## FORMULAS AND TABIES FOR THE CALCULATION OF ANTENNA CAPACITY.*

## Contents

1. Introduction
2. Formulas for Calculatins Capacity of Various Forms of Antennas
a. Single horizontal wire
b. Single vertical wire
c. Single wire inverted $L$ antenna
d. Single wire $T$ antenna
e. Parallel horizontal wires in the same horizontal plane (flat-top anterna)
f. Antenna of parallel wires equally spaced in a vertical plane
g. Parallel wire inverted $L$ antenna
h. Parallel wire $T$ antenna
i. Horizontal "cagè" antenna
j. Vertical "cage" antenna
k . Single V antenna
3. Two horizontal wires inclined to one another, but not intersecting
$m$. Single wire inclined to the earth's surface
n. Parallel wire $V$ antenna

0 . Antenna of parallel wires in a plane inclined to the ground
p. Conical antenna
q. Umbrella antenna
r. Fan or harp antenna
3. Use of Tailes for Three Common Forms of Antennas
4. Calculation of Capacity of Lead-in Wires
5. Tables for Antenna Capacity Calculation

## 1. Introduction

The capacities of the coman forms of antennas used in radio transmission and reception may be calculated from the formulas herein. In adeition to the formulas, tailes (Nos. 2, 4 and 9) are given by which capacities may be ootained directly without calculation; for three kinds of antennas; these are the sinsle-wire horizontal, single-wire vertical, and two-wire horizontal.

These formulas were derived yy two methods, one being Howe's method, the other being the reciprocal relation betreen capacity and inductance. Howe's method mares the calculations on the preliminary assumption of a uniform distribution of chare along the antenna, the potential veing calculated on this basis at various points of the antenna and the average of these potentials being taken as the final equilibrium potential. The reciprocal relation method is the less general in its applicability, out in those cases where its use may be justified it asrees exactly with Hove's method. A scientific paper explaining the methods of calculation and giving a Ciscussion of their justification is in preparation.

## 2. Formulas for Calculatins Capacity of Various Forms of Antennas.

In the following formulas the capacity is in aicromicrofarads (10-12 farads); logarithms are to the base 10. Ample accuracy in the values of the logarithns vill be attained by the use of a fourplace table, although, if a five-place table be employed, interpolations will be unnecessary. Linear dimensions are given both in centimeters and in feet. The use of suoscripts, as explained. below, will make clear which system is meant in all cases. However, where the ratio of two dimensions is used as a parameter, either system may be used, as lone as both dimensions are expressed in the same system, and this fact will be indicated by the omission of subscripts.

The following nomenclature is comnon to practically all the formulas. Other symbols are explained where they occur.

$$
\begin{aligned}
& \text { d. = dianeter of wire } \\
& D=\text { distance between centers of parallel wires } \\
& U=\text { potential coefficient for unit charge censity per } \\
& \text { unit length of the antenna } \\
& C=\text { capacity, in micromicrofarads } \\
& \ell_{1}=\text { length of a horizontal wire, in centimeters } \\
& m_{1}=\text { length of a vertical wire, in centineters } \\
& \ell_{2}=\text { length of a horizontal wire, in feet } \\
& m_{2}=\text { length of a vertical wire, in feet } \\
& h_{I}=\text { height of a horizontal wire above earth, in centineters } \\
& h_{2}=\text { height of a horizontal wire asove earth, in feet } \\
& h_{I}^{\prime}=\text { height of lower end of a vertical wire above earth, } \\
& \text { in centimeters } \\
& h^{\prime}{ }_{2}=\text { heisht of lower end of a vertical wire avove earth, } \\
& \text { in feet } \\
& n=n u m b e r \text { of wires joined in parallel }
\end{aligned}
$$

## a. Sinsle Horizontal Wire.

$$
\begin{equation*}
U=\frac{0.2416 P}{10 g \frac{4 h}{d}-K}=\frac{7.36 l 2}{\log \frac{4 n}{\dot{a}}-K} \tag{13}
\end{equation*}
$$

Where ${ }^{1} \mathrm{~K}$ is to be taken Erom Table 1 for either the ratio $\frac{2 h}{}$ or 1 The number (13) is siven to the first fornula jecause the is the number in the more complete paper, of which this Letter Oircular is a portion.
$\frac{l}{2 h}$, depencing upon which is less than unity.
In Taiole 2 are iven values of the capacity of single-wire horizontal antennas of various len ths anci hei hts. This should be useful in certain practical cases.

Example l.- For a sin le ire 100 feet long, stretoned. 50 feet ajove cround, and assuming the dianeter of the $\because i r e$ to oe 0.24 inch $=0.02 \mathrm{ft}$., \#e find $\frac{4 \mathrm{~h}}{\mathrm{~d}}=\frac{200}{0.02}=10.000$, and trus $\log \frac{4 \mathrm{~h}}{\mathrm{~d}}=$ 4000. The value of $\frac{2 h}{l}$ is $\frac{100}{100}=1$, and froun Table $I, K=0.336$.

Thus

$$
c=\frac{7.36(100)}{3.664}=200.9 \mathrm{\mu puf} .
$$

This value is in agreenent ith that calculated from Howe's tajles.

## b. Sincle Vertical Wire

The wire, is supposed to heve a length $m$ and its lower end is at a height $h^{\prime}$ above the surface of the eartin.

$$
\begin{equation*}
C=\frac{0.2416 m_{1}}{\log \frac{2 m}{d}-k}=\frac{7.36 m_{2}}{\log \frac{2 m}{d}-k} \tag{I4}
\end{equation*}
$$

in which the constant $k$ is to be obtained from Table 3 for the value of $\frac{h^{\prime}}{m}$ or $\frac{m}{h^{1}}$ depencing upon which is less then unity.

2 Caution: The formula for the capacity does not apply for the liniting case Fhere the distance vetaeen the lower end of the vertical rire and the eartin is vanishin三ly small, out on error of not more than a fer per cent results if tris ciistance is as small as one foot.

Example 2.- Suppose a vertical wire 40 ft . Ions, its its lower end 10 ft from the ground. The diameter of the wire will be taken as 0.24 inch as in the preceding example.

Thus in formula (14) we have $m=40, \mathrm{~h}^{\prime}=10, \frac{2 \mathrm{~m}}{\mathrm{~d}}=4000$ $\log _{10} \frac{2 \mathrm{~m}}{\mathrm{~d}}=3.602$. From Table 3, with $\frac{\mathrm{h}}{\mathrm{m}}=0.25, \mathrm{k}=0.391$, and thus

$$
c=\frac{7.36(40)}{3.002-0.291}=88.9 \mu \mu \mathrm{f}
$$

In Table 4 is given the capacity of vertical wires covering a considerable range of lengths, diameters, and heights above the around.

$$
\text { c. Single Wire Inverted L Antenna }{ }^{2} /
$$

Suppose the length of the horizontal portion is $V$, that of the vertical portion $m$, the height of the vertical portion from the ground $h$, end thus the heist of the horizontal portion is $h=h^{\prime}+m$. Then the capacity is given by

$$
c=\frac{0.2416\left(\ell_{1}+m_{1}\right)}{U}=\frac{7.35\left(\ell_{2}+m_{2}\right)}{U}
$$

in which

$$
\begin{equation*}
U=\frac{l}{l+m}\left[\log \frac{4 h}{d}-K\right]+\frac{m}{l+m}\left[\log \frac{2 m}{d}-k\right]+X \tag{15}
\end{equation*}
$$

The term $X$ takes into account the mutual effect of the two bortons of the antenna. Its value is obtained from Table 5 for diffferent values of the ratios $\frac{\ell}{m} \quad \frac{m}{\ell}$, and $\frac{h^{\prime}}{m}$ or $\frac{m}{h^{1}}$. The values of $K$ and $k$ are to be taisen from Tables 1 end 3 , respectively, as in the preceding examples.

As a first approximation the capacity of the inverted I may be calculated as the sum of the capacities of the component wires taken separately. This approximate method always lives a value larger than the true values.

Example 3.- Let us consider an inverted L antenna mace up of the horizontal wire treated in example 1 , and the vertical wire of example 2. Then $\ell=100, m=40, h^{\prime}=10, d=0.24$ inch,
$\frac{l}{l+m}=\frac{100}{140}=\frac{5}{7}, \frac{m}{l+m}=\frac{2}{7}$. With $\frac{m}{l}=0.4, \frac{h^{\prime}}{m}=0.25$ in Taiole 5
re find $X=0.194$. Thus $U=\frac{5}{7}(3.664)+\frac{2}{7}(3.311)+0.194=3.757$
and

$$
c=\frac{7.36(14.0)}{3.757}=274.3 \mathrm{\mu uaf}
$$

The simple sum of the separate capacities of the borizontal and vertical portions is 289.8 , which is more than Eire per dent. ©os large.

## d. Sin:le Vire I Antenna.

The antenna consists of a horizontal rire of lensthat a heizht $h$ above the sround. To the center of this is attached a vertical wire of length $m$. The height of the lorer enc of this above ground is denoted by $h^{\prime}$. The capacity is calcuizted from the formula

$$
\begin{equation*}
\mathrm{C}=\frac{0.2416\left(\hat{\lambda}_{1}+\mathrm{m}_{1}\right)}{U^{\prime}}=\frac{7.36\left(\hat{\nu}_{2}+m_{2}\right)}{U^{\prime}} \tag{16}
\end{equation*}
$$

in which

$$
U^{\prime}=\frac{l}{l+m}\left(\log \frac{4 h}{d}-K\right)+\frac{m}{l+m}\left(\log \frac{2 m}{d}-k\right)+\frac{l+2 m}{l+\frac{m}{m}} \cdot x_{I}
$$

The constants $K, k$, and $X_{1}$ are to be taken from Tailes 1,3 anc 5 respectively, the latter for the aryument $\frac{m}{l}=$ ratio of in and $\frac{\frac{l}{2}}{2}$.

Example 4.- Consider a $T$ antenna made up of the horizontal and vertical wires of examples 1 and 2. Then $\ell=100$, $n=40, h^{\prime}=10$, $d=0.24$ in., $\frac{l}{l+m}=\frac{5}{7}, \frac{m}{l+i n}=\frac{2}{7}, \frac{l+2 m}{l+m}=\frac{9}{7}$. From Taile 5, with the araument $\frac{m}{\ell}=0.8, \frac{h^{\prime}}{m}=0.25, X=0.263$. Thus $U^{\prime}=3.901$, and therefore

$$
c=\frac{7.36(140)}{3.901}=264.2 \mathrm{puf}
$$

If the simple sum of the separate capacities of the component wires had. been used the error mould have been auout ten per cent.

It is interesting to note that for the given howizontal wire joined to the given vertical wire the capecity is about 3.5 per cent Sinaller with the rires connected as a $T$ antenna than as an inverted I, and for coth these cases the capacity is less then the sum of the capacities of the rires taken separately. This follors from the fact that the potential of the charge of each wire is increased oy the proximity of the charge on the other wire. On the avergee the two wires of the $T$ antenna are closer tosether than the two parts of the inverted $L$, and the mutual effect of the two wires is therefore greater in the former case.

> e. Parallel Horizontal Vires in the Sane Horizontal

The wires, are supposed to have a dianeter $d$, and to be of equal length $e$. They will be assumed to be $n$ in number, arranged parallel to one enother in a horizontal plane, at a height hajove the suriace of the earth. If the spacing is $\dot{D}$, the widith of the

Letter Circular 224--2/21/27
antenna vetreen the extrame rires is ( $n-1$ ) D, and this dimension is supposed to be not greater than avout one querter of the lensth of the wires. The formula for the capacity is thea

$$
\begin{equation*}
c=\frac{0.241 .6 \ell_{1}}{F}=\frac{7.36 l_{2}}{F} \mu_{\mu} \tag{17}
\end{equation*}
$$

in which

$$
\begin{aligned}
& F=\frac{P+(n-1) Q}{n}-R_{n} \\
& P=10 \S \frac{4 h}{d}-K \\
& Q=10 \cong \frac{2 h}{D}-K
\end{aligned}
$$

The constant $K_{n}$, whicn ciepencis only upon the numiver of the rires, may de ovtained from Teble 6; the constant $K$ is to be takon from Taule l, as in precedine examples. The expression for $F$ nay also ve written

$$
\begin{equation*}
F=\frac{\log \frac{4 h}{d}+(n-1) \log \frac{2 h}{D}}{n} \cdots\left(K+K_{n}\right) \tag{1;0}
\end{equation*}
$$

For the common case of a tro-mire flat top antenna, $\mathrm{X}_{\mathrm{n}}=0$, and the general formula (17) jecomes

$$
\begin{equation*}
C=-\frac{14.73 l_{2}}{10 \cdot \frac{4 h}{\alpha}+\log \frac{2 h}{D}-2 \pi} \tag{18}
\end{equation*}
$$

In Table 9 will be found the values of the capacity of certain twowire antennes. This should be useful where a nocierate accuracy will suffice.

Example 5.- A flat-top antenna is composed of 6 rires spaced 2 feet ajart, the leneth of the wires veing 100 feet, thoir hei hht 50 feet, anc their diameter 0.24 inch as jefore. $D=2, \frac{4 h}{\alpha}=10000$, $\frac{2 h}{D}=50, \frac{2 h}{l}=1$. From Taible $1, K=0.336$, and from Table 6, $K_{n}=0.252$.
Thus, using the last form (17a) for $F$, its value is obtained as follows:

$$
\left.\begin{array}{rlrl}
\log \frac{4 h}{d} & =4.000 & Y+K_{n} & =0.588 \\
5 & \log \frac{2 h}{D} & =5.4 .95 & F
\end{array}\right)=1.494
$$

$$
\text { Sum } \div 5=2.082
$$

and the capacity is $0=\frac{7.35(100)}{1.404}=492.6 \mu \mu \mathrm{i}$

Example 6.- Attention has been called to the small gain from the use of many wires in parallel. Thus Austin states that, for parallel wires of moderate dinensions, a specing of one meter is sufficient to five 90\% of the possible capacity. Finis assumes a certain width of antenna whoch is iept constent as more wires are adced. As an iliustration of this poin't, the capacity was calcuiated for different numbers of wires, each 100 feet lore, 0.24 inch in dianeter, placed 50 feet ajove the earth, the spacing jeine chosen in each case such that for $n$ wires $Z D=15$ feet. The results are §iven in table 10.

| $\underline{n}$ | $\begin{gathered} \mathrm{G} \\ \operatorname{Rax} \\ \hline \end{gathered}$ | $\begin{aligned} & \text { ?er } \\ & \text { cent } \\ & \text { of maxi- } \\ & \text { mum } \end{aligned}$ |  |  | $\begin{aligned} & \text { per } \\ & \text { cent } \\ & \text { maxi- } \\ & \text { muma } \end{aligned}$ | r | $\begin{gathered} C_{1} \\ \hline \end{gathered}$ | Per cent maximus |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 330.5 | 51.0 | 9 | 555.7 | 87.2 | 17 | 509.8 | 94.0 |
| 3 | 408.7 | 62.9 | 10 | 577.2 | 89.0 | 18 | 611.8 | 94.4 |
| 4 | 460.6 | 70.9 | 11 | 582.7 | 89.3 | 19 | 613.8 | 94.7 |
| 5 | 495.7 | 76.3 | 12 | 588.8 | 90.6 | 20 | 615.9 | $9 \pm .9$ |
|  |  |  | 13 | 594.0 | 91.5 | 30 | 626.4 | 96.5 |
| 6 | 520.5 | 80.2 | 14 | 598.9 | 92.3 | 40 | 635.0 | 97.9 |
| 7 | 539.6 | 83.2 | 15 | 502.8 | 92. 9 | 50 | 637.8 | 98.5 |
| 8 | 554.2 | 85.4 | 16 | 606.3 | 0.3 .5 | 100 | 647.9 | 99.3 |

When these values of the capacity are plotted against the reciprocal of the number of the wires, a limiting capacity of aionut 650 puf is indicated. This value has seen used in computing the values in the column headed "per cent of mayimum". A spaciñ of one meter vould be obtained with five or six wires, the capacity being some 80 per cent of the maximum. Jven Jith so few as two wires, the capacity is about 50\% of the maximum, and if the tro mires were placed 15 feet apart, instead of only $7 \cdot 5$, as in the table the capacity would be 354.4 , or 54 per cent of the maximum.

These conclusions were checked by deriving the formula for the capacity of a horizontal rectanझular plate havins a length $\ell$ a width nD, and a thickness d, situated at a heizht have the earth. The treatment of this case was iased upon the intesration of the Howe expression (3) for a zilament of len the over the victh of the rectansle. The final formula, wion is lon and involved, will not be fiven here (see appendixl). For the dimensions assumed in the previous ezample the lamiting capacity shoulc oe 635 micromicrofarads. The difference of more than one per cent vetween this value anc that jiven aove, is provaily to je explained y the fact that the ratio of ridth to len th is rather laree in tais special case, and thet the texms negiected in (I7) are appreciaile. For the more favorable case $n D=5, \ell=100$, formula (17) gives for a 100 wire antenna $C=455.7$ Mr, thile the value for the solic rectangular plate is 454.7 Nuf.

## f. Antenna of perellol ines Equally Spaced in a

Adopting the same nowonolature as in the precocin ese, we find, for an antenna the the cairene width is not greeter then, say, one quarter of the length of the wires

$$
0=\frac{0.3416 .8_{1}}{\mathrm{~V}}=\frac{7.36 \ell_{2}}{\mathrm{~V}}
$$

in which

$$
\begin{equation*}
V=\frac{l}{n} \log _{\xi} \frac{2 m}{d}+\frac{n-1}{n} \operatorname{lo}_{0} \frac{n}{D}-\left(n+X_{n}\right) \tag{19}
\end{equation*}
$$

The quantities $k$ and $K_{\Omega}$ are to be obtained from Topes 3 end 6, respectively.

Example 7.- For six vortical wires, och 40 ft. lone, arrange. With a spacing of 2 feet, and with the wotton ends of the wires io ft. above the around, $m=40, D=2, h^{\prime}=10$. Assure $\alpha=0.02 \mathrm{ft}$.
As in example $2, \mathrm{k}=0.291, \mathrm{~K}_{\mathrm{n}}=0.252, \frac{\mathrm{~m}}{\mathrm{D}}=20$, $10 \frac{\mathrm{~m}}{\mathrm{D}}=1.301$ $\operatorname{los} \frac{2 m}{d}=3.501$, so that

$$
\begin{array}{cr}
\frac{1}{n} \log \frac{2 m}{d}=0.500 & \mathrm{~N}+\mathrm{K}_{\mathrm{n}}=0.543 \\
\frac{\mathrm{n}-1}{\mathrm{n}} \operatorname{loc} \frac{m}{D}=1.118 & \mathrm{~V}=1.175 \\
0=\frac{1.36(140)}{1.175}=250.6 \mu u f .
\end{array}
$$

## B. Parallel Wire Inverted I Antenna.

With the length of the horizontal portion equal $h$, length of the vertical wires $m$, height oi horizontal wires $h$, height of lower ends of the vertical wires $h$, spacing of wires $D$,

$$
c=\frac{0.2416\left(l_{1}+m_{1}\right)}{L}=\frac{7.36\left(l_{2}+m_{2}\right)}{L}
$$

in which

$$
\begin{align*}
& L=\frac{P^{\prime}+(n-1) Q^{\prime}}{n}-Z_{n}+X  \tag{20}\\
& P^{\prime}=\frac{l}{l+m}\left(\log \frac{4 h}{d}-X\right)+\frac{m}{l+m}\left(\log \frac{2 m}{d^{2}}-K\right) \\
& Q^{\prime}=\frac{l}{l+m}\left(\log \frac{2 h}{D}-Z\right)+\frac{m}{l+m}\left(\log \frac{m}{D}-k\right)
\end{align*}
$$

The constants $K, k, X$, and $K_{n}$ are to be taken fron Te.jles $1,3,5$ and 6 , respectively. This formula is less accurate, the wider the antenne in comperison with its leñth.

Example 8.- Suppose a parallcl wire inverted L antenna composed of the rire systems of examples 5 end 7 , joined to form one conducting system.

Then

$$
\begin{array}{rl}
P^{\prime}=2.617+0.945 & =3.563 \\
Q^{\prime}=0.974+0.289 & =1.263 \\
K_{n}=0.252 & X
\end{array}=0.194
$$

Therefore

$$
L=1.588, \text { and } C=\frac{7.36(140)}{1.588}=648.9 \mu \mu \mathrm{f}
$$

The sum of the separate capacities of the horizontal and vertical portions is 743.2 , which is more than 14 per cent too large.
h. Parallel Wire T Antenna.

The antenna is supposed to be composed of $n$ sinilar T's joined in parallel. Thus the horizontal wires have the same spacins as the vertical. The total length of the horizontal portion is taken as $l$, the meaning of the other symbols is the saine as in the preceding cases.

$$
\begin{align*}
& C=\frac{0.2416\left(\ell_{1}+m_{1}\right)}{T}=\frac{7.36\left(l_{2}+m_{2}\right)}{T} \\
& T=\frac{P^{\prime}+(n-1) Q^{\prime}}{n}-K_{n}+\frac{l+2 m}{l+m} \cdot X  \tag{2I}\\
& P^{\prime}=\frac{l}{\ell+m}\left(\log \frac{4 h}{d}-K\right)+\frac{m}{l+m}\left(\log \frac{2 m}{d}-k\right) \\
& Q^{\prime}=\frac{l}{\ell+m}\left(\log \frac{2 h}{D}-K\right)+\frac{m}{l+m}\left(\log \frac{m}{D}-k\right)
\end{align*}
$$

The constants $K, k, X$, and $K_{n}$ are to be obtained from Taibles $1,3,5$, and 6 , respectively, using for $X$ the ratio of $\frac{l}{2}$ to $m$ for $\frac{l}{m}$ in Table 5.

Example 9.- A T antenna is made by joining the vertical wires of example 7 to the middle points of the horizontal wires of example 5. The constants are the same as in the preceding examole, except that $X=0.263$. The value of $T$ comes out 1.732 , so that

$$
c=\frac{7.36(140)}{1.732}=594.9
$$

Which is more than 8 per cent less than the value for the inverted L. The following summary presents concisely the results of the
examples.

Same Wires Connected is Inverted L Antenna
548.9
Same Wires Connected as a $T$ Antenna

## i. Horizontal "Case" Antenna.

The following formula supposes that the distance betreen the n wires is small compared with their average distance from the ground. The axis of the cage is at a height $h$ above ground.

$$
\begin{equation*}
c=\frac{0.2416 \ell_{1} n}{U_{c}}=\frac{7.36 \ell_{2 n}}{U_{c}} \tag{22}
\end{equation*}
$$

in winch

$$
U_{c}=10 g \frac{4 h}{d}+\sum_{r=1}^{r=n-1}\left(\log \frac{2 h}{D_{r}}+0.434 \frac{D_{r}}{l}\right)-n K
$$

and $D_{r}$ is the distance between any given wire and another wire. If $\delta=$ the diameter of the circle on whose circumference the wires are arranged, then

$$
D_{r}=\hat{j} \sin r \frac{\pi}{n}
$$

The quantity Z is obtained from Table 1 for the given value of $\frac{l}{2 h}$ or $\frac{2 h}{l}$.

Example 10.- Six wires, each 100 feet long and 0.02 Sot in diameter are arranged as elements of a cylinder 5 feet in diameter. The axis of the cylinder lies horizontally 50 feet a ave the surface of the earth.

Here $n=6, \delta=5, h=50, \frac{2 l}{d}=10000$. The distances between the wires are then $D_{1}=D_{5}=2.5, \quad D_{2}=D_{4}=\frac{5}{2} \sqrt{3}, \quad D_{3}=5$. From Table $I$ for $\frac{2 h}{l}=1, \quad n K=2.016$

$$
\begin{array}{ll}
\log \frac{4 h}{d}=4.000 & 0.434 \frac{D_{1}}{l}=0.011 \\
\log \frac{2 h}{D_{1}}=1.602 & 0.434 \frac{D_{2}}{l}=0.018
\end{array}
$$

$$
\begin{aligned}
& \log \frac{2 \pi}{D_{2}}=1.364 \\
& \log \frac{2 h}{D_{3}}=1.301 \\
& c=\frac{1.36(100) 6}{9.297}=475.0 \mu \mu \mathrm{f} \\
& 0.434 \frac{D_{3}}{l}=0.022 \\
& \therefore U_{C}=9.297
\end{aligned}
$$

If the same vires hac been spaced at the same distance epart in the horizontal plane as the lensth oit the chord of the circle the capacity by formula (17) rould have been 520.5 mpf . Thus the arrangement in a cage results here in a loss of capacity of about eight per cent. This is due to the decrease in the average distance between wires brought about by the arrangement in the cage. The advantage of this form of antenna lies of course in the saving of space.

Formula (22) was derived on the assumption that the effect of the earth can be evaluated vith sufficient accuracy by assuming the charges on the image wires and the charges on the wires of the cage to be situated along the axis of the image and the cage of the axis. To determine the order of the error comnitted, an accurate evaluation was made of the effect of the image wires, using the antenna of the preceding example. It was found that, aithoush the potentials, contributed by the imace wires tosether, dirfered by as much as 5 per cent for the different wires of the cace, the total eifect cid not differ as much as one part in ten thousand from that calculated by the simplifying assumption used in deriving formula (22).

## j. Vertical "Cage" Antenna.

The $n$ vires of diameter $\dot{\alpha}$ and length $m$ are arranzed as elements of a cylinder of dianeter $\delta$, whose axis is vertical, and whose lomer end is at a height $h^{\prime}$ above the ground.

$$
\begin{equation*}
c=\frac{0.2416 \mathrm{n} \mathrm{~m}_{1}}{U_{c}^{\prime}}=\frac{7.36 \mathrm{n} \mathrm{~m}_{2}}{U_{c}^{\prime}} \tag{23}
\end{equation*}
$$

and

$$
U_{c}^{\prime}=\log \frac{2 m}{d}+\sum_{r=1}^{r=n-1}\left(\log \frac{m}{D_{r}}+0.434 \frac{D_{r}}{m}\right)-n k
$$

The value of $k$ is obtained fron Table 3 , and the distrnce $D_{r}$ between any two wires is siven by

$$
D_{r}=\delta \sin r \frac{\pi}{n}
$$

Example 11.- Six vertical wires, each 100 feet long, and 0.02 feet in diameter are arranged as elements of a cylinder, four feet in diameter, with their lower ends 25 feet from the ground. Thus $m=100, h^{\prime}=25, \delta=4, d=0.02$, and $\frac{2 m}{d}=10000, \frac{h^{\prime}}{m}=\frac{1}{4}$.
From Table $3, k=0.291$.
Accordingly $\quad D_{1}=D_{5}=2, \quad D_{2}=D_{4}=2 \sqrt{3}, \quad D_{3}=4$.

$$
\begin{aligned}
& \log \frac{2 m}{d}-n k=4.000-1.746=2.252 \\
& \sum \log \frac{m}{D_{r}}=2(1.699 \div 1.460)+1.398=7.716 \\
& 0.434 \sum \frac{D_{r}}{m}=0.065
\end{aligned}
$$

$$
\therefore U_{C}^{\prime}=10.033
$$

and $c=\frac{7.36(600)}{10.033}=440.2 \mu \mu \mathrm{f}$.

$$
\mathrm{k} \text {. Single } V \text { Antenna. }
$$

The antenna is supposed to consist of two wires in a horizontail plane meeting at an angle $\theta$. The lengths of the wires are $b$ and m, their diameters $d$ and $d$ ' and their como height above ground in.

Then

$$
\begin{equation*}
c=\frac{0.2416\left(l_{1}+m_{1}\right)}{U_{V}}=\frac{7.36\left(l_{2}+m_{2}\right)}{U_{V}} \tag{24}
\end{equation*}
$$

where $U_{V}=\frac{l}{l+m}\left(\log \frac{4 h}{d^{\prime}}-K\right)+\frac{m}{l+m}\left(\log \frac{4 h}{d^{\prime}}-K^{\prime}\right)+Y$
The quantities $K$ and $\mathrm{K}^{\prime}$ are to be obtained from Table $\neq$ for the values of $\frac{2 h}{l}$ and $\frac{2 h}{2}$ respectively, (or their reciprocals if the latter are less than unity).

The quantity $Y$ is the difference of two terms $Y_{1}$ and. $Y_{2}$, the first being a function of the angle $\theta$ and the ratio $\frac{m}{L}$ (supposed to be less than unity), while $Y_{2}$ which refers to the effect of the earth is a function of $\theta, \frac{m}{\ell}$ and $\frac{2 h}{\ell}$. Values of $Y_{1}$ and $Y_{2}$ are given in Tables 7 and 8 .

If roth wires have the same diameter of cross section, then

$$
\begin{equation*}
U_{V}=\log \frac{4 h}{d}-\frac{l}{l^{\prime}+m} K-\frac{m}{l+m} K^{\prime}+Y \tag{25}
\end{equation*}
$$

and if, further, $m=\ell$, (an important case)

$$
\begin{equation*}
U_{V}=\log \frac{4 h}{d}-K+Y \tag{26}
\end{equation*}
$$

Since in the case of existing antennas, the distance between the free ends of the $V$ will be readily measured, rather than the angle, the distance $s$, thus measured may be used in the formula

$$
\cos \theta=\frac{l^{2}+m^{2}-s^{2}}{2 l m}
$$

to determine the angle $\theta$.
Example 12.- If we suppose the case $\ell=100, m=50, h=50$, $\theta=45^{\circ}$, and $\frac{4 h}{d}=10000$, then $\frac{2 h}{l}=1, \frac{m}{2 h}=\frac{1}{2}$, and from Table 1 $K=0.336, K^{\prime}=0.541$. From Table 7 , for $\theta=45^{\circ}$, and $\frac{m}{2}=\frac{1}{2}$ $Y_{I}=0.497$, and from Table 8 for $\theta=45^{\circ}, \frac{m}{l}=\frac{1}{2}$, and $\frac{2 h}{l}=1$, $Y_{2}=0.131$. Thus $Y=0.366$. By formula (25)

$$
\begin{aligned}
& U_{V}=4.000+0.360-\frac{2}{3}(0.336)-\frac{1}{3}(0.341)=3.962 . \\
& C=\frac{7.36(150)}{3.962}=278.6 \mu \mu \mathrm{f} .
\end{aligned}
$$

The sum of the capacities of the two wires taken singly is (see example 1) $200.9+106.4=307.3$ purr. Thus the mutual effect of the two wires is to reduce the capacity of the combination in a $V$ by about 9.3 per cent.

## 1. Two Horizontal Wires Inclined to One Another, out Not Intersecting:

The wires are supposed to have lengths $l$ and $m$, diameters $d$ and d', and their distances from their point of intersection, if supposed to be produced, $l^{\prime}$ and. $\mathrm{m}^{\prime}$, (see FiE. 2 ).


Fig. 2.

For this case the same formula is used as in the preceding case, ercept that the value for $Y$ is different. This is obtained as before as the difference of two terms, one applying to the top and the other to the image wires. Tables 7 and 8 are used, iout instead of a single entry in the table for each of the tio terms $Y_{1}$ and $Y_{2}$, several have to be made for each.

$$
\begin{align*}
& Y=\frac{l+l^{\prime}+m^{\prime}+m^{\prime}}{\ell+m} \cdot Y \ell+\ell^{\prime}, m+m^{\prime} \ldots .-\frac{\left(l+l^{\prime}+m^{+}\right)}{l+m} \cdot Y l^{\prime}+\ell^{\prime}, m^{\prime} \\
& -\frac{\left(\ell^{\prime}+m+m^{\prime}\right)}{\ell^{\prime}+m} Y \ell^{\prime}, m+m^{\prime}+\frac{\ell^{\prime}+m^{\prime}}{\ell+m} Y \ell^{\prime}, m^{\prime} \tag{27}
\end{align*}
$$

In this the following aboreviated nomenclature is used:- $Y$ i $+\ell^{\prime}, m+m^{\prime}$ is used for the difference between the value of $Y_{1}$ for the wires $\left(l+l^{\prime}\right)$ and $\left(m+m^{\prime}\right)$ and the quantity $Y_{2}$ for the same wires, etc. For $\ell^{\prime}=m^{\prime}=n$,

$$
\begin{align*}
Y=\frac{l+m+2 n}{l+m} Y l+n, m+n & -\frac{(l+2 n)}{l+m} Y \ell+n, n \\
& -\frac{(m+2 n)}{l+m} Y_{n, m+n}  \tag{28}\\
& +\frac{2 n}{l+m} Y_{n, n}
\end{align*}
$$

and for the specially important case that $\ell^{\prime}=m^{\prime}=n$, and $\ell=m$,

$$
\begin{equation*}
Y=\frac{l+2 n}{l}\left(Y_{n, n}-Y l+n, n\right) \tag{29}
\end{equation*}
$$

Example 13.- Two wires of equal length 100 feet make an angle of $30^{\circ}$, and if prolonged until they intersect, the point of intersection is 100 feet from the nearer end of each. The wires have each a diameter of cross section of 0.02 foot, and they lie in a horizontal plane 50 feet above the ground.

Here $\ell=m=100, h=50, d=0.02, \ell^{\prime}=m^{\prime}=n=100, \theta=30^{\circ}$.
Then for $Y_{n, n}$ we have the argument $\left(1,30^{\circ}\right.$ ) in Table 7 , and $1,30^{\circ}$, and $\frac{2 h}{l}=1$ in Table 8. Thus $Y_{n, n}=0.687-0.197=0.490$. For $Y^{Y}+n, n$ the argunent in Taile 7 is $\left(\frac{1}{2}, 30^{\circ}\right)$, and in Taiole 8 $\left(\frac{1}{2}, 30, \frac{1}{2}\right)$, so that $Y_{l+n, n}=0.601-0.187=0.414$. Thus
better circular 224--2/21/27

$$
Y=\frac{l+2 n}{l}\left(Y_{n, n}-Y \neq+n, n\right)=3(0.490-0.414)=0.228
$$

and

$$
U_{V}=\log \frac{4 h}{d}-K+Y=4.000-0.336+0.228=3.892
$$

and

$$
c=\frac{7.35(200)}{3.892}=378.2 \mu \mu \mathrm{f} .
$$

Each of the Tires alone has a capacity of 200.9 puf , (see example 1), so that the sum of their individual capacities is OI. 8 pup. Thus the mutual effect of the wires is to reduce the capacity by about six per cent.

If the same wires mere so placed as to have their ends in contact, still keeping the angle between them equal to $30^{\circ}$, then $I=0.687-0.197=0.490, U_{V}=4.154$, and $C=354.4 \mu \mu f$. The mutual effect here is nearly t:.elve per cent, or nearly twice as great as in the previous case.

## m. Single Wire Inclined to the Earth's Surface.

The fire is assumed to have a lentic $l$, a diameter of cross section $d$, and to make an an le $\theta$ :with the earth's surface. Let the height of the lower end be $h^{\prime}$ above the ground. Then the capacity is given by
and

$$
\begin{equation*}
c=\frac{0.2416 l_{1}}{U_{s}}=\frac{736 l_{2}}{U_{s}} \tag{30}
\end{equation*}
$$

$$
U_{s}=\left(\log \frac{2 l}{a}-0.133\right)-\frac{\ell+2 n}{l}\left(Y_{n, n}^{\prime}-Y^{\prime} \ell+n, n\right)
$$

The quantities $Y^{\prime} n n^{\prime}$ and $Y^{\prime} \ell_{n, n, n}$ are to be taken from Table 7 using the angle $2 \theta$ and $n=\frac{h^{\prime}}{\sin \theta}$. (It is to be noted that the constants here require no entries in Taille $\delta$ as in the preceding example.)

When $\theta=90^{\circ}$, this case toes over into that of a single vertical Fire. The anele in Table 7 is $180^{\circ}, \mathrm{n}=\mathrm{h}^{\prime}$, and it can be show that the above formula checks with that given for the single vertical wire.

Example 14.- Suppose a vire 50 feet lone, matin: an ans le of $45^{\circ}$ with the earth's surface, the distance of the low en ci from the ground being $25 \frac{\sqrt{2}}{2}=17.68$ feet. Then $n \overline{\bar{l}} 25$. Let the diameter of cross section be taken such that $\frac{2 l}{d}=5000$. Then the first term of $U_{S}$ is $(3.699-0.133)=3.566$. For $Y^{\prime}{ }_{n n}$ the argument
in Table, 7 is $\left(1,90^{\circ}\right)$ so that $Y^{\prime}{ }_{n n}=0.383$. For $Y^{\prime} l+n, n$, the arjument is $\left(\frac{1}{3}, 90 \%\right)$, and the same taiole sives $Y_{l}^{\prime} l n, n=0.304$. Thus the second tern in $U_{S}$ is $2(0.3 \$ 3-0.304)=2(0.079)=0.158$. Therefore, $U_{S}=3.408$ and $C=108.0 \mathrm{\mu} \mathrm{\mu f}$.

If the same vire were smuns about its lower end as center antil it reached the vertical position, then we rould have to use $\frac{1}{2}=\frac{25}{50} \frac{\sqrt{2}}{2}=\frac{1}{4} \sqrt{2}=0.354$, and for this Table 3 sives $k=0.269$. The capacity cones out 107.3 puf.

If the same wire were swung about the lower end into a horizontal position, $h=\frac{25 \sqrt{2}}{2}, \frac{2 h}{l}=\frac{\sqrt{2}}{2}$, and froin Taisle $1, K=0.256$, the resulting capacity being $111.8 \mu \mu f$. Thus the capacity of the inclined wire lies between the values corresponding to the vertical and horizontal positions, as would be expected.

## n. Parallel Wire V Antenna.

The antenna is supposed to consist of $n$ ' Wires of equal lensth and diameter $d^{\prime}$, joined to another set of $n^{\prime \prime}$ \#ires of equal
length $l^{\prime \prime}$ and diameter $d^{\prime \prime}$. Each of these sets of wires is supposed to lie in a horizontal plane at a height $h$ above the ground and the axes of the two sets met at an angle $\theta$, at a point situated at distances $l^{\prime}{ }_{0}$ and $\hat{\ell}_{0}^{\prime \prime}$, respectively, from the nearer ends of the sets of wires. Let the spacing of the wires in the two sets be $D^{\prime}$ and $D^{\prime \prime}$.

The capacity is given by

$$
\begin{equation*}
0=\frac{0.2416\left(n^{\prime} \ell_{1}^{\prime}+n^{\prime \prime} \ell_{1}^{\prime \prime}\right)}{U_{v}^{\prime}}=\frac{7.35\left(n^{\prime} \ell_{\dot{z}}^{\prime}+n^{\prime \prime} \ell_{2}^{\prime \prime}\right)}{U_{v}^{\prime}} \tag{31}
\end{equation*}
$$

in which

$$
\begin{aligned}
& U_{V}^{\prime}=\frac{n^{\prime} l^{\prime}}{n^{\prime} l^{\prime}+n^{\prime \prime} l^{\prime \prime}} u^{\prime}+\frac{n^{\prime \prime} l^{\prime \prime}}{n^{\prime} l^{\prime}+n^{\prime \prime} l^{\prime \prime}} u^{\prime \prime}+\frac{n^{\prime} n^{\prime \prime}\left(l^{\prime} l^{\prime \prime}\right)}{n^{\prime} l^{\prime}+n^{\prime \prime} l^{\prime \prime}} \cdot Y \\
& u^{\prime}=\log \frac{4 h}{d^{\prime}}+\left(n^{\prime}-1\right) \log \frac{2 h}{D^{\prime}}-n^{\prime}\left(K^{\prime}+K_{n}\right) \\
& u^{\prime \prime}=\log \frac{4 h}{d^{\prime \prime}}+\left(n^{\prime \prime}-1\right) \log \frac{2 h}{D^{\prime \prime}}-n^{\prime \prime}\left(K^{\prime \prime}+K^{\prime \prime} n\right)
\end{aligned}
$$

The constants $K^{\prime}$ and $K^{\prime \prime}$ are to be obtained from Taivle $l$ for the arcuments $\frac{2 h}{l^{\prime}}$ and $\frac{2 h}{l^{\prime \prime}}$, respectively, and the constants $K_{n}^{\prime}$ and $K_{n}^{\prime \prime}$
from Table 6 for the values of $n^{\prime}$ and $n^{\prime \prime}$. The last term in $U_{V}^{\prime}$ takes account of the mutual effect between one set of wires and the other set and its image. This is obtained on the assumption that the effect is sensibly the same as though the two sets of wires were replaced by wires alone the axes of the parallel sets and carrying the same total charges as the parallel tire sets. The error due to this, simplifying assumption mill not amount to as much as one per cent in most practical cases.

$$
\begin{align*}
& \text { To calculate } Y \text { me have the equation } \\
& Y=\frac{\ell^{\prime}+l_{0}^{\prime}+\ell^{\prime \prime}+-E_{0}^{\prime \prime}}{\ell^{\prime \prime}+\ell^{\prime \prime}} Y\left(\ell^{\prime}+\ell_{0}^{\prime}, \ell^{\prime \prime}+\ell_{0}^{\prime \prime}\right)-\frac{\left(l^{\prime}+l_{0}^{\prime \prime}+l_{0}^{\prime \prime}\right)}{l^{\prime}+l^{\prime \prime}} Y\left(\ell^{\prime}+l_{0}^{\prime}, \ell_{0}^{\prime \prime}\right) \\
& -\frac{\left(l_{0}^{\prime}+l^{\prime \prime}+\ell_{0}^{\prime \prime}\right)}{l^{\prime}+\ell^{\prime \prime}} \Psi\left(\hat{i}_{0}^{\prime}, \ell^{\prime \prime}+\ell_{0}^{\prime \prime}\right)+\frac{\hat{l}_{0}^{\prime}+l_{0}^{\prime \prime}}{l^{\prime}+l^{\prime \prime}} \Psi\left(\ell_{0}^{\prime}, \ell_{0}^{\prime \prime}\right)
\end{align*}
$$

each of the terms being the difference of two quantities $Y_{1}$ and $Y_{2}$ taken from Tables 7 and 8 , respectively, for the arguments $\theta$, and the ratio of the lengths winch appear in the parentheses which follow the symbol $Y$ in the formula, and for the value of 2 in divided joy the greater of the two lonsths in each case.

In most practical cases, however, there will be simplifying conditions. The following are the most important of these special cases.

When the fires have all the same diameter, the same spacing, and the number in each lea of the $V$ is the same, then $d^{\prime}=d^{\prime \prime}=d$, $D^{\prime}=D^{\prime \prime}=D, n^{\prime}=n^{\prime \prime}=n$. The capacity is nom

$$
\begin{equation*}
c=\frac{0.2416\left(l_{1}^{\prime}+l_{1}^{\prime \prime}\right)}{U^{\prime}}=\frac{7.36\left(l_{2}^{\prime}+l_{2}^{\prime \prime}\right)}{U^{\prime}} \tag{32}
\end{equation*}
$$

with

$$
U^{\prime}=\frac{\log \frac{4 h}{d}+(n-1) \log \frac{2 h}{D}}{n}-\frac{l^{\prime}}{l^{\prime}+l^{\prime \prime} K_{I}}-\frac{l^{\prime \prime}}{l^{\prime}+l^{\prime \prime}} K_{2}-K_{n}+Y
$$

As the simplest cases of all, we may assume, in addition, that the wires of the trio legs of the $V$ have the same length $l$, and that their ends here the same distance from the intersection of their axes, that is, $\ell^{\prime \prime}=l^{\prime \prime}=-\ell, l_{0}^{\prime}=l_{0}^{\prime \prime}=\ell_{0}$. Then in formula (jj)

$$
\begin{equation*}
U^{\prime}=\frac{\log \frac{4 h}{d}+(n-1) \log \frac{2 h}{D}}{n}-\left(K+I_{n}\right)+I \tag{33}
\end{equation*}
$$

and

$$
\mathrm{Y}=\frac{l_{+}+2 l_{0}}{l}\left[\mathrm{Y}\left(l_{0}, l_{0}\right)-\mathrm{Y}\left(\ell+l_{0}, l_{0}\right)\right]
$$

Example 15.- As an illustration of the precediñ formulas we may take the case of a parallel rire $V$ antenna, each leg consisting of six wires of diameter 0.02 it., spaced 2 feet apart; the whole antenna is supposed to be in a plane 50 ft . above the ground. Suppose further, that the lensth of the wires in one set is 100 ft . and those of the other set 50 ft ., and that the point of the intersection of the axes of the tro sets is respectively 50 and 25 feet from the nearer ends of the tro legs, their ansle being $45^{\circ}$.

Then $l^{\prime}=100, l_{0}^{\prime}=50, l^{\prime \prime}=50, l_{0}^{\prime \prime}=25, \quad D=2, n=6$, $\therefore=0.02, \theta=45^{\circ}$.

From Table 1 , for $\frac{2 h}{l}=1, K^{\prime}=0.336$, and for $\frac{2 h}{l}=\frac{1}{2}, K^{\prime \prime}=0.541$, so that

$$
U^{\prime}=\frac{4.000+5(1.699)}{6}-\frac{2}{3}(0.335)-\frac{1}{3}(0.541)-0.252+Y
$$

To calculate $Y$ we have
$\frac{l^{\prime \prime}+l_{0}^{\prime \prime}}{l^{\prime}+l_{0}^{\prime}}=\frac{75}{150}=\frac{1}{2} \quad \frac{\ell_{0}^{\prime \prime}}{l_{0}^{\prime}+l_{0}^{\prime \prime}}=\frac{25}{150}=\frac{1}{5} \quad \frac{\ell_{0}^{\prime}}{l^{\prime \prime}+l_{0}^{\prime \prime}}=\frac{20}{75}=\frac{2}{3} \quad \frac{l_{0}^{\prime \prime}}{l_{0}^{\prime}}=\frac{25}{50}=\frac{1}{2}$
$\frac{2 h}{l^{\prime}+l_{0}^{\prime}}=\frac{100}{150}=\frac{2}{3}$
$\frac{2}{3}$

$$
\frac{2 h}{l^{\prime \prime}+\ell_{0}^{\prime \prime}}=\frac{100}{75}=\frac{4}{3} \quad \frac{2 h}{\ell_{0}^{\prime \prime}}=\frac{100}{50}
$$

| $Y_{1}=0.497$ | 0.286 | 0.535 | 0.497 |
| ---: | :--- | :--- | :--- |
| $Y_{2}=0.150$ | $\underline{0.050}$ | $\underline{0.117}$ | $\underline{0.070}$ |
| Diff $=0.347$ | 0.236 | 0.418 | 0.427 |

$\frac{l^{\prime}+l_{0}^{\prime}+l^{\prime \prime}+l_{0}^{\prime \prime}}{l^{\prime}+l^{\prime \prime}}=\frac{225}{150}=\frac{3}{2} \quad \frac{l^{\prime}+l_{0}^{\prime}+l^{\prime \prime} 1757}{l^{\prime}+l^{\prime \prime}} \frac{-150}{150} 5 \quad \frac{l_{0}^{2}+l^{\prime \prime} l_{0}^{\prime \prime}}{l^{\prime}+l^{\prime \prime}}=\frac{125}{150}=\frac{5}{6} \quad \frac{l_{0}^{\prime}+l_{0}^{\prime \prime}}{l^{\prime}+l^{\prime \prime}}=\frac{75}{150}=\frac{1}{2}$
$Y=\frac{3}{2}(0.347)-\frac{7}{6}(0.275)-(0.418) \frac{5}{6}+\frac{1}{2}(0.427)=0.112$
and finally $U^{\prime}=1.538 \quad C=\frac{7.36(150)}{1.538}=717.3 \mu \mu \mathrm{f}$.
The capacity calculated oy simply addine the capacities of the legs taken separately is $778.1 \mu \mu \mathrm{f}$, so that the mutual effect of the tmo legs is to reduce the cavacity by about 8 per cent. If the ends of the tro leqs came tocether, so that $\ell_{b}^{\prime \prime}=l_{0}^{\prime \prime}=0$, and we mould find from Tailes 7 and 8 that $Y_{1}=0.497, Y_{2}=0.131$, so that $Y=0.366$, and the capacity comes out $616.1 \mathrm{M} \mu \mathrm{f}$.

- Antenna of Parallel Wires in a Plane Incline to Ground.

The antenna is supposed to consist of $n$ wires soaced a distance $D$ apart, the rhole set Beins situated in a plane aazine an angle $\in$ with the surface of the earth. The wires have each a diameter $d$ and are of equal leneth $\ell$, Thile the lower ends of the wires are
at a heitht $h^{\prime}$ above the ground.
The capacity is calculated oy the formula

$$
\begin{equation*}
c=\frac{0.2416 \ell_{1}}{U_{i}}=\frac{7.35 \ell_{\mathrm{E}}}{U_{i}} \tag{34}
\end{equation*}
$$

in which

$$
U_{i}=\frac{\log \frac{2 l}{d}+(n-1) \log \frac{l}{D}}{n}-\left(0.133+K_{n}\right)-Y^{\prime}
$$

The term $Y^{\prime}$, Thich takes into account the effect of the charges upon the earth, is calculated on the assumption that its value is closely fiven by supposing the vire charges and inage charges to be concentrated along the axes of the set of vires and the images, respectively. Its value is oftained by formula (29), using Table 7.

Example 16.- Suppose 6 rires spaced 2 feet apart, in a plane inclined $45^{\circ}$ to the ground. The تires are of diameter 0.02 ft ., and 50 ft . long, and their lomer ends are 50 ft . ajove the ground.
Then $\frac{2 l}{d}=5000, \frac{\ell}{D}=25, K_{n}=0.252$. To calculate $y^{\prime}$ we use formula (29), The distance $l^{\prime}=50 \sqrt{2}, \frac{l^{\prime}}{\ell+l^{\prime}}=0.586$. Then from Table 7 for the argument $\left(1,90^{\circ}\right)$ we find $Y\left(\ell^{\prime}, \ell^{\prime}\right)=0.383$, and for the argunent $\left(0.586,90^{\circ}\right)$ we find $Y\left(l_{0}^{\prime}, l^{\prime}+l^{\prime}\right)=0.361$, so that $Y^{\prime}=\frac{(50+100 \sqrt{2})}{50}(0.022)=0.084$.

Then

$$
U_{i}=\frac{3.692+5(1.398)}{6}-(0.133+0.252)-0.084=1.313
$$

and the capacity is

$$
C=\frac{7.36(50)}{1.313}=280.3 \mathrm{pu} \mathrm{\mu f} .
$$

If the same wires were placed in a horizontal plane 50 ft . aoove the ground, the capacity would be 285.5 fuf, and if they were placed vertical with their lower ends 50 ft . avove the ground, the capacity mould be $278.2 \mu \mu \mathrm{f}$.

## p. Conical Antenna.

Let the conical antenna consist of $n$ wires of length $l$, and of dianeter of cross section $\alpha$, spaced at equal anfles as elements of a cone whose half ancle is $\phi$, and whose point is a distance of h' from the ground, the axis of the cone extenaing vertically a oove the aper, see Fig. 3.

Fin. 3.
The capacity is found by the formula

$$
\begin{equation*}
0=\frac{0.2416 \hat{\ell}_{1} \mathrm{n}}{\mathrm{U}_{\mathrm{k}}}=\frac{7.36 \ell_{2 n}}{U_{k}} \tag{35}
\end{equation*}
$$

fere

$$
\begin{equation*}
U_{k}=\log \frac{2 l}{2}-0.133+\sum Y^{\prime}-\frac{n}{\cos \varphi}(k-0.133) \tag{35a}
\end{equation*}
$$

the constant $k$ being obtained, from table 3 for the argument $\frac{h}{l \cos \varphi}$
The term $\sum Y^{\prime}$ is the sum of the $Y_{1}$ terms for any vire and the remaining mires, the values being taken from Table 7 for arguments $\theta$ given by the angles between the wires. The le neth of the wires being the same, the length ratio in Table 7 is unity in each case.

The last term in $U_{k}$ takes into account the effect of the earth. The expression for this is not exact, but the error in practical cases will be only a few per cent in the value of this term which is not more than about one tenth of the whole quantity $U_{k}$. To calculate exactly the effect of the earth necessitates in this case the use of complicated formulas. The approximation here employed in obtaining formula (35a) is to replace the antenna and image wires each by a single wire alone the axis of the cone the distance between the nearer ends of these two vertical wires being 2 h , their lengths each being $l \cos \varphi$, and the linear charge densits on each being taken as $\frac{q}{\cos \phi}$, where $q$ is the actual linear density originally assumed upon each wire in obtaining the capacity formula.

Example 17.- Suppose the Tires composing a conical antenna are six in number, spaced at equal intervals upon a cone of half angle $30^{\circ}$, With its apex 50 ft . above the ground. Each mire has a length of 100 feet, and a diameter of 0.02 foot. Then $\frac{2 l}{d}=10000$, $\phi=30^{\circ}, h=50, l \cos \varphi=86.6$, and thus in Table 3 we have to take the value of $k$ corresponding to the argument $\frac{50}{86.6}=0.583$, that is, $k=0.238$. To obtain the second term in $U_{k}$ we find that the angles between the wires are as follows:


Thus $\sum Y^{\prime}=2(0.705+0.520)+0.477=2.927$, and for $U_{k}$ re have $4.000-0.133+2.927-0.727=6.065$. The capacity is therefore $c=\frac{7.35(500)}{5.066}=728.0 \mathrm{p} \mathrm{\mu uf}$.
ith such an antenna it should ve pointed out that the gain from increasing the number of rires is largely offset by the reduction in capacity resultina from the mutual effects of the rires. Compared with a vertical cafe antenna, the capacity is freater with the conical antenia, but the gain is not in proportion to the amount of space occupied.

## q. Unorella Antenna.

The same formula for the capacity is to be employed as for the conical antenna. The approxination made in taking into account the effect of the earth in the conical case is not so accurate for the umiorella type. Horever, the error in practical cases will not exceed one per cent in the value or the capacity.

## r. Fan or Harp Antenna.

This is nace up of $n$ wires joined tosether at their lower ends. From this junction the wires are carried upward and are attached at equal intervels alone a horizontal guy rope, (see Fig.4).


$$
\text { Fig. } 4 .
$$

The iinensions required are the leneths of the different wires $l_{s}$ the distences betreen their points of attachent on the guy rope a and the distance of the point of junction from the ground $h^{\prime}$. Then the anles jetreen the various wires are to be calculated. Thus for any two consecutive rires of len "ths $\ddot{p}_{r}$ and $l_{s}$, whose points of attaciment are separated by a distance a, the angle $\theta$ is found from the relation $\cos \theta=\frac{\ell_{r}^{2}+l_{s}^{2}-a^{2}}{2 l_{r} l_{s}}$

The potential of any one of the wires is, then, that due to its own charge, plus that due to the charges on each of the other wires of the fan, minus that due to the image charges. The effects of the other rires are evaluated by the constents given in Table 7 Which hold for wircs intersecting at an angle $\theta$. The effect of the image may be accurately enoush taken into account by supposine both antenna top and inages to je replaced by vertical wires having a length equal to the average vertical component of the lengths of
the rires, the chare umon these equivalent vires oeine tazen to have a density equal to the sum of the ciensities on the individual Fires. The ecuivelent rires are supposed to lie in the sane straish line with their nearer ends separated by twice the height of the lovest point of the fan fron the ground.

Carrying throu, h these operetions we find for the capacity formula.

$$
\begin{equation*}
c=\frac{0.2416 \sum l_{1}}{U_{f}}=\frac{7.36 \sum l_{2}}{U_{f}} \tag{36}
\end{equation*}
$$

in which the guantity $U_{f}$ is given iy

$$
\begin{equation*}
U_{f}=\frac{1}{\sum l}\left[\sum_{s} l_{s} \log \frac{l_{s}}{d}+\sum_{n, s} \frac{\left(l_{n}+l_{s}\right)}{2} Y_{n s}^{\prime}\right]-0.133-\frac{\sum l_{s}}{\lambda}(k-0.133) \tag{35a}
\end{equation*}
$$

The constants yis are to be tazen from Taivle 7 for the ansle between the pairs of rires $r$ and $\quad$, and for the ratio of the smaller length to the areater. The constant $\lambda$ is the averase of the vertical components of the lengths of the wires of the fan, and $k$ is to oe teken from Table 3 for the arsument $\frac{h}{\lambda}$. An example will make
clear the use of the formula.

Example 18.- Supose in Fizure 4 that there are five wires neetin at a point 50 ft. above the round, and that the wires are fastené to a horizontal wire at points 10 ft . apart. The middie wire is vertical and has a lenth of 100 ft . and the diameter of the rires is 0.02 ft .

The lensths of the wires are then found to ${ }^{2} l_{1}=r_{5}=102.5$, $l_{2}=l_{4}=100.5$, and $l_{3}=100$, so that $\sum \ell=505$. The mean value of $\log _{10} \frac{l_{s}}{d}$, weighted accordins to the leneths of the wires, is 4.004. The angles between the wires mork out as follows:
1 and $2=4$ and $5,55^{\circ} .60$
2 and $3=3$ and $4,55^{\circ} .71$
1 and $3=3$ and $5,110.31 \quad$ a and $4,110.42$
1 and $4=2$ and $5,17{ }^{\circ} .02$
1 and 5

Ey rather roush interpolation fron Ta ine 7 the constants, correspondin: to these angles and the ratios of the leneths of the wires of the pairs, were found to be

| Pa, ir | Y1 | Pair | Y' | Pair | Y' |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1,2 or 4,5 | 1.323 | 2,5 or 1,4 | 0.882 | 2,3 or 3,4 | 1.314 |
| 3,5 or 1,3 | 1.034 | 1,5 | 0.785 | 2,4 | 1.043 |

Thus the terms $\sum_{n, s} \frac{\ell_{n}+\ell_{s}}{2} Y_{n S}^{\prime}$ ©ive a. final result of 4.372 . The average vertical component of the lengths of the ires is $\lambda=100$,
and from Tabla 3 for $\frac{h}{l^{-}}=\frac{50}{100}=0.5, \mathrm{k}=0.247$, so that the imase ter: is $\frac{505}{100} \cdot 0.124=0.575$, and the capacity is $\sigma=\frac{7.36(505)}{7.667}$ $=484.6$ pur.
3. Use of mables for Three Cominon Forns of Antennas.

The canacities of certain comon forms of antennas may be obtained :ithout calculation from Tailes 2, 4 and 9. These toibles are respectively, for sin le-vire herizontal, sin le-mire rertical: and tro-rire horizontal entennas. The lenth of each horizontal viro is denoted byl and of the vertical vire oy m .

In each case there is given the capacity (c) in ficromicrofarads, and the capacity per unit lenth in aicromicrofarads per foot. It will be noted that the canacity per unit len th rarico but slowly with the length and the heignt ajope the fround. Thus accurate interpolation of the capacity por unit len tir nay be mado for antennas not included in tho taijles, end so by multiplication by the lensth, the capacity of the antenna.

In adcition to the capacity and linear cavacity the tebles include the potential coefficient of the ontenne for unit cherge density per unit length oi the antenna. This quantity $U$ is usefur in calculating the capacity of conbinations of horizontal and rertical rires, such as for examble the calculation of the effect of lead-in wires. This point will be illustratec in the succeoding" section.

Four different sizes of wires (0.005, 0.01, 0.015, and 0.02 feet in dianeter) are included in each table. These zizes, it is bolieved, cover the najority of ontennas nat in practice. Interpolation in the tables nay ve made for sizes lying between these values. The table for two-wire horizontal antennas covers thres soacines of the wires, viz., one foot, two feot and three feet. It is hoped that the rane here covered will suffice for the large majority of practical cases.

Examele 19.- Suppose the capacity of a two-wire entenna of $0.012 \overline{5 t}$. vires, 125 ft . lone, spaced 2 ft . apart, at a distance of 75 ft . from the Eround is to be found from the Table 9.

The followine values of the linear capacity wore interpoleted from the teble usins second differences, for tho required length of 125 feet.

| $h$ | $d=0.01$ | 0.015 | 0.02 |
| ---: | :---: | :---: | :---: |
| 60 | 2.675 | 2.764 | 2.831 |
| 80 | 2.629 | 2.714 | 2.778 |
| 100 | 2.601 | 2.684 | 2.746 |

Internolating from these for the length 75 ft. the resulting $\begin{array}{llll}\text { values are } & =0.01 & 0.015 & 0.02 \\ & 2.638 & 2.724 & 2.788\end{array}$
and interpolating, finally, for the Eiven diameter of wire we find Eor the capacity per foot, 2.684 , so that the capacity of the antenna is 335 puf. The case just considered is purposely taken complicated to illustrate what is possible with the table. In general it vill be ell to use the formula (18) directly, when more than two interpolajions have to be made in the table. For this case the formula gives $34.9 \mu \mu f$.

## 4. Calculation of Capacity of Lead-in Wires.

A problem frequently met is the calculation of the capacity of ine combination of two sets of wires joined together, each of the :lements beine readily calculable singly by methods and formulas ilready iven. A first approximation is to ada the capacities of the I lements, out this takes no account of the mutual effect of the eledents upon one another, and gives a value which is too high.

In general the simplest method for obtaining the accurate value If the capacity of the combination is to obtain the unit potential ;officients of the separate elenents either from tables 2,4 , or 9. jikewise the mutual unit potential coefficients are to oe obtained. Iith these values the linear charge density ratios for the elements re to be so determined as to make the potentials equal for all the lements. The process is illustrated in the next example, which has een so chosen as to employ the tabulated values of unit potential ;oefficients in Tables $2,4,9$.

Example 20.- A two-wire horizontal antenna, 200 it. long, and 0 ft . a'jove the earth, has joined to one oi its ends as a lead-in single vertical wire 60 ft . loñ. The diameter of all the wires ill be assumed as 0.02 ft ., and the spacing of the wires of the orizontal portion as 2 ft .

From Table 9 the linear potential coefficient of the horizontal ortion is found to be 2.771 , and from Table 4 , with $m=50$ and ${ }^{\prime}=20$, we find $\mathrm{U}_{22}=3.505$. The mutual potential coefficient will be tained with sufficient accuracy if we assume that the charce upon de horizontal portion is concentrated upon a sinsle wire half way etween the actual wires. Then from Table 5, for the areument $5=\frac{60}{200}=0.3$, and for $\frac{h^{\prime}}{m}=\frac{1}{3}$, there is found $X=0.158$. To otain the linear mutual potential coefficients from the constant which is useful in calculations with wires at right angles, we
: ote that we may write $X=\frac{x}{2.303(\overline{l+m})}, U_{12}=\frac{x}{4.605 l}$,
$U_{31}=\frac{x}{4.605 \mathrm{~m}}$ so that $U_{12}=\frac{l+m}{2 l} \cdot x, U_{21}=\frac{l+m}{2 m} \cdot x$ are the general
zlations connecting these linear potential coefficients and the
abulated quantity. Thus for the present case $U_{12}=0.109$,
$21=0.364$.

If we assume the linear charce censities upon the horizontal and vertical portions as $q 1$ anci $q_{2}$, respectively, then me may vrite For the potentials of the two portions

$$
\begin{aligned}
& v_{1}=q_{1} U_{11}+q_{2} U_{12} \\
& v_{2}=q_{1} U_{21}+q_{2} U_{22}
\end{aligned}
$$

ani the condition that these ay be equal is $\frac{q_{2}}{q_{1}}=\frac{U_{11}-U_{21}}{U_{22^{-}} U_{12}}=\frac{2.407}{3.396}$ $=0.709$.

Thus the common potential is $v=q_{1}[2.771+0.709(0.109)]$ $=2.848 q_{1}$, the total charge $\hat{q}=q_{1}[200+60(0.709)]=242.5 q_{1}$, and the capacity $C=\frac{7.36(242.5)}{2.848}=625.2$ ppuf. The sum of the capacities of the separate portions is from Tables 4 and 9 , $531.1+126.0=657.1$ puf which is thus seen to be about five per cent too large.

It is evident that this method is applicaile in the general case of the calculation of the capacity of lead-in wires. To go into all the types of leaci-in wires rhich occur in practice would take us too far afield. It is clear, however, that the formulas already fiven should cover usual arrangenents insofar as the capacity of the lead-in wires in themselves are concerned. To take into account their effect upon the other parts of the antenna system it will usuelly suffice to make some simplifying assumption as was done in the preceding example, since this nutual effect is a relatively small part of the whole capacity.

## 5. Tables for Antenna Capacity Calculation.

Three of the following tables give directly the capacities of three simple forms of antemnas; they are tables 2,4 , and 9. The other tajles are auxiliary to certain of the fornulas.

## Taole 1.

Values of the Constant $Z$ for Use in Formula (13) and for Horizontal Wires in General.
(The arsument to ioe used is either $\frac{2 h}{l}$ or $\frac{l}{2 h}$, according to which
is less than unity)

| $\frac{2 i n}{l}$ |  | l |  | $\frac{\ell}{2 n}$ | K |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | K | 2 h | K |  |  |
| 0 | 0 | 1.00 | 0.336 | 0.50 | 0.541 |
| 0.1 | 0.042 | 0.95 | 0.350 | 0.45 | 0.576 |
| . 2 | . 0 ช2 | . 90 | . 364 | . 40 | . 617 |
| . 3 | . 121 | . 85 | . 379 | . 35 | . 664 |
| . 4 | .157 | . 80 | . 396 | . 30 | . 721 |
| 0.5 | 0.191 | 0.75 | 0.414 | 0.25 | 0.790 |
| . 5 | . 223 | . 70 | . 435 | . 20 | . 874 |
| . 7 | . 254 | . 65 | . 457 | . 15 | . 990 |
| . 8 | . 283 | . 60 | . 482 | . 10 | 1.155 |
| 0.9 | . 310 | . 55 | . 510 | . 05 | 1.445 |
| 1.0 | 0.336 | 0.50 | $0 ¢ 541$ |  |  |

Further values may ve calculated from the formulas

$$
K=\frac{\frac{2 h}{l}-\left(\sqrt{1+\left(\frac{2 h}{l}\right)^{2}}-1\right)}{2.303}+\log _{10} \frac{1+\sqrt{1+\left(\frac{2 h}{l}\right)^{2}}}{2}
$$

and

$$
\begin{gathered}
K=\frac{0.3059-\frac{2 h}{l}\left(\sqrt{1+\left(\frac{l}{2 h}\right)^{2}}-1\right)}{2.303}+\log _{10} \frac{\frac{l}{2 h}+\sqrt{1+\left(\frac{l}{2 h}\right)^{2}}}{\frac{l}{2 h}} \\
\text { for } \frac{l}{2 h} \overline{<} 1
\end{gathered}
$$

Ta, 2.
Constants for Sin le-wire Horizontal intennas. (synools used a ove coluns, etc., are defined on p.2).

Dianeter of wire $=0.06$ inch $=0.005$ it.

| $\dot{Y}$ | $h=10$ |  |  | $n=15$ |  |  | $h=20$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | U | 0 | $0 / 2$ | U | C | c/e | U | C | c/t |
| 10 | 3.352 | 21.09 | 2.189 | 3.397 | 21.57 | 2.167 | 3.414 | 22.57 | 2.257 |
| 20 | 3.567 | $41.2,7$ | 2.054 | 3.629 | 40.56 | 2.026 | 3.563 | 40.16 | ?.009 |
| 30 | 3.560 | 60.30 | 2.011 | 3.743 | 5 \% . 99 | 1.966 | 3.790 | 55.26 | 1.0,42 |
| 40 | 3.712 | 79.31 | 1.983 | 3.510 | 77.27 | 1.932 | 3.358 | 75.11 | 1.903 |
| 50 | 3.745 | 93.24 | 1.965 | 3.856 | 95.44 | 1.909 | 3.921 | 93.85 | $1.87 \%$ |
| 60 | 3.770 | 117.1 | 1.952 | 3.6085 | 113.6 | 1.593 | 3.951 | 111.5 | 1.85 |
| 80 | 3.501 | 154.9 | 1.936 | 3.931 | 149.8 | 1.872 | 4.013 | 145.7 | 1.034 |
| 100 | 3.321 | 192.6 | 1.926 | 3.956 | 1065.0 | 1.850 | 4.047 | 161.9 | 1.819 |
| 150 | 3.640 | 256.9 | 1.913 | 3.907 | 276.2 | 1.817 | 4.096 | 269.5 | 1.737 |
| 200 | 3.851 | 351.3 | 1.905 | 1. 017 | 366.4 | 1.832 | 4.122 | 357.1 | 1.756 |
| e |  | $h=25$ |  | 3.434 | 30 |  |  | $h=40$ |  |
| 10 | 3.427 | 21.48 | 2.140 | 3.434 | 21.30 | 2.130 | 3.442, | 21.30 | 2.135 |
| 20 | 3.604 | 39.96 | 1.993 | 3.59 \% | 39.81 | 1.990 | 3.715 | 39.64 | 1.952 |
| 30 | 3.519 | 57.82 | 1.927 | 3.839 | 57.57 | 1.019 | 3.852 | 57.17 | 1.906 |
| 40 | 3.905 | 75.39 | 1.885 | 3.930 | 74.91 | 1.873 | 3.954 | 74.27 | 1.055 |
| 50 | 3.955 | 92.06 | 1.850 | 3.995 | 92.1 | 1.842 | 4.036 | 91.2 | 1.824 |
| 60 | 4.009 | 110.3 | 1.835 | 4.044 | 109.2 | 1.820 | 4.091 | 107.9 | 1.799 |
| 30 | 4.070 | 144.7 | 1.809 | 4.111 | 143.2 | 1.790 | 4.159 | 141.2 | 1.765 |
| 100 | 4.110 | 179.1 | 1.791 | 4.157 | 177.0 | 1.770 | 4.222 | 174.3 | 1.743 |
| 150 | 4.165 | 254.9 | 1.756 | 4.223 | 261.4 | 1.743 | 4.303 | 256.6 | 1.711 |
| 200 | 4.199 | 350.6 | 1.753 | 4.259 | 345.6 | 1.728 | 4.348 | 338.5 | 1.632 |
|  |  | $h=50$ |  | h | 50 |  |  | $h=60$ |  |
| 10 | 3.447 | 21.35 | 2.135 | 3.451 | 21.3 | 3.135 | 3.455 | 21.3 | 2.130 |
| 20 | 3.720 | 39.5 | $1.97 \frac{1}{4}$ | 3.735 | 39.4 | 1.970 | 3.743 | 39.3 | 1.966 |
| 30 | 3.301 | 56.9 | 1.096 | 3.691 | 56.75 | 1.892 | 3.905 | 56.5 | 1.8105 |
| 40 | 3.985 | 73.9 | 1. ${ }^{1} 17$ | 3.999 | 73.6 | 1.340 | 4.016 | 73.3 | 1.833 |
| 50 | 4.061 | 90.6 | 1.612 | $4.07 \%$ | 30.2 | 1.805 | 4.100 | 39.8 | 1.795 |
| 50 | 4.120 | 107.2 | 1.737 | 4.140 | 106.7 | 1.77 ช | 4.157 | 106.0 | 1.757 |
| S0 | 4.306 | 140.0 | 1.750 | 4.232 | 139.1 | 1.739 | 4.265 | 136.0 | 1.725 |
| 100 | 4.255 | 172.5 | 1.725 | 4.296 | 171.3 | 1.713 | 4.337 | 159.7 | 1.697 |
| 150 | 4.35 \% | 253.3 | 1.637 | 4.393 | 251.0 | 1.573 | 4.453 | 24.7 .9 | 1.553 |
| 200 | 4.411 | 333.7 | $1.65{ }^{\text {c }}$ | 4.456 | 330.2 | 1.651 | 4.523 | 325.4 | 1.627 |

$$
h=100
$$

| 10 | 3.455 | 21.3 | 2.126 |
| ---: | ---: | ---: | ---: |
| 20 | 3.746 | 39.3 | 1.964 |
| 30 | 3.913 | 56.4 | 1.061 |
| 40 | 4.029 | 73.1 | 1.027 |
| 50 | 4.113 | 59.5 | 1.709 |
| 60 | 4.162 | 105.6 | 1.760 |
| 80 | 4.256 | 137.4 | 1.716 |
| 100 | 4.362 | 168.7 | 1.607 |
| 150 | 4.459 | 245.9 | 1.639 |
| 200 | 4.567 | 322.3 | 1.612 |

Table 2 (continued)
Diametor of nire $=0.12$ inch $=0.01 \mathrm{ft}$.

$$
h=10 \mathrm{ft} . \quad \therefore=15
$$

| $l_{\text {ft }}$ |  | $\mathrm{h}=1$ c | c/l |
| :---: | :---: | :---: | :---: |
|  | 3.061 | 24.0 | 2.404 |
|  | 3.255 | 45.1. | 2.254 |
| 30 | 3.359 | 65.7 | 2.191 |
| 4.0 | 3.411 | 86.3 | 2.158 |
| 50 | 3.445 | 106.8 | 2.136 |
| 50 | 3.469 | 127.3 | 2.122 |
| 50 | 3.500 | 168.2 | 2.102 |
| 100 | 3.520 | 209.1 | 2.091 |
| 150 | 3.547 | 311.2 | 2.075 |
| 200 | 3.560 | 413.5 | 2.058 |

$\begin{array}{rrrr}50 & 3.469 & 127.3 & 2.122 \\ 50 & 3.500 & 168.2 & 2.102 \\ 100 & 3.520 & 209.1 & 2.091 \\ 150 & 3.547 & 311.2 & 2.075 \\ 200 & 3.560 & 413.5 & 2.068\end{array}$
$h=20$

| $U$ | $C$ | $C / \ell$ | $U$ | $C$ | $C / \ell$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3.096 | 23.8 | 2.377 | 3.113 | 23.6 | 2.364 |
| 3.328 | 44.2 | 2.212 | 3.362 | 43.8 | 2.189 |
| 3.442 | 64.2 | 2.138 | 3.489 | 63.3 | 2.109 |
| 3.509 | 83.9 | 2.098 | 3.567 | 82.5 | 2.064 |
| 3.555 | 103.5 | 2.070 | 3.620 | 101.5 | 2.033 |
| 3.587 | 123.1 | 2.052 | 3.660 | 120.7 | 2.012 |
| 3.530 | 162.2 | 2.028 | 3.712 | 158.6 | 1.082 |
| 3.657 | 201.3 | 2.013 | 3.754 | 196.1 | 1.961 |
| 3.559 | 298.7 | 1.991 | 3.795 | 290.9 | 1.939 |
| 3.716 | 396.1 | 1.980 | 3.821 | 385.3 | 1.925 |


|  | $h=25$ |  |  |
| ---: | :--- | :--- | :--- |
| 10 | 3.126 | 23.5 | 2.354 |
| 20 | 3.363 | 43.5 | 2.176 |
| 30 | 3.518 | 62.5 | 2.091 |
| 40 | 3.004 | 81.7 | 2.042 |
| 50 | 3.684 | 100.4 | 2.008 |
| 50 | 3.708 | 119.1 | 1.985 |
| 80 | 3.769 | 150.2 | 1.952 |
| 100 | 3.809 | 193.2 | 1.932 |
| 150 | 3.8667 | 285.5 | 1.903 |
| 200 | 3.898 | 377.6 | 1.888 |


|  | $h$ | $=30$ |
| :--- | ---: | ---: |
| 3.133 | 23.5 | 2.349 |
| 3.397 | 43.3 | 2.166 |
| 3.536 | 62.4 | 2.080 |
| 3.629 | 81.1 | 2.028 |
| 3.694 | 99.6 | 1.992 |
| 3.743 | 118.0 | 1.967 |
| 3.810 | 154.5 | 1.931 |
| 3.356 | 190.9 | 1.909 |
| 3.922 | 281.5 | 1.877 |
| 3.958 | 371.9 | 1.860 |

3.141
3.414
3.561
3.663
3.735

$$
h=40
$$

| $n=$. |  |
| :---: | :---: |
| 23.4 | 2.343 |
| 43.1 | 2.156 |
| 62.0 | 2.067 |
| 80.4 | 2.009 |
| 98.5 | 1.971 |
| 116.5 | 1.942 |
| 152.2 | 1.902 |
| 187.7 | 1.877 |
| 275.9 | 1.839 |
| 363.7 | 1.818 |


|  |  | $h=50$ |  |
| ---: | :--- | :--- | :--- |
| 10 | 3.146 | 23.4 | 2.339 |
| 20 | 3.427 | 43.0 | 2.148 |
| 30 | 3.580 | 61.8 | 2.059 |
| 40 | 3.684 | 79.9 | 1.998 |
| 50 | 3.750 | 97.8 | 1.957 |
| 60 | 3.819 | 115.6 | 1.927 |
| 80 | 3.905 | 150.8 | 1.885 |
| 100 | 3.965 | 185.6 | 1.856 |
| 150 | 4.057 | 272.1 | 1.814 |
| 200 | 4.110 | 358.2 | 1.791 |


| $h=$ |  | 60 |
| :--- | ---: | ---: |
| 3.150 | 23.4 | 2.336 |
| 3.434 | 42.9 | 2.144 |
| 3.590 | 61.5 | 2.050 |
| 3.698 | 79.6 | 1.990 |
| 3.777 | 97.4 | 1.949 |
| 3.839 | 115.0 | 1.917 |
| 3.931 | 149.8 | 1.872 |
| 3.995 | 184.2 | 1.842 |
| 4.097 | 269.5 | 1.797 |
| 4.157 | 354.1 | 1.770 |

$h=80$
3.154
3.442
3.604
3.715
3.801

| 23.3 | 2.334 |
| :--- | :--- |
| 42.8 | 2.138 |
| 61.3 | 2.042 |
| 79.2 | 1.981 |
| 96.8 | 1.936 |
| 114.2 | 1.903 |
| 148.5 | 1.856 |
| 182.4 | 1.824 |
| 265.9 | 1.773 |
| 345.6 | 1.743 |

$$
h=100
$$

| 10 | 3.157 | 23.3 | 2.330 |
| ---: | ---: | ---: | ---: |
| 20 | 3.447 | 42.7 | 2.135 |
| 30 | 3.612 | 61.1 | 2.038 |
| 40 | 3.726 | 79.0 | 1.974 |
| 50 | 3.812 | 96.5 | 1.931 |
| 60 | 3.761 | 113.8 | 1.897 |
| 80 | 3.985 | 147.8 | 1.847 |
| 100 | 4.061 | 181.2 | 1.812 |
| 150 | $4.16 \boxed{ }$ | 253.6 | 1.757 |
| 200 | 4.266 | 345.1 | 1.726 |

Tajle 2 (continued)
Diameter of rire $=0.15$ inch $=0.015 \mathrm{ft}$.


| 10 | 2.350 | $h=25$ | 2.19 | 2 | $h=30$ 24.92 .489 | 2.965 | $h=40$ 24.8 | 2.482 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 3.207 | 45.9 | 2.205 | 3.221 | 45.72 .285 | 3.23 \% | 45.5 | 2.273 |
| 30 | 3.312 | 50.1 | 2.203 | 3.362 | 65.72 .189 | 3.355 | 65.2 | 2.174 |
| 40 | 3.426 | 55.9 | 2.147 | 3.453 | \%2.3 2.132 | 3.437 | 64.4 | 2.111 |
| 50 | 3.488 | 105.5 | 2.115 | 3.518 | 104.62 .092 | 3.559 | 103.4 | 2.068 |
| 60 | 3.532 | 125.0 | 2.083 | 3.567 | 123.82 .063 | 3.614 | 122.2 | 2.037 |
| 50 | 3.592 | 153.9 | 2.049 | 3.534 | 162.02 .025 | 3.658 | 159.7 | 1.996 |
| 100 | 3.633 | 202.6 | 2.025 | 3.06 | 200.02 .000 | 3.745 | 195.5 | 1.965 |
| 150 | 3.691 | 239.1 | 1.954 | 3.746 | 294.71 .965 | 3.826 | $2 \mathrm{S6} .6$ | 1.924 |
| 200 | 3.722 | 395.5 | 1.970 | 3.752 | 389.21 .946 | 3.371 | 360.3 | 1.902 |
|  |  | $h=5 c$ |  |  | $h=60$ |  | h |  |
| 10 | 2.970 | 24.8 | 2.475 | 2.974 | 24.52 .475 | 2.976 | 24.7 | 2.472 |
| 20 | 3.251 | 45.3 | 2.264 | 3.250 | 45.22 .259 | 3.256 | 45.1 | 2.254 |
| 30 | 3.404 | 64.9 | 2.162 | 3.414 | 64.72 .150 | 3.426 | 54.4 | 2.147 |
| 40 | 3.512 | 53.8 | 2.095 | 3.522 | 83.62 .090 | 3.559 | 82.7 | 2.066 |
| 50 | 3.584 | 102.7 | 2.054 | 3.601 | 102.22 .044 | 3.523 | 101.6 | 2.032 |
| 60 | 3.543 | 121.2 | 2.002 | 3.663 | 120.62 .010 | 3.590 | 119.7 | 1.995 |
| 50 | 3.729 | 157.9 | 1.974 | 3.755 | 155. 1.960 | 3.706 | 153.4 | 1.942 |
| 100 | 3.789 | 194.2 | 1.942 | 3.819 | 192.71 .927 | 3.850 | 190.7 | 1.907 |
| 150 | 3.851 | 234.5 | 1.897 | 3.921 | 281.61 .877 | 3.976 | 277.7 | 1.851 |
| 200 | 3.934 | 374.2 | 1.671 | 3.981 | 369.51 .849 | 4.046 | 353.6 | 1.819 |


|  | $h=100$ |  |  |
| ---: | ---: | ---: | ---: |
| 10 | 2.981 | 34.7 | 2.469 |
| 20 | 3.271 | 45.0 | 2.250 |
| 30 | 3.436 | 64.3 | 2.142 |
| 40 | 3.552 | 02.9 | 2.072 |
| 50 | 3.536 | 101.2 | 2.024 |
| 60 | 3.705 | 119.2 | 1.907 |
| 30 | 3.811 | 154.5 | 1.932 |
| 100 | 3.805 | 139.4 | 1.894 |
| 150 | 4.012 | 275.2 | 1.835 |
| 200 | 4.110 | 358.2 | 1.791 |

Table 2 (conclucied.).
Diameter of wire $=0.24$ inch $=0.02$ foot.

| Lft |  | $h={ }_{C}$ | c/.2 | U | $h=15$ | $c / d$ | U | $=\underset{C}{20}$ | O/L |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 2.760 | 26.7 | 2.657 | 2.795 | 26.3 | 2.534 | 2.812 | 26.2 | 2.517 |
| 20 | 2.965 | 49.6 | 2.462 | 3.027 | 48.6 | 2.432 | 3.061 | 46.1 | 2.404 |
| 30 | 3.058 | 72.2 | 3.407 | 3.141 | 70.3 | 2.343 | 3.15 6\% | 69.3 | 2.309 |
| 40 | 3.110 | 94.7 | 2.366 | 3.208 | 91.6 | 2.294 | 3.266 | 90.1 | 2.254 |
| 50 | 3.144 | 117.0 | 2.341 | 3.254 | 113.1 | 2.262 | 3.319 | 111.2 | 2.224 |
| 60 | $3.16 \%$ | 139.4 | 2.323 | 3.2 ¢6 | 134.4 | 2.240 | 3.359 | 131.5 | 2.192 |
| 30 | 3.199 | 184.1 | 2.301 | 3.329 | 176.9 | 2.212 | 3.411 | 172.6 | 2.156 |
| 100 | 3.219 | 225.6 | 2.256 | 3.356 | 219.3 | 2.193 | 3.445 | 213.6 | 2.136 |
| 150 | 3.246 | 340.1 | 2.274 | 3.395 | 325.2 | 2.168 | 3.494 | 316.0 | 2.107 |
| ? 00 | 3.259 | 451.7 | 2.256 | 3.415 | 431.0 | 2.155 | 3.520 | 418.2 | 2.091 |
|  |  | h |  |  | $h=30$ |  |  | $=40$ |  |
| 10 | 2.625 | 26.0 | 2.605 | $2.0 ゙ 32$ | 26.0 | 2.599 | 2.0640 | 25.9 | 2.592 |
| 20 | 3.082 | 47.6 | 2.388 | 3.096 | 47.6 | $2.37 \%$ | 3.113 | 47.3 | 2.364 |
| 30 | 3.217 | 6 6\% 6 | 2.288 | 3.237 | 68.2 | 2.274 | 3.260 | 67.7 | 2.250 |
| 40 | 3.303 | 89.1 | 2.228 | 3.326 | 88.5 | 2.212 | 3.362 | 87.6 | 2.189 |
| 50 | 3.363 | 109.4 | 2.168 | 3.393 | 108.5 | 2.170 | 3.434 | 107.2 | 2.144 |
| 60 | 3.407 | 129.6 | 2.160 | 3.442 | 126.3 | 2.138 | 3.489 | 126.6 | 2.110 |
| 80 | 3.468 | 169.8 | 2.122 | 3.509 | 167.8 | 2.098 | 3.567 | 165.1 | 2.064 |
| 100 | 3.50\% | 209.0 | 2.095 | 3.555 | 207.0 | 2.070 | 3.620 | 203.3 | 2.033 |
| 150 | 3.566 | 309.6 | 2.054 | 3.621 | 304.9 | 2.033 | 3.701 | 298.3 | 1.989 |
| 200 | 3.597 | 409.2 | 2.046 | 3.657 | 402.5 | 2.012 | 3.746 | 393.0 | 1.965 |
|  |  | $h=50$ |  |  | $h=60$ |  |  | = 80 |  |
| 10 | 2.845 | 25.9 | 2.556 | 2.8049 | 25.8 | 2.50 of 3 | 2.853 | 25.8 | 2.580 |
| 20 | 3.126 | 47.1 | 2.354 | 3.133 | 47.0 | 2.349 | 3.141 | 45.9 | 2.343 |
| 30 | 3.279 | 67.3 | 2.245 | $3.20 \% 9$ | 67.1 | 2.338 | 3.303 | 66.6 | 2.228 |
| 40 | 3.353 | 87.1 | 2.177 | 3.397 | 85.7 | 2.156 | 3.414 | 86.2 | 2.156 |
| 50 | 3.459 | 106.4 | 2.128 | 3.475 | 105.9 | 2.116 | 3.502 | 105.1 | 2.102 |
| 60 | 3.518 | 125.5 | 2.092 | 3.536 | 124.3 | 2.080 | 3.565 | 123.9 | 2.065 |
| 30 | 3.504 | 163.4 | 2.042 | 3.630 | 162.2 | $2.020{ }^{2}$ | 3.663 | 160.7 | 2.009 |
| 100 | 3.654 | 2,00.9 | 2.009 | 3.694 | 199.2 | 1.992 | 3.735 | 197.1 | 1.971 |
| 150 | 3.756 | 293.9 | 1.959 | 3.796 | 290.8 | 1.939 | 3.851 | 286.7 | 1.911 |
| 200 | 3.809 | 306.5 | 1.932 | 3.856 | 381.7 | 1.908 | 3.921 | 375.4 | 1.877 |


|  | $h=100$ |  |  |
| ---: | ---: | ---: | ---: |
| 10 | 25.6 | 2.577 | 2.856 |
| 20 | 46.6 | 2.340 | 3.146 |
| 30 | 66.7 | 2.223 | 3.311 |
| 40 | 85.9 | 2.146 | 3.427 |
| 50 | 104.0 | 2.096 | 3.511 |
| 60 | 123.4 | 2.056 | 3.500 |
| 80 | 159. ® $^{2}$ | 1.996 | 3.684 |
| 100 | 195.7 | 1.957 | 3.760 |
| 150 | 284.0 | 1.093 | 3.887 |
| 200 | 371.3 | 1.056 | 3.965 |

Table 3.
Values of the Constant in used in Formula (14)
and for Vertical Tires iflagnefil.
(The argument is $\frac{h^{\prime}}{m}$ or $\frac{m}{h^{\prime}}$ according to which is less tharmunity')


Further values may be calculated from the formula

$$
\begin{aligned}
k=0.4343+\frac{h^{\prime}}{m} \log _{10} \frac{4 h^{\prime}}{m} & +\left(1+\frac{h^{\prime}}{m}\right) \log _{10}\left(1+\frac{h^{\prime}}{m}\right) \\
& -\left(1+\frac{2 h^{\prime}}{m}\right) \log _{10}\left(1+\frac{2 h^{\prime}}{m}\right) \\
& \text { for } \frac{h^{\prime}}{m} \overline{<} 1
\end{aligned}
$$

and

$$
\begin{gathered}
k=0.1333+\frac{h^{\prime}}{m}\left(1+\frac{m}{h^{\prime}}\right) \log _{10}\left(1+\frac{m}{h^{\prime}}\right)-\frac{2 h^{\prime}}{m^{\prime}}\left(1+\frac{m}{2 h^{\prime}}\right) \log \\
\left(1+\frac{m}{2 h^{\prime}}\right) \\
\text { for } \frac{m}{h^{\prime}} \overline{ } \overline{1}
\end{gathered}
$$

Tainle 4.

## Constents for Sin:le-Wire Vertical Antennas.

(Symbols used above colums, etc., are defined on p.2.)
Diameter of wire $=0.06$ inch $=0.005$ foot.

| mft . | U | C | $\mathrm{c} / \mathrm{m}$ | U | c | $\mathrm{c} / \mathrm{m}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 3.355 | 21.9 | 2.194 | 3.395 | 21.7 | 2.168 |
| 20 | 3.612 | 40.8 | 2.038 | 3.556 | 40.3 | 2.013 |
| 30 | 3.762 | 58.7 | 1.956 | 3.806 | 58.0 | 1.934 |
| 40 | 3.872 | 76.0 | 1.901 | 3.913 | 75.2 | 1.881 |
| 50 | 3.956 | 93.0 | 1.860 | 3.996 | 92.1 | 1.842 |
| 60 | 4.025 | 109.7 | 1.828 | 4.063 | 108.7 | 1.812 |
| 80 | 4.138 | 142.3 | 1.779 | 4.173 | 141.1 | 1.764 |
| 100 | --4.224 | 174.2 | 1.742 | 4.257 | 172.9 | 1.729 |
|  |  | $h^{\prime}=20$ |  |  | $=50$ |  |
| 10 | 3.425 | 21.5 | 2.149 | 3.449 | 21.3 | 2.134 |
| 20 | 3.69,6 | 39.8 | 1.992 | 3.733 | 39.4 | 1.972 |
| 30 | 3.850 | 57.4 | 1.912 | 3.895 | 56.7 | 1.890 |
| 40 | 3.957 | 74.4 | 1.850 | 4.008 | 73.4 | 1.836 |
| 50 | 4.040 | 91.1 | 1.822 | 4.034 | 89.9 | 1.798 |
| 60 | 4.107 | 107.5 | 1.792 | 4.153 | 106.1 | 1.768 |
| 80 | 4.214 | 139.7 | 1.746 | 4.272 | 137.8 | 1.722 |
| 100 | 4.297 | 171.3 | 1.713 | 4.355 | 169.0 | 1.690 |

Diameter of mire $=0.12$ inch $=0.01$ foot.

| $n f t$ | U | C | $\mathrm{C} / \mathrm{m}$ | U | C | $\mathrm{C} / \mathrm{m}$ | U | C | $\mathrm{C} / \mathrm{m}$ |
| ---: | ---: | ---: | ---: | :---: | ---: | ---: | ---: | ---: | ---: |
| 10 | 2.867 | 25.7 | 2.567 | 3.054 | 24.1 | 2.410 | 3.094 | 23.8 | 2.379 |
| 20 | 3.168 | 46.5 | 2.323 | 3.311 | 44.5 | 2.223 | 3.355 | 43.9 | 2.194 |
| 30 | 3.344 | 65.0 | 2.201 | 3.461 | 63.8 | 2.127 | 3.505 | 63.0 | 2.100 |
| 40 | 3.469 | 84.9 | 2.122 | 3.571 | 82.4 | 2.061 | 3.612 | 81.5 | 2.038 |
| 50 | 3.566 | 103.2 | 2.064 | 3.665 | 100.7 | 2.014 | 3.695 | 99.6 | 1.992 |
| 50 | 3.645 | 121.2 | 2.020 | 3.724 | 118.6 | 1.977 | 3.762 | 117.4 | 1.957 |
| 80 | 3.770 | 155.2 | 1.952 | 3.837 | 153.5 | 1.919 | 3.872 | 152.1 | 1.901 |
| 100 | 3.867 | 100.3 | 1.303 | 3.923 | 187.6 | 1.876 | 3.956 | 186.0 | 1.860 |


|  | $h^{\prime \prime}=20$ |  |  |  | $h^{\prime}=50$ |  |  |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| 10 | 3.124 | 23.6 | 2.356 | 3.148 | 23.4 | 2.338 |  |
| 20 | 3.395 | 43.4 | 2.168 | 3.432 | 42.9 | 2.144 |  |
| 30 | 3.54 .9 | 62.2 | 2.074 | 3.594 | 61.4 | 2.048 |  |
| 40 | 3.656 | 80.5 | 2.013 | 3.707 | 79.4 | 1.983 |  |
| 50 | 3.739 | 98.4 | 1.968 | 3.793 | 97.0 | 1.940 |  |
| 50 | 3.806 | 116.0 | 1.933 | 3.862 | 114.3 | 1.905 |  |
| 50 | 3.913 | 150.5 | $1.8 \$ 1$ | 3.970 | 148.3 | 1.854 |  |
| 100 | 3.996 | 184.2 | 1.842 | 4.054 | 181.6 | 1.816 |  |

$\cdots$ ․․

Table 4 (continued)
Diameter of wire $=0.18$ inch $=0.015$ 00t.

$$
h^{\prime}=5 \mathrm{ft} . \quad h^{\prime}=10
$$

| mft . | U | 0 | $\mathrm{c} / \mathrm{m}$ | U | 0 | c/m |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 2.878 | 25.6 | 2.557 | 2.918 | 25.2 | 2.522 |
| 20 | 3.135 | 46.9 | 2.348 | 3.179 | 46.3 | 2.215 |
| 30 | 3.285 | 67.2 | 2.240 | 3.329 | 66.3 | 2.211 |
| 40 | 3.395 | 86.7 | 2.168 | 3.436 | 85.7 | 2.142 |
| 50 | 3.479 | 105.8 | 2.116 | 3.519 | 104.6 | 2.092 |
| 50 | 3.54 .8 | 124.5 | 2.075 | 3.586 | 123.2 | 2.052 |
| 80 | 3.651 | 160.8 | 2.010 | 3.696 | 159.3 | 1.981 |
| 100 | 3.747 | 196.4 | 1.964 | 3.780 | 194.7 | 1.947 |
|  |  | $\mathrm{h}^{\prime}=$ |  |  | $h^{\prime}=$ |  |
| 10 | 2.948 | 25.0 | 2.497 | 2.972 | 24.8 | 2.476 |
| 20 | 3.219 | 45.7 | 2.286 | 3.256 | 45.2 | 2.250 |
| 30 | 3.373 | 65.5 | 2.182 | 3.418 | 64.6 | 2.153 |
| 40 | 3.4 .80 | 84.6 | 2.115 | 3.531 | 83.4 | 2.084 |
|  | 3.563 | 103.3 | 2.066 | 3.617 | 101.7 | 2.034 |
| 60 | 3.630 | 121.7 | 2.028 | 3.686 | 119.8 | 1.997 |
| 80 | 3.737 | 157.6 | 1.970 | 3.794 | 155.2 | 1.940 |
| 100 | 3.820 | 192.7 | 1.927 | 3.878 | 189.8 | 1.898 |


|  | $\mathrm{hf}=5$ |  |  |
| :---: | :---: | :---: | :---: |
| int. | ft | c | $\mathrm{c} / \mathrm{m}$ |
| 10 | 2.753 | 26.7 | 2.673 |
| 20 | 3.010 | 48.9 | 2.445 |
| 30 | 3.160 | 69.8 | 2.329 |
| 40 | 3.270 | 90.0 | 2.251 |


| $h^{\prime}$ | $=10$ |  |
| :---: | :---: | ---: |
| U | $C$ | $C / m$ |
| 2.793 | 26.4 | 2.635 |
| 3.054 | 48.2 | 2.410 |
| 3.204 | 68.9 | 2.297 |
| 3.311 | 88.9 | 2.223 |


| 50 | 3.354 | 109.7 | 2.194 |
| ---: | ---: | ---: | ---: |
| 50 | 3.423 | 129.0 | 2.150 |
| 80 | 3.536 | 166.5 | 2.081 |
| 100 | 3.622 | 203.2 | 2.032 |


| 3.394 | 108.4 | 2.158 |
| :--- | :--- | :--- |
| 3.451 | 127.6 | 2.127 |
| 3.571 | 164.9 | 2.061 |
| 3.655 | 201.4 | 2.014 |


| $h^{\prime}=20$ |  |
| :---: | :---: |
| 26.1 | 2.507 |
| 47.5 | 2.379 |
| 68.0 | 2.266 |
| 87.8 | 2.194 |
| 107.0 | 2.141 |
| 126.0 | 2.100 |
| 163.0 | 2.038 |
| 199.2 | 1.992 |


| $h^{\prime}$ | $=50$ |  |
| :--- | :--- | :--- |
| 2.847 | 25.8 | 2.585 |
| 3.131 | 47.0 | 2.350 |
| 3.293 | 67.0 | 2.235 |
| 3.406 | 86.4 | 2.161 |
| 3.492 | 105.4 | 2.108 |
| 3.561 | 124.0 | 2.067 |
| 3.670 | 160.4 | 2.005 |
| 3.753 | 196.1 | 1.961 |

Tenle 5.
Velues of the Constant $X$ for $W$ ires at Fi:ht An les Formula (15).


Taille 6.

## Values of the Constant $X_{n}$ for Use in Formula (17) and Other Parallel Wire Antenna Formulas.

| $n$ | K | n | K | n | K |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0 | 11 | 0.460 | 30 | 0.847 |
| 3 | 0.067 | 12 | .492 | 40 | 0.970 |
| 4 | .135 | 13 | .522 | 50 | 1.063 |
| 5 | .197 | 14 | .550 | 100 | 1.357 |
| 6 | .252 | 15 | .576 |  |  |
| 7 | .302 | 16 | .601 |  |  |
| 8 | .347 | 17 | .625 |  |  |
| 9 | .388 | 18 | .647 |  |  |
| 10 | 0.425 | 19 | .668 |  |  |
|  |  | 20 | 0.686 |  |  |

The general formula for $K_{n}$ is
$4.505 K_{n}=\frac{4}{n^{2}}[\log n(n-1)+2 \log n(n-2)+3 \log n(n-3)+\ldots$. $+(n-2) \operatorname{lom} 2]$
or

$$
\begin{aligned}
K_{n}=\frac{2}{n^{2}}\left[\log _{10}(n-1)+2 \log _{10}(n-2)\right. & +3 \log _{10}(n-3)+\ldots \\
& \left.+(n-2) \log _{10} 2\right]
\end{aligned}
$$

 MOMOMOUIGGOVIOMCUOUIOMOUOUIO

 0
0
0
0


## $\uparrow$ ヶO

## 



,


iva $\dot{\sim}$


 ○. ○. ○. . O. . ○. . O. . . .








[^0]
0
-
0


Table 8.
Values of the Constant $Y$ for Wires in Parallel Planes and Incined at an Ancle with Une Anotier -- Fornulas (24) fe.

$$
\frac{\mathrm{m}}{l_{l}}=1
$$

|  | $\frac{2 h}{l}=0$ | 0.2 | 0.5 | 1.0 | 0.5 |
| :--- | :--- | :--- | :--- | :--- | :--- |$\quad 0.2=\frac{\ell}{2 h}$

$0^{2}$
15
30
45
60
75
90
$\infty 0$
0.038
.687
.558
.477
.422
.383
0.646
0.584
.477
.432
.384
.348
.321
0.359
0.349
.328
.304
.282
.254
.249

0.106
0.105
.105
.1045
.103
.102
.101
0.043
0.043
.043
.043
.043
.043
.043
$105^{\circ}$
$\begin{array}{r}0.354 \\ .333 \\ .319 \\ 0.309 \\ 0.303 \\ \hline\end{array}$

0.237
.238
.221
.216
0.213
0.212
0.167
.163
.160
.158
0.156
0.099
.097
.097
.096
0.076
0.043
.0425
.0425
.0425
.0425
0.0425

$$
\frac{m}{\ell}=0.75
$$

| 00 | $\infty$ | 0.571 | 0.312 | 0.175 | 0.091 | 0.037 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | 0.905 | . 528 | . 30.15 | . 174 | . 031 | . 0.3 |
| 30 | . 670 | . 461 | - $0^{2}$ | . 171 | . 091 | . $03 \%$ |
| 45 | . 546 | . 406 | . 274 | . 167 | . 091 | . 03 |
| 60 | . 468 | . 354 | . 257 | . 163 | . 090 | . 03 |
| 75 | . 414 | . 331 | . 242 | . 158 | . 089 | . 03 |
| $90^{\circ}$ | 0.377 | 0.307 | 0.230 | 0.154 | 0.038 | 0.0 |
| 105 | . 342 | . 288 | . 2210 | . 150 | . 083 | . 037 |
| 120 | . 328 | . 274 | . 212 | . 147 | . 086 | $.0 \% 7$ |
| 135 | . 324 | . 254 | . 206 | . 144 | . 086 | . 0 |
| 150 | . 304 | . 257 | . 2 C 2 | .142 | . 085 | .03- |
| 165 | . 298 | . 253 | . 199 | . 1.41 | . 085 | . 03 |
| $180^{\circ}$ | 0.297 | 0.251 | 0.198 | 0.1 .41 | 0.085 | 0.037 |

$\infty \quad \frac{m}{i}=0.5$

| $0^{\circ}$ |  | 0.432 | 0.239 | 0.135 | 0.071 | 0.029 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | C.798 | 0.414 | 0.236 | 0.135 | 0.071 | 0.039 |
| 30 | . 601 | . 379 | . 229 | . 133 | . 071 | . 039 |
| 45 | . 496 | . 343 | . 221 | . 131 | .0705 | . 029 |
| 50 | . 429 | . 313 | . 2.10 | . 129 | . 070 | . 029 |
| 75 | . 382 | . 289 | . 2.00 | . 126 | .0595 | .029 |
| $30^{\circ}$ | 0.348 | 0.270 | 0.192 | 0.124 | 0.069 | 0.029 |
| 105 | . 323 | . 255 | . 186 | . 121 | . 069 | .0?9 |
| 120 | . 305 | . 244 | . 180 | . 1193 | .065 | . 033 |
| 135 | . 292 | . 235 | . 175 | .118 | .068 | . 0.365 |
| 150 | . 283 | . 230 | . 172 | . 117 | .0575 | . 0235 |
| 165 | . 278 | . 325 | .171 | . 116 | . 057 | . 0285 |
| $180^{\circ}$ | 0.276 | 0.223 | 0.170 | 0.116 | 0.057 | 0.0205 |

$$
\frac{\mathrm{m}}{t}=0.25
$$

| 00 | 00 |
| ---: | ---: |
| 15 | 0.550 |
| 30 | .432 |
| 45 | .366 |
| 60 | .322 |
| 75 | .291 |


| 90 | 0.270 |
| ---: | ---: |
| 105 | .251 |
| 120 | .238 |
| 135 | .228 |
| 150 | .222 |
| 165 | .162 |
| 180 | 0.217 |

$$
\begin{array}{r}
0.185 \\
.178 \\
.176 \\
.167 \\
.164 \\
.162 \\
0.161
\end{array}
$$

0.122
.120
.1176
.1114
.113
0.113
0.076
.075
.074
.074
.073
0.073
0.041 .2
.042
.041
.047
.041
0.041
0.017
0.017
.017
.017
.017
.017
0.017
.017
.017
.017
.017
0.017
.017
.017
.017
.017
0.017
.017
.017
.017
.017
0.017
.017
.017
.017
.017
0.079
.079
.079
.078
.0775
.077
0.042
.042
.042
.042
.042
.042
.017
.017
.017
.017
.017
$x$

Constants for Two-Wire Horizontal Antennas.
(Symiols used above colums, etc., are defined on 3.2)
Dianeter of vire $=0.06$ inch $=0.005$ foot.
Heint $=10 \mathrm{ft}$.
Capacity Cncity ner ft.


## Table 9 (continued)

Diameter of wire $=0.06$ inch $=0.005$ foot.
Height $=30 \mathrm{ft}$.

|  | U |  |  | Capacity |  |  | Capacity per fost |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ft | $D=1$ | 2 | 3 | $D=1$ | 2 | 3 | $\mathrm{D}=1$ | 2 |  |
| 10 | 2.154 | 2.004 | 1.916 | 34.2 | 35.7 | 38.4 | 3.416 | 3.673 | 3.841 |
| 20 | 2.408 | 2.258 | 2.170 | 61.1 | 65.2 | 57.8 | 3.056 | 3.250 | 3.392 |
| 30 | 2.545 | 2.394 | 2.305 | 86.8 | 92.2 | 95.7 | 2.892 | 3.074 | 3.191 |
| 40 | 2.534 | 2.484 | 2.396 | 111.6 | 118.5 | 122.9 | 2.794 | 2.962 | 3.072 |
| 50 | 2.698 | 2.548 | 2.450 | 136.4 | 144.4 | 149.6 | 2.728 | 2.888 |  |
| 60 | 2.746 | 2.596 | 2.508 | 160.8 | 170.1 | 176.1 | 2.680 | 2.835 | 2.9 |
| zo | 2.812 | 2.662 | 2.574 | 209.4 | 221.2 | 228.8 | 2.617 | 2.755 | 2.85 |
| 100 | 2.858 | 2.708 | 2.620 | 257.5 | 271.8 | 281.0 | 2.575 | 2.718 | 2.810 |
| 150 | 2.924 | 2.773 | 2.685 | 377.6 | 393.1 | +11.2 | 2.517 | 2.654 | 2.74 |
| 200 | 2.960 | 2.809 | 2.721 | 497.4 | 524.0 | 541.0 | 2.487 | 2.520 | 2.7 |

Height $=40 \mathrm{ft}$.

| 10 | 2.162 | 2.012 | 1.924 | 34.0 | 35.6 | 38.2 | 3.403 | 3.058 | 3.825 |
| ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 20 | 2.425 | 2.274 | 2.186 | 60.3 | 64.7 | 67.3 | 3.014 | 3.236 | 3.366 |
| 30 | 2.568 | 2.418 | 2.330 | 86.0 | 91.3 | 94.8 | 2.866 | 3.043 | 3.159 |
| 40 | 2.668 | 2.518 | 2.430 | 110.3 | 116.9 | 121.2 | $2.75 \%$ | 2.922 | 3.029 |
| 50 | 2.740 | 2.589 | 2.501 | 134.3 | 142.1 | 147.1 | 2.685 | 2.042 | 2.942 |
| 50 | 2.794 | 2.643 | 2.555 | 158.1 | 167.1 | 172.8 | 2.635 | $2.7 \$ 5$ | 2.880 |
| 80 | 2.870 | 2.720 | 2.632 | 205.1 | 216.5 | 223.7 | 2.554 | 2.706 | 2.795 |
| 100 | 2.923 | 2.772 | 2.634 | 251.8 | 265.5 | 274.2 | 2.518 | 2.655 | 2.742 |
| 150 | 3.004 | 2.853 | 2.765 | 367.6 | 387.0 | 399.3 | 2.451 | 2.580 | 2.652 |
| 200 | 3.049 | 2.898 | 2.810 | 482.8 | 508.0 | 523.8 | 2.414 | 2.540 | 2.619 |

Height $=50 \mathrm{ft}$.

| 10 | 2.168 | 2.017 | 1.929 | 34.0 | 36.5 | 38.2 | 3.396 | 3.649 | 3.818 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 20 | 2.438 | 2.268 | 2.200 | 60.4 | 54.4 | 56.9 | 3.019 | $3.21 \times$ | 3.346 |
| 30 | 2.587 | 2.438 | 2.348 | 85.4 | 90.6 | 94.0 | 2.845 | 3.021 | 3.134 |
| 40 | 2.690 | 2.539 | 2.451 | 109.5 | 116.0 | 120.1 | 2.738 | 2.900 | 3.002 |
| 50 | 2.764 | 2.614 | 2.526 | 133.1 | 140.8 | 145.7 | 2.652 | 2.816 | 2.914 |
| 60 | 2.822 | 2.672 | 2.584 | 156.5 | 165.3 | 170.9 | 2.610 | 2.755 | 2.848 |
| 80 | 2.908 | 2.757 | 2.659 | 202.5 | 213.6 | 220.5 | 2.531 | 2.670 | 2.758 |
| 100 | 2.967 | 2.616 | 2.728 | 248.1 | 261.3 | 269.8 | 2.481 | 2.613 | 2.698 |
| 150 | 3.058 | 2.908 | 2.820 | 361.0 | 379.6 | 391.5 | 2.407 | 2.521 | 2.510 |
| 200 | 3.112 | 2.960 | 2.872 | 473.1 | 497.2 | 512.4 | 2.356 | 2.486 | 2.562 |

## Taole 9 (continued)

Dianeter of rire $=0.06$ inch $=0.005 \mathrm{ft}$.
Heieht $=60 \mathrm{ft}$.

|  | U |  |  | Capacity |  |  | Capacity per ft. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ft | $D=1$ | 2 | 3 | $D=1$ | 2 | 3 | $\mathrm{D}=1$ | 2 | 3 |
| 10 | 2.172 | 2.021 | 1.933 | 33.9 | 35.4 | 38.1 | 3.389 | 3.642 | $3.80 \%$ |
| 20 | 2.445 | 2.295 | 2.206 | 60.2 | 64.1 | 66.7 | 3.010 | 3.207 | 3.3 .5 |
| 30 | 2.597 | 2.446 | 2.358 | $\delta 5.0$ | 90.2 | 93.6 | 2.634 | 3.006 | 3.120 |
| 40 | 2.704 | 2.553 | 2.455 | 108.9 | 115.3 | 119.4 | 2.722 | 2.852 | 2.9\%5 |
| 50 | 2.782 | 2.531 | 2.543 | 132.3 | 139.9 | 114.7 | 2.545 | 2.79 | 2.894 |
| 60 | 2.842 | 2.692 | 2.604 | 155.4 | 164.0 | 169.6 | 2.590 | 2.733 | 2.327 |
| \%0 | 2.934 | 2.783 | 2.695 | 200.7 | 211.5 | 218.5 | 2.509 | 2.0 |  |
| 100 | 2.997 | 2.846 | 2.758 | 245.6 | 253.6 | 255.8 | 2.456 | 2.556 | 2 |
| 150 | 3.098 | 2.948 | 2.860 | 356.3 | 374.5 | 385.0 | 2.375 | 2.497 | 2.573 |
| 200 | 3.158 | 3.008 | 2.920 | 4.66 .1 | 489.4 | 504.8 | 2.330 | 2.447 | 2.521 |
| Height $=80 \mathrm{ft}$. |  |  |  |  |  |  |  |  |  |
| 10 | 2.176 | 2.025 | 1.937 | 33.8 | 35.4 | 38.0 | 3.353 | 3.63 | 3.800 |
| 20 | 2.453 | 2.302 | 2.214 | 60.0 | 63.9 | 66.5 | 3.000 | 3.196 | 3.324 |
| 30 | 2.611 | 2.458 | 2.372 | 84.6 | 89.8 | 93.1 | 2.529 | 2.934 | 3.102 |
| 40 | 2.720 | 2.570 | 2.482 | 108.2 | 114.6 | 118.6 | 2.705 | 2.856 | 2.965 |
| 50 | 2.804 | 2.553 | 2.565 | 131.3 | 138.7 | 143.5 | 2.525 | 2.774 | 2.670 |
| 60 | 2.870 | 2.720 | 2.631 | 153.9 | 162.4 | 167.8 | 2.565 | 2.706 | 2.797 |
| 80 | 2.966 | 2.816 | 2.728 | 193.5 | 209.1 | 215.6 | 2.481 | 2.614 | 2.698 |
| 100 | 3.038 | 2.88 ¢ | 2.800 | 242.3 | 254.9 | 262.9 | 2.423 | 2.549 | 2.629 |
| 150 | 3.154 | 3.003 | 2.915 | 350.1 | 357.6 | 378.7 | 2.334 | 2.451 | 2.525 |
| 200 | 3.223 | 3.072 | 2.984 | 4.56 .7 | 479.1 | 493.2 | 2.284 | 2.396 | 2.466 |

Fieight $=100 \mathrm{ft}$.

| 10 | 2.178 | 2.028 | 1.939 | 33.8 | 36.3 | 38.0 | 3.378 | 3.629 | 3.796 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 20 | 2.458 | 2.308 | 2.220 | 59.9 | 53.8 | 66.3 | 2.994 | 3.180 | 3.316 |
| 30 | 2.619 | 2.468 | 2.380 | 84.3 | 69.4 | 92.0 | 2.810 | 2.982 | 3.092 |
| 40 | 2.734 | 2.883 | 2.495 | 107.7 | 114.0 | 118.0 | 2.692 | 2.850 | 2.950 |
| 50 | 2.816 | 2.666 | 2.578 | 130.7 | 138.0 | 142.8 | 2.614 | 2.760 | 2.855 |
| 50 | 2.884 | 2.734 | 2.640 | 153.1 | 161.5 | 166.8 | 2.552 | 2.692 | 2.780 |
| 80 | 2.988 | 2.837 | 2.749 | 197.1 | 207.5 | 214.2 | 2.464 | 2.594 | 2.578 |
| 100 | 3.063 | 2.912 | 2.824 | 240.3 | 252.7 | 260.1 | 2.403 | 2.227 | 2.601 |
| 150 | 3.190 | 3.039 | 2.951 | 346.1 | 353.3 | 374.1 | 2.307 | 2.420 | 2.490 |
| 200 | 3.267 | 3.116 | 3.028 | 450.6 | 472.3 | 486.1 | 2.253 | 2.362 | 2.430 |

$$
\begin{gathered}
\text { Dianeter of wire }=0.12 \text { inch }=0.01 \text { foot. } \\
\text { Height }=10 \text { It. }
\end{gathered}
$$



Table 9 (continued)
Dianeter of wire $=0.12$ inch $=0.01$ foot.
Height $=30 \mathrm{ft}$.

| $\ell$ |  | U | Capacity |  |  |  |  | city p | ft |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| it. | $D=1$ | 2 | 3 | $D=1$ |  | 3 | $D=1$ |  |  |
| 10 | 2.004 | 1.854 | 1.766 | 36.7 | 39.7 | 41.7 | 3.673 | 3.971 | 169 |
| 20 | 2.258 | 2.107 | 2.019 | 65.2 | 69.9 | 72.9 | 3.250 | 3.4 .93 | 3.646 |
| 30 | 2.394 | 2.244 | 2.156 | 92.2 | 98.4 | 102.4 | 3.074 | 3.250 | 3.413 |
| 40 | 2.454 | 2.334 | 2.245 | 11 ¢3. 5 | 126.2 | 131.1 | 2.962 | 3.155 | 3.2.7 |
| 50 | 2.546 | 2.398 | 2.310 | 114.4 | 153.5 | 159.3 | 2.6 ช6 | 3.070 | 3.106 |
| 60 | 2.596 | 2.445 | 2.350 | 170.1 | 180.6 | 157.3 | 2.835 | 3.01 .0 | 3.132 |
| 80 | 2.662 | 2.512 | 2.424 | 231.2 | 234.4 | 242.9 | 2.75 | 2.930 | 3.030 |
| 100 | 2.706 | 2.557 | 2.469 | 271.8 | 207.8 | 296. 1 | 2.71 ¢ | 2.678 | 2.93 L |
| 150 | 2.773 | 2.622 | 2.534 | 330.1 | 421.0 | 435.6 | 2.654 | 2.007 | 001 |
| 200 | 2.00 \% | 2.653 | 2.570 | 524.1 | 553.6 | 572.8 | 2.620 | 2.769 | ¢ |
| Height $=40 \mathrm{ft}$. |  |  |  |  |  |  |  |  |  |
| 10 | 2.012 | 1.662 | 1.774 | 36.6 | 39.5 | 41.5 | 3.656 | 3.954 | 4.150 |
| 20 | 2.274 | 2.124 | 2.036 | 64.7 | 69.3 | 72.3 | 3.275 | 3.465 | 3.610 |
| 30 | 2.416 | 2.267 | 2.179 | 91.3 | 97.4 | 101. 3 | 3.054 | 3.247 | 3.377 |
| 40 | 2.513 | 2.368 | 2.200 | 116.9 | 124.4 | 129.2 | 2.922 | 3.109 | 3.229 |
| 50 | 2.569 | 2.436 | 2.350 | 142.1 | 150.9 | 155.6 | 2.812 | 3.016 | 3.132 |
| 60 | 2.643 | 2.492 | 2.404 | 167.1 | 177.2 | 183.7 | 2.785 | 2.953 | 3.062 |
| B0 | 2.720 | 2.570 | 2.452 | 216.5 | 229.2 | 237.3 | 2.705 | 2.354 | 2.966 |
| 100 | 2.772 | 2.622 | 2.534 | 265.5 | 250.7 | 290.4 | 2.655 | 2.507 | 2.904 |
| ].50 | 2.853 | 2.702 | 2.614 | 307.0 | 40 ล). 5 | 422.3 | 2.500 | 2.723 | 2.835 |
| 300 | 2.898 | 2.747 | 3.660 | 507.9 | 535.9 | 553.4 | 2.540 | 2.650 | 2.757 |
| Height $=50 \mathrm{ft}$. |  |  |  |  |  |  |  |  |  |
| 10 | 2.017 | 1.866 | 1.778 | 36.5 |  | 41.4 | 3.649 | 3.954 | 4.136 |
| 20 | $2.23{ }^{\text {2 }}$ | 2.137 | 2.049 | 54.4 | 60.9 | 71.4 | 3.213 | 3.144 | 3.592 |
| 30 | 2.436 | 2.256 | 2.19 ã | 90.6 | 96.6 | 100.4 | 3.021 | 3.220 | 3.345 |
| 40 | 2.539 | 2.30゙5 | 2.300 | 116.0 | 123.3 | 188.0 | 2.900 | 3.062 | 3.200 |
| 50 | 2.614 | 2.464 | 2.376 | 140.8 | 149.4 | 154.9 | 2.816 | 2.985 | 3.093 |
| 60 | 2.672 | 2.522 | 2.434 | 165.3 | 175.1 | 161.5 | 2.755 | 2.918 | 3.025 |
| 60 | 2.757 | 2.605 | 2.51 T | 213.6 | 225.9 | 233.5 | 2.670 | 2.824 | 2.922 |
| 1.00 | 2.816 | 2.666 | 2.576 | 261.3 | 275.1 | 266.5 | 2.613 | 2.761 | 2.055 |
| 150 | 2.903 | 2.756 | 2.670 | 379.6 | 400.4 | 413.6 | 2.531 | 2.069 | 2.757 |
| 300 | 2.960 | 2.810 | 2.722 | 497.2 | 523.8 ¢ | 540.0 | 2.456 | 2.619 | 2.704 |

Tainle 9 (continueá)
Diameter of rire $=0.12$ inch $=0.01$ foot.
Heint $=60 \mathrm{Et}$.

| $\ell$ |  | U |  | Capacity |  |  | Oapacity per ft. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ft | $D=1$ | 2 | 3 | $D=1$ |  | 3 | $D=1$ |  |  |
| 10 | 2.021 | 1.870 | 1.782 | 35.4 | 39.4 | 41.3 | 3.643 | 3.935 | 4.129 |
| 20 | 2.294 | 2.144 | 2.055 | 54.2 | 5s.7 | 71.6 | 3.208 | 3.0.) | 3.580 |
| 30 | 2.446 | 2.296 | 2.20 ¢ | 50.2 | 90.2 | 100.0 | 3.003 | 3.206 |  |
| 40 | 2.553 | 2.402 | 2.314 | 115.3 | 122.5 | 127.3 | 2.652 | 3.062 | . 182 |
| 50 | 2.631 | 2.480 | 2.392 | 1.39 .9 | 148.8 | 153.8 | 2.793 | 2.368 | .078 |
| 50 | 2.532 | 2.54.2 | 2.45 | 164.0 | 173.8 | 180 | 2.73 | 2.857 | . 000 |
| 0 | 2.753 | 3.632 | 3. 544 | 211.6 | 223.7 | 231.4 | 2.645 | 3.796 | $2.89 \%$ |
| 100 | 2.84 | 2.596 | 2.50 \% | 258.6 | 273.0 | 236.2 | 2.585 | 2.730 | 2. ©̌2 |
| 150 | 2.948 | 2.798 | 2.710 | 374.5 | 394.6 | 407.5 | 2.497 | 2.581 |  |
| 200 | 3.008 | 2.857 | 2.769 | 489.4 | 515.2 | 531.5 | 2.447 | 2.578 | $2.5=$ |

$$
\text { Weicht }=80 \mathrm{ft} \text {. }
$$

| 10 | 2.025 | 1.874 | 1.785 | 30.3 | 39.3 | 41.3 | 3.535 | 3.926 | 4.120 |
| ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 20 | 2.302 | 2.152 | 2.054 | 53.9 | 68.4 | 71.3 | 3.196 | 3.920 | 3.566 |
| 30 | 2.450 | 2.308 | 2.232 | 89.7 | 95.7 | 99.4 | 2.991 | 3.189 | 3.312 |
| 40 | 2.570 | 2.420 | 2.332 | 114.6 | 121.7 | 126.3 | 2.855 | 3.042 | $3.15 \$$ |
| 50 | 2.554 | 2.504 | 2.416 | 130.7 | 147.0 | 152.4 | 2.774 | 2.040 | 3.047 |
| 60 | 2.719 | $2.56 \%$ | 2.450 | 152.4 | 171.9 | 178.0 | 2.707 | 3.855 | 2.957 |
| 00 | 2.816 | 2.550 | 2.578 | 209.1 | 220.9 | 223.4 | 2.614 | 2.751 | 2.855 |
| 100 | $2.88 \$$ | 2.737 | 2.549 | 254.9 | 268.9 | 277.6 | 2.549 | 2.589 | 2.776 |
| 150 | 3.003 | 2.852 | 2.754 | 357.6 | 387.0 | 399.3 | 2.451 | 2.580 | 2.662 |
| 200 | 3.072 | 2.922 | 2.834 | 479.1 | 503.8 | 519.4 | 2.396 | 2.519 | 2.597 |

$$
\text { Height }=100 \mathrm{ft}
$$

| 10 | 2.023 | 1.85 | 1 | 36 | $3{ }^{2}$ | 41.1 | 3.629 | 3.920 | 4.113 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 2.308 | 2.157 | 2.069 | 63.8 | 58.2 | 71.2 | 3.190 | 3.412 | 3.558 |
| 30 | 2. 4.58 | 2.318 | 2.231 | 69.4 | 95.3 | 99.0 | $2 \cdot 982$ | 3.175 | 3.299 |
| 40 | 2.583 | 2.432 | 2.344 | 114.0 | 121.0 | 125.6 | 2.850 | 3.035 | 3.140 |
| 50 | 2.665 | 2.516 | 2.12\% | 135.0 | 145.3 | 151.6 | 2.750 | 2.935 | 3.032 |
| 50 | 2.734 |  | 2.495 | 161.5 | 170.9 | 177.0 | 2.692 | 6. 6.84 | 2.950 |
| SC | 2.837 | 2.5 ¢ 6 | 2.598 | $2 C 7.5$ | 213.2 | 235.6 | 2.594 | 2.740 | 2.332 |
| 100 | 2.912 | 2.752 | 2.674 | 252.7 | 255.5 | 275.2 | 2.527 | 2.65 | 2.752 |
| 150 | 3.039 | 2.388 | 2.800 | 363.3 | 382.2 | 394.2 | 2. 522 | $2 \cdot 546$ | 2.026 |
| 300 | 3.116 | 2.966 | 2.878 | 472.2 | 496.3 | 511.5 | 2.352 | 2.432 | 2.558 |

$$
1
$$

Taile 9 (continued)
Diameter of wire $=0.18$ inch $=0.015$ foot.
Heisint $=10 \mathrm{ft}$.

|  |  | U |  |  | Gapacity |  |  | ty | ft |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $D=1$ | 2 | 3 | $D=1$ | , |  | $D=1$ |  |  |
| 10 | 1.844 | 1.694 | 1.606 | 39.9 | 43.5 | 45.8 | 3.991 | 4.345 | . 584 |
| 20 | 2.038 | 1.888 | 1.800 | 72.2 | 78.0 | 81.8 | 3.611 | 3.898 | 4.089 |
| \% | 2.128 | 1.977 | 1.889 | 103.8 | 111.7 | 116.9 | 3.460 | 3.723 | 3.897 |
|  | 2.178 | 2.028 | 1.940 | 135.2 | 145.2 | 151.8 | 3.380 | 3.630 |  |
|  | 2.211 | 2.060 | 1.972 | 166.4 | 178.6 | 186.6 | 3.328 | 3.572 | 3.732 |
|  | 2.234 | 2.084 | 1.996 | 197.7 | 212.0 | 221.3 | 3.295 | 3.533 | 8 |
| CO | 2.264 | 2.114 | 2.206 | 260.1 | 278.5 | 290.7 | 3.251 |  |  |
| 00 | 2.284 | 2.133 | 2.045 | 322.3 | 345.1 | 259.9 | 3.223 |  | 599 |
| 50 | 2.309 | 2.158 | 2.070 | 478.1 | 511.5 | 533.2 | 3.187 | 3.410 |  |
| 00 | 2.322 | 2.172 | 2.054 | 633.8 | 677.7 | 706.3 | 3.169 | 3.388 | 32 |
|  | 1. | 1.738 | 1.640 | $\begin{aligned} & \text { ht }= \\ & 39.2 \end{aligned}$ | $\begin{array}{r} 5 \mathrm{ft} . \\ 42.6 \end{array}$ | 44.9 | 3.918 | 4.258 | 4.486 |
|  | 2.100 | 1.950 | 1.862 | 70.1 |  | 79.0 | 3.505 | 3.744 | 52 |
| \% | 2.210 | 2.060 | 1.972 | 99.9 | 107.2 | 112.0 | 3.330 |  |  |
| +0 | 2.276 | 2.126 | 2.038 | 129.4 | 138.5 | 144.5 | 3.234 | 3.462 | 3.612 |
| 50 | 2.321 | 2.170 | 2.082 | 158.6 | 169.6 | 176.7 | 3.171 | 3.391 |  |
| 50 |  | 2.2 | 2.114 | 187.8 |  |  | 3.130 | 3.343 |  |
| 30 | 2.394 | 2.244 | 2.156 | 246.0 | 262.4 |  | 3.074 | 3.282 | 3.414 |
| j0 | 2.420 | 2.270 | 2.182 | 304.1 | 324.2 | 337.3 | 3.041 | 3.241 | 3.373 |
| jo | 2.459 | 2.308 | 2.220 | 449.0 | 478.2 | 497.2 | 2.993 | 3.188 |  |
| - | 2.473 | 2.328 | 2.240 | 593.9 | 632.3 | 657.1 | 2.970 | 3.162 | 3.286 |
|  |  |  |  | geht | 20 ft |  |  |  |  |
| 10 | 1.896 | 1.746 | 1.658 | 38.8 | 42.2 | 44.4 | 3.882 | 4.217 | 4.440 |
| 20 | 2.184 | 1.984 | 1.896 | 69.0 | 74.2 |  | 3.448 | 3.710 | 3.882 |
| 30 | 2.258 | 2.107 | 2.019 | 97.8 | 104.8 | 109.4 | 3.260 | 3.493 | 3.647 |
| 40 | 2.334 | 2.184 | 2.096 | 126.1 | 134.8 |  | 3.152 | 3.370 | 3.512 |
| 50 | 2.386 | 2.236 | 2.148 | 154.2 | 164.6 | 171.4 | 3.084 | 3.292 | 3.428 |
| 60 | 2.425 | 2.274 | 2.186 | 182.1 | 194.1 | 202.0 | 3.035 |  |  |
| 80 | 2.476 | 2.326 | 2.238 | 237.8 | 253.2 | 263.2 | 2.972 | 3.165 | 3.290 |
| 00 | 2.510 | 2.359 | 2.271 | 293.3 | 312.0 | 324.0 | 2.933 | 3.120 | 3.240 |
| 50 | 2.559 | 2.408 | 2.320 | 431.4 | 458.6 | 476.0 | 2.875 | 3.057 | 3.173 |
| 00 | 2.584 | 2.433 | 2.345 | 569.8 | 605.0 | 627.7 | 2.849 | 3.025 | 3.138 |
| 10 | 1.909 | 1.758 | 1.670 | Height $38.6$ | $=25 \mathrm{ft}$ | 44.1 | 3.855 | 4.187 | 4.406 |
| 20 | 2.157 | 2.006 | 1.918 | 68.2 | 73.4 | 76.7 | 3.412 | 3.669 | 3.836 |
| 30 | 2.286 | 2.136 | 2.048 | 96.6 | 103.4 | 107.8 | 3.219 | 3.447 |  |
| +0 | 2.371 | 2.220 | 2.132 | 124.2 | 132.6 | 138.1 | 3.105 | 3.315 |  |
| 50 | 2.430 | 2.279 | 2.192 | 151.4 | 161.5 | 167.9 | 3.028 | 3.230 | 3.358 |
| 50 | 2.473 | 2.322 | 2.234 | 17\%.6 | 190.2 | 197.6 | 2.977 | 3.170 |  |
| 30 | 2.533 | 2.382 | 2.295 | 232.4 | 247.2 | 256.6 | 2.906 | 3.090 | 3.208 |
| J0 | 2.572 | 2.422 | 2.334 | 286.1 | 304.0 | 335.3 | 2.861 | 3.040 | 3.153 |
| 50 | 2.630 | 2.479 | 2.392 | 419.8 | 445.3 | 461.6 | 2.799 | 2.969 | 3.077 |
| 00 | 2.660 | 2.510 | 2.422 | 553.3 | $5 \% 5.6$ | 607.8 | 2.766 | 2.933 | 3.039 |

Table 9 (continued)

$$
\begin{aligned}
\text { Dianeter of wire } & =0.18 \text { inch }=0.01\rangle 100 \mathrm{t} . \\
\text { Height } & =30 \mathrm{ft} .
\end{aligned}
$$



|  | 1.92\% | 1.77. | 1.685 | $\begin{aligned} & \text { He ient } \\ & 3 \varepsilon .2 \end{aligned}$ | $\begin{aligned} & 40 \mathrm{ft} \\ & 41.5 \end{aligned}$ | 43.7 | 2.825 | 4.150 | 4.3:7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 2.185 | 2.035 | 1.948 | 67.3 | 72.3 | 75.6 | 3.363 | 3.515 | 3.770 |
| 30 | 2.330 | 2.179 | 2.091 | 94.6 | 101.3 | 105.6 | 3.159 | 3.277 | 3.520 |
| 40 | 2.430 | 2.2 .30 | 2.192 | 121.2 | 129.2 | 134. 3 | 3.050 | 2.23) | 3.355 |
| 50 | 2.501 | 2.350 | 2.262 | 14.7 | 155.5 | 153.6 | 2.042 | 3.132 | 3.253 |
| 60 | 2 | 2.404 | 2.316 | $172.8{ }^{\text {¢ }}$ | 183.7 | 190.6 | 2.8゙きO | 3.062 | 3.177 |
| O | 2.630 | 2.450 | 2.392 | 223.9 | 237.5 | 246.2 | 2.709 | 2.959 | 3.076 |
| co | $2.65{ }^{2} 4$ | 2.534 | 2.446 | 274.2 | 290.4 | 307.8 | 2.742 | 2.904 | 3.008 |
| 50 | 2.755 | 2.614 | 2.526 | 399.3 | 422.3 | 437.0 | 2.652 | 2.015 | 2.913 |
| 0 | 2.810 | 2.659 | 2.572 | 523.8 | 553.6 | 572.3 | 2.619 | 2.750 | 2.8 |


| 10 | 1 |
| ---: | ---: |
| 30 | 2 |
| 30 | 2 |
| 40 | 2 |
| 50 | 2 |
| 60 | 2 |
| 80 | 2 |
| 100 | 2 |
| 50 | 2 |
| 00 | 2 | 1.929

2.200
2.340
2.422
2.526
1.778
2.040
2.196
2.302
2.376

Height $=50 \mathrm{ft}$.

$$
\begin{aligned}
& 2.4 \\
& 2.5 \\
& 2.5 \\
& 2.57 \\
& 2.7
\end{aligned}
$$

$$
\dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim}
$$

Talle 3 (continued)
Dianeter of vire $=0.1$ inch $=0.015$ foot.

$$
\text { Meignt }=60 \mathrm{ft} \text {. }
$$

| $\ell$ | D=1 | 2 |  | D $=1$ | cavacity |  | $D=1$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.933 | 1.732 | 1.634 | 35.1 | 4.1 .3 | 43.4 | 3.808 | 4.129 |  |
|  | 2.206 | 2.055 | $1.350{ }^{6}$ | 55.7 | 71 | 7 | 3.376 | 7. 580 |  |
|  |  | 3.298 | 2.120 | 93.6 | 100.0 | 104.2 | 3.22 .1 | . 333 |  |
| C |  | 2.314 | 2.326 | 119.4 | 127.2 | 132.2 | 2.9 | 3.130 |  |
| 6 | 2. | 2.592 | 2.304 | 144.7 | 152. ${ }^{\text {a }}$ | 153.7 | 2.E |  |  |
|  | 2.604 | 2. | 2.356 | 169.6 | 180.0 | 186.7 | 2.82 | 3.000 |  |
|  |  |  | 2.456 | 217.7 | 230.5 | 238.7 | 2.721 | 2.881 |  |
|  | 3.75 | $2.60 \%$ | 2.520 | 25.5 | 2\%2. 2 | 393.1 | 2.658 | 2.882 |  |
| ; | 3.860 | 2.710 | 2.622 | 356.0 | 407.5 | 421.1 | 2.573 | 2.717 |  |
| 0 | 2.320 | 2.759 | 2.681 | 504.2 | 531.5 | 543.0 | 2.521 | 2.658 |  |

$$
\text { Height } \frac{7}{\top} \text { SO ft. }
$$

| 10 | 1 | 1.785 | 1.098 | 30 | 41.3 | 43.3 | 3.880 | 4.120 | 4.333 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 2.214 | 2.054 | 1.976 | 56.5 | 71.3 | 74.5 | $3.3 \% 4$ | 3.566 | 3.724 |
| 30 | 2.370 | 2.220 | 2.132 | 93.2 | 99.5 | 1.03.6 | 3.105 | 3.315 |  |
| 40 | 2.403 | 2.342 | 2.254 | 118.9 | 126.0 | 131.6 | 2.972 | 3.1 | 3.290 |
| 50 | 2.565 | 2.414 | 2.326 | 143.5 | 152.4 | 158. | 2.870 | 3.048 | 3.164 |
| 60 | 2.631 | 2.430 | 2.332 | 167.6 | 178.1 | 184.5 | 2.797 | 2.956 | 3.077 |
| ${ }_{6} 0$ | 2.728 | 2.578 | 2.430 | 215.8 | 2205.4 | 235.5 | 2.698 | 2.0 . 55 | 2.956 |
| 100 | 2.800 | 2.549 | 2.561 | 252.9 | 277.8 | 207.4 | 2.029 | 2.778 | 2.874 |
| 150 | 2.915 | 2.764 | 2.576 | 378.7 | 399.3 | 412.5 | 2.525 | 2.652 | 2.750 |
| 300 | 2.954 | 2.834 | 2.746 | 493.2 | 519.4 | 536.1 | 2.466 | 2.597 | 2.680 |

Height = 100 ft.

| 10 | 1.940 | 1.790 | 1.702 | 37.9 | 41.1 | 43.3 | 3.794 | 4.113 | 4.326 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 2.220 | 2.069 | 1.981 | 65.3 | 71.2 | 74.3 | 3.316 | 3.558 | 3.716 |
| 30 | 2.380 | 2.230 | 2.14 .2 | 92.5 | 99.1 | 103.1 | 3.092 | 3.301 |  |
| 40 | 2.495 | 2.344 | 2.256 | 118.0 | 125.5 | 130.5 | 2.950 | 3.140 | 3.26 |
| 50 | 2.57 \% | $2.42 \%$ | 2.340 | 142.7 | 151.6 | 157.3 | 2.855 | 3.032 | 3.14 |
| 50 | 2.645 | 2.495 | 2.40 | 156.9 | 177.0 | 183.4 | 2.782 | 2.950 | 3.05 |
| З0 | 2.750 | 2.600 | 2.512 | 214.1 | 226.5 | 234.4 | 2.676 | 2.831 | 2.33 |
| 100 | 2.824 | 2.674 | 2.586 | 261.6 | 275.2 | 284.6 | 2.516 | 2.752 | 2.646 |
| 1.50 | 2.951 | 2.800 | 2.713 | 374.1 | 384.2 | 407.0 | 3.497 | 2.633 | 2.71 |
| 00 | 3.038 | 2. . ${ }^{\text {a }}$ | 2.502 | 404.5 | 509.7 | 525.3 | 2.422 | 2.54 .8 | 2.52 |

Tabie 9 (continued)
Dianeter of wire $=0.24$ inch $=0.02$ foot.
Height $=10 \mathrm{ft}$.


Table 9 (continued).
Diameter of wire $=0.24$ inch $=0.02$ foot.
Heicht $=30 \mathrm{ft}$.

| $\ell$ |  | U |  |  | Capa.city |  | - | ty |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ft. | $D=1$ | 2 | 3 | $D=1$ |  | 3 | $\mathrm{D}=1$ | 2 |  |
| 10 | 1.854 | 1.703 | 1.615 | 39.7 | 43.2 | 45.6 | 3.971 | 4.322 | 4.557 |
| 30 | 2.107 | 1.958 | 1.858 | 69.9 | 75.2 | 78.8 | 3.493 | 3.758 | 3.939 |
| 30 | 2.244 | 2.094 | 2.006 | 98.4 | 105.5 | 110.1 | 3.280 | 3.517 | 3.670 |
| 40 | 2.334 | 2.183 | 2.095 | 126.2 | 134.9 | 140.5 | 3.155 | 3.372 | 3.512 |
| $j 0$ | 2.398 | 2.247 | 2.159 | 153.5 | 163.8 | 170.4 | 3.070 | 3.276 | 3.409 |
| 60 | 2.466 | 2.295 | 2.207 | 180.6 | 192.4 | 200.1 | 3.010 | 3.207 | 3.335 |
| 80 | 2.511 | 2.361 | 2.273 | 234.4 | 249.4 | 259.0 | 2.930 | 3.118 | 3.238 |
| 100 | 2.557 | 2.406 | 2.318 | 267.8 | 305.8 | 317.4 | 2.878 | 3.058 | 3.174 |
| 150 | 2.622 | 2.472 | 2.384 | 421.0 | 446.6 | 463.1 | 2.807 | 2.977 | 3.087 |
| 300 | 2.658 | 2.506 | 2.420 | 553.8 | 587.4 | 508.4 | 2.769 | 2.937 | 3.042 |

Height $=40 \mathrm{ft}$.

| 10 | 1.852 | 1.711 | 1.623 | 39.5 | 43.0 | 45.4 | 3.954 | 4.302 | 4.535 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 20 | 2.124 | 1.974 | 1.885 | 69.3 | 714.6 | 78.1 | 3.465 | 3.730 | 4.032 |
| 30 | 2.267 | 2.115 | 2.023 | 99.7 | 104.3 | 108.8 | 3.324 | 3.477 | 3.628 |
| 40 | 2.368 | 2.217 | 2.129 | 124.4 | 132.8 | 138.3 | 3.109 | 3.320 | 3.458 |
| 50 | 2.438 | 2.289 | 2.200 | 150.9 | 160.7 | 167.3 | 3.018 | 3.214 | 3.346 |
| 60 | 2.492 | 2.342 | 2.254 | 177.2 | 188.6 | 199.9 | 2.953 | 3.143 | 3.265 |
| 30 | 2.570 | 2.419 | 2.331 | 229.2 | 243.4 | 252.6 | 2.864 | 3.042 | 3.158 |
| 100 | 2.622 | 2.472 | 2.384 | 280.7 | 297.8 | 308.8 | 2.807 | 2.978 | 3.088 |
| 130 | 2.702 | 2.552 | 2.464 | 408.6 | 432.6 | 448.1 | 2.724 | 2.854 | 2.987 |
| 300 | 2.748 | 2.596 | 2.510 | 535.7 | 565.9 | 586.6 | 2.678 | 2.634 | 2.933 |

Heisht $=50 \mathrm{ft}$.

| 10 | 1.866 | 1.716 | 1.526 | 39.4 | 42.9 | 45.2 | 3.943 | 4.289 | 4.521 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 20 | 2.137 | 1.086 | 1.898 | 6.9 .9 | 74.1 | 77.5 | 3.443 | 3.705 | 3.877 |
| 30 | 2.286 | 2.136 | 2.048 | 95.6 | 103.4 | 107.8 | 3.220 | 3.447 | 3.593 |
| 40 | 2.388 | 2.238 | 2.150 | 123.3 | 131.6 | 136.9 | 3.082 | 3.289 | 3.422 |
| 50 | 2.464 | 2.313 | 2.225 | 149.4 | 159.1 | 165.4 | 2.988 | 3.182 | 3.308 |
| 60 | 2.522 | 2.371 | 2.283 | 175.2 | 186.3 | 193.4 | 2.920 | 3.105 | 3.223 |
| 80 | 2.506 | 2.456 | 2.358 | 225.9 | 239.7 | 24.8 .6 | 2.824 | 2.996 | 3.108 |
| 100 | 2.656 | 2.515 | 2.428 | 276.1 | 292.6 | 303.2 | 2.761 | 2.926 | 3.032 |
| 150 | 2.758 | 2.607 | 2.519 | 400.4 | 423.5 | 438.2 | 2.669 | 2.827 | 2.901 |
| 300 | 2.810 | 2.658 | 2.572 | 523.8 | 553.8 | 572.4 | 2.619 | 2.769 | 2.862 |

Taile 9 (continued).
Diameter of rire $=0.24$ inch $=0.02$ foot.
Height $=60 \mathrm{ft}$.

| $l$ |  | U |  |  | Capacity |  |  | ity p |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ft. | $D=1$ | 2 | , | $D=1$ | 2, | 3 |  |  |  |
| 10 | 1.870 | 1.720 | 1.632 | 39.3 | 42.8 | 4.5 .1 | 3.932 | 4.279 | 4.510 |
| 20 | 2.144 | 1.994 | 1.906 | 56.7 | 53.8 | 77.2 | 3.433 | 3.592 | 3.552 |
| 30 | 2.295 | 2.146 | 2.058 | 95.2 | 102.9 | 107.3 | 3.206 | 3.430 | 7 |
| 40 | 2.402 | 2.252 | 2.164 | 122.5 | 130.8 | 136.0 | 3.052 | 3.270 | 00 |
| 50 | 2.450 | 2.330 | 2.242 | 148.4 | 157.9 | 164.1 | 2.958 | 3.158 | 3.282 |
| 50 | 2.542 | 2.391 |  | 173.8 | 184.7 | 191.6 | 2.897 | 3.078 |  |
| 80 | 2.532 | 2.482 | 2.394 | 223.7 | 237.2 | 246.0 | 2.796 | 2.955 | 3.074 |
| 100 | 2.697 | 2.546 | 2.458 | 272.9 | 2 29.0 | 399.4 | 2.729 | 2.690 | 2.994 |
| 150 | 2.798 | 2.507 | 2.559 | 394.6 | 417.1 | 431.4 | 2.631 | 2.751 | 2.8576 |
| 300 | 2.854 | 2.702 | 2.61 ชิ | 515.8 | 544.9 | 562.2 | 2.579 | 2.724 | 2.811 |

Height $=\delta 0 \mathrm{ft}$.

| 10 | 1.574 | 1.724 | 1.536 | 39.3 | 42.7 | 45.0 | 3.927 | 4.269 | 4.499 |
| ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 20 | 2.152 | 2.002 | 1.914 | 69.4 | 73.5 | 76.9 | 3.420 | 3.677 | 3.846 |
| 30 | 2.310 | 2.156 | 2.072 | 95.6 | 102.3 | 106.5 | 3.186 | 3.410 | 3.553 |
| 40 | 2.420 | 2.259 | 2.151 | 121.7 | 129.8 | 135.0 | 3.042 | 3.244 | 3.375 |
| 50 | 2.504 | 2.354 | 2.255 | 145.9 | 156.3 | 162.7 | 2.938 | 3.126 | 3.254 |
| 60 | 2.568 | 2.418 | 2.330 | 171.9 | 182.6 | 189.5 | 2.855 | 3.043 | 3.156 |
| 00 | 2.656 | 2.515 | 2.427 | 220.9 | 234.1 | 242.6 | 2.761 | 2.925 | 3.032 |
| 100 | 2.736 | 2.586 | 2.498 | 259.0 | 296.6 | 293.5 | 2.650 | 2.844 | 2.946 |
| 150 | 2.652 | 2.702 | 2.514 | 387.0 | 408.6 | 422.3 | 2.580 | 2.724 | 2.815 |
| 300 | 2.922 | 2.771 | 2.654 | 503.8 | 531.1 | 548.5 | 2.519 | 2.556 | 2.742 |

Heizht $=100 \mathrm{ft}$.

| 10 | 2.878 | 1.727 | 1.639 | 39 | 42.6 | 44.9 | 3.920 | 4.262 | 4.491 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 2.156 | 2.006 | 1.91 ¢ | 68.3 | 73.4 | 76.7 | 3.414 | 3.668 | 3.836 |
| 30 | 2.318 | $2.16 \%$ | 2.030 | 95.3 | 101.9 | 106.2 | 3.175 | 3.397 | 3.540 |
| 40 | 2.432 | 2.282 | 2.194 | 121.0 | 129.0 | 134.2 | 3.025 | 3.222 | 3.355 |
| 50 | 2.515 | 2.365 | 2.277 | 146.3 | 155.6 | 161.6 | 2.926 | 3.112 | 3.232 |
| 60 | 2.554 | 2.433 | 2.345 | 170.9 | 181.5 | 188. 3 | 2.848 | 3.025 | 3.138 |
| 50 | 2.686 | 2.536 | 2.448 | 219.2 | 232.2 | 240.5 | 2.740 | 2.902 | 3.006 |
| 00 | 2.762 | 2.612 | 2.524 | 266.5 | 251.8 | 291.7 | 2.655 | 2.818 | 2.917 |
| 150 | 2.8๕\% | 2.738 | 2.550 | 382.2 | 403.2 | 4.16 .6 | 2.54 .6 | 2.68 \% | 2.777 |
| 0 | 2.966 | 2.016 | 2.730 | 495.3 | 522.8 | 539.3 | 2.492 | 2.614 | 2.696 |


[^0]:    

