosnwTp

1 noil
(2.71)

<p(w)= arc tan {
—

-.

)• (2.72)
\ sm nwTp /

Equations (2.71) and (2.72) are, respectively,
the amplitude and phase angle of the input
spectrum. Therefore, the input function can be
represented by a Fourier series of the form of eq
(1.9), since the response function is periodic.

Hence

J{t)=FT

or

H{oi)=r+ ^

k ^j{k-n'mu,')'+nW

C„ cos {no}t—<fin)
1 n=l

(2.73)

(2.69)

The phase angle )3(w) of the transfer fimction is

obtained by subtracting v'(w), eq (2.56), from

where c„ and are given by eqs (2.71) and (2.72),

respectively.

Equation (2.73) agrees with the original Fourier
series representation of the periodic rectangular
piilse train, eq (2.54). The constant term FTp/T
is readily obtained from a static calibration of the

system.

3. Aperiodic Input Functions

In this section aperiodic input functions are

treated in a manner similar to that given the
periodic functions in the previous section. A
single degree-of-freedom transducer which can be
represented by the mechanical model shown in

figure 1.7a and eq (1.1) is chosen for analysis.

The inputs imposed on the transducer are the

rectangular pulse and step functions. The analy-
sis illustrates the analytical methods presented
in section 1 of this chapter. For the rectangular
pulse fimction the analysis is presented in detail.

For the step function only the results and perti-

nent details are given.

3.1. Rectangular Pulse Function

a. Direct Input-Output Relation in the Time Domain

The aperiodic rectangular pulse function con-
sists of a single phase such as the first pulse shown

in figure 2.2c and is expressed as a fimction of time
by

/(O =0for«0 (2.74)

f{t)^F (or 0<t<Tp (2.75)

M=0 for t>Tp. (2.76)

Aperiodic functions are not representable by a

Fourier series and, therefore, are best treated by
the Laplace transformation, eq (1.22), which
represents time functions in terms of the complex
variable s^a+ju. Both the aperiodic input

function and the characteristic differential equa-

tion of motion are transformed to the frequency

domain.
The Laplace transform for the rectangular

pulse function described by eqs (2.74), (2.75), and
(2.76) is obtained by eq (1.22).
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F(s)=j' f(t)e-"dt

F(s)=-- Fe-"dt=-- {e-'''p-l). (2.77)
^ Jo ^

Equation (2.77) represents the Laplace transform
of the rectangular pulse function which is often

written in the form

£U(t)]=^(l-e-^^p). (2.78)
o

The characteristic differential equation of mo-
tion for the sytem under analysis is given by eq
(1.1), and is

mx+cx->rkx=f{t)

where m, c, and k are constants. Applying the
Laplace transformation to both sides of this

equation yields

X[mx+cx-\-kx]=£[J{t)]. (2.79)

Equation (2.79) can be rewritten if we recognize
that the Laplace transform of the sum of two func-
tions is equal to the sum of the transforms of the
individual functions, and that the Laplace trans-

form of a constant times a function is the constant
times the transform of the function [26, p. 161].

m £[x]+c £[x]+k X[x]= Xifit)].

Applying the differentiation theorem [27, p. 175]
and substituting eq (2.78) into the equation yields

m {s'X[x]-sx{0+) -x{0+) } +c{sX[x]-x{0+)

}

+kX[x]=- (l-e-'^'j,). (2.80)

The initial displacement of the sensing element
of the transducer is usually zero. However, if

not zero, it will have a constant displacement
which can be eliminated for the purpose of analysis
by a shift in the coordinate system. The initial

velocity of the sensing element is likewise usually
zero. In this case, a;(0+)=i;(0+)=0, and eq
(2.80) becomes

ms'X[x]+csX[x]+kX[x]=- (l-e-'^'T'). (2.81)
5

Solving eq (2.81) for X[x]

X[x]=
F{l-e-''^p)

s{ms^-\-cs-\-k)
(2.82)

The desired solution to the characteristic differen-
tial equation of motion is obtained by taking the
inverse transform of eq (2.82), i.e..

:=X ^X[x]=X ^

1^

F{1- ,-sT,

s(ms^+cs-\-k)
(2.83)

The inverse transform of most linear systems is

determined by expanding into partial fractions the

function upon which X~^ operates. The method
of partial fractions enables us to utUize tables of

Laplace transform pairs already evaluated for

our convenience. Therefore, for the purpose of

applying the method of partial fractions, eq

(2.83) may be written more conveniently in the
form

F p.
m

(2.84)

The form of the partial fraction best suited to

handle the two functions enclosed by the brackets
in eq (2.84) is given by

A{s)_\
B{s)

=1 r
b \_s—Si -S2 s—s^

(2.85)

which is restricted to functions that are rational

algebraic fractions with denominators of a higher

degree than the numerators. In eq (2.85), 6 is a

constant, and Si, S2, . . ., Sk, . . , are the roots of

B{s)=0. Equation (2.85) applies when the roots

of 5(s)=0 are all distinct, i.e., no two roots are

equal. The numerators of the partial fractions,

Ki, K2, . . ., Kk, . . . K„ are determined by

K, {(.-..) ^}^^^. (2.86)

Therefore, the partial fraction for the first term
enclosed by the brackets in eq (2.84) is obtained

as follows by inspection:

A{s)= l

B
^ \ m mJ

The roots of B{s) = Q are

si=0

V4m2

S3--

c

'2m V 4m^ m

(2.87)

(2.88)

(2.89)

The roots defined by eqs (2.88) and (2.89) are

identical to the roots ri and r2 defined by eqs (2.8)

and (2.9), respectively. Therefore, eqs (2.88)
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and (2.89) may be written in the same form as Vi and

S2=-fco„+i«„Vl-f' (2.90)

S3=-fa;„-iw„Vl-f'. (2.91)

Once the roots of B(s)=0 are established, the numerator of the partial fractions can be evalu-
ated by eq (2.86). Therefore, for k=l eq (2.86) becomes:

\ m m/_

bm

However, k/m=o}„^; therefore Ki= b/con^. For k=2, eq (2.86) becomes

s— (— fco„+ico„VlK2=b n 1

= 6 r L__ 1
Ls[s+(fco„+iwnVl^-F)]J»-»-f"n+;'-„Vl^

b
K2

f2 2ico„Vw'(-f"«+i".Vw^)

2co„n(i-f2)+jfVi-n

And, similarly, for k=3, eq (2.86) yields

Hence, the partial fraction expansion of eq (2.87) becomes

I =1- (I) =L
V m m/

s-(-rw„+ico„VT-F)]

1

2a;„^[(l-n-ifVl-n[s-(-fa>n-ia'«Vl-n]
(2.92)

Taking the inverse transform of both sides yields

1

\ m mj

where the constants Ki, K2, and K3 and the roots S2 and S3 are reintroduced for simpKcity. By
utilizing the summation and multiplication theorems [27, p. 161] this equation may be written as

X-
1

b IsJ 6 LS-S2J b is-ssj
(2.93)

\ m m/

Referring to a table of Laplace transform pairs, the inverse transforms for eq (2.93) can be shown
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to be

Therefore, eq (2.93) becomes

K,_K2 ... K.
'
b h

Introducing the expressions for K^, K2, K3, S2,

and S3, this equation becomes

J_ exp [(-fa;„+ia;„Vl-f)<]

2a,„^[(l-n+ifVW']

exp [{-^oin-jo}„^|l-^^)t]

2a;„^[(l-n-jfVW'] }

which reduces to

1

\ m m/

+-^|^sinVw"w)]-- (2.94)

The second term enclosed by the brackets in eq
(2.84) is identical to the first term multiplied by
g-'^p. For such a case the shifting theorem
[27, p. 166] apphes and

j{t-T,)U{t-T,)= £-\e-^''vF{s)].

This expression, where U{t— Tp) is defined as a
unit step occurring at Tp, shows that multiplica-
tion by a factor e~'^p simply amounts to a shift

in the independent variable from t to t— Tp.

The procedure used in evaluating the inverse
transform of the second term within the brackets
of eq (2.84)

is as follows: first perform

1

_ \ m m/_

(2.95)

and then apply the shift in t, noting that j{t— Tp)
will be zero for 0<^<rp. The inverse transform
of eq (2.95) is given by eq (2.94); therefore,
applying the shift in t yields

x-r ^

\ m mJ

= ^2^1-exp ([-fco„(«-r,)]

[cosVl-fV(«-rp)+

sm

where

and

VwV(«-?^p)])j-t/(^-r,) (2.

C7(f-Tp)= 0for t<Jp

Uit-Tp)= 0 for >Tp.

96)

Substituting eqs (2.94) and (2.96) mto eq (2.84),

the complete solution to the characteristic

differential equation of motion, or response
function, is

x=-^2 i 1— exp (— fw„0 fcosVl—

f
Vr3p„^^J_(^l_exp [_fco„(i-T,)]sm

[
cosVl-r'w„(f-T,)-f

sm^Jl-^'wn{t-Tp)'J)U{t-Tp)y• (2.97)

To obtain the input function when the charac-

teristic differential equation of motion and the

response function are known analytically, sub-
stitute the response function, eq (2.97), into the

original differential equation of motion, eq (1.1),

and solve for J(t). In this analysis keep in mind
the properties of 17(1— Tp).

b. Transformation From Time to Frequency Domain

The transformation of an aperiodic function

from the time to the frequency domain is ac-

complished by use of the Laplace transform, with

s=jw. For the input function described by eqs

(2.74), (2.73), and (2.76) the transformation has
already been performed and is given by eq (2.77).

For s=jw, eq (2.77) becomes

F(j.)=j^ il-e -Jo>T, (2.98)

where Fijw) is denoted as the complex input
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spectrum for real frequencies w and can be simpli-

fied as foUovps:

2F fexp 0-cor,/2)-exp {-jo:Tj2y
03

[exp (-jo:Tj2)]

=(^sm ^) exp i-jo:TJ2). (2.99)

This complex number, eq (2.99), consists of two
parts: (a) an absolute value or modulus, which
is the amplitude of the input spectrum; and (b)

an argument (the coefficient of j in the exponent),
which is the phase angle. These are given,

respectively, by

F{w)=mod Fijw)=

and

2F . coT,— sm —

^

2

<p{a>)=a.TgF{j<,)=-'^-

(2.100)

(2.101)

Note that here wTp 9^ 2t because Tp is not the
period of a periodic function; therefore, co is not
fixed.

Taking the Laplace transform of the response
function, eq (2.97), results in eq (2.82). For
s=jo3, eq (2.82) becomes

X{jo3)= X[x]=.
F{1 , — juiT

jw[{k—mo}^)+jcoi]
(2.102)

where X(jw) is denoted as the complex response
spectrum. Equation (2.102) may be written in

a more convenient form by noting that

[1-exp (-jwTp)]

=i^(ja,)=(^sin ^) [exp {-j<^Tpl2)]

and

(k—mw^)-\-jca}

=V{k— mco^)2+cVexp j |^arc tan
^^_^^^2^J J"

Therefore, eq (2.102) becomes

2F
sm

X{jo>)=
V(ii:-mw2)24-cV exp[iarctan(^3^,)]

or

2F
sm

X{jo:)=

(2.103)

The amplitude of the response spectrum is given by

-X'(co)=mod X{jo))=

and the phase angle by

2F . coTp— sm —2
w 2

V(^-ma,2)2-fcV
(2.104)

a(co)=arg Z(ico)=-^-arc tan (y-^A
(2.105)

c. Transfer Function

The transfer function for the system is defined
by the relationships expressed by eqs (2.1) and
(2.2), i.e., division of the moduli and subtraction
of the arguments. The transfer function may
also be expressed in complex number form as
follows

:

where by eqs (2.99) and (2.103) the complex
transfer function becomes

V(/:-mw2)2+cV

X{exp[-iarctan(^-^)]} (2.107)

with

fl^(a;)=mod Hijoi)- (2.108)
V(F^W?+cV

/3(w)=arg fl'(jw)=— arc tan (j^ir^)' (2-109)

and

d. Input From Transfer Function and Response Record

The input function is obtained through the

knowledge of the response record and the transfer

function for the system. A response record such
as eq (2.97) has been shown to be Laplace trans-

formable and can be expressed in the frequency
domain by the substitution of s=jco into the trans-

form. This substitution results in the complex
response spectrum X(jco) given by eq (2.103). The
complex transfer function H(Jo}) has been derived in

the previous section and is given by eq (2.107).

Therefore, by eq (2.106) the complex input spec-

trum F(ju) becomes

ui

^0.,=(?fsi„f)exp(=MV)

Equation (2.110) is identical to eq (2.99) which

was shown to be derivable from eq (2.98) in
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section c, or

Taking the inverse Laplace transform of this

expression, which is readily obtainable from a

table of Laplace transform pairs and the shifting

theorem, the input function is

f(f.)=F[l-U{t-T,)] (2.111)

where Uit— Tp) has the properties previously

defined. Equation (2.111) is in full agreement
with the input described bv eqs (2.74), (2.75),

and (2.76).

The inverse Laplace transform in eq (2.116) is

identical to that given in eq (2.94). Therefore,
the response function, eq (2.116) becomes

+Vf=p
^nty^. (2.117)

When the characteristic differential equation of
motion and the response function are expressed
analytically, the input function is readily obtained
either directly by substituting the response func-
tion eq (2.117) into eq (1.1), or by the Laplace
transforms of these expressions.

•3.2. Step Function

a. Direct Input-Output Relation in the Time Domain

The step function to be analyzed is shown in

figure 2.2d and is expressed as a function of time
by

j{t)= QioYt<0 (2.112)

j{t)=Fiox 0<^< 00. (2.113)

The Laplace transformation for the step func-

tion described above is obtained through eq (1.22).

Therefore,

f{t)e-"dt

or
F

X[f{t)]=F{s)=rFe-''dt=- (2.114)
Jo s

where s is a complex number equal to cr+i".

The characteristic differential equation of motion
for the system analyzed is given by eq (1.1).

Applying the Laplace transform operator to this

equation, the form subsequently arrived at is

equivalent to eq (2.81) except for the right hand
side of eq (2.81):

where

ms'^X[x\+csX[x\+ kX[x\

X[x\=
s{ms'^-\-cs-\-k)

(2.115)

Rewriting eq (2.115) in a more convenient form,
and taking the inverse Laplace transform, yields

the response function

m
1

\ m m/

(2.116)

b. Transformation From Time to Frequency Domain

The Laplace transform of the input function is

given by eq (2.114). Fors=jco, eq (2.114) becomes

(2.118)

where F{jw) is the complex input spectrum.
Equation (2.118) may be written in a more con-
venient form as

F -J-

a;
(2.119)

with the amplitude of the input spectrum given by

i^(co)=mod F{jw)=^

and the phase angle given by

(2.120)

<p(a,)=argi^(ico)= --- (2.121)

The Laplace transform of the response function,
eq (2.117), results in the complex response spec-
trum, eq (2.115). For s=jw, eq (2.115), becomes

F
(2.122)

Equation (2.122) can be written in a more
convenient form by recognizing that

and

(k—mo}^)-\- jc(j3

-F{jo:)-
F -il

=V(^-mco2)^+cV^exp [i arc tan (^i^a)]" ^
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Therefore, eq (2.122) can be written as

F
03

V(il:-Wa;2)2+cV

rX (exp| - J g+arc tan (^I^.)]})

with

F

X{w)=mod X{jo3)
V(^-wco2)2+cV

and

(2.123)

(2.124)

Q;(w)= arg X(ia))=-^-arc tan (^z?^)'

(2.125)

and

/3(w)=arg fl'(jco)= -arc tan „\ (2. 128)

Note that the transfer function is a characteristic
of the linear transducer system and is not dependent
upon the type of excitation or input to the system.
This in part is substantiated by the fact that eq
(2.126) is identical to eq (2.107), where the
transfer function relations were derived for two
different inputs.

d. Input From Transfer Function and Response
Record

The input function is directly determined from
the complex input spectrum F{ju), which can be
obtained from eq (2.106). Tliis requires that the
complex response function X{ju) and transfer
function Hiju) be knowm analytically. For
X(jo)) and H{ju) given by eqs (2.122) and (2.126),
respectively, the complex input spectrum is

c. Transfer Function Fijo^y-

The complex transfer function HijcS) is given
by the division of F(jo:) into Xijui), where these
quantities are given by eqs (2.119) and (2.123),

respectively. This division yields

ff(i«)= 1

V(^-mco2)2+cV

X{exp[-iarctan(^:^,)]} (2.126)

with

H{w)=mod Hijo3) -

1

V(A:-mco^)=^+cV
(2.127)

By a table of Laplace transform pairs, the inverse
transform of F(jui)=F{s) is

M=F

The interpretation of this result is

Jit)= 0 for t<0

m=FioTt>0,

which is based on the property of a function which
is Laplace transformable. These resiilts agree
with, the input function described by eqs (2.112)

and (2.113).

4. Phase-Plane Method
4.1. Introduction

We introduce the concept of the phase-plane
method here, in a section concerned with linear
transducers, only to relate it to the more common
methods by which the beha\aor of linear djmamical
systems is characterized. In chapter 4, the ap-
phcation of the phase-plane method in characteriz-
ing the behavior of nonlinear transducers is dis-

cussed in detail. For linear systems (where the
principle of superposition is vahd), the classical,

direct methods of analysis are more commonly
used and the existence of a meaningfid transfer
function precludes the necessity for using the
phase-plane method. For nonhnear systems the
same transfer function does not exist; however,
the time response of certain nonhnear systems can
be determined by phase-plane techniques. Other
methods for approximating the response of non-
linear transducer systems are described in chapter

4. Here we confine ourselves to an introductory
exposition of the phase-plane method as it apphes
to linear systems.

4.2. The Phase Plane (Phase Space)

The phase plane is a two-dimensional phase
space, the coordinates of which are related in that

the one is the time derivative of the other. In

the analysis of transducer S5'stems, the appro-

priate phase-plane coordinates are the transducer

output and its first time derivative, say, q and q,

respectively.

The general concept of a phase space is well

known in physics and perhaps best known for

its application to kinetic theory of gases. In

such an application of the general concept, the

disturbed response of a dynamical system with n

degrees of freedom is characterized for time t by
the set of 2n coordinates comprising the positional

coordinates qi{i=l, 2, . . . n) and their velocities

694-211 0- 63—

3
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q^(i=l^ 2, . . . n). The qt, qi may be considered

as the coordinates of a space S of 2n dimensions

called a phase space. At time t, for each state of

the system there exists a point P with coordinates

q^)- As t is permitted to vary, the point P
describes a curve called a path or trajectory, which
characterizes a history of the system. An infinite

number of such paths exists, each determined
uniquely by specification of a single point of the

path. For a given system the totality of such
paths in the (g;, 2i) space is the phase portrait of

the system. Since each of the paths is determined
uniquely by specifying a single point, it can be
inferred that there is one and only one path
through each point of the phase space.

4.3. The Phase-Plane Method Applied to
Linear Systems

Let us consider the viscously damped, single-

degree-of-freedom system described by the linear,

second-order equation of motion

g+ 2fo;„2+ co„2g=0, (2.129)

where cj^ is the undamped natiiral frequency

(=V^7m). The state of the system at any time
is fixed by the values of q and q; for example, if

q{Q) and q{Q) are known, the solution for all time
is determined. This dependence of future

states of the system on the initial conditions can
be shown graphically in the phase plane, the {q, q)
plane. The phase portrait for the linear system
of eq (2.129) with relative damping ratio f=0.5
is shown in figure 2.3. Let us say that Pq at q'o, go

describes the initial state of the system. Then
P], P2 • • • describe successive states as t pro-
gresses. Note that time appears in the phase por-
trait only implicitly as a parameter changing
value along any path.

Clearly, there is only one path through each
point in the phase plane, since the solution of eq
(2.129) is determined uniquely by specifying both
q and g at a given instant of time. Thus, the

1.0 \

; 0.5 \ \

^
J

\°

1.0
1

a.o

1 -1.0

qO.5

H.O

hi

-1.5 ^^^^

Figure 2.3. Phase portrait of linear viscously damped
system (f= 0.5).

(Reproduced from [35] with permission from Clarendon Press)

phase portrait for the linear system is a family of
noncrossing paths describing the system behavior
after all possible initial conditions.

There are three methods for constructing the
phase portrait : by direct solution of the differential
equation, by reducing the order of the original
differential equation and solving for g as a function
of q, and by plotting the isoclines corresponding
to various slopes of the phase paths. The three
methods are described below in terms of eq (2.129)
with f=0, the equation of an undamped system,

q+ o}„\= 0. (2.130)

a. Direct Solution

The solution of eq (2.130) is given by

q{t)=^Q sin {w„t+<p) (2.131)

and the velocity by

q{t) = Qu„ cos {o:„t+(p). (2.1321

By squaring and adding eqs (2.131) and (2.132),
time is eliminated as an explicit factor and we
obtain

(2.133)

which describes the phase portrait of the system.
The paths are ellipses with axes of magnitude Q
and Q(j)„, or, normalizing the velocity, the phase-
plane coordinates are q, q/un, and the correspond-
ing phase paths are circles of radius Q. In either

case, the initial conditions specify a particular

ellipse (or circle) which characterizes the dynamic
behavior of the system.
The same procedure, that is, direct solution of

the differential equation, can be used infrequently
in the analysis of nonlinear systems. However,
this is discussed in chapter 4 where the phase-plane
method is used to describe the behavior of non-
linear transducers.

b. Solution of the Equation for g as a Function of q

In certain systems, it is simpler to pass directly,

without integration, from differential eq (2.130)

to representation on the phase plane. The pro-

cedure by which this can be accomplished is, first,

to replace the initial second-order equation by
two equivalent, first-order equations.

dq

dp

dt'
(2.134)

But eq (2.134) can be written as the following

first-order equation

:

dp

dq
=—

2

P
(2.135)

26



It can be seen that integration of eq (2.135) will

jdeld

2'+^=QS (2.136)

a solution (phase portrait) identical to that given

by eq (2.133).

c. Method of Isoclines

An approximation of the phase portrait can be
constructed by studying the slopes of the phase
paths. This approximate method is, perhaps,
most useful in the analysis of nonlinear systems
or of linear systems where integration of the

differential equation is difficvdt. The method of

isoclines offers little advantage whenever, as in

our illustrative case, separation of variables per-

mits easy integration of the equation.
For the imdamped linear system it is clear that

the slopes of the totality of paths on the phase
plane are given by eq (2.135). A locus of con-
stant slope values is termed an isocline. The
isocline corresponding to dp/dq=a can be found
from the equation

2 3

p
(2.137)

The family of isoclines determined by eq (2.137)
are straight lines passing through the origin of

the phase plane with slope — wja or, if the velocity

p is normalized, with slope — 1/a.

The path from any given point (initial state)

in the phase plane can be constructed in the
following manner. Point Po in figure 2.4 lies on
the isocline corresponding to a=1.00. The mo-
tion of the path away from Po is clockwise with
reference to the origin. The isocline adjacent to

that through Pq in a clockwise direction is that
for a= — 1.50. From Pq a directed line segment
of slope —1.25 (the average of —1.00 and —1.50)
is drawn to intersect the a= — 1.50 isocline at

{)oint Pi. From Pi the process is repeated; a new
ine segment of slope —1.75 is drawn to intersect

the a= — 2.00 isocline at point Pz. As the process

is repeated an approximation of the phase path
can be sketched by joining successive line

segments.
The exactness of the approximation to the phase

path is dependent upon the number of isoclines

used in its construction: the greater the number,
the more exact the approximation. Inherent in

this lack of exactness lies the greatest disadvantage
of the method. An important aspect of the phase
portrait for nonlinear systems is the existence of

closed paths. In some cases, with even a rela-

tively dense array of isoclines upon which to base
the construction, it is difficult to sketch accurately
the phase path in the region of the origin. Is the
path closed or is it, in fact, approaching the origin

slowly with each circuit around the origin? As a
practical consideration this deficiency is usually
more distm-bing than serious.

p

/ y'P y a--i.»o

^°J\*^ a-- 1.00

Q--Z.0O >^

a-- 1.00/
Phoio Poih - Po Pt

Figure 2.4. Construction of phase path from isoclines.

d. Application of the Phase-Plane Method to a Linear,
Viscously Damped System by Means of Oblique
Coordinates

If it is assumed that the initial conditions for

the motion described by eq (2.129) are qiO)=qo
and i{0)=po, then the solution of (2.129) for

f<l is

g=e-f cos con^/l— ^H

^Po+^ sin c.„VW^^)> (2.138)

which may be rewritten as

where

and

2=e-r«n<^ cos (co^VW'^-^), (2.139)

(2.140)

tan v'=

\w„vi—

By eq (2.140), the normalized velocity then

becomes

l=_e-ro,„' S sin (w„^^T^H-<t,+^), (2.141)

where the new phase angle ^ is defined by

tan ^= (2.142)

27



Figure 2.5. Oblique-coordinate phase plane used for
analysis of viscously damped systems.

Earlier, in the undamped case, time was eliminated

as an explicit parameter by squaring and adding
the expressions for q and g/co„. Here, if the phase
coordinates as given by eqs (2.139) and (2.141) are

squared and added, the presence of the new phase
angle ^ unduly complicates the resultant expres-

sion. However, the phase paths can be simplified

if we use an oblique phase-plane coordinate system
[15, 34].

Let q and q/un (the transducer output signal
and its first normalized time derivative) be plotted
on the oblique coordinates of figure 2.5. The
magnitude of the radius vector p is

=q'+iq/cCny+2q(qM sin ^ (2.143)

By using eqs (2.139) and (2.141) in (2.143) we
obtain

p=e-r"n<^ cos ^

=Poe-^-', (2.144)

the equation of a logarithmic spiral in polar
coordinates, which must be projected onto the
oblique axes of figure 2.5 to give q and g/co„.

It was stated earher that the time does not
appear expHcitly in the phase-plane representation
of the motion of a system; however, time is given
implicitly by the angular location of the phase
points representing successive states of the system.
In eq (2.139) the angle in the trigonometric argu-
ment is expressed in terms of the angiilar velocity

oj^^l— f2 From this it can be concluded that

the angular velocity of the phase point on the
path will have this value. Consequently, the
implied time for an angular movement of 6 radians

in the phase plane will be j== and, upon

substituting this in (2.144), the explicit equation
of the spiral phase path in the oblique coordinate
plane becomes

p=Pog-ft«f. (2.145)

Clearly, for each value of there exists a partic-

ular spiral.

While the construction of exponential spirals

can be tedious, it presents no other problem.
For values of f<0.5, Jacobsen [15, p. 204] suggests

several approximate methods of construction.
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3. Approximate Methods of Linear Transducer Analysis

L. C. Eichberger '

1. General

In chapter 2 it was assumed that the charac-
teristic differential equation of motion of the
transducer system is known. Corresponding re-

sponse functions were then obtained analytically

from the differential equation for a number of

given input functions by classical or operational
mathematics. This procedure of analysis is the
exception rather than the rule. In general, the
characteristic differential equation of motion is

not known. What is known is the response of

the transducer system to (1) a known input
fimction and (2) the response of the same trans-

ducer system to an unknown input function. The
response function will usually be in the form of a

record—either a strip-chart record from an oscillo-

graph or a photographic record from an oscillo-

scope. The response function will be referred to

the time domain since its graphical representation

is a function of time. The graphical form of the

response function brings about a need for a

method or methods by which the response function

can either be expressed analytically as a function

of time or transformed directly to the frequency
domain. This chapter will be devoted to the

various methods available for fulfilling this need.

Once the response function has been expressed as

a function of either time or frequency, the trans-

fer function and the input function can be obtained
by following the routes of analysis shown in

figure 2.1 and illustrated in detail in chapter 2.

The major part of the analysis in this chapter is

based on the evaluation of the Fourier integral eq
(1.17). The integral, as it stands, is cumbersome
to compute, and the solution to some very ele-

mentary situations often turns out to be a tedious

and time-consuming task. To relieve this tedium,
different approximations and/or computing aids

are introduced to simplify the evaluation. Some
of the approximations considered are harmonic
analysis, staircase function, straight-line segment,
trapezoidal, sin a;/x, number series transformation,
and the pseudo-rectangular pulse. The com-
puting aids considered are Henderson's analyzer,

Montgomery's optical Fourier analyzer, photo-
electric Fourier transformer, and an electronic

analyzer with magnetic transient storage used by
Lederer and Smith.

Before discussing the approximations in detail

let us examine the Fourier integrals, eqs (1.16)

' Assistant Professor of Mechanical Engineering, The University of Hous-
ton; Technical Staff, Houston Engineering Research Corporation.

and (1.17), more closely. For convenience, let

us rewrite eqs (1.16) and (1.17) as

x{t)=^ r ^We'-'dw (3.1)

Xijw)= x{t)e-^'''dt, (3.2)
tJ — CO

where x{t) is the response function and X{jw) is

its direct Fourier transform, the complex frequency
response of the system.

Let us assume that the response function x(t) is

identically zero for t<CO. This assumption for all

practical purposes is true since it implies that the

input function to the system is also identically

zero for f<0. The acceptance of this assumption
allows us to use either the real or imaginary part

of Xijo}) and thus eliminates the exponential form
of the transform [1].^ This can be easily shown
[2] by rewriting eq (3.2) with Xijo))=Xi{io) +
jX2{(j}) and e~^"'=cos wt—j sin wi. Therefore,

eq (3.2) becomes

J
CO

x{t) cos ut dt
- CD

/» 00

—j
I

x{t) sin wtdt

from which

^ CD

Xi{co)=
j

x{t) cos wt dt

X2(o:)= I x{t)smwtdt.

Assuming that x(t) is an even function, then Xiiu)

is even and determines the even part of x{t) in

eq (3.1), wliile X2{o}) is odd and vanishes. Or
assume x{t) to have even and odd parts, then,

since x{t) is zero for i<0, the even and odd parts

must cancel. It follows that they are identical

for i>0. Therefore, one-half of either part or

one-fourth of the total can be used to compute

x{t) for positive t. On the basis of this argument,

2 Figures in brackets indicate the literature references on p. 51.
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eqs (3.1) and (3.2) may be rewritten as

2
x{t)=- X^ico) cos cot do) (3.3)

TT Jo

Xi(u)=\ xit)coswtdt, (3.4)

where -X'i(co) is a real function of a real variable.

2. Approximation of Periodic Functions

2.1. Harmonic Analysis

Harmonic analysis enables us to represent any
known periodic phenomenon by an empirical

function. The periodic phenomenon, the response
fmiction, can always be approximated by the

Fourier series of the form

/(i)=Oo+<^i cos o)t-ra2 cos 2o:t-\- . . . +a„ cos nut

-\-bi sin sin 2wt-\- . . . -\-b„ sinnwt. (3.5)

This function is periodic and has a period of

2ir. If values of the dependent variable f{t) are
known for certain equidistant values of the inde-
pendent variable wt, then the unknown coefficients

tto, ai, a2, . . ., an, bi, b2 , bn can be easily foimd.
Values of f(t) are readily obtainable from the
record of the response function. This record may
be in the form of numerical data, a graph, or a

photograph. Once these values have been ob-
tained the analysis for evaluating the coefficients

is as follows: for illustrative purposes, let us
assume that the function is periodic with period
2t as shown in figure 3.1, and that/(^) is known
for six equidistant values of cot (or ^=3 in fig. 3.1),

i.e.,

at

m
0 60 120 180 240 300

/O /l /2 /a /4 /5

Equation (3.5), for the 6-ordinate system,
becomes

/(^)=ao+ai cos (d^a2 cos 2wt-\-az cos 3a)f

-\-bi sin U-^b2 sin 2wt. (3.6)

f(i)

to t| tik-i Iji,

FiGUHE 3. 1. Periodic response function.

Substituting the corresponding set of values for

jit) and oit iuto eq (3.6), gives

/o=«0+«l+02+ a3

(3.7)

y3=(Jo—cti+ct2—03

J I 1 1 V3 7 V3 ,

.75=«o+iai— ^«2—^3— "2"
—

2 ^

To solve these equations for the a's and &'s apply
the following rule: To find (or b„), multiply

each equation by the coefficient of o„ (or 6„) of

that equation and add the results [3]. Applying
this rule to eqs (3.7), yields

6ao=/o+/l+/2+/3+/4+/5

3ai=/o+ i/i ~~ hji—j%— hfi+ i/s

3^2=/o— 5/1 i/2 4"./3 hfi 1/5

6a3=/o-yi+/2-/3+/4-/5

36.=f/.+f/2-f/4-|/.

OA V3 , _V3 r , V3 /• V3
302=y/i—2 -/2+ yJ-f

(3.8)

The values of the a's and b's could be obtained

directly from these equations without too much
diflfiiculty. However, if the present intervals were

halved, this would constitute a 12-ordinate system

which would yield 12 equations similar to those

shown above with some containing at least 12 terms.

For such a system the evaluation of the a's and b's

would be a tedious process. Therefore, let us

show for the six-ordinate system how an addition

and subtraction scheme can be developed to

aid in the evaluation of the a's and b's.

Suppose the terms in eq (3.8) are regrouped as

foUows:
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6ao= (/0+/3)+ (/l + (/2+/5)

3a,= (/o -/a)+ K/i-/J- 1(/2 -/s)

302= (/0+/3)- K./. +/4)- K/2+/5)

6a3= (/0-/3)- Ui-J')- ih-h)

362=f (/l+/4)-^ (/2+/5).

/o-/3=A

/2-/5=A.

Let us now put

/o+/3= 'S'o

/2+/5= 'S2

Then these equations become

6ao= 5*0+ (S*!

+

3a.=Do+§A-iD2

3a2=<S'o— ^(Si

—

Qa3=Do-Di-D2

362=

Finally, substitute

Sfj—Uo

Si-\-S2=U,

Do=Ro

VS Q, V3 Q

Then the equations for finding the coefficients in

the Fourier series are

a2=UUo-hU^)

(3.9)

The results of the addition and subtraction scheme
could be tabulated as follows:

/o /l /2 So Si Do D,

/a /) /s D2

Sum ^0 'S'l ^2 C/o ?7i Ro R,

DiflF. Do Z?i D2 Fi P,.

A reliable check on the computed a's and h's, is

obtained by a study of eqs (3.7) which yields

/o=ao+«i+a2+a3

to be used as a check on the a's, and

/l-/6= V3(il+ 62)

for a check on the 6's.

It should be noted that, since the terms of the
Fourier series are additive, it is necessary that the
coefficients all be computed to the same number
of decimal places.

A system for any number of Fourier coefficients

can be developed in the same manner. To
expedite this procedure, it can be shown [4] that
eqs (3.8) can be written directly from the following
(with reference to fig. 3.1)

:

Y
2k-l

2k-l

a;=T Z) /t cos

I
2fc-l

IJT

k
-j=l,2, . . .,k-l.

V3

1

Tables 3.1 and 3.2 give systems for determining

12 and 24 Fourier coefficients, respectively. For
other systems the reader is referred to iSIacDuff

and Curreri [4], 4S-ordinate system; Running [5],

6-, 8-, 10-, 16- 20-, etc., ordinate systems ; and Pollak

[6], 3- through 40-ordjnate systems, inclusive.

Since periodic functions ha^nng a period different

than 2w can be reduced to the form of eq (3.5) by
a linear substitution of the independent variable

[7], the procedures outlined in this section are also

valid for functions having periods other than 27r.
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Table 3.1. 12-ordinate system {12 Fourier coefficients) Table 3.2. 24-ordinaie system (24 Fourier coefficients)

/o fi
J* u U

/6 /.. /lO h fs h

Si S, Sz Si s.

Do Dz Di

So
CI

Si
Cf
Cj iJi

S2 s, Ds Di

Uo Ui u. Ri R,

Vo Vi Pi

Ui Pi

Ut P,

Sum L H

Diff. M G

oo^VM+L)

ai=vj(^Do+^Vi+V2V^

a2=}i{Vo+V2M)

az=V6{Do-V2)

ai=V6{Uo- V2L)

V^(^Do-'^Vi+V2V^

a,= Vi2(Vo-M)

bi=vj(^Dz+V2Ri+^R2^

V3(?

as

hz=Vi{Ri-Dz)

bi-
2/3H

''

12

5= vj(^D.Z+V2Rl-^R2

Check formulas (check results for a's and 6's)

:

2a==/o

(61+ 65) +263+V3(62+64) = A.

/o fi J ^ J A Ji f.Jo ff. j~ fa f«78 ^9 J 10 7ii

/.2 /23 /2I /2O /l9 /ifi fii /16 /l5 fu fn

Sum Si S2 S3 Si s, S^ S7 Si Si Sio Sii

Diff. Di Dz Di Di Di Di Di Dt Dm ^11

So Si S2 Sz Si s,

s. Sii Sio s. Ss Sr

Sum Uo Ui U2 Uz Ui u,
DifiF. y 0 V,y 1 y 2 y 3

V
' i

Di D2 Dz Di Ds
Dii Dio D, D, D7

Sum Ri R2 Rz Ri R,

DifiF. Pi P2 Pz Pi P5

Uo Ui u. Pi P2 Li Gi

Uz u, Ui P4 Ps L2 G2

Sum u Li u Hi H2 C J
Diff. Mo Ml M2 Gi G2 E N

^= sin 15°= 0.2588190
B=cosl5° = 0.9659258

ao=H4(Lo+C)

a,=H2 (^Do+BVi+^ ^2+-^ ^3+ V2Vi+AV,^

a2= /12
(Vo+Y Mi+

az= V12 [^Do+^{Vi-Vz- V,) - F4]

ai=Vi2{Mo+V2E)

ai==Vi2 (Do+AVi-^ Vi-^Vz+VzVi+BV^

ai=Vn(yo-M2)

a,= Vi2 {Do-AVi-^ V2^^Vz^\Wi-BV^

ai=Vx2(Lo-V2C)

09= V12 [^0-;^ {Vi-Vz-v,) - F4]

a,o= V12 (^0-^ M,+

aii= V12 {Do-BVi^^ F2-;^ ^3+^2^4 -AV^

ai2=V2i{Mo-E)
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Table 3.2. 24-ordinate system (S4 Fourier coefficients)—Continued

6i ' 24

65=^^2 (^BR,+ V2R2-y^ ^'--y Ri+ ARs+ D,^

611= (^fti-
V3

V2R2+ -7^ «3-if

V2

bt=Vl2(Hi-P3)

b^=Vl2 (^BRi-V2R2-^ ^^4+^/1:5-a)
V2

V2 " 2

Check formulas (check results for a's and b's):

2a=/o

2^ (6,+ 611) + (62+ 6,0 ) + V2 (63+ 69) + VS (64+ fcs)

+ 2^(65+ 67)+ 26,= Z),.

3. Approximation for Aperiodic Functions

3.1. Staircase Function

Let us assume a response function as shown in

figiu'e 3.2a. This graphical record may be either

a strip-chart record or a photographic record.

From this record it is required that the frequency
characteristics of the system be determined.
Since analytical evaluation of eq (3.4) generally

proves rather difficult, it would help us httle to

find a mathematical expression for x{t). There-
fore, an approximate integration by graphical
means seems appropriate. To begin with, let us
diflPerentiate eq (3.1) with respect to t and eq (3.2)

with respect to jw.

X (t)

x(n)

x(N)

i(<)=^
J_"

X{jw)e^-'{jw)do:={jc^)x{t) (3. 10) •(t)

and

X{jw)=j' xit)e-^'''i-t)dt^-tX{jo)). (3.11)

Substituting the results of eq (3.10) and (3.11),

respectively, into eqs (3.2) and (3.1) gives

{ju)X(joi)=f x(t)e-^''' dt (3.12)
*/ — 00

-txit)=:^ j'^ X(jo^)e^"'dw. (3.13)

Equations (3.12) and (3.13) show that differentia-

tion in the time domain corresppnds to multiph-
cation by joi in the frequency domain, while
differentiation in the frequency domain corresponds
to multiphcation by —t in the time domain.

In a manner analogous to the derivation of eqs
(3.3) and (3.4), with an assumption of fictitious

odd and even components in x{t) for t<^0, a similar

0 T
b

2T 3T 4T 5T 6T 7T

•(t)

t 1 I t t .

0 T

C

2T 3T 4T 5T 67 TT

Figure 3.2. Application of the staircase function
approximation.

(a) Response function
(b) Staircase function approximation of the response function

(o) First derivative of the staircase function approximation
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set of equations can be derived for eqs (3.12) and
(3.13); these are

x{t)=-^S Xi(co) sin coi c^w (3.14)
TTf Jo

Xiiw)= -- ( x{t)smo:tdt. (3.15)
<^ Jo

Let us consider eq (3.15) and return to the

original problem of evaluating the frequency
characteristics from figure 3.2a. Eq (3.15) re-

quires that the slope of the original function x{t)

be known. This is accompHshed by approximating
x(t) by a staircase function as shown in figure 3.2b.

The derivative of this function is the impulse
distribution shown in figure 3.2c. Let the impulses
(inclusive of their algebraic signs) be denoted by
tti, a2, . . ., and their time of occurrence by
ti, ti, . . ., h, then eq (3.15) yields

Xi{w)=—- {ai sin wti-\-a2 sin co^2+ • • • sin oit^^
CO

(3.16)

where k is the number of impulses.

The only error committed in the above analysis

is that due to the staircase approximation of x{t).

The impulses shown in figure 3.2c are true

impulses, so eq (3.16) is good for all values of the
frequency w. By making a less precise staircase

approximation (which need not, incidentally,

involve uniform increments) an expression for

x{t) can be obtained with fewer terms than before.

However, this is done at the expense of acciu-acy.

To obtain fewer terms in x{t) without sacrificing

accuracy it is necessary to take further advantage
of the differentiation characteristics of eqs (3.1)

and (3.2). This is discussed in more detail in the
following section on straight-line segments.

3.2. Straight-Line Segments

Before introducing the straight-line segment
approximation, let us examine more closely the
successive differentiation of eqs (3.10) and (3.11)

with respect to t and jco, respectively. Therefore

x{t)= {jo:)x{t)

and

X{jo>)= -tX{joi)

which by eqs (3.10) and (3.11) become

x{t)= {ji»yx{t) (3.17)
and

X{jo>)=^{-tyX{jc.). (3.18)

Substituting eqs (3.17) and (3.18) into eqs (3.2)
and (3.1), respectively, yields

ijo}yX{jw)= r xiDe-^^'dt (3.19)

and

(-0'a;(0=^J_" X(jw)e^-'dc^. (3.20)

Comparing eq (3.20) with eqs (3.1) and (3.10) and
eq (3.19) with eqs (3.2) and (3.11), the following
general equations evolve:

(-i)"a;(i)=^J X^"\jo:)e^-'dw (3.21)

and

(»«X(iw)= x^^\t)e-^'''dt (3.22)

where the nih. derivative of X{joi) and x{t) is

denoted, respectively, by X'"'(jco) and a;<">(i).

The corresponding real part of the time function,
eq (3.21) is

n
2( 1)2 f"°

x{t)= X<"'(jw) cos o)t do3, for n even
irt Jo

(3.23)

and
n+l

x{t)= ^''~^}„
'

r"x("'(ico)sincofcZf, for rt odd.
Jo

(3.24)

Similarly, the real part of the frequency function,

eq (3.22), is

n

Xi{<x))=-—^ r a;'"'(^) cos wt da, for n even
w Jo

(3.25)

and
n+l

X^{o:) = ^~^l
^

f x^^^t) sin oit dt, for v odd.
^ Jo

(3.26)

Let us now consider approximating x(t) by straight-

fine segments as shown in figiu^e 3.3a. Then its

first derivative becomes a step approximation,
figure 3.3b, and its second derivative a sum of

impulses, figure 3.3c. The expression for Xi{o:) is

given by eq (3.25) for n=2, therefore

Xi{a)=-K (di cos coii+02 cos 0)^2+ • • • -hd'k cos uU)
CO

(3.27)

where ai, a2, • • . and <i, ^2, • • ., are defined in

the same manner as in eq (3.16), and k is now the

number of impulses in the presentation of x(t).

The basic difference between the staircase function

approximation and the straight-line segment
approximation can be readily seen by comparing
figures 3.2c and 3.3c. Thus, the latter approxi-

mation results in fewer impulses, or an expression

for x(t) involving fewer terms. Therefore, for

the same number of impulses as in the staircase

function approximation, the straight-line segment
approximation to xit) is better.
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X *(t)

Figure 3.3. Application of the straight line segment
approximation.

(a) Straight line segment approximation of the response function shown
In fig. 3.2(a)

(b) First derivative of the straight line segment approximation
(c) Second derivative of the straight line segment approximation

The same line of reasoning can be extended to

higher order approximation such as approximating
the response function by a second-degree curve.
The first derivative of such an approximation is

a straight-fine segment approximation, while its

second derivative is a staircase function approxi-
mation. The third derivative is a sum of impulses.
Thus, the expression for xit) is readily obtained
by the appropriate form of eq (3.26). There is,

however, a great deal of difficulty experienced in

implementing this approximation and those of
higher order. For this reason, higher order
approximations will not be considered further.

For a detailed discussion of higher order approxi-
mations the reader is directed to the work of

Guillemin [1].

3.3. Trapezoidal Method
In section 1 , the determination of the amplitude

of the frequency characteristic for the stated
problem is reduced to the approximate evaluation
of eq (3.4), or

^i(co) x{t) COS oit dt

X •(!)

Figure 3.4. Application of the trapezoidal method of
approximation.

(a) Trapezoidal approximation of the response function
(b) Approximating trapezoids
(c) Symbol description for trapezoid

where
Xi(co)=Ke [Xijo:)].

Let us assume the response fimction to be that

shown in figure 3.2a and let it be approximated
by the straight-line segments shown in figure 3.3a.

For convenience figure 3.3a is repeated as figure

3.4a. It can be seen that the curve xit) can be
approximated piecewise by several trapezoidal

boundaries as shown in figure 3.4a. Therefore

x{t)^
i = l

(3.28)

where the x*i (t) denotes the ith trapezoidal bound-
ary segment of n boundaries shown in figure 3.4b.

Substituting eq (3.28) into eq (3.4) yields

^i(w)=l] f x*i{t) cos wtdt. (3.29)
! = l Jo

Thus, the frequency response is the sum of iute-
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grals of the form

/• 00

Xi{w)i=j x*i{t) cos ut dt (3.30)

where, with reference to figure 3.4c,

' a;o«= const 0<f<(^j— r<)

ti+Ti-t
2t,

Lo

(3.31)

Substituting eq (3.31) into eq (3.30) yields

Xi{u)— I Xoi cos ut dt
Jo

dt

\ cos wt dt-

r- COS dt-^ r- t cos (jit dt.

Integrating gives

A''i(co)i=— sin H ^ sin ut
0 ZTio;

ti+Ti

t sin ut cos co^

Xpi J 2r< sin ui{ti-Ti)+ {ti+Ti)

X [sin w(<i+r<)]— (ii+Ti) sin aj(«i-7<)

— (<(+Ti) sin c<;(«(+rt) + (fi— T<)

or

X [sin 03{ti—Ti)] [cos u{ti+Ti)
03

—COS u{ti—Ti)]

Xi{w)i=—-~-2 [cos w(ti+ Ti)—COS u{ti—Ti)]

}

(3.32)
where

cos w(^i+r<)— cos o}{ti—Ti) =—2 sin uti sin un

Therefore, eq (3.32) becomes

^i(w)i=--% sin uti sin wtj
Ti03

or

/ N / * \
/sin 03ti\ /sin orA

A,(a))<=-(Xoi<<) ( 7—
)

( )•

\ 0}ti / \ WTi /

Therefore,

XT / \ / ^ s /sin cofA /sin ojTjX „„

j=i \ uti / \ a)T< /

The evaluation of eq (3.33) does not present any
difficulties, especially if tables of the function

^
are available. For tables of ?HL5 ^j^g reader

X X
is referred to the work by Solodovnikov [8], where
five-place tables appear in Appendix 1 for argu-
ments of ranging from 0 to 10 in increments of 0.01

,

from 10 to 20 in increments of 0.1, and from 20 to

100 in increments of 1.

3.4. §HL? Approximation

Sin X
In this section will be used to approximate

*c

the response function x{t). Shannon [9] noted
that the spectrum for almost aU response functions
had an upper limit, say w^. Shannon also proved
that a function of this type could be synthesized

sin X
exactly by a sum of functions of the type

Synthesis of a response curve by
sm x

fvmctions is

shown in figure 3.5. For piirposes of clarity only
sin X

portions of tlie —-— curves are shown. The

response function can be expressed as

x*(0=S4.™^(t2l), (3.34)
„=0 Ucit— riT)

where A„, the amplitude of
sm X

is equal to the

ordinate of the response function at t=nT, and t

is the time spacing, which must be smaller than
or equal to tt/uc-

Substituting eq (3.34) into eq (3.2) yields

CD /• CD

n=0 J — <B

sin Wcit— nr)

Ucit— nr)
e-^"' dt, (3.35)

where Xijw) is the complex frequency charac-

teristic of the system. To eliminate the expo-
nential form of the transform, we evaluate the

real part of eq (3.35). The Re [X{ju)] is

n=0 We J-c

sin Ucit—riT)

(t-nr)
cos wtdt. (3.36)

Hence, the frequency response is the sum of

integrals of the form

sin (j3c{t—nT)

{t-nr)
cos (j}t dt. (3.37)
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Figure 3.5.
sm X

approximation of the response curve

shown in figure 3.2.

(Reproduced from [11] with pennission from Proc. IRE)

Evaluation of eq (3.37) involves a number of

trigonometric manipulations. The substitution
of sin Wet cos TicocT— sin nwcT cos cocf=sin adt— ut)

into eq (3.37) gives

A, C" r(sin wj cos nwcT— sin nwcx cos Uct)

J— L

X [cos ujt] dt

An C f" si

\^ J-oo {t— nr)

J"
cos Wet cos wt dt

Tl ^

{t-nr)

{t-nr)

sin cos (Jit

]

dt

(3.38)

However, sin coscoi=^ sin (aj+coc)^— | sin

[{(>}— (j3c)]t and cos Uct cos wt=\ cos (o+coj^ cos
[(w— coc)]t Therefore, eq (3.38) becomes

^i(w)»=^ "l^cosww.T
[^J

sin (w+wj^
(i— 711

sin (w— coj^ dt

X

-r
J-oD {t—nr

|~J-

COS (co+wji

sm no>cT

^ p cos (co-..)^ ^ny
(^— Tlr) J_„ (^—nr) Jj

At this point let t— nT= z, thus dt=dz. The
limits of — 00 to 00 remain unchanged for this

substitution. Also let w—Wc=a, and w+Wc II ^•

Then

/^^ r f sin /3(2+wr)(/2Ai(w)n=2^ cosnojcrj
J

! ^—

f" sin a{z-\-nT)dz~\

~J-„ ^ J-8in7»a,.r

^l^J"

COS /3(2+7tr)(j2
^

J°°

COS a(2+nr)(j2

j

^

Expanding the sine and cosine functions in the
above equation for the sum and difference of two
angles, and factoring out the non-integrable
terms, Xi (w) „ becomes

Xi{u>)n=^^ cos nwcT l^cos n^T^
sin j32 dz

+sin n^T
/» CO

•/ — e

-sm nar

cos /32 dz
-cos TJar

»y — CD

sin a2 (Z2

J°°

C0Sa2^"]_
-0=2 J

vyf o f" cos (82 C?2
XI cos 7i/3r

J
^

r " cos q:2 dp+ COS Tiar

sm nucT

—sin nj3r

sin TkxT

- C

sin /32 (^2

(3.39)

The improper integrals in eq (3.39) are now in a
form such that known properties of improper
integrals may be introduced to aid in their evalua-

COS cx
tion. For example, integrands of the form —^—

'

where c is a constant, are odd functions which
have a Cauchy Principal Value of

cos cx dx
-0- (3.40)

sm cx
Also, integrands of the form are even func-

tions and
X

sin CX
dx. (3.41)

The latter form of the improper integral is found
in standard integral tables [10], which gives

j;

sm cx

X

TT
—}
2

dx=''

TT—

)

2

c>0

c=0

c<0. (3.42)

In eq (3.39) put x=z and c=a=^u— Uc, where

We is the upper limit on the frequency. Therefore,
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a<CO and eq (3.41) yields 3.5. Number Series Transformation

sm az
(3.43)

Also, c= ^=w-\-03c\ therefore (3>0 and eq (3.41)

gives
sin

dz=ir. (3.44)

Substituting eqs (3.40), (3.43), and (3.44) into

eq (3.39), eq (3.39) becomes

tA
Xi{w)n=Tr^ {cos 7lC0^r(cOS 7?-/3t+COS nar)

+ sin mO(,T(sin n^T—sm nar) } . (3.45)

Reintroducing a= o)— Wc and j8=co+ Wc in^to eq

(3.45), expanding the sine and cosine for the

sum and difference of two angles, multiplying

and removing common factors, eq (3.45) fuially

becomes

Xi{w)n=- cos nccT.

The frequency response for the system is

(3.46)

Xi(co) = = COS WCOT,
(^c ra=0

forr<— (3.47)

This equation relates the frequency response
to the measured points Aq, Ai, A2, ... of the

response curve.

In laying out the response function in equal
intervals of r at which the ^'s are to be measured,
the first point (n=0) should not be more than
one interval to the right of the first variation

in the curve, figure 3.6. Also, the intervals

should continue to the point where the curve
ceases to vary.

In a problem similar to the above, Samulon [11]

has developed an expression which considers

measuring the first difference of the A's, An—
An-x rather than An. He also developed a

number of tables and nomographs to facilitate

numerical evaluation. The original tables and
nomographs are for 0.05 fi sec-intervals; however,
these can be scaled to fit most problems.

x(t)

Figure 3.6. Interval layout of response curve.

The number series transformation method was
first introduced by Tustin [12] in 1947. Since
that time Madwed [13] has been a principal con-
tributor in this area. The fundamental idea-

behind the number series transformation method
is the concept of representing or approximating a
function /(O by a number series. For our purpose
fit) will hereafter be denoted as the response func-
tion x(t). Therefore, x{t) is the dependent vari-

able, displacement, and t is the independent vari-

able, time. Since the independent variable is

time, the number series is called a time series. To
best present this method let us illustrate it in the
form of an example. Again let us take the re-

sponse function, shown in figure 3.2a, and approx-
imate it in turn by a triangular, rectangular, step,

and ramp time series transformation. The tri-

angular time series transformation is presented in

detail whereas only the results and pertinent details

are given for the rectangular, step, and ramp time
series transformation.

»'<t)

(n-i)T (n*OT

« (t) I

(n-()T

x(t)

Figure 3.7. Triangular time series transformation.

(a) Unit triangular pulse function
(b) Triangular pulse function

(p) Triangular
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a. Triangular Time Series Transformation

Any continuous arbitrary function xit) can be
approximated by a set of triangular pulse functions,

all of which have the same width, as shown in

figure 3.7c. When x{t) is approximated in this

manner for analytical purposes, then by definition

this approximation for x{t) is called triangular time
series transformation. For symbol simplicity all

time series transformations or approximations of

xif) will be denoted by x*{t). With reference to

figure 3.7c, it is easily recognized that when a line

is drawn parallel to the ordinate at point A on
the abscissa, it cuts two adjacent pulses at B and
C. The distance AD is laid off equal to the sum
of AB and AC, and thus establishes a point on the

approximate curve x*{t). It can be shown that

repeating this .process for an infinite number of

points in a given time interval t results in a chord
approximation of x{t) in that interval. Therefore,

the sum of all the triangular pulse functions from
^=0 to i= 00 gives the chord approximation of

x{t)ovx*{t).

Before developing an analytical expression for

x*{t), let us first define two basic quantities used
in the triangular time series transformation. The
first quantity to be defined is the unit triangular

pulse function rising at time t={n—\)T, shown in

figure 3.7a, and denoted by Urit—nT). By
definition the area enclosed between the unit

triangular pulse function and the time axis is equal
to unity. Therefore, with a base dimension of 2r,

the altitude of the unit triangular pulse function
must be equal to 1/r. The properties of the unit

triangular pulse function then become

0

t-{n-l)T

1

T

{n+l)T-t

Lo

for K(w-1)t

for {71— l)T<t<nT

for t—TiT

for nT<t< (n+l)^"

for ty{n+l)r.

(3.48)

The second quantity to be defined is the general
triangular pulse function, shown in figure 3.7b,

and denoted by T. By definition the triangular
pulse function is equal to the area enclosed
between the triangular pulse function and the
time axis, multiplied by the unit triangular pulse
function. Therefore, the nth triangular pulse
function at x{nT) is

T{nT) = Tx{nr)UT{t-nT). (3.49)

It is now possible to write an analytical expression
for the triangular time series transformation, since
the response function can be approximated by
summing the triangular pulse function, eq (3.49),

from n=0 to n= 00 . Therefore

x*{t)= TY^x{nT)UT{t-nT),
«=0

(3.50)

where Urit—nT) is given by eq (3.48). Having
once establislied tlie approximation to tlio response
function x*{l), tiiis approxiinatioii can tiien be
substituted into the unilateral Fourier transform
eq (1.20), thus achieving the desired transforma-
tion of the response function from the lime to the
I'requency domain.

b. Rectangular Time Series Transformation

A unit rectangular pulse function, denoted by
Unit— riT), is shown in figure 3.8a. Since, by
definition, the area enclosed by the unit rectangu-
lar pulse function and the time axis must be equal
to unity, it can be seen that the height of the
rectangle must be 1/t. Therefore, the properties

UR(t-nT)

R(nT)

x(t)

T (n-i)T nr (n+i)T t

FiGUBE 3.8. Rectangular time series transformation.

(a) Unit rectangular pulse function
(b) Rectangular pulse function

(c) Rectangular pulse function approximation of the response function

694-211 0-63—

4
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of the unit rectangular pulse function are

' 0 for t<nT

UR{t—nT)= ^ 1/t fornr<i<(w+l)r

,0 for ^>('/i+l)r. (3.51)

The general rectangular pulse function, shown
in figure 3.8b, is denoted by R and is defined as the

area under the pulse function multiplied by the

unit pulse function. That is.

R{nT) = Tx{nT)URit— nr). (3.52)

Since the ordinate xinr) is not uniquely determined
for the rectangular pulse function approximation,
and since rxinr) is the area of the nth rectangular
pulse, an approximation to the area under the

curve x(t) in the interval between ut and {n-\- 1)t is

Tx{nT)=A{nT)
(re+l)T

x{t)dt, (3.53)

x(t)

URoU-riT)

1(0

0 (n-i)T nr t

x(nT-T)

/
1 1

» 1

x(t)

? T (n-i)T nr (n+i)T

Figure 3.9. Ramp time series transformation.

(a) Unit ramp function
(b) Ramp function
(c) Ramp function approximation of the response function

where Ainr) is the area under the nth rectangular
pulse, then xinr) is defined to be

X(7lr)=^^^«- xit)dt. (3.54)
J TIT

Therefore, eq. (3.52) becomes

R(nT)=AinT)URit-nT) (3.55)

and the rectangular time series transformation is

given by

x*{t)=j: A(nT)UR(t-nT),
n=0

(3.56)

where Unif—nT) and^(nr) are given, respectively,
by eqs (3.51) and (3.53). The rectangular pulse
function approximation is shown in figure 3.8c.

c. Ramp Time Series Transformation

Figure 3.9a shows a unit ramp fvmction which is

denoted by Uitp{t—nT). By definition the height
of a unit ramp function is equal to unity. There-
fore, the unit ramp function properties become

TJRp{t—nT)= ->

0

t—in-l)T

Li

for K(«-l)r

for {n—l)T<t<nT

iort>nT. (3.57)

The general ramp function, denoted by Bp and
shown in figure 3.9b, can be defined as foUows:

Rpinr)= {xinr) —x{nT— t) ]URp{t—nT). (3.58)

Therefore, the ramp time series transformation is

expressed as ^

x*(i)=S {x{nT)-x{nT-T)]URj,{t-nT) (3.59)

where Uupit—riT) is defined by eq (3.57).

d. Step Time Series Transformation

The unit step function, shown in figure 3.10a, is

denoted by Usit—nr) and has the following prop-
erties

TT /, N r 0 for t<nT
Us{t-nr)= ^^ fori>nr. (3.60)

The general step function is denoted by S and is

shown in figure 3.10b. The expression for the nth
step function is

S{nT)=[x{nT)-x{nT-r)]Usit-nr). (3.61)

3 From the definition of a unit triangular pulse function, it follows that a

unit ramp function for ra= Ocan be expressedasasummation of the triangular

pulse function, that Is

CD

URp(t)=r Y. UT(t-nr).
n-O

Also the triangular pulse and ramp function times series transformation

results in a straight-line approximation of the original function.
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Again the ordinates x{nT) and x(nr— r) are not
uniquely determined for the step function approx-
imation. However, let us define them, with refer-

ence to figure S.fOc, in a manner analogous to the
evaluation of the ordinate x{nT) for the rectangular

pulse function approximation (i.e., xinr), defined

by eq (3.54), repeated here for clarity):

x(wr)=^^^=^- x{t)dt (3.54)

and

x(nr— r)=

Ajnr) _l
r T Jn

A{nT—T) 1 J'nr

(.n-l)T

x(t)dt. (3.62)

Therefore, eq (3.61) becomes

S(nT)=- {A{nT)-A{nT-T)]Us{t-nT). (3.63)
T

Thus the step-time series transformation can be
expressed as *

a;*(0=-Z; {A{nT)-A(nT-T)}Us{t-nr) (3.64)
T n=0

where A(nT) and Usit—riT) are defined by eqs

(3.53) and (3.60), respectively.

3,6. Pseudo-Rectangular Pulse Approximation

Let us consider the unilateral Fourier integral

as given by eq (1.20) and rewritten in a notation
that complies with the response, i.e.,

X(ico)=J^° x(Oe-^"' dt, (3.65)

where X(ju) denotes the complex response spec-
trum of the response function x(t).

Bowersox and Carlson [14] applied the funda-
mental theorem of calculus to eq (3.65) and
obtained

n = l

(3.66)

where d=wAt. Let us now consider a response
function x{t) which reaches a steady-state condi-
tion, such as the response shown in figure 3.2a.

Then eq (3.66) becomes

X{jui)=MSj2 x{n)e-^'''+Mx{N) S e'

(3.67)

* From the definition of a unit rectangular pulse function, it follows that a
unit step function for n=0 can be expressed as a summation of the rectangular
pulse function, that is

00

Usit)=T 2 Uait-UT).
n-O

Also, that the rectangular pulse and step function time series transformation
results in a step curve approximation of the original function.

where x(N) is the amplitude of the response func-
tion at time t—NAt, the time for which the re-

sponse function first reaches the steady-state con-
dition. The summation part of the last term in

eq (3.67) is recognized as the geometric series and
can be written as

n=N+]

Therefore, eq (3.67) becomes

(3.68)

Schweppe [15] defined Xijw) to be

X(jo:)= iX+jY)e~ht (3.69)

for which the amplitude of the response spectrum

x(t)

x(t)

s(nT)

x(nT-T)

.z_

x(t) A(nD

x(t)^

/
/
/

r

- -
(n-OT nT (n»i)T

Figure 3.10. -S<ep iimt series transformation.

fa) Unit step function
(b) Step function
(c) Step function approximation of the response function
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is given by TV

X=X) a;(ri) cos nd
n=l

x(N)

X(cc)=modXijw)= -^X'+Y' (3.70)

and its phase angle by

a(co)=arg X(jw)=arc tan (3-71)

Rewriting eq (3.68) to include the definition of

X{ju>), as given by eq (3.69), gives

_jl c N
(X+jY)e ^At=At < Sa;(w)e-^"''

+^M^y (3.72,

Equation (3.72) can be separated into real and
imaginary parts [14]

N
F=—2 x{n) sin nd-

71=1

x(N)

(^sin Nd cot 1+ cos Nd^

(3.73)

(cos Nd cot|— sin A^6'^-

(3.74)

Therefore, given a response function x{t) which
reaches a steady-state condition, the amplitude
of the response spectrum is given by eq (3.70),
and its phase by eq (3.71), where X and Y are
given respectively by eqs (3.73) and (3.74), and
e=coAt.

The fundamsntal theorem of calculus is based
on approximating the area under a curve by ele-

mental rectangular areas. The error involved in
such an approximation is directly related to the
width of the elemental area, as, in this case, the
time increment. A better approximation to the
problem could be found in the adoption of the
trapezoidal approximation or Simpson's rule [16].

4. Instrumental Aids

4.1. Henderson's Mechanical Harmonic
Analyzer

The need to remove the tedium from numerical
analysis is ever present. Henderson [17] devel-

oped the mechanical harmonic analyzer shown in

figure 3.11 to fill this need. The analyzer is

synthesized on the fact that any periodic function

J{t) can be represented by a Fourier series of the
form given by eq (1.6), in which the coefficients are

determined by the integral forms of eqs (1.7) and
(1.8). Evaluation of these integrals for a given
periodic function /(i) is known as harmonic analy-
sis, and is the sole job of the analyzer. The
analyzer shown schematically in figure 3.12

essentially does just that. That is, on tracking a
curve over one complete period, the displacement
of the resolver plate gives a vector that represents
the amplitude and phase of the derivative of a

harmonic present in the curve. The fact that
the instrument gives the derivative of the sinus-
oidal components, rather than the components
themselves, is no disadvantage when analyzing
periodic functions, as will be shown later.

With reference to figure 3.12, a brief description
of the operation of the analyzer is as follows: the
curve to be analyzed is placed on table a, which
is moved from right to left either by a motor or
by the handwheel labeled "traverse." As the
table moves it drives a variable-speed gear, b,

Figure 3.11. Henderson's mechanical harmonic analyzer.

(Reproduced from [17] with permission from Engineering)

Figure 3.12. Schematic of Henderson's mechanical

harmonic analyzer.

(Reproduced from [17] with permission from Engineering)
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which causes the friction wheel, c, to rotate about
its vertical axis, perpendicular to the resolver

plate, d. The friction wheel makes contact with,

and drives, the resolver plate, which is a flat plate

free to move in the horizontal plane, but unable
to rotate; its movement is recorded by a rigidly

attached stylus. The friction wheel is driven
about its horizontal axis by a flexible wire coupled
to the cursor, which is operated manually by the
handwheel labeled "ordinate." The rotary mo-
tion of the wheel is proportional to the change in

the ordinate of the c\u"ve.

Before the start of analysis, the analyzer must
first be initialized, that is, the friction wheel is

alined with d—Q, as indicated in figure 3.12, when
the cursor is at the origin of the curve. Then the
variable-speed gear is adjusted to give n (the

harmonic of the curve to be determined) revolu-
tions to the friction wheel as the cursor is moved
through one period. The analyzer is now ready
to determine the nth harmonic of the curve.

Let us consider the motion of the resolver plate

when the curve has been moved an amount 6,

and then incremented by dd. The corresponding
change in the ordinate is dh, hence, the friction

wheel, which is at an angle of nd to its original

direction, will drive the resolver plate a dh in the
direction of nd. The constant a is denoted as the
amplification factor. Then the displacements in

the X and y directions become

and

dx=a ^ sin nd dd
dd

dy=a^ cos nd dd.

If the curve is tracked continuously throughout
one period, the final coordinates of the locus
traced by the resolver plate are given by

and

'-dh

dd

C'-dh

sin nd dd

cos nd dd

(3.75)

(3.76)

dh^d^
dd dd

where ^=-^ [/(<?)]• Substituting ut=d into eq

(1.6), ^ becomes

y=—naa„
j

sin nd cos nddd-\-nab„ I cos' riSdd
Jo Jo

for which it can be readily shown tliat

sin^ nd dd= cos^ nd dd= tt

r2ir f
sin^ nd dd=

Jo Jo

Jo

Therefore,

sin nd cos nd dd=0.

x=— Trnaa„

y^irnabn
or

irna

y
irna

(3.78)

(3.79)

Thus, the resultant vector of the locus traced by
the resolver plate has rectangular components
that are proportional to the Fourier coefficients

a„ and 6„. Therefore, the resultant vector repre-

sents the amplitude and phase of the nth harmonic
in the derivative of the tracked ctu-ve.

As mentioned earlier, the analyzer gives the
derivatives of the sinusoidal components rather
than the components themselves. Let us now
look at this more closely. To aid us in this in-

terpretation let us recognize that taking the de-

rivative of a sinusoidal quantity results in another
sinusoidal quantity n times larger and 90 degrees

in advance of the first. That is 4i(cos nd)
clu

= —nsmnd=ncos^d-{-^- Thus, by interchang-

ing the designation of the reference axes

and by dividing the projections of the resultant

vector of the traced locus by the harmonic order,

the true components present in the tracked curve
are obtained. The equations for the coefficients

a„ and bn, eqs (3.78) and (3.79), respectively, must
be rewritten to comply with this change as follows:

and

dn--

bn-

y
(3.80)

(3.81)

Oi sm d—2a2 sm 26—. . .-na^ sm nd

+ bi cos 0+262 cos 2d-\-. . .+r26„ cos nd. (3.77)

Substituting eq (3.77) into eqs (3.75) and (3.76)
gives

'•J.
x=—naan

I
mi'nBdd+nabn ^ sm nd cos nddd

Let us further illustrate this point by an example.

Figure 3.13a shows the waveform to be analyzed

and figure 3.13b shows the resiilts of the analysis

for the first two harmonics. The projections of

the resultant vector, shown as a dotted line ex-

tending from point 0 to A in figure 3.13b, on the

X and y axes corresponding to the components
present in the derivative cui've. Thus, by eqs

(3.78) and (3.79) the fundamental terms in the

derivative of the waveform are O.39sin0 and
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0.714 cos 6. The analytical results for the funda-

mental terms of this same waveform are O.7sin0

and 0.405 cos d. Comparison of the fundamental
terms shows that the coefficients should be inter-

changed for agreement. Therefore, eqs (3.80)

and (3.81) will yield the correct results, since

they were written purposely to incorporate this

interchange.

The analyzer can also be used to obtain an
approximate evaluation of Fourier integrals which

have the form
J*

x{t) cos nwt dt, where x{t) is an

aperiodic convergent function, since the displace-

ment of the resolver plate represents the value of

the integral, point by point, as the integration

proceeds. It can also be shown, from the locus

traced by the resolver plate after a sufficiently long
period of integration, that the remaining portion

of the integral is of negligible magnitude. Thus,
the frequency response can be determined by
analysis of the response function.

This analyzer can determine harmonics up to

the 20th in curves of 27 in. period and 4 in. peak-
to-peak amplitude. Analysis can be made on
curves with smaller periods, however, at a propor-
tional loss of harmonic range.

0
Figure 3.13. Analysis of the 1st and 2d harmonic of a tri-

angular wave by Henderson's mechanical harmonic
analyzer.

(a) Triangular wave
(b) Solution locus for triangular wave

(Reproduced from [17] with permission from Engineering)

4.2. Montgomery's Optical Harmonic
Analyzer

Instead of evaluating the coefficients of the
Fourier series for a periodic function by a mechani-
cal method, Montgomery [18] utilizes the principles
of optics to accomplish this feat. This method
requires that the function to be analyzed be
represented on a photographic film by one of two
methods: (1) the variable area record, shown in

figure 3.14a where the part between the curve and
the t-axis is transparent, the remainder is opaque;
and (2) the variable density record, shown in

figure 3.14b. With either type of representation
of a function x{t), the amount of light transmitted
through a narrow vertical strip of width dt is

proportional to x{t)dt. If two or more such
records are superimposed, the light transmitted
through all of them will be proportional to the
product of the recorded functions, provided
that only one of the records is of the variable

area type.

To determine the Fourier coefficients a„ and bn,

proceed as follows: consider the two records shown
in figure 3.14, where xit) is a variable area record

and cosnwt is a variable density record. Here
again the only requirement is that both shoiild

not be variable area records. Therefore, by super-

imposing one film on the other, the amount of

light transmitted through both of them between

the limits zero to 2t is

J
x(t)cosn(jotdt, and

hence proportional to a^. The coefficient 6„ is

obtained in the same manner, i.e., by replacing

the cos not film by a sinncoi film. This can be

accomplished very simply by moving the cos nwt

in
b) VARIABLE DENSITY RECORD

Figure 3.14. Representation of x(t) and cos nwt on film.

{Reproduced from [18] with permission from the Bell System Technical
Journal.)
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film one-quarter wavelength along the axis. Also,

if the cosine film is moved a whole wavelength
along the axis, the transmitted light will go
through a maximum. This maximum value is

proportional to c„ where Cn='^(in-\-hn, and the
position of the cosine along the axis at which it

occurs is the phase angle ^„=arc tan —

•

Since x{t) and cos nw^, in general, will have both
negative and positive values they cannot be
directly represented by the transmission of light.

Therefore, to eliminate this difficulty a constant
is added to each function which results in a

constant in the measured amplitude.
To illustrate this analytically, let us consider

the optical transmission of the film on which x{t)

is recorded to be expressed as

A-^x{t) (3.82)

where is a constant large enough to make the
expression positive for all values of t. Similarly,

the transmission of the cosine film is

5J1+M„ cos (3.83)

where 6 denotes the position of the cosine film

along the i-axis, M„ is a constant less than unity,

known as the modulation of the record, and 5„ is

a constant which is the average optical trans-

mission of the film.

Therefore, the total transmitted light when these
two films are superimposed on each other is given
by

T=JJ"5J^+x(0][l+M„ cos (nwt-9)]dt

--AB„ dt+AB„Mn cos {nwt—e)dt
Jo Jo

+Bn x(t)dt+B„M„ x{t) cos {nut-e)dt.
Jo Jo

(3.84)

Integrating each term in eq (3.84) except the
last integral yields

T=2TAB^+Bng{t) r+5„M„

/•2ir

J.
'x(t) cos {nut—e)dt, (3.85)

where g{t)= J'x(t)dt. The last integral can be
evaluated by a sequence of mathematical manipu-
lations and previously derived expressions. Let us
first rewrite the integral in the form

j;
x{t) cos[{no3t—<p„)— {e—<pj]dt.

Expanding the cosine function for the difference

of two angles gives

COS {d—(p„)j x{t) cos {no}t—<pn)dt-{-?>\n {6—iPn)

xj^J* x{t) sin (nw^—
^„)(/iJ.

Again expanding the cosine term in the integrand
yields

cos {d—(pj j^cos <PnJ x(t) cosnoit (Z^+sin (p,^

X
J*

x{t) sin nwt
^ J+sin (d—(p„) |^cos (p„

X-^J* x{t) sinnut dt"^ — sinipn^ x{t) cosnut dt~^

The integrals are now recognized as a„ and 6„,

eqs (1.7) and (1.8) respectively, the coefficients of

the Fourier series for a function x{t) whose period

is 27r. Therefore,

TT cos {e— (Pn)[an COS <Pn+ b„ siu (p„]

+ir sin {e—'Pn)[bn COS o„ sin (p„].

From eq (1.11) it can be shown that cos v?„
=

ajc„ and sin ip„=b„lcn; therefore

x{t) cos {nwt—6)dt=TvCn cos {6—<Pn)

and eq (3.85) becomes

r=27r5„(^+C)+x5„M„c„cos (e-^J (3.86)

where C= 9(t)

2tt
; c„ is the resultant of the Fourier

series coefficient a„ and 6„, defined by eq (1.10);

and (p„ is the phase angle defined by eq (1.11).

To obtain a„, take the difference in T for 5= 0

and TT ; therefore

T{Qi)-T{-^)
(3.87)

Similarly, to obtain 6„, take the difference in T
for 0=7r/2 and 37r/2; thus

hn'-
27r5„M„

As previously discussed, the maximum value of

T occurs at 0= <p„ thus establishing ip„. This can

also be seen by referring to eq (3. 86). The
minimum Tocciu-s at 0= <p„+ 7r; thus the difl'erence

between maximum and minimum values of T
gives

-^max
1*

mlg

27rB„Mn
(3.SS)
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Figure 3.15. Montgomery's optical harmonic analyzer.

(Reproduced from [18] with permission from the Bell System Technical
Journal)

LIGHT ^—^
I CELL

SOURCE A B

Figure 3.16. Schematic of optical system in optical har-
monic analyzer.

(Reproduced from [18] with permission from the Bell System Technical
Journal)

By making 5„ and. M„ approximately constant for

all screens, the coefficients for either form of the
Fourier series are directly proportional to the
change in transmitted light for specified pairs of

position of the cosine film.

The process which the analyzer is required to

carry out consists of superimposing the function
to be analyzed on a cosine film and measuring the
variation in the transmitted light when the cosine
film is moved along the ^-axis. This is repeated
with a different cosine film for each harmonic to

be measured. Such an analyzer is shown in

figure 3.15 and schematic of its optical system in

figure 3.16. With reference to figure 3.16, the
film containing x{t) is placed in a holder at slot

A and illuminated by passing light from an in-

candescent lamp through a condenser lens. An
enlarged image of x{t) is formed at 5 on a window
bounded by two knife edges 0.750 in. apart.
The portion of x{t) to be analyzed must be adjusted
so as to just fill the window. The cosine films

slide in a track directly behind the window, and
receive the image of x{t). The transmitted light

is collected by another lens and brought to a
photocell. The photocell output is coupled di-

rectly to an oscillograph which records the varia-
tions in the form of a strip chart record. Each

succeeding cosine film is brought into play and
passed across the window at B automatically, by
a series of cams and levers. The analysis is

fully automatic except for adjustments at the

beginning of each analysis.

The analyzer shown in figure 3.15 takes records-

of x{t) between Me and in. in length and no
higher than its length, and is capable of analyzing

the first 30 harmonics.

4*3. Photoelectric Fourier Transformer

The photoelectric Foiu-ier transformer is an
optical analyzer which produces the Fourier

transform of a given function automatically and
instantaneously in the form of a graph on the

screen of an oscilloscope. Furth and Pringle [19]

based their analyzer on a principle similar to that

used by Montgomery [18], but extended it for

continuous Fourier analysis, i.e., Fourier inte-

gration. The analysis is based on the light trans-

mitted through a closely spaced fringe pattern

rotating in front of a narrow slit, beyond which is

the mask with the pattern to be analyzed. The
light reaching a photocell can be expressed by an

equation similar to eq (3.84), or

T=AB^ Cdt+AB^Mn f cos {nwt-e)dt

+B, rx{t)dt+BnM„ Cxit) cos inut-e)dt, (3.89)
J a J a

where the only difference is in the range of inte-

gration. Let us consider only one standard fringe

pattern, say cos ut; therefore n=l and inte-

gration of eq (3.89) gives

T=AB,Mig{o^)+B,MM<^)+C (3.90)

g{o>)=- [sin (a;6-0)-sin (wa-0)] (3.91)
CO

hiw)= r x{t) cos {wt-e)dt (3.92)

J a

C^AB,{h-a)+B,{\{t)dt. (3.93)

If (0 is now made to extend and shrink periodically

in time between co= 0 and an upper limit w^, the

spacing of the standard fringe pattern along the

(-axis (defined by X= 27r/w), wiU vary periodically in

time between X,=2ir/co, and infinity. Thus, the

time dependence of the transmitted Ught will be re-

presented by eq (3.90) with the Umits of minus co, and

plus CO,. If ^=0 (the given function is positive

everywhere) or if b=—a and d=±ir/2, then eq

(3.90) represents the Fourier transform of x{t).

The constant C in eq (3.90) is considered insignif-

icant [19].

The transmitted Ught which is directly propor-

tional to the Fourier transform of x{t) is now con-

centrated on a photoelectric cell. The photo-

electric cell produces a current proportional to

the intensity of light received, and therefore pro-

48



Figure 3.17. Schematic of the photoelectric Fourier transformer.

(Reproduced from [19] with permission from The Philosophical Magazine)
(a) optical and recording system
(b) Plate drive and generator system

portional to the Fourier transform of x{t). The
current is then amplified and fed into an oscillo-

scope where it is made to deflect the beam in the
vertical direction. At the same time a harmonic
time base which is synchronized to the variation
of CO is fed into the oscilloscope to drive the beam
in the horizontal direction proportional to w.

A schematic of the analyzer is shown in figure

3.17a. Light from an incandescent lamp D is

passed through a diffuser E and a condenser lens

F. The light is then passed through a small
glass plate A, bearing a photographic pattern
consisting of 20 fringes having a harmonic varia-

tion in optical transmission. The plate is mounted
in a journal bearing B, so that it can be rotated
with a constant angular velocity about the axis of

the optical system. The light then passes through
lens G which produces a reduced image on a fine

adjustable vertical slit at H. The slit at H is

arranged to make the axis of rotation pass exactly

through the center of the slit. In this way a

symmetrical distribution of light intensity is ob-
tained along the slit as plate A is rotated. The
width of the slit must be small compared to X^.

The variation in the spacing of the light distribu-

tion, as plate A is rotated at constant angular
veloctiy w, is given by

(3.94)

-1-0 -l-l -7-«-5 -4-3-?-l A X 5 4 5 6 7 B 9 HI

1-0 «-«-7-«-5-< S-M 1 I S * S « 7 • f l«

sm (lit

Figure 3.18. Typical photoelectric Fourier transformer

results with associated analytical solutions.

(Reproduced from [19] with permission from The Philosophical Magazine.)

(a) Photoelectric Fourier transformer result

(b) Analytical solution
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Figure 3.19. Electronic and magnetic ana
Lederer and Smith.

jzer used by

Therefore, the angular frequency w varies in time

according to

27r 2x .

co=—=— sm coi
A he

or

w=Wc sin Zit. (3.95)

From the slit at H, the light passes through a

cylindrical lens / (with its longitudinal axis of

symmetry perpendicular to the slit). The cylin-

drical lens rotates the vertical image at the slit H
into an enlarged horizontal image at J. The image
at J consists of a 3X3 in. fringe pattern which
contracts and expands in time according to eqs

(3.83) and (3.95). At J the record of the function

to be analyzed is introduced, i.e., x{t). The optical

arrangement is completed by the condensing lens

K and the photoelectric cell L.

The remaining pieces of equipment shown in

figm"e 3.17a are the milliammeter A^, the potenti-

ometer M, amplifier 0 and Z, oscilloscope P, and
a generator. The motor Q rotates plate A and
indirectly rotates plate S of the generator. The
generator consists of core T, magnets V, and iron

pole pieces W. The purpose of the generator is

to produce a voltage which is synchronized with
the angular rotation of plate A to drive the beam
of the oscilloscope in the horizontal direction.

Typical results from this analyzer are shown in

figure 3.18a. In figure 3.18b are the analytical

solutions worked out for the fimction analyzed.
The analytical solutions are scaled to the identical

scale used by the analyzer; therefore a direct

comparison can be made.

4.4. Electronic Analyzer With Magnetic
Transient Storage

Lederer and Smith of the National Bureau of

Standards use a magnetic drum recorder to store

the transient response of the pressm-e transducer
and to repetitively play it back to a commercially
available electronic analyzer, figure 3.19. The
resonating frequencies may be viewed on the
screen of the analyzer as shown in figure 3.20.

The recorder has a variable recording time of 1 to 6

msec and a frequency range of 1 to 100 kc/s.

The analyzer will detect any resonance of ampli-
tude not less than 1 percent of that of the cali-

brated resonance nearest in frequency through a

frequency range of 1 to 100 kc/s, provided that
the resonant frequencies are separated by at least

1 kc/s. In general, the greater the frequency
separation, the lower the amplitude ratio at which
resonances can be detected. At frequency separa-

tions of less than 1 kc/s resonance can be detected
if the amplitude is high enough.

Figure 3.20. Frequency analysis from analyzer used by Lederer and Smith.
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Information from this system is limited to the

amphtude characteristic. No information regard-

ing phase is obtained. Use of the information is

based on the assumption that the transducer sys-

tem has a sufficiently low damping constant to

make possible construction of the frequency re-

sponse curve. Thus it is possible to determine to
what frequency the transducer can be used with
acceptable fidelity.
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4. Analysis of Nonlinear Transducers

D. Muster

'

1. General

Physical nonlinear systems can be discussed only
in terms of mathematical models that are charac-
terized by differential equations amenable to some
form of solution over restricted regions of the
motion parameter (s), or for specific mathematical
descriptions of the damping and/or restoring force

terms. In addition, little can be done by analysis

to predict a response function for systems which
cannot be represented by one- or possibly two-
degree-of-freedom models.

For damped linear systems, if Xi(f) is a solution

of mx-\-cx-\-kx=Fi{t), and Xiit) is a solution of

mx-\-cx-\-kx=F2{t), then x=Xx-]rX2 is a solution of

mx +cx-\-kx=Fi{t)^F2{i). This fundamental fact,

a direct consequence of the linearity of the differ-

ential equation, is called the principle oj super-

position. It is important to note explicitly that
the principle does not hold for nonlinear differen-

tial equations. It follows as well that the concepts
of free and forced oscillation, classical normal-mode
analysis and resonance, all intimately related to

the principle of superposition, have real meaning
only for linear systems. As a consequence of

these limiting conditions, any form of analysis con-

ducted to evaluate specific characteristics of non-
linear systems is restricted stringently. The
investigator is confronted immediately with the

decision: which optimum mathematical model,
among those amenable to useful solution, wUl pro-

vide an adequate characterization of the nonlinear
system's behavior?

The decision on an optimum mathematical
model raises several specific questions. Can the

system be adeq[uately described by a single-degree-

of-freedom system? Is the nonlinearity of the

damping (restoring) force sufficiently small that
it can be represented adequately by viscous damp-
ing (a linear spring)? Is the region of interest

sufficiently narrow that a linear approximation
wUl be adequate? Can a solution be obtained by
considering the system characteristics as being
piece-wise linear (say, bilinear)? In summary,
every attempt is made to represent the system by
linear damping and restoring force characteristics

or, if this is not possible, to minimize the magni-
tude and subsequent effect of the nonlinearity.

Fortunately, the response of most pressure

transducers (as well as other electromechanical
sensing devices) can be represented adequately by
solutions of linear differential equations. Here

' Professor of Mechanical Engineering, The University of Houston.

we will discuss some of the methods of analysis for

those transducer systems with sufficiently great
nonlinear restoring force or damping character-

istics, that linear analysis is not adequate, but not
so great that solution is a practical impossibility.

We wUl restrict the discussion to nonlinearities of

the type and relative magnitude likely to be
encountered in pressure transducer systems.

In this chapter, we discuss first the physical and
analytical aspects of nonlinearity. In the main,

this discussion will focus on the physical parame-
ters of damping and stiffness and the manner of

their representation in the anatysis of transducer

systems. The remainder of the text is concerned
with analytical methods as they are applied to

nonlinear systems. Particular attention is drawn
to those methods and solutions of systems where
the nonlinearity is confined to the restoring force

term onl}' and, later, to those where it is confined

to the damping term only. Among the methods
of analysis, the describing-function method, the

bilinear approximation and the phase-plane

method are discussed in some detail.

At the end of the chapter, there is a combined
bibliography and reference list. The literature

sources cited in the chapter text are listed first:

uncited sources used for background information

and general reference in preparing the chapter are

listed last. Among the general references are

several to which we draw the reader's special

attention: the translations of the books by
Andronov and Chaikin [1],^ Minorsky [2J, and

Kryloff and Bogoliuboff [3], the vibrations text

by"^ Jacobsen and Ayre [4], that on noidinear

analysis by Cunningham [5], and those concerned

with the design of control-systems by Truxal [6]

and Murphy [7]. In addition, there is a review

by Ku [8] of recent advances in analytical methods

for studying nonlinear control problems. The
extensive bibliography in the Ku paper is oriented

primarily towards the theory of nonlinear control

systems; however, man^^ references to general

analytical methods are included. Analysts in-

terested in other nonlinear sj-stems wUl find them

useful.

Obviously, the adequacy of the results obtamed

with any method of analysis is intimately related

to the values assigned to the damping and stiffness

parameters in the governing differential equation.

There are no standard accepted procedures for

determining these values. Usually, the stiffness

2 Figures in brackets indicate the literature references on p. 66.
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of a mechanical system is determined from a

static test and the assumption is made that

dynamic effects are either negligible or behave in

accordance with a known relationship. The
magnitude and form of the damping characteristic

are usually assumed to be those associated with
either viscous or coulomb damping. For a

damped, one-degree-of-freedom system, the differ-

ential equation for free vibration can be integrated

completely in only two cases; that is, when the

damping force is proportional to the first power of

the velocity, or is a constant value with a sign the

same as that of the velocity—the coulomb friction

type. In case the damping force is proportional

to the square of the velocity, a first integral can be
obtained and from this a relationship between
two successive maximum displacements can be
established [9]. The inverse problem, that of

determining the damping parameter from a set

of observed values, has been solved in general

terms only for systems in which viscous or coulomb
damping occur separately or jointly [10]. The
case of combined viscous-coulomb damping has
been studied by Den Hartog [11] and applied to

the frequency response of vibration instruments

[12].

For more general damping laws, when the

damping force is proportional to either any power
of the velocity or sums of such terms (or powers

of the displacement or displacement amplitudes),
neither the direct problem of finding an expression
for the attenuation nor the inverse problem of
determining the damping law from observed values
has been solved in general terms. The reason for
this has been mentioned earlier; the governing
nonlinear differential equations are such that they
do not admit of closed form solutions. However,
if the damping forces are sufficiently weak, an
approximate method due to Kryloff and Bogoliu-
boff [3] leads to a closed-form description of the
attenuation of free damped vibrations for a variety
of damping laws. Klotter [13] has shown that
from the expressions for the attenuation it is pos-
sible to deduce, from a set of observed values, the
damping law which governs the behavior of a
system. In [13], damping laws are deduced for

cases where the damping forces are proportional

to a single power of the velocity, displacement or

displacement amplitude, or to the sum of two such
terms.

In summary, the relationships that govern tha

stiffness and damping parameters can be deduced
from observations for a limited class of cases

(usually, for one-degree-of-freedom systems char-

acterized by relatively weak damping forces).

For other cases, the assigned values are obtained
through trial and error or through intuition.

2. Physical Aspects of Nonlinearity

One of the most desirable characteristics of a
transducer is for it to respond in a linear manner
over its useful dynamic range. In general, trans-

ducers are designed so as not to exhibit appreciable
nonlinearity; for example, in the case of static

calibration, there is no significant departure from
linearity between input and output functions, or,

under dynamic conditions, the transducer does not

Figure 4.1. Hardening, softening, and linear springs.

exhibit such phenomena as jumps and sub- or
super-harmonic resonances. In the presence of

significant nonlinearities in damping or stiffness,

the principle of superposition does not hold, with
the consequences enumerated earlier.

In figure 4.1, softening (sub-linear) and harden-
ing (supra-linear) stiffness ciu"ves are superposed
on that for a linear spring. The nonlinear char-
acter of these curves can often be approximated
by the addition of a cubic term, that is, the restor-

ing force of a transducer may be given by

k(x±^^7?), (4.1)

where the relative magnitude of the nonlinearity

is given by the coefficient ^ (with dimension
L~'^) and the hardening or softening influence of

the cubic term is indicated by the plus or minus
sign, respectively. Consider the motion of an
undamped transducer with sinusoidal forcing and
a hardening stiffness characteristic given by eq

(4.1) . If the transducer system can be represented

by a one-degree-of-freedom idealization, the equa-
tion characterizing its motion is

mx+^(a;±i8V)= F cos o^t, (4.2)

the weU-known Duffing equation [4]. The steady-

state response of a system governed by eq (4.2) is

shown in figure 4.2 for a hardening stiffness

characteristic and in figure 4.3 for a softening

characteristic. After [4], the response is given

in terms of the dimensionless excitation parameter
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LC=o

Figure 4.2. Response curves for Duffing-equation model
with hardening spring, no damping (jump phenomena)

.

(Reproduced from [4] with permission from McGraw-Hill Book Co., Inc.)

C-O.l

Figure 4.4. Same as for figure 4-^, but with viscous damping
(f = 0.i) ; no jump for S= OJ.

(Reproduced from [4] with permission from McGraw-Hill Book Co., Inc.)

t»0

Figure 4.3. Response curves for Duffing-equation model
with softening spring, no damping (jump phenomena)

.

2 «S^u,n2 3

Figure 4.5. Same as for figure 4-3, but with viscous damping
(f = 0.7); jump phenomena exists for S= 0.1.

(Reproduced from [4] with permission from McGraw-HlU Book Co., Inc.) (Reproduced from [4] with permission from McGraw-HiU Book Co., Inc.)

S (where S=(-^l3F/k)).^he ordinate is the di-

mensionless parameter VSMiSi where x denotes
an approximate solution of Buffing's equation
obtained by, say, the Ritz averaging method [4];

the abscissa is w^/co„^ (where co„^=k/m) . The cross-
hatched area in each figure indicates the areas of

unstable motion and the vertical lines represent
the jump phenomenon, in which the displacement
changes suddenly from a lower to a higher value
with no change in applied force.

The quantitative effect of hardening stiffness

(that is, systems in which )3->0) is to bend the

S=0 curve of figure 4.2 toward larger values of

co/w„, whUe for softening-stiffness s.vstems (fig.

4.3), for which |8^<0, the S=0 curve bends toward
values of w/a)„<l. The greater the value of |)3-|,

the more marked the bend in the response curves.

The S=0 curves referred to above represent the

free vibration case of the Duffing-equation model.

It can be shown [4] that the natural frequency and
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the displacement amplitude are related by

Wd=w„Vl±i^. (4.3)

The response functions of actual physical systems

exhibiting hardening or softening stiffness charac-

teristics will vary in detail from those of figure 4.2

and 4.3 but not in general appearance. The
tendency for the response to lean towards larger

values of aj/w„ is associated with a hardening

characteristic, the tendency to bend towards values

of w/w„<l with a softening characteristic. The
existence of regions of instability (jump phenom-
ena) are characteristic of the presence of either

hardening or softening.

The effect of nonlinear damping on the response

of a mechanical system is more subtle. Whereas
the stiffness characteristic determines the basic

shape of the response function (that is, no bend
for the linear case and bent response curves for

the nonlinear cases), a nonlinear damping charac-

teristic only modifies the shape and extent of the

domains of instability (if they exist) and makes
the resonance amplitudes finite. In systems with
linear restoring force and with damping propor-

tional to, say, the nth power of the velocity, it

can be shown [14] that the steady-state response

can be approximated closely by assuming that the

actual damping term can be replaced by an equiv-

alent viscous term. The criterion of equivalence

3. Methods of Analysis

By comparing the response curves of the non-
linear cases above with those for the linear cases

discussed in chapter 2, it can be shown [4] that

nonlinear behavior makes it difficult (if not prac-

tically impossible) to evaluate the dynamic char-

acteristics of some transducers. For transducers

with relatively weak nonlinearities, the response

function can be approximated by that for a linear

system with characteristics which are first-order

approximations of those of the actual system.
An alternate approach is to assume that the

behavior of a system is linear in the neighborhood
of an operating point or between two points on
the curves describing the system parameters [15].

In the remainder of this chapter, the nonlineari-

ties of stiffness and damping are assumed to be
sufficiently great that it is necessary to recognize
the system as being nonlinear. Within this frame-
work, we will discuss the methods available for

the analysis of such systems as they actually are.

We will divide these methods into three major
categories

:

1. Perturbation, iteration, and variational meth-
ods.

2. Linearization methods (describing functions).

3. Phase-plane methods (including the method
of isoclines and other graphical methods).

The mathematical methods of the first category
are most useful in determining the approximate
steady-state response of nonlinear systems and,
in many cases, cannot be used to determine tran-

is that of equal dissipative work per quarter cycle
of the motion of the system.
As an example of the influence of damping upon

response curves, let us consider a viscously damped
Duffing-equation model. The governing differen-
tial equation of motion is

F
x-{-2^WnXi-Wn\x±l3h^)=— cos ait, (4.4)

where the damping ratio is f =c/c<.=c/2m w„ and c is the
damping coefficient. Response curves analogous
to those of figure 4.2 and 4.3 are shown in figures
4.4 and 4.5, respectively. It can be seen that the
damping has made the resonance amplitudes
finite and that the maximum amplitudes of the
system are but very slightly larger than the
response amplitudes. The two domains of stable
motion in figures 4.2 and 4.3 are seen to merge in

the damped response plot of figures 4.4 and 4.5,
since the backbone of the plot (the S=0 curve)
is no longer a boundary. As before, the unstable
domain is bounded by the locus of the vertical
tangents to the families of constant-excitation S
curves.

In the case of damping proportional to the nth
power of the velocity, the general configuration of
the plots in figures 4.4 and 4.5 remains the same,
but the crossings of the resonance-point loci with
the *S'=0 curves change quantitatively.

(Nonlinear Systems)

sient response. For the latter reason, and because
of.the sometimes formidable algebraic computation
associated with their use, they enjoy, perhaps, the
least popularity among analysts concerned with
calibration problems. As computers and analog-
to-digital conversion devices become more readily
available, mathematical computation procedures
will probably find wider acceptance.
The perturbation method was developed by

Poincare [16] and Lindstedt [17], primarily for

application to astronomical problems. Somewhat
later, Ritz [18] and then Galerkin [19] developed
equivalent approximate methods for solving steady-
state responses of linear as well as nonlinear prob-
lems. Duncan [20, 21] and others used the method
to treat problems concerning the statics and dy-
namics of elastic bodies. Prior to the early 1950's,

when Klotter called attention to the interdepend-
ence and equivalence of the two forms in which
the method was known, it had been used only
infrequently to solve dynamical problems (other

than eigenvalue problems). Since that time
(usuallv under the name of the Ritz averaging
method), it has been used extensively [4, 22, 23,

24, 25]. In particular, the method can be applied

to an oscillatory system described by differential

equations of the type

E„(g„, q„, q„, t)=0, (4.5)

for example, eqs (4.2) and (4.4).
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The exact solution would yield the coordinates

g„(<) characterizing the response of the system at

any time t . In the absence of a theory or method
for obtaining the exact solution of eq (4.5) and
hence of (4.2), (4.4), . . ., the Ritz averaging
method wUl yield an approximate steady-state

solution by the following procediu'e:

1. Each of the coordinates g„ is replaced by an
assumed approximate solution of the form

:

Sn(0=2:^..*'z(0

(n=l, 2, 3, . . .), (i= l, 2, 3, . . .) (4.6)

where the A^i are a set of unknown coefficients

and the functions tptit) are assumed functions
expected to yield the best average solution over
a period.

2. Then the assiuned solutions are introduced
into eq (4.5) and integrations of the following
type performed over the period indicated

:

E„{q„, g„, g„, t)<pi{t)dt=0

(71=1,2, 3,...),(i= l, 2,3, ...). (4.7)

A set of {mn) algebraic equations is obtained
from which the coefficients A^i can be determined.
Examples in which the method is applied appear

in the literature and in later sections of this

chapter.

As might be expected, the usefulness of per-

turbation, iterative, and variational procedures
has been enhanced by the development of elec-

tronic computers and programing techniques.
Bowersox and Carlson [26] and Hylkema and
Bowersox [27] have investigated the digital-

computer calculation of transducer frequency
response from its response to a step function.
The recent development of electronic devices
which can convert the analog output of a trans-
ducer to a digital form acceptable to a computer
suggests new possibilities for more effective use
of mathematical computing procedures. At
present, however, there is no simply applied,
effective method of analysis available to all

engineers, rather than only to specialists with
access to extensive electronic computer facilities.

Among the linearization methods of the second
category, we have selected the "describing-
function" method [28] as, perhaps, the most
practical method for application to determine the
response of nonlinear transducers. The approxi-
mation involved in the method is similar to that
used earlier by Kjyloff and Bogoliuboff [3].

Independent development of essentially the same
method as Kryloff-Bogoliuboff was made by
Goldfarb [29], Tustin [30], and Oppelt [31].

A second method discussed later is that due to

Ergin [32]. He has showm that for even sub-
stantial nonlinearities in restoring force, a bilinear
approximation can be used with satisfactory
results.

The third category covers phase-plane methods.
For a general development of the method (includ-

ing themethod of isoclines) and for applications of it

to linear systems, we refer the reader to section

4 of chapter 2. Here we will restrict the discus-
sion to nonlinear systems. Transient disturbances
as well as free vibrations of such systems can be
treated hy phase-plane methods, but the steady-
state forced vibrations of any system are not
readih' dealt with by these methods unless the

periodic excitation functions are of the square-
wave type.

4. The Concept and Application of the Describing- Function IVIethod [6, 28]

In linear systems the concept of frequency
response, in the form of a (direct or inverse)

transfer function, is used to describe the dynamic
behavior of transducers. The concept of such
a transfer function is not valid for transducer
systems with substantial nonlinearity. Kochen-
burger [28] has proposed a nonlinear counterpart
to the transfer function, a so-called "describing
function" based on the frequency response. The
method has been used extensively and extended
in the recent past, primarily bv Klotter [33, 34,

35], West [36], Grief [37], Johnson [38], Tou and
Schultheiss [39], and Truxal [6].

The describing-function method of analysis is

based on three assumptions [28]:

1. There is only one nonlinear element in the

system.
2. The output of the nonlinear element depends

only on the present value and past history

of the input. No time-varj'ing character-

istics are included in the nonUnear element.

3. If the input of the nonlinear element is a

sinusoidal function, only the fundamental
component of the element output is con-

sidered.

The implications of these assumptions are dis-

cussed in more detail b\- Truxal [6].

In order to demonstrate the use of the method,
let us consider a transducer system consisting of

a mass m, a coulomb damper (that is, a dry
friction device), and a diaphragm of negligible

stiffness. The governing differential equation for

the sinusoidaUy forced motion of the system is [5]

mx+^,=F cos i^t (4.8)

where ip is the magnitude of the force needed to

overcome the static friction of the damper. The
sign of this force is the same as the sign of the

velocity.

694-211 0-63—

5
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The exact steady-state solution of eq (4.8) can be
determined by a piecewise linear solution of two
equations, with the applicable equation depending
upon the sign of x. The equations, with their

regions of applicability, are

x>0: /3<oji<7r+/3

x=— I cos ut—-^
)m\ r /

x<0:7r+|8<«<<27r+/3

x=|(cosa,f+|,)

^[sina,«+|,(co<-^-/3)] (4.9b)

where sin ^= —k(pI2F. A plot of the variation of

force and velocity is shown in figure 4.6, where the

arbitrary choice has been made, cp/F=1/t, so that

/3=— 30°. The velocity vanishes at values of wt

determined by the phase angle 13. The latter is

negative and tends to zero for values of <p, which
are negligibly small with respect to F. The upper
limit of real values for /3 is <p/F=2/Tr. If W^>2/7r,
the velocity does not vary smoothly through zero,

but so-called dead bands exist in which there is no
motion. In fact, by examining eq (4.9a), it can
be seen that, if tp/F'^l, no steady-state motion is

possible.

The fundamental component of the velocity

expressed by eq (4.9a) can be found by Fourier
analysis. The amplitudes of the sine and cosine

terms of the fundamental will be found to be,

respectively,

iT+fe sin (S)mo \

ai=— cosA (4.10)
mw\7r /

FORCE

/ *

/la. // 2 /

Figure 4.6. Variations in force and velocity for system gov-

erned by m'x + <px/\ X I
= F cos cot(*?/F= 1/n, ,3 = - 30°)

.'

(Reproduced from [5] with permission from McGraw-Hill Book Co., Inc.)

The describing function we seek is defined as the
ratio

where

Thus,

^-F

V=ai cos o}t-\-bi sin wt.

(4.11)

1%*'''^ ^ '-^+(l+^sin sin 0,^]

(4.12)

where

sin /3=—
2F

The amplitude of the describing function is

\H\-.

with phase

ZH=— 9,vc tan

arc tan [^(^^+sin ^ sec isj (4.13b)

In theory, the relations given in eqs (4.13) are

valid for <pIF< 2/ir. In practice, a describing func-
tion is meaningful only so long as the variations
are reasonably close approximations of simple
harmonic functions. This requirement limits ipJF

to small values. In table 4.1, there is a comparison
between velocity values obtained by the exact
analysis of eq (4.9a) and the describing function
of eq (4.12). As in figure 4.6, the ratio of friction

force to driving force is chosen to be (p/F=l/Tr,

from which it follows that j8=— 30°.

Table 4.1. Comparison of exact solution to describing

function

wt xmuir/F Hmuir

0 1. 05 1. 09
tr/6 2. 10 2. 21
7r/4 2. 49 2. 54
7r/3 2. 71 2. 71
ir/2 2. 62 2. 51

27r/3 1. 66 1. 62
3ir/4 0. 92 1. 00
57r/6 0 0

The values of mo:\H\ and ZH from eqs (4.13) are

plotted in figure 4.7. It can be shown that similar

describing functions can be obtained by the Ritz
averaging method [5] and also by assuming that
the coulomb friction force can be replaced by an
equivalent damping force [5].

In summary, the describing-function concept as

developed by Kochenburger [28] embodies the
idea that, in a nonlinear element, a steady-state

sinusoidal input will produce a periodic but non-
sinusoidal output. It is assumed that adequate
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Figure 4.7. Magnitude and phase of describing-function
for system governed by eq {A. 8).

(Reproduced from [5] with permission from McGraw-Hill Book Co., Inc.)

results can be obtained by using only the funda-
mental component of this output.

Klotter [33] called attention to the fact that

the cases which had been treated (until 1957)
were those where the relationship between input
and output can be given by a nonlinear expres-

sion of the variables themselves as contrasted to

other cases in which the nonlinear element is

characterized by differential relationships between
the variables. In the literature, cases can be cited

where the nonlinearity is caused by dead bands
[40, 41], saturation [40], limiting [42], linkages [43],

contactors [28], and coulomb friction [44]. (For
the last situation see the illustrative problem dis-

cussed above, eq (4.8) et seq.) In [33] Klotter
presents a method by which describing functions
for nonlinear elements whose behavior is described
by nonlinear differential equations can be obtained
without solving the differential equations. The
fundamentals of the method are explained in [22]

and [24]; here we will focus our efforts on demon-
strating its use. Let

E=M{z)-¥y{t)=Q (4.14)

denote the nonlinear differential equation of the

element imder consideration with y(t)=F cos wt

standing for the input and z for the unknown out-

put. After [22], we will treat the second-order
differential equation

£=2+ 2ra;,^(i) + a)„y(2)-co„2ircos cot= 0, (4.15)

which contains two nonlinear terms g{z) and/(2).
For simpUcity of presentation, let us assume that

g{z) and/(2) are odd functions of their respective

arguments.^ As an example, we will choose the

parameters of eq (4.15) to be those of a Duffing-
equation model with viscous damping (see eq (4.4)
et seq.), that is,

9{z)= z

J{z) = z+0'^ (4.16)

£:=2-}-2fco„iW(3+/3V)-co„2iPcos «e=0. (4.17)

We seek an approximation z to the output func-
tion z{t) of the form (assumption 3)

z=Z cos (w<— e). (4.18)

with the parameters Z and e chosen in such a way
that they represent "best" values.

Because the function z{t) of eq (4.18) cannot
satisfy the differential equation of eq (4.17) at

every instant, we will satisfy it in some weighted
average. In [22] and [24], it is shown that appro-
priate weighting functions are cos w< and sin ut.

By the Ritz averaging method then, the integrals

X E[z{<t)] cos a dff=0

E[2{a)] sin ff d<T=0

(4.19)

and

' In [22] the treatment is outlined also for the case of even functions.

From these two equations, we wiU determine the
parameters Z and e in the approximating function
of eq (4.18). The steps for accomplishing this

are:

Step 1. From the two functions /( 2) and g{z),

eq (4.16), we derive two new functions 4>{Z) and
r(Z, w) by performing the following integrations:

4 1 f''^0(Z)=-
\

j{Z cos a) cos <r da

or equivalently V (4.20a)

4 1 T'^^=-
I

/(Z sin a) sin a da
TT ZJo J

4 11 C'^
T{Z, 0))= ^ g{Zo} sin <r) sin a da

or equivalently

4 11 f''^=
I

g{Z(j} cos a) cos a da
TT W„ ZJo J

(4.20b)

Equations (4.20) are equivalent to the following

procedure: Introduce Z cos ut and Zw sin wt for

z and i, respectively; replace the functions/ and g
of these arguments by functions of multiple argu-

ments (2a)/ Scof, . . .) and retain the fundamental
terms only.

Step 2. Using the functions <t> and r of eqs

(4.20), we obtain the amplitude Z and the phase

e from the two equations (which foUow from eq
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(4.19))

and

and

2f

tan € (4.23b)

tan c=
2fr

-(0
(4.21b)

In terms of the parameters of eq (4.17), the

functions 0 and T are

14-|/32Z=^-(^)

Equations (4.23) give both the modulus
F

|A7"|=^ and the argument e of the "inverse equiva-

lent transfer function" *

-(0 (4.24)

COr=—
(4.22)

by which eqs (4.21) become

This (complex) transfer function can be plotted
as a family of curves, either with I3Z, as a parame-
ter of the family and w/w^ varying along the
individual curves, or vice versa.

In summary, an equivalent transfer function
(describing function) for the output of a viscously
damped, Dviffing-equation model has been derived.
The expression for it is given by eq (4.24) and

F
the modulus |A7^|=^ and argument e by eqs (4.23).

5. Bilinear Approximation Method for Determining the Transient Response of a
Nonlinear System [32]

A line-segment approximation method by which
the transient response of a nonlinear transducer
can be determined has been developed by Ergin
[32]. In particular, the method is applicable to

systems with a nonlinear restoring force charac-
teristic. Ergin shows that for many problems
involving even large nonlinearities, two line seg-

ments are sufficient to yield an adequate ap-
proximate solution. At least for the examples
chosen by Ergin, the bilinear approximation gives

more accurate results than the classical pertur-
bation methods of Poincare [16], Linstedt [17],

and Kryloff and Bogoliuboff [3], and it is faster

than graphical and numerical methods. It may
also be adapted to an iterative procedure, should
it be desirable to improve the accuracy of th^
method.

There are other allied problems in which the
effect of a nonlinear restoring-force function is

represented by linear or piecewise linear functions
of the displacement; for example, simple piece-
wise linear problems are considered by Hansen
and Chenea [45], and others are discussed in some
detail by Flugge-Lotz [46]. More recently, Ma-
halingham [47] developed a one-term approximate
solution for the amplitudes of a single-degree-of-
freedom system with nonlinear (nonsymmetrical)
spring characteristics. The method of [47] is

similar to that of Martienssen [48], but the
construction uses a modified frequency function
in place of the actual spring characteristic, the
function being so chosen that it yields the correct
frequency of free vibration. A system with a tri-

linear restoring-force function (that is, one which
is piecewise linear by joining successively an initial

linear section, a softening section, and a hardening

section) has been studied by Dost and Atkinson
[49] by means of an electronic differential analyzer.

In addition, we include the following literature

references to similar problems: Atkinson and
Heflinger [50], Katz [51], Evaldson, Ayre and
Jacobsen [52], Ludeke [53], Wylie [54], Jacobsen
and Jespersen [55], Rauscher [56], and Burgess
[57].

In most of the cases cited above, a solution is

obtained for systems in which a nonlinear re-

storing-force function is piecewise linear, either

bi- or trUinear. It is worth noting explicitly that

Ergin [32] solved a somewhat different problem;
namely, that of

(a) approximating the nonlinear restoring-force

function of a system by a bUinear ap-
proximation and then

(b) finding a solution such that the mean-
square error between the actual nonlinear
restoring-force function and the assumed
bilinear approximation is a minimum.

It is a well-known principle that any function
can be approximated by a number of straight-line

segments. Each line can be determined by its

slope and a point through which it passes; this

joint can be picked to be the transition point
where two segments meet. The slopes and transi-

tion points can be determined so that the mean-
square error between the function and the series

of line segments is minimized within a range of

variables. The application of this concept to the

solution of nonlinear differential equations is a

direct one. Any nonlinearity, which is a function

* In an attempt to emphasize the analogy to the corresponding linear

concept, Klotter [33] chooses to replace the term "describing function" by
"equivalent transfer function" with qualifying adjectives, such as inverse,

direct, etc., as the case may be. For comparison, see eq (4.11).

60



of the independent variable only, can be de-

scribed by a number of line segments chosen so as

to approximate the nonlinear function as closely

as possible. The nonlinear problem, then, re-

duces to the solution of the same number of linear

equations as there are line segments, with the

proper matching of displacement and velocity at

the transition points. The determination of the
optimum slopes and transition point locations for

line segments requires the solution of (2w— 1) non-
linear simultaneous algebraic equations.

There are certain simplifications which make
this method of linear approximations feasible.

Most functions encountered in practice can be ap-

proximated satisfactorily by only two line seg-

ments. In addition, it is possible to choose the

slope of the first line segment as the specified slope

of the function at the origin without significant

loss of accuracy. This simplifies the problem to

the determination of the slope of the second line

segment and the location of the transition point;

the choice of both being such that the mean square
error is minimized.

In [32] it is shown that, for any nonlinearity

which can be expressed as a power of the inde-

pendent variable, the second slope and the location

of the transition point are simple functions of the

maximum displacement amplitude. It is also

shown that for small nonlinearities, the solution in

many cases is insensitive to the precise choice of

the maximum deflection used to calculate the

parameters of the bilinear approximation.
In what follows we will state the basic relations

upon which the method is based and apply it to

the undamped Duffing-equation model of eq (4.2).

Consider the original nonlinear differential

equation which governs the motion of a transducer
system to be of the form [32]

(4.25)

We assume that eq (4.25) can be approximated
by the two linear equations:

x+gi{x)=j{t) for |x|<x,

x+g2{x)=j{t) for \x\yxt

(4.26)

(4.27)

where gi(x) and g2{x) are linear functions of x,

and Xi is the "transition amplitude" where the

linear restoring-force changes from gi{x) to g^ix).

As mentioned earlier, gi{x) is taken equal to

kix, where ki is the slope of the nonlinear restoring-

force function at the origin. Then,

gi{x)=kix

g2{x)=k2X-\r{k1— ^2)a;«}''
(4.28)

where ^2 and are as yet undetermined constants-

The form of gi{x) and g2{x) require that the

piecewise-linear approximation is continuous at

x^x^.
The parameters ^2 and x« are to be determined

such that the mean square error {EY between
the nonlinear restoring-force function and the
bilinear approximation of it is minimized;

{EY=^i [(H{x)-g{x)]'dx
Xm \^J{)

+£"'[g2{x)-g{x)Ydxy (4.29)

where gi{x) and ^2(x) are defined by eq (4.28);
g{x)=ki{x)-\-h(x) ; and x^ is the maximum dis-

placement amplitude of the motion.

The conditions that (Ey has an extremum
are [58]

^(^''-0
(4.30)

and
dx.

bk.
=0. (4.31)

Since gi{x) and g{x) are not functions of x,, and
9iixt)=g2{xt), then eq (4.30) reduces to

fJx, [g2(x)— gix)]dx=0.

Similarly, eq (4.31) reduces to

fJx, [g2{x)-g{x)]^^dx=^0

but
C)g2(x)

d^2

dk2

— X Xt,

(4.32)

(4.33)

which when used in eq (4.33) and recalling (4.32)

yields

fJx, [g2{x)—g(x)]x dx=0. (4.34)

By appropriate substitution of ^2(x) and </(x),

eqs (4.32) and (4.34) can be simplified to

ki—kx-
{Xm—X

)dx (4.35)

and

k2—ki=
(Xm—X()^(2x„+ Xi) Jx,

' h(x)x dx, (4.36)

from which the desired values of x, and k2 can be

found.
For the case where h{x) is of the form

and

/i(x)=€X" (n>l)

Xt—OiXmt

(4.37)

(4.38)

where a is a constant of proportionahty, the

simultaneous solution of eqs (4.35) and (4.36) is
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relatively easy.^ We see that they then become,
respectively,

and

^2—^1=

2ex^-Hl-a"^'')
" (l-a)^(n+l)

(l-a)^(a+2)(7i+2)

(4.39)

(4.40)

Solving for the constant a in the latter two
equations, we obtain

(1+2=
3(n+l)(l-a"+'')

(n+2)(l-a"+')

Since a<l and w>l then 7- -j-^-

(4.41) yields ^

n-\
n+2

(4.41)

1 and eq

(4.42)

where n is the power of the nonlinear restoring-

force term (4.37). In turn, with this value of a,

the slope of the second line segment can be com-
puted from eq (4.39) and from eq (4.38).

Let us apply [32] the results of the analysis

above to the transient response of an undamped
Duffing-equation model to the half-sine pulse

excitation of the form

i+w„^(a;+/3V)=sin co^ for 0<Kr (4.43)

=0 for tyr (4.44)

where r, the pulse length, is ir/co. For t=ir/w, the
solutions of eqs (4.43) and (4.44) must be equal.

Since an exact solution of homogeneous eq (4.44)

exists [59], our main interest lies in finding an
approximation to eq (4.43) such that the motion
during the piilse can be obtained.
For convenience in computing the results, let us

assvune the initial conditions are at ^=0:

and
x(0)=i;(0)=0

)=2

Then, eqs (4.43) and (4.44) become

,3_
,

sin 2t for 0<K?

0 for t>l- (4.45)

For a cubic nonlinearity, the transition amplitude
X( is, from eqs (4.38) and (4.42)

Xt=OAx^ (4.46)

and the second slope ^2,

k2=h+ l.ZbxJ=l + \.ZbxJ. (4.47)

The parameter Xm is computed as the maximum
« Note that the Duffing-equation type of restoring-force function, eq (4.1)

is Included.

amplitude of the linear solution of eq (4.45) ^; hence

x-|-x=sin2i,

the solution of which for the same initial con-
ditions is

x=|(2 sin sin 2t)

and, in the range 0<^<7r/2, x„,=0.667. Thus,

X,=0.267 and A:2=1.60. (4.48)

The two bilinear equations to be solved are

xi+xi=sin 2t; Xi(0)=Xi(0)=0 for |x|<x, (4.49)

X2+I.6X2—0.16=sin 2t; X2(f,)=Xi(i,); X2{tt)=Xx{tt)

(4.50)

where tt is the transition time, the time which it

takes Xi to reach x«. The solution of eq (4.49) is

Xi=\{2 sin i— sin 2t),

from which the transition parameters are

Xi(i,)=x,=0.267
'

1.011 (radians) ^- (4.51)

x(^,)=0.646

The solution of eq (4.50) which satisfies the con-

ditions X2(^,)= 0.267 and X2(^)= 0.646 is

X2=0.1+0.582 sin (Vl^i- 0.084) -^^ sin 2t.

(4.52)

The displacement and velocity at the end of the

pulse (t—ir/2) are, respectively

X2 (^0=0.651 and X2 (^^=0.592.

Comparable values obtained by niunerical itera-

tion to four-place accuracy are

0.6518 and x (|)=0.6001,

that is, the approximate results obtained by solv-

ing the two bilinear eqs (4.49) are within 0.5

percent in displacement and 1.5 percent in velocity

of a numerical solution of eq (4.45) when the

nonlinear force at the maximum deflection point

is about 60 percent of that for the linear model.
In summary, a method is shown for approxi-

mating a nonlinear restoring-force function by a

particular bilinear approximation for which the

slope and location of the transition point have
been selected so that the mean square error be-

tween the original function and the approximation
is minimized.

^ In [32] this is shown to be a reasonable assumption.
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6. The Phase-Plane Method [4, 5]

A general exposition of the phase-plane method
(including the method of isoclines) is given in

section 4 of chapter 2. Here we will restrict the

discussion to three central points:

(a) the method of isoclines applied to a non-
linear system,

(b) the phase-plane-delta method as applied to

a nonlinear system, and
(c) the determination of displacement-time

plots from phase portraits.

As mentioned earlier, a dynamical system with
n degrees of freedom depends on n positional

coordinates q^t. The state of the system at any
instant of time depends upon the values of qt, and
the velocities qi. Thus, a phase-space of 2n
dimensions is associated with the behavior of the

dynamical system. To each state of the system
there corresponds the point Q with coordinates

qi) in the phase space; as t varies, the point Q
describes a curve called a path or trajectory, which
describes the history of the system. The totality

of aU paths is called the phase portrait of the

system. It represents all the possible histories

of the system, any one of which is determined
by specifying a single state ^o- In a geometric
sense, this means there is one and only one path
through each point of the phase space.

6.1. Method of Isoclines [1]

It is upon this last concept that the method of

isoclines is based. In chapter 2, the method is

applied to linear systems. Here we will recall

only the essentials of the method and apply it to

a nonlinear system.
Only certain equations are amenable to solution

by the isocline method, namely, those which can
be reduced to a single first-order equation. An
example is

x+/(i, x)=0. (4.53)

Equations (4.2), (4.4), (4.8), (4.43), and (4.45) in

homogeneous form are all examples of eq (4.53),

an autonomous equation.^ It may be reduced to

a first-order equation by introducing the new
variable v=x; then,

.._ . _(dv\ /dx\_vdv
\dx/\dtj dx'

and eq (4.53) becomes

This is a first-order differential equation in the

independent variable x and hence can be treated

by the isocline method. It is convenient in some
cases to normalize the velocity coordinate, that is,

' An autonomous equation is one in which the independent variable (here
time t) appears In the derivatives only.

to specify the coordinates of the phase plane as
(x, v), where v=x/w„.
As an application of the isocline method to the

solution of a nonlinear diflFerential equation, let us
consider [59] a system whose motion is governed
by the van der Pol equation

x-€(l-x2)x-|-x=0, (4.55)

the equation for an oscillatory system with variable
damping. In our illustrative ^ problem, let £= 0.1.

In eq (4.55), let us introduce the variable v=x,
then

dv__ {l—x^)v—x

dx V

The algebraic equation for an isocline curve is then

X
^ e(l— x^)— m'

where m is a specified value of dv/dx, the slope of

a solution curve (phase path). Isoclines found
from this relationship with indicated values of m
are plotted in figure 4.8. Because the equation is

nonlinear, the isoclines are curves and not straight

lines as in figure 2.4 of chapter 2. An infinity of

isoclines come together at the origin, which is a
singularity." For e=0.1, the isoclines have a

rather simple geometrical shape, suggestive of

figure 2.4. Line segments with appropriate slope

are located along the isoclines of figure 4.8. For a

precise construction of the phase trajectories, more
isoclines and line segments are needed than are

shown here.

A most interesting property of the solution for

the van der Pol equation is that there is a particu-

lar closed solution curve that is ultimately
achieved, regardless of the initial conditions.

This closed curve represents a steady-state periodic

oscillation, determined only by the properties of

the equation itself, and independent of the way
the oscillation is started. It is a phenomenon
characteristic of oscillating systems with nonlinear

damping and cannot occur in a linear system. A
more intensive investigation of the phenomenon '°

shows that, if the initial point is inside this closed

curve, the corresponding phase path (solution

curve) spirals outward. If the initial point is out-

side the curve, the phase path spirals inward. In

either case, ultimately the phase paths approach
this closed curve, called a limit cycle by Poincare

[60]. An important property of this limit cycle

for eq (4.55) is that the maximum magnitude of x

is always close to two units, regardless of the

value of

^ The relative magnitude of t has slgniflcant effect upon the configuration

of the phase paths which characterize the behavior of systems governed by
eq (4.55). For a study of the effect of varying e and the concept of limit cycles,

see [9], p. 148 et seci., and [5], p. 35 et seq.
" For a system whose motion Is characterized by an autonomous equation

(such as equation (4.53)), the points at which both i and r vanish are called

singular points. For a discussion of such points, see [1], p. 9.

i» For example, see [59], p. 148 et seq.
II See [59], figures 58 and 59; see [5], figures 3.4 and 3.5.
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€=0.1

Figure 4.8. Phase path for equation x— e{l—x^) x-\-x= 0

for e= 0.1.

The closed curve Cls the limit cycle. Isoclines are given for constant m

(Reproduced from [59] with permission from The Clarendon Press, Oxford)

6.2. Phase-Plane Delta Method [61]

In starting a solution by the isocline method,
the entire plane must be filled with line segments
which fix the slope of the phase paths. If only a
single such trajectory is sought, only a few of

these line segments are actually used. Consider-
able simplification would result if only information
related directly to the desired solution curve were
used. Jacobsen [61] has proposed just such a
method. It is an extension and refinement of the

earlier work by Lamoen [62] and Fuchs [63]. In

[61], Jacobsen generalizes and consciously formu-
lates the method as an efficient working tool.

Let us assume that either inherently or by a

suitable division it is possible to reduce the equa-
tion governing the motion of a system to the form

x+H{x, X, t)=0 (4.56)

without specifying any particular kind of function
H. Then, after choosing an arbitrary constant k
(of dimension T~^), eq (4.56) may be written as

x+k%(x, X, t)=0 (4.56a)

with h of the same dimension as x. If we intro-

duce the phase-plane coordinates x and y=x/k, we
may replace eq (4.56a) by

x=ky

y= —kh
(4.57)

from which we may obtain the differential equa-
tion of the trajectories in the phase plane.

dx
(4.58)

In the phase-plane, the tangent of the path through
P, figiu-e 4.9, will be perpendicular to line QP. A
graphical procedure, leading to an approximation
of the trajectory by a sequence of arclike seg-
ments, can be based on this geometric relationship.

It is apparent that if k (as used here) is the same
as the quantity tj„ (used in the chapter 2 discus-
sion of the phase-plane), the coordinates y and v

will coincide. The length h (fig. 4.9) may be
divided into the two components x and S, from
which it follows that

dv x+5
dx

(4.59)

where v=x/w„ and d=8{v, x, t) =h(v, x, t) —x. Equa-
tion (4.59) is similar to eq (4.54) used in the dis-

cussion of the isocline method. For 5 constant,
the variables of eq (4.59) are separable and can be
integrated to yield

v''+{x+by :constant =p^, (4.60)

the equation of a circle of radius p with its center
at (x, ») = (— 5, 0). Thus, for a suitably small
increment, the trajectory is the arc of a circle

having these properties. In reality 5 is not a
constant. This implies that the true centers of

curvature of the path segments are located some-
where on the line PQ (fig. 4.9), but not neces-
sarily at Q.

P(X,V)

'2 Note the nonautonomous nature of eq (4.56) in contrast to eq (4.53) et
seq.

Figure 4.9. Graphical representation of segment of phase
path at P(x, v).
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Let us apply the delta method to a Duffing-

equation model: let the motion of such a system
be governed by [61]

x+ 25(l + 0.1x2)x=0 (4.61)

with initial conditions at i=0: 0. Then,
putting the equation in the form of eq (4.56a),

where Wn=25, h—x-\-8=x-\-0.lj(^, and (in terms
of the phase-plane coordinates)

dv X+0.1x3

dx

In figure 4.10, a plot of the solution curve for eq

(4.61) is shown.
Construction of the approximation to the cm-ve

is shown on the figure. The initial point is

x(0)=3, »(0)=0. As the first step, it is assumed
that X decreases to the value 2.8, or Ax*'' = — 0.2,

as shown. The average of x during this interval

is Xav'"=2.9, for which the value of 5 can be read
directly as 5av*"=2.4, approximately. Thus, the

center for the first circular arc is located at

x=-2.4 and v=0. The radius is (3+2.4) =5.4,
and with this radius an arc is drawn to the point

where x=2.8, indicated in the figure by the small
dot marked x(0)+ Ax'''.

By continuing in this manner, the entire solu-

tion curve can be buUt up as a sequence of circular

arcs. Dots along the curve of figure 4.10 indicate

Figure 4.10. Phase path for x+25(l + 0.1x2)x= 0 con-

structed by delta method.

Dots on phase path indicate junction point on arcs

(Reproduced from [5] with permission from McQraw-Hill Book Co., Inc.)

the junction points of successive arcs used in

obtaining the phase path.
While the delta method is most immediately

applicable to equations with oscillatory solutions
(that is, closed-curve phase-paths), it can be
applied to other types of equations as well. Chu
and Abramson [71] have applied it to systems with
several degrees of freedom.

In summary, the phase-plane-delta method rele-

gates all the terms of an ordinary second-order
differential equation into the type form

x+ co„2(x+5)=0. (4.62)

Using the graphical procedure described above
and the parameters of eq (4.62), an approxima-
tion to the sought-for solution curve is plotted in

terms of the phase-plane coordinates (x, v). The
accuracy of the graphical procedure depends
upon judicious choice of thi size of the x incre-

ments. Test cases in [61] involving elliptic

integrals, Bessel and Neumann functions, show
good accm-acy for increments of practicable

size. For reasons of acciu^acy, the method is not
recommended for solutions involving long dura-
tions; for example, as in Mathieu-type equations.

In the case of forced-motion systems, eq (4.56)

may be written as

mx+H{x, X, t)=j{t).

Rearrangement into the type-form (eq (4.62))

yields

from which

i+ a;„='[x+5-^/(o]=0,

5e«=5-^[./(i)].

If the external driving term x*{t) is a forced

motion of the "ground" end of the spring element

of a spring-mass system, then eq (4.56) may be
written as

mx+/:[x-x*(0+5]=0.

If the relative displacement of the mass is denoted

by y~x—x*{t), then we have

from which

y+o^n'\y+^+^2 x*(o]=o

5eM=5+— x*(<).

Solutions for systems of these types are treated

in [61] for several step-function excitations.

6.3. Displacement-Time Plots From Phase
Paths "

Phase-plane trajectories involve time implicitly

but it can be determined explicitly and the dis-

13 See [59], chapter 7.
, j •

>« A graphical integration and also a geometrical method are given m
[6, p. 6231.
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placement plotted as a function of time. One
method requires step-by-step integration and can

be performed as follows

:

For small increments Ax and A^, the average

velocity is

_J_ Ax

C0„ Al

A small increment Ax can be measured on the

phase path and the corresponding v^y determined.

The increment in time needed to traverse the

increment Ax is then

Atsw„A^=—

In figure 4.11a, a portion of the phase path of

figure 4.10 is shown. We recall that the initial

conditions for this case are, at i=0, x=3, x=v=Q.
Increments (negative here) in x are assigned as

Ax*^\ Ax*^', Ax'^' . . ., and corresponding av-

erage velocity values are ^av^ \ ^av ? ^av • * •?

(also negative). The corresponding increments in

r(= w„Ai) are then detremined from eq (4.63) and
are positive. Individual points obtained in this

way are plotted in figure 4.1 lb. As in any numeri-
cal integration procedure, the choice of the magni-
tude for Ax is a compromise. In general, Ax
should be chosen sufficiently small so that the

corresponding changes in x and v are also small.

6.4. Other Phase-Plane Methods

A review of six general types of recent analytic
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5. Simple Aperiodic-Function Generators

J. L. Schweppe '

1. General

All methods of transducer calibration require

that a known input be applied and that the out-

put be measured precisely. In this and the fol-

lowing chapters, methods of producing the required

input and methods of evaluating the measured
response will be discussed. This chapter covers

three types of simple aperiodic-function genera-

tors: the dropping ball, the quick-opening device,

and the explosive device.

1.1. Types of Simple Aperiodic-Function
Generators

Perhaps the most simple, though not the most
satisfactory, aperiodic-function generator is the

dropping ball. The transducer is set in motion
by bouncing a ball bearing on the diaphragm, an
action which approaches a true impulse.

Quick-opening devices include both quick-
opening valve and burst-diaphragm devices.

The pressure change produced approaches a

step-function with the direction of the step either

positive or negative.

Finally, a pressure step or pulse can be pro-

duced by an explosion. This is an adaptation of

the closed bomb which has been used traditionally

to determine thermodynamic properties and to

determine the rate of reaction of fuels and oxidants.

1.2. Place in Pressure Transducer Calibration

The dropping ball was perhaps the first effective

aperiodic generator which could be used for the
determination of the natural frequency of trans-

ducers [1].^ The method has a number of limita-
tions which are discussed in section 2 of this

chapter. Because of these limitations the drop-
ping ball is not used extensively, although it can
be used at higher frequencies than any of the
other simple devices.

The quick-opening devices are used to provide

precise pressure steps for amplitude calibration.

In general, they are too slow for effective fre-

quency calibration.

The explosive devices do not provide precise

pressure steps. Therefore, calibration requires
comparison with a gage which has been calibrated
by some other method. For this reason explosive
devices are not used extensively.

1.3. Range of Operation

The range of operation for each of the devices
discussed in this chapter is given in table 5.1.

The amplitude ranges are those reported by the

laboratory or manufacturing concern where the

device was built or used. The rise time of a

pressure step of given amplitude (represented by
the response of a "fast" transducer to the pressure

step) is also that reported by the laboratory.

The frequency ranges show the highest frequency
mode of oscillation of the transducer which can
be excited by a given aperiodic generator. These
are approximations based on the assumption that

the rise time for maximum swing of the transducer
must not exceed one-fourth of the period of oscilla-

tion of the transducer.

Table 5.1. Range of Simple Aperiodic-Function Generators

Device

Dropping ball
Quick-opening
JPL burst-diaphragm..
Eisele's valve
NBS valve

Explosive
JPL

,

NOL

Amplitude
range to

psia
Not applicable.

200-

-

3,000-.
50,000.

Time for pres-
sure step

Rise

psta

200
1,250

23,500

700 700 300

40,000. 40,000 400X10'

Rise
time

250

200X103
25

Fre-
quency
range to

cIs

100,000

1,000

10, 000

8, 000

2.1. Description

2. Dropping Ball

transducer system's response to the impact is

The first simple aperiodic -function generator
to be considered here is the dropping ball. This
generator in its most simple form consists of a
small ball which is dropped onto the sensing end
of the transducer [1, 2, 3], figure 5.1. Ordinary
ball bearings have good elastic properties and are
customarily used. The ball is released by cutting
off the current to an electromagnet which holds
the ball directly above the transducer. The

1 Professor of Mechanical Engineering, The University of Houston; Presi-
dent, Houston Engineering Research Corporation.

2 Figures in brackets indicate the literature references on p. 75.

displayed on an oscilloscope. The oscilloscope

sweep may be triggered by the transient voltage

generated across the electromagnet when the

current is cut off, or by a nucros\\atch or photocell

actuated by the ball dropped on the transducer or

by a second ball dropped at the same time,

figure 5.1a.

2.2. Theory

The dropping ball transmits its kinetic energy

to the transducer during the very short time the

two masses are in contact. The ball then bounces

away and the transducer is left to vibrate at its
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own natiiral frequency. If the ball and the
sersor were perfectl}^ elastic, and if the sensor
deflection were zero, all of the kinetic energy of
the dropping ball would be retained by the ball

when it bounced away. This condition is ap-
proached as the mass of the dropping ball ap-

proaches zero. As the mass of the ball is increased
from zero, the amount of energy transmitted to
the sensor Increases, reaches a maximum, and
then decreases again [2], figure 5.2.

The fraction of the dropping energy transmitted
to any given pressure transducer is affected by a
number of factors. Some of these factors are the
elasticities of the ball and the sensor, the relation

between the force applied to the sensor and de-
flection of the sensor, and the relation between the
rate of application of force and rate of deflection.

2.3. System Design

The design of a dropping-ball system for cali-

brating pressure transducers must take into

account the factors which are discussed in section

2.2. Further consideration must be given to the
selection of the dropping ball, the height of the
drop, the oscilloscope sweep speed, and the
triggering time. Since the proper choice of these

design variables is generally different for each
transducer to be tested, the testing system should
allow for adjustments in these variables.

2.4. Evaluation of Test Data

The product of a dropping-ball calibration is an
amplitude versus time plot of the transducer
output. Four factors limit the value of this out-

put function: (1) The forcing function cannot be
determined precisely. (2) The response during
the finite period when ball and transducer are in

contact is a function of the joint mass. (3) Thin
diaphragm transducers are sensitive to noise.

And (4) the dropping ball exerts a point-concen-

trated force on the transducer and, depending on
the configuration of the transducer, the response
may not be the same as the response to a uniformly
distributed pressure force. It is, however, usually

possible to determine the frequency of the pre-

dominant mode and to treat the transducer as if

this were the only mode of oscillation. The
dropping-ball method is not recommended for

amplitude response determinations. This method
is useful for determining the transducer's pre-

dominant mode of oscillation in the range of 2 to

100 kc/s.

3. Quick-Opening Devices

In general, the quick-opening device utilizes

two pressure chambers—a small gage chamber
and a relatively large reservoir. Initially the two
chambers are at different pressures and the pres-
sure step is generated by opening quickly the pas-
sage between the two chambers. Since either
chamber may be at the higher pressure initially,

the pressure step may either rise or fall. Hylkema
[4] states that, for the JPL (Jet Propulsion Labo-
ratory) device, the pressure-fall (or negative-
going step) arrangement develops a closer ap-
proach to the ideal step function. While this

is generally true lor quick-opening devices, it is

important to recognize that all gages do not have

the same character of response to negative- and

positive-going steps. With the negative-going

step the transducer oscillates about a median

which is near the zero-pressure point. As a

result it is possible for the diaphragm to lose

contact with the force-summing component, in

which case the recorded transducer response differs

from that for oscillation about a median at a

significant positive pressure point.
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3.1. Description of Burst-Diaphragm Device

One of the simplest quick-opening devices for

pressure gage calibration utilizes a thin plastic
diaphragm as the separator between the two
pressure chambers. Because of the bursting
characteristics of the diaphragm, a pressure fall in

the gage chamber produces a sharper pressure
step than a pressure rise.

Hylkema and Bowersox [4] of the Jet Propulsion
Laboratory have reported the construction details
of one typical burst-diaphragm device, figure 5.3a.

The JPL device has a 200-in.^ reservoir chamber
and a very small gage chamber separated by a
thin plastic diaphragm. Either chamber can be
pressurized with an inert gas. The diaphragm
is punctured by a 1/4-in. knife operated by a
solenoid. A microswitch on the knife assembly
triggers the sweep of the monitoring oscilloscope.

In the JPL device, both chambers are lined with
felt to eliminate pressure oscillations due to
reflected pressure waves.
The JPIj calibrator can operate at pressures

up to 200 psi. The time to reach a steady pres-
sure is about 250 ^sec for a 200-psi change. This
device can be used to shock a transducer into

b

FtGURE 5.3. Burst-diaphragm device.

(a) Cross section of JPL device
(Reproduced from [4] with permission from Proc. ISA.)

(b) Wiancko device
(Reproduced by courtesy of WIANCO Engineering Co.)

oscillation when the predominate resonance fre-

quency is below about 1000 c/s. At higher
resonance frequencies the device is limited to
amplitude calibration.

Burst diaphragm devices (fig. 5.3b) are available
commercially and custom models are being used
in a number of laboratories. P. M. Aronson of
the Naval Ordnance Laboratory, White Oak, Md.,
has built a device which operates at pressures up
to 1000 psi.

3.2. Description of Eisele's Device

In some quick-opening devices a valve is used
in place of a burst-diaphragm. The general
principle of operation is the same. In Eisele's

device [3] the reservoir is pressured with com-
pressed air, the pressure is adjusted to the desired
level with a needle-valve, and then a quick-
opening hand valve is opened to admit the high-
pressure air to the gage chamber, figure 5.4.

In principle Eisele's device can be operated at

any pressure for which equipment can be designed
and at which gas is available. The particular
device described here can be operated at pressures
up to 3000 psi. The pressure rise rate is much
lower than for the burst diaphragm device,

6.2X10^ versus 8X10^ psi per second. Applica-
tion is limited to amplitude calibration.

3.3. Description of NBS Device

D. P. Johnson of the National Bureau of

Standards has developed a quick-loading, liquid-

medium pressure calibrator which is now in

service in the Mechanical Instruments Section of

the Bureau (figs. 5.5, 5.6, and 5.7). In this device
the two chambers are separated by a special

quick-opening valve. The gage is mounted in

the smaller chamber, and the pressure step is

obtained by opening the valve between the two
chambers. In Johnson's device the main reser-

voir is about 1000 times that of the gage chamber
and its length is about 40 times as great.

The operating procedure is as follows: (1)

Open the bleeder. (2) Open the poppet by opening
and closing the quick-acting dump valve. (3)

Fill the system by pimiping. (4) Close the
bleeder. (5) Close the poppet by increasing the
differential pressure between the piston and the
main reservoir several psi (pump-to-piston valve

open and pump to main reservoir valve closed)

.

(6) Open pump to main reservoir valve and pump
to desired pressure behind piston and in main
reservoir. (7) Open bleeder. If some main reser-

voir pressure is lost, repump. During pumping
leave pump to main reservoir and pump to piston

valves open. (8) Close pump to main reservoir

and pump to piston valves. (9) Close bleeder.

(10) Dump pressure behind piston by operation

of quick opening valve.

Note that, as long as the poppet valve is closed,

the reservoir pressure exerts a force which tends

to hold the valve head in the closed position. As
the actuating force is increased, the tension in the
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Figure 5.4. Eisele's quick-opening device. Figure 5.5. NBS quick-loading calibrator.

(Reproduced from [3] with permission from Archiv fur Technlsches Messen.)
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Figure 5.6. Principal parts of NBS quick-loading calibrator.

Figure 5.7. Flow diagram for liquid-medium pressure-step generator.
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10 m SEC

Figure 5.9. JPL closed bomb.

(Reproduced from JPL Memorandum No. 20-168 with permission from Jet
Propulsion Laboratory)
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Figure 5.10. NOL closed bomb.

(Reproduced from 5 with permission from Trans. ASME.)
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Figure 5.8. Transducer response to NBS calibrator.
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Figure 5.11. Typical dynamic pressure pulse in XOL
closed bomb.

(Reproduced from 5 with permission from Trans. ASME.)
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valve stem increases almost to the breaking point.

An expansion wave travels down the stem moving
the poppet first in the direction of tighter closure,

then in the opposite direction. The elastic force

in the stem snaps the valve open at a rapid rate.

In Johnson's device the hydrostatic pressure in

the reservoir is measured by its effect on the resist-

ance of a manganin wire. The gage sensitivity is

estimated to be 0.5 psi at 30,000 psi with a cali-

bration repeatability of ±0.1 percent. The
calibration accuracy of the device is limited by
two inherent errors. (1) Closure of the bleeder
valve (step 8) reduces the volume of the gage
cavity, thus raising the pressure to something
above 0 psig. (2) It takes 5 to 10 msec for the

piston to complete its travel. The volume of the
main reservoir is increased by the travel of the
piston so that the gage experiences a transient

pressure somewhat higher than the steady final

pressure. Both errors appear to be independent
of pressure, so that for a given configuration of the
device there is a pressure below which the error is

not acceptable.

The time required for the pressure in the gage
chamber to reach the main reservoir pressure

depends on the gage cavity size, the gage cavity
aperture diameter and length, the viscosity of the

liquid, and the poppet valve stem stress. The
damping restriction shown in figure 5.6 is designed
to utilize the viscosity of the liquid to damp the

oscillations of the poppet. With the most rapid
pressure rise, the pressure step causes the gage
cavity to ring at a frequency of about 10 kcs
This ringing frequency limits the use of the liquid-
medium calibrator for testing the periodic re-
sponse of a gage in a hquid. By increasing the
time for the pressure rise to about 2 msec, a very
nearly monotonic step can be produced for testing
the nonperiodic transient errors. Typical response
curves are shown in figure 5.8.

3.4. Evaluation of Test Data

AH of the quick-opening devices provide a
positive means for amphtude calibration within
the ranges of pressure specified for each device.
Evaluation of the amplitude data simply involves
a determination of the output-input ratio as a
function of the input magnitude.
None of these devices is particularly suited for

the determination of frequency response. Since
each is a step generator the rise time must be short
in comparison with the period of the main resonant
frequency of the transducer, if the transducer is

to be shock excited. This requirement limits the
usefulness of the quick-opening devices to a fre-

quency range of about 0 to 10,000 c/s. The
frequency response data which are valid can be
evaluated by the methods described in chapters
2-and 3.

4. Explosive Devices

4.1. Description of JPL Bomb

Among the closed-bomb pressure generators
which have been described in the literature is a

simple calibration device developed at Jet Propul-
sion Laboratory [4]. This bomb was designed by
L. R. Williamson and was described by C. G.
Hylkema and R. D. Bowersox (fig. 5.9). The
outer structure is a heavy-walled steel pipe nipple,

about 6 in. long, fitted with screwed pipe caps.

Aluminum liners are used to protect the outer
case from exploded fragments and to vary the
internal volume. The pressure is generated by
exploding a dynamite cap within the bomb, and
the peak pressure is adjusted by varying the
internal volume. Since blasting caps are not
perfectly uniform, successive shots may not pro-
duce the same pressure. This makes it necessary
to use a calibrated comparison gage to determine
the actual pressures attained.

Although bombs can be designed for very high
pressures, the JPL bomb is limited to a maximum
pressure of 700 psi. Rise time, using blasting
caps, is about 300 usee. The average rise rate of

2.3 X 10® psi per second is comparable to that of the
quick-opening devices.

4.2. Description of NOL Bomb
Mickevicz [5] of the Naval Ordnance Labora-

tory has described a device which operates at

much higher pressures (fig. 5.10). Mickevicz'

dynamic pressiu-e pulse generator is capable of

generating reproducible, pressm-e-time pulses in

the order of 40,000 psi. The pressm-e is generated

by igniting a propellent powder within the bomb,
and the pulse is produced by releasing the pressure

through a rupture disk when it reaches a pre-

determined value. The pressure transducer is

mounted in the side of the firing chamber.

A typical djmamic pressure plot is shown in

figure 5.11. The pulse rise rate is dependent on
the powder grain size, and the decay rate is

dependent on the escape aperture size. Rise

rates of 14X10" psi per second have been attained,

corresponding to 40,000 psi in 4,000 fisec. Dy-
namic calibration is accomplished by comparing
the response of the imknown gage with that of a

calibrated high-frequency response gage.

4.3. Evaluation of Test Data

The explosive devices produce somewhat more
rapid pressure rise rates than the quick-opening

devices. However, they are not adequate for

determining frequency response above about 8,000

c/s.

Since precise pressure steps are not produced,

amplitude calibration can be determined only by
comparison with a gage which has been calibrated

by some other method. Further, any determina-

tion of frequency response also involves the use
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of a previously calibrated gage. Evaluation then
requires a determination of the input function

through use of the transfer function and the out-

put of the calibrated gage, followed by evaluation

of the transfer function for the gage being tested.
The methods used are described in chapters 2
and 3. The explosive device provides only a
secondary method for calibration.
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6. Shock Tube Methods

J. L. Schweppe '

1. General

1.1. The Shock Tube as a Step- Function
Generator

In chapter 5 a number of simple aperiodic func-

tion generators are described and limitations in

performance are pointed out. All of these simple
generators produce pressiu-e steps or pulses with
relatively slow rates of pressure change or with
uncertain magnitude or both. The rates of pres-

sure change are such that dynamic calibration

with these devices is limited to transducers with
predominant modes of oscillation at frequencies

below 10,000 c/s. Since calibration is required
for transducers having predominant modes of

oscillation in the range of 50,000 to 100,000 c/s or

higher, the step-function generator must be capa-

ble of changing the pressure from one known level

to another in a sufficiently short time to shock

excite these high-frequency transducers.

The shock tube meets the requirement for a

very short rise time between pressure levels—as
short as 10~^ sec for a positive pressure step [1].^

With proper design the pressure can be held steady
for 4 or 5 ^sec after the step change in a shock
tube of moderate length. Step amplitudes are

easily controlled from a few psi to about 600 psi

in a shock tube of relatively simple construction.

1.2. Information Obtained From Shock Tube
Calibration

The direct product of the shock tube calibration

procedure is a time-base record of the response of

the transducer to the step input. This record is

obtained by photographing the trace made by the

transducer output on an oscilloscope (figure 1.9).

Methods described in chapter 2, section 3.2 may
be used to determine the frequency response from
the transient response to a step-function input.

Numerical methods also may be used effectively

with the aid of a digital computer [2].

2. Description

2.1. Description of Components

The shock tube consists of two elongated cham-
bers, usually of constant cross section, separated
by a burst diaphragm. Initially the gas pressure
in one chamber is higher than in the other. When
the diaphragm ruptures the expansion of the high-
pressure gas into the low-pressure chamber gen-
erates a shock wave which travels faster than the
expanding gas. In addition to the compression
and expansion chambers and the diaphragm-
punctiu-ing mechanism, the equipment includes a
gas supply and regulating system, static pressure
and temperature-measiu'ing devices, a shock ve-
locity-measuring system, and a transducer output
recording system. See figure 6.1.

GAS SUPPLY
AND CONTROL
SYSTEM

STATIC PRESSURE

AND TEVPERATURE

MEASURING SYSTEM

TRANSDUCER
ELECTRONIC
SYSTEM

SHOCK VELOCITY

hEASURING

SYSTEM

OSCILLOSCOPE

INDICATOR

Figure 6.1. Shock tube schematic.

' Professor of Mechanical Engineering, The University of Houston; Presi-
dent, Houston Engineering Research Corporation.

2.2. Qualitative Description of Shock Tube
Phenomena [3]

Initially, the gas in the compression chamber
is at a higher pressure than the gas in the expan-
sion chamber, figure 6.2a. When the diaphragm
bursts, the contact sm-face between the gas origi-

nally in the expansion chamber and that originally

in the compression chamber moves into the expan-
sion chamber. The pressure and the velocity of

the medium on either side of the contact surface

must be the same, but the temperature and den-

sity differ. A short time after the diaphragm
bursts the idealized waves appear as shown in

figure 6.2b.

The leading edge of the rarefaction wave moves
into the compression chamber at the velocity of

sound for the undisturbed medium while the trail-

ing edge moves in the same direction at a lower

velocity. The reduced velocity of the trailing

edge results from the fact that it moves in a me-
dium which is at a reduced temperature and it

moves against the velocity of the stream. The

rarefaction wave will, in time, reach the end of

the compression chamber where it will be reflected

as a rarefaction, figure 6.2c. After reflection the

wave ^vill move in the same direction as the shock

2 Figures in brackets indicate the literature references on p. 85.
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wave at the velocity of sound in the medium pius
the particle (contact surface) velocity. If the
tube is long enough the rarefaction wave will over-
take the shock wave, figure 6.2d. Under this cir-

cumstance the strength of the shock drops off.

For a shorter tube, the shock wave reaches the
end and is reflected before the rarefaction wave
overtakes it. If the end of the tube is open the
reflection is a rarefaction and if the tube is closed
the reflection is a shock wave of more than twice
the magnitude of the incident pressure step, figures

6.2e and 6.2f.

3. Shock Tube Theory

3.1. General

The theory of shock waves is covered thoroughly
in a number of references [3, 4, .5, 6, 7, 8, 9, and
10]. The general equations for shock and expan-
sion waves may be used to analyze the flow con-
ditions in a shock tube. In figure 6.3 the region
of flow ahead of the shock in the expansion cham-
ber is designated (1), the shock front is repre-
sented by a line of slope 1/C7, and the contact

REGION (9)

REGION (8)

REGION ( I

)

DISTANCE, FEET

Figure 6.3. Distance/time plot of events.

surface by a line of slope 1/u. The region be-
tween the shock front and the contact surface is

designated (2), the region in front of the head of

the rarefaction wave is designated (3), and the

region between the contact surface and the tail of

the rarefaction wave is designated (4)

.

Let us consider right-traveling shocks as in

figure 6.3. The velocity of the shock relative to

the gas into which it moves is U—Ui, and relative

to the gas out of which it moves is U—U2. The
flow through a shock discontinuity may be treated

as though the flow were steady at each instant of

time and the relations for steady-flow normal
shocks may be applied if the coordinate system
moves with the shock [6, p. 995]. The following

basic equations are taken from Shapiro [6], chap-
ter 25, where detailed derivations are presented.

The plus sign refers to a right-traveling and the

minus sign to a left-traveling shock wave. (See

List of Symbols.)

Translation particle velocity (Shapiro, eq 25.20,

p. 1001):

U2—U1 ±2
7+

5 [Uzzii ai 1. ±2 r 1 T
iL «i u-u,] 7+1 mJ

(6.1)

Shock wave pressure (Shapiro, eq 25.23, p. 1002)

:

(6.2)
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Relation between particle velocity and velocity of

sound (Shapiro, eq 24.20, p. 945):

1 j-lnl /-U2—

2 V a, / (6.3)

Contact surface velocity (Shapiro, eq 25.32c. p.

1008)

:

P2

U2 Pi
-1

(6.4)

Relation between reflected and incident shock
(Shapiro, eq 25.35, p. 1020):

7+1 VPi/^

(6.5)

Relation between incident and reflected pressure
step (Shapiro, eq 25.36, p. 1021):

2y

k+l
P2-P1 Pi

,

7-1 (6.6)

P2 ' 7+1

Relation between temperature and shock velocity

(Shapiro, eq 25.5, p. 995)

:

)(^
2^
— ]

Mi^-1

(7+1)^
(6.7)

Ml'
2(7-1)

3.2. Contact Surface Velocity

For a shock front which moves toward the
right into a region at rest, Ui— 0 and the positive

sign is selected in eq (6.1). The resulting relation

is not closely checked by experiment, but it is

useful for planning experiments and for designing
shock tubes.

U2

di 7+

In eq (6.8), 7 refers to the ratio of specific heats
for the gas in region (1). For air, 7=7/5 and eq
(6.8) becomes

Since in a helium-to-air tube the shock front also

moves into air in region (1), eq (6.9) applies.

3.3. Shock Wave Pressure

Equation (6.2) relates the shock velocity to the
shock wave pressure. In the derivation of this

equation it is assumed that the perfect gas laws
apply, that the specific heats are constant, and
that flow is adiabatic. For Ui=0

7+
27

7+1
(M,2- -1).

(6.10)

A second equation, which relates the com-
pression-expansion pressure ratio to the shock-
wave pressure, is developed as follows: Write eq
(6.3) for a rarefaction wave moving left into region

(3) at the velocity of the region (4) front. In this

case 7 is the ratio of specific lieats (assumed con-
stant) for the gas in the compression chamber and
^3=0. Also assume that the isentropic relation

between a and p applies. That is.

27

P
P,

2t,

1 \aj
Then

ffla 73—1 \ aJ 73—1 L \P3/

But Ui=U2 and P4=P2. Therefore

(6.11)

U2_ 1

03 73-

Now combine the above equation with eq (6.4)

and solve for P1/P3. The result is

P3 P

^i(73-l) (p-^) 7,-1

(6.12)

If the same gas is present at the same temperature

in both the compression and expansion chambers,

73=7i, a3=ai, and
27

Pi

P3"

Pi

"P2

7-1
27

El
Pi

1

7-1

(6.13)

For air in both chambers, eqs (6.10) and (6.13)

reduce to

(^-l)=^(Mi^-l) (6.14)

P

El
Pi

(6.15)
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For helium-to-air, eq (6.14) applies and eq (6.12)

reduces to

(6.16)

If the temperatures in the two chambers are as-

sumed to be the same, and the velocity of sound is

computed assuming perfect gases

Pi
Pz_ Pi

(6.17)

3.4. The Reflected Shock Wave

The pressure ratio for the reflected-to-incident

shock wave is given by eq (6.6). In both air-to-air

and helium-tp-air tubes the equation is the same.

P5-P2 IP.

QPi+P2
(6.18)

or

P..-P

P2-P

Combining eq (6.19) with eq (6.14) yields a

more convenient relation

:

The relative Mach number of the reflected

shock may be determined by writing eq (6.1) for

the left-traveling reflected shock with 1/5=0.

Thus
U2

MJ (6.21)

Since this left-traveling shock moves into region

(2), its absolute velocity to the left is reduced by
the amount of the right-traveling particle velocity

in region (2).

U5=U2—Msa2. (6.22)

The velocity of sound in region (2) is given by
eq (6.21), and the Mach number M5 by eq (6.2)

written for the shock between regions (5) and (2)

:

\P2 J 27
fl.

Then

(7+l)+ (7-l)
Ps

-U2

(6.23)

(6.24)

The negative sign indicates that the reflected

shock moves left.

3.5. The Rarefaction Wave

When the diaphragm bursts a rarefaction wave
travels to the left into the expansion chamber,
region (3), as shown on figure 6.3. The rarefaction

wave tip travels at the speed of sound, as, in the
negative direction until it is reflected by the closed
end of the expansion chamber. It then travels in

the positive direction; first at a changing rate
through the expansion fan, then at a constant rate
until it reaches a point where it overtakes the con-
tact surface or meets the reflected shock, or both.
Tha diu-ation of the pressure step in the shock
tube depends on the time required for the head of

the rarefaction wave to meet the reflected shock.
Wright [7] and others have described how to de-
termine the position of the rarefaction wave tip

as it moves through the expansion fan.

Passage through the expansion fan slows the
rarefaction wave tip slightly, and hence shifts

the region (4) distance-time cm"ve to the left.

If this shift is neglected and the constant velocity
into region (4) is used to compute the position of

the rarefaction tip, the result is an estimate of the
duration of the pressm-e step which tends to be
shorter than the actual step. Design based on
the above assumption is therefore conservative.

It is recommended that design be based on a

negative rarefaction wave tip velocity of 0.3 and
a positive rarefaction wave tip velocity of

dx

di
= U^-\-a^. (6.25)

3.6. Pressure Limitations

Consider eq (6.12), which relates the initial

compression and expansion chamber pressures to

the size of the pressure step. If P1/P3 approaches
zero, P1/P2 becomes very small. But Pi cannot be
zero in a real shock tube. Therefore we can
divide both sides of eq (6.12) by Pi and rearrange.

P3

«i(73— 1)

27_3

73-1

(6.26)

Now P3 may become very large, but since P2
must always have a finite value, the ratio P2/P3 can

approach zero as a limit. At this limit P2 reaches

a maximum value. Solving eq (6.26) atP2/P3=0,

\Pl /max KaJ
7i(7i+ l)

(73-1)^

+--^A/(-y(^y+4- (6-27)
ai 73— 1 V \73— 1/

Inserting eq (6.27) into eq (6.10) and solving
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for Ml,

For the air-to-air shock tube, eqs (6.27) and (6.28)

reduce to

The maximum pressure ratio P2/P1 for an air-to-air

shock tube is 44.1 and the maximum Mach num-
ber is 6.16.

Higher pressure ratios and Mach numbers may
be obtained by using properly selected gases in

the compression and expansion chambers. Higher
ratios also may be obtained by increasing the
energy ratio by heating the compression chamber
or cooling the expansion chamber, or both.
Figure 6.4 shows the solutions of eqs (6.15) and
(6.17) for air-to-air and helium-to-air shock tubes
with the same initial temperatures in the com-
pression and expansion chambers.
Extremely high compression-to-expansion pres-

sure ratios are required to approach the limiting
maximum pressure step. For example, to reach
a shock strength of P2/A= 10 a compression-to-ex-
pansion ratio of about 600 is required for an air-to-

air tube. The same shock strength can be obtained
in a helium-to-air tube with a compression-to-
expansion ratio of 43. Table 6.1 below shows the
effect of compression and expansion chamber pres-
sure on shock amplitude for both air-to-air and
helium-to-air tubes.

Table 6.1

Shock tube Pi Pi Pi- Pi

Alr-to-air 500 7.6 41.5 34
600 15.0 66 SI
600 30.0 104 74

1, 000 16.0 83 68
Hellum-to-alr 600 15.0 132 117

3.7. Real Shock Tube Behavior

Experimental measurements indicate that val-

ues of shock strength computed from eq (6.12) are

higher than those actually attained. The differ-

ence between the theoretical and experimental re-

sults can be explained by reviewing the assump-
tions made in the derivation of eq (6.12). The fol-

lowing assumptions were made : (1) the perfect gas

laws apply; (2) flow is adiabatic; (3) the isentropic

relation between a and p applies; (4) the specific

heats are constant; (5) the diaphragm burst is

instantaneous; and (6) viscous forces are negli-

gible. The first three assumptions are somewhat
more realistic than the last three. Glass and Pat-

terson [9] have discussed the conditions under
which variations of specific heat are of importance.

We will concentrate here on a discussion of the

influence of diaphragm burst and viscous forces.

The diaphragm is, of course, a necessary com-
ponent of the shock tube system. It separates the

high-pressure gas in the compression chamber
from the relatively low-pressure gas in the expan-

sion chamber. It is stretched nearly to the burst-

ing point by the high pressure of the expansion

chamber and is caused to burst by the action of a

knife or punch. Two factors related to the dia-

phragm cause the real shock strength to be less

than theoretical. First, energy is required to

separate and fold back a metal diaphragm or to
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accelerate the particles of a friable diaphragm to

the flow velocity of the gas. And second, the

diaphragm burst delays the formation of a one-

dimensional shock wave. For each shock a cer-

tain distance must be traveled before the wave is

fully developed.
In their paper on experimental aspects of shock

wave attenuation, Glass and Martin [10] discuss

both the growth and development of the shock
wave and the effect of viscous forces. As the
wave moves down the tube it tends to decelerate

due to the growth of the boundary layer. At the
same time the contact surface accelerates.

Although real shock tube behavior is not ideal, in

a well-designed tub the attenuation of the wave is

small.

4. Design for Pressure-Gage Testing

4.1. General Requirements

Satisfactory pressure-gage calibration with a

step-function generator requires generation of a

step of reasonable duration and known amplitude
over the necessary pressure range. To accom-
plish this with the shock tube, the compression and
expansion chamber lengths must be properly

proportioned, the tube must be designed for

minimum wave distortion, minimum mechanical
vibration, and minimum secondary shock or

noise; and the shock velocity must be precisely

measured.

4.2. Tube Dimensions

The expansion chamber must be at least long
enough for a plane wave to develop. Although
there is no theoretical relation for determination
of this length, experience shows that a length of

ten times the largest dimension of the cross

section is sufficient [11]. The size of the cross

section therefore affects the minimum length of

the expansion chamber and hence the length of

the tube.

The vertical or largest dimension of the cross

section must be large enough for the test purpose.
Wolfe [12] chose a 1% in. square section for pres-

sure gage testing because a very few pressure
transducers have diameters greater than 1 in. If

one-dimensional investigations are to be made (or

if optical timing devices are to be used) the

width or smallest dimension should be as small
as possible, but large enough that the shock wave
will deflect light rays for distinct schlieren pictures.

Bitondo and Lobb [11] found that a 2-in. width is

adequate for this purpose (they did not determine
the minimum adequate width).
The compression chamber must be long enough

to keep the rarefaction wave from overtaking the
shock wave before it passes through the test

section. The time required for this process, and
hence the best compression chamber length, de-

pends on the initial pressure ratio between the
two chambers and the gases initially present in the
chambers. For side gage location the maximum
constant-pressure interval is achieved when the
compression-expansion chamber length ratio is

such that the reflected rarefaction reaches the gage
port simultaneously with the reflected shock. For
end gage location the maximum constant-pres-
sure interval occiu's when the compression-expan-
sion chamber length ratio is such that the rare-

faction tip, the contact surface, and the reflected

shock reach the same point in the tube at the
same instant [12].

Since most pressure transducers exhibit some
response to mechanical vibration, it is desirable

to reduce the mechanical vibration to a minimum.
This can best be accomplished by making the

tube massive and rigid. The tube at the NBS
used for pressure gage testing weighs about 1500
lb, and has a minimum wall thickness of %-in.

For satisfactory performance a shock tube must
be built within reasonable dimensional tolerances.

It is generally agreed that the inside surface should
be machined but that surface grinding is an un-
necessary refinement. Bitondo and Lobb [11]

point out that waviness in the longitudinal direc-

tion is especially to be avoided and they suggest
a manufacturing tolerance of 0.035 in. in a 12-in.

length. If the tube bends the shock wave will

not remain perpendicular to the wall as it travels

down the tube.

4.3. Burst-Diaphragm Selection

In section 3 of this chapter theoretical relations

were developed based on the assumption that the

diaphragm bursts instantaneously and completely.

Real diaphragms are rated by the degree to which
they satisfy this assumption.

Glass and Patterson [9] have reported that, for

low-pressure operation, Red Zip cellophane has
the best ruptiire properties and leaves the smallest

obstruction. Glass and Patterson and others have
also reported good results with cellulose acetate

film and with Monsanto 's Vuepak F. All of the

plastic materials give best results when they are

loaded near the biu-sting point before the rupturing

mechanism is activated.

For high pressures, metal diaphragms must be
used. Copper or aluminum sheets have been used
successfully and particularly good results have
been reported for hard or half-hard brass shim
stock. Annealed shim stock gives poor results.

4.4. Gas Supply and Control System

The gas supply and control system indicated in

figm-e 6.1 includes the source of gas or gases, the

pressvire-regulation system, the loading system,

and the diaphragm-punctiu-e system.

The gas source is usually purchased in cylinders

for use in the laboratory, although a compressor
may supply air for an air-to-air tube. In either
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FiGUBE 6.5. Gas supply and control system.

case the gas is stored in high-pressure cyUnders
prior to use in the tube, and in either case moisture
free gas must be provided. On the way to the
shock tube the gas passes through a regulator
which is set at a pressure somewhat above the
maximum desired in the shock tube chamber,
figure 6.5. The puncture pressure is set some 250
psia above the desired compression chamber
pressiu'e. The load and vent switches are operated
manually to adjust the pressures in the compres-
sion and expansion chambers. The compression
chamber is loaded first to avoid distortion of the
diaphragm. When the desired pressures have
been attained and pressures and temperatm-es
have been recorded, the tube is fired by actuating
the puncture solenoid.

4.5. Shock-Velocity Measurement

Shock wave velocities are measured by deter-

mining the time required for the wave to traverse
the measured distance between two points. Be-
cause of the high velocity of the wave, the instru-

ment used to detect the passing of the wave must
have a rapid response and the instrument used to

measure the time interval must be capable of

counting in very small increments. Methods of

detecting the shock wave and determining the

velocity are discussed by Cady and Bleakney in

section C of Physical Measurements in Gas
Dynamics and Combustion [13]. Cady describes

ion-tracer techniques, use of luminous particles,

electric discharge anemometry, and acoustic Mach
meters, and Bleakney describes the light-screen

techniques. The latter method is perhaps used
most commonly to measure shock wave velocity.

Pressure transducers are also used to detect the

passage of the shock wave.
The light-screen technique is used in one of two

types: schlieren or reflection. In the schlieren

system for detecting the passage of the shock wave,
the camera or viewing screen is replaced by a

f)hotocell. The reflection method uses the shock
ront as a reflecting surface to bend the light rays
along a path through three staggered knife edges.

The two light-screen methods are equally accurate,
but the reflection method has the advantage of

simplicity and cheapness.

The light-screen methods permit defection of
the arrival of a shock wave within 1 usee. In
general, detection with a pressure transducer is

somewhat less accurate.

4.6. Transducer Output Records

The calibration system must include eq^uipment
for recording the transducer output m some
permanent form, either on photographic film or in

punched or printed form, or both. The trans-
ducer system includes the electronic circuits which
are directly associated with a given transducer.
Examples are the piezoelectric transducer and
electrometer, the capacitance-type transducer and
oscillator-detector, and the strain gage transducer
and Wheatstone bridge.

Additional electronic equipment must be in-

cluded as a part of the calibration system. Trig-
gering and time delay circuits must be provided to

start the recording equipment a few microseconds
before the shock wave reaches the transducer.
And appropriate recording equipment must be
available, figure 6.6.

The input to the trigger circuit may be the

output from one of the detectors in the shock-
velocity measuring system. This trigger-pulse

is fed to an adjustable time-delay generator which
puts out a pulse to the recording equipment a few
microseconds before the shock wave hits the trans-

ducer which is being tested. The output from the

transducer system also goes to the recording
system.
The simplest recorder is an oscilloscope fitted

with a camera. The scope is set to give a single

sweep when triggered, and by holding the camera
shutter open during the sweep, a photographic
record can be obtained. This record can be super-

imposed on a voltage-calibrated grid if the grid is

lighted during the time the photograph is being

exposed. The photographic record can then be

analyzed to determine the response spectrum of

the transducer system.
The photographic output record can be con-

verted to numerical data by manual graphical

means, or it can be scanned by an electronic

device which "reads" the curve at fixed time in-

crements and records the numerical values in

printed or punched-card form. The conversion

of the transducer system output directly to a

numerical output would be more satisfactory, but

z:

TRIGGER AND
TIME DELAY
CIRCUITS

OUTPUT
RECORDING

EQUIPMENT

TRANSDUCER

ELECTRONIC

CIRCUITS

Figure 6.6. Transducer output recording system.
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it is difficult to provide analog-to-digital equipment
which can operate sufficiently fast.

A third means of recording the transducer

system output was described in chapter 3, section

4. This is a magnetic drum recording which can
be played over and over again into a frequency
analyzer.

5. Evaluation of Test Data

The transducer system is evaluated on the basis

of the recorded response to the step-function

input. From this recorded response the amplitude
characteristic of the response can be compared
to the input step, the predominant frequency
or frequencies and the logarithmic decrement
or damping c];iaracteristic can be determined,

and the amplitude and phase characteristics of

the complex transfer function can be computed.
The general background and the relation of cali-

bration to analysis are covered in chapter 1, sec-

tion 3, and the methods for determining the trans-

fer function are presented in chapters 2 and 3.

Here we concentrate on the application of methods
described elsewhere.

5.1. Amplitude Characteristic of Response
Function

Before shock tube tests are made the transducer
system should be calibrated with a static calibra-

tion device if possible. For transducer systems
which include piezoelectric transducers, for

example, leakage prevents accurate calibration by
strictly static means. In such cases, pseudo-static
or short-time-period static calibration replaces
static calibration. The result of either of the

9
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Figure 6.7. Static calibration of transducer system.

Figure 6.8. Response of transducer system to step input.
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Figure 6.9. Response amplitude versus input-step
amplitude.

above calibrations is transducer system response
in terms of an electrical output as a function of

pressure input. A typical calibration curve is

shown in figm-e 6.7.

Figure 6.8 shows an idealized response to a step-
function input. For the air-to-air tube the step
amplitude is computed from eq (6.14) for side

mounted gages and from eq (6.20) for end-mounted
gages. The step amplitude may also be evaluated
from the transducer response—either by a graphi-
cal averaging process or by arithmetic average of

numerical values taken at equal time increments.
Since the transducer response is in electrical units,

it must be converted to pressiire for comparison
with the input pressure step. This conversion is

made with the aid of the static calibration. A
typical plot of response amplitude versus input-

step amplitude is given in figure 6.9.

5.2. Predominant Frequency or Frequencies

When the predominant frequency of oscillation

of the transducer is far removed from other
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oscillating frequencies and/or the magnitude of the

predominant oscillations is much greater than that

of the other modes of oscillation, the transducer
response can be approximated by a single-degree-

of-freedom model. In this case it is a simple
matter to scale the transducer response record
and count the number of oscillations in a given
period of time. The computation of the damped
frequency is then straightforward.

If more than one major frequency exists (that is,

if the transducer has two or more degrees of

freedom), determination of these frequencies is

not so simple, and a more sophisticated method of

analysis is required. One such method is dis-

cussed below in section 5.4; other methods are

discussed in chapter 3.

5.3. Logarithmic Decrement or Damping
Characteristic

In a typical transducer system, actual damping
is only a smaU fraction of the critical damping.
This is the case for the system illustrated in figure

6.8 and we assume that the systems we are con-
cerned with here are all of this "underdamped"
category. For underdamped, single-degree-of-

freedom systems the logarithm of the ratio of the
magnitudes of successive maximum (or minimum)
displacements is constant. The following expres-

sion is known as the logarithmic decrement [14,

p. 205]:

(6.31)=ln (^).
\yn+2/

The logarithmic decrement is related to the frac-

tion of critical damping by the equation

Cc V5'+47r2
(6.32)

Knowledge of the damping ratio and the damped
frequency can be used to compute the undamped
natural frequency, w„.

(6.33)

Performance of the transducer system may then
be predicted from standardized curves of magnifi-
cation ratio and phase angle versus w/c<j„, for a
single-degree-of-freedom system [14, pp. 208-9]. For
more complex sj^stems, more sophisticated meth-
ods of analysis are required. One such method is

discussed in the following section.

5.4. Determination of the Transducer System
Transfer Function

Approximation of the response function may be
carried out by any one of the methods described
in chapter 3. As an example, use the method of

section 3.6 based on closely spaced coordinates.

It is necessary to express the step input-function
in the complex plane in a form compatilile with
the approximation of the response function. For
a step input, the Laplace transform may be shown
[2] to be

Fis)=
j:

Fe-"dt= --AtF (n-icot|) (6.34)

Equation (6.34) represents a complex vector of

amplitude F{(jS)=FmI2 sin {612) and phase angle
^(w) = (-9O°-0/2).
The amplitude characteristic of the transfer

function is given by eq (2.1). For a frequency
(jo=d/At, the transfer function is

2 sin

The phase characteristic |3(w) of the transfer

function is given by eq (2.2).

i3(co)=a(aj)-^(a>)= tan-i|^(^^^+90°J (6.36)

a(a;)=tan-'
|)-

where

We have shown here one method for determining
the amplitude and phase characteristics of the

complex transfer function for a transducer sj-stem.

The response function was approximated by
numerical methods and the transfer function

might be computed with the aid of a digital

computer. The methods of analysis are described

more completely in chapter 2 and the methods
of approximation are given in chapter 3.
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7. Periodic-Function Generators

D. F. Muster

1. General

1.1. Types of Periodic-Function Generators

In chapters 2 and 4, respectively, the response
of linear and nonlinear pressure transducers to

periodic input functions is discussed. It is demon-
strated that (even in theory) th^re are inherent
advantages to calibrating certain transducers
with steady-state (repetitive or periodic) inputs
rather than step inputs. The relative value of

these advantages will be discussed with reference

to each of the periodic-function generators men-
tioned below.
For convenience, let us restrict this initial

discussion to linear transducers; the effect of

nonlinearities (particularly, of stiffness) is dis-

cussed separately. As sensed and displayed by
a linear transducer system, the shape, magnitude
and time of occurrence of an arbitrary forcing

function are modified. In effect, the transducer
system filters the input and the displayed response
is modified accordingly. If the forcing fimction
is a sinusoid, the response of a linear transducer
wiU also be a sinusoid; thus, the shape of the
input and response are the same. However, the
magnitude and phase of the response may be
markedly different from that of the input. As
was mentioned earlier, this fact places sinusoidal

forcing fimctions in a unique position in the
dynamic calibration of all categories of trans-

ducers. Further, it gives experimentalists a feel

for the physical significance of Fourier analysis

and the concept of frequency spectra. If any
input can be represented as the sum of a number
of sinusoids, then it follows that the output of

a linear transducer can be represented by these

same sinusoids modified only in amplitude and
phase. Each is sensed and displayed by the
transducer as if it were present alone (the prin-

ciple of superposition). The response function is

the sum of the output sinusoids.

It is shown in chapter 2 that from a knowledge
of the steady-state characteristic of a system the
response waveform for any specified input wave-
form can be computed. For example, if the speci-

fied input includes components at frequencies in

a given range and it is fcaown that the transducer
system is linear in the same frequency range, then
the following relationship will hold

:

X{(^)=kF{<^)€-^'>', (7.1)

where X{ui) and F{io) are the output and input
spectra, respectively, k an amplitude factor, and

' Professor ol Mechanical Engineering, The University of Houston.
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Figure 7.1. Periodic input functions.

(a) Sine function
(b) Square-wave functions
(c) Pulse function

(f the phase shift, all in the given frequency range.

The specific periodic functions of primary use

in the dynamic calibration of pressure transducers

are sinusoids, square-wave, and impulse functions

(fig. 7.1). In consequence, in this chapter we will

be concerned primarily with generators capable

of producing pressure changes which approximate

closety one of these wave forms. These include

acoustical shock generators, rotating valve and
piston-in-cylinder devices, sirens, and electrical,

mechanical, and electro-mechanical exciters.

1.2. Place in Pressure Transducer Calibration

The descriptive phrase "frequency response"

implies that the response under consideration

(pressure, acceleration, velocity, etc.) is a function

of frequency. Two examples are the measured
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output of an electronic amplifier in response to

sinusoidal inputs of known frequency from an
oscillator, and the oscillating electrical output of

a microphone in response to known sinusoidal

changes in pressure level. In the first case, it is

relatively easy to generate sinusoidal signals up
to frequencies in the megacycle per second range.

In the second case, it is diflftcult to generate a

relatively distortion-free sinusoidal sound field at

high amplitudes and/or high frequencies. The
latter is in conflict with the requirements for shock
wave and rocket-engine research, where the

ambient acoustic environment may be charac-

terized by amplitudes of greater than one atmos-
phere ( 188 db re 0.0002 microbar) and frequency
components up to 30 kc/s. To date, sinusoidal

pressure oscillations at these amplitudes and
frequencies cannot be produced in a gaseous
medium. At lower amplitudes and/or frequencies

calibrating devices have been developed and are

described in a later section.

The lack of an acoustic high-amplitude, high-

frequency sinusoidal calibration device is not due
to a lack of ingenuity on the part of experimen-
talists. It is due to certain fundamental physical

limitations associated with the problem of attempt-
ing to force the motion of gases in a sinusoidal

manner over a wide range of frequencies. If the

amplitude is kept constant, as the forcing frequen-
cy is increased the wave form degenerates from a

sinusoid to a saw tooth. This is due to thermo-
dynamic causes, particularly to shock wave inter-

action. As a result, sinusoidal acoustic exciters

in pressure transducer calibration are limited to

pressure levels and frequencies considerably lower
in scale than those associated with most rocket-

engine research.

In some cases, input fimctions to a pressure
transducer in the range of frequencies and/or
amplitudes of interest can be more easUy generated
as a square wave or repetitive impulse. The
superposition principle will still apply, if the
transducer system is linear, and the frequency
response for either input will be the same as for
the sinusoid, although the method of interpreting
the results is different.

There are two principal limitations on calibra-

tion with impulse generators. The impulse must
be of short duration compared with duration of
the finest detail of the output transient which is

to be reproduced accurately; that is, the impxilse
spectrum must be flat over the entire frequency
range of the device under test. In turn, this

implies that, in order to achieve a significant

response at some frequencies the impulse must be
so great in amplitude that the transducer system
under test is often forced out of its linear range at

other frequencies.

The second disadvantage is that, when testing
wide-band devices, low-frequency eflfects are difii-

cult to observe. The one-test advantages of
impulse methods are offset by the incapability of
transducer systems to react in the same way to all

frequencies and, as a consequence, low-frequency
cutoff limits their effectiveness.

In summary, in the low- and medium-pressure
range, the available methods of dynamic calibra-

tion include the use of repetitive acoustical-shock
generators, sirens, rotating-valve and electro-

mechanical exciters. Piezoelectric devices are

useful in the higher frequency and pressure-level

ranges
;
strictly mechanical devices are most useful

in the lower frequency and, most often, the lower
pressure-level ranges.

2. Acoustical- Shock Generator

2.1. Description 2.2. Theory

The acoustical-shock generator is well adapted
to the dynamic calibration of microphones and
other low-pressure transducers. It is charac-
terized by the following features: low power
requirement, suitability for automatic operation,
and the high-energy, short-duration acoustic
pulses it generates are accurately reproducible.

In principle, the operation of the device is similar
to suddenly bursting an inflated paper bag. A
piston in a cylinder is forced against a compression
spring and held in this retracted position. The
open end of the cylinder is covered by a paper strip.

When the piston is released, the air ahead of it is

compressed adiabatically until the paper strip

breaks at a certain critical pressure. The piston
is again retracted. A fresh strip of paper is drawn
over the end of the cylinder and the process
repeated. The device is motor-driven and the
length of time between impulses is controlled
through a gear train. In a typical generator, the
pressure at bursting is about 50 psi, the time
between pulses from 3 to 30 sees.

The shock wave associated with each burst is

propagated in an essentially spherical manner.
The value of the energy in the pressure wave can
be computed by integrating the square of the

pressure-level function from t=0 to t-^ oo . To the

first order, the pressure wave may be assumed to

have the shape of a saw-tooth, whose base repre-

sents the duration of the wave (say, 0.4 msec). At
a radius of 1 m and for a pressure of 200 dynes/cm^,
the energy content of the shock wave is approx-
imately 0.25 watt-sec and the power of the acous-

tic source is about 600 acoustic watts.

2.3. Evaluation of Test Data

Oscillograms of the pressure pulses from an
acoustical-shock generator (as measured at a given

radius and various angles with the generator at

the origin) show that the shock wave propagates
spherically. The main pulse is essentially trian-

gular and a typical value of its duration is, say,

250 jusec. Whereas the amplitude of the main
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pulse may be almost 100 db (re 0.0002 microbar),

the amplitude of succeeding pulses is considerably

less (down 20 db or more)

.

A typical frequency spectrum is essentially flat

from about 1000 to 8000 c/s. This is roughly two
octaves below and one octave above the center

frequency of 4000 c/s, which corresponds to the
duration of the main pulse. At higher frequencies,

the diameter of the generator opening is not small

compared to the acoustic wavelengths and the

pressure waves associated with these frequencies

are not propagated spherically. As a consequence,
each frequency spectrum will display directional

characteristics and the measured spectrum is no
longer flat.

In addition to the gradual decrease in level asso-

ciated with the radiation characteristics of the

source, there are resonances and an ti-resonances

observed in the measured spectra. These are due
to the presence of a short tube just in front of the

generator cylinder and along an extension of its

axis. At the moment of burst the cylinder plus
tube acts as a quarter-wave resonator. At the end
of the piston stroke, the tube alone acts in the same
manner. In effect, this affects the frequency
spectra by strengthening certain frequency com-
ponents and weakening others, causing relative
peaks and nulls in the measured pressure levels.

The reproducible quality of the pulses from an
acoustical-shock generator have been well estab-
lished. A generator was placed in an anechoic
chamber and the relative maximum sound-pressure
levels per octave were measured. The results of

many tests were analyzed in this way and the per-
octave sound pressure levels compared. The
deviations are less than ± 0.5 db for all octaves
from 100 to 6400 c/s; thus, the reproducible quality
of the pulses produced by the generator was estab-
lished. Above 6400 c/s, the deviation was as

much as ±3 db.

3. Rotating-Valve Generator

3.1. Description

It is often desirable in the calibration of pressure

transducers that the forcing function be of the

form of a series of repetitive, precisely controlled

pressure pulses. A mechanical device which gen-
erates such a forcing function (but which is

necessarily limited to low frequencies) is reported
by Hermann and Stiefelmeyer [1] ^ (and attributed

to Staiger and Mohilo) . A schematic representa-

tion of the device is shown in figure 7.2a and of a

similar device developed by Eisele [2] in figure 7.3a.

Pressure fluctuations of the kind in figure 7.2b

[1] or 7.3b [2] are possible by suitably arranging
the rotating valves and the sources of high-pressure

gas. The levels of the pressure in either figure

7.2b or 7.3b can be preset precisely by means of

pressure gages. By adjusting the speed of the

driving motor, a series of valves are opened and
closed sequentially at the desired repetition rates.

The transducer is subjected to a sequence of pre-

determined pressure changes, the duration of

which are determined by the speed of the rotation.

3.2. Evaluation of Test Data

At higher repetition rates, Eisele [2] has found
that the pressure steps are distorted by resonance
effects which can be attributed to the inertia of

the gas column in the valve system (fig. 7.3b).

As a consequence, the usefulness of the device as a
calibrator is limited to frequencies below where
these effects are observed.

Normally, the square pressure pulses generated
by the rotating-valve device are not truly shock
waves. Unlike the short-term, high-intensity
pulses generated by the acoustical-shock generator,
the pulses from the rotating-valve generator are

of longer duration (say, about 100 msec as com-
pared to 250 /isec) and lesser intensity (say, about

2 Figures in brackets indicate the literature reference on p. 95.

1. ROTITING VALVE

2. PRESSURE INLET PORT

3. EXHAUST PORT
4. VALVE HOUSMO
5. TRANSDUCER

Figure 7.2. Rotating ralve pulse-function generator.

(Reproduced from [1] with permissioa from Franzis-Vcrlag)

(a) Constructional features of pressure calibrator

(b) Representation of oscillograph trace for single-step callDratlon

694-211 0-63—
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"I- •<\() COMPRESSED AIR FLASKS
b) ROTATING GATE VALVE
c) TRANSDUCER

a d) MOTOR

b MOTOR SPEED 390rpm'--'760rpni

Figure 7.3. Rotating-valve staircase-function generator.

(Reproduced from [2] with permission from R. Oldenbourg Verlag)

(a) Schematic of pressure calibrator
(b) Calibration of curves derived from apparatus shown in (a) at two

different motor speeds

10 to 15 psi per step as compared to 200 psi).

A major disadvantage of the rotating-valve
generator is the presence of the relatively long
tube between the transducer under test and the
rotating-valve mechanism. In effect, it introduces
a half-wave resonator into the calibration system
which limits the effectiveness of the generator at
high frequencies.

4. Sirens [3, 4, 5, 6, 7]

4.1. Description

The siren-tuned-cavity oscillator is a useful
device for generating periodic (but not necessarily
sinusoidal) pressure waves for the calibration of
microphones and other low- and medium-pressure
transducers. The essential elements of the gen-
erator are a cylindrical chamber with an axial
orifice in one end and a revolving disk or flanged
wheel with a number of equally spaced holes

HGH-PRESSURE AIR

a \ PERFORATED
DISK

FiGUBE 7.4. Siren-tuned-cavity generator.

a) Rotating disk
b) Timed cavity
(c) Typical waveform

arranged around its periphery. The wheel is

positioned such that the holes in its periphery are
close to the axial hole in the cyhnder and, as

the wheel rotates, the flow of air from the cylinder
is interrupted. A schematic representation of
this arrangement is shown in figure 7.4 with a
sketch of the waveform produced by such a
generator.

As the name "siren-timed-cavity oscillator"

implies, two adjustments are necessary in order
to operate the generator effectively. For each
rotational speed of the siren (which, with the
number of holes, determines the frequency of the
pressm-e waves), the length of the cyhnder must
be adjusted so that it will act as a half-wave
resonator; thus, the speed of the wheel determines
the basic pulse length (frequency) and the tuning
adjustment reinforces the pressure wave and
determines its amplitude at the transducer
location (fig. 7.4).

For purposes of calibration, the value of pres-

sure at the cavity-transducer interface is measured
with a previously calibrated transducer, or it is

computed using methods described by Oberst [8]

When measured pressures are used as a standard,
the caUbrated gage must be an instrument with a
uniform frequency response up to frequencies
several times higher than the test frequency.

Oberst [8] shows that the maximum pressure
magnitude at the transducer, figure 7.4, is given by

\Po\=Pem.

Here Pe is static pressure (as measured with
a Bourdon gage) at the end of the tube where the

opening is located (called excess pressure by
Oberst), and I is the tube length. The term

/3(=8MiTVVPav<i^) is the attenuation constant per

unit tube length for a plane wave of frequency/in
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a medium of mean equilibrium density p^^. In
the expression for /3, a is the velocity of sound.

The actual damping for waves in air is small

for moderate frequencies (ji3=0.24X 10~* for

/= 1000/2 TT in air), but increases rapidly with
increasing frequency.

4.2. Evaluation of Test Data

The saw-tooth shape of the pressure wave at

the pressure transducer can be approximated by
the series

p n 1

P=— rsin koit,

where Po is the peak value of pressure. Thus,
although the basic pulse length is established by
speed of rotation of the siren wheel, each of the

pulses consists of many harmonic components
whose respective amplitudes are an inverse func-
tion of frequency.
The saw-tooth shape is due to tlie nature of the

reinforcement making any pulse steeper-fronted
as the wave propagates. Even quasi-sinusoidal
pulses are distorted and originally steep-fronted
pulses (such as can be generated by a siren)
become close approximations of the saw-tooth
shape.

It has been shown that a saw-tooth wave will

develop within the tunnel cavity when the pres-
sure pulse generated at the orifice is greater than
10 percent of the pressure of the air flowing in the
cavity. Peak pressures of about 30 psi (equiva-
lent to over 190 db re 0.0002 niicrobar) are pos-
sible. Basic repetition rates from 50 to 1000 pulses
per second can be achieved without difficulty.

5. Piston-in-Cylinder Steady- State Generators

5.1. General

A generator which can produce a steady-state

(rather than repetitive-pulse) forcing function

(sinusoidal at low amplitudes, distorted sinusoids

at high amphtudes) has many advantages, as has
been mentioned in this chapter and earlier. In
particular, nonlinear effects occur when an attempt
is made to generate pressure waves characterized

by both high frequency and high amphtude.
Thus, low-frequency, low-amphtude pressure
waves can be sinusoidal, whereas high-frequency,
high-amplitude waves are not sinusoidal and, in

many cases, may exhibit shock characteristics.

The obvious way to pi'oduce a sinusoidal pres-

sure variation is by means of a piston-in-cyMnder
device. Pressure changes produced in this manner
can be reinforced by resonance effects at fre-

quencies related to the geometry of the cyhnder
and the physical properties of the fluid. There is

an extensive literature on the distortion of pressure
waves due to nonlinearities in these properties
under dynamic conditions [9, 10].

In particular, Schmidt [9] and Betchov [11] have
studied the formation and behavior of oscillating

shock waves which are generated by the coales-

cence of compression waves.

5.2. Theory

A theory for the forced motion of gases in tubes
is developed by Betchov [11]. It is assumed that
the caUbration device is a long tube, closed at one
end with a piston at the other (fig. 7.5). The
motion of the piston is sinusoidal with circular

frequency aj(= 27r/). The gas in the tube is

assumed to behave as an ideal gas {P=pRT). In
this one-dimensional theory, for small motions
(i.e., u, the pressure wave velocity is small), a
linear solution is a close approximation of the
actual motion. As in all idealizations of dynami-
cal systems which do not account for friction in its

various forms, infinite amplitudes are predicted
at the resonant frequencies for which the length

of the tube is a multiple of the half-wavelength

^=j; a is the velocity of sound in air.^

In an actual piston-in-cyUnder device, the

motions of the gas are not necessarily small (and
tlie Unear solution is not valid). In turn, the

x-x,cosa>t

Figure 7.5. Pixton-in-cylinder model.
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shape of the pressure wave is determined by the

piston motion, the gas-dynamics and acoustic

factors associated with the phenomena, frictional

effects at the lateral boundaries and inherent in the

gas and, when the motion of the gas is forced into

the nonlinear domain, shock fronts.

The shock fronts, whether strong or weak, tend
to distort the shape of the pressure wave and form
oscillating shock waves in the tube length.

Energy is dissipated in the formation and con-
tinued motion of the shock waves. It is suflficient

to raise the gas temperature slightly, but not so

much that the resonant frequencies are affected

appreciably. Losses (watts dissipated per unit

piston area) may, in fact, exceed the average
power delivered.

From the observations of Schmidt and others

it is clear that, at resonance, oscillating shock
waves are always present in the gas column of a

piston-in-cylinder device. Even at nonresonant
frequencies, the motion of the gas is sufficiently

complex that it can safely be assumed the ampli-
tude and phase of the gas will not agree with that
of the piston motion. The nonlinear and cumu-
lative effects of friction can be seen in the trans-

formation of an initially shockless and almost-
sinusoidal motion into one characterized by shock
waves and a distorted pressure-wave shape.
Some pressure-wave generators use a liquid as

the active medium instead of gas. The principle

differences between liquid- and gas-piston-in-

cylinder devices are associated with the incompres-
sibility of liquids. The dynamics of long, liquid-

filled tubes have been studied by several investi-

gators [12, 13, 14, 15]. Their studies have
included resonance effects, coupled vibration,

cavitation, and the softening effect of entrapped
air.

A basic factor in each of these studies is the bulk
modulus (or its inverse, compressibility) of liquids.

AP
It is defined as the ratio — .tt<t7 where AP is the

AV/V
increment of pressure applied to the volume of

liquid V to cause a decrease in volume—

A

Bulk modulus has the dimensions of pressure and
depends upon both pressure and temperature
The stiffness of a liquid-filled, piston-in-cylinder

device can be computed from the equation

6. Electrical and Mechanical

6.1. General

The source of force (or motion) in many pres-
sure-transducer calibration systems is an electrical,

mechanical or electromechanical vibration exciter

capable of delivering sinusoidal excitation to the
transducer over a wide range of frequencies.
Among the most useful of such generators are the
following types: piezoelectric, mechanical direct-

drive and force-reaction, hydraulic, pneumatic,

where A and I are the cross section and length,
respectively, and Kn the bulk modulus. Typical
values of K„ for several liquids are

Liquid Km

Water (68 °F)
psi

3. 5 X 105

Methyl alcohol (68 °F) 1. 76X 106

Carbon tetrachloride 1. 63X 106

Kerosene _ _ . 1. 91

X

106

5.3. Equipment

The basic elements of a piston-in-cylinder cali-

brator consist of a piston in a liquid-filled cylinder
to which the transducer is connected. The cylin-

der can be pressurized and the piston is connected
to a sinusoidal-motion driving mechanism. In a
recent report, Cobb [16] describes such a device
for which the driving force is furnished by one or

two electromagnetic exciters, each capable of de-
livering up to 2500 lb-force at frequencies up to

2000 c/s. A plastic diaphragm seal is fastened
to the end of cylinder with the piston acting
against the side of the diaphragm away from the
liquid. This arrangement permits separate appli-

cation of the static and dynamic components of

pressure.

Cobb suggests two systems: one in which the
cylinder is mounted rigidly to a stiff structural
frame and the piston to the exciter, and a second
in which both the piston and cylinder are secured
to the armatures of separate exciters arranged to

operate out of phase. The second arrangement
performed in a more satisfactory manner.

5.4. Evaluation of Test Data

Cobb [16] reports the two-exciter calibrator sys-

tem is capable of supplying ±150 psi with a static

pressure of 500 psi in the cylinder and at frequen-
cies between 10 and 1000 c/s. Above 500 c/s there

is a tendency to distortion at the larger pressure-

variation amplitudes. A major difficulty in oper-
ating the device is the softening effect of entrapped
gas on cavity stiffness. This tends to lower the
frequency at which the first resonance occurs and
is the principal reason for limiting the effective

range of the calibrator to 500 c/s.

Exciters [17, 18, 19]

and electrodynamic. They cover the frequency
spectrum from almost-zero c/s to 10,000 c/s and
can deliver force amplitudes as high as several

thousands pounds. No one machine can span
these ranges, but from this group, machines can
be selected which cover large portions of them.

If a range of calibration frequencies from 5 to

10,000 c/s is desired, the electrodynamic-type
machine most nearly satisfies the requirements of

the ideal calibrator. For high-frequency, high-
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force applications, the piezoelectric type is most
useful, despite its limitation of being capable of

producing only very small displacements. The
latter disadvantage makes it difficult to use as a
low frequency source. In addition, the motion of
the exciter must be measured by interferometer
techniques or external displacement-measuring
sensors such as the capacitance pickup. Mechani-
cal direct-drive and force-reaction types are used
only for low-frequency (less than 100 c/s) applica-
tions. Hydraulic and pneumatic exciters are used
least of all as sources of vibration, but (as we have
mentioned earlier in this chapter) they are used
directly in pressure-transducer calibration. When
used as vibration exciters their limitations (sensi-

tivity to distortion, low-force output at high
frequencies) outweigh their advantages (force

transmitted can be calibrated under static condi-
tions, the generated force can be interrupted
abruptly). Conversely, their direct use (that is,

when the transducer is an integral part of the
fluid chamber) is well established and is reported
earlier in this chapter.

A vibration generator which is to be used in

calibration work should provide:

1. Distortion-free sinusoidal forces (or motions).
2. Stepless variation of frequency and output

within specified limits, easily adjustable
during operation.

3. Horizontal as well as vertical motion, if

required.

4. Features permitting the use of absolute cali-

bration methods when calibrating the
calibrator.

5. True rectilinear motion normal to the main
axis of the exiciter without the presence of

other motions.

6.2. Piezoelectric Exciters

The piezoelectric vibration machine uses a
stack of piezoelectric elements as a source of

mechanical vibration. The piezoelectric elements
are cut from crystals having piezoelectric proper-
ties or are made from ferroelectric ceramics.
When the elements are subjected to mechanical
pressure, electrical charges proportional to the
pressure are generated. If the element is com-
pressed between two electrically connected metal
plates applied to opposite faces of the element,
and a metal band is placed around the middle of
the element between the band and the end plates,

an electromotive force of considerable magnitude
will be developed between the band and the end
plates, upon small changes of pressure between
the end plates. The piezoelectric effect is re-

versible. A variable voltage applied between the
plate and the band will cause the element to
expand and contract mechanically in synchronism
with the varying applied voltage [20, 21].

Three types of materials are used in transducers
and exciters which make use of this effect. These
are Rochelle salt, ammonium dihydrogen phos-
ohate (ADP), and barium titanate (BaTiOs). In
either case, a strain across the element results

PIEZOELECTRIC STACK

LIQUID

PRESSURE TRANSDUCER

Figure 7.6. Piezoelectric exciter for a pressure-transducer
calibration system

when a voltage is applied. The direction of the
strain depends upon the orientation of the crystal-
lographic axes of the original crystal relative to
the crystal element, or in the direction of polari-
zation of the ceramic element, and on the location
of the electrodes. The strain in the piezoelectric
stacks of elements (as shown in fig. 7.6) alternately
causes an increase and decrease in the thickness
of the elements, thereby imparting motion to the
liquid-loaded plate of the calibrating chamber.

These exciters are usable in the range from
1,000 to 20,000 c/s, the span of the range depend-
ing upon the configuration and size of the particu-
lar unit; the peak-to-peak displacements are 0.001
in. or less. As a consequence of the latter,

mounting the piezoelectric stack is important.
A massive backup base holds fixed the end of the
stack away from the liquid. In order to terminate
the end of the stack in an essentially infinite

mechanical impedance, the base material is pre-
ferably highly damped and the base itself made as
massive as possible.

When a voltage is applied to the electrodes of
the piezoelectric stack, the magnitude of the de-
formation produced is dependent upon the fre-

quency of the applied voltage and the frequenc}'
response of the electromechanical system. If the

mass of the load carried by the piezoelectric

element in combination with the stiffness of the
element gives a resonant frequency well above the
highest operating frequency, the system is spring
controlled, providing a displacement proportional
to the voltage and independent of frequency.
For a liquid loading, which is essentially mass-like
and produces a resonant frequency in or near the

operating frequencies, a typical resonance effect

is observed.
The principal features of the piezoelectric

exciter are:

1. The design can be made compact and rigid,

providing good high-frequency (\\-ith high-

amplitude) operation.
2. Normally, only small-displacement (and, as

a result, relative^ high-frequency) opera-

tion is possible.

3. The electrical load presented to the poAver

source is highly reactive and is of high

impedance. Unless it is possible to use

many piezoelectric elements (connected

electrically in parallel but mechanically in

series) several Idlovolts may be required

in order to produce the requisite output.
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6.3. Electrodynamic Vibration Machine

Electrodynamic exciters are used in pressure
transducer calibration in one of two ways: as

sources of sinusoidal motion for diaphragms, or in

piston-in-cylinder calibrators such as that reported
by Cobb [16]. In the former case, a pressure trans-

ducer is placed in the end of a liquid-filled chamber
at the opposite end of which is the driven dia-

phragm. The latter example is discussed in sec-

tion 5 of this chapter.

The electrodynamic exciter derives its name
from the method of force generation: the force

causing the motion of the table (to which the load
is attached) is produced electrodynamically by the
interaction between an alternating current flow in

the driver coil and the intense magnetic field which
cuts the coil (fig. 7.7).

A wide range of frequencies is possible, with a
properly selected electric power source, from 0
to 20,000 c/s. Small, special-purpose machines
have been made with the first axial resonance mode
above 26,000 c/s, giving a resonance-free, flat

response to 10,000 c/s [17]. Frequency and ampli-
tude are easily controlled by adjusting the power-
supply frequency and voltage. In the case of an
electronic power supply, the vibration machine
load is not reflected back to the oscillator signal

source, giving zero frequency regulation at any
load.

Rated force (continuous sinusoidal peak value)
varies according to manufacturer and unit design,

but the smallest self-contained units deliver ap-
proximately 1 lb, the largest, about 25,000 lb.

For most transducer calibration applications,

machines rated between 200 and 2500 lb are used.
Pure sinusoidal table motion can be generated

at all frequencies and amplitudes. Inherently, the
table acceleration is the result of a generated force
proportional to the driving current. If the elec-

tric power supply generates pure sinusoidal volt-

ages and currents, the waveform of the table' mo-
tion will be sinusoidal and background noise will

not be present. Operation with table waveform
distortion of less than 10 percent through a dis-

placement range of 10,000 to 1 is common.
Random vibration, as well as sinusoidal vibra-

tion, or a combination of both, can be generated
by supplying an appropriate input voltage.

ELECTROMAGNET

Figure 7.7. Electrodynamic vibration machine.

ECCENTRIC BUSHING

b

Figure 7.8. Displacement adjustment method.

(a) ffi=6. Displacement=6—a=0
(b) a?^6. Displacement=2c (PEAK-TO-PEAK)

6.4. Low-Frequency Pneumatic Sinusoid
Generator

For low-trequency, low-amplitude calibration, a
pneumatic generator has been developed [22]. The
generator consists of an electric motor operating
through a variable-speed reducer to drive a cam
which positions the input crank of displacement-
balance, pneumatic-pressure transmitter. In fig-

ure 7.8 is a method of providing stepless adjusta-
bility of crank offset between zero and full dis-

placement. The boundary surfaces between shaft
eccentric 1 and eccentric bushing 2 and between 2
and the connecting rod are circular cylinders. For
a fixed-displacement setting, the eccentric 1 and
the eccentric bushing 2 remain fixed relative to
each other but rotate about the rotation center of

the driving shaft. The displacement adjustment
is made by rotating eccentric bushing 2 relative to
shaft eccentric 1 [17].

Nominally, the pressure transmitter has an out-
put range of from 5 to 25 psi, but different ranges
can be obtained by adjusting the operating stroke
at the input crank.

6.5. Electromagnetic Methods for Calibrating
Some Pressure Transducers

Transducers which use diaphragm^ of magnetic
materials can be calibrated by a direct-excitation

technique. E. J. Diehl and H. Visser of the in-

ternal combustion laboratory of the Technische
Hogeschool in Delft are reported to have used an
iron core (solenoid) placed coaxially in close prox-

imity to the diaphragm (fig. 7.9). The oscillating

motion of the diaphragm is sensed by a capaci-

tance pickup.
The damping present in the diaphragm assembly

can be sensed and measured by recording the de-

cay of the diaphragm vibration on a level recorder.

From these decay-rate measurements, the loga-

rithmic decrement can be computed directly.

Very low-pressure, acoustical transducers can
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FiGUBE 7.9. Electromagnetic excitation of a transducer

diaphragm.

be calibrated by fastening them directly to the
table of an electrodynaraic vibration machine [23].

By exposing the pressm-e-sensitive diaphragm to

the atmosphere, the oscillatory motion of the trans-

ducer produces a corresponding pressure variation

on the sensitive element. The absolute movement
of the diaphragm can be sensed and measured
optically (at low frequencies) or by a capacitance
pickup. The frequency range over which this

method has been used is reported to be 3000 c/s

under normal condit'ons and, with special equipment,
8000 c/s [23]. Pressme levels are low (usually

no more than 50 to 60 db or, say, 0.1 dyne/cm^).
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8. The Electronic Compensator

E, L. Michaels ' and G. F. Paskusz

1. General

The electronic compensator is an electronic

device designed to provide a transfer function
which is the inverse of the transfer function of a

given transducer. When an electronic compensa-
tor, whose transfer function is exactly the inverse

of a given transducer transfer function, is incor-

porated into that transducer system, the result is

that the input or driving function waveform and
the output waveform are exactly alike.

It was pointed out in chapter 2, section 1.4, that
knowledge of a transducer's transfer function and
of the system response is sufficient for the deter-

mination of the system driving function. Thus,

if a pressure transducer's output and transfer
characteristics are known, its input can be ob-
tained. That the operations necessary for this

determination may often be laborious must be
obvious from the preceding chapters. Moreover,
the results are valid only for output ranges severely
limited by the transducer frequency response.

It is therefore generally desirable to extend the
usable frequency range of a transducer system and
to reduce the labor involved in the determination
of the driving function. The electronic compen-
sator discussed in this chapter is designed to

perform both of these functions.

A general scheme for the representation of trans-

ducer systems was developed in chapter 2, and is

in part repeated in figm-e 8.1.

In this scheme the effect of the transducer on
the system is represented by a "transfer function."
Basically, this transfer function is a description of

the input-output relationship, and so it may be an
equation, a set of equations, or one or more
characteristic curves. Equation (1.1), character-

istic of the transducers described in this report, is

reproduced here:

where

wx+ cx

+

kx =j{t)

,

/(i)= driving function, a function of time
a;=response of system, a function of time

m, c, ^=physical constants previously defined.

The transfer function is an operator implicit in

the equation. The equation may be written in

operator form as

2. The Principle of the Compensator

by 1/T, the equation may be rewritten as

[T-^x=M. (8.2)

The response of the system may be obtained by
the inverse operation. The inverse operation,

[T], is defined by eq (8.3) as

[r][T-i]x=x=ir]/(0, (8.3)

where [T] is the operation which, when applied

to [T-^x, will yield x.

The operator [T] in the time domain thus rep-

resents all the main operations involved in

solving the differential equation.

Equation (8.3) relates the known output of

the system, x, to the driving force /(/) which is

to be determined. The solution to this equation

may be obtained by the same scheme as that

employed for the solution of the transducer eq

(8.2), i.e., by the use of the inverse operation.

Thus
[T-'][T}f{t)=fit)MT-']x. (8.4)

(1.1)

(8.1)

where the expression in the brackets is considered
as operating on x. If this operator is designated

INPUT

FUNCTION

fit)

DIFFERENTIAL EQUATION

"TRANSFER FUNCTION-

RESPONSE
FUNCTION

x(t)

The electronic compensator, by performing

the operation implied in eq (8.4), thus generates

a system output (an output voltage) which is

analogous tof{t), the driving fimction.

The transducer system, including the compen-
sator, may thus be described b}- the diagram of

figure 8.2.

Figure 8.1. A general transducer system.

1 C^'airman of Electrical Engineering, The University of Houston.
2 Associate Professor of Electrical Engineering, The University of Houston. Figure 8.2. The transducer system with compensation.
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3. Compensator Circuit

The electronic compensator is an electronic

circuit whose transfer function is the inverse of

the transfer function of the transducer. The
compensator is resigned to perform the operation

[T"'], i.e., to solve the differential eq (1.1). It

is convenient for the discussion of compensator
operation to modify this equation by using some
of the conventional substitutions discussed in

chapter 2. Thus, in terms of the undamped
natural frequency, a;„, and the damping ratio,

f, eq (1.1) may be written in the form

±x+^x+x=-^-^=git), (8.5)

where g{t) differs from j{t) only by the constant

scale factor h. This is an ordinary, second-order,

linear differential equation with constant coeffi-

cients. Equations of that type are of the form

Ax+Bx+Cx=g{t), (8.6)

where both x and g{t) are functions of time and A,
B, and C are constants. Solution of this equation

by electronic analog computer is simple and may
be accomplished by use of an analog computer
scheme similar to the one shown in figure 8.3,
where d/dt represents a differentiator; A, —B, and
C represent constant multipliers and 2 represents
a summation amplifier.

Here the transducer output, x, is differentiated
twice to yield x and x, respectively. Then x is

multiplied by C, x hy B, x by A, and the three
terms Ax, Bx, and Cx are summed, thus resulting
in the computer output g(t).

A slightly more detailed diagram of the elec-

tronic compensator is shown in figure 8.4 [1].^

Two amplifiers are used per stage to provide
negative signals corresponding to the variables
X, X, and x, for summation, and for final inversion
after summing. Amplifiers labeled CF are cath-
ode followers; those numbered 1, 2, 4, and 6
are phase inverters or sign changers; and those
numbered 3 and 5 are differentiators. Amplifier
6 is also an adder or summing amplifier as well as
a phase inverter. Constant multiplication is

achieved by means of potentiometers. A is

adjusted by means of the ganged potentiometer
while B is adjusted by the single potentiometer
shown. C is unity in this case and thus needs no
adjustment.

OUTPUT
9(1)

FiGUEE 8.3. Analog computer schematic for solution of eq {8.6.).

a

Figure 8.4. Analog computer schematic diagram of electronic compensator

.

' Figures In brackets Indicate the literature references on p. 104.
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4. Calibration and Operation of the Compensator

The calibration and operation of the electronic

compensator involve (1) determination of the
constants in eq (8.6) by static or dynamic calibra-

tion methods, and (2) setting the compensator
constants.

4.1. Calibration

Static calibration methods may yield results

with an error no greater than 0.01 percent for

quartz crystals. Piezoceramic transducers, which
are more sensitive than quartz crystals, have a
much lower internal resistance. The time con-
stant of the piezoceramic transducer is thus re-

duced and the calibration accuracy at any given
reading speed is much reduced below that of the
quartz crystal. It then becomes mandatory to

use ceramic calibration by periodic, step, or

impulse function excitation.

A comparison of eqs (8.5) and ('8.6) shows that

the constants w„, f, and k specify completely the

constants needed for the compensator eq (8.6).

The natural frequency without damping (w„) may-
be derived from the damped frequency (co^) if

the damping ratio f is known. The damping
ratio, in turn, may be obtained from the log-

arithmic decrement in the following way.
It was shown in chapter 2 that the response of

a slightly damped system to step function excita-

tion is of the form

x=Ae~"' sin w<, (8.7)

which is a damped sinusoid of the form shown in

figm-e 8.5.

At successive peaks, e.g., and x,,, sin w^wl
and therefore

X3«^e-«'3 (8.8)

and the ratio between two successive peaks is

(8.9)

where ar is called the logarithmic decrement.
The time of one period, r, is related to the fre-

quency by

J=\- (8.10)

Also, 27r/=co, and c/2m=a (see chapter 2), so
that, from eq (2.11),

Thus, the damping ratio may be determined
from a dynamic calibration. From the damping
ratio and the equation

a;=co„V(l-n (8.12)

the damped natural frequency w can be found
[3,4].

The remaining system constant, k, may be
determined statically.

X

Figure 8.5. Exponentially decaying oscillations.
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4.2. Setting the Compensator Constants

To set the constant A into the compensator, a
sine-wave generator of frequency co„ (the un-
damped natural frequency of the transducer) is

connected to the input terminals, the B potenti-

ometer is set to zero, and the A potentiometer is

adjusted until a small output is obtained.
Under these conditions the signal is

x=Vi sin ct>„t. (8.13)

Substitution of this function into eq (8.5) results

in the output

g(t)=-M^± (_^„2y^ sin o:J)

+— (co^Fi COS co„0+^i sin co„i. (8.14)

This simplifies to

g{t)^2^ViCosoiJ. (8.15)

If the B potentiometer is now set to zero,

(fi=2i/co;,), the output must be zero.

This sets the potentiometer A. The B potenti-
ometer can now easily be set by adjustment until
the output amplitude is 2fFi.

5. Frequency Response

Ideally, amplitude and phase response of trans-
ducer and compensator are the inverse of each
other, resulting in a flat overall system charac-
teristic. The characteristics of such an ideal sys-
tem are shown in figure 8.6.

In any real system the frequency characteristics
and sensitivity of the amplifiers, and the noise
generated in the amplifiers and in the transducer,
will naturally adjust the capability of the overall
system. This is particularly important at the
high frequency end, where the transducer response
falls off and the compensator response increases
as shown in figure 8.6a, thus tending to exaggerate
high-frequency noise.

Real transducer characteristics were discussed
in chapter 1. The similarity between real and
ideal compensator characteristics may be judged
from figure 8.7, which shows the characteristics of
an early model compensator [1]. The character-
istics were obtained by setting the compensator's
a control for the natural frequency of the trans-
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Figure 8.8. Electrical analog transducer.

Figure 8.7. Attenuation characteristic of early model
compensator.
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Figure 8.9. Functional representation of simulated transducer and compensator
system.

ducer used, and adjusting the input to obtain
constant output. The plotted attenuation is then
the inverse of the compensator gain.

Compensator characteristic determination can
be made somewhat more independent of trans-

ducer characteristics by replacing the physical
transducer b}^ an analogous electrical cu'cuit such
as that shown in figure 8.8. (We say "some-
what" because lumped electrical elements are

known not to be entirely independent of frequency
either)

.

Signals present at various parts of this pseudo-
system excited b}^ an electronic pulse of less than
0.1 microsecond rise time are shown in figure

8.9.

Figure 8.10 shows a three-Msec pulse, the pseudo-
transducer output, and the reconstructed dri%-ing

function (compensator output) [1].

Expansion of the fii'st part of figure 8.10 in

figxu-e 8.11 makes apparent the )2=A(sec rise and
decay times, and the 0.3-Msec delay of the com-
pensator output.

An improved version of the compensator is

capable of 20-Msec rise times.

The effect of the compensator on recordable

system output is graphically demonstrated by
figures 8.12 and SJ3. Figure 8.12 shows the

response of a capacitance-type transducer to a

complex waveform produced by a shock tube.
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Figure 8.11. Expansion of first part of figure 8.10.

1. f{t) (driving function)
2. I (transducer response)

Figure 8.12. Transducer response without compensator.
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Figure 8.13. Transducer response with compensator.

Figure 8.14. Response of transducer to shock wave.

Figure 8.15. Response of figure 8.14 using compensator.
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Figure 8.16. Response of figure 8.15 with expanded sweep.

Figure 8.13 shows the same response with com-
pensator.
A similar improvement for a shock-excited trans-

ducer is shown in figures 8.14, 8.15 and 8.16.

6. Limitations

The limitations of the compensator are of two
kinds: fu-st, the compensator is essentially limited

in the high-frequency region, where the com-
pensator performance deviates appreciably from
the desired characteristic. (See fig. 8.7.) A
second, and possibly more severe, limitation lies

in the basic principle of the compensator opera-

tion: namely, the compensator will faithfully

reproduce the system input, provided that the

transducer is adequately described by an ordinary

linear differential equation of the second order and
with constant coefficients.

And so nonlinearities or other deviations from
these ideal transducer characteristics wUl result in

erroneous system output even at frequencies

which would yield readable results which could

be accurately related to system input functions

without use of the compensator.
Without the electronic compensator, any vibra-

tion frequencies that may be present in the trans-

ducer system will appear generally in distorted

form in the output, the amount of distortion

depending on the nature of the amplitude and
phase characteristic of the transducer at those
frequencies. With the compensator in the system,
however, any vibration frequencies that may be
present will appear unaltered in amplitude and
phase in the output, provided that the vibration
frequencies occur in the frequency range over
which compensation is effective. If the vibration
frequencies occur outside the range over which
compensation is effective, they will be altered in

amplitude and phase depending on the nature of

the overall transfer function of the system at

those frequencies.
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