NATIONAL BURRAU OF STANDARDS HASEINGTON

Letter Circalar
La-714 (Supersedes LC-632)

January 23, 1943.

## SOUND ABSORPTION COEPTICIENTS OR THE MORE COMMON ACOUSTIC MATERIALS.

The following figures have been obtained at the National Bureau of Standards for the sound absorption coefficients of a number of acoustic materials which are on the market. The bulk of the moasurements are on materials submitted by the makers. The measurements on some of these materials were made several years ago. Technologic changes in manufacture, some induced by the war, may have caused differences between the coefficients of materials now on the market and those of materials originally tested. However, an atterrpt has been made to reduce the effect of variations in manufacture by including the coefficients only for those materials which the makers state are essentially the same as when the tests were made.

The inclusion of a material in this letter circular is not to be construed as a general approval. Each material should be judged on its merits in any particular case as there are other requirements besides sound absorption which mast be considered, such as fire resisting qualities, light reflection, appearance, etc. Figures are also given for the absorption of an audience seated in chairs of different binds. All the results have been obtained by the reverbera tion method on samples having an area of approsimately 72 square feet.

The sourd absorption coefficient of a material is defined as the fractional part of the energy of a sound wave that is absorbed at each reflection. Experimental figures such as are given here must be regarded as approximate only. This branch of applied science is new and in a state of development. The methods and formulas used in obtaining these figures are those which, while not entirely satisfactory, are open to the least objection. The uncertainty involved is such that all the coefficients are probably somewhat too large.

The "noise coefficient" given in the table is the average, to the nearest mitiple of 0.05 , of the coefficients for 256,512 , 1024, and 2048 cycles. It has been recommended by many consultants that such a coefficient be used when the problem is one of reducing the noise level, as in offices, restaurants, etc.

Many of the acoustic materials exhibit large variations in their sound absorption properties when the method of mounting is changed. In many cases the most important feature is the amount of air space
back of the material. The figures given in this letter circular apply only when the materials are mounted in the same manner as when tested. For this reason the exact method of mounting is given for each test.

Acoustic plasters require special skill in their appleation, as improper manipulation may reduce the coefficient. Pareicular attention is called to the fact that a dry base coat is used for most applications. Also, the sound absorption coefficients are afiected quite materially by the time between the application of the fisst and second coats of acoustic piaster, the amount of moisture in the surface of the plaster When it is finally floated, or finished whth a trowel or by other means: and other factors of this nature.

A number of materials have been painted and retested to determine the effect of painting. In every case the paint was applied so as to decrease the sound absorption as little as possible and still obtain a reasonably good paint job. Details of the manner in which the paint was applied on any particular material will be supplied upon application.

It is not necessarily the case that the materials of highest coefficient are the most advantageous. When there is room enough to apply the requisite quantity, a material of low coefifcient will give better results than one of higher absorption, because of the more uniform distribution of material. Also, in comparing different materials it should be borne in mind that there is some variation in manufacture; hence, the sample which was measured mey have more or less absorption than the material delivered on the job. Minor differences in coefficients, therefore, ghould be disregarded in choosing between materials.

For the foregoing reesons it is advineble in drawing up specifications for auditoriums to lay erphasis upon the reverberation time desired rather than upon coefficients of material. See National Bureau. of Standards Circular Ch18 entitled. "Architoctural Acoustics," which may be obtained from the Superiasendent of Documents, Government Printing Office, Tashington, D. C. at 5 cents per copy. Supplementary data on any of the materials montioned in this letter circular will be fur. nished on application.

Additional information regarding the absorption coefficients of acoustical materials may be obtained from the Acoustical Materials Association, 120 South LaSalle Street, Chicago, Illinois.

## LC-714

1. D. 5, Itom 10 under "Types of fountingi" shouid rond "Nailed on $2 x$ - 120.0. unless othervas indiceted."
2. p. 6, Cushiontone $\frac{4-5}{\text { not }} .95^{\text {mitashent }}$ whould bo 11.27 and
 United Cork Companies Armstrong Cork Company Dodson Manufacturins Co. Na.tional Gypsum Company The Felters Company, Inc. -dxoD setrixaqua sutuxoo suəmo Owens Coming Fiberglas Corp.
The Insulite Company
Johns-Manville Sales Corp.

| Trade Name |
| :--- |
| Absorbatone |
| Absorbex |
| Acoustex |
| Acoustical Cork "B" |
| Acoustic Plaster |
| Acoustic Plaster |

Acousti-Celotex
Acoustilite
Acousti-Metal
Acoustone
Air-Acoustic Sheets
Audience (Seated in dif-
ferent types of seats) Bal sam i. 7001 Basalt Rock
Cabots Quilt
Calacoustic Plaster
Cork Acoustical
Cushiontone
Dodson Acoustic Plaster
Econacoustic
Pibernas Acoustical
Blankets
Fiberglas OC-9 Board
Fibracoustic
8-97? Ken

$$
\infty
$$



## Address


Manufacturer
Cleveland Gypsum Supply Company

" " " " Keasbey \& Mattison Company National Gypsum Company The Celotex Corporation Johnsmanville Sales Corp. Wood Conversion Company Newark Plaster Company United States Gypsum Company Johnsomanville Sales Corp. T. Guastavino Company Mitchell \& Smith Uni ted States Gypsum Company The Celotex Corporation United States Grysum Company Johns-Manville Sales Corp. Industrials Ince of Tisconsin The Sphinx Acoustical Co.

$$
\begin{aligned}
& \text { Johns-Manville Sales Corp. } \\
& \text { Sprayo-Flake Company } \\
& \text { California Stucco Products of } \\
& \text { New England, Inc. }
\end{aligned}
$$ Johns-Manville Sales Corp. Gypsum Insulation \& Mfg. Co. Gypsum Insulation \& Mrg. Co. Johns-Manville Sales Corp. National Gypsum Company

Trade Name
 Kencoustic xeqsnoy Macoustic Plaster Nashkote
Numood Bevel Lap Tile
Old Newark Acoustic Plaster
Perfatone
Permacoustic
Plastacoustic
Pyrocustic
Quietone
Reverbolite Plaster
Sabinite Plaster
Sanacoustic
Seats (See Audience)
Softone
Sphinxstone Sound Isolation Blanket
Spray-Acoustic, Type $X$
Stucoustic Studio Element
Super-Acoustic Plaster
Temlok Deluxe
Transite Acoustical Units
Travacoustic
Trutone
$8-972$

$$
\begin{aligned}
& 1 . \\
& 2 . \\
& 3 . \\
& 4 .
\end{aligned}
$$ to plaster or masonry.

$$
\text { Nailed on } 13 / 16^{11} \times 2^{11} \text { furring, } 12^{\prime \prime} 0 . c . \text { unless otherwise indicated. }
$$

$$
\text { Metal supports attached to } 13 / 16^{1}
$$

## Laid directly on laboratory floor.

$$
\times 2^{n} \text { mood furring. }
$$

7. Back of sample covered with concrete.

Nailed on $2 \times 4^{\circ} \mathrm{s}$, $12^{\prime \prime}$ oc., unless otherwise, indicated.
Cemented to the floor of the reverberation chamber.
เก $0^{\circ}$
Attached to metal suspension syster. 4 ais air space back of tile, unless otherwise indicated.
acoustic tile nailed to $13 / 16^{11} \times 2^{n 1}$ furring, $1 g^{m} 0 . C_{0}$ space between furring filled with Rockwool.
10. Nailed on $2 \pi^{\prime \prime} 8^{1}$, $12^{\text {m }}$ oc. Laid on 24 gauge sheet iron,

## $\pm 0^{\circ}$ <br> oi

oi -i
11.
Sound Absorption Coefficients and Description of Test Samples

$-7$

| Materisu |  |  | BASALT ROCK COMPANY |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Thickness | Mounting (See Page 5) | Coofficients |  |  |  |  |  | No1se Coof. | ```Size of Unit Tested.``` | $\begin{array}{r} \text { Wt. } \\ (1 b) \\ \text { sq } f t \\ \hline \end{array}$ | Suriace | Date |
|  |  |  | 128 | 256 | 512 | 1024 | 2048 | 4096 |  |  |  |  |  |
| Basalt Rock Type A | $5^{\prime \prime}$ | 4 | . 32 | .81 | . 75 | .73 | . 74 | . 73 | . 75 | $18^{\prime \prime} \times 24^{\prime \prime}$ | 25.2 | Unpaintod | 1938 |
| SAMUEL CABOT. INC. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cabots Quilt | - | 4 | .12 | . 30 | . 69 | . 82 | .42 | .31 | . 55 | - | .41 | Covered with paper | 1938 |
| THE CEWOTEX CORPORATION |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ```Absorbex Type A on 1" Absorbex Type F (10 gruge)``` | $2^{\prime \prime}$ | 4 | - | . 39 | . 80 | . 96 | . 92 | - | . 75 | $\begin{aligned} & 9^{\prime \prime} \mathrm{z9"} \\ & \text { t11e on } \\ & 20 \times 64^{n} \\ & \text { sheets } \end{aligned}$ | - | Spray painted by manufacturer. | 1932 |
| Absorbex Type A | $1{ }^{11}$ | 1. | . 09 | . 24 | . 62 | . 89 | . 73 | . 73 | . 60 | $12^{\prime \prime} \times 12^{\prime \prime}$ | 2.4 | Unpainted | 1939 |
| Absorbex Type A | $1 "$ | 1 | .14 | . 49 | . 83 | . 61 | .30 | . 22 | . 55 | $12^{\prime \prime} \times 12^{\prime \prime}$ | $\cdots$ | Same as above, brush palnted 5 coats at NBS | 1939 |
| Absorbex Type A | 111 | 9 | . 19 | . 63 | . 95 | . 86 | . 78 | . 77 | . 80 | $18^{\prime \prime} \times 18^{\prime \prime}$ | 2.6 | Unpalnted | 1936 |
| Absorbex Type A | 111 | $\left.\begin{array}{c} 2 \\ \left(18^{\prime \prime} \circ . \mathrm{c} .\right. \end{array}\right)$ | . 19 | . 33 | . 50 | . 86 | . 80 | . 83 | .70 | $18^{\prime \prime} \times 18{ }^{\prime \prime}$ | 2.7 | Kerfed. spray paintod 4 coats at NBS | 1936 |
| Absorbex Type $C$ | $1{ }^{18}$ | $4$ | . 14 | . 19 | . 34 | .73 | . 62 | . 62 | . 45 | $201 \times 644$ | - | Unpainted | 1932 |
| Absorbex Type C (14 gauge) | 11 | $\begin{gathered} 2 \\ \left(20^{\prime \prime} 0 . c_{0}\right) \end{gathered}$ | . 14 | . 21 | . 57 | . 69 | . 59 | . 62 | . 55 | $20^{\prime \prime} \times 64$ " | - | Unpainted | 1932 |
| Absorbex Type $\mathbb{F}^{3}$ (10 gauge) | 111 | $\begin{gathered} 2 \\ \left(16^{\prime \prime}, c_{0}\right) \end{gathered}$ | . 06 | . 17 | . 47 | .66 | .53 | $\cdots$ | .45 | $20^{\prime \prime} \times 641$ | - | Spray painted by manusacturex. | 1934 |
| Absorbex Type $\$$ ( 8 guage) | $2^{\prime \prime}$ | 7 | .13 | .47 | . 98 | . 70 | . 78 | . 70 | .75 | 2013544 | 4.7 | Spray painted 4 coate at NBS | 1934 |
| $\begin{aligned} & \text { Acousti-Celotex } \\ & \text { Type } \mathrm{Cl} \end{aligned}$ | $1 / 2^{n}$ | 1 | . 12 | . 26 | . 488 | . 50 | .46 | .56 | .25 | $12^{61} x 2^{28}$ | .78 | R.I. finigh periorated 44 holes per sq ft. 3/16" dia., $3 /$ 'I' $^{\prime \prime}$ deep | 1936 |
| Acousti-Celotex Type Cl, Slow burning. $8-972$ | $1 / 2^{\prime \prime}$ | 1 | . 17 | . 24 | .40 | .45 | .43 | .51 | .40 | $12^{\prime \prime} \times 12^{\prime \prime}$ | .88 | Unpainted, perforated as above. | 1936 |

- 


-9-
THE CHIOTEX CORPORATION (CONTINUKD)

$-10$

| Material | Whick ness | $\begin{aligned} & \text { Mounting } \\ & \text { (See Page 5) } \end{aligned}$ | Coprictents |  |  |  |  |  | NoIse <br> Soct． | $\begin{aligned} & \text { Size of } \\ & \text { Unit } \\ & \text { Tested } \end{aligned}$ | 留各 （1b） se 14 | Surface | Dats |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 128 | 256 | 512 | 1024 | 2048 | 1：096 |  |  |  |  |  |
| ```Acousti-Celotex Mype M2``` | 9／16 ${ }^{\prime \prime}$ | 1 | ． 11 | ． 29 | ． 68 |  | ． 82 | .74 | .65 | $12^{17} \times 12^{11}$ | 3.23 | Fainted by miros perfor－ atsd 676 hules per sq路， $5 / 32^{\text {月 }}$ ala．， $1 / 2^{14}$ Coep． | 1936 |
| Acousti－Celotex Type M2 | I | 8 | ． 38 | ． 54 | ． 66 | ． 95 | ． 73 | ． 68 | ． 70 | $123 \times 2411$ | 2.32 | Painsed by mir．，periom－ ated as above，holes 7／8n deep． | 1939 |
| Muffletone， Standard finish | 3／418 | 1 | .23 | ． 36 | ． 65 | .62 | ． 70 | ． 69 | ． 60 | $12^{\prime \prime} \times 12^{3}$ | 1． 62 | Unpainted | 1938 |
| Muffletone． Standard fintsh | $I^{18}$ | 1 | ． 19 | ． 45 | ． 84 | ． 87 | ． 83 | ． 88 | .75 | $12^{16} \times 22^{\text {m }}$ | 1.53 | Painted by mamiacturer． | 1938 |
| Muffletone， Standard finish | $1{ }^{11}$ | 1 | .15 | ． 46 | ． 75 | ． 80 | .72 | ． 68 | ． 70 | 2210x ${ }^{\text {x }}$ | 1.84 | Unpainted | 1938 |
| 起fletone Standard finish | $1{ }^{11}$ | 1 | ． 13 | ． 44 | ． 78 | ． 30 | ． 75 | － 82 | ． 70 | $1.27 x{ }^{\prime \prime}$ | \％ | Same as above，spray painted 3 coats at NBS． | 1938 |
| Muffletone， Tissured finis 3h | $1{ }^{1}$ | 1 | ． 16 | ． 45 | ． 72 | ． 69 | ． 72 | ． 70 | .65 |  | 1.96 | Unpainted | 1938 |
| Murfletono， Fissured Lin立sh | $1{ }^{\text {\％}}$ | 1 | ． 16 | ． 44 | ． 68 | ． 69 | ． 69 | ． 7. | ． 65 | $12^{\prime \prime} \mathrm{zl} 2^{\prime \prime}$ | $\infty$ | Seme as wbove，spray | 1938 |
| Muffletone， Fissured finish | 17 | 1 | ． 14 | ． 41 | ． 88 | ． 77 | ． 75 | ． 78 | ． 70 | $12^{\prime \prime} \mathrm{I} 22^{\prime \prime}$ | 2.94 | palated 3 coats at MBS Unpainted | 1942 |

\footnotetext{



$-120$

-13

| JOHNS MANVILJE SALES CORPORATION (Cont'd) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Material | $\begin{gathered} \text { Thick- } \\ \text { ness } \end{gathered}$ | $\begin{gathered} \text { Mounting } \\ \text { (See Page 5) } \end{gathered}$ | Coefficients |  |  |  |  |  | Noise Coer. | $\begin{aligned} & \text { Size of } \\ & \text { Unit } \\ & \text { Tested. } \end{aligned}$ |  | Surface | Date |
|  |  |  | 128 | 256 | 512 | 1024 | 2048 | 4096 |  |  |  |  |  |
| Sanacoustic, same as above except overy other tile was not perforated and contained no pad. | As above. | 3 | . 15 | . 86 | . 66 | . 66 | . 49 | .44 | .65 | $12^{4} \times 24^{\text {i }}$ | $\begin{aligned} & \mathrm{Pad} \\ & 1.2 \end{aligned}$ | Ehameled metal surface. Perforated pans had 4608 holes per sq ft, $.068^{\prime \prime}$ diameter. | 1940 |
| Sanacoustic,pad plus metal facing and pad supports, plus fiurring $=$ | $\begin{array}{ll} 1 & 5 / 8 \prime \prime \\ 5 & 1 / 4 \prime \prime \end{array}$ | 8 | .43 | . 94 | . 77 | . 82 | . 78 | . 72 | . 85 | 12"x24" | $\begin{aligned} & \text { Pad } \\ & 1.2 \end{aligned}$ | Perforated enameled metal surface, 4608 holes per sq ft, .06 " $^{\prime \prime}$ diameter. | 1940 |
| Sancoustic, same as above, except every other tile was not perforated and contained no pad. | As above | 8 | .54 | . 72 | . 57 | .62 | . 50 | .43 | .60 | $12^{\prime \prime} \times 24$ " | $\begin{aligned} & \text { Ped } \\ & 1.2 \end{aligned}$ | Fnameled metal surface. Perforated pans had 4608 holes per sq ft, $.068^{3}$ diamater. | 1940 |
| Sound Isolation <br> Blanket (Fockwool) | - | 4 | . 11 | . 58 | . 85 | . 83 | . 81 | . 83 | .75 | - | 1.5 | Metal lath. | 1932 |
| Studio Element | $1{ }^{\prime \prime}$ | 4 | . 1.6 | . 54 | . 72 | .74 | .71 | . 81 | .70 | $22^{\prime \prime} \times 36^{\prime \prime}$ | 1.47 | No covering. | 1937 |
| Transite Acousticel Units. | $11 / 8$ | 4 | . 19 | . 39 | . 77 | . 74 | .70 | . 55 | .65 | $12^{\prime \prime} \times 12^{\prime \prime}$ | 3.0 | Transite, perforated 576 holes per sq ft, diameter 5/32" | 1931 |


| DAVID E. KENNEDY, INC. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Kencoustic (cork) | 311 | $\dot{1}$ | . 05 | . 12 | . 48 | . 65 | . 38 | . 47 | . 40 | $12^{\prime \prime} x 2^{\prime \prime}$ | . 79 | Painted by manufacturer. | 1939 |
| Kencoustic (cork) | $11 / 2^{\prime \prime}$ | 1 | . 09 | . 16 | . 66 | . 64 | . 50 | . 62 | . 50 | $12^{\prime \prime} \times 18 \mathrm{n}$ | . 88 | Painted by manufacturer. | 1938 |
| Kentex | 1" | 1 | . 18 | . 36 | . 53 | . 48 | . 45 | . 35 | .45 |  | . 78 | Unpainted. | 1942 |
| Kouster | $3 / 4{ }^{\prime \prime}$ | 1 | . 08 | . 21 | . 62 | . 85 | . 70 | . 70 | . 60 | $12^{\prime \prime} \times 12$ " | 1.48 | Painted by manufacturer. | 1942 |
| Koustex | 3/4" | $\left(12^{\prime \prime}{ }^{8}\right. \text { air }$ | . 66 | . 82 | . 52 | . 58 | . 64 | . 66 | . 65 | $12^{\prime \prime} x 2^{\prime \prime}$ | 1.43 | Painted by mamufacturer. | 1942 |
|  |  | space) |  |  |  |  |  |  |  |  |  |  |  |
| Koustex | 2'1 | 1 | . 12 | . 29 | . 75 | . 87 | . 71 | . 76 | . 65 | $12^{\prime \prime} \times 12^{\prime \prime}$ | 2.24 | Unpainted. | 1939 |
| Koustex | 1.3/41 | 1 | . 13 | . 33 | . 72 | . 95 | .77 | . 86 | . 70 | $12^{\prime \prime} \times 12^{\prime \prime}$ | 2.2 | Painted by manufacturem. | 1940 |


| Materlal | Theick ness | Mounting (See Page 5) | LUSE STEVENSON COMPANT |  |  |  |  |  |  |  |  |  | Dato |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | fict | 2. ${ }^{\text {L }}$ |  | Nolse Coef. | Size of Unit | $\begin{gathered} \text { Wt } \\ (12) \end{gathered}$ | Surface |  |
|  |  |  | 128 | 256 | 522 | 1024 | 2048 | 4096 |  | Tested. | sq pt |  |  |
| Absorbatone | 210 | 10 | .40 | . 91 | . 82 | . 80 | .78 | . 86 | . 85 | $12^{11} \times 24^{10}$ | 2.2 | Unpainted | 1940 |
| Absozbatone | 20 | 2 | . 10 | .31 | . 71 | .93 | .78 | . 84 | . 70 | $12^{\prime \prime} \times 24^{\prime \prime}$ | 2.4 | Unpainted | 1941 |
| MISCBTLI SMITM |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Pyrocustic | 13/168 | 1 | . 10 | . 30 | . 79 | . 84 | . 86 | . 80 | .70 | $12^{\prime \prime} \times 12^{\prime \prime}$ | 1.1 | Unpainted | 1940 |
| Pyrocustic | 13/1611 | 1 | . 11 | . 42 | . 78 | . 82 | .70 | .65 | . 70 | $12^{\prime \prime} \times 12^{\prime \prime}$ | - | Spras painted 2 coats at NBS. | 1940 |
| MATIONAI GYPSUM COMPANX |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Acoustex Type 30R | $5 / 8^{8}$ |  | 21 | . 20 | 59 | 91 | 85 | . 72 | $\begin{aligned} & .65 \\ & .50 \end{aligned}$ | $12^{\prime \prime} \times 12^{\prime \prime}$ | 1.34 |  | 1938 |
| Acoustex Type 40R | 3/411 |  | . 06 | . 17 | . 37 | . 68 | -82 | - 74 |  | $12^{\prime \prime} \times 22^{\text {m }}$ | 1.75 | Unpainted | 1938 |
| Acoustex Type 40R | $3 / 4$ |  | .15 | . 22 | . .61 | . 93 | . 79 | . 69 | .65 | $12^{4 \prime} \times 12^{\text {m }}$ | 1.54 | Unpainted | 1938 |
| Acoustex Type 50R | $7 / 8^{6}$ |  | . 13 | . 28 | - 70 | . 98 | . 85 | . 87 | . 70 | 12018 ${ }^{11} 2^{19}$ | 1.79 | Unpainted | 1938 |
| Acoustex Type 60R | $1{ }^{18}$ |  | . 07 | $\begin{aligned} & .24 \\ & .33 \end{aligned}$ | $\begin{array}{r} .55 \\ .77 \end{array}$ | . 87 | . 86 | - 88 | .65 | $12^{\prime \prime} \times 12^{\prime \prime}$ | - | Unpainted | 1937 |
| Acoustex Type 60R | $1{ }^{18}$ |  | $.21$ |  |  | .92 | . 70 | .96 | . 70 | $12^{11} \times 12^{\prime \prime}$ | 2.07 | Unpeintad | 1936 |
|  |  |  |  | - 33 |  |  |  |  |  |  |  |  |  |
| Acoustex Type 60R | 30 | 1 | . 07 | -22 | .54 | . 87 | - 78 | . 77 |  | $12^{68} \times 12^{69}$ | 2.31 | Painted by manufacturer. | 1939 |
| Acoustex Type 60R | 19 | 1 | . 09 | . 27 | . 71 | -92 | .62 | .62 | .65 | $12^{\prime \prime} \times 12^{\text {H }}$ | - | Same as above, brush painted 5 coats at NBS. | 1939 |
| Acoustex Type 70R | 1111 | 1 | 12 | . 28 | . 70 | .96 | . 84 | . 88 | - 70 | $12^{\prime \prime} \times 12^{\prime \prime}$ | 2.5 | Unpainted Unpainted | 1940 |
| Acouster Type 70R |  | 2 | -25 | . 37 | . 84 | . 92 | - 78 | . 80 | . 75 | $12^{\prime \prime} \times 12^{\text {m }}$ | 2.5 |  | 1940 |
| Acousti-Metal, |  | 8 | .40 | . 84 | . 87 | . 93 | .82 | .70 | .85 | $12^{81} 5240$ | $0.98$ | Perforated enameled | 1939 |
| Rockwool pad plus metal facing and |  |  |  |  |  |  |  |  |  |  | ( $\mathrm{Ba} \mathrm{a}^{\text {) }}$ | metal. 4608 holes per sq 068 明 diameter |  |
| pad supports, | $\begin{aligned} & 1.5 / 8^{17} \\ & 51 / 4^{10} \end{aligned}$ |  |  |  |  |  |  |  |  |  |  | . |  |
| plus furring s |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Acousti-hetal, same |  | 8 | . 22 | .75 | . 65 | .64 | . 49 | .34 | .65 | $12^{\prime \prime} \times 12^{\text {m }}$ | $\begin{array}{r} 0.98 \\ \text { (Pad) } \end{array}$ | Fnameled metal surface. Perforated pans had 4608 holes per sq it, 0,68" diameter. | 1941 |
| as sbove, except |  |  |  |  |  |  |  |  |  |  |  |  |  |
| every other tile |  |  |  |  |  |  |  |  |  |  |  |  |  |
| was not perforated |  |  |  |  |  |  |  |  |  |  |  |  |  |
| and contained no |  |  |  |  |  |  |  |  |  |  |  |  |  |
| pad. Fastened to |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 13/16 furring in- | $31 / 2$ |  |  |  |  |  |  |  |  |  |  |  |  |
| stead of $35 / 8{ }^{\text {m }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Material |
| :--- |


| OTRNS-CONNING PYRERGLAS CORPORATION |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fiberglas Acoustical Blankets | 11 | 4 | . 27 | . 63 | . 75 | . 75 | . 78 | . 75 | . 75 | - | .44 | Covered with thin mase 1in. | 2938 |
| Fiberglas Acoustical Blankets | $2^{\text {N }}$ | 4 | .34 | . 72 | . 87 | . 87 | . 75 | . 70 | . 80 | - | . 72 | Same as above. | 1938 |
| Fiberglas Acoustical Blankets | 3' | 4 | . 39 | . 91 | . 97 | . 91 | . 82 | . 85 | . 90 | - | 2.07 | Same as above. | 1938 |
| Fiberglas 00-9 Board | 3/4' | 5 | . 21 | . 72 | . 93 | . 93 | . 89 | . 91 | . 85 | $12^{\prime \prime}$ 지.2" | . 60 | Unpainted | 1942 |

[^0]THE SPHINX ACOUSTICAL COMPANY

| Material | Thick ness | Mounting （See Page 5） | Coefficients |  |  |  |  |  | Noise Coef． | Size of Unit Tested | 開 6 （1b） sq fit | Surface | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 128 | 256 | 512 | 1024 | 2048 | 4096 |  |  |  |  |  |
| Sphinxstone | $2^{\prime \prime}$ | 4 | ． 10 | .33 | ． 78 | ． 87 | ． 71 | ． 70 | .65 | $18^{11} \times 24^{\prime \prime}$ | － | Unpainted | 1932 |


| UNITED CORK COMPANIES |
| :--- |
| $.09 \mid .57$ |
| $.0 \mid 27$ |
| 0 |



|  |  |
| :---: | :---: |

-17-

| Material | Thickness | Mounting (See Page 5) | Coefficients | Noise Coef. | Size of Unit Tested. | Wt (1b) sq ft | Surface | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 128256512102420484096 |  |  |  |  |  |
| Balsam Fool | $1{ }^{\prime \prime}$ | 4 | .18 .36 .55 .65 .67 - | . 55 | - | . 29 | Scrim facing. | 1928 |
| Numood Bevel Lap Tile | $1 / 2^{\prime \prime}$ | 6 | $.12 .19 .30 \quad .40$. 40.51 | . 30 | $12^{\prime \prime} \mathrm{xl}{ }^{\prime \prime}$ | 0.69 | Unpainted. | 1931 |
| Nuwood Bevel Lap Tile | $1^{11}$ | 6 | 14 .19 .37 | . 35 | $12^{\text {H }} \times 12^{\prime \prime}$ | 1.41 | Unpainted. | 1931 |

$-18$
Acoustic Materials for Plastic Anplication

> Unless otherwise ctated, each semple of souctical plaztex was rixed according to the specifications furnished by the manufactaxers and spritec by a skilled plonterer on false celling at the Notional an alr sur blower were constructed at NBS unles: otherwise stated. The panela were laid on the floor of the Reverberation Chamber for test.

## CATHEORITA STTCO PRODUCTS OR NEH RHGLAND, INC.

| Listerial | Thicl: ness | Coefficheats |  |  |  |  | $4096$ | $\left\{\begin{array}{l} \text { Noise } \\ \text { coesf } \end{array}\right.$ | NO. of Coass | Base Coat | Applicationi | Surface Treatment | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stucoustic Type A.D. | 3/4 | . 18 | . 36 | . 65 | .65 | .62 | . 62 | . 55 | $\begin{aligned} & \text { sst coat } \\ & 7 / 16^{\prime \prime} \\ & \text { 2nd coat } \\ & 5 / 16^{\prime \prime} \end{aligned}$ | $\begin{aligned} & 3 / 4{ }^{\prime \prime} \\ & \text { Gypsum } \\ & \text { plaster } \end{aligned}$ | 1st coat applied to half green base coat. 2nd coat apo plied 3 hours after 1st coat. | Finished with steel trowel. | 1935 |
| Stucoustic | $1 / 2^{\prime \prime}$ | . 12 | . 29 | . 52 | . 78 | . $0^{4}$ | . 74 | . 60 | $\begin{aligned} & 1 \text { st coat } \\ & 1 / 4^{3} \\ & 2 \text { nd coat } \\ & 1 / 41 \end{aligned}$ | 3/4" Gypsum plaster | lst coat applied to dry base coat. 2nd coat applied 24 hours after lst coat. | Finished with steel trowel. | 1939 |



[^1]$-19$

| Materisu | Thickness | Coefficienis |  |  |  |  |  | NotseCoef. | Nic. of Coatis. | Base Coat | Appiscation | Surface Treat mont | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 128 | 2561 | 512 | 1024 | 20418 | 4096 |  |  |  |  |  |  |
| Fushbote acoustic Plaster | 1/211 | . 23 | . 241 | .45 | . 7 | .56 | .49 | . 50 | $\begin{aligned} & \text { Ist cost } \\ & 1 / 4^{\circ \prime} \\ & 2 \text { nd } \cos t \\ & 1 / 4^{\prime \prime} \end{aligned}$ | $\begin{aligned} & \text { 3/4: } \\ & \text { Gypsum } \\ & \text { plaster } \\ & \text { on metal } \\ & \text { lath. } \end{aligned}$ | lst coat applied to dry bese coat. 2nd coat applied 24 hours after lst coat. | Finished with steel trowel. | 1935 |
| Hushkote Acoustic Plaster | 5/8' | . 16 | . 34 | . 50 | . 53 | . 43 | . 37 | . 45 | $\begin{aligned} & \text { hst coat } \\ & 3 / \mathrm{c}^{\prime \prime} \\ & \text { 2nd coat } \\ & 1 / 4^{\prime \prime} \end{aligned}$ | $3 / 4^{13}$ <br> Gypsum plaster on metral lath. | lst coat applied to dry base coat. 2nd coat applied 24 hours after lst coat. | Finished 7 ith steel trowel. | 1937 |
| Hushicote Acoustic Piaster | 3/4' | . 28 | . 26 | . 45 | . 50 | . 53 | . 57 | . 45 | 1st coat 1/4 ${ }^{5}$ <br> and cont $1 / 4^{11}$ <br> 3ra cost 1/4" | $\begin{aligned} & \text { 3/4" } \\ & \text { Gypsum } \\ & \text { plaster } \\ & \text { on metel } \\ & \text { lath. } \end{aligned}$ | Ist coat applied to dry base coat. 2nd coat applied 5 days after l.st coat. 3rd coat applied 3 daws after 2nd coat. | Finished with steel trowel. | 1938 |


| THE DCDSON MANUFACLURING COMPANX |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Dodson Acoustic } \\ & \text { Plaster } \end{aligned}$ | 3/4" | . 15 | . 25 | + 30 | . 35 | . 34 | . 25 | . 40 | $\begin{gathered} 1 g t \text { coat } \\ 1 / 2^{n} \\ \text { and coat } \\ 1 / 4^{\prime \prime} \end{gathered}$ | $\begin{aligned} & 1 / 4 \text { " } \\ & \text { Gypsum } \\ & \text { plaster } \\ & \text { on metal } \\ & \text { lath. } \end{aligned}$ | Ist coat applied to half green base coat. 2nd coat applied as soon as lst coat had taken initial set. | Finished with cork float and stippled to break surface film。 | 1939 |


$-20$

| Material | Thick ness | Coefficients |  |  |  |  |  | $\begin{aligned} & \text { Noise } \\ & \text { Coef. } \end{aligned}$ | No. ol Coats. | Bare Coat | Application | Surface sreatmont | Dat* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 128 | 256 | 512 | 1024 | 2048 | 4096 |  |  |  |  |  |  |
| Super-Acoustic Plaster | $1 / 2^{\text {m }}$ | . 12 | . 24 | . 45 | . 71 | . 62 | . 63 | . 50 | $\begin{aligned} & 18 t \text { coat } \\ & 1 / 4^{\circ} \\ & \text { 2nd coat } \\ & 1 / 4^{\prime \prime} \end{aligned}$ | 3/4" Gypsum plaster on metal lath. | Ist coat applied to dry base coat. and coat applied 24 hours after 1 st coat. | Minished with coric float. | 1938 |
| HOLITWOOD SIUCCO PRODUCTS |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Acoustic Plaster | $1 / 2^{11}$ | . 10 | . 22 | . 42 | . 78 | . 78 | . 70 | . 55 | $\begin{gathered} 18 t \text { coat } \\ 1 / 4^{\mathrm{m}} \\ \text { 2nd coat } \\ 1 / 4^{\prime \prime} \end{gathered}$ | 3/4" Gypsum plaster on metal 1ath. | 1st coat applied to dxy bese coat. 2nd coat applied 24 hours after lst coat. | Finished with cork float. | 1939 |


| KEASBEY AND MATTISON COMPANY |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Limpet (Sprayed Asbestos) | $3 / 8^{n}$ | . 36 | . 92 | . 85 | . 81 | . 87 | . 91 | . 85 | - | - | Applied with air gun on metal lath. $57 / 8 \mathrm{~g}$ air space back of Iimpet. | Finished with roller unpainted. | 1942 |
| Limpet (Sprayed Asbestos) | 3/8 ${ }^{\text {n }}$ | . 43 | . 91 | . 52 | . 67 | . 62 | . 61 | . 75 | - | - | Same as above. | Same as above, except spray painted 5 coats at MBS. | 1942 |
| Ifmpet (Sprayed Asbesto 3 ) | $1 / 2^{n}$ | . 25 | . 78 | . 97 | . 81 | . 82 | . 85 | . 85 | - | - | Same as above. | Finished with roller, unpainted. | 1941 |
| Iimpet (Sprayed Asbestos) | $1 / 2^{1 \prime}$ | . 27 | . 75 | . 90 | . 15 | . 80 | . 88 | . 80 | - | - | Same as above. | Same as above, except spray painted 2 coats at NBS. | 1941 |
| ```Inmpet (Sprayed Asbestos) 8-972``` | 3/4' | . 41 | . 88 | . 90 | . 88 | . 91 | . 81 | . 90 | - | - | Same as above. | Finished with roller, unpainted. | 1941 |

KFASBEY AND MAITISON COMPANY (Continued)

| Material | Thickness | Coefficients |  |  |  |  |  | Noise Coef. | Apclication | Surface Treatment | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 128 | 256 | 512 | 1024 | 2048 | 4096 |  |  |  |  |
| Limpet (Sprayed Asbestos) | $3 / 411$ | . 49 | . 90 | . 93 | . 86 | . 81 | . 82 | . 90 | Same as above. | Same as above, ezcept spray painted 2 coats at NBS. | 1941 |
| Limpet (Sprayed Asbestos) | $3 / 41$ | . 48 | . 91 | .91 | ,86 | . 87 | .87 | . 90 | Same as above. | Same as above, except spray painted 10 coats at NBS. | 1941 |
| Limpet (Sprayed Asbestos) | $5 / 8^{\prime \prime}$ | . 32 | . 28 | . 50 | . 84 | . 85 | . 87 | . 60 | Applied with air gran on gypsum wall board nailes on $2 x^{\prime \prime} \mathrm{s}, 16^{\prime \prime}$ on centers. | Finished with roller, unpainted. | 1942 |
| Limpet (Sprayed Asbestos) | 5/8" | . 38 | . 26 | . 67 | .77 | . 72 | .61 | .60 | Same as above. | Same as above, except spray painted 5 coats at INBS. | 1942 |
| Limpet (Sprayed Asbestos) | $3 / 4^{11}$ | . 08 | . 19 | . 70 | . 89 | . 95 | . 85 | $\begin{array}{r}.70 \\ \hline 80\end{array}$ | Applied with air gun on gypsum wall board. | Finished with roller, unpainted. | 1941 |
| Limpet (Sprayed Asbestos) | 3/4" | .09 | . 23 | . 67 | .90 | .93 | . 87 | .70 | Same as above. | Same as above, except spray painted 2 coats at NBS. | 1941 |
| Inmpet (Sprayed Asbestos) | $11 / 2^{n}$ | . 16 | . 59 | . 98 | .98 | .97 | .90 | .90 | Same as above. | Finished with roller, unpainted. | 1941 |
| Limpet (Sprayed Asbestos) | $11 / 2^{N}$ | . 16 | . 62 | .94 | .98 | .94 | .91 | . 85 | Same as above. | Same as above, except spray painted 2 coate at NBS. | 1941 |


| Material | Thicirness | Coefficients |  |  |  |  |  | Noise Coef. | No. of Coats. | Base Coat | Application | Surface Treatment | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 128 | 256 | 512 | 1024 | 2048 | 4096 |  |  |  |  |  |  |
| Acoustic Plaster | $1 / 2^{17}$ | . 17 | . 26 | . 52 | . 86 | . 71 | . 62 | . 60 | 1 | Thin scratch coat हypsum plaster on metal latb. | Applied to dxy scratch coat. | Stippled after plaster was partly dry. | 1942 |
| Acoustic Plaster | 1/2" | . 20 | . 26 | . 54 | . 84 | . 62 | . 45 | . 55 | 1 | Same sample as above. | Same as above. | Spras painted 5 coats cold water paint. | 1942 |

[^2]$-22$

| Material |  | NATIONAL GYPSUM COMPANI |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Thicko ness | Coeffictents |  |  |  |  |  | Noise Cosi． | No，of Coats | Base Coat | Applicatioz | Surface Treatment | Date |
|  |  | 128 | 256 | 512 | 3024 | 2048 | 4096 |  |  |  |  |  |  |
| Macoustic Plaster （Trowel Finisk） | $1 / 2^{6}$ | ． 15 | ． 27 | ． 42 | .45 | .36 | .29 | .40 | $\begin{aligned} & \text { 1st coat } \\ & 1 / 4 \\ & \text { 2nd cont } \\ & 1 / 48 \end{aligned}$ | $3 / 4^{11}$ Gypsum plaster on metal | 1st cont applied to hall green base coat． <br> 2nd coat applied 2 | Finished WIth steel trovel． | 1936 |
| Hacoustic Plaster （Trowel Finish） | $1 / 2^{19}$ | ． 17 | ． 27 | .52 | .76 | .66 | .55 | .55 | 1st coat 1／4 18 2nd coat $1 / 413$ | $\begin{aligned} & \text { 3/4" } \\ & \text { Gypsum } \\ & \text { plastes } \\ & \text { on metal } \\ & \text { lath. } \end{aligned}$ | 1st coat applied to dry base coat． 2nd coat applied 24 bours after lst | Fixishod 敂的 stael trowis． | 1937 |
| Macoustic Plaster <br> （Prowel Minish） | 3／4 | .25 | ． 42 | .67 | .63 | .52 | .47 | .55 | 1st cost $3 / 8^{\prime \prime}$ <br> 2na coat $3 / 8^{11}$ | $3 / 4^{11}$ <br> Gypsum plaster on metal lath。 | Ist coat appliod to dxy base coat． 2nd coat applied 24 hrs after Ist coat． | Finished with steel trowel． | 1937 |

NEWARK PTASTER COMPARY
Finished with
steel trowel． $1938^{\circ}$ Ist coat applied to
dry base coat．
2nd coat applied 24
hours aster ist
coat．

| PACITIC PORM LAND CEMENT COMPANT |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Calacoustic Plaster | 1／2 ${ }^{\text {n }}$ | ． 25 | ． 28 | .44 | .67 | ． 66 | .66 | ． 50 | 1st cozt 1／4＂ 2nd coat 1／4＂ | $3 / 4^{11}$ Gypsum plaster on metal lath． | lst coat applied to dry base coat． 2nd coat applied 72 hours aftter lst coat． |

$-23-$
SPRAYO-FLAKKE COMPANY

| Material | Thickness | Coepficients |  |  |  |  |  | Noise Coes. | Application | Surface Treatment | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 128 | 256 | 512 | 1024 | 2048 | 4096 |  |  |  |  |
| Spray-Acoustic Type X | 5/8' | . 59 | . 87 | . 85 | . 88 | .94 | . 83 | . 90 | Applied with an air gun on metal lath. $35 / 8^{\prime \prime}$ air space back of material. | Finished with a roller. Surface sprayed with coat of bindex. | 2940 |
| Spray-Acoustic Type X | 5/811 | . 65 | . 79 | . 80 | . 70 | . 83 | . 60 | . 80 | Same as above. | Same as above, except brush painted 4 coats at NBS. | 1940 |
| $\begin{aligned} & \text { Spray-Acoustic } \\ & \text { Type X } \end{aligned}$ | $11 / 8{ }^{\prime \prime}$ | . 18 | . 52 | . 95 | . 93 | . 91 | . 87 | .85 | Applied with an air gun on gypsum wall board. | Finished with a roller. Surface sprayed with coat of bindex. | 1940 |
| Spray-Acoustic Type X | $11 / 8^{\prime \prime}$ | . 15 | . 47 | . 88 | . 92 | . 87 | . 88 | . 80 | Same as above. | Same as above, except spray painted 3 coats at NBS. | 1940 |

UNITED STATIES GYPSUM COMPANY

| Material | Thickness | Coefficients |  |  |  |  |  | Noise Coef. | No. of Coats. | Base Coat | Application | Surface Treatment | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 128 | 256 | 572 | 1024 | 2048 | 4096 |  |  |  |  |  |  |
| Sabinite Plaster Eydraulic | 1/211 | . 14 | . 24 | . 27 | . 38 | .48 | . 64 | . 35 | $\begin{aligned} & \text { 1st coat } \\ & 1 / 4 " 1 \\ & \text { 2nd coat } \\ & 1 / 4 " \end{aligned}$ | Gypsum plaster. | lst coat applied to dry base coat. 2nd coat applied after lst coat had set and partly dxied. | Floated with cork float. | 1931 |
| Sabinite Plaster A | 2/2 ${ }^{1 \prime}$ | . 16 | . 24 | . 38 | . 78 | . 75 | . 77 | . 55 | $\begin{aligned} & \text { 1st coat } \\ & 1 / 4 " 1 \\ & \text { 2nd coat } \\ & 1 / 4 \prime 1 \end{aligned}$ | Gypsum plaster. | lst coat applied to dry base coat. 2nd coat applied 24 hours after lst coat. | Floated with cork float. | 1935 |

8-972
$-2400$

| Material | Thickness | Coefficients |  |  |  |  |  | Noise Coef. | No. of Coats. | Base Coat | Application | Surface Treatment | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 128 | 256 | 512 | 1024 | 2048 | 4096 |  |  |  |  |  |  |
| Sabinite Plaster A | $3 / 4^{11}$ | . 13 | . 27 | . 59 | . 81 | . 74 | . 85 | . 60 | $\begin{aligned} & \text { 1st coat } \\ & 1 / 4^{\prime \prime} \\ & \text { 2nd coat } \\ & 1 / 4^{\prime \prime} \\ & 3 \mathrm{rd} \text { coat } \\ & 1 / 4^{\prime \prime} \end{aligned}$ | $\begin{aligned} & \text { 3/4" } \\ & \text { Gypsum } \\ & \text { plaster } \\ & \text { on } \\ & \text { metal. } \\ & \text { 1ath. } \end{aligned}$ | 1st coat applied on dry base coat. 2nd coat applied 48 hours after lst coat. 3rd coat applied 72 hours after 2nd coat. | Floated with cork float. | 1935 |
| Sabinite Plaster F | $2 / 2^{18}$ | . 19 | . 22 | . 43 | . 80 | . 75 | . 75 | . 55 | Ist coat 1/4" <br> and coat $1 / 4^{17}$ | $3 / 4^{17}$ <br> Gypsum plaster on metal | Ist coat applied on dry base coat. 2nd coat applied 48 hours after lst coat. | Floated with cork float. | 1936 |
| Sabinite Plaster M | 1/2 ${ }^{11}$ | . 16 | . 26 | . 48 | . 77 | . 83 | .85 | . 60 | $\begin{aligned} & \text { Ist coat } \\ & 1 / 4^{\prime \prime} \\ & 2 \text { ad coat } \\ & 1 / 4^{\prime \prime} \end{aligned}$ | lath. 3/4" Gypsum plaster on metal | 1st coat applied on dry base coat. and coat applied 24 hours after Ist coat. | Pinished with steel trowel. | 1940 |
| Sabinite Plaster M | 3/48 | . 20 | . 32 | . 62 | . 79 | . 74 | . 85 | .60 | $\begin{aligned} & \text { 1st coat } \\ & 3 / 8^{11} \\ & \text { 2nd coa.t } \\ & 3 / 8^{11} \end{aligned}$ | lath。 <br> 3/4 ${ }^{10}$ <br> Gypsum plaster on metal 2ath. | Ist coat applied on dxy base coat. 2nd coat applied 24 hours after 1st coat. | Binished With steel trowel. | 2940 |

[^3]| $\text { Table } 3$ <br> Absorption per person fer an audience seated in chairs of varlous types. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| *Seating |  | 128 | 256 | 512 | 1024 | 2048 | Date |
| A | Women without coats | 0.7 | 1.3 | 2.3 | 3.6 | 4.6 | 1930 |
| A | Momen with coats . . | 1.3 | 2.4 | 4.0 | 5.8 | 6.7 | 1930 |
| A | Men without overcoats . | 1.3 | 2.1 | 4.1 | 5.5 | 7.4 | 1930 |
| A | Men with overcoats . . . . . | 2.3 | 3.2 | 4.8 | 6.2 | 7.6 | 1930 |
| B | Mixed audience . . . . . . . . | 2.3 | 3.2 | 3.9 | 4.7 | 7.6 | 1929 |
| B | Empty seat . . . . . . . . . | - | 3.4 | 3.0 | 3.3 | 3.6 | 1929 |
| C | Mixed audience . . . . . . . . | - | 3.5 | 4.1 | 4.9 | 4.2 | 1930 |
| C | Empty seat . . . . . . . . . . | - | 3.0 | 2.5 | 2.9 | 3.1 | 1929 |
| D | Mixed audience . . . . . . . | - | 2.7 | 3.3 | 3.8 | 3.6 | 1930 |
|  | Plywood chair. | - | 0.2 | 0.3 | 0.5 | 0.5 | 1930 |

$\begin{aligned} & \text { The above absorption figures are munerically equal to the number of } \\ & \text { square feet of a material having an absorption coofficient of } 1,00, \\ & \text { which would absorb the same amount of sound energy. }\end{aligned}$
\#A . . . . cane seat chairs, open back.
*B . . . theatre chairs, box spring seat, heavily padded back.
*C . . . same as B, bat single layer of padding on back.
*D . . . church pews, seating five.

Suggestions Concerning the Froper Uise
of Acoustical Materig.

As there has been considerable misconception concerning the proper use of acoustical material it is considered desirable to call attention to two of the fundanentel principles underlying the formalas which are used in acoustical desicn. It is assumed in all of the formolas that (1) the absorption is proportional to the area of the absorbing teterial. and that (2) there is a uniform distribution of sound energy. As a rule netiher one of these assumptions is true.

It has boon found Irom experjment when very gnall areas are useus. such as the pancls in a coffered ceiling having areas of from 1 to 4 square feet and separated from each other by a foot or more, thet the effective absorption of the material in theso panels is greater than when the material is instalied in one large area. In fact, for materials having large coefficients, this effective absorption may be as men as 50 percent more than one would expect from the coefficient.

It has also been found when all of the acoustical material is applied on one surfece of a relatively small room, sey 50,000 cubic feet of under. that this creates a nox-uniform distribution of sound energy in the following manner. Let-us assume that the ceiling of a room is covered with a highly absorbont material. Under these conditions the sound energy which is traveling between the floo axd ceiling is absorbed quite rapidly, while that traveling between the untreated wall surfaces. having very lithle to absorb it, may continue for some considerable time. This persistence of sound energy between the untreatod surfaces may curse the measured reverberation time to be considerably longer than would be computed using the ordinary peverberation formala and the coefficient ususily given For this reason, it is essential in smell rooms that the acoustical moterfal bo distributed on the side walls as well as on the coilixg, 起 the effective absorphton of the material is to be anywhere near that which one would expect from the coefficient of the material. For further discussion of this problem see Circular clly.

We also wish to call attention to the fact that a proper aistribution of the ecoustical material should be worked out in the initisl plans of a building, as it is frequently fmpossible to obtain a satiso factory distribution after the interior design has been completed without taking into account the acoustical treatment.


[^0]:    $8-972$

[^1]:    $8-972$

[^2]:    8.972

[^3]:    8-972

