DEPARTMENT OF COMMERCE
BUREAU OF STANTARDS WASFINGTON

September 26, 1922

Oxizinally issiled Aldytst 25, 2919 as Commeni cation B523.

MEASUREMENT OF PT'TCH DIAMETER

 OF SCRETM THREAD GAGES
CONTENTS

Page

1. Introduction 2
2. Three-wire method 4
A. Sizes of wizes 4
B. Specifications for wires 6
C. Standardization of wixes 6
D. Computation of pitch diameter of symmetrical threads 7
E. Compuration of pitch diameter of unsymmetrical thereds 10
F. Measuring appatatus ưged with wite methods 10
3. Pitch diameter of thead ring gages 14
4. Pitch diameter of tapered thread gages 18
5. Concentricity of pitch diameter and major or minor diamete: 21
6. Measuring pitch diameter by means of the screw thread micrometier 21
7. Measuring thread angle by the two size wire method 24
Appendix 1. Derivition of the general formula for pitch aameter by the three-wire method 25
Appendiz 2. Derivation of wire size formulas 30
Appendix 3. Effective sine - pitch diameter plus in- crements due to lead and angle errors 37
Appendix 4. Derivation of formula for thread angle measured by two-size wire method 48
Appendix 5. Symbols for screw thread notation and formulas. 45

$$
-2-
$$

Table 1. Wire sizes and constants - National (U.S.Staniard) threada - 600 4.8
Table 2. Relation of best wire diameters and pitches - wires for National threads. 43
Table 3. Wire sizes and constants - British Standard Whitworth and British Standard Fine threads - 55° 50
Table 4. Relation of best wire diameters and pitches - wires for Whitworth threads. 51
Table 5. Relation of best wire diameters and pitches - National wires for Whitworth threads. 52
Table 6. Wire sizes and constants - International Metrio screw thread system and extension - 60° 53
Table 7. Relation of best wire diameters and pitches - National wires for International Metric Threads. 5%
Table 8. Wire sizes and constants, - Lömenherz standard threads - $53^{\circ} 8^{\prime}$ 55
Table 9. Relation of best-wire dianeters and pitches, - National wires for Löwenaerz threads. 56
Table 10. Wire sizes for Acme threads - 29° 57
Table 11. Cotangent and coseaant functions of thread angles. 58
Table 12. Values of term in pitoh diameter, three-wiremethod, formula jnvolving function of helixangle.59

1. INTRODUCTION

As the result of the extensive increase in the production of thread gages during the past fer years, caused by the vast requirements of the war with Germany, much attention has been giren to the devenoment of methods of measuring such gafes, and considerable intormathon on the subject has been pribished. At this Bureau several thoisand master thread gages for artillery amunition, ordnance, and other munitions, were inspected during the two-year pertod beginning June 1917. In order to carry on this work, mich effort was devoted to the design and construction of special msasuring apparatus, and to the compiling of technical data and formulas.

It is the purpose of this circular to give a general résumé of the methods used for the measurement of pitch diameter and to present, particularly, those in use at this Bureau which are the result of the elimination of the less suitable apparatus and measuring devices available, and of the development of new instruments and methods.

The pitch diameter of a screv thread developed on a cylinder is the diameter of an imagiaary cylinder which would pass through the threads at such points as to make the width of the threads and the width of the spaces equal. The pitch diameter of a symmetrical thread may also be defined as the length of a line perpendicular to the axis of the screw, and intercepted by the two helical surfaces of the sorew. The term "effective diameter" has been commosyy applied to this dimension; however, it should more properly refer to the abstract quantity obtained by adiligs to the measured pitch diameter an amount derived from the errors present in lead and angle, and which is herein referred to as the "effective size" of the thread. The pitch diameter and "effective diameter" are the same only when errors in lead and angle are not present. Thus, the effective size of a thread, of the quality of its fit with a perfect companion thread, is governed by three elements;- pitch diameter, lead, and angle of thread.

The measurement of the pitch diameter, as well as the major diameter (outside diameter), of a thread plug gage is accomplished by means of a micrometer callper or other suitable apparatus used in connection with properly anthorized standards. To measure the pitch diameter it is necessary to provide the micrometer or measuring manhme tith special contact points, or to apply the usual "wire" methods in whioh measurements are taken over small cylinders insertod in the thread groove. The oylinders or wires axe allowed to assume an equilibrium posidon, in which they set themselves at an angle with the axis of the sorew; thi: angle for each wire being the angle of the helix at the point of contacy of the wire with the helical surfaces. The mathematical relations involved in the measurement of pitch diameter by the three-wire method are somewhat complex, and are considered in detail in Appendioes 1 and 2, herein; and the formulas applied in making measurements are given below under the heading "Three-Wire Method".

Of the various methods which have been tried, the threewire method has been found to be the most accurate and satisfactory wher properiy carried out. It has been in common use for mearly twenty years, and is the standard method used by the Gage Section oi the Eureau of Standards.
2. THREE WIRE METHOD
A. Sizes of Wires

In the three-wire method of measuring screw threads, small, accurately ground cylinders, or wires, which have been lapped to correct size, are placed in the thread groove, two on one side of the screw and one on the opposite side as shown in Fig. 1. The contact over the two wires of the micrometer anvil or spindle must be sufficiently large in diameter to touch both wires; that is, it must be equal to, or greater then, the pitch of the thread. It is best, for reasons given later, to select wires of such a size that they touch the sides of the thread at the mid-slope. The size of wire which touches exactly at the mid-slope of a perfect thread, of a given pitch, is termed the "best-size" wire for that pitch. Any size, however, may be used which will permit the wires to rest on the sides of the thread and also project above the top of the thread.

The depth at which a wire of given diameter will rest in a thread groove depends primarily on the pitch and included angle of the thread; and secondarily, on the argle made by the helix, at the point of contact of the wire and the thread, with a plane perpendicular to the axis of the screw. Inasmuch as variation in the helix angle has a very small effect on the diameter of the wire which touches at the mid-slope of the thread, and as it is desirable to use one size of wire to measure all threads of a given pitch and included angle, the best-size wire is taken as that size which will touch at the mid-slope of a groove cut around a cylinder perpendicular to the axis of the cylinder, and of the same angle and depth as the thread of the given pitch. This is equivalent to a thread of zero helix-angle. The size of wire is given by the formula:
$G=p / 2 \sec a$,
in which $\quad G=$ diameter of wire,
p = thread interval
$a=1 / 2$ included angle of thread.
This formula reduces to:
$G=0.5774 \times p$ for 60° threads,
$G=0.5637 \times p$ for 55° threads,
$G=0.5590 \times \mathrm{p}$ for $53^{\circ} 8^{1}$ threads,
$G=0.5165 \times \mathrm{P}$ for 29° threads,

Fig. 1. - Three Wire Nethod of Neasuring Pitch Diameter of Threadeal Pluag Gejes

It is frequently desirable, as for example when a best-size wire is not available, to measure pitch diameter by means of wires of other than the best size. The minimum size which may be used is limited to the diameter which will permit the wire to project above the orest of the thread, and the maximum to the diameter which will not ride on the crest of the thread but will rest on the sides just below the crest. Tables 1 to 10, inclusive, which are appended, give the diameters of the best-size, maximum, and minimum wires for National (United States, A.S.M.E., and S.A.E. Standards), Whitworth, International Metric, Löwenherz, and Acme threads.

B. Specification for Wires

A suitable specification for wires is as follows:

1. The wires should be acourate cylinders of steel with working surfaces glass-hard and lapped to a high polish.
2. The working surface should be about one inch in length, and the wire should have a suitable handle which is provided at one end with an eye to receive a thread used to suspend the wire when taking measurements.
3. One side of the handle, which should be flattened, should be marked with the pitch for which the wire is the best size and with the diameter of the working part of the wire.
4. The wire should be round within 0.00002 in. and should be straight to 0.0000 in. over any quarter-inch interval.
5. One set of wires should consist of three wires which should have the same diameter within 0.00003 in. and this common diameter should be within 0.0001 in of that corresponding to the best size for the pitch for which the wire is to be used.

C. Standardization of Wires

In order to measure the pitoh diameter of a screw thread by means of wires, it is necessary to know the wire diameters accurately. The wires should be standardized by a method which approximates, as nearly as possible, the conditions under which they are used. This may be accomplished by placing the wire in contact with a hardened and lapped oylinder and measuring over the cylinder and wire with a micrometer caliper. The micrometer to be used for this purpose should be one whioh is graduated to ten thousandths of an inch and upon which hundred-thousandths of an inch can be estimated. Suoh micrometers are available in various forms of precision bench micrometers. Care should be taken to make sure that the measuring faces of the micrometer are flat and parallel to within 0.00001 inch. The object of measuring the wire in contact with a oylinder is to approximate the conditions of pressure and short line contact which exist when the wire is in contact with a thread. The variation in roundness and the taper are determined by measuring over the wire and cylinder in contact, and the deviation from straightness is determined by measurement between flat surfaces.

Since the wires, when in use, rest on the sides of the thread, a given pressure exerted on the top of the thread will have a magnified effect in distorting the wire and causing the measurement of the pitch diameter to be slightly less then it should be. For this reason a further modification in the method of standardization has been suggested, accorciing to which the diameter of the wire may be determined under conditions duplicating those under which the wire is used. It consists in substituting a cylinder having a series of grooves of various depths, the diameters at the mid-slopes of which have been carefully determined, and taking measurements over two wires of equal size placed in the grooves. The diameter assigned to the two wires under test is such a value that when the pitch diameter of the groove in the cylinder is computed from the measurement over the wires and cylinder it is the same as the known pitch diameter of the groove. The diameter of the wires may be computed from the formula:

$$
G=M-E-H \tan ^{2} a,
$$

in which $\quad G=$ diameter of wires
$M=$ measurement over wires and cylinder
$\mathrm{E}=$ diameter at mid-slope of groove
$\mathrm{H}=$ depth of groove
$a=1 / 2$ included angle of groove.
If the wire has been standardized by measurement over a plain cylinder and under light pressure and then is used with a heavier pressure, the diameter of wire which is substituted in the formula given below, for computing pitch diameter, will be larger than it should be. This difference is multiplied by the factor 3 in the formula and the tendency is to make the result small. The use of a grooved oylinder would obviate this difficulty to some extent, but it is not usually feasible, since a groove finished to the degree of accuracy required is very difficult to make.
D. Computation of Pitch Diameter of Symmetrical Threads

The general formula for finding the pitch diameter of any thread whose sides are symmetrical with respect to a line drawn through the vertex and perpendicular to the axis of the thread is:

$$
E=M+\frac{\cot a}{2 n}-G\left(1+\operatorname{cosec} a+\frac{s^{2}}{2} \cos a \cot a\right),
$$

in which

$$
\begin{aligned}
& \mathrm{E}=\text { pitch diame'er } \\
& \mathrm{M}=\text { measurement over wires } \\
& \mathrm{a}=\mathrm{I} / 2 \text { included angle of thread } \\
& \mathrm{n}=\text { number of threads per inch } \\
& \mathrm{G}=\text { diameter of wires } \\
& \mathrm{S}=\text { tangent of the helix angle. }
\end{aligned}
$$

This formula differs from those given in most engineering handbooks in that the latter, as generally given, yield a result which should check with the major diameter of the screw measured, while the pitoh diameter itself is not mentioned and no account is taken of the effects introduced by the helix angle.

The value of S, the tangent of the helix angle, is given by

$$
S=\frac{P}{3.1416 E},
$$

in which

$$
\begin{aligned}
& P=\text { lead } \\
& E=\text { nominal pitoh diameter. }
\end{aligned}
$$

In Table 12 are given the values of the term $" \frac{S^{2}}{2}$ cos a cot $a^{\prime \prime}$ for 60° and 55° threads for various values of the helix angle. It will be seen that this term, when multiplied by G, the diameter of the wires used, amounts to as much as 0.0001 in . only when the helix angle is large. For this reason this term is commonly neglected, and the above formula takes the form:

$$
E=M+\frac{\cot a}{2 n}-G(1+\operatorname{cosec} a) .
$$

In order that the practice followed, in the measurement of thread gages, may be uniform, the Gage Section of this Bureau uses the latter formula for the threads used on all ordinary fastening screws having helix angles of less than 5°. For a 60° thread of correct angle and thread form this formula simplifies to

$$
E=M+\frac{0.86603}{n}-3 G .
$$

Similarly, for Whitworth 55° threads

$$
E=M+\frac{0.96049}{n}-3.16568 G,
$$

and for Löwenherz $53^{\circ} 8^{\prime}$ threads

$$
E=M+\frac{1.00000}{n}-3.23594 G .
$$

For Acme threads, the general formula given above is used, since the helix angle is usually large.

For a given set of best-size wires
where

$$
E=M+X,
$$

The quantity X is a constant for a given angle, and, when the wires are used for measuring threads of the pitoh and angle for
which they are the best size, the pitch diameter is obtained by the simple operation of subtracting this constiant or faotor from the measurement taken over the wires. In fact, when bestsize wires are used this factor is changed very little by a change in the angle of the thread and it has, therefore, been the practice of this Bureau to tabulate and apply the factors for the various sets of wires in use, thus sawing a considerable amount of time in the inspection of gages. However, wher wires of other than the best sizes are used this facior changes quite appreoiably with a variation in the angle of the thread. The following table shows the relative amount of chamge in the factor with chenges in angle and size of wre for threads of different pitohes.

Typical Changes in Quantity X with Changes in Thread Angle and Sizes of Wires

Wires for 60° threads	Dia. of Wire	Factor X for half angle		
		28°	30°	32°
4 threads per inch				
min. wire best wire max. wire	$\begin{array}{r} 0.12630 \\ .14434 \\ .25259 \end{array}$	$\begin{array}{r} 0.16023 \\ .21 .670 \\ .55553 \end{array}$	$\begin{array}{r} 0.15239 \\ .21651 \\ .54126 \end{array}$	$\begin{array}{r} 0.16461 \\ .21669 \\ .52922 \end{array}$
20 threads per inch				
min. wire best wire max. Wire	$\begin{array}{r} 0.02526 \\ .02887 \\ .05052 \end{array}$	$\begin{array}{r} 0.03205 \\ .04335 \\ .11111 \end{array}$	$\begin{array}{\|r\|} 0.03248 \\ .04331 \\ .10826 \end{array}$	$\begin{array}{r} 0.03292 \\ .04334 \\ .10585 \end{array}$
50 threads per inch				
min. wire best wire max. wire	0.01010 .01155 .02021	$\begin{array}{r} 0.01281 \\ .01734 \\ .04445 \end{array}$	$\begin{array}{r} 0.01298 \\ .01733 \\ .04331 \end{array}$	$\begin{array}{r} 0.01316 \\ .01735 \\ .042355 \end{array}$

This table shows that, with the exoeption of ooarse pitch sorews, variation in angle from nominal value causes no appreciable change in the quantity忤or best-size wires. On the other hand, when a wire near the maximum or minimm allowable size is used, a oonsiderable change occurs, and the vaiues of the cotangent and cosecant of the actual measured half-angle are to be used. It is apparent, therefore, that there is a great advantage in using wires very closely approximating the best size. It should be remembered, moreover, that the best size wire for a 60° thread, for erample, will not be the best size of wire for a Lowenherz $53^{\circ} 8^{\prime}$ thread.

For the sake of convenience in carrying out computations, the values of $\frac{c o t}{2 i}$ a for the various pitches of the National Coarse (U. S. Standard), National Fine (S.A.E.), Whitworth, International Metric and Lowenherz systems have been tabulated. and are given in T'ables 1, 3, 6, and 8. In Table 11 the values of the cotangent and cosecant functions for angles varying by intervals of five ninutes to one degree on either side of the stardard half-angles are giver.

E. Computation of Pitch Diameter of Unsymmetrical Threads

The approximate formula which gives the pitch diameter of any thread whose sides are not symmetrical with respect to a line drawn perpendicular to the axis of the screw, such as the Harvey Grip and modified buttress threads, is:

$$
E=M+\frac{\cos a_{1} \cos a_{2}}{n \sin A}-G\left(1+\frac{\cos a_{1}+\cos a_{2}}{\sin A}\right),
$$

in which $\quad E=$ pitch diameter
M = measurement over wires

$$
\begin{aligned}
a_{1} \text { and } a_{2} & =\text { argles which sides of thread make with line } \\
A & =a_{1}+a_{2} \\
p_{G} & =\text { pitch of thread } \\
G & =\text { dioneter of wires }
\end{aligned}
$$

This formia does not include the terms whicn involve the tangent of the he?ix angle, since they are not aprecomble in anount, and
 The complete formia is equation (4) given in Appendix l under Derivation of the Gezzeral Formula for Pitoin Diameter.

The best-cine wire for mearuring an unsumetrical thrcad may be computed by the iciloming formia derfvec ian Appendix 2:

$$
G=\frac{p\left(\cos a_{1}+\cos a_{2}\right) \cos a_{1} \cos a_{2}}{\left(\cos a_{1}+\cos a_{2}\right)^{2}-\sin ^{2} A}
$$

F. Measuring Apparatus Used with Wire Methods

It has been common shon practice to hold the wires down into the thread, when moking measurements, by means of elastio bande. This has a terdency to prevent the wires frum adjusting themselves

Fig. 2

Fig. 3

Fig. 4
to the proper position in the thread groovee; thus a false measurement is obtained. In some cases, it has also been the practice to support the sorev being raedsured on two wires which are in turn supported on a horizontol surface and meaburing frora this ourface to the top of a wire placed in a thread over the gage. If the ecrem is of large dianeter, j.t日 ineight canses a distortion of the nires and an inaccurate reading jis obtained. For these reasons these practices should be ayofded and subsidiary apparatue for supporting the wires and micrometer should be used. A convenient apparatus for this purpose, which is known as a belanced micrometer, is shown in Fig. 2. The screm is supported between centers and the micrometer is supported on a counterbalanced arm an shomn. The micrometer clamp is pivoted on its aupportinc arm, thus allowing a slight moverent of the micrometer, in the veritcal plane which passes through the axis of the eorer, and permitting the micrometer to adjust itself to contact on all vires. Tmo of the wires are supported on the anvil of the micrometer belon the thread and one is eupported over the threed. The proper "Peel" is obtained by sliding the wires in the thread groove. This apparatue is very eimple in conetruction and is recomended as being very convenient where a large number of garger are to be tected.

Another form of apparatus for waking wire measurements, but With which it is better to use onily one wire on each oide of the sorew, is shorta in FJf. 3. This ingtrument mas eepecially designed and constructed for the Eureau of Ucandarde by the Wh. Wilson Solar Obeervatory and has been found useful for meacurine threada of relatively large dianeter. It embodiea a preojeion bench mícrometer, having a screm accurate j.a lead to within about two hundred thomsandthe of an inch, surported on a heavy base, and carried by steel balls. The position of the anvil is adjusted by weans of precision gage blocks to provide a gap between the anvil and spindie to suit the diameter of the gage. The thread gage in carried on adjusteble centere mhich are mounted in the oupporting brackets on the encs of the plationu. The machins is of maselve construction, and ics rigidity, which is not cowtion to ordinery measuring instruments, rermito, when precautions are token to avoid temperature changes, maburemente mich are accurate to within a few hundrec thousandtha of an arich. In determining pitch diameter, using tmo mires mi'th the wicrumeter conetrained perpendicular to the axis of the Boren, the computaston is the same as that involved in the three-wire method. Case must be taken to insure that the gage is accurately centered, so that the axis of the thread is perrendicular to the axis of the riforometer spindle.

A similar machine of smaller conctruction, which provides Pot lateral motion of the carriact to bring the mfarmeter oprobite any thread of the screm, mas designsd by the liational Phyeical Laboratory of England, and is Bhom in Fif. 4. A rumber of theee wachines built by manufacturers in this country eribody an electrical indicating device intended to ascure a unform prebsure and eliminate the errors due to personal equation.

The measurement of threaded ring gages presents many problems, owing to the difficulties with which observations are made on the various elements. While there are various ways of obtaining the measurements desired, it is not possible to work to the same degree of accuracy that is obtainable in measuring threaded plug gages. In determining the pitch diameter of a threaded ring gage it has been the customary practice to fit it to a master threaded check plug having the standard thread form. It is usually considered that, when the ring fits snugly on the plug, the pitch diameter of the ring is the same as that of the plug. This assumption, however, is not strictly correct since there is practically always a variation between the lead of the plug and that of the rimg, and, also, the thread angle of the plug and that of the ring. These variations make it necessary that the ring have a pitch diameter larger than that of the plug on which it fits snugly. In most oases the difference actually required for fit, due to differences in lead and angle, is appreciable, sometimes as much as severai thousandths of an inch. The relations between this difference in pitch diameter of a sorew and nut, which fit together, and the errors in lead and angle present are discussed in Appendix 3.

The major diameters of the master check plugs for both the "Go" and. "Not Go" thread ring gages are made, according to usual oommercial practice, to the maximum or "Go" dimension to insure clearance at the root of the thread in the ring. This practice involves the difficulty that, in case the pitch djameter of the ring is large and the thread in the ring is not olear at the root, the oheck plug will have contact with the ring at the top of the thread but not on the sides. Since the pitch diameter of a thread is the fundamental dimension, the check plug should gage this dimension. As the minor diameter and lead may be measured. directly, and the clearance at the root of the thread and the angle may be determined by inspection of a cast of the thread in a projection lantern, it is only necessary that the cheok plug determine the pitch diameter. The check plug should, therefore, so far as possible, check the pitch diameter only, and its thread form should be modified to meet this condition. The thread form illustrated inl Fig. 5 is recommended for this purpose. The orest of the thread is located at about one-fourth the depth of the sharp-V thread above the pitch diameter line and, similarly, at a distance of one-fourth the depth of the thread below the pitch diameter line the thread is cleared as shown. This form of thread is easy to make since the major and minor diameters need not be kepi within close limits and therefore need not be finished by grinding and lapping after hardening. (For further details see Bureau of Standards Letter Czrcular Lo 19).

Since the bearing surface of suoh a check plug is much less than that of a full form thread, the effect on the fit of the plug in the ring, due to difference of angle between the two threads, is considerably reduced and a more accurate determination of the
pitch diameter of the ring is obtained. The length of the check plug should be at least four threads, but to prevent errors in lead having an appreciable effect on the fit of the plug in the ring, the length of the plug should not greatly exceed this amount.

The ultimate advantage resulting when threaded components are gaged by "Go" and "Not Go" rings, which were checked by plugs of this recommended type, is that the clearance or neutral space between mating parts, and, thus, the quality of fit, is more consistently maintained.

If a projection lantern is not available, the clearance at the root of the thread in the ring should be tested by means of a threaded check plug having a major diameter of the "Go" or maximum size, and having the angle relieved so that it will not bear on the sides of the thread in the ring but at the major diameter only. This oheck plug can be used to inspect the clearance of both the "Go" and the "Not Go" thread ring gages if the angle is sufficiently relieved.

In order to measure the pitch diameter of a threaded ring gage when a oheck plug is not available, a method similar to the three-wire method is applied. In this method three steel balls of the same diameter as that of the best-size wire for the pitch of the ring are used. The ring is placed on a flat surface so that the axis of the thread will be vertical. Two balls are placed in the thread, few threads apart, and the third is placed diametrically opposite. Against these balls are placed blocks having parallel faces and with corners chamfered, as shown in Fig. 6. In the intervening space a combination of precision gage blooks, together with a pair of tapered parallels, is inserted. (See Fig. 6). The balls are held in position in the threads by embedding them in vaseline or other light grease. The purpose of the tapered parallels is to secure the proper pressure on the balls; the pressure should be just enough to insure contact, since the balls are easily distorted under pressure. Difficulty in securing the proper pressure is the chief objection to this method. The slopes of the wedges of the parallel.s should be small, 0.001 inch in total adjustment being sufficient. A micrometer reading is taken over the entire combination and this measurement is analogous to the reading M taken over the wires when measuring a plug gage. In this case, however, the signs in the pitoh diameter formula are changed and it has the following form:

$$
E=M-\frac{\cot a}{2 n}+G(1+\operatorname{cosec} a),
$$

in whioh
$E=$ pitch diameter
$M=$ measuremert between balls
$M=$ threads per inch
$G=$ diameter of balls
$Z=$ half of included angle of thread.

Fig. 5. - Recommended Thread Form of Check Plug for Checking Pitch Diameter of Threaded Ring Gage

Fig. 6. - Three Ball Method of Measuring Threaded Ring Gages
4. PITCH DIAMETERS OF TAPERED THREAD GAGES

The pitch diameter of a tapered thread gage is measured by the three-wire method in very nearly the same manner as straight thread gages. A point at a known distance L from the end of the gage is located by means of a oombination of precision gage blocks and the cone point furnished as an accessory with these blocks, as shown in Fig. 7. The gage is set vertically on a surface plate, the cone point is placed with its axis horizontal at the desired height, and the plug is turned until the point fits accurately into the thread. The position of this point is marked by placing a bit of Prussian Blue or wax immediately above it. The gage is placed between centers of the balanced micrometer and a single "best-size" wire is placed in the thread at this point and the other two wires are plaoed in the adjoining threads on the opposite side. Measurement is made over the wires in the usual manner but care must be taken that the gaging surfaces of the micrometer make contact with all three wires since the miorometer is not perpendicular to the axis of the screw when there is proper contact. (See Fig. 7). Owing to this inclination the measurement over the wires must be multiplied by the secant of the half-angle of the taper of the thread. The general formula for the pitch diameter of any tapered thread plug gage, the threads of which are symmetrical with respect to a line perpendicular to the axis, then has the form

$$
E=M \sec y+\frac{\cot a}{2 n}-G\left(1+\operatorname{cosec} a+\frac{s}{2}^{2} \cos a \cot a\right),
$$

in which

$$
\begin{aligned}
& E=\text { pitoh diameter } \\
& M=\text { measurement over wires } \\
& y=\text { hall-angle of taper of thread } \\
& n=\text { number of threads per inch } \\
& \text { a hall-angle of thread } \\
& G=\text { diameter of wires. } \\
& S=\text { tangent of helix angle. }
\end{aligned}
$$

Neglecting the term involving, the tangent of the helix angle, the pitch diameter of a National (Briggs') Standard Pipe Thread Gage, having correct angle (60°) and taper ($3 / 4$ in. per foot) is then given by the formula:

$$
E=1.00048 M+0.86603 p-3 G .
$$

To obtain the pitch diameter at any other point along the thread, multiply the distance, parallel to the axis of the thread, between this point and the point at which the measurement was taken by the taper per inch; then add the product to or subtract it from the measured pitoh diameter, according to the direction in which the second point is located with respect to the first.

The following method, illustrated in Fig. 8, has a theoretical advantage over the first method in that it is independent of the taper of the thread and, therefore, requires less computation; or, if the taper is not measured but assumed to be correct, it is more

Fig, 7

accurate. In this case the micrometer is oonstrained perpendioular to the axis of the sorew, either by a solid arm substituted for the swivel arm in the balanced micrometer, or by placing the gage on a surface plate with its axis vertical and supporting the micrometer in a horizontal position with its anvil and spindle resting on two equal combinations of gage blocks. A single wire is inserted in the thread at the point located as in the previous method, and one other wire is placed in the upper thread on the opposite side. A measurement is taken over the two wires; the second wire is then moved to the thread immediately below, and a second reading is taken. The mean of these two readings is substituted as the value of M in the formula:

$$
E=M+\frac{\cot a}{2 n}-G(1+\operatorname{cosec} a) .
$$

The taper can be readily computed by taking readings over the wires, first in any thread near the small end, and then in any thread near the large end, the exact number of threads between the two points being known.

Satisfaotory methods for measuring the pitoh diameter of tapered thread rings have not been worked out. Accordingly, the only procedure available is to determine the fit of the ring on a master thread plug.

5. CONCENTRICITY OF PITCH DIAMETER AND MAJOR OR MINOR DIAMETERS

When the major and pitoh diameters of a thread plug gage, or the minor and pitch diameters of a thread ring gage, have been determined by readings taken at right angles to each other, and at different points along the thread, the conoentricity of these diameters at a few places should be checked. This is important if these diameters were finished separately by using different laps or in different set-ups in grinding, since, in these cases, the diameters might be eccentric. The eccentricity may be readily determined in the case of a plug gage by measuring over one wire plaoed in the thread, with the anvil of the miorometer in oontact witb the wire and the spindle in contact with the orest of the thread. Observations are made on the variation in the readings obtained during one revolution of the gage, keeping on the same thread. Another method, whereby eccentricity may be detected, consiste in rotating the gage in the projection lantern and observing the presence of any pronounced variations in the width of the flat at the orest of the thread.
6. MEASUREMENT OF PITCH DIAMETER BY MEANS OF THE SOREW THREAD MICROMETER

The sorew thread miorometer, shown in Fig. 9, is one of the adaptations of the miorometer for measuring direotly the pitch

Fig. 10

A

A

C
diameter of a screw thread. It is a slight modification of a micrometer caliper which, although not practical in application, will theoretically measure directly the true pitch diameter. The anvil of a micrometer having this ideal form would consist of two cone points placed closely together, and the spincle of the micrometer would also hare a cone point. The points of the cones would be truncated, in order that the ounes might toucin on the sides of the thread rather than on the bottom. To measure accurately, the axes of all three of the cones must lie in the same plane, the angles of all of the cones and of the screw being measured must be the same, and, when taking measurements, the axis of the screw must lie in the plane which contains the axes of the three cones.

Since it is not practicable to meet all of these conditions, the modified form of thread microneter shown in Fig. 9 has two parallel wedges forined into one V-shaped piece, which is free to rotate, in the place of the two comes on the anvil. This instrument gives pitch diameter readings which are slightly large; however, this excess is usually not over 0.0002 in. provided that the thread angle is the same as the angle of the wedge and cone of the micrometer. The end of the cone point of the spindle is truncated, and the groove in the anvil is cleared at the bottom, thus allowing both the anvil and the spindle to make contact with only the sides of the thread. When the spindle and anvil are in contact, the zero line on the thimble represents the plane XY, Fig. 9. The anvil and spindle are limited in their capacity, and to cover all pitches it is necessary to provide different milcrometers for various ranges of pitches. On account of the above limitations, and the fact that careful and frequent adjustment are required, this instrument is unsatisfactory for accurate measurement. If used at all in the measurement of thread gages, the thread micrometer should only serve as a means to obtain an approximate check on measurements made by the three-wire method. It is very useful, however, in transferring measurements from a standard gage to the work at hand.

A convenient check for a screw thread micrometer is shown in Fig. 9A. It consists of two pieces, one grooved to fit the spindle and one, which is wedge-shaped, to fit into the anvil. The faces opposite the wedge and groove are lapped flat. A micrometer is checked at various points by inserting precision gage blocks between the two flat faces of the check. The length of the check is determined by measuring over the flat surfaces, the check being assembled with the wedge and groove together as shown.

For the approximate measurement of screw plugs in the shop and commercial inspection labcratory a standard micrometer fitted with different types of points is commonly used. There are various types of points used; in Fig. 10 three are shown. The type shown at A is made to slip over both the anvil and spindle of the micrometer but unless very carefully made these often do not fit solidly over the measuring points of the micrometer even when
they are split, and for this reason may cause errors in measurement. At B a type of point is shown which can be used to measure threads of coarser pitch than sixteen threads per inch. For measuring threads of sixteen pitoh or finer the point is formed as shown at C and this type of point oan be successfully used to measure threads as fine as seventy-two threads per inch. These points are used only when measurements are referred to a standard gage.
7. MEASURING THREAD ANGLE BY TWO-SIZE WIRE METHOD

In case speoial facilities for measuring the included angle of a thread are not available, the angle may be determined approximately by means of two sets of wires of different diameters. Measurement is made over the wires, which are inserted in the thread, in the same manner as when the pitch diameter is measured. One measurement is taken over the minimum or the best-size wires and a second is taken over the maximum wires. The sizes of maximum and minimum wires which may be used with various pitches are given in Tables 1 to 7 inclusive. The angle may be computed from the measurements by applying the formula, derived in Appendix 4:
$\operatorname{Sin} a=\frac{(G-G)\left(1+\frac{S^{2}}{2}\right)}{2}$,

$$
\left(M_{1}-M_{2}\right)\left(G_{1}-G_{2}\right)
$$

in which

$$
\begin{aligned}
& G=\text { diameter of large set of wires } \\
& G^{I}=\text { diameter of smail set of wires } \\
& M_{1}^{2}=\text { measurement over large wires } \\
& M_{2}=\text { measurement over smail wires } \\
& a^{2}=\text { half-angle of thread } \\
& S=\text { tangent of helix angle of thread. }
\end{aligned}
$$

This method cannot be relied upon to give results as accurate as measurements made by means of an optical projection apparatus and shadow protractor. A variation of this method is to use a single wire of each size and make the measurement with the spindle of the micrometer in contact with the orest of the thread. In this case the formula has the form:

$$
\sin a=\frac{\left(G_{1}-G_{2}\right)\left(1+\frac{s^{2}}{2}\right)}{2\left(M_{1}-M_{2}\right)-\left(G_{1}-G_{2}\right)}
$$

Values of S^{2} for various hellx angles are given in Table 12. Since the value of S^{2} is small for small helix angles, the term $\left(1+\frac{S^{2}}{2}\right)$ in the above formulas may be neglected when the helix angle is less than two degrees.

APPENDIX I

DERIVATION OF THE GENERAL FORMULA FOR PITCH DIAMETER MEASURED BY THE THREE-WIRE METHOD

The following is the derivation of the general formula for the determination of the oitch diameter of a screw thread by the three-wire method, when wires lised are of any diameter within the maximum and minimum values, as given in Tables 1 to 8 inclusive. The formula is first derived with reference to an unsymmetrical thread whose sides make angles a_{1} and a_{2} with the perpendicular to the axis of the screw, and from this is deduced the formula with reference to a symmetrical thread.

It is assumed that:
(1). The wire is allowed to adjust itself to its natural or free position in the thread. In so doing the wire makes an angle with a plane perpendicular to the axis of the screw equal to the helix angle of the thread at the point y_{0} (Fig. Il). This point, Y_{o} is the intersection of, (a) the plane perpendicular to the axis of the screw and passing through the center of the wire at the point which lies in the vertical plane passing through the axis of the screw, and of (b), the line passing through the points of contact of the wire with the sides of the thread.
(2). The horizontal mire touches both sides of the thread in a vertical plane containing the axis of the screv, the section of the wire cut by this vericical plane being an ellipse. This is not strictly true, since the wires, when in equilibrium, must make contact with the thread in a plane perpendioular to the axis of the wire. The error introduced by this assumption is negligible, as shown in "Notes on Screw Threads" by H. H. Jeffcott, published in Collected Researches, Vol. V, 1909, The National Physical Laboratory, England.

Referring to Fig. 11,
(1) Therefore,

$$
\begin{align*}
E & =K+H \\
K & =M-2 g-2 R L \\
E & =M+H-2 g-2 R L \\
R L & =R T I \cot a_{1}, \\
R T_{1} & =C T_{1}-C R, \\
R L & =\left(C T_{1}-C R\right) \cot a_{1} . \tag{2}
\end{align*}
$$

The equations of the lines LT and $\mathrm{T}_{2} \mathrm{~L}$ tangent to the
ellipse, referring to Fig. 11 are:
and

$$
y=x \cot a_{1} \pm \sqrt{b^{2} \cot ^{2} a_{1}+g^{2}}
$$

$$
y=x \cot a_{2} \pm \sqrt{b^{2} \cot ^{2} a_{2}+g^{2}}
$$

Taking

$$
\begin{aligned}
& y=0, \text { the intercepts on the } X \text { axis, } x=C T_{1} \text { and } \\
& x=T_{2} \text { are given: } \\
& \mathrm{CT}_{1}=\frac{\sqrt{b^{2} \cot ^{2} a_{1}+g^{2}}}{\cot a_{1}} \\
& C T=\frac{\sqrt{b^{2} \cot ^{2} a_{2}+g^{2}}}{\cot a_{2}}
\end{aligned}
$$

Taking

$$
\begin{array}{rl}
x & =0, \text { the intercepts on the } Y \text { axis, } y=C t_{1} \text { and } \\
y & C t_{2} \text { are given: } \\
C t_{1} & =\sqrt{b^{2} \cot ^{2} a_{1}+g^{2}}, \\
C t_{2} & =\sqrt{b^{2} \cot ^{2} a_{2}+g^{2}} \\
C^{\prime} t_{2} & =C^{\prime} L \cot a_{2} \\
t_{1} C^{\prime} & =C^{\prime} L \cot a_{1} \\
C^{\prime} t_{2} & +t_{1} C^{\prime}=t_{1} t_{2}=C^{\prime} L\left(\cot a_{1}+\cot a_{2}\right) \\
g^{\prime} L & =\frac{t_{1} t_{2}}{\cot a_{1}+\cot a_{2}} .
\end{array}
$$

$$
\begin{aligned}
& C R=C ' L=\frac{t_{1} t_{2}}{\cot a_{1}+\cot a_{2}}, \\
& t_{1} t_{2}=C t_{1}-C t_{2}=\sqrt{b^{2} \cot ^{2} a_{1}+g^{2}}-\sqrt{b^{2} \cot ^{2} a_{2}+g^{2}} \\
& C R=\frac{\sqrt{b^{2} \cot ^{2} a_{1}+g^{2}}-\sqrt{b^{2} \cot ^{2} a_{2}+g^{2}}}{\cot a_{1}+\cot a_{2}} .
\end{aligned}
$$

Then

Substituting the above expressions for $C R$ and $C T$ in equation (2):

$$
\begin{aligned}
\text { RI }= & \cot a_{1} \frac{\sqrt{b^{2} \cot ^{2} a_{1}+g^{2}}-\sqrt{b^{2} \cot ^{2} a_{2}+g^{2}}}{\cot a_{1}+\cot a_{2}} \\
& -\frac{\sqrt{b^{2} \cot ^{2} a_{1}+g^{2}}}{} \\
& -\cot a_{1} \frac{\sqrt{b^{2} \cot ^{2} a_{1}+g^{2}}-\sqrt{b^{2} \cot ^{2} a_{2}+g^{2}}}{\cot a_{1}+\cot a_{2}} .
\end{aligned}
$$

To determine H :

$$
\begin{aligned}
& m=H \tan a_{1}, \\
& n=H \tan a_{2}, \\
& m+n=p, \\
& p=H\left(\tan a_{1}+\tan a_{2}\right), \\
& H=\frac{p}{\tan a_{1}+\tan a_{2}} .
\end{aligned}
$$

Formula (1) then becomes
(3)

$$
\begin{aligned}
& E=M+\frac{p}{\tan a_{1}+\tan a_{2}}-2 g-2 \sqrt{b^{2} \cot ^{2} a_{1}+g^{2}}+ \\
& 2 \text { coot } a_{1} \frac{\sqrt{b^{2} \cot ^{2} a_{1}+g^{2}}-\sqrt{0^{2} \cot ^{2} a_{2}+g^{2}}}{\cot a_{1}+\cot a_{2}}
\end{aligned}
$$

Remembering that

$$
\mathrm{b}=\mathrm{g} \text { sec } \mathrm{s}=\mathrm{g} \sqrt{1+\tan ^{2} \mathrm{~s}}=\mathrm{g} \sqrt{1+\mathrm{s}^{2}} ;
$$

also

$$
\tan a_{1}+\tan a_{2}=\frac{\sin \left(a_{1}+a_{2}\right)}{\cos a_{1} \cos a_{2}}
$$

and cot $a_{1}+\cot a_{2}=\frac{\sin \left(a_{1}+a_{2}\right)}{\sin a_{1} \sin a_{2}}$,
equation (3) reduces to

$$
\begin{aligned}
& E=M+\frac{p \cos a_{1} \cos a_{2}}{\sin A}-G\left\{1+\sqrt{\left(1+S^{2}\right) \cot ^{2} a_{1}+1}+\right. \\
& \left.\frac{\cos a_{1} \sin a_{2}}{\sin A}\left[\sqrt{\left(1+S^{2}\right) \cot ^{2} a_{1}+1}-\sqrt{\left(1+s^{2}\right) \cot ^{2} a_{2}+1}\right]\right\} .
\end{aligned}
$$

The quantities under the radicals may be expressed in terms of cosecant and cotangent functions, and the expression takes the form:
(4) $E=M+\frac{p \cos a_{1} \cos a_{2}}{\sin A}-G\left\{1+\sqrt{\operatorname{cosec}^{2} a_{1}+s^{2} \cot ^{2} a_{1}}\right.$ $\left.-\frac{\cos a_{1} \sin a_{2}}{\sin A}\left[\sqrt{\operatorname{cosec}^{2} a_{1}+s^{2} \cot ^{2} a_{1}}-\sqrt{\operatorname{cosec}^{2} a_{2}+s^{2} \cot ^{2} a_{2}}\right]\right\}$.
If the thread is symmetrical, that is, $a_{1}=a_{2}=a$, then equation (4) reciuces to:
(5) $E=M+p \cot a-G\left[1+\sqrt{\operatorname{cosec}^{2} a+t^{2}} \cot ^{2} a\right]$.

This formula may be simplified, by expanding the expression under the radical by the Einumi al server and neglecting ail terns beyon the second, into the following very close approximation:
(6) $E=M+\frac{p}{\tilde{N}} \cot a-G\left(I+\operatorname{cosec} a+\frac{S^{2}}{2} \cos a \cot a\right)$.
which is the formula given under "Computation of Pitch Diameter" (page 6).

Since the helix angle is usually small it may be assumed to be zerc and equation (4) reduces to the form:
(7) $E=M+\frac{p \cos a_{1} \cos a_{2}}{\sin A}-G\left(1+\frac{\cos a_{3}+\cos a_{2}}{\sin A}\right.$.

Fig. 11
which gives a result accurate within 0.0001 inch except when the helix angle is large. This formula (ecuation 7) should be usec for most practioal purposes in computing pitch diameter of threads of the buttress type.

APPENDIX 2

DERIVATION OF WIRE SIZE FORMULAS

The formula for the size of wire which will make contact at any diameter E^{\prime} on the side of an unsymmetrical thread, in which the helix angle is taken jnto account, is derived herein. From this formula are deduced the formulas for the size of wire touch ing at the pitch diameter of both symmetrical and unsymmetrical threads, the helix angle being taken into account; these fommuas being required in the measurement of threacis having small thread angles and large pitches, such as Acme threads. Finally, there is deduced the simple and commonly used formia for the "Best-Size" wire for ordinary sorew threads, in which the helix angle is not taken into account.

As in Appendix 1, it is assumed that:
(1). The wire is allowed to adjust itself to its natural or free position in the thread. In so doing the wire makes an angle with a plane perpendicular to the axis of the screw equal to the helix angle of the thread at a point y_{0} (Fig. 12). This point, yo is the intersection of, (a), the plane perpendicuiar to the axis of the screw and passing through the center of the wire at the point which lies in the vertical plane containing the axis of the sorew, and of (b), the line passing through the points of contact of the wire with the sides of the thread. The diameter E ' is taken as the diameter at the point y_{0}.
(2). The horizontal wire touches both sides of the thread in a vertical plane containing the axis of the screm, the seation of the wire cut by this vertical plane being an ellipse. This is not strictly true, since the wires, when in equilibxitum must make contact with the thread in a plane perpendioular to the axis of the wire. The error introduced by this assurption is negligible, as shown in "Notes on Screw Threads" by H, H. Jeffeott, published in Collected Researches, Vol. V, 1908, The National Fhysical Laboratory, England.

Referring to Fig. I2, let
$A=a+a_{2}=$ total included angle of thread
$p=p \not t c h ~ o f ~ t h r e a d ~$
$G=r a d i u s$ of wire $=1 / 2$ minor axis of ellipse
$G=$ diameter of wire
$E \cdot=$ diameter on side of thread at y_{0}
$E=$ pitch diameter of thread

$$
\begin{aligned}
& H=\text { depth of sharp }-V \text { thread } \\
& \mathrm{s}=\text { helix angle } \\
& \mathrm{S}=\tan \mathrm{s} \\
& \mathrm{~b}=\mathrm{g} \text { sec } \mathrm{s}=\mathrm{g} \sqrt{1+\mathrm{S}^{2}}=1 / 2 \text { major ards of ellipse. }
\end{aligned}
$$

$\left(x_{1},-y_{1}\right)$ and $\left(-x_{2},-y_{2}\right)$ are points of contact of wire with sides of thread.
Equation of ellipse $g^{2} x^{2}+b^{2} y^{2}=g^{2} b^{2}$,

$$
\begin{equation*}
\text { or } \mathrm{y}^{2}=\mathrm{g}^{2}-\frac{\mathrm{g}^{2}}{\mathrm{~b}^{2}} \mathrm{x}^{2} \tag{I}
\end{equation*}
$$

Equations of tangents $L B$ and CL are,

$$
\begin{align*}
& y=x \cot a_{1} \pm \sqrt{b^{2} \cot ^{2} a_{1}+g^{2}} \tag{2}\\
& y=x \cot a_{2} \pm \sqrt{b^{2} \cot ^{2} a_{2}+g^{2}} \tag{3}
\end{align*}
$$

At the points of tangency,

$$
y_{1}=x_{1} \cot a_{1}-\sqrt{b^{2} \cot ^{2} a_{1}+b^{2}}
$$

Also, substituting in (I),

$$
y_{1}^{2}=g^{2}-\frac{g^{2}}{b^{2}} x_{1}^{2}
$$

Then

$$
\left[x_{1} \cot a_{1}-\sqrt{b^{2} \cot ^{2} a_{1}+g^{2}}\right]=g^{2}-\frac{g_{2}^{2}}{b^{2}} x_{1}^{2} .
$$

Squaring left hand term and solving for X_{I},

$$
x_{1}=\frac{b^{2} \cot a_{1}}{\sqrt{b^{2} \cot ^{2} a_{1}+g^{2}}} .
$$

Similarly

$$
x_{2}=-\frac{b^{2} \cot a^{2}}{\sqrt{b^{2} \cot ^{2} a_{2}+g^{2}}}
$$

5

Substituting values of x_{1} and x_{2} in (2) and (3),
and

$$
y_{1}=-\frac{g^{2}}{\sqrt{b^{2} \cot ^{2} a_{1}+g^{2}}}
$$

$$
y_{2}=-\frac{g}{\sqrt{b^{2} \cot ^{2} a_{2}+g^{2}}}
$$

Equation of line through $\left(x_{1},-y_{1}\right)$ and $\left(-x_{2},-y_{2}\right)$ is

$$
\frac{y-\left(-y_{1}\right)}{x-\left(+x_{1}\right)}=\frac{+\left(-y_{2}\right)-\left(-y_{1}\right)}{+\left(-x_{2}\right)-\left(+x_{1}\right)}
$$

Substituting, and letting $x=0, y=y_{0}$.

$$
\frac{y_{0}}{-\frac{g^{2}}{\sqrt{b^{2} \cot ^{2} a_{1}+g^{2}}}} \frac{b^{2} \cot a_{1}}{\sqrt{b^{2} \cot ^{2} a_{1}+g^{2}}}-\frac{g^{2}}{\sqrt{b^{2} \cot ^{2} a^{2}+g^{2}}}
$$

Which reduces to

$$
y_{0}=-\frac{g^{2}\left(\cot ^{2} a_{2}+\cot ^{2} a_{3}\right)}{\cot a_{1} \sqrt{b^{2} \cot ^{2} a_{2}+g^{2}+\cot a_{2} \sqrt{b^{2}} \cot ^{2} a_{1}}+g^{2}}
$$

But $y_{2}=\frac{E^{\prime}-E}{2}+\frac{y^{\prime}}{2}-\mathrm{BL}$.
!

$$
-1 \because \quad \cdots \quad, \quad-\quad \ddots^{\gamma} \quad \because \quad \therefore \cdots \cdots
$$

$\because * \because f$

Equating (4) and (5), and substituting values of $\frac{H}{2}$ and RL
derived in Appendix 1 , $\frac{E^{\prime}-E}{2}+\frac{p}{2\left(\tan a_{1}+\tan a_{2}\right)}-\sqrt{b^{2} \cot ^{2} a_{1}+g^{2}}$
$\pm \underline{\cot a_{1}\left(\sqrt{b^{2} \cot ^{2} a_{1}+g^{2}}-\sqrt{b^{2} \cot ^{2} a_{2}+g^{2}}\right) .}$
$\cot a_{1}+\cot a_{2}$
$=-\frac{g^{2}(\cot a 2+\cot a 1)}{\cot a_{1} \sqrt{b^{2} \cot ^{2} a_{2}+g^{2}}+\cot a_{2} \sqrt{b^{2} \cot ^{2} a_{1}+g^{2}}}$
Remembering that $\tan a_{1}+\tan a_{2}=\frac{\sin A}{\cos a_{1} \cos a_{2}}$,

$$
b=g \sec s=g \sqrt{1+s^{2}}
$$

and

$$
\cot a_{1}+\cot a_{2}=\frac{\sin A}{\sin a_{1} \sin a_{2}} .
$$

and substituting, we have
$\frac{E^{\prime}-E}{2}+\frac{p \cos a_{1} \cos a^{2}}{2 \sin A}-g \sqrt{\left(1+s^{2}\right) \cot ^{2} a_{1}+1}$
$+\frac{g \cos a_{1} \sin a_{2}}{\sin A}\left[\sqrt{\left(1+s^{2}\right) \cot ^{2} a_{1}+1}-\sqrt{\left(1+S^{2}\right) \cot ^{2} a_{2}+1}\right]$

$$
g^{\not x}\left(\cot a_{2}+\cot a_{1}\right)
$$

$d_{b}\left(\cot a_{1} \sqrt{\left(1+s^{2}\right) \cot ^{2} a_{2}+1}+\cot a_{2} \sqrt{\left(1+s^{2}\right) \cot ^{2} a_{1}+1}\right.$
Substituting,
$G=2 g, \sqrt{\left(1+s^{2}\right) \cot ^{2} a_{1}+1}=\sqrt{\csc ^{2} a_{1}+s^{2} \cot ^{2} a_{1}}$, and $\sqrt{\left(1+s^{2}\right) \cot ^{2} a_{2}+1}=\sqrt{\csc ^{2} a_{2}+s^{2} \cot ^{2} a_{2}}$

then,
$G=\left[\left(E^{\prime}-E\right)+\frac{p \cos a_{I} \cos a_{2}}{\sin A}\right] \div\left[\sqrt{\csc ^{2} a_{1}+S^{2} \cot ^{2} a_{1}}+\right.$
$\frac{\cos a_{1} \sin a_{2}}{\sin A}\left(\sqrt{\csc ^{2} a_{1}+s^{2} \cot ^{2} a_{1}}-\sqrt{\csc ^{2} a_{2}+s^{2} \cot ^{2} a_{2}}\right)$ $\cot a_{2}+\cot a_{2}$
$\left.\cot a_{1} \sqrt{\csc ^{2} a_{2}+s^{2} \cot ^{2} a_{2}}+\cot a_{2} \sqrt{\csc ^{2} a_{1}+s^{2} \cot ^{2} a_{1}}\right]$
When $S=\tan s=0$, equation (6) takes the form,
$p \cos a_{1} \cos a_{2}$
$G=\frac{E^{\prime}-E+\frac{\sin A}{\cos a_{1} \sin a_{2}}}{\cot a_{1}+\cot a_{2}}$ $\csc a_{1} \frac{\cos a_{1} \sin a_{2}}{\sin A}\left(\csc a_{1}-\csc a_{2}\right)-\frac{\cot a_{1}+\cot a_{2}}{\cot a_{1} \csc \cdot a_{2}+\cot a_{2} \csc a_{1}}$
winch reduces to
$G=\frac{\left[\sin A\left(E^{\prime}-E\right)+p \cos a_{1} \cos a_{2}\right]\left[\cos a_{1}+\cos a_{2}\right]}{\left(\cos a_{1}+\cos a_{2}\right)^{2}-\sin ^{2} A}$
When $a_{i=}=a_{2} \dot{-a}$, equation (6) takes the form

$$
\left(E^{\prime}-E\right)+\frac{p}{3} \cot a
$$

$G=\frac{1}{-\sqrt{\csc ^{2} a+s^{2} \cot ^{2} a}-\frac{1}{\sqrt{\csc ^{2} a+s^{2} \cot ^{2} a}}}$
why ch reduces to,

$$
\begin{equation*}
G=\frac{2\left(E^{\prime}-E\right) \tan a+p}{2\left(1+S^{2}\right)} \sqrt{\sec ^{2} a+s^{2}} . \tag{8}
\end{equation*}
$$

When $s=\tan s=0$, equation (8) reduces to:
Likewise, when $a_{1} \stackrel{a_{2}}{=}=a$, equation (y) reduces to:

$$
\begin{equation*}
G=\sec a\left[\left(E^{\prime}-E\right) \operatorname{tas} a+\frac{p}{2}\right] \tag{8}
\end{equation*}
$$

$-35-$

Eig. 12

When $\begin{aligned} E^{\prime}= & E, \frac{\text { equation }(8)}{} \sqrt{\sec ^{2} a+S^{2}}\end{aligned}$ reduces to:

$$
\begin{equation*}
G=\frac{2\left(1+s^{2}\right)}{2} \tag{10}
\end{equation*}
$$

When $E^{\prime}=E$, equation (7) reduces to:

$$
\begin{equation*}
G=\frac{p\left(\cos a_{1}+\cos a_{2}\right) \cos a_{1} \cos a_{2}}{\left(\cos a_{1}+\cos a_{2}\right)^{2}-\sin ^{2} A} \tag{11}
\end{equation*}
$$

or in terms of half of the total angle and one of the angles,

$$
G=\frac{p \cos ^{2} a_{1}\left(2 \cos \frac{A}{2}+\sec \frac{A}{2}+2 \sin \frac{A}{2} \tan a_{1}\right)}{2 \cos \left(\frac{A}{2}-a_{1}\right)-2 \sin ^{2} \frac{A}{2} \sec \left(\frac{A}{2}-a_{1}\right)} .
$$

When $E^{\prime}=E$, equation (9) reduces to:
Likewise, when $S=0$, equation (10) reduces to:
And, when $a_{1}=a_{2}=a$, quation (II) reduces to:

$$
G=\frac{P}{2} \text { sec } a .
$$

Thus:
Equation (6) is the general formula for the size of wire touching at any given diameter, E^{\prime} (see assumption (I)) of any unsymmetrical thread, in which the helix angle is taken into account.

Equation (7) is the formula for the size of wire touching at any given diameter, E^{\prime}, of any unsymmetrical thread (of small helix angle) in which the helix angle is not taken into account.

Equation (8) is the formula for the size of wire touching the sides of a symmetrical thread at any given diameter E^{\prime}, in which the helix angle is taken into account.

Equation (9) is the formula for the size of wire touching the sides of a symmetrical thread at any given diameter E^{\prime}, in which the helix angle is not taken into account.

Equation (10) is the formula for the size of wire touching at the pitch diameter of a syminericel thread in which the hell angle is taken into account. This formula, as well as equation (9) is useful in the measurement of threat's of coarse pitch such as Acme thread, and also in the measurement of multiple threads.

Equation (11) is the formula, in mioh the helix angle is not taken into account, for the size of wire touching the sides of an unaymetrical thread at sucih poants that the inne connecting them antanseciba the pitch line in che plane passing througn the oentew of the wire permendicular to the axis of the screw. It ray be considered the bbesu-sizel of wire for an unsymmetrical thread of given angles (a_{1} and a_{2}) and pitch.

Equation (12) is the formula for the size of wire touching at the pitoh diameter of a symmetrical thread in which the helix angie is not taken into account. This size is commonly known as the "best-size" of wire.

APPEIDIX $\mathbf{3}$

EFFECTIVE SIZE \quad PTMGH DIANETER PLUS INCREMENTS

DUE TO LEAD AND ANGLE ERRORS

A. Pitch Diameter Increment Due to Lead Error:

As statea on paty S, when a threadod plug hariste a given pitch diameter and correct thread form, but having an error in ladd, fits snugly in a nut having correct lead, angle, and thread form, the thread in the nut must have a pitch diameter which is larger than that of the plug. The fit of the nut on the screw depends entirely on the maximum lead error present within the length of engagement, regardless of the number of threads within the interval within which it occurs. A formula, which gives the amount of this difference, for straight threads, between the pitch diameters of the screw and nut due to the maximum lead error present between any two threads engaged, is as follows:

$$
E^{\prime} \doteq\left(\pm p^{\prime}\right) \cot a
$$

in which $E^{\prime}=$ pitch diameter increment due to lead error; or difference between pitch diameters of incorrect screw and perfect nut, or vice versa
$p^{\prime}=$ the maximum lead error between any two of the threads engaged
a =half-angle of thread
This formula is derived, with reference to Fig. 13, as follows:
Let $P_{I}=$ distance between the two threads on plug between
$P_{2}=$ corresponding correct or nominal distance $=$ distance
2 between corresponding threads in correct component
$p^{\prime}=p_{2}-p_{2}$
$a=h a l f-a n g l e ~ o f ~ t h r e a d ~$
$K_{I}=$ minor diameter (at sharp-V) of sorew
$K_{2}=\operatorname{minor}$ diameter (at sharp-V) of nut

$$
\begin{aligned}
& E_{1}= \text { pitch diameter of screw measured by the three } \\
& \text { wire method and based on the nominal piton of } \\
& \text { the thread. (It is not the actual average } \\
& \text { pitch diameter of the threads in which the lead } \\
& \text { error occurs). } \\
& E_{2}= \text { pitch diameter of nut } \\
& E^{\prime}= E_{2}-I_{1}
\end{aligned}
$$

Referring to Fig. 13:

$$
\begin{aligned}
\frac{m}{i} & =\frac{\frac{P_{2}-P_{1}}{2}}{K_{2}-K_{1}}=\frac{P_{2}-P_{1}}{K_{2}-K_{1}}=\tan a \\
K_{2}-K_{1} & =\frac{P_{2}-P_{1}}{\tan a} \\
K_{2}-K_{1} & =E_{2}-E_{1} \\
E_{2}-E_{1} & =\left(P_{2}-P_{1}\right) \cot a \\
E^{\prime} & =\left(\pm p^{\prime}\right) \cot \text { a. }
\end{aligned}
$$

The quantity E^{\prime} is always added. to the measured pitch diameter in the case of a plug, and it is always subtracted in the case of a ring, regardless of the sign introduced by the lead error p^{\prime}.

B. Pitch Diameter Fricrement Due to Angle Error:

The presence of an error in the included angle of a thread likewise necessitates a difference between the pitch diameters of a screw and nut which fit snugly together. The formulas which express the increment E^{\prime} which, in order to compensate for an error in angle, is to be added to the measured pitch diameter of a screw and subtracted from the measured pitch diameter of a nut are derived below, with reference to Figs. 14A and I4B.

As the basis for their development, the side of the thread is conceived as having been rotated, from the correct position through a small angle $a^{\prime \prime}$, about a point at the mid-slope of the thread as the center of rotation.

In these formulas,
$\mathrm{p}=$ thread interval
$\mathrm{F}=$ width of lat
a = correct haif-angle of thread
$a_{1}=$ angle error of one side of thread
aze"ancie error of other side of thread
$e_{1} \operatorname{ote}_{2}=$ difference between pitch radii of screw amd mit
$\mathbb{E}^{n}=e_{1}+e_{2}=p i t c h$ diameter increment due to angle
error; or difference between pitch diameters of
incorrect screw and perfect nut, or vice versa.

1. First Case,-- Screw and Nut of Same Pitch with Angle of Screw Larger than Angle of Nut.

Referring to Fig. 14A,

$$
M \mathbb{N}=\frac{p}{4}-\frac{F}{2}
$$

$$
\begin{aligned}
& \frac{\frac{p}{4}-\frac{F}{2}}{m}=\tan \left(a+a_{1}\right) ; m=\left(\frac{p}{4}-\frac{F}{2}\right) \cot \left(a+a_{1}\right) \\
& \frac{p-\frac{F}{2}}{n}=\tan a ; n=\left(\frac{p}{4}-\frac{F}{2}\right) \cot a,
\end{aligned}
$$

then

$$
\begin{equation*}
e_{1}=n-m=\left[\frac{p}{2}-\frac{E}{2}\right]\left[\cot a-\cot \left(a+a_{1}\right)\right] . \tag{I}
\end{equation*}
$$

Similarly, $e_{2}=\left[\frac{p}{4}-\frac{F_{T}}{2}\right]\left[\cot a-\cot \left(a+a_{2}\right)\right]$.
2. Second Case,-- Screw and Nut of Same Fitch with Angle of Screw Smaller than Angle of Nut:

Referring to Fig. 14B,

$$
\begin{aligned}
M N & =\frac{p}{4}-\frac{F}{2} \\
\frac{\frac{p}{4}-\frac{F}{2}}{m} & =\tan a ; m=\left(\frac{p}{4}-\frac{F}{2}\right)(\cot a), \\
\frac{\frac{p}{4}-\frac{F}{2}}{n} & =\tan \left(a-a_{1}\right) ; n=\left(\frac{p}{4}-\frac{F}{2}\right) \cot \left(a-a_{1}\right),
\end{aligned}
$$

then

$$
\begin{equation*}
e_{1}=n-m=\left[\frac{p}{4}-\frac{\bar{F}}{2}\left[\left[\cot \left(a-a_{1}\right)-\cot a\right] .\right.\right. \tag{3}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
e_{2}=\left[\frac{p}{4}-\frac{p}{2}\right]\left[\cot \left(a-a_{2}\right)-\cot a\right] . \tag{4}
\end{equation*}
$$

3. Summation, - Pitch Diameter Increment:

The scrotal difference in pitch diameter between screw and nut, \mathbb{E}^{n}, will be equal to $e_{1}+e_{2}$ and may be the sum of two equations, as follows:

$$
\begin{aligned}
& \binom{1)+(2)}{3}+(4) \\
& (1)+(4) \\
& (2)+(3) .
\end{aligned}
$$

Thus, we may have,

$$
\begin{align*}
& E^{n}=\left[\begin{array}{l}
\underline{Q} \\
4
\end{array}-\frac{F}{2}\right]\left[2 \cot a-\cot \left(a+a_{1}\right)-\cot \left(a+a_{2}\right)\right] \tag{1}\\
& \mathbb{E}^{n}=\left[\begin{array}{ll}
\underline{Q} & -\frac{F}{2}
\end{array}\right]\left[\cot \left(a-a_{1}\right)+\cot \left(a-a_{2}\right)-2 \cot a\right] \tag{3}\\
& E^{\prime \prime}=\left[\begin{array}{l}
\underline{Q} \\
4
\end{array}-\frac{F}{2}\right]\left[\cot \left(a-a_{2}\right)-\cot \left(a+a_{1}\right)\right] \tag{1}\\
& E^{n}=\left[\begin{array}{ll}
\underline{Q} & -\frac{F}{4}
\end{array}\right]\left[\cot \left(a-a_{1}\right)-\cot \left(a+a_{2}\right)\right] . \tag{2}
\end{align*}
$$

If $+a_{1}=+a_{2}=a^{\prime}$, we have

$$
\begin{equation*}
E^{\prime \prime}=\left[\frac{p}{2}-F\right]\left[\cot a-\cot \left(a+a^{\prime}\right)\right] . \tag{1}
\end{equation*}
$$

If $-a_{1}=-a_{2}=a^{\prime}$, we have

$$
\mathbb{E}^{n}=\left[\begin{array}{l}
2 \tag{3}\\
2
\end{array}\right]\left[\cot \left(a-a^{\prime}\right)-\cot a\right] .
$$

If $-a_{1}=+a_{2}=a^{\prime}$, or $+a_{1}=-a_{2}=a^{\prime}$, we have

$$
E^{n}=\left[\begin{array}{lr}
\overline{4} & \frac{F}{2}
\end{array}\right]\left[\cot \left(a-a^{\prime}\right)-\cot \left(a+a^{\prime}\right)\right] .
$$

$$
\begin{aligned}
& (1)+(4)=0 r \\
& (2)+(3)=(7)
\end{aligned}
$$

4. Reduction to apply to National Standard Threads. For the National Standard Thread form, $a=30^{\circ}$ and $F=\frac{p}{8}$. Substituting in (5),

$$
E^{n}=\frac{3}{8} p \quad\left[\sqrt{3}-\sqrt{3} \cot a^{\prime}-1\right] .
$$

which reduces to

$$
E^{\prime \prime}=\frac{3 p}{2\left(\sqrt{3}+\cot a^{\prime}\right)} .
$$

Similarly, substituting $a=30^{\circ}$ and $F=\frac{p}{8}$ in (6)

$$
E^{\prime \prime}=\frac{3}{8} p \quad\left[\frac{\sqrt{3} \cot a^{\prime}+1}{\cot a^{\prime}-\sqrt{3}}-\sqrt{3}\right],
$$

which reduces to

$$
E^{\prime \prime}=\frac{3 p}{2\left(\cot a^{\prime}-\sqrt{3}\right)}
$$

Thus the formula for $E^{\prime \prime}$, when the error a^{\prime} is equal on both sides, can be written

$$
E^{\prime \prime}=\frac{3 D}{2\left(\cot a^{\prime} \pm \sqrt{3}\right.} .
$$

Substituting $a=30^{\circ}$ and $F=\frac{p}{8}$ in (7), we have

$$
E^{\prime \prime}=\frac{3}{16} p\left[\frac{\sqrt{3} \cot a^{\prime}+1}{\cot a^{\prime}-\sqrt{3}}-\frac{\sqrt{3} \cot a^{\prime}-1}{\sqrt{3}+\cot a^{\prime}}\right],
$$

which reduces to

$$
E^{\prime \prime}=\frac{3 p}{2\left(\cot a^{\prime}-3 \tan a^{\prime}\right)},
$$

hen the error is equal on both sides, but plus on one and minus on the other side.

C. Effective Size:

The equivalent pitch diameter Eq, or what may correctly be termed the "Effective Size", of a screw having errors in lead and angle is:

$$
E_{\mathbb{Q}}=E+E^{\prime}+E^{n},
$$

\square

$$
\text { }-\cdots \quad \because
$$

$$
\div
$$

\square
$\therefore \because \because \quad \because$

* $\because \because \because \quad{ }^{\prime \prime} \quad{ }^{-}$

$$
\begin{aligned}
& ? \\
& \therefore \therefore \quad \cdots \cdot \cdots \cdot: .
\end{aligned}
$$

Fig. 13

Fig. I4:

Fig. I4B
and of a nut having errors in lead and angle is:

$$
E q=E-E^{\prime}-E^{\prime \prime}
$$

The summation of E^{\prime} and $E^{\prime \prime}$ in this way is permissible although not absolutely correct. It can be shown that the presence of an angle error has a slight effect on the value of E'; and similarly an error in lead has a slight effect on the value of $E^{\prime \prime}$, but these are of secondary magnitude and may be disregarded.

APPENDIX 4

DERIVATION OF FORMULA FOR THREAD ANGLE MEASURED BY TWO-SIZE WIRE METED

The following is a derivation of the formula for determining thread angle of a symmetrical thread by measuring over two sizes of wires, in which the helix angle is taken into account. The formula is a close approximation, in which the helix angle, s, is taken to be the helix angle at the pitch diameter.

Let
$a=$ half-angle of thread
$g_{1}=$ radius of large wire
$\mathrm{G}_{1}=$ diameter of large wire
$\mathrm{g}_{2}=$ radius of small wive
$\mathrm{G}_{\mathrm{g}}=$ diameter of small vire
$M_{1}^{2}=$ measurement over large wires
$\mathrm{M}_{2}=$ measurement over small wires
$s^{2}=$ helix angle
$S=\tan \mathrm{s}$.
Referring to Fig. 15,

$$
\begin{aligned}
\sin a & =\frac{B D}{A B}=\frac{C E}{A C} \\
\frac{M_{1}-M_{2}}{2} & =A C+g_{1}-\left(A B+g_{2}\right) \\
M_{1}-M_{2} & =2(A C-A B)+\left(G_{1}-G_{2}\right) \\
A B & =\frac{B D}{\sin a} \\
A C & =\frac{C E}{\sin a} \\
M_{1}-M_{2} & =\frac{2(C E-B D)}{\sin a}+\left(G_{1}-G_{2}\right)
\end{aligned}
$$

- 44 -

$$
\sin a=\frac{2(C E-B D)}{\left(M_{1}-M_{2}\right)+\left(G_{1}-G_{2}\right)}
$$

Approximately, $C E=g$, sec $s=g_{1} \sqrt{1+\tan ^{2} s}=g_{1} \sqrt{1+S^{2}}=g_{2}\left(1+\frac{S^{2}}{2}\right)$ Similarly,

$$
B D=g_{2} \sec s=g_{2}\left(1+\frac{s^{2}}{2}\right)
$$

Then

$$
\begin{equation*}
\sin a=\frac{2\left(g_{1}-g_{2}\right)\left(1+\frac{S_{2}^{2}}{2}\right)}{\left(M_{1}-M_{2}\right)+\left(G_{1}-G_{2}\right)} \tag{I}
\end{equation*}
$$

Fig 15

$$
\sin a=\frac{\left(G_{1}-G_{2}\right)\left(I+\frac{S^{2}}{2}\right)}{\left(M_{1}-M_{2}\right)+\left(G_{1}-C_{2}\right)} .
$$

For values of S^{2} see Table 10.
If the helix ingle is mall it may be neglected, and (I) reduces to, $\quad\left(G_{1}-G_{2}\right)$

$$
\sin \dot{i}=\frac{1}{\left(I_{I}-I_{2}\right)+\left(G_{I}-G_{2}\right)} .
$$

APPENDIX 5

SYMBOLS FOR SCREW THREAD NOTATION AND FORMULAS

The following symbols are being used by the Gage Section, Bureau of Standards, in connection with the inspection of screw thread gages, for expressing relations of screm thread elements, for use on drawings, and other similar purposes. In determining the particular symbols given herein, consideration was given to the following:

Use of Symbols Found on Typewriter: For convenient reference in reports and letters, symbols were ohosen that could be written on the typewriter. This made it necessary to abandon the very good practice of using Greek letters for angles, but this was thought to be justified.

Consistent Use of Large and Small Letters: Since it seemed desirable to provide symbols for both the diameters and radii of the various elements of the screw, it was deoided that the use of the large and small le tters in a systematic manner would give the best results.

SYMBOLS FOR SCREW THREAD FORMULAS.

$$
\begin{aligned}
& \text { Major diameter (outside diameter)------------D }
\end{aligned}
$$

- 品
Width of basic flat at ion, orest, or root F
Depth of basic truncation -f
Depth of sharp V-thread- H
Depth of National (U.S.S.) form of thread -h
Included angle of taper Y
One-half angle of taper y
Radius of curvature (Whitwrerth crest or root) -
Width across crest or root - Whitworth threadSymbols used with Wire Measurements
Measurement over wires---------------------------------M
Diameter of wire G
Corresponding radius g
*Factor for wire measurement X

$$
* X=\frac{\cot a}{2 n}-G(1+\operatorname{cosec} a) .
$$

$$
\begin{aligned}
& \because, ~ \ddots \\
& :=2 \\
& \rightarrow-\text { - } \\
& \text { - } \\
& -\quad 3 \\
& \text { (2n }
\end{aligned}
$$

Whitworth Thread Form

Table 1. - Wire Sizes and Constants, National (U.S.Standard), and National (Brigg's) Pipe, Threads - 60°

Mire sizes**			4	5	$\frac{6}{\frac{P_{i} t c h}{p^{2}}=\frac{1}{2 n}}$	DDepth of V-thread $\frac{\text { cot } 30^{\circ}}{2 n}$
			$\begin{aligned} & \text { Threads } \\ & \text { per inch } \\ & \text { n } \end{aligned}$	$\begin{aligned} & \text { Pito } \\ & p=\frac{1}{n} \end{aligned}$		
0.577350 p	$\begin{aligned} & \text { Maximum } \\ & 1.010363 \text {. } \end{aligned}$	$\frac{\text { Minimum }}{0.505182 p}$				
Inches	Inches	Inches		Inches	Inches	
0.00722	0.01263	0.00631	80	0.01250	0.00625	0.01083
. 00802	. 01403	. 00702	72	. 01389	. 00694	. 01203
. 00902	. 01579	. 00789	64	. 01562	. 00781	. 01353
. 01031	. 01804	. 00902	56	. 01786	. 00893	. 01547
. 01203	. 02105	. 01052	48	. 02083	. 01042	. 01804
. 01312	. 02396	. 01148	44	. 02273	. 01136	. 01968
. 01443	. 02526	. 01263	40	. 02500	. 01250	. 02165
. 01604	. 02807	. 01403	36	. 02778	. 01389	. 02406
. 01804	. 03157	. 01579	32	. 03125	. 01562	. 02706
. 02062	. 03608	. 01804	28	. 03571	. 01786	. 03093
. 02138	. 03742	. 01871	27	. 03704	. 01852	. 03208
. 02406	. 04210	. 02105	24	. 04.167	. 02083	. 03608
. 02887	. 05053	. 02525	20	. 05000	. 02500	. 04330
. 03208	. 05613	02807	18	. 05556	. 02778	. 04.811
. 03608	. 06315	. 03157	16	. 06250	. 03125	. 05413
. 04124	. 07217	. 03608	14	. 07143	. 03571	. 06186
. 04441	. 07772	. 02386	13	. 07582	. 03846	. 06662
. 04811	. 08420	. 04210	12	. 08333	. 04167	. 07217
. 05020	. 08786	. 04393	11.5	. 08696	. 04348	. 07531
. 05249	. 09185	. 04593	11	. 09091	. 08545	. 07873
. 05773	. 10104	. 05052	10	. 10000	. 05000	. 08660
. 06415	. 11226	. 05613	9	. 11111	. 05556	. 09623
. 07217	. 12630	. 06315	8	. 12500	. 06250	. 10825
. 08248	. 14434	. 07217	7	. 14285	. 0 'f143	. 12372
. 09623	. 16839	. 08420	6	. 16667	. 08333	. 14434
. 11547	. 20207	. 10104	5	. 20000	. 10000	. 17321
. 12830	. 22453	. 11226	4.5	. 22222	. 11111	. 19245
. 14434	. 25259	. 12630		. 25000	. 12500	. 21651

[^0]$n=$ threads per inch on single thread screws.

Table 2.-Relation of Best Wire Diameters and Pitches, - Wires for National (U.S.S., S.A.E., A.S.M.E. and Briggs') Screw Threads.

Note: The crosses (x) indicate those mire diameters.which can be used for each pitch. An encircled (Q) indicates the "bestwire" diameter for that pitch which heads the column.

Table 3.-Wire Sizes and Constants, British Standard Whitworth and British Standard Fine Threads - 5°

$\underline{\text { Niresizes }}$ * ${ }^{\text {* }}$			4	5	6	7
			$\begin{aligned} & \text { Threads } \\ & \text { per inch } \\ & n \end{aligned}$	Pitch$p=\frac{1}{n}$	$\begin{aligned} & \frac{\text { Pitch }}{2} \\ & \frac{p}{2}=\frac{1}{2 n} \end{aligned}$	$\frac{\cot 27^{\circ} 30^{\prime}}{2 n}$
$\begin{gathered} \text { Best } \\ 0.563692 p \end{gathered}$	$\left\|\begin{array}{c} \text { Max } \\ 0.852^{7} \\ 27 p \end{array}\right\|$	$\begin{gathered} \operatorname{Min} . \\ 0.505679 p \end{gathered}$				
Inches	Inches	Inches		Inches	Inches	
0.01409	0.02132	0.01264	40	0.02500	0.01250	0.02401
. 01566	. 02369	. 01405	36	. 02778	. 01389	. 02668
. 01762	. 02665	. 01580	32	. 03125	. 01562	. 03002
.02013	. 03045	. 01806	28	. 03571	. 01786	. 03430
. 02168	. 03280	. 01945	26	. 03846	.01923	. 03694
. 02349	. 03553	. 02107	24	. 04167	. 02083	. 04002
. 02563	. 03876	. 02299	22	. 04545	. 02273	. 04366
. 02818	. 04264	. 02528	20	. 05000	. 02500	. 04802
. 03132	. 04737	. 02809	18	. 05556	. 02778	. 05336
. 03523	. 05330	. 03160	16	. 06250	.03125	. 06003
. 04026	. 06091	. 03612	14	. 07143	. 03571	. 06861
. 04697	. 07106	. 04214	12	. 08333	. 04167	. 08004
. 05124	. 07752	. 04597	11	. 09091	. 04545	.08732
. 05637	. 08527	. 05057	10	. 10000	. 05000	. 09605
. 06263	.09475	. 05619	9	. 11111	. 05556	. 10672
. 07046	. 10659	. 06327	8	. 12500	. 06250	. 12006
. 08053	. 12182	. .07224	7	. 14286	. 07143	. 13721
. 09395	. 14212	. 08428	6	. 16667	. 08333	. 16008
. 11274	. 17054	. 10114	5	. 20000	. 10006	. 19210
. 12526	. 18949	. 11237	4.5	. 22222	. 11111	. 21344
$\begin{aligned} & .14092 \\ & .16105 \end{aligned}$	$\begin{array}{r} .21318 \\ .24364 \end{array}$	$\begin{array}{r} .12642 \\ .14448 \end{array}$	$\begin{aligned} & 4 \\ & 3.5 \end{aligned}$	$\begin{array}{r} .25000 \\ \cdot 28571 \end{array}$	$\begin{aligned} & .12500 \\ & .14286 \end{aligned}$	$\begin{array}{r} .24012 \\ .2^{7} 443 \end{array}$

[^1]Table 4.-Relation of Best Wire Diameters and Pitches Wires for Whitworth Threads

Note: The crosses (x) indicate those wire diameters wich can be used for each pitch. An encircled cross (B) Indicates the "best-wire" diameter for that pitch which heads the column.

Table 5. - Relation of Best Wire Diameters and Pitches, National Wires for Whitworth Threads

National Th	reads	Whitworth Threads per Inch											
Threads per \qquad	$\begin{gathered} \text { Best wire } \\ \text { sizes } \end{gathered}$	40	36	32	28	26	24	22	20	18	16.	14	
	Inches												.
44	0.01312	X											
40	. 01443	X	x										
36	.01604	X	X	x									
32	.01804	X	\bar{x}	X									
28	.02062	X	X	\bar{x}	X	x							
27	.02138		X	X	X	X	X						
24	.02406			X	X	$\overline{\mathrm{x}}$	x						
20	. 028887				X	X	X	X	区	X			
18	. 03208							X	$\frac{x}{x}$	区	X		
16	.03608							X	X	X	X		
14	. 04124								X	X	X	X	
13	. 04441									X	X	\bar{x}	
12	. 04811										X	X	
11. 5	. 05020										X	x	
11	.05249										X	X	
10	.05773											X	
9	. 06415												
8	.07217												
7	. 08248												
6	.09623												
5	. 11547												
4.5	. 12830												
4	. 14434												

(11.

Note: The crosses (x) indicate those wire diameters which can be used for each pitch. An underlined cross (\underline{x}) indicates the nearest "best-wire" diameter for that pitch which heads the. column.

Table 6.-Wire Sizes and Constants, - International. Metric Screw Thread System and Extension - 60°

1	2	3	4.	5	6	7	8
Wi	e Sizes*		Approx.				
$\begin{aligned} & \text { Best } \\ & 0.577350 \mathrm{p} \end{aligned}$	$1.010363 p$	$\begin{gathered} \text { Min. } \\ 0.505182 p \end{gathered}$	$\begin{aligned} & \text { Threads } \\ & \text { per inch } \\ & n \end{aligned}$	Pitch p	Pitch	$\begin{aligned} & \frac{1}{2}+c h \\ & 2 \\ & 2 \end{aligned}$	$\frac{p}{2} \cot 30$
Inches	Inches	Inches		mm	Inches	Inches	
0.00546	0.00955	0.00477	105.8	0. 24	0.00945	0.00472	0.00818
. 00614	. 01074	. 00537	94.1	. 27	. 01.063	. 00531	. 00921
. 00682	. 01193	. 00597	84.7	. 30	. 01181	. 00591	. 01023
. 00750	. 01313	. 00656	77.0	. 33	. 01290	. 00650	. 01125
. 00818	. 01432	. 00716	70.6	. 36	. 01417	.00709	. 01227
. 00886	. 01551	. 00776	65.2	. 39	. 01535	.00768	. 01330
. 00955	. 01671	. 00835	60.5	. 42	. 01654	. 00827	. 01432
. 01023	. 01790	. 00895	56. 4	. 45	. 01777	. 00886	. 01534
.01364	. 02387	. 01193	42.3	. 60	. 02362	.01181	. 02046
. 01705	. 02983	. 01492	33.9	. 75	. 02953	.01476	. 02557
. 02046	. 03580	. 01790	28. 2	. 90	. 03543	. 01772	. 03069
. 02273	. 03978	. 01989	25.4	1.00	. 03937	. 01968	. 03410
.02841	. 04972	. 02486	20.3	1. 25	. 04927	.02461	. 04262
. 03410	. 05967	. 02983	16.9	1.50	. 05906	. 02953	. 05114
. 03978	. 06961	. 03481	14.5	1.75	. 06890	. 03445	. 05967
. 04546	. 07956	. 03978	12.7	2.00	. 07874	. 03937	. 06819
. 05683	. 09944	. 04972	10.2	2.50	. 09842	. 04921	. 08524
. 06819	. 11933	. 05967	8.5	3.00	. 11811	. 05906	- 1022
. 07956	. 13922	. 06961	7.3	3.50	. 13780	. 06890	. 11933
.09092	. 15911	. 07956	6.4	4.00	. 15748	.07874	. 13638
. 10229.	. 17900	. 08950	5,6	4.50	. 17716	. 08858	. 15343
. 11365	. 19889	. 09945	5.1	5.00	. 19685	. 09842	. 17048
. 12502	. 21878	. 10939	4.6	5.50	- 21654	. 10827	. 18752
. 13638	. 23867	. 11933	4.2	6.00	. 23622	. 11811	- 20457
. 14775	. 25856	. 72928	3.9	6.50	. 25590	. 12795	- 22162
. 15911	. 27845	. 13922	3.6	7.00	- 27559	13780	. 23867
. 17048	. 29833	. 14917	3.4	7.50	. 29528	. 14764	. 25572
. 18184	. 31822	. 15911	3.2	8.00	. 31496	. 15748	- 27276

*For zero helix angle
$n=$ threads per inch for single thread screws.

Note: The crosses (x) indicate those wires which can be used for each pitch. An underlined cross (x) indicates the nearest "bestwirell diameter for that pitch wich heads the column.'

Table 8.-Wire Sizes and Constants, Lowenherz Standard Threads - $53^{\circ} 8^{\prime}$

1	2	3	4	5	6	7	8
	Tire sizos	*	Approx.			Pitch	$p \cot$
$\begin{aligned} & \text { Best } \\ & 0.559025 p \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \operatorname{Max} . \\ 0.9782840 \\ \hline \end{array}$	$\begin{gathered} M i n \\ 0.540758 p \\ \hline \end{gathered}$	per inch	Pitch	Pitch p	2 $\frac{p}{2}$	$26^{\circ} 341$
Inches	Inches	Inches		WHI	Inches	Inches	
0.00550	0.00963	0.00532	101. 6	0.25	0.00984	0.00492	0.00984
. 00660	. 01155	. 00639	84.7	. 30	. 01181	. 00591	. 01181
. 00770	. 01348	. 00745	72.6	. 35	. 01378	. 00689	. 01378
. 00880	. 01541	. 00852	63.5	. 40	. 01575	. 00787	. 01575
. 00990	. 01733	. 00958	56.4	. 45	. $017 \% 2$. 00886	.01772
. 01100	. 01926	. 01064	50.8	. 50	. 01968	. 00984	. 01968
. 01321	. 02311	. 01277	42.3	. 60	. 02362	. 01181	. 02362
. 01541	. 02686	. 01490	36.3	.70	. 02756	. 01378	. 02756
. 01651	. 02889	. 0159%	33.9	. 75	. 02953	. 01476	. 02953
.01761	. 03081	.01703	31.7	. 80	. 03150	. 01575	. 03150
. 01981	. 03466	. 01916	28.2	. 90	. 03543	. 01772	. 03543
.02201	. 03852	. 02 ± 29	25.4	1.00	. 03937	. 01968	. 03937
. 02421	. 04237	. 02342	23.1	1.10	. 04331	. 02.165	. 04331
.02641	. 04622	. 02555	21.2	1.20	. 04724	. 02362	. 04724
. 02861	. 05007	. 02768	19.5	1.30	.05118	. 02559	. 05118
. 03081	. 05392	. 02391	18.1	1.40	. 05512	. 02756	. 05512
. 03521	. 06162	. 03406	15.9	1.60	. 06298	. 03150	. 06299
. 03962	. 06933	. 03832	14.1	1.80	. 07087	. 03543	. 07087
. $0 \leqq 1402$. 07703	. 04.258	12.7	2.00	. 07874	. 03937	.07874
.04842	. 08473	. 04684	11.5	2. 20	. 08661	.04330	. 08661
. 05282	. 09244	. 051.10	10.6	2.40	. 09449	. 04724	. 09449
. 06162	. 10784	. 05961	9.1	2.80	. 11024	. 05512	. 11224
. 07043	. 12325	. 05813	7.9	3.20	. 12588	. 06299	. 12598
. 07923	. 13865	. 07564	7.1	3.60	. 14173	.07087	. 14173
. 08804	. 15405	. 08516	6.4	4.00	. 25748	. 07874	. $15^{r} 488$
. 09684	. 16947	. 09387	5.8	4.40	. 17323	. 08661	. 17323

*For zero helix angle
$n=$ threads per inch for single thread screws.

Note:-The crosses (x) indicate those wires which can be used for each pitch. An underlined cross indicates the nearest rbestwire" diameter for that pitch which heads the column.

Table 10. - Wire Sizes for Acme Threads - 29°.

No. of thds. per inch	Diameter of best wire 0.516450 p	Diameter of maxinum wire 0.650013 p
	Inches	Inches
1	0.51645	0.65001
1-1/4	.41316	. 52001
1-1/2	.34430	. 43334
2	. 25822	. 32501
$2-1 / 2$. 20658	. 26001
3	. 17215	. 21667
3-1/2	.14756	. 18572
4	.12911	.16250
5	.10329	.13000
6.	. 08608	. 10834
7	. 07378	. 09286
8	. 06456	. 08125
9	. 05738	.07222
10	. 05164	. 06500
12	.04304	. 05417

Table ll.-Cotangent and Cosecant Functions of Thread Angles

Angle	Cotangent	Cosecant	$\begin{gathered} \text { Angle } \\ \mathbf{a} \\ \hline \end{gathered}$		Cotangent	Cosecant
Deg. Min.			Deg.	Min.		
2530	2.09654	2.32282	28		1.84818	2.10137
35	2.08872	2.31576		30	1.84177	2.09574
40	2.08094	2. 30875		35	1.83540	2.09014
45	2.07321	2.30179		40	1.82906	2.08458
50	2.06553	2. 29487		45	1.82276	2.07905
55	2.05790	2.28800		50	1.81649	2.07356
260	2.05030	2. 28117		55	1.81025	2.06809
5	2.04276	2. 27439	29	0	1.80405	2.06267
10	2.03526	2. 26766		5	1.79788	2.05727
15	2.02780	2. 26097		10	1.79174	2.05191
20	2.02039	2. 25432		15	1.78563	2.04657
25	2.01302	2. 24772		20	1.77955	2.04128
30	2.00569	2.24116		25	1.77351	2.03601
34	1.99986	2.23594		30	1.76749	2.03077
35	1.99841	2.23464		35	1.76151	2.02557
40	1.99116	2.22817		40	1.75556	2.02039
45	1.98396	2.22174		45	1.74964	2.01525
50	1.97681	2.21535		50	1.74375	2.01014
55	1.96969	2.20900		55	1.73788	2.00505
$27 \quad 0$	1.96261	2. 20269	30	0	1.73205	2.00000
5	1.95557	2.19642		5	1.72625	1.99498
10	1.94858	2.19019		10	1.72047	1.98998
15	1.94162	2.18401		15	1.71473	1.98502
20	1.93470	2.17786		20	1.70901	1.98008
25	1.92782	2.17175		25	1.70332	1.97517
30	1.92098	2.16568		30	1.69766	1.97029
35	1.91418	2.15965		35	1.69203	1.96544
40	1.90741	2.15366		40	1.68643	1. 06062
45	1.90069	2.14770		45	1.68085	1.95583
50	1.89400	2.14178		50	1.67530	1.95106
55	1.88734	2.13590		55	1.66978	1.94632
280	1.88073	2.13005	31	0	1.66428	1. 34160
5	1.87415	2.12425			1.65881	1. 93993
10	1.86760	2.11847		10	1.65337	1.93226
15	1.86109	2.11274		15	1.64795	1.92762
20	1.85462	2.10704		20	1.64256	1.92302

Table 12.-Values of Term in Pitch Diameter Formula Involving Function of Helix Angle

The values listed in columns 4 and 5 are t. he multiplied by the diameter G of the wires used, in order to obtain the corrections to be subtracted from the values of E which are obtained by the formula:

$$
E=M+\frac{p}{2} \cot a-G(1+\operatorname{cosec} a) .
$$


```
#
<a,
#%
#
\because%
,
#,
\because?{3.0
[\mp@code{%?,}
\because爫务
シーシーシ
\becauseO
```



```
    is?
    NOQ
```



```
":0%%%
+ +
```



```
    #
    \because
```


[^0]: *For zero helix angle.

[^1]: *For zero helix angle.
 $n=$ threads per inch for single thread screws.

