$$
\text { May } 17,1950
$$

PORCELAIN \& POTTERY

Publications by members of the staff of the Nationel Bureau of Standards, with a list of Federal Specifications and Standard Samples.
Part Contents1 Technologic Papers2
2 Research Papers 3
3 Circulars 6
4 Commercial Standards 6
5 Simplified Practice Recommendations 6
6 Federal Specifications 6
7 Outside Publications 7
8 Standard Samples 13

GEINERAL INFORMATION

Some of the publications in this list heve appeared in the regular series of publications of the Bureau and others in various scientific and technical journals. Unless specifically stated, papers are not obtainable from the National Bureau of Standards.

When the price is stated, the publication can be purchased from the Superintendent of Documents, Government Printing Office, Washington $25, D . C$. The prices quoted are for delivery to addresses in the United states and its territories and possessions and in certain countries which extend the franking privilege. In the case of all other countries, one-third the cost of the publication should be added to cover postage. Remittances should be made either by coupons (obtainable from the Superintendent of Documents in sets of 20 for $\$ 1.00$ and good until used), or by check or money order payable to the "Superintendent of Documents, Government Printing Officel and sent to him with order. Letter Circulars are obtainable, without charge, from the Bureau. Publications marked "OP" are out of print but, in general, may be consulted at technical libraries.

For papers in other scientific or technical journals, the name of the journal or of the organization publishing the article is given in abbreviated form with the volume number (underscored), page, and year of publication, in the order named. In general, the Bureau cannot supply copies of these journals, or reprints from them, and it is unable to furnish information as to the availability or price. However, in a few cases (publications preceded by a single asterisk (\%)) a very limited supply of reprints is available for distribution, and copies will be sent free upon request to the Bureau. They, too, can usually be consulted at technical libraries.

Serial letters are used to designate the several series of Bureau publications:

```
T = "Technologic Paper." Tl to T370. This series was
        superseded by the "Bureau of Standards Journal of
        Research" in l928.
RP = "Research Paper." These, ore reprints of articles
        appearing in' the "'Bureau' of Standerds Journal of
        Research" and the "Journal of Research of tine
        National Bureau of Standards," the latter being
        the title of the periodical since July 1934
        (volume 13', number 1).
    C= "Circular."
    CS = "Commercial Stándara."
    R = "Simplified Practice Recommendations."
```

Circular C460, and supplements, the complete list of the Bureau's publications (1901-1947), is sold by the Superintendent of Documents for 75 7 . Announcement of new publications is made each month in the Technical News Bulletin which is obtainable by subscription at $\$ 1.00$ a year in the United States, Canada, Cuba, Mexico, Newfoundland, and Republic of Panama; other countries at \$1. 35 .

PART 1 - TECHNOLOGIC PAPERS

Viscosity of porcelain bodies, A.V.
$\frac{\text { Series }}{T 30} \quad \frac{\text { Price }}{\text { OP }}$

Bleininger and Paul Teetor. Tech. Pap. BS, T30(1913).

Some leadless boro-silicate glazes matur-
T31

PART I - TECHNOLOGIC PAPERS (Cont'd)

The viscosity of porcelain podies.high in
feldspar. A.V. Bleininger and C.S. Kinnison. Tech. Pap. BS, T50 (1915).

Use of sodium selts in the purification of clays and in the casting process. A. . V. Bleininger. Tech. Pap. BS, T51 (1915).

Constitution and microstructure of porcelain.
Series
T50

T5I

T80
OP A.A. Klein. Tech. Pap. BS, T80(1916).

High-fire porcelain glazes. H. H. Sortwell.
Tech. Pap. BS, TI96(1921).
American and English ball clays. H. H. Sortwell. Tech. Fap. BS, T227(1923).

Properties of potter's flints ana their effects in whiteware bodies. E.E. Pressler and W.L. Shearer. Tech. Pap. BS, T310(1926).

$$
\text { PART } 2 \text { - RESEARCH PAPERS }
$$

The passage of gas chrough the walls of pyroRP354 OP. meter protection tubes a.t high temperatures. Willian F. Roeser. BS J. Research 2, 485(1931).

Kaolins, Effect of firing temperatures on some of RP410 their physical properties. RoA. Feindl, 'W. L. Pendergast, and L.E. Mong. BS J. Research Eq, 199 (1932).

Gases obtained from commercial feldspars heated in vacuo. G.R. Shelton and H.H. Holscher. Bs. J. Research 8, 347 (1932).

The thermal expansion of some silicates of elements in Group II of the periodic system. R.F. Geller and H. Insley. BS J. Research 2, 36(1932).
"Mioisture expansion" of ceramic whiteware. R.F. Geller and A.S. Creamer. BS J. Research 2, 291(1932).

A study of some ceramic bodies of low absorption maturing at temperatures below $1000^{\circ} \mathrm{C}$. R.F. Geller and D.N. Evans. BS J. Re search 2, 473(1932); al so Ceramic Industry (59 East Vañ. Buren Street; Chicago, III,) 20(1933).

RP420 OP

RP456
OP

RP472
op

RP483
OP

The interference method of measuring thermal expansion. George E. Merritt. BS J. Research 10, 59 (1933).

Effects of particle size of a potter's "flint" and a feldspar in whiteware. R.F. Geller, D.N. Evans and A.S. Creaner. BS J. Research II, 327 (1933).

The system: Pbo-SiO2. R.F. Geller, A.S. Creamer RP705 OP and E.N. Bunting. J. Research NBS 13, 237(1934).

Colloidal nature and relative properties of clays. W.W. Meyer. J. Research NBS 13, 245(1934).

Thermal behavior of the kaolin minerals.
RP792 OP
H. Insley and R.H. Ewell. J. Research, ivBS 14, 615(1935).

Hydrothermal synthesis of kaolinite, dickite,
RP819 OP
beidellite and nontronite. H. Insley and
R.H. Ewell. J. Research NBS 15, 173(1935).

Therral decomposition of talc. R.H. Ewell,
RP848
OP
E.N. Bunting, and R.F. Geller. J. Researcin NBS 15, 551 (1935).

The system $\mathrm{K}_{2} \mathrm{O}-\mathrm{PbO}-\mathrm{SiO}_{2}$. R.F. Geller and E.N. RP911 . 05
Bunting. J. Research NBS 17, 277(1936).
The system $\mathrm{PbO}-\mathrm{B}_{2} \mathrm{O}_{3}$. R. F. Geller and $E \cdot N$.
Bunting. J. Research NBS 18, 585(1937):
Substitution of domestic for imported clay
RPIO11 . 05
in whiteware bodies. W.W. Meyer and T.A. Klinefelter. J. Research NBS 19, 65(1937).

Some "soft" glazes of low thermal expansion. RP10 64

OP
R.F. Geller, E.N. Bunting, and A.S. Cremer. J. Research NBS 20, 57 (1938).

Solubility of colored glazes in organic acids. R.F. Geller and A.S. Creamer. J. Research NBS 22, 441 (1939).

Improved interferometric procedure with ap-. plication to expansion measurements. James B. Seunders. J. Research NBS 23, 179(1939).

The system $\mathrm{PbO}-\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$. R. F. Geller and E.N. Bunting. J. Research NBS 23, 275(1939).

PART 2-RESEARCH PAPERS (Cont Id)

X-ray studies of compounds in the system
during initial heating, with suplementary
data on mica. R.F. Geller and I.N. Bunting. J. Research NBS 25, 15(1940).

Some factors affecting the properties of ceramic talcose whiteware. R.F. Geller and A.S. Creamer. J. Research NBS 26, 213(1941).

X-ray studies of compounds in the systems $\mathrm{PbO}-\mathrm{B}_{2} \mathrm{O}_{3}$ and $\mathrm{K}_{2} \mathrm{O}-\mathrm{PbO}-\mathrm{SiO}_{2}$. H.F. McMurdie. J. Research NBS 26, 489(1941).

A resistor furnace, with some preliminary results up to $2000^{\circ} \mathrm{C}$. R.F. Geller. J. Research NBS 27, 555(1941).

Progress report on the systems $\mathrm{PbO}-\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{PbO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$. R.F. Geller and E.N.
Bunting. J. Research NBS 31, 255(1943).
Melting point of alpha-alumina. R.F. Geller
and P.J. Yavorsky. J. Research NBS 34, 395 (1945).
Effects of some oxide additions on the thermal
length changes of zirconia. R.F. Geller and P.J. Yavorsky. J. Research NBS 35, 87(1945).

An apparatus for photographing interference phenomena. James B. Saunders. J. Research NBS 35, 157 (1945).

Studies of binary and ternary combinations of magnesia, calcia, baria, beryllia, alumina, thoria, and zirconia in relation to their use as porcelains. R.F. Geller, P.J. Yavorsky, B.L. Steierman, and A.S. Creamer. J. Research NBS 36, 277(1946).

Properties of barium-strontium titanate dielectrics. E.N. Bunting, G.R. Shelton, and A.S. Creamer. J. Research NSS 38, 337 (1947).

Series
RP1251

RPI3.11 . 10

RPI 649
.05 RP1703 . 15

Price .05

RPI371 . 10

RPI392 . 05

RP1443 . 05

RP1564 . 10 RP1662 . 10

RP1668 . 10

RP1776 . 10

PART 2 - RESEARCF PAPERS (Cont'd)

Properties of barium-magnesiuri titanate
$\frac{\text { Series }}{\text { RPI899 }} \frac{\text { Price }}{.10}$ dieiectrics. G.R. Shelton, A.S. Creamer, añ E.N. Bunting. J. Research NBS 41, 17(1948).

Properties of calcium-barium titanate
dielectrics. E.N. Bunting, G.R. Shelton and
A.S. Creamer. J. Research NBS 43, 237(1949).

Some physical properties of porcelains in the RP2034 .15. systems magnesia-beryllia-zirconia and magne sia-beryllia-thoria and their phase relations. S.M. Lang, L.H. Maxwelj, and R.F. Geller. J. Research NBS 43, 429(1949).

PART 3 - CIRCULARS

Recomended specification for ceramic whiting.
Cl52
OP
Cir. BS, Cl52(1923).
Ceramic properties of some white-burning clays : 0325 op of the easctern United States. Cir. BS, C325(1927).

PART 4 - COMMEPCIAL STANDARDS

Feldspar
Colors for sanitary ware.
Vitreous china plumbing fixtures.
Earthenvare (vitreous, glazed) plumbing fixtures.

CS23-30
OP
CS30-31 OP
CS20-49 . 15
CSIII-43. 05

$$
\text { PART } 5 \text { - SIMPLIFIED PRACTICE RECOMEIDATIONS }
$$

Hotel chinarare
Cafeteria and restaurant chinaware
Dining-car chinaware
Ho spital chinaware
Clay tiles for floors and walls
Hospital plumbing fixtures

R 5
R33 OP
R39 . 05
$R 40 \quad .05$
R61-44 . 10
R106-41 . 05

PART 6 - FEDERAL SPECIFICATIONS

(Issued by the Federal Specificatịons Board, Washington, D. C., and obtainable from the Superintendent of Docunents, Government Printing Office, Washington 25, D. C., at the prices stated.)
Vitrified chinaware
M-C-301a . 10
Plumbing fixtures
Tile ceramic; floor, wall and trimmers
Wi-P-54I . 10
Spark plugs
SS-T-308
.05
WP-506a . 05

PARI 7 - OUTSIDE PUBLICATIONS

(List of papers which have appeared in the Transactions or the Journal of the American Ceramic Society, 2525 N . High Street, Columbus 2, Ohio.)

A study of the vitrification range and di-electric behavior of some porcelains. A.V. Bleininger and R.T. Stull. Trans. Am. Ceramic Soc., 12, $628(1910)$.

The measurement of color of whiteware and whiteware materials. H. E. Ashley. Trans. Am. Ceramic Soc. 13, Ill(1911).

Cutlery marks on glaze. H.E. Ashley. Trans. Am. Ceramic Soc., 13, 226(1911).

High voltage insulators and high potential testing. E.T. Nontgomery. Trans. Am. Ceramic Soc., I4, 267(1912).

Viscosity of porcelain bodies. A.V. Bleininger and Paul Teetor. Trans. Am. Ceramic Soc., 15, 328(1913).

Note on the electrical separation of clay. A.V. Bleininger. Trans. Am. Ceramic Soc., 15, 338(1913).

The Clark viscosimeter. W.E. Enley. Trans. Am. Ceramic Soc., 15, 401 (1913).

A study of the Atterberg plasticity method. C.S. Kinnison. Trans. Am. Ceramic Soc., 16, 472(1914).

The veritas firing rings. A.V. Bleininger and G. H. Brown. Trans. Am. Ceramic Soc., 16; 222(1914).

The viscosity of porcelain bodies high in feldspar. A.V. Bleininger and C.S. Kinnison. Trans. Am. Ceramic Soc., 17, 130 (1915).

The Bureau of Standards contrast method for measuring transparency. I.G. Priest. Trans. Am. Ceramic Soc., 17, 150(1915).

Electrical conductivity of a porcelain mixture and a shale upon heating. C.S. Kinnison. Trans. An. Ceramic Soc., 17, 422(1915).

The use of deflocculating agents in the washing of clays and the effect of the process upon the color. G.H. Brown and W.I. Howat. Trens. Am. Ceramic Soc., 17, 81(1915).

Constitution and microstructure of porcelain. A.A. Klein. Trans. Am. Ceramic Soc., 18, 377(1916).

PART 7 - OUTSIDE PUSLICAIIONS (Cont'd)

Notes on the manufacture of porcelain pyrometer tubes. W. I. Howat. Trans. An. Ceramic Soc., 18, 268 (1916).

Notes on the production of special refractories - Marquardt porcelain and megnesium aluminate. F.H. Riddle. Trans. Am. Ceramic Soc., 12, 397 (1917).

Note on the temperature-porosity-volume changes of some porcelain bodies. G.A. Loomis. Trans. Am. Ceramic Soc., 19, 636(1917)。

Some types of porcelain. F.H. Riddle and W. W. McDanel. J. Am. Ceramic soc., ${ }^{1}, 605(1918)$.

Note on certain characteristics of porcelain. A.V. Bleininger. J. An. Ceramic Soc., I, 697(1918).

Effect of time and temperature on the microstructure of porcelain. A.B. Peck. J. An. Ceremic Soc., 2, 175(1919).
Impact tests and porosity determinations on some American hotel china and semi-porcelain plates. H.F. Staley and J.S. Hromatko. J. An. Ceramic Soc.; 2, 227 (1919).

Some physical propertics of American commeial porcelain bodies. J.W. Wright and S.I. Sewell. J. An. Ceranic Soc., 2, 282(1919).

Special spark plug porcelains. A.V. Bleininger and F. H. Riddle. J. Am. Ceramic Soc.;, 2 , $564(1919)$.

Relation between the composition and the thermal expansivity of porcelain. F.H. Ridale. J. Am' Cêramic Soc., 2, 804(1919).

Further studies on porcelain. F.H. Ricidle. J. Am. Ceramic Soc., 2, 812(1919)..

The use of American rav materials in the manufacture of whiteware pottery. A.V. Bleininger and W.W. NoDanel. J. Am. Ceramic Soc., 3, 134(1920); J. Am. Ceramic Soc., 3, 997 (1920).

The solubility of boric acid frits. G. Blumenthal. J. Am. Ceramic Soc., 3, 152(1920)。

The rate of vitrification of porcelain molded under different conditions. R.F. Sherwood. J. Am. Coramic. Soc., 3, 837(1920).

High-fire porcelain glazes. H.H. Sortrell. J. Am. Ceramic Soc., 4, 718(1921).

Solubility and fusibility of some feldspar frits. H. H. Sortwell. J. Am. Ceramic Soc., 4, 446 (1921).

PART ? - OUTSIDE PUBLICATIONS (Cont'd)

 D.R. Caldwell. J. Am. Ceramic Soc., 4, 468(192i).

Use of special oxides in porcelain bodies. R. \dot{F}. Geller and B.J. Woods. J. Am. Ceramic Soc., 4, 842(1921).

Note on the hardiness of glazes. Glumenthal. J. Am. Ceramic Soc., 4, 896(1921).
Earthenware bodies and glazes. H. H. Sortwell. J. Am. Ceramic Soc., 4, 990 (1921).

Comparative tests of American and Foreign tebleware. H. H. Sortwell. J. Am. Ceremic Soc., 5, 276(1922).
Comparative tests of English and domestic whiting. A.E. Williams and B.J. Woods. J. Am. Ceramic Soc., 5, 901 (1922).

Impact tests on tebleware. Fi.H. Sortwell. J. Am. Ceramic Soc., 6, 349 (1923).
The effect of variation in firing on the physical properties of vitreous china boạies. H,H. Sortwell. J. An. Ceremic Soc., 6, $915(1923)$.
*The bonding effect of ball clays in fired bodies. H. H. Sortwell. J. An. Ceramic soc., Z, 75 (1924).
*An apparatus for measuring the abrasive hardness of glazes. W.J. Scott. J. Am. Ceramic Soc., Z, 342 (I924).

Interferometer measurements of the thermal dilatation of glazed ware, ${ }^{c}$ E. Kerritt and C.G. Peters. J. An. Ceramic Soc., 2, 327(1926)。
*A comparison of the softening points of some foreign and American pyrometric cones. R.F. Geller and E.E. Pressler. J. Am. Ceramic soc., 2, $744(1926$).

Characteristics of pyrometric conos. C.O. Fairchild and M.F. Peters. J. An. Ceramic Soc., $\dot{\underline{2}}, 700(1926)$.
*The effect of calcined cyanite in porcelain bodies. S.J. McDowe11. anã E.J. Vachuska. J. Am. Ceramic Soc., 10, 64(1927).
*A preliminary stuay of the resistance to abresion of ceramic glazes, its control and methods of determination. A.O. Herrison. J. Am. Ceramic Soc., IO, 77(I927).

PART 7 - OUTSIDE PUBLICATIONS (Cont'a)

*The microstructure of earthenware. H. Insley. J. Am. Ceramic Soc., 10, 317 (1927).

Bureau of Standards investigation of feldspar - second progress report. R.F. Geller. J. Am. Ceramic Soc., IO, 411(1927).
*The quantitative microscopic analysìm of commercial fèldspar. H. Insley. J. Am. Ceramic Soc., 10, 651(1927).
*The effect of various sodium silicates and other electrolytes on clay slips. S.J. McDowell. J. Am. Ceramic Soc., 10, 225(1927).

Methods for testing crazing of glazes caused by increases in size of ceramic bodies. H.G. Schurecht. J. Am. Ceranic. Soc., 11, 271(1928).

Comparative tests of chinaware using two forms of testing machines. G.W. Wray and C.M. Brand. J. Ari. Ceramic Soc., 12, 716(1929).

The influence of chemical composition on the physical properties of glazes. F.P. Hall. J. Ann. Ceremic. Soc., 13, 182(1930).

The casting of clayware - a resume. F.P. Hall. J. Am. Ceramic Soc., 13, 751(1930).

Investigation of feldspar and its effect in pottery bodies. R.F. Geller and A.S. Creamer. J. Ann. Ceramic Soc., 14, 30 (1931).

Metal marking of whiteware glazes as influenced by sulphur and carbon in kiln atmospheres. R.F. Geller and A.S. Creamer. J. Am. Ceranic Soc., 14, 624(1931).

Some synthetic fluxes in whiteware bodies. Paul F. Collins. J. Am. Ceramic Soc., 15, 17(1932).

Some properties of English china clays. T.A. Klinefelter, W.W. Meyer and E.J. Vachuska. J. Am. Ceranic Soc., 16, 269(1933).

Effect of repeated heatings on the mechenical strength of hightension insulator porcelains. R.F. Geller. Bul. Am. Ceramic Soc., 12, 18(1933).

Properties of some Anerican kaolins and comparisons with English china clay. T.A. Klinefelter and W.W. Meyer. J. Am. Ceramic Soc., 18, 163(1935).

Talc in whiteware of the wall-tile type. R.F. Geiler and A.S. Creamer, J. Am. Ceramic Soc., 18, 259(1935).

The analysis of feldspar. H.B. Knowles and J.C. Redmond. J. Am. Ceramic Soc., 18, 206 (March 1935).

PART 7 - OUTSIDE PUBLICATIONS (Cont'd)

The nature of the glass ohase in heated clay materials. I. Cominon clays. G.R. Shelton. J. Am. Ceramic soc., 18, 289(0ct.1935).

Talc in whiteware. R.F.Geller and A.S. Creamer. J. Am. Ceramic Soc., 20, 137 (May 1937).

Computation of heat treatments for witeware bodies. W.W. Meyer. J. Am. Ceramic Soc., 21, 75 (March 1938).

Nature of the glass phase in heated clay materials. II. The efrect of the rate of heating on the glass thase and physicai properties of whiteware, bodies. G.R. Shelton and W.W. Meyer. J. Am. Ceramic Soc., 21, 371(November 1938).

Solubility of colored glezes in organic acids. ReF. Geiler and A.S. Creamer. J. Arr. Ceramic Soc., 22, 133(April 1939).

No.te on moisture expansion of ceramic whiteware in storage and in service. R.F. Geller and A.S. Creaner. J. An. Ceramic Soc., 24, 77(March 1941).

Effect of exchangeable bases on some properties of ball clays. M.D. Burdick, W.W. Meyer and T.A. Klinefelter. J. Am. Ceramic Soc., 25, 327 (August 1942).

Effect of hardness of hamraers on resistence of vitrified chinaware to chipping and to impact. R.F. Geller and A.S. Creamer. Bul. of Am. Ceramic Soc., 23, 146(April 1944).

Method of correlating chemicel composition, relative amounts of glassy bond, and properties of ceranic bodies. G. F. Shelton. J. Ain. Ceramic Soc., 3I, 39 (Feoruary 1948).

Properties of barium-magnesium titanate dielectrics. G.R. Shelton, A.S. Creamer, and E.N. Bunting. J. An. Ceramic Soc., 3I, 205 (July 1948).

Papers appearing in publications other than the Bulletin and the Journal of the American Ceramic society

Measurement of moisture expansion. R.F. Geller and A.S. Creamer. Ceramic Age, Jan. 1937, p. 9 (The Ceramics Publishing Co., 34 North Crystal St., E. Stroudsburg, Pa.).

Nature of china clays. W.W. Meyer. (Technical Assoc̣iation Papers, Technical Association Paper and Puilp Industry, 122 East 42 nd St., New Yoris City). Series 20, 373 (June 1937).

A rose by any other neme (A discussion of whiteware terminology). R.F. Geller. Ceramic Age (The Ceramics Publishing Co., E. Stroudsburg, Pa.), 13, 35(February 1938).

Complacence. . R.F. Geller. Ceramic Age 4I, 6, 186(1943).
Progress report on strength and creep of special ceramic bodies in tension at elevated temperatures. RoF. Geller and M. D. Burdick. National Advisory Comittee for Aeronautics. ARR No. 6D24 (June 1946).

Ceramic Dodies for turbo-jet blades: R.F. Geller. The British Clay Worker, 58(685), 41(1949).

$\underline{S} \underline{I} \underline{A} \underline{A} \underline{A} \underline{S} \underline{A} \underline{M} \underline{\underline{P} E S}$

Standard semples of certain materials which are recommended for control work may be obtained from the National Bureau of Standards by prepayment of the indicated price. Such samples were prepared for checking the accuracy of methods of analysis, and those of perticular interest to the ceramic industry are listed below. The Supplement to Circular C398, which can be obtained from this Bureau without charge, contains a complete list of our standard samples.

Standard Sample ivumber	Name	Constituents determined or intended use	Weight sample grams	$\begin{aligned} & \text { of } \\ & \text { in } \\ & \quad \text { Price } \end{aligned}$	
12	Limestone, argillaceous	Complete analysis	50	\$2.00	
391	Benzoic acid	Acidimetric and	30	2.00	
40 e	Sodium oxalate	calorimetric values Oxidimetric value	60	2.00	
69	Bauxite	Complete analysis	60	2.00	
70	Feldspar, potash	I	40	2.00	
76	Burned refractory $\left(40 \% \mathrm{Al}_{2} \mathrm{O} 3\right)$	11	60	2.00	
77	Burned refractory ($60 \% \mathrm{Al}_{2} \mathrm{O}_{3}$)	11	60	2.00	
78	Burned refractory $\left(70 \% \mathrm{Al}_{2} \mathrm{O}_{3}\right)$	11	60	2.00	
79	Fluorspar	110	60	2.00	
80	Glass, sode-lime	" ${ }^{\prime \prime}$	45	2.00	
81	Glass sand	$\begin{aligned} & \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{TiO}_{2}, \\ & \mathrm{ZrO}_{2}, \mathrm{CaO}, \mathrm{MgO} \end{aligned}$	60	2.00	
83 a	Arsenic trioxide	Oxidimetric value	75	2.00	
84 c	Acid potassium phthalate	Acidimetric value	60	3.00	
88	İmestone, dolomitic	Complete analysis	50	2.00	
89	Glass, lead-barium	II 1	45	2.00	
91	Glass; opal	11 \\|	45	2.00	
92	Glass, low boron	$\mathrm{B}_{2} 03$ only	45	2.00	
93	Glass, high boron	Complete analysis	45	2.00	
97	Clay, flint	11	60	2.00	
98	Clay, plastic	II	60	2.00	
99	Feldspar, soda	"1	40	2.00	
102	Silica brick	" 1	60	2.00	
103	Chrome refractory	II "	60	2.00	
104	Burned magnesite	"	60	2.00	
112	Silicon carbide	"	85	2.00	
154	Titanium dioxide	TiO_{2}	40	2.00	

\square

